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Preface

This volume contains the papers presented at the 24th International Conference
on Automated Deduction (CADE-24), held during June 9–14, 2013, in Lake
Placid, New York, USA. CADE is the major forum for the presentation of re-
search in all aspects of automated deduction, including foundations, applications,
implementations, and practical experiences.

The Program Committee accepted 31 papers (22 full papers and 9 system
descriptions) out of 71 submissions (53 full papers and 18 system descriptions).
The acceptance rate was 43.66% overall, 41.51% for full papers, and 50% for
system descriptions. Each submission was reviewed by at least three Program
Committee (PC) members or external reviewers appointed by the PC members
in charge. The main criteria for evaluation were originality and significance, tech-
nical quality and completeness, comparison with related work and completeness
of references, quality of presentation, clarity, and readability.

The Best Paper Award was conferred to Radu Iosif (Verimag and CNRS,
Grenoble, France), Adam Rogalewicz, and Jiri Simacek (Brno University of Tech-
nology, Czech Republic), for their paper entitled “The Tree Width of Separation
Logic with Recursive Definitions,” which proves decidability of satisfiability and
entailment in an expressive fragment of separation logic, a logic relevant to pro-
gram verification. According to separation logic experts who reviewed it, this
paper closes in a creative and insightful way a problem that was open since 2004
and that was attacked unsuccessfully by several scholars.

The technical program of the conference included four invited talks by Jean-
Christophe Filliâtre (CNRS and LRI Université Paris Sud XI, France), on “One
Logic to Use Them All,” Greg Morrisett (Harvard University, USA) on “Defin-
ing, Testing, and Reasoning About an x86 Decoder,” Natarajan Shankar (SRI
International, USA) on “Automated Reasoning, Fast and Slow,” and Douglas R.
Smith (Kestrel Institute and Kestrel Technology LLC, USA) on “Coalgebraic
Specification and Refinement.”This volume includes the invited papers by Jean-
Christophe Filliâtre and Natarajan Shankar. The talk by Doug Smith focused on
using coalgebraic concepts to specify the requirements on dynamical systems and
then use deductive techniques to calculate refinements of the specifications into
correct-by-construction code. The emphasis was on deduction for purposes of
generating correct code rather than performing ad hoc verification on manually
written code.

During the conference, the Herbrand Award for Distinguished Contributions
to Automated Reasoning was presented to Greg Nelson for his invention of equal-
ity sharing, also known as the Nelson-Oppen method, and his pioneering work
on theorem proving and program checking, including fast congruence closure
algorithms and the Simplify theorem prover. The Selection Committee for the
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Herbrand Award consisted of the CADE-24 Program Committee members, the
trustees of CADE Inc., and the Herbrand Award winners of the last ten years.

The conference issued a call for workshops out of which the following seven
proposals were approved:

– Automated Deduction: Decidability, Complexity, Tractability (ADDCT) by
Silvio Ghilardi, Ulrike Sattler, Viorica Sofronie-Stokkermans, and Ashish
Tiwari

– Automated Reasoning in Security (ARSEC) by Paliath Narendran, Christo-
pher A. Lynch, Andrew Marshall, and Dan Dougherty

– Empirically Successful Automated Reasoning with Artificial Intelligence
(ESARAI) by Boris Konev, Stephan Schulz, and Geoff Sutcliffe

– Knowledge-Intensive Automated Reasoning (KInAR) by Ulrich Furbach and
Björn Pelzer

– Methods for Modalities (M4M) by Carlos Areces
– Proof Exchange for Theorem Proving (PxTP) by Jasmin Christian Blanchet-

te and Josef Urban
– The StarExec Web Service for the Evaluation of Logic Solvers (StarExec) by

Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli

Similarly, a call for tutorials generated the following five:

– Reasoning in Lightweight Description Logics, by Franz Baader
– Program Verification with the KeY System, by Bernhard Beckert and Reiner

Hähnle
– Becoming a Power User of SMT: The CVC4 Solver, by Morgan Deters, Dejan

Jovanović, Clark W. Barrett, and Cesare Tinelli
– State-of-the-art SAT Solving, by Marijn Heule
– The Twelf System, by Carsten Schürmann, Taus Brock-Nannestad, and

Chris Martens

During the conference, the CADE-24 ATP System Competition – CASC-24 –
was held, organized by Geoff Sutcliffe, who contributed the following description.

The CADE ATP System Competition (CASC) is an annual evaluation of
fully automatic, classical logic automated theorem proving (ATP) systems – the
world championship for such systems. Its main purpose is to provide a public
evaluation of the relative capabilities of ATP systems. Additionally, CASC aims
at stimulating ATP research, motivating development and implementation of
robust, useful and easily deployable ATP systems, providing an inspiring envi-
ronment for personal interaction between ATP researchers, and exposing ATP
systems within and beyond the ATP community. Fulfillment of these objectives
offers insight and stimulus for the development of more powerful ATP systems,
leading to increased and more effective use. The CASC-24 website provides ac-
cess to all systems and competition resources: http://www.tptp.org/CASC/24.
CASC-24 was run in divisions according to problem and system characteristics:
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– THF: Typed Higher-Order Form Theorems (axioms with a provable conjec-
ture)

– TFA: Typed First-Order with Arithmetic Theorems (axioms with a provable
conjecture)

– FOF: First-Order Form Theorems (axioms with a provable conjecture)
– FNT: First-Order Form Syntactically Non-propositional Non-theorems
– EPR: Effectively PRopositional Clause Normal Form Theorems and

Non-theorems
– LTB: First-Order Form Theorems (axioms with a provable conjecture) from

Large Theories, presented in Batches

In the THF, TFA, and EPR divisions, provers were ranked based on the number
of problems solved, without being required to produce a proof or model. In the
FOF, FNT, and LTB divisions, provers were ranked based on the number of
problems solved with an acceptable proof or model output. The LTB division
featured a 24-hour training period before the competition, during which systems
could use a set of problems and solutions for tuning and training, but no human
intervention was allowed. Problems for CASC-24 were taken from the TPTP
Problem Library, using a version released after the start of the competition, so
that new problems had not been seen by the entrants. Ties were broken according
to the average time over problems solved.

Several students received Woody Bledsoe Travel Awards, thus named to re-
member the late Woody Bledsoe, funded by CADE Inc. to sponsor student
participation. Best Paper Award winners, CASC divisions winners, and Woody
Bledsoe Travel Awards recipients were announced during the banquet.

Many people contributed to making CADE-24 a success. I am very grateful to
the members of the Program Committee and the external reviewers for carefully
reviewing and evaluating the papers. On behalf of the Program Comittee, I thank
Andrei Voronkov for the EasyChair system. I thank all authors who submitted
papers, all participants of the conference, the invited speakers, the distinguished
lecturers, the tutorial speakers, and the workshop organizers. CADE-24 would
not have been possible without the dedicated work of the Organizing Committee.
First and foremost, Neil Murray and Chris Lynch did a terrific job as Conference
Chairs, planning and supervising all the conference events. Christoph Benzmüller
and Peter Baumgartner were relentless as Workshop and Competition Chair, and
Tutorial Chair, respectively. Heartfelt thanks go to Grant Olney Passmore for
being such a proactive Publicity Chair, doing far more than the call of duty.
I thank Geoff Sutcliffe for organizing CASC and also helping with publicity.
Special thanks go to Catherine Zawadzki and the other personnel of the Crowne
Plaza Hotel in Lake Placid, where all conference activities were held.

April 2013 Maria Paola Bonacina
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Predrag Janičić Univerzitet u Beogradu, Serbia
Hélène Kirchner INRIA Rocquencourt, France
Konstantin Korovin University of Manchester, UK
K. Rustan M. Leino Microsoft Research, USA
Christopher A. Lynch Clarkson University, USA
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One Logic to Use Them All

Jean-Christophe Filliâtre1,2,3

1 CNRS
2 LRI, Univ. Paris-Sud, Orsay, F-91405

3 INRIA Saclay – Île-de-France, Orsay, F-91893

Abstract. Deductive program verification is making fast progress these
days. One of the reasons is a tremendous improvement of theorem provers
in the last two decades. This includes various kinds of automated theorem
provers, such as ATP systems and SMT solvers, and interactive proof
assistants. Yet most tools for program verification are built around a
single theorem prover. Instead, we defend the idea that a collaborative
use of several provers is a key to easier and faster verification.

This paper introduces a logic that is designed to target a wide set of
theorem provers. It is an extension of first-order logic with polymorphism,
algebraic data types, recursive definitions, and inductive predicates. It
is implemented in the tool Why3, and has been successfully used in the
verification of many non-trivial programs.

1 Introduction

The idea behind deductive program verification [20] is to break down the cor-
rectness of a program to a set of logical formulas and to prove them valid. A
tremendous improvement of theorem provers in the last two decades now allows
this idea to scale up. Projects such as CompCert [31] and seL4 [26] show how
interactive proof assistants (resp. Coq and Isabelle) can be successfully used to
tackle large program verifications. Even more impressive is the progress in auto-
mated provers1, notably the so-called SMT revolution. Designed with program
verification in mind, SMT solvers have led to powerful verification tools, such as
VCC [39], Frama-C [23], Dafny [29], or VeriFast [25], to mention only a few. Yet
we note that most of these tools are built on top of a single automated prover
(e.g. Z3 in the case of VCC, Dafny, or VeriFast) or a single dedicated prover to
handle a specific program logic (e.g. B method [1] or KIV [37]).

We rather defend the idea that program verification should be done using
as many theorem provers as possible, including those that were not necessarily
designed with program verification in mind (e.g. ATP systems). We are de-
veloping the tool Why3 [10,22] to implement this idea. Both the specification
logic of Why3 and its programming language, WhyML, are used as intermedi-
ate languages in tools such as Frama-C [23], Krakatoa [33], Easycrypt [4], and
GNATprove [14]. WhyML is also used directly to implement data structures and
algorithms that can later be translated to executable OCaml code. Our gallery of
1 We use automated provers to denote both SMT solvers and ATP systems.

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 1–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 J.-C. Filliâtre

verified programs (http://toccata.lri.fr/gallery/) currently contains more
than 80 entries. These examples show the benefits of our approach. Indeed, it is
often the case that several theorem provers are successfully used in proving all
goals, but none can prove all of them by itself. In particular, an interactive theo-
rem prover can be used to discharge a complex lemma (for instance one requiring
induction), while the remaining goals can all be discharged automatically.

Designing a logic to target a wide set of theorem provers is not that easy.
We have come up with a logic of compromise, that is not as rich as the logic
of proof assistants such as Coq or PVS, yet richer than the usual logic of au-
tomated theorem provers. Our logic is an extension of first-order logic with
rank-1 polymorphism, algebraic data types, recursive definitions, and inductive
predicates. The purpose of this paper is to define this logic (Section 2), and to
explain the processes by which Why3 translates it to the input format of fifteen
theorem provers (Section 3). Finally, Section 4 presents experimental results ob-
tained in the context of program verification. We conclude with related work and
perspectives.

2 A Polymorphic First-Order Logic

This section describes the logic of Why3 as faithfully as possible. Earlier work [11]
only describes the extension of first-order logic with polymorphism. Here we also
consider algebraic data types, recursive definitions, and inductive predicates.

2.1 Syntax

A type symbol is simply a name t and a type arity n ∈ N. We write it
t〈α1, . . . , αn〉 where the αi are type variables. Names α1, . . . , αn are not rele-
vant but we adopt an homogeneous syntax for all symbols. We note dt such a
declaration:

dt ::= t〈α, . . . , α〉 type symbol declaration

When n = 0, we say that t is a monomorphic type symbol and we simply write t
instead of t〈〉. In the following, let ΣT be a set of type symbols. We assume that
ΣT contains at least the two monomorphic type symbols int and real. Types are
built from type variables and type symbols:

τ ::= α type variable
| t〈τ, . . . , τ〉 type symbol application

We note tv(τ) the set of type variables of type τ . When tv(τ) = ∅, we say that
τ is a sort.

Function and predicate symbols are declared, possibly with polymorphic
types, as follows:

df ::= f〈α, . . . , α〉(τ, . . . , τ) : τ function symbol declaration
dp ::= p〈α, . . . , α〉(τ, . . . , τ) predicate symbol declaration

http://toccata.lri.fr/gallery/
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In the following, ΣF denotes a set of function symbols and ΣP a set of pred-
icate symbols. We assume that ΣP contains at least a polymorphic predicate
=〈α〉(α, α) that denotes equality. Terms and formulas are then built from func-
tion and predicate symbols according to the syntax given in Fig. 1–3. Note that
syntax for terms and formulas are mutually recursive, since a conditional term
expression if f then t1 else t2 involves a formula f .

We note fv (t) (resp. fv(f), fv (p)) the set of free variables of a term t (resp.
a formula f , a pattern p). Definitions of fv(t) and fv (f) are standard, variables
being bound by let, quantifiers, and patterns. A pattern p binds all variables
in fv(p), which is defined as follows:

fv (xτ ) = {xτ}
fv(f〈τ1, . . . , τm〉(p1, . . . , pn)) = fv (p1) ∪ · · · ∪ fv(pn)

fv( ) = ∅
fv (p1 | p2) = fv (p1) ∪ fv(p2)
fv(p as xτ ) = fv (p) ∪ {xτ}

The type checking rule for pattern p1 | p2, given in next section, imposes that
fv(p1) and fv (p2) are equal. Thus the definition above actually simplifies to
fv(p1 | p2) = fv(p1) = fv(p2).

A signature Σ denotes a triple (ΣT , ΣF , ΣP ). A context Γ extends a signa-
ture Σ with definitions for some of its symbols. A definition d introduces either
algebraic data types, recursive definitions, or inductive predicates, as follows:

d ::= datatype a with . . . with a algebraic data types
| recursive δ with . . . with δ recursive definitions
| inductive i with . . . with i inductive predicates

a ::= dt = df| . . . |df algebraic data type
δ ::= function f〈α, . . . , α〉(xτ , . . . , xτ ) : τ = t function definition

| predicate p〈α, . . . , α〉(xτ , . . . , xτ ) = f predicate definition
i ::= dp = f| . . . |f inductive predicate

Example. Let ΣT be the following set of type symbols:

ΣT = {int, real, nat, list〈α〉, pair〈α1, α2〉}.

Let ΣF and ΣP be the following sets of function and predicate symbols:

ΣF = {O : nat, S(nat) : nat,

Nil〈α〉 : list〈α〉, Cons〈α〉(α, list〈α〉) : list〈α〉, length〈α〉(list〈α〉) : nat,
Pair〈α1, α2〉(α1, α2) : pair〈α1, α2〉 }

ΣP = {=〈α〉(α, α), even(nat)}
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t ::= cint literal integer constant
| creal literal real constant
| xτ variable
| f〈τ, . . . , τ 〉(t, . . . , t) function symbol application
| let xτ = t in t local binding
| if f then t else t conditional expression
| match t with p→ t | . . . | p→ t end pattern matching

Fig. 1. Syntax for terms

f ::= p〈τ, . . . , τ 〉(t, . . . , t) predicate symbol application
| ∀xτ . f universal quantification
| ∃xτ . f existential quantification
| f ∧ f conjunction
| f ∨ f disjunction
| f ⇒ f implication
| f ⇔ f equivalence
| not f negation
| true tautology
| false absurdity
| let xτ = t in f local binding
| if f then f else f conditional expression
| match t with p→ f | . . . | p→ f end pattern matching

Fig. 2. Syntax for formulas

p ::= xτ variable
| f〈τ, . . . , τ 〉(p, . . . , p) constructor application
| catch all
| p | p or pattern
| p as xτ binding

Fig. 3. Syntax for patterns
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Let Γ be the extension of the signature above with the following set of defi-
nitions:

datatype nat = O | S(nat)
datatype list〈α〉 = Nil〈α〉 | Cons〈α〉(α, list〈α〉)
recursive function length〈α〉(llist〈α〉) : nat =
match llist〈α〉 with Nil〈α〉 → O | Cons〈α〉( , rlist〈α〉)→ S(length(rlist〈α〉)) end

inductive even(nat) =
even(O) | ∀nnat. even(nnat)⇒ even(S(S(nnat)))

Here and below, we omit type annotations when they are obvious from the
context.

2.2 Type Checking

For a signature Σ to be well-formed, any type expression τ occurring in a dec-
laration of ΣF or ΣP must be well-typed, that is Σ 
 τ . Additionally, the free
type variables of τ must be included in the type variables 〈α1, . . . , αm〉 of the
declaration. In the following, we only consider signatures that are well-formed.
Let Γ be a context extending a signature Σ with definitions. For Γ to be well-
formed, any symbol from a definition must appear in Σ, and no symbol can be
defined more that once.

Type checking of types, terms, formulas, and patterns is straightforward.
Judgements are Σ 
 τ (type τ is well-formed in Σ), Σ 
 t : τ (term t is well-
formed and of type τ), Σ 
 f (formula f is well-formed), and Σ 
 p : τ (pattern
p is well-formed and of type τ), respectively. Typing rules are given in Fig. 4–
7. Note that, contrary to Hindley-Milner type system, the let binder does not
generalize the type of the term that is bound. Thus polymorphism is introduced
by symbols, but not by local definitions. In addition to these rules, we also check
that, for any pattern matching expression match t with p1 → . | . . . | pn → . end
(in terms or formulas), t has type t〈τ1, . . . , τm〉 where type t is defined as an al-
gebraic data type and patterns p1, . . . , pn cover any possible value for term t.

Finally, we perform the following checks on definitions.

Algebraic Data Types. Within a block of mutually-defined algebraic data types
datatype a1 with . . . with ak, each algebraic data type definition ai must have
the form

ti〈α1, . . . , αm〉 = f1〈α1, . . . , αm〉(. . . ) : ti〈α1, . . . , αm〉
| . . .
| fl〈α1, . . . , αm〉(. . . ) : ti〈α1, . . . , αm〉

that is, all constructors fj share the same type parameters as type ti and all
have return type ti〈α1, . . . , αm〉. Additionally, we require that all types ti are
inhabited according to the following definition: Type ti is inhabited if it has
at least one constructor fj〈α1, . . . , αm〉(τ1, . . . , τnj ) such that all types τl are
inhabited. Since types τl may recursively involve types from data type definitions,
such a definition is to be understood as a least fixed point. Types from Σ that are
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t〈α1, . . . , αm〉 ∈ Σ Σ � τi
Σ � t〈τ1, . . . , τm〉

Fig. 4. Typing rule for types

Σ � cint : int Σ � creal : real

Σ � τ

Σ � xτ : τ

f〈α1, . . . , αm〉(τ ′
1, . . . , τ

′
n) : τ ∈ Σ Σ � τi

σ = {α1 → τ1, . . . , αm → τm} Σ � ti : σ(τ
′
i)

Σ � f〈τ1, . . . , τm〉(t1, . . . , tn) : σ(τ )
Σ � t1 : τ Σ � t2 : τ2

Σ � let xτ = t1 in t2 : τ2

Σ � f Σ � t1 : τ Σ � t2 : τ

Σ � if f then t1 else t2 : τ

Σ � t : t〈τ1, . . . , τm〉 Σ � pi : t〈τ1, . . . , τm〉 Σ � ti : τ

Σ � match t with p1 → t1 | . . . | pn → tn end : τ

Fig. 5. Typing rules for terms

p〈α1, . . . , αm〉(τ ′
1, . . . , τ

′
n) ∈ Σ Σ � τi

σ = {α1 → τ1, . . . , αm → τm} Σ � ti : σ(τ
′
i)

Σ � p〈τ1, . . . , τm〉(t1, . . . , tn)

Σ � true Σ � false
Σ � f1 Σ � f2 ◦ ∈ {∧,∨,⇒,⇔}

Σ � f1 ◦ f2
Σ � τ Σ � f

Σ � ∀xτ . f

Σ � τ Σ � f

Σ � ∃xτ . f

Σ � f

Σ � not f

Σ � t : τ Σ � f

Σ � let xτ = t in f

Σ � f1 Σ � f2 Σ � f3
Σ � if f1 then f2 else f3

Σ � t : t〈τ1, . . . , τm〉 Σ � pi : t〈τ1, . . . , τm〉 Σ � fi
Σ � match t with p1 → f1 | . . . | pn → fn end

Fig. 6. Typing rules for formulas

Σ � τ

Σ � xτ : τ

Σ � τ

Σ � : τ

f〈α1, . . . , αm〉(τ ′
1, . . . , τ

′
n) : τ ∈ Σ Σ � τi σ = {α1 → τ1, . . . , αm → τm}

i �= j ⇒ fv(pi) ∩ fv(pj) = ∅ Σ � pi : σ(τ
′
i)

Σ � f〈τ1, . . . , τm〉(p1, . . . , pn) : σ(τ )
fv(p1) = fv(p2) Σ � pi : τ

Σ � p1 | p2 : τ

xτ �∈ fv(p) Σ � p : τ

Σ � p as xτ : τ

Fig. 7. Typing rules for patterns
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not part of data type definitions are assumed to be inhabited. As a consequence
of this definition, an algebraic data type must have at least one constructor.

Recursive Definitions. A block of mutually recursive definitions
recursive δ1 with . . . with δk is well-formed if each definition δi is
well-typed. A function definition

function f〈α, . . . , α〉(xτ , . . . , xτ ) : τ = t

is well-typed if Σ 
 t : τ , and a predicate definition

predicate p〈α, . . . , α〉(xτ , . . . , xτ ) = f

is well-typed if Σ 
 f . Additionally, all free variables (including type variables)
in t and f must belong to the symbol declaration. Finally, we require such
definitions to terminate, according to the following criterion: there must exist
a lexicographic order of arguments that guarantees a structural descent (over
algebraic data types).

Inductive Predicates. An inductive definition

p〈α1, . . . , αm〉(τ1, . . . , τn) = f1| . . . |fk

is well-formed if each clause fi is a closed formula, well-typed i.e. Σ 
 fi, that
belongs to the following grammar:

f0 ::= p〈α1, . . . , αm〉(t1, . . . , tn)
| f ⇒ f0
| ∀xτ . f0
| let xτ = t in f0

Additionally, we require all inductive predicates from that block of inductive
definitions to appear in strictly positive positions in the formulas on the left side
of ⇒, so as to ensure the existence of a least fixpoint.

In the following, we only consider contexts that are well-formed according to
the typing rules we just introduced.

2.3 Semantics

We recall that a sort is a monomorphic type, that is, a type τ such that tv(τ) = ∅.
In the following, we use notation α (resp. s, x, t) for a vector of type variables
(resp. sorts, variables, terms). Given a signature, a pre-interpretation [[.]] is de-
fined as follows:

– Each sort s is interpreted as a non-empty domain [[s]]. Sort int is interpreted
as Z and sort real as R.



8 J.-C. Filliâtre

– Given a function symbol f〈α〉(τ1, . . . , τn) : τ and sorts s, we interpret the
instance f〈s〉 as a function [[f〈s〉]] of type

[[σ(τ1)]]× · · · × [[σ(τn)]]→ [[σ(τ)]]

where σ maps the type variables α to the sorts s.
– Given a predicate symbol p〈α〉(τ1, . . . , τn) and sorts s, we interpret the in-

stance p〈s〉 as a function [[p〈s〉]] of type

[[σ(τ1)]]× · · · × [[σ(τn)]]→ {⊥,�}

where σ maps the type variables α to the sorts s. For each sort s, the
predicate =〈s〉 is interpreted as the equality over [[s]].

– For any algebraic data type t〈α〉, with constructors f1〈α〉, . . . , fl〈α〉, we re-
quire [[t〈s〉]] to be the free algebra generated by [[f1〈s〉]], . . . , [[fl〈s〉]], that is

for i = j, [[fi〈s〉]](t) = [[fj〈s〉]](u) (1)

[[fi〈s〉]](t) = [[fi〈s〉]](u)⇒ t = u (2)

∀x ∈ [[t〈s〉]], ∃i, ∃t, x = [[fi〈s〉]](t) (3)

In the following, isfi denotes a predicate that identifies values in [[t〈s〉]] that
are applications of fi, and projfi,j returns the j-th argument of such an ap-
plication.

Given a pre-interpretation, a valuation v maps each type variable α to a sort
v(α), and each variable xτ to some element of [[v(τ)]]. Given a pre-interpretation
and a valuation v, a term t of type τ is interpreted as an element [[t]]v ∈ [[v(τ)]]
and a formula f is interpreted as a Boolean value [[f ]]v, according to the defini-
tions given in Fig. 8–9. Note that pattern matching is compiled away as show
in Fig. 10. Operator M turns a match construct into elementary tests. More
precisely, M(t, p, b, h) filters value t against pattern p and returns b in case of
success and h in case of failure. Since type checking ensures that any pattern
matching is exhaustive, the error term cannot actually appear in the result of
M . It is only used to simplify the definition and use of function M .

An interpretation is a pre-interpretation that is consistent with recursive and
inductive definitions, that is:

– For any recursive definition function f〈α〉(x) : τ = t and any s, we require
[[f〈s〉]] to be such that, for all t, [[f〈s〉]](t) = [[t]]v where v maps the α to the
s and the x to the t (and similarly for a predicate definition).

– For any inductive definition p〈α〉(τ ) = f1| . . . |fl and any s, we require [[p〈s〉]]
to be the least predicate such that [[f1]]v, . . . , [[fl]]v hold where v maps the α
to the s.
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[[nint]]v = n

[[rreal]]v = r

[[xτ ]]v = v(xτ )

[[f〈τ1, . . . , τm〉(t1, . . . , tn)]]v = [[f〈v(τ1), . . . , v(τm)〉]]([[t1]]v , . . . , [[tn]]v)
[[let xτ = t1 in t2]]v = [[t2]]v[xτ �→[[t1]]v]

[[if f then t1 else t2]]v = [[t1]]v if [[f ]]v = �,
= [[t2]]v otherwise

[[match t with p1 → t1 | . . . | pn → tn end]]v = [[M(t, p1, t1,M(t, p2, t2,
. . . ,M(t, pn, tn, error )))]]v

Fig. 8. Interpretation of terms

[[p〈τ1, . . . , τm〉(t1, . . . , tn)]]v = [[p〈v(τ1), . . . , v(τm)〉]]([[t1]]v, . . . , [[tn]]v)
[[∀xτ . f ]]v =

[[∃xτ . f ]]v =

[[f1 ◦ f2]]v = [[f1]]v ◦ [[f2]]v where ◦ ∈ {∧,∨,⇒,⇔}
[[not f ]]v = ¬[[f ]]v
[[true]]v = �

[[false]]v = ⊥
[[let xτ = t1 in f2]]v = [[f2]]v[xτ �→[[t1]]v]

[[if f1 then f2 else f3]]v = [[f2]]v if [[f1]]v = �,
= [[f3]]v otherwise

[[match t with p1 → f1 | . . . | pn → fn end]]v = [[M(t, p1, f1,M(t, p2, f2,
. . . ,M(t, pn, fn, error)))]]v

Fig. 9. Interpretation of formulas

M(t, xτ , b, h) = let xτ = t in b

M(t, fi(), b, h) = if isfi(t) then b else h

M(t, fi(p1, . . . , pn), b, h) = if isfi(t) then M(projfi,1(t), p1,M(projfi,2(t), p2, . . . , h), h) else h

M(t, , b, h) = b

M(t, p1 | p2, b, h) = M(t, p1, b,M(t, p2, b, h))

M(t, p as xτ , b, h) = let xτ = t in M(t, p, b, h)

Fig. 10. Interpretation of patterns
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A set of closed formulas Δ is satisfied by [[.]] if and only if [[f ]]v = � for every
f ∈ Δ and every valuation v. (Note that only the mapping of type variables
in v is relevant here, since formulas are closed.) A set of closed formulas Δ is
satisfiable if and only if it is satisfied for some interpretation. Given a set of
polymorphic closed axioms Δ and a closed formula f to be proved, we may
assume that f is monomorphic (otherwise we simply replace type variables in f
by fresh type constants). Then we say that formula f is a logical consequence of
Δ if and only if the set Δ, not f is unsatisfiable.

Discussion. It is worth pointing out that our notion of interpretation does not
prevent two distinct instances of a polymorphic symbol, say two types t〈s1〉
and t〈s2〉 or two functions f〈s1〉 and f〈s2〉, to be interpreted in two completely
different ways. Even for an algebraic data type, say list〈α〉, we do not require
Nil〈s1〉 and Nil〈s2〉 to be identical. We simply require list〈s1〉 to be the free
algebra generated by Nil〈s1〉 and Cons〈s1〉, and similarly list〈s2〉 to be the free
algebra generated by Nil〈s2〉 and Cons〈s2〉.

As a consequence, there is nothing wrong with an axiom defining a property
of f〈int〉, for some polymorphic function f〈α〉, while all other instances are left
uninterpreted. Even further, we could have two completely unrelated axioms for
f〈int〉 and f〈real〉, e.g. that f〈int〉 is the identity over type int while f〈real〉 is the
square root function.

Simply speaking, everything works as if we were using many-sorted logic with
a possibly infinite set of simple sorts (int, list〈int〉, list〈real〉, list〈list〈int〉〉, etc.),
and a possibly infinite set of functions and predicates with simple types (Nil〈int〉,
Nil〈real〉, Cons〈list〈int〉〉, etc.), with suitable extensions for algebraic data types,
recursive definitions, and inductive predicates.

2.4 Implementation

The logic we just described is implemented in Why3 at two different levels: an
OCaml API and a surface language.

The OCaml API allows the user to build terms, patterns, formulas, decla-
rations, and goals. The API is defensive: only well-typed values can be built,
according to the typing rules of Sec. 2.2. Following the presentation above, one
first builds symbols and then, later, possible definitions for these symbols. This
way, terms, patterns, and formulas can be built as soon as symbols are available,
without the need of passing around a context containing definitions.

On top of this API, Why3 provides a surface language. Fig. 11 contains an
example of input file. Contrary to the API, when a definition is provided, we do
not separate the signature and the definition. For instance, we simply write

type list ’a = Nil | Cons ’a (list ’a)

to simultaneously introduce the type symbol list ’a, the two function symbols
Nil and Cons (its constructors), and the algebraic data type definition.
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theory Example

type nat = O | S nat

type list ’a = Nil | Cons ’a (list ’a)

function length (l: list ’a) : nat =
match l with
| Nil → O
| Cons _ r → S (length r)
end

inductive even (nat) =
| EvenO: even O
| EvenS: forall m: nat. even m → even (S (S m))

goal G: even (length (Cons O (Cons O Nil)))

end

Fig. 11. Example of Why3 input file

In the surface language, there are no angle brackets 〈.〉 anymore. First, type
variables are not explicitly bound in symbol declarations. They are rather gath-
ered, as the set of all type variables appearing in the symbol’s type. For instance,
the declaration

function length (l: list ’a) : nat = ...

introduces a function symbol length with one type variable. Second, type vari-
ables are not explicitly instantiated when a symbol is used. Instantiation is in-
ferred from the arguments whenever possible. For instance, one simply writes

length (Cons 1 (Cons 2 Nil))

without having to pass 〈int〉 to Nil, Cons, and length. When the instantiation
cannot be computed from the arguments, it must be provided. A typical example
is the following:

lemma L: length (Nil: list ’a) = O

Without the type cast, this would result in an undefined type variable er-
ror. In both the API and the surface language, there is no type inference,
only type checking. In particular, quantified variables are given types (such as
forall m: nat in Fig. 11). This is a deliberate choice: we could implement type
inference, but we think that specifications are easier to read when types are
given.

Among other features of the surface language of Why3 are type aliases (such
as type t = list int) and tuple types. Type aliases are inlined systematically.
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Tuple types are particular cases of algebraic data types, and are generated on
the fly. There is also a syntax for record types (algebraic data types with a
single constructor and named projection functions). Finally, logic declarations
are organized in units called theories, as shown in Fig. 11. Theories can refer
to and instantiate other theories. We do not discuss theories here; see [10] for
details.

3 Targeting Multiple Provers

We now explain how Why3 translates the logic we just described into the na-
tive input format of external theorem provers. Currently, Why3 supports the
following theorem provers:

– Proof assistants: Coq 8.4 [41] and PVS 6.0 [36];
– SMT solvers: Alt-Ergo 0.95.1 [7], CVC3 2.4.1 [3], CVC4 1.0 [2], Simplify

1.5.4 [19], Yices 1.0.38 [18] and Yices2 2.0.4, Z3 4.3.1 [17];
– ATP systems: E 1.6 [40], iProver 0.8.1 [27], SPASS 3.7 [42], Vampire 0.6 [38],

Zenon 0.7.1 [13];
– Dedicated provers: Gappa 0.15.1 [16], Mathematica 8.0.

We only list the most recent versions that are supported; some older versions
may be supported as well.

3.1 Tasks and Transformations

A central notion in Why3 is that of task. A task is a context Γ (symbols, possibly
with definitions), a set of axioms Δ, and a formula to be proved. Tasks are
massaged using transformations until they reach a subset of Why3’s logic that
coincides with the input format of a theorem prover. A transformation turns a
task into a set of new tasks. Key transformations are the following:

– elimination of recursion, inductive predicates, algebraic data types and pat-
tern matching, if-then-else construct, let binding;

– encoding of types, to target many-sorted or untyped logic [15,11].

In the process of proving a task, other transformations may be used, such as
inlining, splitting, various kinds of simplification, or even induction (following
Leino [30]). Why3 can be extended with new transformations via OCaml plug-
ins. The OCaml API allows the user to build tasks and to apply transformations
efficiently (thanks to memoization).

3.2 Drivers

The way a particular prover is handled in Why3 is controlled by a text file called
a driver. Such a file lists the transformations that must be applied to a task
prior to its transmission to the prover, defines the pretty-printer that must be
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used when we are done with transformations, lists symbols and axioms that are
built-in in the prover, and provides regular expressions to interpret the output
of calls to the prover.

For instance, the driver for SPASS refers to the printer registered under the
name tptp-fof, includes transformations such as eliminate algebraic (to
get rid of algebraic data types and pattern matching) and encoding tptp (to
encode types), and states that equality is built-in with syntax (x=y), among
other things.

Users may define new drivers, to add support for a new prover or to experiment
with alternative ways of using a prover (e.g. not making use of a built-in theory,
or using an alternate input format). For that purpose, Why3 can be extended
with new pretty-printers via OCaml plug-ins. The OCaml API provides ways to
load a driver and then to use it to call the corresponding theorem prover on a
task. Drivers are described in more details in our earlier work [10].

Prover Specificities. There are several places where we have to be careful to avoid
introducing inconsistencies in the process of translating from Why3 to theorem
provers.

An example is integer division. Why3 standard library contains two theories:
one for Euclidean division, and another where division rounds towards zero as
in most programming languages. When it comes to using a built-in notion of
division provided by some prover, we have to identify which one it is, if any, or to
provide workarounds otherwise, if possible. For instance, Z3 provides Euclidean
division and modulo, but CVC4 provides a division that appears to be none of
the two divisions from Why3 standard library.

Another example is the fact that all types in Why3 are inhabited. Automated
theorem provers typically make that assumption already. When it comes to proof
assistants Coq and PVS, however, it is not granted for free. PVS provides a built-
in mechanism for non-empty types, that we use readily. Coq, on the contrary,
does not provide any such facility. We resort to type classes to ensure that all
types we manipulate are inhabited. For instance, function length is translated
into

Fixpoint length {a:Type} {a_WT:WhyType a} (l:(list a)) ...

where WhyType a is a type class that states that type a is inhabited and has
decidable equality.

3.3 Proof Sessions

When a verification tool is built on top of a single automated prover, it is straight-
forward to replay a proof: one simply reruns the tool on the input files. The same
applies for a proof that has been built interactively, say with Coq or KIV, and
stored into files: it can be rechecked easily, in batch mode.

With Why3, the situation is somewhat different. Using the graphical user
interface why3ide, the user interactively applies transformations and calls ex-
ternal theorem provers, until all goals are discharged. Calls to provers record
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the maximal amount of CPU time and memory that is allocated to the prover.
Calls to proof assistants record user-edited proof scripts. All that information
is stored into a set of files called a proof session. This way, it can be reloaded
on a subsequent call to why3ide or replayed in a batch mode with another tool,
why3replayer. This is of particular interest when the user upgrades the version
of one or several provers. A run of why3replayer then tells whether the proof
session is still valid or must be updated. Proof sessions are the subject of another
publication [9].

3.4 Examples

We now give some examples of the way goals are translated to be passed to
theorem provers. Let us consider our running example in Fig. 11 and let us
assume that we are targeting the SMT solver Alt-Ergo.

Algebraic Data Types. We must get rid of algebraic data types. Thus, list ’a
is simply turned into some uninterpreted data type, together with uninterpreted
function symbols for constructors

type ’a list
logic Nil : ’a list
logic Cons : ’a, ’a list → ’a list

and axioms (not shown here) to state that Nil and Cons are distinct and that
Cons is injective. To get rid of pattern matching on type list, we also introduce
a function symbol

logic match_list : ’a list, ’a1, ’a1 → ’a1

together with axioms stating that match list(Nil, a, b) = a and that
match list(Cons(x, y), a, b) = b. We proceed similarly for type nat.

Recursive Definitions. We must also get rid of the recursive definition of function
length. It is turned into some uninterpreted function symbol together with two
axioms:

logic length : ’a list → nat
axiom length_def : length(Nil : ’a list) = O
axiom length_def1 : forall x:’a. forall x1:’a list.
length(Cons(x, x1)) = S(length(x1))

Note that we are not making use of function match_list here, since it immedi-
ately reduces to simpler axioms.

Inductive Definitions. Finally, we must get rid of the inductive definition of
predicate even. It is axiomatized as follows:
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logic even : nat → prop
axiom EvenO : even(O)
axiom EvenS : forall m:nat. even(m) → even(S(S(m)))
axiom even_inversion :
forall z:nat. even(z) →
(z = O or exists m:nat. even(m) and z = S(S(m)))

This is incomplete, since we cannot capture the minimality of even
in first-order logic. For instance, Alt-Ergo cannot prove the goal
forall x: nat. even x → not (even (S x)), while we could use Coq
to prove it. Anyway, Alt-Ergo easily manages to prove the goal

goal G: even(length(Cons(O, Cons(O, (Nil : nat list)))))

with suitable instantiations of lemmas length_def, length_def1, EvenO, and
EvenS.

Types. As we see on the example above, we did not have to encode types. Indeed,
Alt-Ergo supports polymorphic types [8]. If we are instead targeting a prover
that only supports simple types (e.g. Z3) or some untyped logic (e.g. SPASS),
we have to encode the polymorphic types of Why3 in some way or another. For
instance, on the following Why3 input

type list ’a
constant nil: list ’a
function length (list ’a) : int
axiom length_nil: length (nil: list ’a) = 0
goal G: length (nil: list int) = 0

the file that is passed to SPASS is the following:

fof(length_nil, axiom,
![A]: sort(int, length(sort(list(A),nil))) = sort(int,const_0)).

fof(g, conjecture,
sort(int, length(sort(list(int), nil))) = sort(int,const_0)).

Table 1. Comparing eight automated provers using Why3

prover proved max. time avg. time
CVC3 (2.4.1) 2203 21.00 0.17
Alt-Ergo (0.95.1) 2202 29.73 0.16
CVC4 (1.0) 2071 12.00 0.09
Z3 (4.3.1) 1869 45.52 0.11
Yices (1.0.38) 1634 4.30 0.05
Vampire (0.6) 1375 27.72 0.51
E (1.6) 1303 19.73 0.41
Spass (3.7) 1185 23.78 0.52
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Here sort is a binary function symbol that wraps terms with types. Types
themselves are represented as regular terms, such as constant int or variable A
above. The case of an SMT solver is more subtle, as we need to protect built-in
types — such as integers, arrays, or reals — if we want to use built-in decision
procedures [11].

4 Experimental Results

In this section, we use Why3 to run a small benchmark of 8 different automated
provers. The experiment uses 83 proof sessions from our gallery, corresponding to
logical theories or programs that were all successfully proved. This includes our
solutions to several recent competitions in program verification (VSTTE 2012,
FoVeOOS 2011, VSTTE 2012, FM 2012). The total number of subgoals is 2849.

For each subgoal that was discharged by at least one prover, we run the other
7 provers on that subgoal, with the same limit of CPU time that was given to the
first one. Provers are run on an 8-cores 3.20GHz Intel Xeon with 24Gb of RAM.
Each prover runs on a separate core, with a limit of 1Gb of memory. Results are
given in Table 1. For each prover, we give the total number of goals proved, and
the maximum/average running time per goal.

The purpose of that table is not really to compare provers, but rather to show
the benefits of a collaborative use of several provers: if we were using CVC3
only, we would be left with 646 (= 2849 − 2203) unproved subgoals. Besides,
it is worth pointing out that most of these goals involve arithmetic; yet provers
with no support for arithmetic (E, SPASS, and Vampire, in that case) are able to
discharge a large subset of the goals. This was rather unexpected and encourages
us to increase our daily use of these provers and to improve the way we use them
even further.

5 Related Work

There is actually very little in the literature regarding the extension of first-
order logic with polymorphism. For instance, a classical textbook such as Man-
zano’s [32] does not contain a single occurrence of the word ‘polymorphism’.
One the other side of the logical spectrum, rich logics such as the Calculus of
Inductive Constructions or HOL do have polymorphism (even beyond rank-1)
but are seldom interested in identifying their first-order fragments. Among the
recent work on this subject, we can mention the work by Leino and Rümmer
on Boogie 2’s type system [28] and the definition of the TPTP TFF1 format by
Blanchette and Paskevich [6].

There is more related work regarding the second part of this paper, as a lot has
been done in the context of Isabelle’s Sledgehammer tactic [34,12]. It translates
Isabelle’s logic to several external provers, using type encodings different from
ours, ranging from mere type erasure (which is unsound, but Sledgehammer
uses proof reconstruction2) to partial monomorphisation [5] (which is proved
2 A significant difference between Sledgehammer and our work is that we do not

perform any kind of proof reconstruction. Thus we have to keep to sound encodings.
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incomplete [11] but seems efficient in practice anyway). Earlier, Hurd had already
investigated encodings from higher-order to first-order logic [24].

6 Conclusion and Perspectives

We have presented a logic whose purpose is to provide a unified front-end to
many existing theorem provers, either interactive or automated, and its imple-
mentation in Why3. We have designed this logic with the idea that specification
must be as natural as possible and that tools should adapt themselves to proof
obligations (and not the opposite). Using a wide range of theorem provers en-
courages this attitude.

One of the key features of our logic is polymorphism. It is defined and handled
roughly the same way it is in tools Boogie, Sledgehammer, and Alt-Ergo. There
is no competition, but rather a nice convergence. A contribution of this paper
is to add the formalization of algebraic data types, recursive definitions, and
inductive predicates on top of that.

Currently, Why3 is successfully used as a sub-component in various
projects [23,33,4,14], as well as the vehicle for many non-trivial case studies
in program verification (see for instance [21]). We also envision that verification
environments that are currently built on top of a dedicated prover (e.g. B, KIV,
SmallFoot) could also benefit from additional, external theorem provers. For in-
stance, we are currently experimenting with the use of Why3 to discharge goals
obtained from Atelier B [35], and the first results are promising.

We could still improve the way we are using theorem provers. For instance,
we can observe that some tools that are based on a single automated prover —
e.g. VCC, Dafny, or VeriFast — are able to carry out impressive case studies. It
is clear that these tools are achieving a level of intimacy with the prover that is
beyond that of Why3. We should learn from these tools and transpose relevant
techniques to Why3. In particular, we our support of built-in theories.

Of course, it would be much simpler if we had native support for polymorphic
types in provers. Alt-Ergo demonstrates that this is possible, and even simple
to implement [8], yet this is currently the only automated prover with such a
feature. We hope that TFF1 [6] will encourage some ATP developers to take the
plunge.

Acknowledgments. I would like to thank Andrei Paskevich and Sylvain Con-
chon for fruitful discussions during the preparation of this paper. Some ideas
behind the formalization in Sec. 2 already appear in Bobot and Paskevich’s
work [11]. The development of Why3 is joint work with François Bobot, Claude
Marché, Guillaume Melquiond, and Andrei Paskevich.
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Abstract. Separation Logic is a widely used formalism for describing dynam-
ically allocated linked data structures, such as lists, trees, etc. The decidability
status of various fragments of the logic constitutes a long standing open problem.
Current results report on techniques to decide satisfiability and validity of entail-
ments for Separation Logic(s) over lists (possibly with data). In this paper we
establish a more general decidability result. We prove that any Separation Logic
formula using rather general recursively defined predicates is decidable for satis-
fiability, and moreover, entailments between such formulae are decidable for va-
lidity. These predicates are general enough to define (doubly-) linked lists, trees,
and structures more general than trees, such as trees whose leaves are chained in
a list. The decidability proofs are by reduction to decidability of Monadic Second
Order Logic on graphs with bounded tree width.

1 Introduction

Separation Logic (SL) [17] is a general framework for describing dynamically allo-
cated mutable data structures generated by programs that use pointers and low-level
memory allocation primitives. The logics in this framework are used by an important
number of academic (SPACE INVADER [1], SLEEK [16] and PREDATOR [9]), as well
as industrial-scale (INFER [7]) tools for program verification and certification. These
logics are used both externally, as property specification languages, or internally, as
e.g., abstract domains for computing invariants, or for proving verification conditions.
The main advantage of using SL when dealing with heap manipulating programs, is the
ability to provide compositional proofs, based on the principle of local reasoning i.e.,
analyzing different sections (e.g., functions, threads, etc.) of the program, that work on
disjoint parts of the global heap, and combining the analysis results a-posteriori.

The basic language of SL consists of two kinds of atomic propositions describing
either (i) the empty heap, or (ii) a heap consisting of an allocated cell, connected via a
separating conjunction primitive. Hence a basic SL formula can describe only a heap
whose size is bounded by the size of the formula. The ability of describing unbounded
data structures is provided by the use of recursive definitions. Figure 1 gives several
common examples of recursive data structures definable in this framework.

The main difficulty that arises when using Separation Logic with Recursive Def-
initions (SLRD) to reason automatically about programs is that the logic, due to its
expressiveness, does not have very nice decidability properties. Most dialects used in
practice restrict the language (e.g., no quantifier alternation, the negation is used in a

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 21–38, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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list(hd, tl) ::= emp∧hd = tl
| ∃x. hd �→ x∗ list(x, tl)

dll(hd, p, tl) ::= emp∧hd = tl
| ∃x. hd �→ (x, p)∗dll(x,hd, tl)

tree(root) ::= emp∧ root = nil
| ∃l,r. root �→ (l,r)∗ tree(l)∗ tree(r)

tll(x, ll, lr) ::= x �→ (nil,nil, lr)∧ x = ll
| ∃l,r,z. x �→ (l,r,nil)∗ tll(l, ll,z)
∗tll(r,z, lr)

nil

tl

hd tl
p

list:

dll:

...

...

hd

roottree: root

ll lr

tll:

nilnil

Fig. 1. Examples of recursive data structures definable in SLRD

very restricted ways, etc.) and the class of models over which the logic is interpreted
(typically singly-linked lists, and slight variations thereof). In the same way, we ap-
ply several natural restrictions on the syntax of the recursive definitions, and define the
fragment SLRDbtw, which guarantees that all models of a formula in the fragment have
bounded tree width. Indeed, this ensures that the satisfiability and entailment problems
in this fragment are decidable without any restrictions on the type of the recursive data
structures considered.

In general, the techniques used in proving decidability of Separation Logic are ei-
ther proof-based ([16,2]), or model-based ([5,8]). It is well-known that automata the-
ory, through various automata-logics connections, provides a unifying framework for
proving decidability of various logics, such as (W)SkS, Presburger Arithmetic or MSO
over certain classes of graphs. In this paper we propose an automata-theoretic approach
consisting of two ingredients. First, SLRDbtw formulae are translated into equivalent
Monadic Second Order (MSO) formulae over graphs. Second, we show that the models
of SLRDbtw formulae have the bounded tree width property, which provides a decid-
ability result by reduction to the satisfiability problem for MSO interpreted over graphs
of bounded tree width [18], and ultimately, to the emptiness problem of tree automata.

Related Work. The literature on defining decidable logics for describing mutable data
structures is rather extensive. Initially, first-order logic with transitive closure of one
function symbol was introduced in [11] with a follow-up logic of reachability on com-
plex data structures, in [19]. The decision procedures for these logics are based on
reductions to the decidability of MSO over finite trees. Along the same lines, the logic
PALE [15] goes beyond trees, in defining trees with edges described by regular routing
expressions, whose decidability is still a consequence of the decidability of MSO over
trees. More recently, the CSL logic [4] uses first-order logic with reachability (along
multiple selectors) in combination with arithmetic theories to reason about shape, path
lengths and data within heap structures. Their decidability proof is based on a small
model property, and the algorithm is enumerative. In the same spirit, the STRAND logic
[14] combines MSO over graphs, with quantified data theories, and provides decidable
fragments using a reduction to MSO over graphs of bounded tree width.

On what concerns SLRD [17], the first (proof-theoretic) decidability result on a re-
stricted fragment defining only singly-linked lists was reported in [2], which describe
a coNP algorithm. The full basic SL without recursive definitions, but with the magic
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wand operator was found to be undecidable when interpreted in any memory model
[6]. Recently, the entailment problem for SLRD over lists has been reduced to graph
homomorphism in [8], and can be solved in PTIME. This method has been extended
to reason nested and overlaid lists in [10]. The logic SLRDbtw, presented in this paper
is, to the best of our knowledge, the first decidable SL that can define structures more
general than lists and trees, such as e.g. trees with parent pointers and linked leaves.

2 Preliminaries

For a finite set S, we denote by ||S|| its cardinality. We sometimes denote sets and se-
quences of variables as x, the distinction being clear from the context. If x denotes a
sequence, (x)i denotes its i-th element. For a partial function f : A ⇀ B, and ⊥ /∈ B, we
denote f (x) =⊥ the fact that f is undefined at some point x∈ A. By f [a← b] we denote
the function λx . if x= a then b else f (x). The domain of f is denoted dom( f ) = {x∈A |
f (x) =⊥}, and the image of f is denoted as img( f ) = {y ∈ B | ∃x ∈ A . f (x) = y}. By
f : A ⇀ f in B we denote any partial function whose domain is finite. Given two partial
functions f ,g defined on disjoint domains, we denote by f ⊕ g their union.

Stores, Heaps and States. We consider PVar = {u,v,w, . . .} to be a countable infinite
set of pointer variables and Loc = {l,m,n, . . .} to be a countable infinite set of memory
locations. Let nil ∈ PVar be a designated variable, null ∈ Loc be a designated location,
and Sel = {1, . . . ,S}, for some given S > 0, be a finite set of natural numbers, called
selectors in the following.

Definition 1. A state is a pair 〈s,h〉 where s : PVar ⇀ Loc is a partial function mapping
pointer variables into locations such that s(nil) = null, and h : Loc ⇀ f in Sel ⇀ f in Loc
is a finite partial function such that (i) null ∈ dom(h) and (ii) for all 
 ∈ dom(h) there
exist k ∈ Sel such that (h(
))(k) =⊥.

Given a state S = 〈s,h〉, s is called the store and h the heap. For any k ∈ Sel, we write

hk(
) instead of (h(
))(k), and 

k−→ 
′ for hk(
) = 
′. We sometimes call a triple 


k−→ 
′ an

edge, and k is called a selector. Let Img(h) =
⋃


∈Loc img(h(
)) be the set of locations
which are destinations of some selector edge in h. A location 
 ∈ Loc is said to be
allocated in 〈s,h〉 if 
 ∈ dom(h) (i.e. it is the source of an edge), and dangling in 〈s,h〉
if 
 ∈ [img(s)∪ Img(h)] \ dom(h), i.e., it is either referenced by a store variable, or
reachable from an allocated location in the heap, but it is not allocated in the heap itself.
The set loc(S) = img(s)∪dom(h)∪ Img(h) is the set of all locations either allocated or
referenced in a state S = 〈s,h〉.

Trees. Let Σ be a finite label alphabet, and N∗ be the set of sequences of natural num-
bers. Let ε ∈ N∗ denote the empty sequence, and p.q denote the concatenation of two
sequences p,q ∈ N∗. A tree t over Σ is a finite partial function t : N∗ ⇀ f in Σ, such that
dom(t) is a finite prefix-closed subset of N∗, and for each p ∈ dom(t) and i ∈ N, we
have: t(p.i) =⊥⇒∀0≤ j < i . t(p. j) =⊥. Given two positions p,q ∈ dom(t), we say



24 R. Iosif, A. Rogalewicz, and J. Simacek

that q is the i-th successor (child) of p if q = p.i, for i ∈ N. Also q is a successor of p,
or equivalently, p is the parent of q, denoted p = parent(q) if q = p.i, for some i ∈ N.

We will sometimes denote by D(t) = {−1,0, . . . ,N} the direction alphabet of t,
where N = max{i ∈ N | p.i ∈ dom(t)}. The concatenation of positions is defined over
D(t) with the convention that p.(−1) = q if and only if p = q.i for some i ∈ N. We
denote D+(t) = D(t)\ {−1}. A path in t, from p1 to pk, is a sequence p1, p2, . . . , pk ∈
dom(t) of pairwise distinct positions, such that either pi = parent(pi+1) or pi+1 =
parent(pi), for all 1 ≤ i < k. Notice that a path in the tree can also link sibling nodes,
not just ancestors to their descendants, or viceversa. However, a path may not visit the
same tree position twice.

Tree Width. A state (Def. 1) can be seen as a directed graph, whose nodes are loca-
tions, and whose edges are defined by the selector relation. Some nodes are labeled by
program variables (PVar) and all edges are labeled by selectors (Sel). The notion of
tree width is then easily adapted from generic labeled graphs to states. Intuitively, the
tree width of a state (graph) measures the similarity of the state to a tree.

Definition 2. Let S = 〈s,h〉 be a state. A tree decomposition of S is a tree t : N∗ ⇀ f in

2loc(S), labeled with sets of locations from loc(S), with the following properties:

1. loc(S) =
⋃

p∈dom(t) t(p), the tree covers the locations of S

2. for each edge l1
s−→ l2 in S, there exists p ∈ dom(t) such that l1, l2 ∈ t(p)

3. for each p,q,r ∈ dom(t), if q is on a path from p to r in t, then t(p)∩ t(r)⊆ t(q)

The width of the decomposition is w(t) = maxp∈dom(t){||t(p)||− 1}. The tree width of S
is tw(S) = min{w(t) | t is a tree decomposition of S}.

A set of states is said to have bounded tree width if there exists a constant k ≥ 0 such
that tw(S)≤ k, for any state S in the set. Figure 2 gives an example of a graph (left) and
a possible tree decomposition (right).

{1,4}

5 {2,4,5}

2

3{2,3,4}

4

1

1 2 3 4 5
{1,2,4} {1,4}

Fig. 2. A graph and a possible tree decomposition of width 2

2.1 Syntax and Semantics of Monadic Second Order Logic

Monadic second-order logic (MSO) on states is a straightforward adaptation of MSO on
labeled graphs [13]. As usual, we denote first-order variables, ranging over locations,
by x,y, . . . , and second-order variables, ranging over sets of locations, by X ,Y, . . . . The
set of logical MSO variables is denoted by LVarmso, where PVar∩LVarmso = /0.
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We emphasize here the distinction between the logical variables LVarmso and the
pointer variables PVar: the former may occur within the scope of first and second order
quantifiers, whereas the latter play the role of symbolic constants (function symbols of
zero arity). For the rest of this paper, a logical variable is said to be free if it does not
occur within the scope of a quantifier. By writing ϕ(x), for an MSO formula ϕ, and a
set of logical variables x, we mean that all free variables of ϕ are in x.

The syntax of MSO is defined below:

u ∈ PVar; x,X ∈ LVarmso; k ∈ N

ϕ ::= x = y | varu(x) | edgek(x,y) | null(x) | X(x) | ϕ∧ϕ | ¬ϕ | ∃x.ϕ | ∃X .ϕ

The semantics of MSO on states is given by the relation S, ι,ν |=mso ϕ, where S = 〈s,h〉
is a state, ι : {x,y,z, . . .}⇀ f in Loc is an interpretation of the first order variables, and ν :
{X ,Y,Z, . . .}⇀ f in 2Loc is an interpretation of the second order variables. If S, ι,ν |=mso ϕ
for all interpretations ι : {x,y,z, . . .}⇀ f in Loc and ν : {X ,Y,Z, . . .}⇀ f in 2Loc, then we
say that S is a model of ϕ, denoted S |=mso ϕ. We use the standard MSO semantics [18],
with the following interpretations of the vertex and edge labels:

S, ι,ν |=mso null(x) ⇐⇒ ι(x) = nil
S, ι,ν |=mso varu(x) ⇐⇒ s(u) = ι(x)

S, ι,ν |=mso edgek(x,y) ⇐⇒ hk(ι(x)) = ι(y)

The satisfiability problem for MSO asks, given a formula ϕ, whether there exists a state
S such that S |=mso ϕ. This problem is, in general, undecidable. However, one can show
its decidability on a restricted class of models. The theorem below is a slight variation
of a classical result in (MSO-definable) graph theory [18]. For space reasons, all proofs
are given in [12].

Theorem 1. Let k ≥ 0 be an integer constant, and ϕ be an MSO formula. The problem
asking if there exists a state S such that tw(S)≤ k and S |=mso ϕ is decidable.

2.2 Syntax and Semantics of Separation Logic

Separation Logic (SL) [17] uses only a set of first order logical variables, denoted
as LVarsl , ranging over locations. We suppose that LVarsl ∩ PVar = /0 and LVarsl ∩
LVarmso = /0. Let Varsl denote the set PVar∪LVarsl . A formula is said to be closed if
it does not contain logical variables which are not under the scope of a quantifier. By
writing ϕ(x) for an SL formula ϕ and a set of logical variables x, we mean that all free
variables of ϕ are in x.

Basic Formulae. The syntax of basic formula is given below:

α ∈ Varsl \ {nil}; β ∈ Varsl; x ∈ LVarsl

π ::= α = β | α = β | π1∧π2

σ ::= emp | α �→ (β1, . . . ,βn) | σ1 ∗σ2 , for some n > 0
ϕ ::= π∧σ | ∃x . ϕ
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A formula of the form
∧n

i=1 αi = βi ∧
∧m

j=1 α j = β j defined by π in the syntax above
is said to be pure. If Π is a pure formula, let Π∗ denote its closure, i.e., the equivalent
pure formula obtained by the exhaustive application of the reflexivity, symmetry, and
transitivity axioms of equality. A formula of the form �k

i=1αi �→ (βi,1, . . . ,βi,n) defined
by σ in the syntax above is said to be spatial. The atomic proposition emp denotes the
empty spatial conjunction. For a spatial formula Σ, let |Σ| be the total number of variable
occurrences in Σ, e.g. |emp|= 0, |α �→ (β1, . . . ,βn)|= n+ 1, etc.

The semantics of a basic formula ϕ is given by the relation S, ι |=sl ϕ where S = 〈s,h〉
is a state, and ι : LVarsl ⇀ f in Loc is an interpretation of logical variables from ϕ. For a
closed formula ϕ, we denote by S |=sl ϕ the fact that S is a model of ϕ.

S, ι |=sl emp ⇐⇒ dom(h) = /0
S, ι |=sl α �→ (β1, . . . ,βn) ⇐⇒ h = {〈(s⊕ ι)(α),λi . if i≤ n then (s⊕ ι)(βi) else ⊥〉}
S, ι |=sl ϕ1 ∗ϕ2 ⇐⇒ S1, ι |=sl ϕ1 and S2, ι |=sl ϕ2 where S1�S2 = S

The semantics of =, =, ∧, and ∃ is classical. Here, the notation S1 � S2 = S means
that S is the union of two states S1 = 〈s1,h1〉 and S2 = 〈s2,h2〉 whose stacks agree on
the evaluation of common program variables (∀α ∈ PVar . s1(α) = ⊥∧ s2(α) = ⊥⇒
s1(α) = s2(α)), and whose heaps have disjoint domains (dom(h1)∩dom(h2) = /0) i.e.,
S = 〈s1∪ s2,h1⊕h2〉. Note that we adopt here the strict semantics, in which a points-to
relation α �→ (β1, . . . ,βn) holds in a state consisting of a single cell pointed to by α,
with exactly n outgoing edges towards dangling locations pointed to by β1, . . . ,βn, and
the empty heap is specified by emp.

Every basic formula ϕ is equivalent to an existentially quantified pair Σ∧Π where Σ
is a spatial formula and Π is a pure formula. Given a basic formula ϕ, one can define
its spatial (Σ) and pure (Π) parts uniquely, up to equivalence. A variable α ∈Var is said
to be allocated in ϕ if and only if α �→ (. . .) occurs in Σ. It is easy to check that an
allocated variable may not refer to a dangling location in any model of ϕ. A variable β
is referenced if and only if α �→ (. . . ,β, . . .) occurs in Σ for some variable α. For a basic
formula ϕ≡ Σ∧Π, the size of ϕ is defined as |ϕ|= |Σ|.

Lemma 1. Let ϕ(x) be a basic SL formula, S = 〈s,h〉 be a state, and ι : LVarsl ⇀ f in Loc
be an interpretation, such that S, ι |=sl ϕ(x). Then tw(S)≤max(|ϕ|, ||PVar||).

Recursive Definitions. A system P of recursive definitions is of the form:

P1(x1,1, . . . ,x1,n1) ::= |m1
j=1 R1, j(x1,1, . . . ,x1,n1)

. . .
Pk(xk,1, . . . ,xk,nk ) ::= |mk

j=1 Rk, j(xk,1, . . . ,xk,nk)

where P1, . . . ,Pk are called predicates, xi,1, . . . ,xi,ni are called parameters, and the for-
mulae Ri, j are called the rules of Pi. Concretely, a rule Ri, j is of the form Ri, j(x) ≡
∃z . Σ∗Pi1(y1)∗ . . .∗Pim(ym) ∧ Π, where Σ is a spatial SL formula over variables x∪z,
called the head of Ri, j, 〈Pi1(y1), . . . ,Pim(ym)〉 is an ordered sequence of predicate oc-
currences, called the tail of Ri, j (we assume w.l.o.g. that x∩ z = /0, and that yk ⊆ x∪ z,
for all k = 1, . . . ,m), Π is a pure formula over variables x∪ z.
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Without losing generality, we assume that all variables occurring in a rule of a recur-
sive definition system are logical variables from LVarsl – pointer variables can be passed
as parameters at the top level. We subsequently denote head(Ri, j) ≡ Σ, tail(Ri, j) ≡
〈Pik(yk)〉mk=1 and pure(Ri, j) ≡ Π, for each rule Ri, j. Rules with empty tail are called
base cases. For each rule Ri, j let ||Ri, j||var = ||z||+ ||x|| be the number of variables,
both existentially quantified and parameters, that occur in Ri, j. We denote by ||P ||var =
max{||Ri. j||var | 1 ≤ i ≤ k, 1 ≤ j ≤ mi} the maximum such number, among all rules in
P . We also denote by D(P ) = {−1,0, . . . ,max{|tail(Ri, j)| | 1≤ i≤ k, 1≤ j≤mi}−1}
the direction alphabet of P .

Example. The predicate tll describes a data structure called a tree with parent pointers
and linked leaves (see Fig. 3(b)). The data structure is composed of a binary tree in
which each internal node points to left and right children, and also to its parent node. In
addition, the leaves of the tree are kept in a singly-linked list, according to the order in
which they appear on the frontier (left to right).

tll(x, p, lea fl , lea fr) ::= x �→ (nil,nil, p, lea fr)∧ x = lea fl (R1)
| ∃l,r,z. x �→ (l,r, p,nil)∗ tll(l,x, lea fl ,z)∗ tll(r,x,z, lea fr) (R2)

The base case rule (R1) allocates leaf nodes. The internal nodes of the tree are allocated
by the rule (R2), where the ttl predicate occurs twice, first for the left subtree, and
second for the right subtree. ��
Definition 3. Given a system of recursive definitions P =

{
Pi ::= |mi

j=1 Ri, j
}n

i=1, an
unfolding tree of P rooted at i is a finite tree t such that:

1. each node of t is labeled by a single rule of the system P ,
2. the root of t is labeled with a rule of Pi,
3. nodes labeled with base case rules have no successors, and
4. if a node u of t is labeled with a rule whose tail is Pi1(y1) ∗ . . .∗Pim(ym), then the

children of u form the ordered sequence v1, . . . ,vm where v j is labeled with one of
the rules of Pi j for all j = 1, . . . ,m.

Remarks. Notice that the recursive predicate P(x) ::= ∃y . x �→ y ∗P(y) does not have
finite unfolding trees. However, in general a system of recursive predicates may have
infinitely many finite unfolding trees. ��

In the following, we denote by Ti(P ) the set of unfolding trees of P rooted at i. An
unfolding tree t ∈ Ti(P ) corresponds to a basic formula of separation logic φt , called
the characteristic formula of t, and defined in what follows. For a set of tree positions
P ⊆ N∗, we denote LVarP = {xp | x ∈ LVar, p ∈ P}. For a tree position p ∈ N∗ and
a rule R, we denote by Rp the rule obtained by replacing every variable occurrence x
in R by xp. For each position p ∈ dom(t), we define a formula φp

t , by induction on the
structure of the subtree of t rooted at p:

– if p is a leaf labeled with a base case rule R, then φp
t ≡ Rp

– if p has successors p.1, . . . , p.m, and the label of p is the recursive rule R(x) ≡
∃z . head(R)∗�m

j=1Pij(y j)∧ pure(R), then:

φp
t (x

p)≡ ∃zp . head(Rp)∗�m
j=1[∃xp.i

i j
. φp.i

t (xp.i
i j
)∧yp

j = xp.i
i j
]∧ pure(Rp)
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In the rest of the paper, we write φt for φε
t . Notice that φt is defined using the set of

logical variables LVardom(t), instead of LVar. However the definition of SL semantics
from the previous carries over naturally to this case.

Example. (cont’d) Fig. 3(a) presents an unfolding tree for the tll predicate given in the
previous example. The characteristic formula of each node in the tree can be obtained
by composing the formulae labeling the children of the node with the formula labeling
the node. The characteristic formula of the tree is the formula of its root. ��

∃lε,rε,zε.xε �→ (lε,rε, pε,nil)∧
∃x0, p0, lea f 0

l , lea f 0
r ,x

1, p1, lea f 1
l , lea f 1

r .

lε = x0 ∧ xε = p0 ∧ lea f ε
l = lea f 0

l ∧ zε = lea f 0
r ∧

rε = x1 ∧ xε = p1 ∧ zε = lea f 1
l ∧ lea f ε

r = lea f 1
r

∃l0,r0,z0.x0 �→ (l0,r0, p0,nil)∧
∃x00, p00, lea f 00

l , lea f 00
r ,x01, p01, lea f 01

l , lea f 01
r .

l0 = x00 ∧ x0 = p00 ∧ lea f 0
l = lea f 00

l ∧ z0 = lea f 00
r ∧

r0 = x01 ∧ x0 = p01 ∧ z0 = lea f 01
l ∧ lea f 0

r = lea f 01
r

x00 �→ (nil,nil, p00, lea f 00
r )

∧ x00 = lea f 00
l

x01 �→ (nil,nil, p01, lea f 01
r )

∧ x01 = lea f 01
l

∃l1,r1,z1.x1 �→ (l1,r1, p1,nil)∧
∃x10, p10, lea f 10

l , lea f 10
r ,x11, p11, lea f 11

l , lea f 11
r .

l1 = x10 ∧ x1 = p10 ∧ lea f 1
l = lea f 10

l ∧ z1 = lea f 10
r ∧

r1 = x11 ∧ x1 = p11 ∧ z1 = lea f 11
l ∧ lea f 1

r = lea f 11
r

x10 �→ (nil,nil, p10, lea f 10
r )

∧ x10 = lea f 10
l

x11 �→ (nil,nil, p11, lea f 11
r )

∧ x11 = lea f 11
l

∗

∗
∗

∗

∗
∗

zε

z0 z1

(a)

1 2

2
3333 11 2

33

4 4 4

(b)

Fig. 3. (a) An unfolding tree for tll predicate and (b) a model of the corresponding formula

Given a system of recursive definitions P =
{

Pi ::= |mi
j=1 Ri, j
}n

i=1, the semantics of
a recursive predicate Pi is defined as follows:

S, ι |=sl Pi(xi,1, . . . ,xi,ni) ⇐⇒ S, ιε |=sl φt(x
ε
i,1, . . . ,x

ε
i,ni

), for some t ∈ Ti(P ) (1)

where ιε(xε
i, j)

de f
= ι(xi, j) for all j = 1, . . . ,ni.

Remark. Since the recursive predicate P(x) ::= ∃y . x �→ y ∗P(y) does not have finite
unfolding trees, the formula ∃x.P(x) is unsatisfiable. ��

Top Level Formulae. We are now ready to introduce the fragment of Separation Logic
with Recursive Definitions (SLRD). A formula in this fragment is an existentially quan-
tified formula of the following form: ∃z . ϕ∗Pi1 ∗ . . . ∗Pin , where ϕ is a basic formula,
and Pij are occurrences of recursive predicates, with free variables in PVar∪ z. The se-
mantics of an SLRD formula is defined in the obvious way, from the semantics of the
basic fragment, and that of the recursive predicates.

Example. The following SLRD formulae, with PVar = {root,head}, describe both the
set of binary trees with parent pointer and linked leaves, rooted at root, with the leaves
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linked into a list pointed to by head. The difference is that ϕ1 describes also a tree
containing only a single allocated location:

ϕ1 ≡ tll(root,nil,head,nil)
ϕ2 ≡ ∃l,r,x.root �→ (l,r,nil,nil)∗ tll(l,root,head,x)∗ tll(r,root,x,nil) ��

We are interested in solving two problems on SLRD formulae, namely satisfiability and
entailment. The satisfiability problem asks, given a closed SLRD formula ϕ, whether
there exists a state S such that S |=sl ϕ. The entailment problem asks, given two closed
SLRD formulae ϕ1 and ϕ2, whether for all states S, S |=sl ϕ1 implies S |=sl ϕ2. This is
denoted also as ϕ1 |=sl ϕ2. For instance, in the previous example we have ϕ2 |=sl ϕ1,
but not ϕ1 |=sl ϕ2.

In general, it is possible to reduce an entailment problem ϕ1 |= ϕ2 to satisfiability of
the formula ϕ1∧¬ϕ2. In our case, however, this is not possible directly, because SLRD
is not closed under negation. The decision procedures for satisfiability and entailment
is the subject of the rest of this paper.

3 Decidability of Satisfiability and Entailment in SLRD

The decision procedure for the satisfiability and entailment in SLRD is based on two
ingredients. First, we show that, under certain natural restrictions on the system of re-
cursive predicates, which define a fragment of SLRD, called SLRDbtw, all states that
are models of SLRDbtw formulae have bounded tree width (Def. 2). These restrictions
are as follows:

1. Progress: each rule allocates exactly one variable
2. Connectivity: there is at least one selector edge between the variable allocated by a

rule and the variable allocated by each of its children in the unfolding tree
3. Establishment: all existentially quantified variables in a recursive rule are eventu-

ally allocated

Second, we provide a translation of SLRDbtw formulae into equivalent MSO formulae,
and rely on the fact that satisfiability of MSO is decidable on classes of states with
bounded tree width.

3.1 A Decidable Subset of SLRD

At this point we define the SLRDbtw fragment formally, by defining the three restrictions
above. The progress condition (1) asks that, for each rule R in the system of recursive
definitions, we have head(R) ≡ α �→ (β1, . . . ,βn), for some variables α,β1, . . . ,βn ∈
Varsl . The intuition between this restriction is reflected by the following example.

Example. Consider the following system of recursive definitions:

ls(x,y) ::= x �→ y | ∃z, t . x �→ (z,nil)∗ t �→ (nil,y)∗ ls(z, t)

The predicate ls(x,y) defines the set of structures {x( 1−→)nz �→ t(
2−→)ny | n ≥ 0}, which

clearly cannot be defined in MSO. ��
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The connectivity condition (2) is defined below:

Definition 4. A rule R of a system of recursive definitions, such that head(R) ≡ α �→
(β1, . . . ,βn) and tail(R)≡ 〈Pi1(y1), . . . ,Pim(ym)〉, m≥ 1, is said to be connected if and
only if the following hold:

– for each j = 1, . . . ,m, (y j)s = β′, for some 1 ≤ s ≤ ni j , where ni j is the number of
parameters of Pi j

– βt = β′ occurs in pure(R)∗, for some 1≤ t ≤ n
– the s-th parameter xi j ,s of Pi j is allocated in the heads of all rules of Pi j .

In this case we say that between rule R and any rule Q of Pij , there is a local edge,
labeled by selector t. F (R, j,Q) ⊆ Sel denotes the set of all such selectors. If all rules
of P are connected, we say that P is connected.

Example. The following recursive rule, from the previous tll predicate, is connected:

∃l,r,z . x �→ (l,r, p,nil)∗ tll(l,x, lea fl ,z)∗ tll(r,x,z, lea fr) (R2)

R2 is connected because the variable l is referenced in R2 and it is passed as the first
parameter to tll in the first recursive call to tll. Moreover, the first parameter (x) is
allocated by all rules of tll. R2 is connected, for similar reasons. We have F (R2,1,R2)=
{1} and F (R2,2,R2) = {2}. ��
The establishment condition (3) is formally defined below.

Definition 5. Let P(x1, . . . ,xn) = |mj=1R j(x1, . . . ,xn) be a predicate in a recursive system
of definitions. We say that a parameter xi, for some i = 1, . . . ,n is allocated in P if and
only if, for all j = 1, . . . ,m:

– either xi is allocated in head(R j), or
– (i) tail(R j) = 〈Pi1(y1), . . . ,Pik(yk)〉, (ii) (y
)s = xi occurs in pure(R j)

∗, for some

= 1, . . . ,k, and (iii) the s-th parameter of Pi
 is allocated in Pi


A system of recursive definitions is said to be established if and only if every existentially
quantified variable is allocated.

Example. Let llextra(x) ::= x �→ (nil,nil) | ∃n,e. x �→ (n,e)∗ llextra(n) be a recursive
definition system, and let φ ::= llextra(head), where head ∈ PVar. The models of the
formula φ are singly-linked lists, where in all locations of the heap, the first selector
points to the next location in the list, and the second selector is dangling i.e., it can
point to any location in the heap. These dangling selectors may form a squared grid of
arbitrary size, which is a model of the formula φ. However, the set of squared grids does
not have bounded tree width [18]. The problem arises due to the existentially quantified
variables e which are never allocated. ��
Given a system P of recursive definitions, one can effectively check whether it is es-
tablished, by guessing, for each predicate Pi(xi,1, . . . ,xi,ni) of P , the minimal set of pa-
rameters which are allocated in Pi, and verify this guess inductively1. Then, once the
minimal set of allocated parameters is determined for each predicate, one can check
whether every existentially quantified variable is eventually allocated.

1 For efficiency, a least fixpoint iteration can be used instead of a non-deterministic guess.
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Lemma 2. Let P = {Pi ::=|mi
j=1 Ri j(xi,1, . . . ,xi,ni)}k

i=1 be a established system of recur-
sive definitions, and S = 〈s,h〉 be a state, such that S, ι |=sl Pi(xi,1, . . . ,xi,ni) for some
interpretation ι : LVarsl ⇀ f in Loc and some 1≤ i≤ k. Then tw(S)≤ ||P ||var.

The result of the previous lemma extends to an arbitrary top-level formula:

Theorem 2. Let P = {Pi ::=|mi
j=1 Ri j(xi,1, . . . ,xi,ni)}k

i=1 be a established system of re-
cursive definitions, and S = 〈s,h〉 be a state, such that S |=sl ∃z . ϕ(y0)∗Pi1(y1)∗ . . . ∗
Pin(yn), where ϕ is a basic SL formula, and Pi j are predicates of P , and yi ⊆ z, for all
i = 0,1, . . . ,n. Then tw(S)≤max(||z||, |ϕ|, ||PVar||, ||P ||var).

4 From SLRDbtw to MSO

This section describes the translation of a SL formula using recursively defined predi-
cates into an MSO formula. We denote by Π(X0, . . . ,Xi,X) the fact that X0, . . . ,Xi is a
partition of X , and by Σ(x,X) the fact that X is a singleton with x as the only element.

4.1 Converting Basic SL Formulae to MSO

For every SL logical variable x ∈ LVarsl we assume the existence of an MSO logical
variable x ∈ LVarmso, which is used to replace x in the translation. For every program
variable u ∈ PVar \ {nil} we assume the existence of a logical variable xu ∈ LVarmso.
The special variable nil ∈ LVarsl is translated into xnil ∈ LVarmso (with the associated
MSO constraint null(xnil)). In general, for any pointer or logical variable α ∈Varsl , we
denote by α, the logical MSO variable corresponding to it.

The translation of a pure SL formula α = β, α = β, π1 ∧ π2 is α = β, ¬(α = β),
π1∧π2, respectively, where π(α1, . . . ,αk) is the translation of π(α1, . . . ,αk). Spatial SL
formulae σ(α1, . . . ,αk) are translated into MSO formulae σ(α1, . . . ,αk,X), where X is
used for the set of locations allocated in σ. The fact that X actually denotes the domain
of the heap, is ensured by the following MSO constraint:

Heap(X)≡ ∀x
||Sel||∨
i=1

(∃y . edgei(x,y))↔ X(x)

The translation of basic spatial formulae is defined by induction on their structure:

emp(X) ≡ ∀x . ¬X(x)

(α �→ (β1, . . . ,βn))(X) ≡ Σ(α,X) ∧ ∧n
i=1 edgei(α,βi) ∧

∧||Sel||
i=n+1∀x . ¬edgei(α,x)

(σ1 ∗σ2)(X) ≡ ∃Y∃Z . σ1(Y ) ∧ σ2(Z) ∧ Π(Y,Z,X)

The translation of a closed basic SL formula ϕ in MSO is defined as ∃X . ϕ(X), where
ϕ(X) is defined as (π∧σ)(X)≡ π∧σ(X), and (∃x . ϕ1)(X)≡∃x . ϕ1(X). The following
lemma proves that the MSO translation of a basic SL formula defines the same set of
models as the original SL formula.
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Lemma 3. For any state S = 〈s,h〉, any interpretation ι : LVarsl ⇀ f in Loc, and any ba-
sic SL formula ϕ, we have S, ι |=sl ϕ if and only if S, ι,ν[X ← dom(h)] |=mso ϕ(X) ∧
Heap(X), where ι : LVarmso ⇀ f in Loc is an interpretation of first order variables,
such that ι(xu) = s(u), for all u ∈ PVar, and ι(x) = ι(x), for all x ∈ LVarsl , and ν :
LVarmso ⇀ f in 2Loc is any interpretation of second-order variables.

4.2 States and Backbones

The rest of this section is concerned with the MSO definition of states that are models of
recursive SL formulae, i.e. formulae involving recursively defined predicates. The main
idea behind this encoding is that any part of a state which is the model of a recursive
predicate can be decomposed into a tree-like structure, called the backbone, and a set
of edges between the nodes in this tree. Intuitively, the backbone is a spanning tree that
uses only local edges. For instance, in the state depicted in Fig. 3(b), the local edges are
drawn in solid lines.

Let Pk(x1, . . . ,xn) be a recursively defined predicate of a system P , and S, ι |=sl

Pk(x1, . . . ,xn), for some state S = 〈s,h〉 and some interpretation ι : LVarsl → Loc. Then
S, ι |=sl φt , where t ∈ Tk(P ) is an unfolding tree, φt is its characteristic formula, and
µ : dom(t)→ dom(h) is the bijective tree that describes the allocation of nodes in the
heap by rules labeling the unfolding tree. Recall that the direction alphabet of the sys-
tem P is D(P ) = {−1,0, . . . ,N − 1}, where N is the maximum number of predicate
occurrences within some rule of P , and denote D+(P ) = D(P ) \ {−1}. For each rule
Ri j in P and each direction d ∈ D(P ), we introduce a second order variable Xd

i j to de-

note the set of locations 
 such that (i) t(µ−1(
)) ≡ Ri j and (ii) µ−1(
) is a d-th child,

if d ≥ 0, or µ−1(
) is the root of t, if d = −1. Let
−→
X be the sequence of Xk

i j variables,
enumerated in some order. We use the following shorthands:

Xi j(x) ≡
∨

k∈D(P )

Xk
i j(x) Xi(x) ≡

∨
1≤ j≤mi

Xi j(x) Xk
i (x) ≡

∨
1≤ j≤mi

Xk
i j(x)

to denote, respectively, locations that are allocated by a rule Ri j (Xi j), by a recursive
predicate Pi (Xi), or by a predicate Pi, who are mapped to a k-th child (or to the root, if
k =−1) in the unfolding tree of P , rooted at i (Xk

i ).
In order to characterize the backbone of a state, one must first define the local edges:

local edged
i, j,p,q(x,y) ≡

∧
s∈F (Ri, j ,d,Rpq) edges(x,y)

for all d ∈ D+(P ). Here F (Ri j,d,Rpq) is the set of forward local selectors for direc-
tion d, which was defined previously – notice that the set of local edges depends on
the source and destination rules Ri j and Rpq, that label the corresponding nodes in the
unfolding tree, respectively. The following predicate ensures that these labels are used
correctly, and define the successor functions in the unfolding tree:

succd(x,y,
−→
X ) ≡ ∨

Xi j(x) ∧ Xk
pq(y) ∧ local edged

i, j,p,q(x,y)
1 ≤ i, p ≤ M
1 ≤ j ≤ mi
1 ≤ q≤ mp
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for all d ∈ D+(P ). The definition of the backbone of a recursive predicate Pi in MSO
follows tightly the definition of the unfolding tree of P rooted at i (Def. 3):

backbonei(r,
−→
X ,T )≡ tree(r,

−→
X ,T ) ∧ X−1

i (r) ∧ succ labels(
−→
X )

where tree(r,
−→
X ,T ) defines a tree2 with domain T , rooted at r, with successor functions

defined by succ0, . . . ,succN−1, and succ labels ensures that the labeling of each tree
position (with rules of P ) is consistent with the definition of P :

succ labels(
−→
X ) ≡ ∧

Xi j(x)→
∧ri j−1

d=0 ∃y . Xd
kd
(y)∧ succd(x,y,

−→
X )

1 ≤ i≤ M
1 ≤ j ≤ mi

∧ ∀y .
∧||Sel||

p=si j+1¬edgep(x,y)

where we suppose that, for each rule Ri j of P , we have head(Ri j)≡ α �→ (β1, . . . ,βsi j )
and tail(Ri j) = 〈Pk1 , . . . ,Pkri j

〉, for some ri j ≥ 0, and some indexing k1, . . . ,kri j of pred-
icate occurrences within Ri j. The last conjunct ensures that a location allocated in
Ri j does not have more outgoing edges than specified by head(Ri j). This condition is
needed, since, unlike SL, the semantics of MSO does not impose strictness conditions
on the number of outgoing edges.

4.3 Inner Edges

An edge between two locations is said to be inner if both locations are allocated in the

heap. Let µ be the bijective tree defined in Sec. 4.2. The existence of an edge 

k−→ 
′ in

S, between two arbitrary locations 
,
′ ∈ dom(h), is the consequence of:

1. a basic points-to formula α �→ (β1, . . . ,βk, . . . ,βn) that occurs in µ(
)
2. a basic points-to formula γ �→ (. . .) that occurs in µ(
′)
3. a path µ(
) = p1, p2, . . . , pm−1, pm = µ(
′) in t, such that the equalities βp1

k = δp2
2 =

. . . = δpm−1
m−1 = γpm are all logical consequences of φt , for some tree positions

p2, . . . , pm−1 ∈ dom(t) and some variables δ2, . . . ,δm−1 ∈ LVarsl .

Notice that the above conditions hold only for inner edges. The (corner) case of edges
leading to dangling locations is dealt with in [12].

Example. The existence of the edge from tree position 00 to 01 in Fig. 3(b), is a conse-
quence of the following: (1) x00 �→ (nil,nil, p00, lea f 00

r ), (2) x01 �→ (nil,nil, p01, lea f 01
r ),

and (3) lea f 00
r = z0 = lea f 01

l = x01. The reason for other dashed edges is similar. ��
The main idea here is to encode in MSO the existence of such paths, in the unfolding
tree, between the source and the destination of an edge, and use this encoding to define
the edges. To this end, we use a special class of tree automata, called tree-walking
automata (TWA) to recognize paths corresponding to sequences of equalities occurring
within characteristic formulae of unfolding trees.

2 For space reasons this definition can be found in [12].
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Tree Walking Automata. Given a set of tree directions D = {−1,0, . . . ,N} for some
N ≥ 0, a tree-walking automaton3, is a tuple A = (Σ,Q,qi,q f ,Δ) where Σ is a set of
tree node labels, Q is a set of states, qi,q f ∈ Q are the initial and final states, and
Δ : Q× (Σ∪{root})× (Σ∪{?})→ 2Q × (D ∪ {ε}) is the (non-deterministic) transition
function. A configuration of A is a pair 〈p,q〉, where p ∈ D∗ is a tree position, and
q ∈ Q is a state. A run of A over a Σ-labeled tree t is a sequence of configurations
〈p1,q1〉, . . . ,〈pn,qn〉, with p1, . . . , pn ∈ dom(t), such that for all i = 1, . . . ,n− 1, we
have pi+1 = pi.k, where either:

1. pi = ε and (qi+1,k) ∈ Δ(qi, t(pi), t(pi.(−1))), for k ∈D ∪{ε}
2. pi = ε and (qi+1,k) ∈ Δ(qi,σ,?), for σ ∈ {t(pi)∪ root} and k ∈D ∪{ε}

The run is said to be accepting if q1 = qi, p1 = ε and qn = q f .

Routing Automata. For a system of recursive definitions P =
{

Pi(xi,1, . . . ,xi,ni) ::=

|mi
j=1Ri j(xi,1, . . . ,xi,ni)

}k
i=1, we define the TWA AP = (ΣP ,QP ,qi,q f ,ΔP ), where ΣP =

{Rk
i j | 1 ≤ i≤ k, 1 ≤ j ≤ mi, k ∈ D(P )}, QP = {qvar

x | x ∈ LVarsl}∪{qsel
s | s ∈ Sel}∪

{qi,q f }. The transition function ΔP is defined as follows:

1. (qi,k),(qsel
s ,ε) ∈ Δ(qi,σ,τ) for all k ∈ D+(P ), all s ∈ Sel and all σ ∈ ΣP ∪{root},

τ∈ ΣP ∪{?} i.e., the automaton first moves downwards chosing random directions,
while in qi, then changes to qsel

s for some non-deterministically chosen selector s.
2. (qvar

βs
,ε) ∈ Δ(qsel

s ,Rk
i j,τ) and (q f ,ε) ∈ Δ(qvar

α ,Rk
i j,τ) for all k ∈D(P ) and τ ∈ ΣP ∪

{?} if and only if head(Ri j)≡ α �→ (β1, . . . ,βs, . . . ,βm), for some m > 0 i.e., when
in qsel

s , the automaton starts tracking the destination βs of the selector s through the
tree. The automaton enters the final state when the tracked variable α is allocated.

3. for all k ∈ D+(P ), all 
 ∈ D(P ) and all rules R
q of P
(x
,1, . . . ,x
,n
), we have
(qvar

x
, j
,k) ∈ Δ(qvar

y j
,Rl

i j,τ), for all τ ∈ ΣP ∪{?}, and (qvar
y j

,−1) ∈ Δ(qvar
x
, j

,Rk

q,R

l
i j) if

and only if tail(Ri j)k ≡ P
(y1, . . . ,yn
) i.e., the automaton moves down along the k-
th direction tracking x
, j instead of y j, when the predicate P
(y) occurs on the k-th
position in Ri j. Symmetrically, the automaton can also move up tracking y j instead
of x
, j, in the same conditions.

4. (qvar
β ,ε) ∈ Δ(qvar

α ,Rk
i j,τ) for all k ∈ D(P ) and all τ ∈ ΣP ∪{?} if and only if α =

β occurs in pure(Ri j) i.e., the automaton switches from tracking α to tracking β
when the equality between the two variables occurs in Ri j, while keeping the same
position in the tree.

The following lemma formalizes the correctness of the TWA construction:

Lemma 4. Given a system of recursive definitions P , and an unfolding tree t ∈ Ti(P )
of P , rooted at i, for any x,y ∈ LVarsl and p,r ∈ dom(t), we have |=sl φt → xp = yr if
and only if AP has a run from 〈p,qvar

x 〉 to 〈r,qvar
y 〉 over t, where φt is the characteristic

formula of t.

3 This notion of tree-walking automaton is a slightly modified but equivalent to the one in [3].
We give the translation of TWA into the original definition in [12].
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To the routing automaton AP corresponds the MSO formula ΦAP (r,
−→
X ,T,

−→
Y ), where r

maps to the root of the unfolding tree,
−→
X is the sequence of second order variables Xk

i j

defined previously, T maps to the domain of the tree, and
−→
Y is a sequence of second-

order variables Xq, one for each state q ∈ QP . We denote by Y sel
s and Yf the variables

from
−→
Y that correspond to the states qsel

S and q f , for all s ∈ Sel, respectively. For space
reasons, the definition of ΦAP is given in [12]. With this notation, we define:

inner edges(r,
−→
X ,T )≡∀x∀y

∧
s∈Sel

∃−→Y . ΦAP (r,
−→
X ,T,

−→
Y )∧Y sel

s (x)∧Yf (y)→ edges(x,y)

4.4 Double Allocation

In order to translate the definition of a recursively defined SL predicate P(x1, . . . ,xn)
into an MSO formula P, that captures the models of P, we need to introduce a sanity
condition, imposing that recursive predicates which establish equalities between vari-
ables allocated at different positions in the unfolding tree, are unsatisfiable, due to the
semantics of the separating conjunction of SL, which implicitly conjoins all local for-
mulae of an unfolding tree. A double allocation occurs in the unfolding tree t if and
only if there exist two distinct positions p,q ∈ dom(t) and:

1. a basic points-to formula α �→ (. . .) occurring in t(p)
2. a basic points-to formula β �→ (. . .) occurring in t(q)
3. a path p = p1, . . . , pm = q in t, such that the equalities αp = γp2

2 = . . .= γpm−1
m−1 = βq

are all logical consequences of φt , for some tree positions p2, . . . , pm−1 ∈ dom(t)
and some variables γ2, . . . ,γm−1 ∈ LVarsl

The cases of double allocation can be recognized using a routing automaton BP =
(ΣP ,Q′P ,qi,q f ,Δ′P ), whose states Q′P = {qvar

x | x ∈ LVarsl}∪{q0,qi,q f } and transitions
Δ′P differ from AP only in the following rules:

– (q0,ε) ∈ Δ(qi,σ,τ) for all σ ∈ ΣP ∪ {root} and all τ ∈ ΣP ∪ {?}, i.e. after non-
deterministically chosing a position in the tree, the automaton enters a designated
state q0, which occurs only once in each run.

– (qvar
α ,ε) ∈ Δ(q0,Rk

i j,τ) for all k ∈ D(P ) and all τ ∈ ΣP ∪ {?} if and only if
head(Ri j) = α �→ (. . .), while in the designated state q0, the automaton starts track-
ing the variable α, which is allocated at that position.

This routing automaton has a run over t, which labels one position by q0 and a distinct
one by q f if and only if two positions in t allocate the same location. Notice that BP
has always a trivial run that starts and ends in the same position – since each position
p ∈ dom(t) allocates a variable α, and 〈qi,ε〉, . . . ,〈q0, p〉,〈qvar

α , p〉,〈q f , p〉 is a valid run
of BP . The predicate system has no double allocation if and only if these are the only
possible runs of BP .

The existence of a run of BP is captured by an MSO formula ΦBP (r,
−→
X ,T,

−→
Y ), where

r maps to the root of the unfolding tree,
−→
X is the sequence of second order variables

Xk
i j defined previously, T maps to the domain of the tree, and

−→
Y is the sequence of
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second-order variables Yq, taken in some order, each of which maps to the set of tree
positions visited by the automaton while in state q ∈ Q′P – we denote by Y0 and Yf

the variables from
−→
Y that correspond to the states q0 and q f , respectively. Finally, we

define the constraint: no double alloc(r,
−→
X ,T )≡ ∀−→Y . ΦBP (r,

−→
X ,T,

−→
Y )→ Y0 = Yf

4.5 Handling Parameters

The last issue to be dealt with is the role of the actual parameters passed to a recursively
defined predicate Pi(xi,1, . . . ,xi,k) of P , in a top-level formula. Then, for each parameter
xi, j of Pi and each unfolding tree t ∈ Ti(P ), there exists a path ε = p1, . . . , pm ∈ dom(t)
and variables α1, . . . ,αm ∈ LVarsl such that xi, j ≡ α1 and αp



 = αp
+1

+1 is a consequence

of φt , for all 
 = 1, . . . ,m− 1. Subsequently, there are three (not necessarily disjoint)
possibilities:

1. head(t(pm))≡ αm �→ (. . .), i.e. αm is allocated
2. head(t(pm))≡ β �→ (γ1, . . . ,γp, . . . ,γ
), and αm ≡ γp, i.e. αm is referenced
3. αm ≡ xi,q and pm = ε, for some 1≤ q≤ k, i.e. αm is another parameter xi,q

Again, we use slightly modified routing automata (one for each of the case above)
Ci, j

P ,c = (ΣP ,Q′′P ,qi,q f ,Δi, j
c ) for the cases c = 1,2,3, respectively. Here Q′′P = {qvar

x | x ∈
LVarsl}∪{qsel

s | s ∈ Sel}∪{qi,a | 1 ≤ a ≤ k}∪{qi,q f } and Δi, j
c , c = 1,2,3 differ from

the transitions of AP in the following:

– (qi, j,ε) ∈ Δi, j
x (qi,root,?), i.e. the automaton marks the root of the tree with a des-

ignated state qi, j, that occurs only once on each run
– (qvar

xi, j
,ε) ∈ Δi, j

x (qi, j,R−1
ik ,?), for each rule Rik of Pi, i.e. the automaton starts tracking

the parameter variable xi, j beginning with the root of the tree

– (q f ,ε) ∈ Δi, j
1 (qvar

α ,Rk
i j,τ), for all k ∈D(P ), τ ∈ ΣP ∪{?} iff head(Ri j)≡ α �→ (. . . )

is the final rule for Ci, j
P ,1

– (qsel
s ,ε) ∈ Δi, j

2 (qvar
γ ,Rk

i j,τ), for all k ∈D(P ) and τ ∈ ΣP ∪{?} iff head(Ri j)≡ α �→
(β1, . . . ,βs, . . . ,βn) and γ ≡ βs i.e., qsel

s is reached in the second case, when the
tracked variable is referenced. After that, Ci, j

P ,2 moves to the final state i.e., (q f ,ε) ∈
Δi, j

2 (qsel
s ,σ,τ) for all s ∈ Sel, all σ ∈ ΣP ∪{root} and τ ∈ ΣP ∪{?}

– (qi,a,ε) ∈ Δi, j
3 (qvar

xi,a
,root,?) and (q f ,ε) ∈ Δi, j

3 (qi,a,root,?), for each 1 ≤ a ≤ k and

a = j i.e., are the final moves for Ci, j
P ,3

The outcome of this construction are MSO formulae Φ
Ci, j

P ,c
(r,
−→
X ,T,

−→
Y ), for c = 1,2,3,

where r maps to the root of the unfolding tree, respectively,
−→
X is the sequence of second

order variables Xk
i j defined previously, T maps to the domain of the tree, and

−→
Y is

the sequence of second order variables corresponding to states of Q′′P – we denote by

Yf ,Y i,a,Y sel
s ∈−→Y the variables corresponding to the states q f , qi,a, and qsel

s , respectively.
The parameter xi, j of Pi is assigned by the following MSO constraints:
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param1
i, j(r,

−→
X ,T ) ≡ ∃−→Y . Φ

Ci, j
P ,1
∧ Y i, j

0 (xi, j) ∧ ∀y . Yf (y)→ xi, j = y

param2
i, j(r,

−→
X ,T ) ≡ ∃−→Y . Φ

Ci, j
P ,2
∧ Y i, j

0 (xi, j) ∧
∧

s∈Sel ∀y . Y sel
s (y)→ edges(y,xi, j)

param3
i, j(r,

−→
X ,T ) ≡ ∃−→Y . Φ

Ci, j
P ,3
∧ Y i, j

0 (xi, j) ∧
∧

1≤a≤k∀y . Y i,a(y)→ xi, j = xi,a

where xi, j is the first-order MSO variable corresponding to the SL parameter xi, j.
Finally, the constraint parami, j is conjunction of the paramc

i, j, c = 1,2,3 formulae.

4.6 Translating Top Level SLRDbtw Formulae to MSO

We define the MSO formula corresponding to a predicate Pi(xi,1, . . . ,xi,ni), of a system
of recursive definitions P = {P1, . . . ,Pn}:

Pi(xi,1, . . . ,xi,ni ,T ) ≡ ∃r∃−→X . backbonei(r,
−→
X ,T ) ∧ inner edges(r,

−→
X ,T ) ∧

no double alloc(r,
−→
X ,T ) ∧ ∧

1≤ j≤ni
parami, j(r,

−→
X ,T )

The following lemma is needed to establish the correctness of our construction.

Lemma 5. For any state S = 〈s,h〉, any interpretation ι : LVarsl → f in Loc, and any
recursively defined predicate Pi(x1, . . . ,xn), we have S, ι |=sl Pi(x1, . . . ,xn) if and only
if S, ι,ν[T ← dom(h)] |=mso Pi(x1, . . . ,xk,T )∧Heap(T ), where ι : LVarmso ⇀ f in Loc is
an interpretation of first order variables, such that ι(xu) = s(u), for all u ∈ PVar, and
ι(x) = ι(x), for all x∈ LVarsl , and ν : LVarmso ⇀ f in 2Loc is any interpretation of second-
order variables.

Recall that a top level SLRDbtw formula is of the form: ϕ ≡ ∃z . φ(y0) ∗ Pi1(y1) ∗
. . .Pik(yk), where 1 ≤ i1, . . . , ik ≤ n, and y j ⊆ z, for all j = 0,1, . . . ,k. We define the
MSO formula:

ϕ(X)≡ ∃z∃X0,...,k . φ(y0,X0) ∧ Pi1(y1,X1) ∧ . . . ∧ Pik(yk,Xk) ∧ Π(X0,X1, . . . ,Xk,X)

Theorem 3. For any state S and any closed SLRDbtw formula ϕ we have that S |=sl ϕ
if and only if S |=mso ∃X . ϕ(X) ∧ Heap(X).

Theorem 2 and the above theorem prove decidability of satisfiability and entailment
problems for SLRDbtw, by reduction to MSO over states of bounded tree width.

5 Conclusions and Future Work

We defined a fragment of Separation Logic with Recursive Definitions, capable of de-
scribing general unbounded mutable data structures, such as trees with parent pointers
and linked leaves. The logic is shown to be decidable for satisfiability and entailment,
by reduction to MSO over graphs of bounded tree width. We conjecture that the com-
plexity of the decision problems for this logic is elementary, and plan to compute tight
upper bounds, in the near future.
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Abstract. Many applications of automated deduction require reasoning in first-
order logic modulo background theories, in particular some form of integer arith-
metic. A major unsolved research challenge is to design theorem provers that
are “reasonably complete” even in the presence of free function symbols ranging
into a background theory sort. The hierarchic superposition calculus of Bachmair,
Ganzinger, and Waldmann already supports such symbols, but, as we demon-
strate, not optimally. This paper aims to rectify the situation by introducing a
novel form of clause abstraction, a core component in the hierarchic superposi-
tion calculus for transforming clauses into a form needed for internal operation.
We argue for the benefits of the resulting calculus and provide a new complete-
ness result for the fragment where all background-sorted terms are ground.

1 Introduction

Many applications of automated deduction require reasoning modulo background the-
ories, in particular some form of integer arithmetic. Developing corresponding auto-
mated reasoning systems that are also able to deal with quantified formulas has recently
been an active area of research. One major line of research is concerned with extend-
ing (SMT-based) solvers [15] for the quantifier-free case by instantiation heuristics for
quantifiers [10,11, e. g.]. Another line of research is concerned with adding black-box
reasoners for specific background theories to first-order automated reasoning methods
(resolution [4,12,1], sequent calculi [17], instantiation methods [9,5,6], etc). In both
cases, a major unsolved research challenge is to provide reasoning support that is “rea-
sonably complete” in practice, so that the systems can be used more reliably for both
proving theorems and finding counterexamples.

In [4], Bachmair, Ganzinger, and Waldmann introduced the hierarchical superposi-
tion calculus as a generalization of the superposition calculus for black-box style theory
reasoning. Their calculus works in a framework of hierarchic specifications. It tries to
prove the unsatisfiability of a set of clauses with respect to interpretations that extend
a background model such as the integers with linear arithmetic conservatively, that is,
without identifying distinct elements of old sorts (“confusion”) and without adding new
elements to old sorts (“junk”). While confusion can be detected by first-order theorem
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proving techniques, junk can not – in fact, the set of logical consequences of a hierar-
chic specifications is usually not recursively enumerable. Refutational completeness can
therefore only be guaranteed if one restricts oneself to sets of formulas where junk can
be excluded a priori. The property introduced by Bachmair, Ganzinger, and Waldmann
for this purpose is called “sufficient completeness with respect to simple instances”.
Given this property, their calculus is refutationally complete for clause sets that are
fully abstracted (i. e., where no literal contains both foreground and background sym-
bols). Unfortunately their full abstraction rule may destroy sufficient completeness with
respect to simple instances. We show that this problem can be avoided by using a new
form of clause abstraction and a suitably modified hierarchical superposition calculus.
Since the new hierarchical superposition calculus is still refutationally complete and the
new abstraction rule is guaranteed to preserve sufficient completeness with respect to
simple instances, the new combination is strictly more powerful than the old one.

In practice, sufficient completeness is a rather restrictive property. While there are
application areas where one knows in advance that every input is sufficiently complete,
in most cases this does not hold. As a user of an automated theorem prover, one would
like to see a best effort behaviour: The prover might for instance try to make the in-
put sufficiently complete by adding further theory axioms. In the calculus by Bach-
mair, Ganzinger, and Waldmann, however, this does not help at all: The restriction to
a particular kind of instantiations (“simple instances”) renders theory axioms essen-
tially unusable in refutations. We show that this can be prevented by introducing two
kinds of variables of the background theory sorts instead of one, that can be instanti-
ated in different ways, making our calculus significantly “more complete” in practice.
We also include a definition rule in the calculus that can be used to establish sufficient
completeness by linking foreground terms to background parameters, thus allowing the
background prover to reason about these terms.

The following trivial example demonstrates the problem. Consider the clause set
N = {C} where C = f(1) < f(1). Assume that the background theory is integer arithmetic
and that f is an integer-sorted operator from the foreground (free) signature. Intuitively,
one would expect N to be unsatisfiable. However, N is not sufficiently complete, and it
admits models in which f(1) is interpreted as some junk element ¢, an element of the
domain of the integer sort that is not a numeric constant. So both the calculus in [4]
and ours are excused to not find a refutation. To fix that, one could add an instance
C′ = ¬(f(1) < f(1)) of the irreflexivity axiom ¬(x < x). The resulting set N′ = {C, C′} is
(trivially) sufficiently complete as it has no models at all. However, the calculus in [4]
is not helped by adding C′, since the abstracted version of N′ is again not sufficiently
complete and admits a model that interprets f(1) as ¢. Our abstraction mechanism always
preserves sufficient completeness and our calculus will find a refutation.

With this example one could think that replacing the abstraction mechanism in [4]
with ours gives all the advantages of our calculus. This is not the case, however. Let
N′′ = {C, ¬(x < x)} be obtained by adding the more realistic axiom ¬(x < x). The
set N′′ is still sufficiently complete with our approach thanks to having two kinds of
variables at disposal, but it is not sufficiently complete in the sense of [4]. Indeed, in that
calculus adding background theory axioms never helps to gain sufficient completeness,
as variables there have only one kind.
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Another alternative to make N sufficiently complete is by adding a clause that forces
f(1) to be equal to some background domain element. For instance, one can add a “defi-
nition” for f(1), that is, a clause f(1) ≈ α, where α is a fresh symbolic constant belonging
to the background signature (a “parameter”). The set N′′′ = {C, f(1) ≈ α} is sufficiently
complete and it admits refutations with both calculi. The definition rule in our calcu-
lus mentioned above will generate this definition automatically. Moreover, the set N
belongs to a syntactic fragment for which we can guarantee not only sufficient com-
pleteness (by means of the definition rule) but also refutational completeness.

We present the new calculus in detail and provide a general completeness result,
modulo compactness of the background theory, and a specific completeness result for
clause sets over ground background-sorted terms that does not require compactness. We
also report on experiments with a prototypical implementation on the TPTP problem
library. Complete proofs, which are omitted here for lack of space, can be found in [7].

Related Work. The relation with the predecessor calculus in [4] is discussed above
and also further below. What we say there also applies to other developments rooted
in that calculus, [1, e. g.]. The specialised version of hierarchic superposition in [13]
will be discussed in Sect. 7 below. The resolution calculus in [12] has built-in infer-
ence rules for linear (rational) arithmetic, but is complete only under restrictions that
effectively prevent quantification over rationals. Earlier work on integrating theory rea-
soning into model evolution [5,6] lacks the treatment of background-sorted foreground
function symbols. The same applies to the sequent calculus in [17], which treats linear
arithmetic with built-in rules for quantifier elimination. The instantiation method in [9]
requires an answer-complete solver for the background theory to enumerate concrete
solutions of background constraints, not just a decision procedure. All these approaches
have in common that they integrate specialized reasoning for background theories into
a general first-order reasoning method. A conceptually different approach consists in
using first-order theorem provers as (semi-)decision procedures for specific theories in
DPLL(T)(-like) architectures [14,2,8]. Notice that in this context the theorem provers
do not need to reason modulo background theories themselves, and indeed they don’t.
The calculus and system in [14], for instance, integrates superposition and DPLL(T).
From DPLL(T) it inherits splitting of ground non-unit clauses into their unit compo-
nents, which determines a (backtrackable) model candidate M. The superposition infer-
ence rules are applied to elements from M and a current clause set F. The superposition
component guarantees refutational completeness for pure first-order clause logic. Be-
yond that, for clauses containing background-sorted variables, (heuristic) instantiation
is needed. Instantiation is done with ground terms that are provably equal w. r. t. the
equations in M to some ground term in M in order to advance the derivation. The limits
of that method can be illustrated with an (artificial but simple) example. Consider the
unsatisfiable clause set {i ≤ j∨P(i+1, x)∨P( j+2, x), i ≤ j∨¬P(i+3, x)∨¬P( j+4, x)}
where i and j are integer-sorted variables and x is a foreground-sorted variable. Neither
splitting into unit clauses, superposition calculus rules, nor instantiation applies, and so
the derivation gets stuck with an inconclusive result. By contrast, the clause set belongs
to a fragment that entails sufficient completeness (“no background-sorted foreground
function symbols”) and hence is refutable by our calculus. On the other hand, heuristic
instantiation does have a place in our calculus, but we leave that for future work.
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2 Signatures, Clauses, and Interpretations

We work in the context of standard many-sorted logic with first-order signatures com-
prised of sorts and operator (or function) symbols of given arities over these sorts. A
signature is a pair Σ = (Ξ,Ω), where Ξ is a set of sorts and Ω is a set of operator sym-
bols over Ξ. If X is a set of sorted variables with sorts in Ξ, then the set of well-sorted
terms over Σ = (Ξ,Ω) and X is denoted by TΣ(X); TΣ is short for TΣ(∅). We require
that Σ is a sensible signature, i. e., that TΣ has no empty sorts. As usual, we write t[u] to
indicate that the term u is a (not necessarily proper) subterm of the term t. The position
of u in t is left implicit.

A Σ-equation is an unordered pair (s, t), usually written s ≈ t, where s and t are
terms from TΣ(X) of the same sort. For simplicity, we use equality as the only predi-
cate in our language. Other predicates can always be encoded as a function into a set
with one distinguished element, so that a non-equational atom is turned into an equa-
tion P(t1, . . . , tn) ≈ trueP; this is usually abbreviated by P(t1, . . . , tn).1 A literal is an
equation s ≈ t or a negated equation ¬(s ≈ t), also written as s � t. A clause is a
multiset of literals, usually written as a disjunction; the empty clause, denoted by � is a
contradiction. If F is a term, equation, literal or clause, we denote by vars(F) the set of
variables that occur in F. We say F is ground if vars(F) = ∅

A substitution σ is a mapping from variables to terms that is sort respecting, that is,
maps each variable x ∈ X to a term of the same sort. Substitutions are homomorphically
extended to terms as usual. We write substitution application in postfix form. A term s
is an instance of a term t if there is a substitution σ such that tσ = s. All these notions
carry over to equations, literals and clauses in the obvious way.

The domain of a substitution σ is the set dom(σ) = {x | x � xσ}. We work with
substitutions with finite domains only, written as σ = [x1 	→ t1, . . . , xn 	→ tn] where
dom(σ) = {x1, . . . , xn}. A ground substitution is a substitution that maps every variable
in its domain to a ground term. A ground instance of F is obtained by applying some
ground substitution with domain (at least) vars(F) to it.

A Σ-interpretation I consists of a Ξ-sorted family of carrier sets {Iξ}ξ∈Ξ and of a
function I f : Iξ1 × · · · × Iξn → Iξ0 for every f : ξ1 . . . ξn → ξ0 in Ω. The interpretation tI

of a ground term t is defined recursively by f (t1, . . . , tn)I = I f (tI
1, , . . . , t

I
n) for n ≥ 0. An

interpretation I is called term-generated, if every element of an Iξ is the interpretation
of some ground term of sort ξ. An interpretation I is said to satisfy a ground equation
s ≈ t, if s and t have the same interpretation in I; it is said to satisfy a negated ground
equation s � t, if s and t do not have the same interpretation in I. The interpretation I
satisfies a ground clause C if at least one of the literals of C is satisfied by I. We also
say that a ground clause C is true in I, if I satisfies C; and that C is false in I, otherwise.
A term-generated interpretation I is said to satisfy a non-ground clause C if it satisfies
all ground instances Cσ; it is called a model of a set N of clauses, if it satisfies all
clauses of N.2 We abbreviate the fact that I is a model of N by I |= N; I |= C is short for

1 Without loss of generality we assume that there exists a distinct sort for every predicate.
2 This restriction to term-generated interpretations as models is possible since we are only con-

cerned with refutational theorem proving, i. e., with the derivation of a contradiction.
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I |= {C}. We say that N entails N′, and write N |= N′, if every model of N is a model of
N′; N |= C is short for N |= {C}.

If J is a class of Σ-interpretations, a Σ-clause or clause set is called J-satisfiable if
at least one I ∈ J satisfies the clause or clause set; otherwise it is calledJ-unsatisfiable.

A specification is a pair SP = (Σ,J), where Σ is a signature and J is a class of
term-generated Σ-interpretations called models of the specification SP. We assume that
J is closed under isomorphisms.

We say that a class of Σ-interpretations J or a specification (Σ,J) is compact, if
every infinite set of Σ-clauses that is J-unsatisfiable has a finite subset that is also
J-unsatisfiable.

3 Hierarchic Theorem Proving

In hierarchic theorem proving, we consider a scenario in which a general-purpose fore-
ground theorem prover and a specialized background prover cooperate to derive a con-
tradiction from a set of clauses. In the sequel, we will usually abbreviate “foreground”
and “background” by “FG” and “BG”.

The BG prover accepts as input sets of clauses over a BG signature ΣB = (ΞB, ΩB).
Elements of ΞB and ΩB are called BG sorts and BG operators, respectively. We fix an
infinite set XB of BG variables of sorts in ΞB. Every BG variable has (is labeled with)
a kind, which is either “abstraction” or “ordinary”. Terms over ΣB and XB are called
BG terms. A BG term is called pure, if it does not contain ordinary variables; otherwise
it is impure. These notions apply analogously to equations, literals, clauses, and clause
sets.

The BG prover decides the satisfiability of ΣB-clause sets with respect to a BG spec-
ification (ΣB,B), where B is a class of term-generated ΣB-interpretations called BG
models. We assume that B is closed under isomorphisms.

In most applications of hierarchic theorem proving, the set of BG operators ΩB con-
tains a set of distinguished constant symbolsΩD

B ⊆ ΩB that has the property that dI
1 � dI

2
for any two distinct d1, d2 ∈ ΩD

B and every BG model I ∈ B. We refer to these constant
symbols as (BG) domain elements.

While we permit arbitrary classes of BG models, in practice the following three cases
are most relevant:

(1) B consists of exactly one ΣB-interpretation (up to isomorphism), say, the integer
numbers over a signature containing all integer constants as domain elements and
≤, <,+,− with the expected arities. In this case, B is trivially compact; in fact, a set
N of ΣB-clauses isB-unsatisfiable if and only if some clause of N isB-unsatisfiable.

(2) ΣB is extended by an infinite number of parameters, that is, additional constant
symbols. While all interpretations in B share the same carrier sets {Iξ}ξ∈ΞB and
interpretations of non-parameter symbols, parameters may be interpreted freely by
arbitrary elements of the appropriate Iξ. The class B obtained in this way is in
general not compact; for instance the infinite set of clauses { n ≤ β | n ∈ N }, where
β is a parameter, is unsatisfiable in the integers, but every finite subset is satisfiable.

(3) ΣB is again extended by parameters, however, B is now the class of all interpreta-
tions that satisfy some first-order theory, say, the first-order theory of linear integer
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arithmetic.3 Since B corresponds to a first-order theory, compactness is recovered.
It should be noted, however, that B contains non-standard models, so that for in-
stance the clause set { n ≤ β | n ∈ N } is now satisfiable (e. g., Q × Z with a
lexicographic ordering is a model).

The FG theorem prover accepts as inputs clauses over a signature Σ = (Ξ,Ω), where
ΞB ⊆ Ξ and ΩB ⊆ Ω. The sorts in ΞF = Ξ \ΞB and the operator symbols in ΩF = Ω\ΩB

are called FG sorts and FG operators. Again we fix an infinite set XF of FG variables
of sorts in ΞF. All FG variables have the kind “ordinary”. We define X = XB ∪ XF.

In examples we use {0, 1, 2, . . . } to denote BG domain elements, {+,−, <,≤} to de-
note (non-parameter) BG operators, and the possibly subscripted letters {x, y}, {X, Y},
{α, β}, and {a, b, c, f, g} to denote ordinary variables, abstraction variables, parameters,
and FG operators, respectively. The letter ζ denotes an ordinary variable or an abstrac-
tion variable.

We call a term in TΣ(X) a FG term, if it is not a BG term, that is, if it contains at least
one FG operator or FG variable (and analogously for equations, literals, or clauses). We
emphasize that for a FG operator f : ξ1 . . . ξn → ξ0 in ΩF any of the ξi may be a BG sort,
and that consequently FG terms may have BG sorts.

If I is a Σ-interpretation, the restriction of I to ΣB, written I|ΣB , is the ΣB-interpretation
that is obtained from I by removing all carrier sets Iξ for ξ ∈ ΞF and all functions I f

for f ∈ ΩF. Note that I|ΣB is not necessarily term-generated even if I is term-generated.
In hierarchic theorem proving, we are only interested in Σ-interpretations that extend
some model in B and neither collapse any of its sorts nor add new elements to them,
that is, in Σ-interpretations I for which I|ΣB ∈ B. We call such a Σ-interpretation a
B-interpretation.

Let N and N′ be two sets of Σ-clauses. We say that N entails N′ relative to B (and
write N |=B N′), if every model of N whose restriction to ΣB is in B is a model of
N′. Note that N |=B N′ follows from N |= N′. If N |=B �, we call N B-unsatisfiable;
otherwise, we call it B-satisfiable.4

Our goal in refutational hierarchic theorem proving is to check whether a given
set of Σ-clauses N is false in all B-interpretations, or equivalently, whether N is B-
unsatisfiable.

We say that a substitution is simple if it maps every abstraction variable in its domain
to a pure BG term. For example, [x 	→ 1 + Y + α], [X 	→ 1 + Y + α] and [x 	→ f(1)]
all are simple, whereas [X 	→ 1 + y + α] and [X 	→ f(1)] are not. Let F be a clause or
(possibly infinite) clause set. By sgi(F) we denote the set of simple ground instances of
F, that is, the set of all ground instances of (all clauses in) F obtained by simple ground
substitutions. Standard unification algorithms can be modified in a straightforward way
for computing simple mgus. Note that a simple mgu can map an ordinary variable to an
abstraction variable but not vice versa, as ordinary variables are not pure BG terms.

3 To satisfy the technical requirement that all interpretations inB are term-generated, we assume
that in this case ΣB is suitably extended by an infinite set of constants (or by one constant and
one unary function symbol) that are not used in any input formula or theory axiom.

4 If Σ = ΣB, this definition coincides with the definition of satisfiability w. r. t. a class of inter-
pretations that was given in Sect. 2. A set N of BG clauses is B-satisfiable if and only if some
interpretation of B is a model of N.
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For a BG specification (ΣB,B), we define GndTh(B) as the set of all ground ΣB-
formulas that are satisfied by every I ∈ B.

Definition 3.1 (Sufficient completeness). A Σ-clause set N is sufficiently complete
w. r. t. simple instances iff for every Σ-model J of sgi(N) ∪GndTh(B)5 and every ground
BG-sorted FG term s there is a ground BG term t such that J |= s ≈ t.6

For brevity, we will from now on omit the phrase “w. r. t. simple instances” and speak
only of “sufficient completeness”. It should be noted, though, that our definition differs
from the classical definition of sufficient completeness in the literature on algebraic
specifications.

4 Orderings

A hierarchic reduction ordering is a strict, well-founded ordering on terms that is com-
patible with contexts, i. e., s � t implies u[s] � u[t], and stable under simple substitu-
tions, i. e., s � t implies sσ � tσ for every simple σ. In the rest of this paper we assume
such a hierarchic reduction ordering � that satisfies all of the following: (i) � is total on
ground terms, (ii) s � d for every domain element d and every ground term s that is not
a domain element, and (iii) s � t for every ground FG term s and every ground BG term
t. These conditions are easily satisfied by an LPO with an operator precedence in which
FG operators are larger than BG operators and domain elements are minimal with, for
example, · · · � −2 � 2 � −1 � 1 � 0 to achieve well-foundedness.

Condition (iii) and stability under simple substitutions together justify to always or-
der s � X where s is a non-variable FG term and X is an abstraction variable. By
contrast, s � x can only hold if x ∈ vars(s). Intuitively, the combination of hierarchic
reduction orderings and abstraction variables affords ordering more terms.

The ordering� is extended to literals over terms by identifying a positive literal s ≈ t
with the multiset {s, t}, a negative literal s � t with {s, s, t, t}, and using the multiset
extension of �. Clauses are compared by the multiset extension of �, also denoted
by �.

The non-strict orderings � are defined as s � t iff s � t or s = t (the latter is multiset
equality in case of literals and clauses). We say that a literal L is maximal (strictly
maximal) in a clause L ∨ C iff there is no K ∈ C with K � L (K � L).

5 Weak Abstraction

To refute an input set of Σ-clauses, hierarchic superposition calculi derive BG clauses
from them and pass the latter to a BG prover. In order to do this, some separation of
the FG and BG vocabulary in a clause is necessary. The technique used for this sep-
aration is known as abstraction: One (repeatedly) replaces some term t in a clause
by a new variable and adds a disequations to the clause, so that C[t] is converted

5 In contrast to [4], we include GndTh(B) in the definition of sufficient completeness. (This is
independent of the abstraction method used; it would also have been useful in [4].)

6 Note that J need not be a B-interpretation.
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into the equivalent clause ζ � t ∨ C[ζ], where ζ is a new (abstraction or ordinary)
variable.

The calculus by Bachmair, Ganzinger, and Waldmann [4] works on “fully abstracted”
clauses: Background terms occuring below a FG operator or in an equation between a
BG and a FG term or vice versa are abstracted out until one arrives at a clause in which
no literal contains both FG and BG operator symbols.

A problematic aspect of any kind of abstraction is that it tends to increase the number
of incomparable terms in a clause, which leads to an undesirable growth of the search
space of a theorem prover. For instance, if we abstract out the subterms t and t′ in a
ground clause f(t) ≈ g(t′), we get x � t∨ y � t′ ∨ f(x) ≈ g(y), and the two new terms f(x)
and g(y) are incomparable in any reduction ordering. The approach used in [4] to reduce
this problem is to consider only instances where BG-sorted variables are mapped to BG
terms: In the terminology of the current paper, all BG-sorted variables in [4] have the
kind “abstraction”. This means that, in the example above, we obtain the two terms
f(X) and g(Y). If we use an LPO with a precedence in which f is larger than g and g
is larger than every BG operator, then for every simple ground substitution τ, f(X)τ is
strictly larger that g(Y)τ, so we can still consider f(X) as the only maximal term in the
literal.

The advantage of full abstraction is that this clause structure is preserved by all infer-
ence rules. There is a serious drawback, however: Consider the clause set N = { 1+ c �
1 + c }. Since N is ground, we have sgi(N) = N, and since sgi(N) is unsatisfiable, N is
trivially sufficiently complete. Full abstraction turns N into N′ = { X � c∨1+X � 1+X }.
In the simple ground instances of N′, X is mapped to all pure BG terms. However, there
are Σ-interpretations of sgi(N′) in which c is interpreted differently from any pure BG
term, so sgi(N′) ∪ GndTh(B) does have a Σ-model and N′ is no longer sufficiently com-
plete. In other words, the calculus of [4] is refutationally complete for clause sets that
are fully abstracted and sufficiently complete, but full abstraction may destroy sufficient
completeness. (In fact, the calculus is not able to refute N′.)

The problem that we have seen is caused by the fact that full abstraction replaces
FG terms by abstraction variables, which may not be mapped to FG terms later on.
The obvious fix would be to use ordinary variables instead of abstraction variables
whenever the term to be abstracted out is not a pure BG term, but as we have seen
above, this would increase the number of incomparable terms and it would therefore be
detrimental to the performance of the prover.

Full abstraction is a property that is stronger than actually necessary for the com-
pleteness proof of [4]. In fact, it was claimed in a footnote in [4] that the calculus could
be optimized by abstracting out only non-variable BG terms that occur below a FG op-
erator. This is incorrect, however: Using this abstraction rule, neither our calculus nor
the calculus of [4] would not be able to refute { 1 + 1 ≈ 2, (1 + 1) + c � 2 + c }, even
though this set is unsatisfiable and trivially sufficiently complete. We need a slightly
different abstraction rule to avoid this problem:
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Definition 5.1. A BG term t occurring in a clause C is called target term if t is neither
a domain element nor a variable7 and if C has the form C[ f (s1, . . . , t, . . . , sn)], where f
is a FG operator or at least one of the si is a FG or impure BG term.

A clause is called weakly abstracted if it does not have any target terms.
The weakly abstracted version of a clause is the clause that is obtained by exhaus-

tively replacing C[t] by

– C[X]∨ X � t, where X is a new abstraction variable, if t is a pure target term in C,
– C[y] ∨ y � t, where y is a new ordinary variable, if t is an impure target term in C.

The weakly abstracted version of C is denoted by abstr(C).

For example, weak abstraction of the clause g(1, α, f(1)+(α+1), z) ≈ β yields g(1, X, f(1)+
Y, z) ≈ β ∨ X � α ∨ Y � α + 1. Note that the terms 1, f(1) + (α + 1), z, and β are not ab-
stracted out: 1 is a domain element; f(1)+ (α+1) has a BG sort, but it is not a BG term; z
is a variable; and β is not a subterm of a FG term. The clause write(a, 2, read(a, 1)+1) ≈ b
is already weakly abstracted. Every BG clause is trivially weakly abstracted.

Proposition 5.2. If N is a set of clauses and N′ is obtained from N by replacing one or
more clauses by their weakly abstracted versions, then sgi(N) and sgi(N′) are equiva-
lent and N′ is sufficiently complete whenever N is.

In contrast to full abstraction, the weak abstraction rule does not require abstraction of
FG terms (which can destroy sufficient completeness, if done using abstraction vari-
ables, and which is detrimental to the performance of a prover if done using ordinary
variables). BG terms are usually abstracted out using abstraction variables. The excep-
tion are BG terms that are impure, i. e., that contain ordinary variables themselves. In
this case, we cannot avoid to use ordinary variables for abstraction, otherwise, we might
again destroy sufficient completeness. For example, the clause set {P(1+ y), ¬P(1+ c) }
is sufficiently complete. If we used an abstraction variable instead of an ordinary vari-
able to abstract out the impure subterm 1+y, we would get {P(X)∨X � 1+y, ¬P(1+c) },
which is no longer sufficiently complete.

In input clauses (that is, before abstraction), BG-sorted variables may be declared
as “ordinary” or “abstraction”. As we have seen above, using abstraction variables can
reduce the search space; on the other hand, abstraction variables may be detrimental
to sufficient completeness. Consider the following example: The set of clauses N =
{ ¬f(x) > g(x)∨h(x) ≈ 1, ¬f(x) ≤ g(x)∨h(x) ≈ 2,¬h(x) > 0 } is unsatisfiable w. r. t. linear
integer arithmetic, but since it is not sufficiently complete, the hierarchic superposition
calculus does not detect the unsatisfiability. Adding the clause X > Y ∨ X ≤ Y to N
does not help: Since the abstraction variables X and Y may not be mapped to the FG
terms f(x) and g(x) in a simple ground instance, the resulting set is still not sufficiently
complete. However, if we add the clause x > y ∨ x ≤ y, the set of clauses becomes
(vacuously) sufficiently complete and its unsatisfiability is detected.

One might wonder whether it is also possible to gain anything if the abstraction
process is performed using ordinary variables instead of abstraction variables. The
following proposition shows that this is not the case:

7 The reason why it is permissible to treat domain elements in a special way will become clear
in Sect. 6.
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Proposition 5.3. Let N be a set of clauses, let N′ be the result of weak abstraction of
N as defined above, and let N′′ be the result of weak abstraction of N where all newly
introduced variables are ordinary variables. Then sgi(N′) and sgi(N′′) are equivalent
and sgi(N′) is sufficiently complete if and only if sgi(N′′) is.

6 Base Inference System
An inference system I is a set of inference rules. By an I inference we mean an instance
of an inference rule from I such that all conditions are satisfied.

The base inference system HSPBase of the hierarchic superposition calculus consists
of the inference rules Equality resolution, Negative superposition, Positive superposition,
Equality factoring, and Close defined below.8 All inference rules are applicable only to
weakly abstracted premise clauses.

Equality resolution
s � t ∨ C

abstr(Cσ)

if (i) neither s nor t is a pure BG term, (ii) σ is a simple mgu of s and t, and (iii) (s � t)σ
is maximal in (s � t ∨C)σ.9

For example, Equality resolution is applicable to 1 + c � 1 + x with the simple mgu
[x 	→ c], but it is not applicable to 1 + α � 1 + x, since 1 + α is a pure BG term.

Negative superposition
l ≈ r ∨ C s[u] � t ∨ D

abstr((s[r] � t ∨C ∨ D)σ)
if (i) neither l nor u is a pure BG term, (ii) u is not a variable, (iii) σ is a simple mgu of
l and u, (iv) rσ � lσ, (v) (l ≈ r)σ is strictly maximal in (l ≈ r ∨ C)σ, (vi) tσ � sσ, and
(vii) (s � t)σ is maximal in (s � t ∨ D)σ.

Positive superposition
l ≈ r ∨C s[u] ≈ t ∨ D

abstr((s[r] ≈ t ∨ C ∨ D)σ)
if (i) neither l nor u is a pure BG term, (ii) u is not a variable, (iii) σ is a simple mgu of
l and u, (iv) rσ � lσ, (v) (l ≈ r)σ is strictly maximal in (l ≈ r ∨ C)σ, (vi) tσ � sσ, and
(vii) (s � t)σ is strictly maximal in (s ≈ t ∨ D)σ.

Equality factoring
l ≈ r ∨ s ≈ t ∨ C

abstr((l ≈ t ∨ r � t ∨ C)σ)
where (i) neither l nor s is a pure BG term, (ii) σ is a simple mgu of l and s, (iii) (l ≈ r)σ
is maximal in (l ≈ r ∨ s ≈ t ∨ C)σ, (iv) rσ � lσ, and (v) tσ � sσ.

Close
C1 · · · Cn

�
8 With weak abstraction, it is not possible to replace Equality factoring by Factoring and

Merging paramodulation. The inference system can be extended by selection functions, but
only negative FG literals in clauses that do not contain ordinary BG variables may be selected.

9 As in [4], it is possible to strengthen condition (iii) by requiring that there exists some simple
ground substitution ψ such that (s � t)σψ is maximal in (s � t ∨ C)σψ (and analogously for
the other inference rules).
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if C1, . . . ,Cn are BG clauses and {C1, . . . ,Cn} is B-unsatisfiable, i. e., no interpretation
in B is a ΣB-model of {C1, . . . ,Cn}.

Notice that Close is not restricted to take pure BG clauses only. The reason is that
also impure BG clauses admit simple ground instances that are pure.

In contrast to [4], the inference rules above include an explicit weak abstraction in
their conclusion. Without it, conclusions would not be weakly abstracted in general. For
example Positive superposition applied to the weakly abstracted clauses f(X) ≈ 1∨X � α
and P(f(1)+1) would then yield P(1+1)∨1 � α, whose P-literal is not weakly abstracted.
Additionally, the side conditions of our rules differ somewhat from the corresponding
rules of [4], this is due on the one hand to the presence of impure BG terms (which must
sometimes be treated like FG terms), and on the other hand to the fact that, after weak
abstraction, literals may still contain both FG and BG operators.

The inference rules are supplemented by a redundancy criterion, that is, a mapping
RCl from sets of formulae to sets of formulae and a mapping RInf from sets of formulae
to sets of inferences that are meant to specify formulae that may be removed from N and
inferences that need not be computed. (RCl(N) need not be a subset of N and RInf (N)
will usually also contain inferences whose premises are not in N.)

Definition 6.1. A pair R = (RInf ,RCl) is called a redundancy criterion (with respect to
an inference system I and a consequence relation |=), if the following conditions are
satisfied for all sets of formulae N and N′:

(i) N \ RCl(N) |= RCl(N).
(ii) If N ⊆ N′, then RCl(N) ⊆ RCl(N′).

(iii) If ι is an inference and its conclusion is in N, then ι ∈ RInf (N).
(iv) If N′ ⊆ RCl(N), then RInf (N) ⊆ RInf (N \ N′).

Inferences inRInf (N) and formulae in RCl(N) are said to be redundant with respect to N.

To define a redundancy criterion for HSPBase and to prove the refutational completeness
of the calculus, we use the same approach as in [4] and relate HSPBase inferences to the
corresponding ground inferences in the standard superposition calculus SSP [16].

Let N be a set of ground clauses. We define RSCl(N) to be the set of all clauses C such
that there exist clauses C1, . . . ,Cn ∈ N that are smaller than C with respect to � and
C1, . . . ,Cn |= C. We define RSInf (N) to be the set of all ground SSP inferences ι such
that either a premise of ι is in RSCl(N) or else C0 is the conclusion of ι and there exist
clauses C1, . . . ,Cn ∈ N that are smaller with respect to �c than the maximal premise
of ι and C1, . . . ,Cn |= C0. It is well known that ground SSP together with (RSInf ,RSCl) is
refutationally complete.

Let ι be an HSPBase inference with premises C1, . . . ,Cn and conclusion abstr(C),
where the clauses C1, . . . ,Cn have no variables in common. Let ι′ be a ground SSP
inference with premises C′1, . . . ,C

′
n and conclusion C′. If σ is a simple substitution

such that C′ = Cσ and C′i = Ciσ for all i, and if none of the C′i is a BG clause, then
ι′ is called a simple ground instance of ι. The set of all simple ground instances of an
inference ι is denoted by sgi(ι).

Definition 6.2. Let N be a set of weakly abstracted clauses. We define RHInf (N) to be the
set of all inferences ι such that either ι is not a Close inference and sgi(ι) ⊆ RSInf (sgi(N)∪
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GndTh(B)), or else ι is a Close inference and � ∈ N. We define RHCl(N) to be the set
of all weakly abstracted clauses C such that sgi(C) ⊆ RSCl(sgi(N) ∪ GndTh(B)) ∪
GndTh(B).10

To prove that HSPBase and RH = (RHInf ,RHCl) are refutationally complete for sets of
weakly abstracted Σ-clauses and compact BG specifications (ΣB,B), we use the same
technique as in [4]:

First we show that RH is a redundancy criterion with respect to |=B, and that a set of
clauses remains sufficiently complete if new clauses are added or if redundant clauses
are deleted. The proofs for both properties are similar to the corresponding ones in [4];
the differences are due, on the one hand, to the fact that we include GndTh(B) in the
redundancy criterion and in the definition of sufficient completeness, and, on the other
hand, to the explicit abstraction steps in our inference rules.

We then encode arbitrary term-generated ΣB-interpretation by sets of unit ground
clauses in the following way: Let I ∈ B be a term-generated ΣB-interpretation. For
every ΣB-ground term t let m(t) be the smallest ground term of the congruence class of
t in I. We define a rewrite system E′I by E′I = { t → m(t) | t ∈ TΣ, t � m(t) }. Obviously,
E′I is terminating, right-reduced, and confluent. Now let EI be the set of all rules l → r
in E′I such that l is not reducible by E′I \ {l → r}. It is fairly easy to prove that E′I and
EI define the same set of normal forms, and from this we can conclude that EI and E′I
induce the same equality relation on ground ΣB-terms. We identify EI with the set of
clauses { t ≈ t′ | t → t′ ∈ EI }. Let DI be the set of all clauses t � t′, such that t and t′
are distinct ground ΣB-terms in normal form with respect to EI .

Let N be a set of weakly abstracted clauses and I ∈ B be a term-generated ΣB-
interpretation, then NI denotes the set EI ∪ DI ∪ {Cσ | σ simple, reduced with respect
to EI , C ∈ N, Cσ ground }.
Theorem 6.3. Let I ∈ B be a term-generated ΣB-interpretation and let N be a set of
weakly abstracted Σ-clauses. If I satisfies all BG clauses in sgi(N) and N is saturated
with respect to HSPBase and RH , then NI is saturated with respect to SSP and RS.

The crucial property of abstracted clauses that is needed in the proof of this theorem
is that there are no superposition inferences between clauses in EI and FG ground in-
stances Cσ, or in other words, that all FG terms occurring in ground instances Cσ are
reduced w. r. t. EI . Abstracting out FG terms as in [4] is not necessary to achieve this
goal, and domain elements can also be excluded as target terms in Def. 5.1: Since two
different domain elements must always be interpreted differently in I and since domain
elements are smaller in the term ordering than any ground term that is not a domain
element, every domain element is the smallest term in its congruence class. Domain
elements occurring within FG terms are therefore trivially irreducible by EI , so it is
unnecessary to abstract them out.

If N is saturated with respect to HSPBase and RH and does not contain the empty
clause, then Close cannot be applicable to N. If (ΣB,B) is compact, this implies that
there is some term-generated ΣB-interpretation I ∈ B that satisfies all BG clauses in

10 In contrast to [4], we include GndTh(B) in the redundancy criterion. (This is independent of
the abstraction method used; it would also have been useful in [4].)
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sgi(N). Hence, by Thm. 6.3, the set of reduced simple ground instances of N has a
model that also satisfies EI ∪ DI . Sufficient completeness allows us to show that this is
in fact a model of all ground instances of clauses in N and that I is its restriction to ΣB:

Theorem 6.4. If the BG specification (ΣB,B) is compact, then HSPBase and RH are
refutationally complete for all sets of clauses that are sufficiently complete.

We do not spell out in detail theorem proving processes here, because the well-known
framework of standard resolution [3] can be readily instantiated with our calculus. In
particular, it justifies the following version of a generic simplification rule for clause
sets.

Simp
N ∪ {C}
N ∪ {D}

if (i) D is weakly abstracted, (ii) GndTh(B) ∪ N ∪ {C} |= D, and (iii) C is redundant
w. r. t. N ∪ {D}.

Condition (ii) is needed for soundness, and condition (iii) is needed for complete-
ness. The Simp rule covers the usual simplification rules of the standard superposition
calculus, such as demodulation by unit clauses and deletion of tautologies and (prop-
erly) subsumed clauses. It also covers simplification of arithmetic terms, e. g., replacing
a subterm (2 + 3) + α by 5 + α and deleting an unsatisfiable BG literal 5 + α < 4 + α
from a clause. Any clause of the form C ∨ ζ � d where d is domain element can be
simplified to C[ζ 	→ d].

7 Sufficient Completeness by Define

In this section we introduce an additional inference rule, Define. It augments the HSPBase

inference system with complementary functionality: while the HSPBase inference sys-
tem will derive a contradiction if the input clause set is inconsistent and sufficiently
complete, the Define rule may turn input clause sets that are not sufficiently complete
into sufficiently complete ones. Technically, the Define rule derives “definitions” of the
form t ≈ α, where t is a ground BG-sorted FG term and α is a parameter. This way,
sufficient completenessis is achieved “locally” for t, by forcing t to be equal to some
element of the carrier set of the proper sort, denoted by the parameter α. For economy
of reasoning, definitions are introduced only on a by-need basis, when t appears in a
current clause, and t ≈ α is used to simplify that clause immediately.

We need one more preliminary definition before introducing Define formally.

Definition 7.1 (Unabstracted clause). A clause is unabstracted if it does not contain
any disequation ζ � t between a variable ζ and a term t unless t � ζ and ζ ∈ vars(t).

Every clause can be unabstracted by repeatedly replacing C ∨ ζ � t by C[ζ 	→ t]
whenever t = ζ or ζ � vars(t). By unabstr(C) we denote an unabstracted version of
C that can be obtained this way.11 If t = t[ζ1, . . . , ζn] is a term in C and ζi is finally

11 In general, unabstraction does not yield a unique result. All results are equivalent, however,
and we can afford to select any one and disregard the others.
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instantiated to ti, we denote its unabstracted version t[t1, . . . , tn] by unabstr(t,C). For a
clause set N let unabstr(N) = {unabstr(C) | C ∈ N}.

Define
N ∪ {L[t[ζ1, . . . , ζn]] ∨ D}

N ∪ {abstr(t[t1, . . . , tn] ≈ αt[t1 ,...,tn]), abstr(L[αt[t1,...,tn]] ∨ D)}
if (i) t[ζ1, . . . , ζn] is a minimal BG-sorted non-variable term with a toplevel FG operator,
(ii) t[t1, . . . , tn] = unabstr(t[ζ1, . . . , ζn], L[t[ζ1, . . . , ζn]] ∨ D), (iii) t[t1, . . . , tn] is ground,
and (iv) αt[t1 ,...,tn] is a parameter, uniquely determined by the term t[t1, . . . , tn].

In condition (i), by minimality we mean that no proper subterm of t[ζ1, . . . , ζn] is a
BG-sorted non-variable term with a toplevel FG operator. In effect, the Define rule elim-
inates such terms inside-out. Conditions (iii) and (iv) are needed for soundness. Notice
the Define-rule preserves B-satisfiability, not B-equivalence. In our main application,
Thm. 7.5 below, every ζi will always be an abstraction variable.

Example 7.2. Consider the weakly abstracted clauses P(0), f(x) > 0 ∨ ¬P(x), Q(f(x)),
¬Q(x) ∨ 0 > x. Suppose ¬P(x) is maximal in the second clause. By superposition
between the first two clauses we derive f(0) > 0. With Define we obtain f(0) ≈ αf(0)
and αf(0) > 0, the latter replacing f(0) > 0. From the third clause and f(0) ≈ αf(0)
we obtain Q(αf(0)), and with the fourth clause 0 > αf(0). Finally we apply Close to
{αf(0) > 0, 0 > αf(0)}. ��
In practice, it is interesting to identify conditions under which sufficient complete-
ness can be established by means of Define and compactness poses no problems, so
that a complete calculus results. The ground BG-sorted term fragment (GBT fragment)
discussed below is one such case.

A clause set N belongs to the GBT fragment iff every clause C ∈ N is a GBT clause,
that is, all BG-sorted terms in C are ground. To get the desired completeness result we
need to establish that the Define rule preserves the GBT property.

Lemma 7.3. If unabstr(N) belongs to the GBT fragment and N′ is obtained from N by
a Define inference, then unabstr(N′) also belongs to the GBT fragment.

Below we will equip the HSP calculus with a specific strategy that first applies Define
exhaustively before the derivation proper starts. In that, it may be beneficial to also ap-
ply Simp. But then, Simp needs to preserve the GBT property, too. Because this does not
hold at the outset, and to make sure Split is well-behaved in the subsequent derivation,
we have to make certain (mild) assumptions.

Definition 7.4. Let �fin be any strict (partial) term ordering such that for every ground
BG term s only finitely many ground BG terms t with s �fin t exist.12 We say that a
Simp inference with premise N ∪ {C} and conclusion N ∪ {D} is suitable (for the GBT
fragment) iff (i) if unabstr(C) is a GBT clause then unabstr(D) is a GBT clause, (ii) for
every BG term t occuring in unabstr(D) there is a BG term s ∈ unabstr(C) such that
s �fin t, and (iii) every term t in D contains a BG-sorted FG operator only at toplevel
position, if at all. We say the Simp inference rule is suitable iff every Simp inference is.

12 A KBO with appropriate weights can be used for �fin.



Hierarchic Superposition with Weak Abstraction 53

Expected simplification techniques like demodulation, subsumption deletion and eval-
uation of BG subterms are all covered by suitable Simp rules. The latter is possible
because simplifications are not only decreasing w. r. t. � but additionally also decreas-
ing w. r. t. �fin, as expressed in condition (ii). Without it, e. g., the clause P(1 + 1, 0)
would admit infinitely many simplified versions P(2, 0), P(2, 0 + 0), P(2, 0 + (0 + 0)),
etc. Condition (i) makes sure that also Simp preserves GBT clauses. Condition (iii) is
needed to make sure that no new BG terms are generated in derivations.

As said, we need to equip the HSP calculus with a specific strategy. Assume a suit-
able Simp rule and let N be a set of GBT clauses. By Npre we denote any clause set
obtained by a derivation of the form (N0 = abstr(N)),N1, . . . , (Nk = Npre) with the
inference rules Define and Simp only, and such that every C ∈ Npre either does not con-
tain any BG-sorted FG operator or unabstr(C) is a ground positive unit clause of the
form f(t1, . . . , tn) ≈ t where f is a BG-sorted FG operator and t1, . . . , tn, t do not contain
BG-sorted FG operators.

For all GBT clause sets N, thanks to the effect of the Define rule and Lemma 7.3, all
offending occurrences of BG-sorted FG terms in N can stepwisely be eliminated until a
clause set Npre results. Thanks to the additional assumptions about Simp we obtain the
following main result on the GBT fragment.

Theorem 7.5. The HSP calculus with a suitable Simp inference rule is refutationally
complete for the ground BG-sorted term fragment. More precisely, if a set N of GBT
clauses is B-unsatisfiable then there is a refutation of Npre without the Define rule.

Because unabstraction can also be applied to fully abstracted clauses, it is possible
to equip the hierarchic superposition calculus of [4] with a correspondingly modified
Define rule and get Theorem 7.5 in that context as well.

In [13] it has been shown how to use hierarchic superposition as a decision procedure
for ground clause sets (and for Horn clause sets with constants and variables as the only
FG terms). Their method preprocesses the given clause set by “basification”, a process
that removes BG-sorted FG terms similarly as our Define rule. The resulting clause set
then is fully abstracted and hierarchic superposition is applied. Certain modifications of
the inference rules make sure derivations always terminate. Simplification is restricted
to subsumption deletion. The effect of basification is achieved in our calculus by the
Define rule. Moreover, for GBT clause sets, by Theorem 7.5, Define needs to be applied
as preprocessing only. Applying Define beyond that for non-GBT clause sets can still be
useful. Ex. 7.2, for instance, cannot be solved with basification during preprocessing.
The fragment of [13] is a further restriction of the GBT fragment. We expect we can get
decidability results for that fragment with similar techniques.

8 Implementation and Experiments

We have implemented the HSP calculus and carried out experiments with the TPTP
Library [18]. Our implementation, “Beagle”, is intended as a testbed for rapidly try-
ing out theoretical ideas for their practical viability.13 Beagle is in an early stage of

13 http://users.cecs.anu.edu.au/˜baumgart/systems/beagle/

http://users.cecs.anu.edu.au/~baumgart/systems/beagle/
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development. Nevertheless it is a full implementation of HSP and accepts TPTP for-
mulas over linear integer arithmetic (“TFF formulas”, see [19]). The BG reasoner is a
quantifier elimination procedure for linear integer arithmetic (LIA) based on Cooper’s
algorithm; it is called with all current BG clauses as inputs (with caching of simpli-
fied formulas) whenever a new BG clause has been derived. The HSP calculus itself is
implemented in a straightforward way. Fairness is achieved through a combination of
measuring clause lengths, depths and their derivation-age. Implemented simplification
rules are evaluation of ground parameter-free BG terms and literals, expressing literals
with the predicate symbols ≥ and > in terms of < and ≤, demodulation by unit clauses,
proper subsumption deletion, and removing a positive literal L from a clause in presence
of a unit clause that instantiates to the complement of L. Prover options allow the user
to enable/disable the Define rule and to add certain LIA-valid clauses over ordinary vari-
ables. Unit clauses like −(−x) ≈ x, (x+ (−y))+ y ≈ x, x+0 ≈ x, x ∗0 ≈ 0, ¬(x < x), etc,
are always helpful as demodulators. Transitivity clauses for < and ≤ are helpful some-
times. Optionally, a split rule can be enabled for branching out into complementary unit
clauses if they simplify some current clause. Dependency-directed backtracking is used
for search space pruning then. Beagle also implements the previous calculus [4], with
abstraction variables only, full abstraction, and optionally a modified Define rule that
uses full abstraction instead of weak abstraction. We refer to this setting by “HSPFA”
below, and by “HSPWA” for the new calculus.

Beagle is implemented in Scala. The choice of a slow programming language and,
more severely, the absence of any form of term indexing limit Beagle’s applicability to
small problems only. Indeed, Beagle’s performance on problems that require significant
combinatorial search is poor. For example, the propositional pigeonhole problem with
8 pigeons takes more than two hours, SPASS solves it in under 4 seconds using settings
to get a comparable calculus and proof procedure (including splitting). Nevertheless
we tried Beagle on all first-order problems from the TPTP library (version 5.4.0) over
linear integer arithmetic. The experiments were run on a MacBook Pro with a 2.4 GHz
Intel Core 2 Duo processor. Here is our summary, by problem category.

ARI. Relevant are 223 problems. Many ARI problems are very simple, but roughly half
of them are non-trivial by including integer-sorted non-constant FG function symbols
and free predicates over the integers. The most difficult solved problems have a rating of
0.88. Beagle times out after 60 seconds on one problem (ARI184=1), terminates with
an undecided result on one satisfiable problem (ARI603=1) and solves all other 221
problems correctly, 10 non-theorems and 211 theorems. All but three solved problems
can be solved very quickly, the other three below 20 seconds. The Define rule is essential
for HSPWA in 14 cases, for HSPFA in 17 cases. The problem ARI186=1 cannot be
solved by HSPFA.

GEG. The five relevant problems are variations of each other. They deal with travers-
ing weighted graphs and computing with the (sum of the) weights along paths. All five
problems are solved within 60 seconds, the hardest problem has a rating of 0.67. For
GEG025=1 the use of additional LIA-valid axioms, in particular transitivity of ≤ is es-
sential. For two problems Define is essential, and one problem is unsolvable by HSPFA.

PUZ. The only relevant problem (PUZ133=2) is not solved.
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NUM. The only non-easy problem that is solvable is NUM858=1 (rating 0.56), which
is not solvable by HSPFA. All easy problems are solved easily, but for one problem
Define is essential.

SEV/HWV. Six problems of SEV are relevant, about sets, stemming from a software
verification context. Only SEV421=1 and SEV422=1 can be solved, in 3 and 100 sec-
onds, respectively. The problem SEV422=1 cannot be solved by HSPFA. Solving the
SEV-problems is dominated by pure foreground reasoning. The same applies to HWV,
where no problem is solved.

SWV/SWW. Only one problem can be solved, SWV997=1 (rating 0.44), in 8 seconds.
All other problems are too big to be converted into CNF in reasonable time. The same
holds for all SWW problems.

SYO. Of the four problems, SYO521=1, SYO523=1 (rating 0.67) and SYO524=1 are
solvable. The latter only with HSPWA, the Define rule and auxiliary lemmas.

The TSTP web page contains individual solutions to TPTP problems for various provers.
About 12 provers are applicable to problems over linear integer arithmetic. Beagle
solves 22 such problems with a rating of 0.60 or higher. Each of these problems can
typically be solved by four or less systems, with CVC3, Princess, SPASS+T and Z3 the
most reliable ones. There are five problems that only Princess and Beagle solve.

9 Conclusions

The main theoretical contribution of this paper is an improved variant of the hierarchic
superposition calculus. The improvements over its predecessor [4] are grounded in a
different form of “abstracted” clauses, the clauses the calculus works with internally.
Because of that, a modified completeness proof is required. We have argued informally
for the benefits over the old calculus in [4]. They concern making the calculus “more
complete” in practice. It is hard to quantify that exactly in a general way, as complete-
ness is impossible to achieve in presence of background-sorted foreground function
symbols (e. g., “car” of integer-sorted lists). To compensate for that to some degree, we
have reported on initial experiments with a prototypical implementation on the TPTP
problem library. These experiments clearly indicate the benefits of our concepts, in par-
ticular the definition rule and the possibility of adding background theory axioms. They
also confirm advantages of the new calculus over the old, the former solves strictly more
more problems than the latter (and is never slower on the common set). Certainly more
experimentation and an improved implementation is needed to also solve bigger-sized
problems with a larger combinatorial search space.

We have also obtained a specific completeness result for clause sets over ground
background-sorted terms and that does not require compactness. As far as we know
this result is new. It is loosely related to the decidability results in [13], as discussed in
Sect. 7. It is also loosely related to results in SMT-based theorem proving. For instance,
the method in [11] deals with the case that variables appear only as arguments of, in our
words, foreground operators. It works by ground-instantiating all variables in order to
being able to use an SMT-solver for the quantifier-free fragment. Under certain condi-
tions, finite ground instantiation is possible and the method is complete, otherwise it is
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complete only modulo compactness of the background theory (as expected). Treating dif-
ferent fragments, the theoretical results are mutually non-subsuming with ours. Yet, on
the fragment they consider we could adopt their technique of finite ground instantiation
before applying Thm. 7.5 (when it applies). However, according to Thm. 7.5 our calcu-
lus needs instantiation of background-sorted variables only, this way keeping reasoning
with foreground-sorted terms on the first-order level, as usual with superposition.
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Abstract. We define a proof procedure that allows for a limited form of
inductive reasoning. The first argument of a function symbol is allowed to
belong to an inductive type. We will call such an argument an index. We
enhance the standard superposition calculus with a loop detection rule,
in order to encode a particular form of mathematical induction. The
satisfiability problem is not semi-decidable, but some classes of clause
sets are identified for which the proposed procedure is complete and/or
terminating.

1 Introduction

We consider first-order clauses in which some of the function or predicate symbols
are indexed by a particular kind of terms. The difference between these indices
and the usual arguments is that the former are interpreted as ground terms
constructed on a given signature (i.e. on an inductively defined domain), whereas
the latter are interpreted arbitrarily (in the usual way). Consider the following
example:

p0(a) ∧ (∀i ∀x pi(x)⇒ ps(i)(f(x))) ∧ ∀x ¬pn(x)

This formula is unsatisfiable if the constant n is interpreted as a term con-
structed on the signature {0, s}, i.e. as an element of N. Indeed, for any m ∈ N,
the formula pm(fm(a)) can be derived from the first two conjuncts, yielding a
contradiction with the third conjunct. However, if the indices are interpreted as
ordinary terms, then the formula is obviously satisfiable. If the value of n is fixed
(i.e. n = 1, 2, . . .) then any first-order prover can easily establish the unsatisfia-
bility of the formula. However, proving that it is unsatisfiable for every n ∈ N

is a much harder problem, which obviously requires the use of mathematical
induction. The previous formula can be viewed as a schema of clause sets, in the
sense that, to transform this set into a standard clause set, one has to replace the
“parameter” n by a ground term sm(0). Schemata of formulæ arise naturally in
many applications of Automated Theorem Proving, in particular for formalizing
parameterized systems (for instance circuits depending on the number of bits or
layers [14]), for the modelling of dynamic systems (where the indices encode the
time: pi(t) holds iff p(t) is true at instant i), or for the formalization of inductive
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proofs in mathematics (the index then represents the induction parameter, see
[5] for an example of use of this technique). In this paper, we devise a proof
procedure for testing the satisfiability of such formulæ. The proposed inference
system uses the usual rules of the superposition calculus (with a specific formal-
ism in which parameters are abstracted away from the clauses), together with a
new rule which encodes a form of mathematical induction. Due to well-known
theoretical limitations, the satisfiability problem is not semi-decidable in general
(see Proposition 1), but we devise some additional criteria that ensure com-
pleteness or termination. The indices are not necessarily natural numbers: they
can be interpreted as any ground term on a given signature, provided all the
(non-constant) symbols are monadic (i.e. the indices are interpreted as words).

The rest of the paper is structured as follows. In Section 2 we define the
syntax and semantics of clausal logic with indices. In Section 3, we adapt the
usual superposition calculus. In Section 4 we define a loop detection rule that
strictly increases the power of the superposition calculus and we show examples
of application. In Section 5 and 6, some abstract conditions ensuring refutational
completeness and/or termination are devised. In Section 7 we provide an example
of a syntactic class of clause sets fulfilling the previous conditions and Section 8
concludes the paper. Due to space restrictions, some proofs are omitted. Missing
proofs can be found in [18].

1.1 Related Work

Our approach is strongly related to the “superposition calculus for fixed domain”
procedure defined in [16]. Actually, the “superposition part” of our calculus is
essentially equivalent to that in [16] and also to that in [7], which is designed to
handle “hybrid” reasoning, i.e. reasoning combining the use of a theory-specific
procedure with the superposition calculus for handling the generic part of the
proof. However, in our approach the use of the fixed domain terms is more re-
stricted: they only appear as distinguished arguments in the terms and not as
ordinary arguments. Furthermore, we only consider formulæ with a unique pa-
rameter. This distinction between indices and ordinary terms reduces the scope
of the method but permits to obtain much stronger completeness and decid-
ability results. The proof procedure in [16] is not complete in general, since,
for refuting the considered formula, an infinite set of empty constrained clauses
must be generated in some cases. Some completeness and decidability results are
presented in [15], however they are based on many additional conditions which
do not hold in our case: all the clauses must be Horn, all the symbols must
be monadic etc. The loop detection rule proposed in the present paper is also
very different from the inductive rules defined in [16] and [15]. Therefore, the
two approaches can be viewed as complementary (a more detailed comparison
is provided in Section 4). Our work is also strongly related to inductive theorem
proving. Explicit induction approaches (see for instance [10] or [8]) are often
used by proof assistants, and powerful heuristics are employed to derive auto-
matically the appropriate induction schemes [11]. Implicit induction schemes are
used in rewrite-based theorem provers [9], whereas inductionless induction (see
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for example [17,12]) uses proof by consistency to reduce the inductive validity to
a mere satisfiability check. Very few completeness or termination results exist for
such provers and our language does not fall in the scope of the known complete
classes. In general, inductive theorem proving requires strong human guidance,
especially for specifying the needed inductive lemmata. In contrast, our proce-
dure, although more focused in this scope, is purely automatic: the loop detection
rule allows one to generate automatically inductive invariants. Both the implicit
and the inductionless induction approaches handle universal properties: the con-
sidered goals are of the form φ |=ind ∀xψ, where |=ind denotes the inductive
logical consequence relation, φ is the axiomatization and ψ is a quantifier-free
formula (usually a clause). Our work departs from these approaches because
the goals we consider are rather of the form φ |= ∀nQ1x1 . . . Qnxnψ (where n
denotes the parameter, x1, . . . , xn are standard variables and Q1, . . . , Qn are
quantifiers). Indeed the value of the standard first-order variables can possibly
depend on the value of the parameter. Our calculus is also related to the proof
procedure described in [1] which handles schemata of propositional formulæ in-
dexed by integers. The scope of the present paper is however much larger, both
for the base language (first-order logic instead of propositional logic) and for
the type of the indices (terms – or words – instead of integers). Our calculus
is also strictly more powerful than the one presented in [3], which only handles
first-order clauses without equality. Besides, the completeness results in [3] only
hold for purely propositional schemata.

2 Preliminaries

In this section, we define the syntax and semantics of the considered logic. We
assume the reader is familiar with the usual notions in logic and automated
deduction [22]. We consider first-order terms, built as usual on a sorted signature
Σ and on a set of variables X , in which some of the (function or constant)
symbols are indexed by terms of some special sorts. The sorts are used mainly
to distinguish the indices from the ordinary terms. The set of sort symbols is
thus partitioned into two disjoint sets SI and ST , where SI denotes the sorts of
the indices and ST the sorts of the ordinary terms. We assume that the profile
of every non-constant symbol f is either of the form s1 × . . . × sn → s, where
s2, . . . , sn, s ∈ ST , and s1 ∈ SI ∪ST or of the form s→ s′, where s, s′ ∈ SI , i.e.
all function symbols of a sort in ST have at most one argument of a type in SI

and all (non-constant) function symbols of a sort in SI are monadic and have a
domain in SI . A predicate symbol is a function symbol of profile s → bool. A
variable of a sort in SI is an index variable.

For readability, a term of head symbol f : s1, . . . , sn → s such that s1 ∈ SI
and s2, . . . , sn ∈ ST and of arguments i, t1, . . . , tn will be written fi(t1, . . . , tn)
(i is called an index term). The other terms are written as usual. This convention
allows one to clearly distinguish the induction terms from the standard ones. If
t is a term and p is a position (i.e. a finite sequence of natural numbers) then t|p
denotes the subterm of t at position p (defined as usual). If v is a term then t[v]p
denotes the term obtained from t by replacing the subterm at position p by v.
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An atom is of the form t1  t2, where t1, t2 are terms of the same sort in
ST (equations between index terms are forbidden). A literal is either an atom
(positive literal) or the negation of an atom (negative literal). A clause is a finite
multiset of literals (written as a disjunction) and � denotes the empty clause. Let
α be a special constant symbol (not occurring in Σ) of a sort in SI . Throughout
this paper, C denotes some particular class of clauses.

Definition 1. Let α be a constant symbol of a sort in SI . An α-clause is an
expression of the form (α ≈ i1)∨ . . .∨ (α ≈ in)∨C (with possibly n = 0) where:

– C is a clause.
– i1 . . . in are terms of the same sort as α.
– Either C is empty, or all the variables in i1, . . . , in occur in C.

If, moreover, the clause C belongs to the class of clauses C, then (α ≈ i1)∨ . . .∨
(α ≈ in) ∨ C is an (α,C)-clause. We call the α-clause normalized if n ∈ {0, 1}.

The constant α is called the parameter. The class C is mainly useful to restrict
the syntactic form of the considered expressions. It is assumed to be fixed once
and for all in the rest of the paper. Notice that, to avoid confusion, we use the
symbol ≈ instead of  to denote equations between indices (i.e. in which α is
involved). Notice also that the symbol α cannot occur in a term or literal (since
α ∈ Σ). Therefore, a property such as aα  b for instance is to be written as
α ≈ x ∨ ax  b, where x is a variable. This idea of abstracting away terms and
replacing them by variables is commonly used in the superposition framework
to delay reasoning on some particular terms (see for instance [7]).

For every expression (term, atom, literal or clause) e, var(e) denotes the set
of variables occurring in e. If var(e) = ∅ then e is ground. A substitution σ is a
function mapping every variable x to a term xσ of the same sort as x. The domain
dom(σ) of σ is the set of variables x such that xσ = x. For every expression e,
eσ denotes the expression obtained from e by replacing every variable x by xσ.
A substitution σ is ground iff for every x ∈ dom(σ), xσ is ground. A renaming is
an injective substitution σ such that xσ ∈ X for every x ∈ dom(σ). The notions
of unifiers and most general unifiers (mgu) are defined as usual. If t and s are
two terms, we write t # s if s = tσ, for some substitution σ. We write t $ s if
t # s and s # t. A set of terms T of the same sort s is covering for a term t of
sort s iff for every ground substitution θ, there exists s ∈ T such that tθ % s. It
is covering if it is covering for all terms of sort s. The problem of testing whether
a given set of terms is covering or not for a term t is decidable [13].

Definition 2. An interpretation I is a pair (=I , I(α)) where =I is a congru-
ence on the ground terms whose sort is in ST and I(α) is a ground term of the
same sort as α. An interpretation I validates:

– A ground literal t1  t2 (resp. t1  t2) iff t1 =I t2 (resp. t1 =I t2).
– A ground clause C ∈ C iff it validates at least one literal in C.
– A ground (α,C)-clause α ≈ i1 · · · ∨ α ≈ in ∨ C iff either I(α) = ij for some

j ∈ [1, n] or I validates C.



62 A. Kersani and N. Peltier

– A non-ground (α,C)-clause C iff for every ground substitution σ of domain
var(C), I validates Cσ.

– A set of (α,C)-clauses S iff it validates every (α,C)-clause in S.

We write I |= S if I validates S (I is a model of S) and S |= S′ if every model
of S is a model of S′.

The logic is obviously not decidable since it is clear that it encompasses first-
order logic: if the clauses contain no occurrences of the special constant sym-
bol α, then the value of the parameter is irrelevant, and an interpretation is
simply a congruence on the set of Herbrand terms. In this case our semantics
coincides with the usual one. The following theorem states that it is not even
semi-decidable.

Theorem 1. The unsatisfiability problem is not semi-decidable for (α,C)-
clauses, if C is the whole class of first-order clauses with one index variable.

Proof. The proof is by reduction to the Post correspondence problem. Let
u1, . . . , un and v1, . . . , vn be two sequences of words. We construct a set of (α,C)-
clauses S such that S is satisfiable iff there exists a sequence of indices i1, . . . , im
such that ui1 . . . . .uim = vi1 . . . . .vim . We use a constant symbol l encoding the
sequence i1, . . . , im, with two function symbols head and tail returning respec-
tively the head and the tail of a list. Words are encoded as usual, as lists of
characters. The constant ε denotes the empty word and concat is a function
concatenating two words (its definition is straightforward and is omitted). If
x ∈ {u, v} and y denotes a sequence of indices i1, . . . , im, then sol(y, x) denotes
the word xi1 . . . . .xim . The terms word(u, i) and word(v, i) denote the words ui

and vi respectively We use the following axioms:

– ¬empty(x)∨head(x)  1∨ . . .∨head(x)  n (if a sequence is not empty then
its head is in [1, n])

– word(u, i)  ui, for every i ∈ [1, n] (definition of u).
– word(v, i)  vi, for every i ∈ [1, n] (definition of v).
– ¬empty(y)∨sol(y, x)  ε. If the sequence i1, . . . , im is empty then the solution

xi1 . . . . .xim is also empty.
– empty(y) ∨ sol(y, x)  concat(word(x, head(y)), sol(tail(y), x)). Otherwise, it

corresponds to the concatenation of the word xi1 and the solution corre-
sponding to the sequence i2, . . . , im.

– word(u, l)  word(v, l). The two sequences are equal.

We now define a predicate lengthi(l) to encode the fact that l has length i.

– length0(x) ∨ ¬empty(x)
– (¬lengthi+1(x) ∨ ¬empty(x)) ∧ (¬length0(x) ∨ empty(x))
– (lengthi+1(x) ∨ ¬lengthi(tail(x))) ∧ (¬lengthi+1(x) ∨ lengthi(tail(x)))

Finally, the following clauses state that the constant l denotes a finite list of
length α = 0 (notice that this property is the only one that cannot be expressed
in first-order logic: otherwise l could denote an infinite or cyclic list): α ≈ x ∨
lengthx(l) ∧ ¬empty(l)
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It is straightforward to check that the previous set of clauses is satisfiable iff
there exists a sequence of indices i1, . . . , im satisfying the desired property.

Proposition 1. Let D : α ≈ i1∨. . .∨α ≈ in∨C be an (α,C)-clause, with n ≥ 1.
If i1, . . . , in are not unifiable then D is a tautology. Otherwise, D is equivalent
to α ≈ i1σ ∨ C where σ is an mgu of i1, . . . , in. In this case, α ≈ i1σ ∨ C is the
normalized form of D.

From now on, we assume that every (α,C)-clause is normalized. Indeed, by
Proposition 1, a clause α ≈ i1 ∨ . . . α ≈ in ∨ C can be either deleted or re-
placed by its normalized form.

Superposition calculus:

Superposition C ∨ t � s,D ∨ u � v → (C ∨D ∨ t[v]p � s)σ
if σ = mgu(u, t|p), uσ �< vσ, tσ �< sσ, t|p is not a variable,
(t � s)σ ∈ sel([C ∨ t � s]σ), (u � v)σ ∈ sel([D ∨ u � v]σ).

Paramodulation C ∨ t �� s,D ∨ u � v → (C ∨D ∨ t[v]p �� s)σ
if σ = mgu(u, t|p), uσ �< vσ, tσ �< sσ, t|p is not a variable,
(t �� s)σ ∈ sel([C ∨ t �� s]σ), (u � v)σ ∈ sel([D ∨ u � v]σ).

Reflection C ∨ t �� s → Cσ
if σ = mgu(t, s), (t �� s)σ ∈ sel([C ∨ t �� s]σ).

Eq. Factorisation C ∨ t � s ∨ u � v → (C ∨ s �� v ∨ t � s)σ
if σ = mgu(t, u), tσ �< sσ, uσ �< vσ, (t � s)σ ∈ sel([C ∨ t � s ∨ u � v]σ).

Fig. 1. The superposition calculus

3 A Superposition Calculus for Indexed Clauses

Our proof procedure is a conservative extension of the superposition calculus
[6,20]. All the rules are applied without any modification, except that disequa-
tions containing α are simply ignored (no inference can be applied from or into
such disequations).

Let < denote a simplification ordering that is total on ground terms [20].
The ordering < is extended to atoms, literals and clauses using the multiset
extension and to (α,C)-clauses simply by ignoring disequations containing α. A
literal L is maximal in a clause C ∈ C if for every L′ ∈ C, L < L′. We consider
a selection function sel which maps every clause C to a set of selected literals in
C. For completeness, we assume that for every clause C, sel(C) contains either
a negative literal or all maximal literals. This selection function is extended
to (α,C)-clauses as follows: for every (α,C)-clause α ≈ i1 ∨ . . . ∨ α ≈ in ∨ C,
sel(α ≈ i1 ∨ . . . ∨ α ≈ in ∨C)

def
= sel(C).

We consider the calculus (parameterized by < and sel) of Figure 1. If S is a
set of (α,C)-clauses, we write S 
 C if C is an (α,C)-clause and if there exists
a non-tautological (α,C)-clause C′ that can be deduced from S by applying one
of the rules of Figure 1 such that C is the normalized form of C′.
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We also adapt the usual redundancy criteria. A tautology is an (α,C)-clause
containing two complementary literals, or a literal of the form t  t, or a dis-
junction

∨n
i=1 α ≈ ti, where t1, . . . , tn are not unifiable. An (α,C)-clause C is

subsumed by an (α,C)-clause D if there exists a substitution σ such that Dσ ⊆ C.
A ground (α,C)-clause C is redundant in S if there exists a set of (α,C)-clauses
S′ such that S′ |= C, and for every D ∈ S′, D is an instance of an (α,C)-clause
in S such that D ≤ C. A non ground (α,C)-clause C is redundant if all its
instances are redundant. In particular, every subsumed (α,C)-clause and every
tautological clause is redundant. A set of (α,C)-clauses S is saturated if every
(α,C)-clause C such that S 
 C is redundant in S.

4 Loop Detection

The superposition calculus is not powerful enough to derive a contradiction from
unsatisfiable sets of (α,C)-clauses, even in trivial cases, because it does not take
into account the inductive structure of the domain of α. This is well illustrated
by the following example.
Example 1. The first example in the Introduction can be encoded as the following set
of (α,C)-clauses (where pi(t) denotes as usual the equation pi(t) � true).

1. p0(a) 2. ¬px(y) ∨ ps(x)(f(y)) 3. α �≈ x ∨ ¬px(y)
It is easy to check that the following clauses can be generated by superposition:

4. α �≈ 0 (3,1) 7. α �≈ s(s(x))∨ ¬px(y) (5,2)
5. α �≈ s(x) ∨ ¬px(y) (3,2) 8. α �≈ s(s(0)) (7,1)
6. α �≈ s(0) (5,1) . . .

It is clear that an infinite set of clauses of the form α �≈ sn(0) (for n ∈ N) can
be generated. Since α must be interpreted by a term of the form sn(0), the set is
unsatisfiable (the set {sn(0) | n ∈ N} is covering). However, no contradiction can be
derived in finite time, which shows that the calculus is not complete (note that the
logic is not compact).

In this section, we show how to overcome this problem in some cases (by Theorem
1 no general solution is possible). Notice that, in some cases, the calculus can
generate a finite set of disequations {α ≈ t1, . . . , α ≈ tn} such that {t1, . . . , tn}
is covering, in which case one may conclude that the clause set is unsatisfiable
(of course it may also directly generate �, if α is not involved in the proof).
In order to handle the cases in which no such finite set of disequations can be
generated, we define a loop detection rule, that encodes a form of mathematical
induction (by “descente infinie”) and that is able to derive clauses of the form
α ≈ t which cannot be derived by the superposition calculus. Intuitively, this
rule applies when a cycle is detected in the search space, i.e. when S entails a
set of (α,C)-clauses S′ which is identical to S up to a shift of the value of the
parameter α. The following definition formalizes this notion:

Definition 3. A shift for a variable x is a substitution of the form {x �→ s},
where s = x and var(s) = {x}. Let θ be a shift, C be a normalized (α,C)-clause
and let t be a term with var(t) = {x}. The (α,C)-clause shift(C, t, θ) is defined
as follows:
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– If C is of the form α ≈ tσ ∨D, for some substitution σ and for some clause
D ∈ C, then shift(C, t, θ)def=α ≈ tθσ ∨D.

– Otherwise shift(C, t, θ)def=C.

If S is a set of (α,C)-clauses then shift(S, t, θ)def=
⋃

C∈S{shift(C, t, θ)}.

Example 2. Let C : α �≈ f(g(x))∨hg(x)(y) � y and D : α �≈ f(x)∨hx(y) � a. We have
shift(C, f(x), {x → f ′(x)}) = α �≈ f(f ′(g(x))) ∨ hg(x)(y) � y, shift(C, f(g(x)), {x →
f ′(x)}) = α �≈ f(g(f ′(x)))∨hg(x)(y) � y , shift(D, f(x), {x → f ′(x)}) = α �≈ f(f ′(x))∨
hx(y) � a and shift(D, f(g(x)), {x → f ′(x)}) = D.

The loop detection rule is based on the following theorem. Intuitively, it applies
when, for all possible instances s of some term t, the branch in the search space
that corresponds to the case α = s is either closed (i.e. the clause set contains a
clause of the form α ≈ s′, where s′ # s) or can be reduced (by shifting) to the
branch corresponding to a strictly smaller term. Then the whole branch α = t
can be closed, by “descente infinie”.

A set of (α,C)-clauses S is a t-set if for every (α,C)-clause α ≈ s∨C occurring
in S, we have s % t.

Theorem 2. Let S be a set of (α,C)-clauses. Assume there exists a set of terms
{t1, . . . , tn} covering for t such that:

1. For all i ∈ [1, n], there exists a ti-set Si ⊆ S.
2. For all i ∈ [1, n] and for all ground terms s % ti, one of the following

conditions holds:
(a) Si |= α ≈ s.
(b) There exist a number j ∈ [1, n] and a shift θs such that Si |=

shift(Sj , tj , θs) and s % tjθs.

Then we have S |= {α ≈ t}.

Theorem 2 allows one to derive an (α,C)-clause of the form α ≈ t from a set
satisfying the previous properties. In practice, guessing the sets Si and the shifts
θs and checking whether (i) Si |= α ≈ s or (ii) Si |= shift(Sj , tj , θs) is of course
infeasible. We need to impose stronger syntactic conditions. A simple solution
(used in the sequel) is to check that: (i) a clause of the form α ≈ s′ with s′ # s
has been derived from parent clauses in Si, (ii) shift(Sj , ti, θs) has been derived
from Si. Of course, to apply the theorem in practice, one has to exhibit a finite
set of substitutions θs that covers all possible terms, so that Condition 2 holds.
The completeness proof of the next section provides additional hints on how the
theorem should be applied in practice (in particular, to choose the sets Si). From
now on, we write S 
 C if an (α,C)-clause C can be deduced from a set of clause
sets S by superposition or by the loop detection rule.

Example 3. Consider the set of (α,C)-clauses of Example 1. Let t1 = x, S1 = {1, 2, 3}
and S′ = {1, 2, 5}. We check that the conditions of Theorem 2 are fulfilled. The set {t1}
is obviously covering, and it is clear from the derivation in Example 1 that we have
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S1 �∗ α �≈ 0 and S1 �∗ S′. Furthermore, it is easy to check that S′ = shift(S1, x, {x →
s(x)}). Let s be a ground term. The term s is either 0, in which case Condition 2.a
is satisfied, or of the form s(t′) for some term t′, in which case Condition 2.b holds
(with j = 1 and θs = {x → s(x)}). Thus Theorem 2 applies and the clause α �≈ x is
generated. This clause is obviously unsatisfiable, which proves that the original clause
set is also unsatisfiable.

If the indices are natural numbers, the conditions are much simpler to test, since
all covering sets contain a subset of the form {0, s(0), . . . , sk(0), sk+1(x)}. Thus
we may assume that k = 1 and that there exists at most one shift θs.

The loop detection rule is related to the inductive rule presented in [16]. Both
rules apply globally, on the whole clause set (and not on a fixed finite set of
premises, as the usual inference rules). They both encode a form of mathemat-
ical induction in the context of a superposition-based calculus, with the aim of
deriving a contradiction in some cases where the other rules diverge. However,
there exist important differences between these two rules. The inductive rule of
[16] encodes the fact that, when proving a formula φ(α), where α ranges over
some inductively defined domain, one may assume that α is minimal, i.e. that
¬φ(β) holds for every β strictly lower than α (according to some well-founded
ordering). The purpose of the inductive rule is precisely to derive the formula
¬φ(β), with additional constraints ensuring that β < α. Obviously, this rule
only preserves satisfiability. In contrast, our rule uses induction in the form of
descente infinie: it only applies when a formula φ(β) has been explicitly derived
from φ(α) by the inference rules. The only properties that can be derived are
clauses of the form α ≈ t, which in some sense close the branches corresponding
to instances of t in the search space. The conclusion is a logical consequence of
the premises, and the inference strongly depends on the considered signature.

Example 4. For instance, consider the clause set {α �≈ x∨ px,¬pa,¬pf(x)∨ qx,¬qf(x) ∨
qx,¬qa}. The superposition calculus derives the clauses: α �≈ a, α �≈ fn(f(x)) ∨ qx
and α �≈ fn(f(a)), for every n ∈ N. The inductive rule of [16] applies on the initial
clause set and derives (for instance) the clause: α �≈ f(x) ∨ ¬px. This is intuitively
justified by the fact that if we assume that α is the minimal term such that α �≈ x∨ px
(i.e. pα), holds then necessarily px cannot hold if x is a proper subterm of α. Notice
that this clause does not help to derive a contradiction in this case. Our rule cannot
derive such a property. However, since the clauses α �≈ f(f(x)) ∨ ¬px and α �≈ f(a)
can be derived from α �≈ f(x) ∨ px (using the clauses not containing α), and since
α �≈ f(f(x)) ∨ ¬px = shift(α �≈ f(x) ∨ px, f(x), {x → f(x)}), the loop detection rule
applies and derives α �≈ f(x). Notice that this is only possible because the signature
only contains f and a (otherwise the set {f(x), a} would not be covering). Together
with the clause α �≈ a, this proves the unsatisfiability of the initial clause set.

The loop detection rule also departs from the technique presented in [15] for de-
ciding the validity of ∀∃-queries. The latter approach is based, roughly speaking,
on a “compilation” of the search space into an automaton, and to a reduction of
the satisfiability problem to the emptiness problem for the represented language.

We show a more complex example of application of our approach.
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Example 5. Let T be an array. Let a, b1, . . . , bn be indices of T , such that ∀i a �= bi.
We consider the array T ′ obtained from T by changing successively the value of the
cell bi to some constant ci. We want to prove that T [a] = T ′[a]. This is formalized in
our setting by the following set of clauses. We define a sequence of arrays Ti with the
following clauses:

(1) T0 � T (2) Ti+1 � store(Ti, bi, ci)

We have the axiom:
(3) bi �� a

We also consider the usual axioms of the theory of arrays (see for instance [4]):

(4) select(store(t, x, v), x) � v (5) x � y ∨ select(store(t, x, v), y) � select(t, y)

The inequation Tn[a] �= T [a] is defined as follows:

(6) select(T, a) � d (7) α �≈ i ∨ select(Ti, a) �� d

We then derive the following (α,C)-clauses by applying the superposition calculus:

(8) α �≈ 0 ∨ select(T, a) �� d (1,7)
(9) α �≈ 0 (6,8)
(10) y ≈ bi ∨ select(Ti+1, y) � select(Ti, y) (2,5)
(11) α �≈ i+ 1 ∨ a � bi ∨ select(Ti, a) �� d (10,7)
(12) α �≈ i+ 1 ∨ a � bi ∨ select(T, a) �� d (1,11)
(13) α �≈ 1 ∨ a � b0 (6,12)
(14) α �≈ 1 (13,3)
(15) α �≈ i+ 2 ∨ a � bi ∨ select(Ti, a) �� d (10,11)

We check that the conditions of Theorem 2 hold. Consider the sets S1 = {1, 6, 10, 11}
and S′ = {1, 6, 10, 15}. S1 is an i + 1-set and S′ is an i + 2-set. We have S1 �∗ S′.
Furthermore, S1 = shift(S′, i+1, {i → i+1}). The only ground term that is an instance
of i+ 1 but not of i+ 2 is 1, and we have S1 �∗ α �≈ 1. Hence the looping rule applies,
yielding (16) α �≈ i + 1. Since {0, i + 1} is covering, Clauses 9 and 16 entail that the
original clause set is unsatisfiable. Notice that the loop detection rule can be applied in
several different ways. In this case, if we consider the sets S1 = {1, 6, 10, 11}, S2 = {9}
and S′ = {1, 6, 10, 15}, then one can directly generate α �≈ i (since S2 is a 0-set,
S2 �∗ α �� 0 and {0, 1, i+ 2} is covering).

5 Completeness

Since the considered logic is not semi-decidable (by Theorem 1), the proof pro-
cedure cannot be complete in general. That is why we impose some additional
conditions on the considered clause sets. At this point, we only introduce ab-
stract, semantic conditions which are meant to be as general as possible and
sufficient to ensure completeness. In Section 7 we will provide an example of a
concrete (syntactic) class of clause sets fulfilling these requirements.

For technical convenience, we assume that the considered terms contain no
constant symbols of a sort in SI . This condition greatly simplifies the definitions
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and proofs. It is not really restrictive, since any constant symbol a may be
replaced by a term a(x), where x is a dummy variable1. Furthermore, we assume
that for every (α,C)-clause α ≈ t ∨ C occurring in the considered clause sets, t
is not a variable. Again this condition is not restrictive: it can be enforced by
introducing a new function symbol f of profile s → s′, where s is the initial
sort of α and s′ is a new sort symbol, and by replacing every disequation α ≈ t
(where t is possibly a variable) by α ≈ f(t) (note that by definition f is the
unique function symbol of sort s′, thus for all interpretations I, I(α) will be
of the form f(. . .)). A clause C is index-flat if every index occurring in C is a
variable.

Definition 4. We denote by succ the partial function such that succ(t)
def
=

f1(. . . (fn−1(x))) if t is of the form f1(. . . (fn(x)) . . .)) for some variable x (succ
is undefined otherwise).

We now introduce a function “rank” that plays a central role in the following.
It maps all (α,C)-clauses C to the (necessarily unique) term t such that α ≈ t
occurs in C (or ⊥ if α does not occur in C). However, if C is not index-flat,
then we will return not the term t itself, but rather its successor according to
succ. The reason behind this seemingly non-intuitive definition is that we want
the rank to be preserved by instantiation (for the clauses whose indices have
depth 0 or 1), for instance α ≈ f(g(x)) ∨ pg(x) should have the same rank as
α ≈ f(x) ∨ px. More formally:

Definition 5. The rank of an (α,C)-clause C is defined as follows.

– If C ∈ C then rank(C)
def
= ⊥.

– If C is of the form α ≈ i ∨D and D is index-flat then rank(C)
def
= i.

– If C is of the form α ≈ i∨D and D is not index-flat then rank(C)
def
= succ(i).

The function rank is well-defined, since i cannot be a variable. If S is a set of
(α,C)-clauses, we denote by S〈r〉 the set of (α,C)-clauses of rank r (up to a
renaming) in S. We then consider a particular subset of C, obtained by consid-
ering only the index-flat (α,C)-clauses that can interact with a non-index-flat
(α,C)-clause:

Definition 6. We denote by F the set of index-flat clauses C ∈ C such that
there exist two clauses D,E ∈ C such that C,D 
 E and D is not index-flat.

If S is a set of (α,C)-clauses, we denote by F(S) the set {α ≈ t∨C ∈ S | C ∈ F}.

Definition 7. The class C is admissible iff it satisfies the following conditions:

(c1) C is closed under superposition i.e. if S 
 C and S ⊆ C then C ∈ C.

1 Of course the signature Σ must contain a constant symbol of the same sort as x,
otherwise the set of ground terms would be empty. However, this constant is not
allowed to occur in the clauses.
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(c2) Each non-empty clause in C contains exactly one index variable. Further-
more, if C and D contain two index variables x and y respectively, and if
an inference is applicable on C,D with a unifier σ, then σ(x) is x, y or of
the form f(y), for some function symbol f . Moreover if σ(x) = f(y) then
C is index-flat and D is not. Similarly, if C contains an index variable x,
and if a unary inference is applicable on C with a unifier σ, then we must
have σ(x) = x.

(c3) F is finite (up to a renaming of variables).

From now on we assume that the considered class C is admissible. Condition
(c1) is rather natural: it guarantees that the (α,C)-clauses constructed over C
are closed under superposition inferences. Condition (c2) will ensure that these
inferences cannot increase the depth of the indices arbitrarily. Condition (c3)
ensures that only finitely many clauses of a given rank can be built on F. As
we will show, (c2) entails that the search space has a strict hierarchic structure
w.r.t. the rank: for all terms t # s, the (α,C)-clauses of rank s are necessarily
derived from those of rank t (along with the clauses of rank ⊥). Furthermore,
we will prove that this relation still holds if the clauses are restricted to those
occurring in F, i.e. we have t # s⇒ S〈⊥〉∪F(S〈t〉) 
∗ S〈⊥〉∪F(S〈s〉) (assuming
t is lower than the ranks of the initial (α,C)-clauses). Then, (c3) ensures that
there exist only finitely many sets F(S〈t〉) (up to a shift), which entails that the
loop detection rule eventually applies. A clause set S is saturated if every clause
C such that S 
 C is redundant w.r.t. S (in the usual sense). The following
theorem states our completeness result:

Theorem 3. Let S be a set of (α,C)-clauses where C is admissible. If S is
saturated and unsatisfiable then either � or α ≈ x occurs in S.

6 Satisfiability Detection

In standard clausal logic, the satisfiability of a given clause set S can sometimes
be established by saturation, in case the set of clauses derived from S is finite and
does not contain �. This is not feasible in the context of this paper (except in
trivial cases), because the rank will in general increase indefinitely. However, we
can devise the following satisfiability test, based on a form of partial saturation:

Definition 8. A set of (α,C)-clauses S is saturated w.r.t. a (ground) term t if
for every clause C such that S 
 C, either C is redundant or C is of the form
α ≈ s ∨D, where s and t are not unifiable.

If a set of (α,C)-clauses S is saturated w.r.t. some term t and does not contain
α ≈ t, then it can be shown that S has a model in which the value of α is t (note
that testing whether a clause set is saturated w.r.t. t is easy: if the standard
proof search algorithm is used, it suffices to test that the set of “active” clauses
contains no clause of a rank more general than t).

If C is finite (i.e. if the superposition calculus terminates on clause sets in
C), then the number of (α,C)-clauses of a fixed rank is also finite. This entails
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that, for every ground term t, it is possible to eventually obtain, from any initial
clause set S, a clause set containing S and saturated w.r.t. t. If, moreover, there
exists a term t such that this partially saturated set does not contain α ≈ t,
then satisfiability can be detected. If no such term exists, the initial clause set
must be unsatisfiable, thus termination can be ensured in both cases, although
the set of (α,C)-clauses is infinite.

Theorem 4. If C is finite, then the satisfiability problem is decidable for sets of
(α,C)-clauses.

Note that the fact that C is finite does not imply that the set of terms that can be
constructed on the signature is finite, since the restrictions on the superposition
inferences can prevent such terms from being generated.

7 Complete Classes of Indexed Formulæ

In this section, we demonstrate the applicability of our results by providing an
example of an admissible syntactic class of (α,C)-clauses.

Let μ be a complexity function mapping every ground term to a natural num-
ber. We assume that for any k ∈ N, the set of ground objects t such that μ(t) ≤ k
and such that every index in t is of depth at most 1 is finite. Examples of usual
complexity functions satisfying this requirement include the depth (maximal
length of the non-index positions occurring in the terms) or the size (number of
non-index positions in the terms). The function μ is extended to atom, literals
and clauses as follows:

– μ(t  s)
def
= μ(t  s)

def
= max(μ(t), μ(s)), and

– μ(
∨n

i=1 li)
def
= max{μ(li) | i ∈ [1, n]}.

We write t =μ s if for every substitution σ we have μ(tσ) = μ(sσ). For every
natural number ν, we write t ≤ν

μ s if for every substitution σ such that μ(tσ) > ν,
we have μ(tσ) ≤ μ(sσ). The relations =μ and ≤ν

μ are hard to test in general
because the set of substitutions σ is infinite. However, algorithms for testing
whether t =μ s or t ≥ν

μ s for various complexity functions μ are defined in
[19,21]. For instance, if μ is the depth of the term, then it is easy to see that
t =μ s iff the following conditions hold: μ(t) = μ(s), t and s have the same set
of variables and the maximal occurrence depth of every variable is the same in
t and in s.

We consider two (not necessarily disjoint) sets of predicate symbols: a set of
control predicates Ωc and a set of index propagation predicates Ωi. A literal is
a control literal (resp. an index propagation literal) if its atom is of the form
pi(t1, . . . , tn)  true, where p ∈ Ωc (resp. p ∈ Ωi) and i is an index term. The
remaining literals are called the standard literals. Let Sp be a set of sort symbols,
called the μ-preserving sorts satisfying the following properties:

– For every predicate symbol p ∈ Ωc ∪Ωi of profile s1× . . .× sn → bool, and
for every i ∈ [1, n], we have si ∈ Sp.

– For every function symbol of profile s1 × . . . × sn → s, if s ∈ Sp then
∀i ∈ [1, n], si ∈ Sp.
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Intuitively, the sorts in Sp are the sorts of the terms occurring in control or index
propagation literals.

Definition 9. A set of clauses S is μ-controlled iff the following conditions
holds:

1. For every equation t  s occurring in a clause in S, if t and s are of a sort
in Sp, then t =μ s.

2. There exists a natural number ν such that, for every clause C, and for every
index propagation literal or positive control literal L in C, we have L ≤ν

μ C′,
where C′ is the set of negative control literals occurring in C.

3. All literals, except index propagation literals, are index-flat.
4. Every clause in S contains at most one index variable.
5. The atoms in S are either of the form fi(t)  gi(s) (equational atoms) or

of the form pi(t)  true (non-equational atoms).

In particular, any non-equational index-flat clause set is μ-controlled (with Sp =
Ωc = Ωi = ∅). Condition 1 ensures that the superposition inferences will not
affect the complexity of the terms occurring inside control or index propagation
literals. Condition 2 states that the complexity of every positive control literal
and of every index propagation literals is dominated by the complexity of the
negative control literals occurring in the clause. Condition 3 ensures that the only
dependencies between terms of distinct indices are encoded by index-propagation
literals (the remaining literals state relations involving only terms with the same
indices). Condition 5 forbids equations between indexed and non-index non-
boolean terms, such as ai  b. Equations between variables are also forbidden.

Example 6. Let μ be the depth function. Let Ωc = {p}, Ωi = {q}. The clauses
pi(f(c)),¬pi(x) ∨ ps(i)(x) ∨ ¬qi(x), pa(b), α �� i ∨ pi(f(b)), qi(x) ∨ ¬qi(f(x)), qi(f(c)),
pi(x) ∨ ¬ri(y) ∨ ri(f(y)), ri(a), are μ-controlled, with ν = 2. Note that the conditions
on the control literals ensure that for all literals of the form pi(t) or qi(t) generated
by the inferences, t is of depth at most 2. In contrast, the literals of head ri can be
of arbitrary depth. The clauses f(x) � g(f(x)), ¬qi(x) ∨ qi(f(x)), pi(f(x)) ∨ ¬qi(x),
pi(x), as(i) � bi, pi ∨ pj , f(x) � gi(x) are not μ-controlled, because they contradict
Conditions 1, 2, 2, 2, 3, 4 and 5, respectively. In particular, f(x) � g(f(x)) contradicts
Condition 1 because f(x) and g(f(x)) have distinct depths. Similarly, ¬qi(x)∨qi(f(x))
violates Condition 2 (regardless of the value of ν), because the depth of qi(x) is not
asymptotically greater than that of qi(f(x)).

The superposition strategy is defined as follows.

– Negative control literals are selected in any clause containing only control
literal and index propagation literals. Otherwise, the selected literals are the
maximal ones.

– The ordering satisfies the following properties:
• The relation pf(i)(t1, . . . , tn) > qi(s1, . . . , sm) holds for all symbols
p, q, t1, . . . , tn, s1, . . . , sm and f .

• All standard atoms of index i are strictly greater than all index propa-
gation atoms with the same index i.
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The second condition on the ordering may seem rather strong, since, clearly, the
considered index propagation atom can contain variables not occurring in the
standard atom. However, it can easily be enforced by assuming that the terms
occurring at a root level in the standard atoms are of some special sorts that
cannot occur inside an index propagation atom (those terms can then be assumed
to be strictly greater than the ones occurring in index propagation atoms).

Theorem 5. The class of μ-controlled clauses is admissible.

Proof. We prove simultaneously that Conditions c1, c2 and c3 holds. In partic-
ular, c3 is established by showing that every clause in F contains no variable
except index variables and is of complexity lower than ν (this clearly entails
that F is finite up to a renaming). We consider two μ-controlled clauses C[t]p
and u  v ∨ D and a clause C[v]pσ ∨ Dσ, obtained by superposition from the
two first clauses (the proof for the other inference rules is similar).

– Assume that C[t]p is index-flat and that u  v ∨ D is not. Due to the
ordering used to restrict the inferences, u cannot be index-flat (otherwise u
would not be maximal). Therefore, u is of the form pf(i)(t), where p ∈ Ωi.
Consequently, t is of the form pj(s) (since t and u are unifiable, they must
have the same head symbol). But then since t is selected, C[t]p cannot contain
any standard atom (otherwise t would not be maximal) neither any negative
control literal (otherwise this literal would be selected). Thus the set of
negative control literals in C is empty, and by Condition 2 in Definition 9,
we have μ(C[t]p) ≤ν

μ �. This implies that C[t]p contains no variables (except
index variables) and is of complexity at most ν. The same reasoning holds
if u  v∨D is index-flat and C[t]p is not (in this case u  v∨D contains no
non-index variable and we must have μ(u  v ∨D) ≤ ν). Thus the clauses
in F contain no variable (except index variables) and are of complexity at
most ν.

– Since the depth of the index terms is at most 1 and since, due to the ordering
restrictions, only the literals with deepest indices are eligible for inferences,
the condition c2 is easy to check. Notice that this implies that the number
of index variables does not increase.

– It only remains to prove that c1 holds, i.e. that C[v]pσ ∨Dσ is μ-controlled.
We prove that this clause satisfies all the conditions of Definition 9.
• Let t  s be an equation in C[v]pσ∨Dσ, where t, s are of a sort in Sp. If
t  s is of the form (t′  s′)σ where t′  s′ occurs in one of the parent
clauses, then since the parent clauses are μ-controlled by hypothesis, we
have necessarily t′ =μ s′ and thus also t =μ s. Otherwise, t  s is of the
form (t′[v]q  s′)σ, where t′  s′ occurs in one of the parent clauses and
t′|q = u. Again, we have t′ =μ s′. Furthermore, by definition of Sp, u
and v must be of a sort in Sp. Consequently, we have also u =μ v and
thus t′ =μ t′[v]q. Therefore, t′[v]qσ =μ s′σ.

• Let L be a literal occurring in C[v]pσ∨Dσ, that is either an index prop-
agation literal or a positive control literal. By definition, L is obtained
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from a literal L′ occurring in one of the parent clauses by applying the
substitution σ and by (possibly) replacing an occurrence of the term uσ
by vσ. If u does not occur in L then obviously L = L′σ, thus L =μ L′σ.
If u occurs in L then by definition of Sp, u must be of a sort in Sp, thus
we have u =μ v and therefore in both cases the relation L =μ L′σ holds.
Since the parent clauses containing L′ is μ-controlled, it also contains a
disjunction of control literals M such that M ≥ν

μ L′. Thus C[v]pσ ∨Dσ
contains a disjunction of literals M ′ obtained from Mσ by replacing
uσ by vσ. If u  v is a control literal, then D contains a disjunction
of negative control literals D′ such that D′ ≥ν

μ u  v. Thus we have
D′σ ≥ν

μ Mσ ≥ν
μ L. Otherwise, if u occurs in M then it must be of a sort

in Sp. Therefore we have u =μ v, which implies that M ′ =μ Mσ, and
thus M ′ ≥ν

μ L.
• Assume that C[v]pσ ∨Dσ contains a literal L that is not an index prop-

agation literal and that is not index-flat. This literal is obtained from a
literal L′ occurring in one of the parent clauses by applying the substitu-
tion σ and by replacing the term uσ by vσ. L′ cannot be an index prop-
agation literal . Thus L′ is index-flat, which means that σ cannot be flat
and that (by Condition c2) the parent clause not containing the literal
L′ must be non-index-flat. But we have shown that the only index-flat
clauses that can interact with non-index-flat clauses only contain index
propagation literals, which contradicts our initial assumption on L.

• Condition 4 is an immediate consequence of c2.
• The last condition is straightforward to check, since it holds for the two

parents and it is obviously preserved by replacement and instantiation.

Intuitively, the index propagation literals encode properties of the index terms
and relations between them, whereas the other literals encode properties of stan-
dard terms (for a given index). The use of control literals ensures that the size
of the former literals is bounded whereas the latter can be arbitrary first-order
literals. Several concrete classes can be obtained simply by instantiating the
complexity measure μ. All these classes are strictly more expressive than first-
order logic (which corresponds to the case in which both Ωc and Ωi are empty).
Theorem 3 ensures that our calculus is complete for μ-controlled clause sets. If,
moreover, the considered clauses belong to a class for which the superposition
calculus terminates (such as the monadic class, the guarded fragment,. . . or if
all the literals are index propagation or control literals) then Theorem 4 ensures
termination and decidability. We thus obtain – without any additional effort – a
general completeness result for schemata of first-order clauses and decidability
results for schemata built on decidable subclasses of first-order logic. In partic-
ular, it is easy to check (see [3]) that every regular propositional schema [1] can
be expressed as a set of μ-controlled clauses (in this case all literals are index
propagation literals and indices are natural numbers). Therefore, the formulæ
of propositional linear temporal logic can also be encoded as μ-controlled clause
sets (see [2] for a translation of LTL into regular schemata). Many properties of
usual inductively defined data-structures such as lists or trees can be encoded
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into controlled clauses. For instance, a tree can be denoted as a constant symbol
τ indexed by positions2, where τp denotes the label of the node at position p.
Then we can easily encode the fact that some first-order property is satisfied
by all labels in the tree (or by all labels occurring along some position, or some
regular set of positions). However, we cannot express the fact that, e.g., a tree is
sorted, because it requires to use atoms of the form τp.0 ≤ τp ≤ τp.1, which nec-
essarily involve terms with several distinct indices. Relations between distinct
trees can also be expressed, provided they preserve the shape of the tree (for
instance we can state that a tree is obtained from τ by applying some function
f on every node).

8 Conclusion

A proof procedure for handling clauses with indexed terms has been presented,
enriching the superposition calculus with a carefully controlled form of induc-
tive reasoning. Although the satisfiability problem is not even semi-decidable
in general, criteria have been devised to ensure refutational completeness and
termination. At the best of our knowledge, no other proof procedure provides
similar features. Future work includes the implementation of this procedure and
the evaluation of its practical performance. To this purpose, developing efficient
algorithms to apply the loop detection rule is obviously essential (Sections 4
and 5 provide some hints in this direction). A first implementation has already
been completed in the particular case in which the indices are natural numbers
(defined on the signature {0, succ}) and will soon be available. From a more
theoretical point of view, other classes of clause sets satisfying the conditions of
Section 5 have to be identified. In particular, it would be interesting to find a
terminating class containing the example provided in Section 4 concerning the
theory of arrays (as well as examples from other similar theories: lists, records,
integers etc.). Another line of future work is to extend the proof procedure in
order to allow equations between indices.
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A Proof Procedure for Hybrid Logic with

Binders, Transitivity and Relation Hierarchies

Marta Cialdea Mayer

Università di Roma Tre, Italy

Abstract. A tableau calculus constituting a decision procedure for hy-
brid logic with the converse modalities, the global ones and a restricted
use of the binder has been defined in a previous paper. This work shows
how to extend such a calculus to multi-modal logic equipped with two
features largely used in description logics, i.e. transitivity and relation
inclusion assertions. An implementation of the proof procedure is also
briefly presented, along with the results of some preliminary experiments.

1 Introduction

This work considers multi-modal hybrid languages (see, for instance, [3]) that,
beyond the standard modalities, nominals, the satisfaction operator and the
binder, include the converse modalities (�−

R and �−
R), the global ones (E and

A) and a feature largely used in description logics, i.e. the possibility of declar-
ing an accessibility relation to be transitive and/or included in another one.
Basic hybrid logic (with nominals only, beyond the modal operators � and �)
will be denoted by HL, and basic multi-modal hybrid logic by HLm. Logics ex-
tending HL or HLm with operators O1, . . . , On (and their duals) are denoted
by HL(O1, . . . , On) and HLm(O1, . . . , On), respectively. Multi-modal languages
including transitivity assertions and/or relation hierarchies are denoted in the
same way, just including Trans (for transitivity) and/or & (for relation inclusion)
among O1, . . . , On.

The satisfiability problem for formulae of any hybrid logic HL(O1, . . . , On) or
HLm(O1, . . . , On) – where Oi ∈ {@,�−,E} is decidable [3]. Unfortunately, due
to the high expressive power of the binder, HL(↓) is undecidable [1, 4].

There are both semantic and syntactic restrictions allowing for regaining de-
cidability of hybrid logic with the binder. Restricting the frame class is a way of
restoring decidability, but the interplay with multi-modalities (or the addition
of other operators) is not always harmless. For instance, HL(↓) over transitive
frames is decidable [18], but HL(@, ↓) and HLm(↓) are not [18, 17].

In [20] it is proved that the satisfiability problem for formulae in HL(@, ↓,E,
�−) is decidable, provided that their negation normal form contains no universal
operator (i.e. either � or �− or A) scoping over a binder, that in turn has scope
over a universal operator. Such a fragment of hybrid logic is denoted by HL(@,
↓,E,�−)\�↓�. The result is proved by showing that there exists a satisfiability
preserving translation of HL(@, ↓,E,�−) \ �↓� into HL(@, ↓,E,�−) \ ↓�, i.e.

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 76–90, 2013.
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the set of formulae in negation normal form where no universal operator occurs
in the scope of a binder. The standard translation of hybrid logic into first
order classical logic [1, 20] maps, in turn, formulae in HL(@, ↓,E,�−) \ ↓� into
universally guarded formulae, that have a decidable satisfiability problem [12].

Decidability of HLm(@, ↓,E,�−) \�↓� can be proved by the same reasoning,
and the separate addition of either relation hierarchies or transitive relations can
easily be shown to stay decidable, by reduction to the first order guarded frag-
ment and by resorting to results already proved in the literature [19]. However,
such results do not directly allow for concluding whether the logic including both
features is still decidable.

This work is a continuation of previous works, where terminating tableau cal-
culi for decidable fragments of Hybrid Logic with the binder have been defined
[8, 9]. In particular, [9] presents a tableau calculus constituting a satisfiability
decision procedure for HL(@, ↓,E,�−)\�↓�. Such a procedure is here extended
to multi-modal hybrid logic HLm(@, ↓,E,�−,Trans, & )\�↓�: a tableau calculus
is presented, which terminates and is sound and complete for formulae in the
fragment HLm(@, ↓,E,�−,Trans, & )\↓�, i.e. formulae in negation normal form
where no occurrence of a universal operator is in the scope of a binder, with the
addition of transitivity assertions and relation hierarchies. A preprocessing step
along the lines of [20] turns the calculus into a satisfiability decision procedure
for the fragment HLm(@, ↓,E,�−,Trans, & )\�↓�. Soundness, completeness and
termination of the tableaux calculus thus imply that the satisfiability problem
for the fragment of multi-modal hybrid logic HLm(@, ↓,E,�−,Trans, & ) \ �↓�
is decidable. The proof procedure has been implemented in a prover called
Sibyl, which will be briefly presented along with the results of some preliminary
experiments.

The language of HLm(@, ↓,E,�−,Trans, & ) \ �↓� subsumes the description
logic SHOI enriched with restricted occurrences of the binder, and allows for
representing some interesting frame properties, such as, for instance, symmetry
(R−&R), reflexivity (A↓x.�Rx), “at most” restrictions on the number of states
(E↓x1. . . .E↓xn.A(x1 ∨ · · · ∨ xn)), and “at least” restrictions on the number of
R-successors of each state (A↓x.�R↓y1.(x : �R(¬y1 ∧ ↓y2.(x : �R(¬y1 ∧ ¬y2 ∧
↓y3. . . . ))))).

This section concludes with a brief introduction to the syntax and semantics
of multi-modal hybrid logic with transitive relations and inclusion assertion.
Well-formed expressions of HLm(@, ↓,E,�−,Trans, & ) are partitioned into two
categories: formulae (for which the metasymbols F,G are used) and assertions.

Formulae are built out of a set PROP of propositional letters, a set NOM of
nominals, an infinite set VAR of state variables, and a set REL of relation symbols
(all such sets being mutually disjoint), and defined by the following grammar:

F := p | a | x | ¬F | F ∧ F | F ∨ F | �RF | �RF
| �−

RF | �−
RF | EF | AF | a:F | x:F | ↓x.F

where p ∈ PROP, a ∈ NOM, x ∈ VAR and R ∈ REL. In this work, the notation
t:F is used (for t ∈ NOM ∪ VAR) rather than @tF . We use metavariables a, b, c
for nominals, x, y, z for state variables and R,S, P for relation symbols.
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If F is a formula, x a state variable and a a nominal, then F [a/x] denotes the
formula obtained from F by substituting a for every free occurrence of x (an
occurrence of x is free if it is not in the scope of a ↓x). If a0, . . . , an, b0, . . . , bn
are nominals, then F [b0/a0, . . . , bn/an] denotes the formula obtained from F by
simultaneously replacing bi for every occurrence of ai.

Assertions are either transitivity assertions, of the form Trans(R), for R ∈
REL, or inclusion assertions, of either form R&S or R−&S, for R,S ∈ REL.
Here, R− is intended to denote the inverse of the relation denoted by R, i.e. the
set of pairs of states 〈w,w′〉 such that 〈w′, w〉 is in the relation denoted by R.
Note that inverse relations are allowed only on the left of the & symbol. This is
only a syntactical restriction, since R−&S− is equivalent to R&S, and R&S−

is equivalent to R−&S.
An interpretation M of an HLm(@, ↓,E,�−,Trans, & ) language is a tuple

〈W,ρ,N, I〉 where W is a non-empty set (whose elements are the states of the
interpretation), ρ is a function mapping every R ∈ REL to a binary relation on
W (ρ(R) ⊆W ×W ), N is a function NOM→W and I a function W → 2PROP.

If M = 〈W,ρ,N, I〉 is an interpretation, w ∈ W , σ is a variable assignment
for M (i.e. a function VAR → W ) and F is a formula, the relation Mw, σ |= F
is defined adding the following clauses to the usual definition of the classical
operators:

1. Mw, σ |= p if p ∈ I(w), for p ∈ PROP.
2. Mw, σ |= a if N(a) = w, for a ∈ NOM.
3. Mw, σ |= x if σ(x) = w, for x ∈ VAR.
4. Mw, σ |= a:F if MN(a), σ |= F , for a ∈ NOM.
5. Mw, σ |= x:F if Mσ(x), σ |= F , for x ∈ VAR.
6. Mw, σ |= ↓x.F if Mw, σ

w
x |= F , where σw

x is the variable assignment such
that σw

x (x) = w and, for y = x, σw
x (y) = σ(y).

7. Mw, σ |= �RF if for every w′ such that 〈w,w′〉 ∈ ρ(R), Mw′ , σ |= F .
8. Mw, σ |= �RF if there exists w′ such that 〈w,w′〉 ∈ ρ(R) and Mw′ , σ |= F .
9. Mw, σ |= �−

RF if for every w′ such that 〈w′, w〉 ∈ ρ(R), Mw′ , σ |= F .
10. Mw, σ |= �−

RF if there exists w′ such that 〈w′, w〉 ∈ ρ(R) andMw′ , σ |= F .
11. Mw, σ |= AF if Mw′ , σ |= F for all w′ ∈W .
12. Mw, σ |= EF if Mw′ , σ |= F for some w′ ∈W .

Two formulae F and G are logically equivalent when, for every interpretation
M, assignment σ and state w of M: Mw, σ |= F if and only if Mw, σ |= G.
Every formula in HLm(@, ↓,E,�−) is logically equivalent to a formula in negation
normal form (NNF), where negation appears only in front of atoms. Therefore,
considering only formulae in NNF does not restrict the expressive power of the
language.

If A is a set of assertions, an interpretation 〈W,ρ,N, I〉 is a model of A if:

1. for all R ∈ REL such that Trans(R) ∈ A, ρ(R) is a transitive relation;
2. for all R,S ∈ REL, if R&S ∈ A, then ρ(R) ⊆ ρ(S);
3. for all R,S ∈ REL and all w,w′ ∈ W , if R−&S ∈ A and 〈w,w′〉 ∈ ρ(R),

then 〈w′, w〉 ∈ ρ(S).
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Finally, if F is a formula and A a set of assertions, {F}∪A is satisfiable if there
exist a model M of A and a state w of M such that Mw |= F (i.e. Mw, σ |= F
for every variable assignment σ).

2 The Tableau Calculus

This section shows how to extend the system described in [9] to the presence
of transitivity and inclusion assertions. The expansion rules that will be intro-
duced to treat assertions are similar to the analogous rules presented by [13–16].
However, their addition to a terminating calculus dealing also with syntactically
restricted occurrences of the binder is a novelty.

The presentation will be as self contained as possible, therefore it overlaps
with the description given in [9] in many points. However, since some of the
basic notions underlying the calculus are quite involved, they are not given a
completely formal account.

A tableau is a set of branches, and a tableau branch is a sequence of nodes
n0, n1, . . . , where each node is labelled either by an assertion or a ground satis-
faction statement, i.e. a formula of the form a:F , where no state variable occurs
free in F . The nominal a in a satisfaction statement a:F is called the outermost
nominal of the formula. Node labels are always formulae in NNF. The reason
why a branch is not simply a set of formulae will be briefly explained in the
sequel.

If n occurs before m in a branch, we write n < m. The label of the node n
is denoted by label(n). The notation (n) a:F is used to denote the node n, and
simultaneously say that its label is a:F . If a node (n) a : F is in a branch, then
the nominal a is said to label the formula F in the branch.

In order to give a more compact presentation of the expansion rules, some
notions and abbreviations will be adopted. Relation symbols will also be called
forward relations (and have positive sign) and the inverse of relation symbols
backward relations (with negative sign). A relation is either a forward or backward
relation. Relations are denoted by boldface letters: R is a meta-symbol used
to denote either R itself or its inverse R−. The following table defines some
shorthands for formulae and assertions that will be used in the sequel.

a⇒R b ≡def

{
a:�Rb if R = R
b:�Ra if R = R− a:�RF ≡def

{
a:�RF if R = R
a:�−

RF if R = R−

a:�RF ≡def

{
a:�RF if R = R
a:�−

RF if R = R− R�S ≡def

⎧⎪⎪⎨
⎪⎪⎩

R�S if R and S have
the same sign

R−�S if R and S have
different signs
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Let F be a ground hybrid formula in NNF and A a set of assertions. A tableau
for {F}∪A is initialized with a single branch, constituted by the node (n0) a0:F ,
where a0 is a new nominal, followed by nodes labelled by the assertions in A
and then expanded according to the following Assertion rules:

R�R
Rel0

R�S S�P

R�P
Rel

(note that Rel actually stands for four rules, according to the relation signs).
Such rules complete the inclusion assertions in A by the reflexive and transitive
closure of & . The formula a0:F is the initial formula of the tableau.

A tableau is expanded by application of the rules in Tables 1 and 2, which
are applied to a given branch.

Table 1. Expansion rules: first group

(n) a: (F ∧G)

(m0) a:F
(m1)a:G

(∧) (n) a: (F ∨G)

(m0) a:F | (m1) a:G
(∨)

(n) a: b:F

(m) b:F
(@)

(n)a: ↓x.F
(m)a:F [a/x]

(↓)

(n) a:�RF (m)a⇒R b

(k) b:F
(�)

(n) a:�RF

(m0) a:�Rb
(m1) b:F

(�)
(n) a:�−

RF

(m0) b:�Ra
(m1) b:F

(�−)

where b is a fresh nominal where b is a fresh nominal
(not applicable if F is a nominal)

(n) a:AF

(m) b:F
(A)

(n) a:EF

(m) b:F
(E)

where b occurs in the branch where b is a fresh nominal

[B]
(n) a: b

B[b/a] (=)

Most rules are standard, and their reading is standard too. Note that when the
formulation of a rule contains (boldface) relations, it actually stands for different
rules, according to the relations signs. The rules of Table 1 are the same as those
presented in [9], but for the fact that the modal rules (�, � and �−) are here
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reformulated to address the multi-modal case. The equality rule (=) does not
add any node to the branch, but modifies the labels of its nodes. The schematic
formulation of this rule in Table 1 indicates that it can be fired whenever a
branch B contains a nominal equality of the form a: b (with a = b); as a result
of the application of the rule, every node label F in B is replaced by F [b/a].

Formulae of the form �RF and AF are called universal formulae; nodes whose
labels have the form a:G, where G is a universal formula, are universal nodes
and the rules � and A are called universal rules. When the A rule is applied
producing a node labelled by a formula of the form b : F , it is said to focus on b
(and b is the focused nominal of the inference). The �, �− and E rules are called
blockable rules, formulae of the form a:�RF , where F is not a nominal, a:�−

RF ,
and a:EF are blockable formulae and a node labelled by a blockable formula is
a blockable node. A formula of the form a:�Rb, where R is a forward relation, is
called a relational formula.

The Trans rule of Table 2 deals with transitive relations and can be seen as a
reformulation (in the presence of inclusion assertions) of the � rule for transitive
modal logics (a particular case of this rule is when R = S). In the Link rule, that
deals with inclusion assertions, R is always a forward relation.

Table 2. Expansion rules: second group

(n) a:�Rb (i)R�S

(m)a⇒S b
(Link)

(n) a:�SF (m)a⇒R b (t)Trans(R) (i)R�S

(k) b:�RF
(Trans)

The premiss n of either the � or Trans rules is called the major premiss, and
m the minor premiss of the rule. In an application of the Link rule, n is the logical
premiss. The premisses i and t, in the rules of Table 2, are the side premisses of
the rules.

The formulation of the Trans rule is very close to the corresponding one used
in description logics, where in fact “roles” include both role names (correspond-
ing to relation symbols) and the inverse of role names, and inverse roles may
also occur in role inclusion axioms. The abbreviation a⇒R b, however, does not
have exactly the same meaning as the corresponding premiss used in the rule
treating transitivity in description logics [13, 14] (a similar approach is adopted
in [15]), consisting of the meta-notion “b is an R-neighbour of a”. There are two
main differences between the two approaches. First of all, the semantical notion
of accessibility between two states is here given a “canonical representation” in
the object language (a choice already made in [8, 9]): the fact that a state a is
R-related to b is represented by the relational formula a:�Rb. Though seman-
tically equivalent to b:�−

Ra, the latter is not a relational formula, i.e. it is not the
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canonical representation of an R-relation. This is reflected by the fact that the
� rule cannot be applied to a relational formula, while b:�−

Ra can be expanded
by means of the �− rule. Moreover, in the present work, the notation a⇒R b is
only an abbreviation for a relational formula, which does not take subrelations
into account: it may be the case that a ⇒S b belongs to a given branch B for
some S&R, and yet a ⇒R b does not. The fact that, in the present work, no
meta-notion is used to represent “R-neighbours” is responsible for the presence
of the Link rules, that have no counterpart in [13–15].

The first node of a branch B is called the top node and its label the top
formula of B. Nominals occurring in the top formula are called top nominals.
The notion of top nominal is relative to a tableau branch, because applications
of the equality rule may change the top formula, hence the set of top nominals.

A branch is closed whenever it contains, for some nominal a, either a pair of
nodes (n) a: p, (m) a:¬p for some p ∈ PROP, or a node (n) a:¬a. As usual, it is
assumed that a closed branch is never expanded further. A branch which is not
closed is open. A branch is complete when it cannot be further expanded.

Provided that the initial formula is in HLm(@, ↓,E,�−) \ ↓�, the calculus
enjoys the following important strong subformula property, used to prove both
termination and completeness: every universal formula occurring in a tableau
branch is obtained from a subformula of the top formula F0 of the branch by
possibly replacing operators �R with �S, for some relation S in the language
of F0. Treating nominal equalities by means of substitution, like in [6, 7, 9, 11],
is essential to ensure such a property. By the effect of substitution, however,
distinct node labels may become equal, though the corresponding nodes are still
distinct elements of the branch.

The reason why nodes with the same label do not collapse is that they must
be arrangeable in a tree-like structure, where each node has at most one parent.
The relation on nodes inducing such a structure (see Definition 2) is used to
define indirect blocking (Definition 3). Termination is in fact achieved by means
of a form of anywhere blocking with indirect blocking.

Direct blocking is a relation between nodes in a tableau branch, holding when-
ever the respective labels (formulae) are equal up to (a proper form of) nominal
renaming. Essentially, in order for a node (n)F to (directly) block (m)G in a
branch B, it must be the case that G = F [a1/b1, . . . , an/bn], where a1, . . . , an,
b1 . . . , bn are non-top nominals such that, for all i = 1, . . . , n, ai and bi label
the same set of propositions in PROP and the same formulae of the form �RF .
More precisely:

Definition 1 (Nominal compatibility and mappings). If B is a tableau
branch, then:

1. two nominals a and b are compatible in B if they label the same propositions
in PROP and the same formulae of the form �RF .

2. A mapping π for B is an injective function from non-top nominals to non-
top nominals such that for all a, a and π(a) are compatible in B. Mappings
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are extended to act on formulae in the obvious way: π(F ) is the formula
obtained by substituting π(a) for a in F , for every nominal a.

3. A mapping π for B maps a formula F to a formula G if π(F ) = G and π is
the identity for all nominals which do not occur in F .

4. A formula F can be mapped to a formula G in B if there exists a mapping
π for B mapping F to G.

The (direct) blocking restriction forbids the application of a blockable rule to a
node n, whenever the label of a node m < n can be mapped to label(n).

As already mentioned before, indirect blocking relies on a partial order on the
nodes of a branch B, called the offspring relation and denoted by ≺B , which
arranges them into a family of trees, where non-terminal nodes are blockable
nodes. Every tree is rooted at a node called a root node (a node with no parents
w.r.t. the offspring relation). When a blockable rule is applied, the generated
nodes are children of the expanded node. All the other rules generate siblings of
one of the premisses of the inference (two nodes are siblings either if they are
both root nodes or they have the same parent).

Properly, the offspring relation and blockings are defined by a mutual recur-
sion on branch construction: if B′ is a branch obtained by expanding B, the
definition of ≺B′ assumes that the set of blocked nodes in B is already defined,
and indirectly blocked nodes in B depend on the relation ≺B. This is due to
the presence of the A rule, for which a minor premiss must be defined, since
nodes added to a branch B by an application I of the A rule are siblings of such
a minor premiss (in the new branch B′ obtained from the expansion); but, in
order to determine the minor premiss of I it is necessary to know which nodes
are blocked in B.

The presentation that follows is somewhat simplified, and the reader is referred
to [9] for the more formal approach. Let us assume that when the A rule is
applied, beyond the premiss shown in Table 1, the branch contains a node called
the minor premiss of the rule application (which will be defined further on, in
Definition 5).

Definition 2 (Offspring relation). Let B be a tableau branch.

1. Every node already contained in the initial branch from which B is obtained
(i.e. its top node and all the nodes labelled by assertions) is a root node.

2. If a node n has been added to B by application of a blockable rule to node m,
then m ≺B n (n is a child of m and m is the parent of n).

3. If n has been added to B by application of either a universal rule or the Trans
rule, whose minor premiss is m, then n is a sibling of m (i.e., if m is a root
node, then n is a root node too; otherwise, if k ≺B m, then k ≺B n).

4. If n has been added to B by application of any other rule of table 1 (i.e. any
other single-premiss rule) to node m, then n is a sibling of m.

5. If n has been added to B by application of the Link rule, then n is a sibling
of the logical premiss of the inference.

It is worth pointing out that an application of either the Trans rule or a uni-
versal one produces a sibling of the minor premiss of the inference, and not the
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major one. This is an essential feature of the offspring relation, needed to prove
termination.

The notions of direct and indirect blocking can now be defined.

Definition 3 (Direct and indirect blocking). Let B be a tableau branch.
The set of directly and indirectly blocked nodes in B is defined by induction on
the (total) order < on the nodes of B:

– n is blocked if it is either directly or indirectly blocked.
– n is directly blocked by m if n is a blockable node, m < n, m is not blocked

and label(m) can be mapped to label(n) in B; n is directly blocked in B if it
is directly blocked by some m in B.

– n is indirectly blocked if it is not directly blocked and it has an ancestor w.r.t.
≺B which is blocked.

An indirectly blocked node is called a phantom node (or, simply, a phantom).

It is worth noticing that a node is a phantom if and only if all its siblings are
phantoms too.

The application of the expansion rules is restricted by the conditions defined
next. Restrictions R1–R4 are essentially the same as those formulated in [9].
The restrictions concerning the new rules are formulated apart (R5–R6).

Definition 4 (Restrictions on the expansion rules). The expansion of a
tableau branch B is subject to the following restrictions:

R1. no node labelled by a formula already occurring in B as the label of a non-
phantom node is ever added to B.

R2. Blockable nodes can be expanded at most once in a branch.
R3. A phantom node cannot be expanded by means of a single-premiss rule

(including the equality rule), nor can it be used as the minor premiss of a
universal rule.

R4. A blockable node n cannot be expanded if it is directly blocked in B.
R5. A phantom node cannot be used as the minor premiss of the Trans rule.
R6. A phantom node cannot be used as the logical premiss of the Link rule.

Finally, we only need to define the minor premiss of an application of the A rule.

Definition 5. If B is obtained from B′ by means of an application I of the A
rule focusing on the nominal b, then the minor premiss of I is the first non-
phantom node in B′ where b occurs.

Note that, as a particular case of restriction R3, the A rule cannot focus on
a nominal which only occurs in phantom nodes in the branch. Consequently,
thanks to restriction R3, every application of the A rule has a minor premiss.

Due to space restrictions, the termination and completeness proofs cannot be
included in this work, but can be found in [10]. Here, only a short proof sketch
is included.



Hybrid Logic with Transitivity and Relation Hierarchies 85

Theorem 1 (Termination). If the initial formula of a tableau is in the frag-
ment HL(@, ↓,E,�−) \ ↓�, then every tableau branch has a bounded depth and
tableau construction always terminates.

Termination if proved by showing that the nodes of a branch B are arranged
by the offspring relation into a bounded sized set of trees, each of which has
bounded width and bounded depth. This holds because a branch is not a set of
formulae, but nodes, and each node has at most one parent. If nodes labelled by
the same formula collapsed into a single branch element, such an element might
have multiple parents.1

The drawback is that the reasoning proving that any node has a bounded
number of siblings is not as simple as it would be if dealing with sets of formulae.
It relies in an essential way on the fact that universal rules do not generate
siblings of their major premisses and, thanks to the mentioned strong subformula
property, the number of universal formulae occurring in a tableau branch is
bounded.

In order to prove that tree depth is also bounded, it is shown that the size of
any set of blockable nodes which may occur in a tableau branch, and such that
none of its elements blocks another one, is bounded. This holds for two reasons.
First of all, the calculus enjoys a weak subformula property: for any non-relational
formula a:F occurring in a tableau branch, F is obtained from a subformula of
the top formula F0 of the branch by replacing free variables with nominals and,
possibly, operators �R with �S, for some relation S in the language of F0.
Secondly, the strong subformula property ensures that the number of nominal
compatibility classes is bounded.

Theorem 2 (Completeness). Let F be a formula and A a set of assertions.
If {F} ∪ A is in HLm(@, ↓,E,�−,Trans, & ) \ ↓� and is unsatisfiable, then any
complete tableau for {F} ∪ A is closed.

In order to prove that the calculus is complete, it is shown – like in [9] – how
to extend a subset N 0 of any complete and open branch B in such a way that
every directly blocked node is added a suitable “witness” (the witness(es) of a
blockable node n can be viewed simply as node(s) which could by obtained by
application of the corresponding blockable rule to n). The fact that the labels of
blocked and blocking nodes are not necessarily identical does not allow taking
the witness of the blocking node as a witness of the blocked one. Nor can a
model be simply built from a set of states consisting of equivalence classes of
nominals, where two nominals are in the same class whenever some blocking
mapping maps one to the other: two nominals a and b may be compatible even
if the branch contains a node labelled by a:¬b.

The initial set of the construction, N 0, is the union of the non-phantom nodes
in B and the nodes of the form (n) a:F , with a occurring in some non-phantom
node in B and either F has the form �RG or F ∈ PROP.N 0 is extended by steps,

1 For a similar reason it is not possible to block nominals instead of nodes: two nom-
inals with different parents may become equal by substitution.
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constructing a (possibly infinite) sequence of sets of nodes N 0 ⊆ N 1 ⊆ N 2 . . . ,
where each N i+1 is obtained from N i by (fairly) choosing a blockable node n
with no witness inN i. The construction ensures that there exists a node n0 ∈ N 0

whose label can be mapped to label(n) in N i. The blocking mapping is then used
to add new nodes and obtain N i+1, in such a way that n has a witness in N i+1.
It is finally shown how to build a model of the initial formula from the union of
the sets N i (due to the presence of assertions, the construction is quite different
from the corresponding one in [9]).

We conclude with some examples illustrating the calculus in action. The
first simple one below shows the interplay between the Trans and Link rules.
It consists of the closed one-branch tableau represented below for the formula
�S�Sp ∧ �S¬p, together with the assertions Trans(R), R&S, S&R. The no-
tations n �R m or (n1, . . . , nk) �R m, used in the rightmost column below,
means that the addition of node m is due to the application of rule R to node
n (or nodes n1, . . . , nk). Nodes 0–4 constitute the initial tableau. The branch is
closed because of nodes 11 and 15.

(0) a: (�S�Sp ∧�S¬p)
(1) Trans(R)
(2) R�S
(3) S�R
(4) R�R Rel0
(5) S�S Rel0
(6) a:�S�Sp 0 �∧ 6
(7) a:�S¬p 0 �∧ 7

(8) a:�Sb 6 �� 8
(9) b:�Sp 6 �� 9

(10) b:�Sc 9 �� 10
(11) c: p 9 �� 11

(12) a:�Rb (8, 3) �Link 12

(13) b:�Rc (10, 3) �Link 13
(14) b:�R¬p (7, 12, 1, 2) �Trans 14
(15) c:¬p (14, 13) �� 15

Next example illustrates the dynamic nature of blockings. Figure 1 represents a
complete and open tableau branch B for the formula F = (A↓x.�R−�R¬x) ∧
�Rp – which holds in a state w if every state of the interpretation has at least
one R-sibling, and p holds in every state R-related to w – where R is a transitive
relation. In the representation of the branch given below, G = �R−�R¬x and,
in the notation (n,m) �A k, n is the major premiss of the inference and m the
minor one.

The relation ≺B in this branch can be described as follows, where the notation
n ≺B {m1, . . . ,mk} abbreviates n ≺B m1 and . . .n ≺B mk. Nodes 0 . . . 6 are
root nodes, and 6 ≺B {7, 8, 9, 12, 16, 18}, 8 ≺B {10, 11, 13, 14, 15, 17}, 17 ≺B
{19, 20, 23, 33, 35}, 18 ≺B {21, 22, 26, 31}, 20 ≺B {24, 25, 29, 30, 32, 34}, 22 ≺B
{27, 28}, 35 ≺B {36, 37, 38, 41}, 37 ≺B {39, 40}. For instance, node 7 is the
minor premiss of the application of the � rule producing 12, and 10 is the minor
premiss of the application of the Trans rule producing 13, therefore 7 and 12 are
siblings and so are 10 and 13. When the A rule is applied to produce node 15
focusing on the nominal a3, the first non-phantom node where a3 occurs is 10,
so that 10 is the minor premiss of the inference and a sibling of 15.

In order to illustrate blockings, the notation Bn is used to denote the branch
segment up to node n, and ai ≈n aj means that ai and aj are compatible in
Bn (note that, in this example, the formulae to be taken into account to check
compatibilities are p and �Rp). Node 17 cannot be blocked by 6, and 20 cannot
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0) a1:F
1) Trans(R)
2) R�R
3) a1:A↓x.G 0 �∧ 3
4) a1:�Rp 0 �∧ 4
5) a1: ↓x.G (3, 0) �A 5

6) a1:�R−�R¬ a1 5 �↓ 6
7) a2:�Ra1 6 �� 7
8) a2:�R¬ a1 6 �� 8
9) a2:�Rp (4, 7, 1, 2) �Trans 9

10) a2:�Ra3 8 �� 10
11) a3:¬ a1 8 �� 11
12) a1: p (9, 7) �� 12

13) a3:�Rp (9, 10, 1, 2) �Trans 13
14) a3: p (9, 10) �� 14

15) a3: ↓x.G (3, 10) �A 15

16) a2: ↓x.G (3, 7) �A 16

17) a3:�R−�R¬ a3 15 �↓ 17
18) a2:�R−�R¬ a2 16 �↓ 18
19) a4:�Ra3 17 �� 19
20) a4:�R¬ a3 17 �� 20

21) a5:�Ra2 18 �� 21
22) a5:�R¬ a2 18 �� 22
23) a4:�Rp (13, 19, 1, 2) �Trans 23
24) a4:�Ra6 20 �� 24
25) a6:¬ a3 20 �� 25

26) a5:�Rp (9, 21, 1, 2) �Trans 26
27) a5:�Ra7 22 �� 27
28) a7:¬ a2 22 �� 28

29) a6:�Rp (23, 24, 1, 2) �Trans 29
30) a6: p (23, 24) �� 30
31) a2: p (26, 21) �� 31
32) a6: ↓x.G (3, 24) �A 32

33) a4: ↓x.G (3, 19) �A 33

34) a6:�R−�R¬ a6 32 �↓ 34

35) a4:�R−�R¬ a4 33 �↓ 35
36) a8:�Ra4 35 �� 36
37) a8:�R¬ a4 35 �� 37

38) a8:�Rp (23, 36, 1, 2) �Trans 38
39) a8:�Ra9 37 �� 39
40) a9:¬ a4 37 �� 40
41) a4: p (38, 36) �� 41

Fig. 1. A complete tableau branch for {(A↓x.�R−�R¬x) ∧ �Rp,Trans(R)}

be blocked by 8, because a1 is a top nominal and mappings can only affect non-
top ones. In the whole branch B, the nodes 18, 34 and 35 are blocked by 17
(note that 17 is not an ancestor of 18), because a3 ≈41 a2 ≈41 a4 ≈41 a6. Their
descendants (21, 22, 26− 28, 31, 36− 41) are therefore phantoms in B. However,
while 34 is not expanded because it is blocked by 17 in B34 (because a3 ≈34 a6),
18 is not blocked in Bi for all i < 31, i.e. until a2: p is added to the branch.
Therefore 18 is expanded. Analogously, 35 is not blocked by 17 until a4: p is
added to the branch (node 41). The branch is complete: every non blocked node
has been expanded or used as the minor premiss of a suitable rule. In particular,
note that the nominals a5, a7, a8, a9 occur only in phantom nodes, therefore the
A rule cannot focus on them.

3 The Sibyl Prover

The calculus described in Section 2 has been implemented in a prover called Sibyl,
that is available at http://cialdea.dia.uniroma3.it/sibyl/. It is written in
Objective Caml and takes as input a file containing a set of assertions and
a set of formulae, checks them for satisfiability and outputs the result. Every
input formula in HLm(@, ↓,E,�−)\�↓� is preprocessed and translated into the
fragment HLm(@, ↓,E,�−)\↓�, by use of the satisfiability preserving translation
defined in [20]. If some formula is not in HLm(@, ↓,E,�−)\�↓�, then Sibyl warns
the user that termination and correctness of the result are not guaranteed. At

http://cialdea.dia.uniroma3.it/sibyl/
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present, backjumping is the only important optimization technique implemented
in the prover.

In order to test Sibyl for correctness, it could not be compared to other provers
for modal or description logics, since, to the author’s knowledge, the hybrid
binder and relation hierarchies coexist in none of them. For the same reason it
would not make much sense using problems in existing repositories for modal or
description logic. Therefore Sibyl has been run on a set of randomly generated
tests, and the translations of the same tests into first order logic (using the
standard translation of hybrid logic formulae and the straightforward translation
of assertions) have then been given in input to the SPASS prover [21]. Each test
is based on a file generated by hGen [2], modified so as to obtain formulae in
HLm(@, ↓,E,�−) \ �↓� and with the addition of a random set of transitivity
and inclusion assertion. A first group of 1620 tests has been generated with 30%
probability for a relation to be transitive and 30% probability for any pair of
relations R,S to be related by either R&S or R−&S. The tests are grouped
according to their modal degree (varying from 2 to 10), each group containing
tests with 10 to 50 clauses (hGen generates sets of clauses). In order to evaluate
the impact of the presence of assertions on Sibyl’s behaviour, other four groups
of tests have been obtained from the basic set, reducing the number of assertions
in each file, respectively to 75%, 50%, 25% and no assertions at all.

Sibyl and SPASS have been run on these test sets with one minute timeout
and they agree on the outcome of all problems where both provers terminate
successfully. The test sets, the detailed results of the experiments and diagrams
summarizing them can be downloaded from Sibyl web page.

Though the experiments only aimed at testing Sibyl for correctness, they were
also an opportunity to give a preliminary evaluations of its performances com-
pared to SPASS (that was run in default mode, since, from some preliminary
tests, other flag settings appeared either to degrade its performance or have no
significant effect). Quite surprisingly, although SPASS is a mature prover and
Sibyl a newborn, the latter turned out to globally outperform the former. SPASS
could not solve about 13% of the problems in the allowed one minute time, while
Sibyl failed in less than 5.5%. Taking the number of timeouts as a performance
measure, the impact of the number of assertions and the modal degree of formu-
lae has been evaluated. In the tests with no assertions SPASS performs better
than Sibyl: 2.22% timeouts versus Sibyl’s 4.81%. On the other hand, SPASS could
not solve 21.98% tests of the base set (with no reduction of the number of asser-
tions), while Sibyl 6.30%. With respect to the effect of the modal degree on the
behaviour of the provers, in the base set, for instance, SPASS ran out of time in
2.22% tests of modal degree 2, and it reached 32.22% timeouts in the problems
of modal depth 10. In the same set of problems, Sibyl’s failures range from 6.67%
(modal degree 2) to 9.44% (modal degree 10).

The experimental results show that Sibyl’s behaviour only slightly degrades
when the number of assertions and the modal degree increase. In comparison,
the first order prover appears to be much more sensitive to the number of asser-
tions, especially when the modal degree becomes higher. Presumably, this is not
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a credit to Sibyl, but rather an instance of the poor behaviour exhibited by first
order theorem provers when fed with non optimized translations of modal for-
mulae. In order to refine such a preliminary analysis, other encoding principles
should be used and tested, and the effect of transitivity and inclusion assertions
should be analysed separately.

4 Concluding Remarks

This work presents a satisfiability decision procedure for hybrid formulae in
HLm(@, ↓,E,�−,Trans, & ) \ �↓�, and its implementation in the Sibyl prover.
Transitivity and relation inclusion assertions are treated by expansion rules
which are very close to (though not exactly the same as) the analogous rules
presented in [13–16]. The main result of this work is proving that they can be
added to a calculus dealing also with restricted occurrences of the binder, main-
taining termination, beyond soundness and completeness.

Differently from other terminating tableau calculi for (binder-free) hybrid logic
including the global and converse modalities, blocking concerns here nodes (cor-
responding to formulae) and not nominals (i.e. sets of formulae). In the absence
of the binder, compatibility checks, requiring to exit from the “local” view and
look for other formulae in the branch, are needed only for the formulae outermost
nominals and concern only a subset of the formulae labelled by such nominals.
Indirect blocking, in turn, relies on a particular partial order on nodes, arranging
them in a family of trees of bounded width and bounded depth. Width bound-
edness is guaranteed by the fact that universal nodes (which may be expanded
a potentially unbounded number of times) do not generate “siblings”.

Other works have addressed the issue of representing frame properties and/or
relation hierarchies in tableau calculi for binder-free hybrid logic (for instance,
[5, 15, 16]). The maybe richer calculus of this kind is [15], that considers graded
and global modalities, reflexivity, transitivity and role hierarchies. The converse
modalities are however missing, and inverse relations are not allowed.

The possibility of adding graded modalities (i.e. number restrictions of de-
scription logics) to the calculus presented in this work is an interesting but hard
issue. As a matter of fact, whether restricted occurrences of the binder can co-
exist with graded modalities in a decidable hybrid logic is an open question.
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Abstract. The main contribution of the paper is a PTIME decision
procedure for the satisfiability problem in a class of first-order Horn
clauses. Our result is an extension of the tractable classes of Horn clauses
of Basin & Ganzinger in several respects. For instance, our clauses may
contain atomic formulas S � t where � is a predicate symbol and S
is a finite set of terms instead of a term. � is used to represent any
possible computation of an attacker, given a set of messages S. The class
of clauses that we consider encompasses the clauses designed by Bana &
Comon-Lundh for security proofs of protocols in a computational model.

Because of the (variadic) � predicate symbol, we cannot use ordered
resolution strategies only, as in Basin & Ganzinger: given S � t, we must
avoid computing S′ � t for all subsets S′ of S. Instead, we design PTIME
entailment procedures for increasingly expressive fragments, such proce-
dures being used as oracles for the next fragment.

Finally, we obtain a PTIME procedure for arbitrary ground clauses
and saturated Horn clauses (as in Basin & Ganzinger), together with a
particular class of (non saturated) Horn clauses with the � predicate and
constraints (which are necessary to cover the application).

1 Introduction

1.1 The Application Context

The design of automated security proofs is a topic extensively studied for over
20 years. One problem that was raised about 12 years ago is the validity (or the
scope) of such proofs. More specifically, for most of the automatic security proofs
messages are abstracted by terms and the attackers capabilities are restricted to
a specific set of operations. In contrast, modern cryptography typically consid-
ers attackers that can perform any computation that does not require too much
time (say, in probabilistic polynomial time). This includes of course some com-
putations that are not explicitly specified. This issue has been first addressed by
M. Abadi and P. Rogaway [1], followed by many authors. The idea is to prove
that the symbolic formal model is sound with respect to the more concrete com-
putational model: if there is no attack in the symbolic model, then there is no
attack in the computational model, except with negligible probability. There are
several such soundness proofs, for various primitives and in various contexts (see
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e.g. [11,2,9] to cite only a few). However, all these results require heavy proofs
and assume strong hypotheses, some of which are not quite realistic. Typical
examples of unrealistic assumptions include: a key cycle is never created, or the
attacker does use his own keys.

These difficulties lead to try to prove the security protocols directly in the
computational model. For instance CryptoVerif [7] or Easycrypt [5] are de-
signed in this spirit. The proofs have however to account for probability distri-
butions computations, attacker’s time computation, and are relatively difficult,
often requiring user interactions. We study here an alternative approach pre-
sented in [4] which consists in specifying formally what the attacker cannot do.
Each axiom in such a specification can be a consequence of an assumption on
the primitives, which yields the soundness of the model by construction. The
drawback is however the proof automation in this model: there was no evidence
that this is possible in a reasonably efficient way. This is the problem that we
want to address in this paper.

In the model of [4], transitions of the system are possible, as soon as they do
not contradict the axioms. Hence, an attack consists in a sequence of attacker’s
actions, that is consistent with the axioms and the negation of the security
property. Conversely, if all (symbolic) transition sequences yield a formula, which
is inconsistent with the axioms and the negation of the security property, then
the protocol is secure, for any attacker, in any model that satisfies the axioms.
The clauses make use of a deducibility predicate 
, whose interpretation is not
fixed: it stands for any attacker’s computation. In other words, S 
 h states that
the attacker must be able to compute h from his knowledge at this stage.

In summary, checking for cryptographic security amounts to checking the
satisfiability of a finite set of ground formulas Φ together with axioms A (which
are Horn clauses) and the negation of the security property π (a ground fact).
Since, in practice, this satisfiability check has to be performed for any interleaving
of (symbolic) actions, it must be efficiently performed. Fortunately, the formulas
are not arbitrary first-order formulas. We introduce them informally below.

– Φ contains only literals (positive or negative). We actually prove that satis-
fiability is in PTIME as soon as Φ only contains (ground) Horn clauses.

– A could be arbitrary, in principle, provided that it is consistent with π. In
practice, we may assume that A∪{π} is a finite set of (possibly constrained)
Horn clauses with equality (see [3] for a complete example). A typical exam-
ple of an axiom (a consequence of IND-CCA, see [4]) is the secrecy axiom

∀X, x, y.
[
X ; enc(x, pk) 
 n(y) → X 
 n(y)

]
‖ sk /∈ X

The expression n(y) represents a function that returns a random number.
The formula states that the encryption of x does not help in deducing the
nonce n(y), unless the decryption key sk appears as a plain text of some
term in X .

The problem that we consider in this paper is then the following one: when is
such a satisfiability check tractable?
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1.2 Difficulties

Following the approach of D. Mc Allester [10], D. Basin and H. Ganzinger [6]
show that, if a set of Horn clauses is saturated, with respect to a well suited
ordering and a well suited notion of redundancy, then the associated inference
system is tractable. The main restriction in this paper is on the ordering with
respect to which the clauses have to be saturated: given a ground term t, there
should be only polynomially many terms smaller than t. (The subterm ordering,
is an example. The term embedding does not satisfy this property).

However, the Horn clauses derived from security assumptions are beyond the
scope of these results for several reasons that we describe below.

– The deducibility predicate 
 can be seen as a variadic predicate symbol,
whose arguments (except the last one) are unordered. This is a problem,
since Basin and Ganzinger’s method yields an NP decision procedure with
such a predicate: even if A is saturated (modulo the set axioms for the left
part of the 
 predicate), when we use A to reduce a ground atom S 
 t,
potentially all subsets of S will be considered (see Section 3 for an example).

– Axioms (i.e. Horn clauses) are constrained. A priori, this is not an obstacle
to the Basin and Ganzinger procedure, as the constraints can be checked on
each superposition between an axiom and a ground clause. However, the very
notion of saturation of a set of constrained clauses is an issue (as reported
for instance in [12] for basic strategies or [8] for order constraints). In short:
we cannot assume our set of axioms to be saturated.

– Clauses contain an equality predicate. This is not too tricky, since we may
assume that A does not contain any equality. Hence equalities appear only
as ground literals. We can then easily extend Basin and Ganzinger algorithm
to clauses modulo a ground equational theory.

1.3 Overview of the Results and Proofs

Including a variadic predicate. We consider sets of ground Horn clauses with
equality, whose atomic formulas may (also) be S 
 t where S is a finite set of
(ground) terms and t is a ground term, together with a saturated set of clauses
A with no deducibility predicate and the following set of clauses A0:

A0 =

⎧⎪⎪⎨
⎪⎪⎩

X 
 x→ X ; y 
 x weakening
X 
 x, Y ;x 
 y → X ;Y 
 y transitivity

→ x 
 x reflexivity
X1 
 x1, . . . , Xn 
 xn → X1; . . . ;Xn 
 f(x1, . . . , xn) f function symbol

Note that the left argument of 
 is a set. We write X ;x for X ∪ {x} and X ;Y
for X ∪ Y and we compute modulo the set properties.

We prove first that satisfiability of such a set of clauses is in PTIME, therefore
extending Basin and Ganzinger result, on the one hand with equalities (this is
not the difficult part) and on the other hand with the deducibility predicate.
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The main idea then is to use another layer of the ground Horn clauses entail-
ment problem: given S1 
 t1, . . . , Sn 
 tn, S 
 t, whether S1 
 t1, . . . , Sn 
 tn
entails S 
 t can be solved in PTIME. This is done by transforming literals
S 
 t into clauses S → t. Since the resulting clauses do not contain 
 anymore,
this can be used as an oracle in a (modified) ground Horn clauses entailment
problem.

Adding axioms on the deducibility predicate. The previous result is not sufficient
for our purpose as, for instance, simple axioms such as secrecy (provided in
Section 1.1) cannot be expressed in the considered fragment.

We therefore extend the previous results, adding formulas of the form

S 
 x, S;u(x) 
 t(y) → S 
 t(y)

S;u(x) 
 v(y) → S 
 v(y)

These formulas are relevant for our application. Indeed, the secrecy axiom de-
scribed in Section 1.1 is an axiom of the second form. The axioms of the first
form are useful to express e.g. non-malleability of encryption:

∀X, x, y. X 
 x, X ; dec(x, k) 
 n(y) → X 
 n(y) ‖ P (x)

The decryption of a deducible message x does not help to learn a nonce n(y),
provided that x does not appear as subterm of X , which can be encoded in a
predicate P .

We show again in this case that the satisfiability is in PTIME. The first idea
consists in seeing these clauses as new inference rules. For instance the first above
axiom can be seen as a generalized cut (it is a cut when u(x) = x). As before,
we first consider the entailment problem for deduction atomic formulas, which
in turn can be seen as an entailment problem for Horn clauses. This can also be
easily reduced to the problem of deducing the empty clause.

We design a complete strategy for this extended deduction system for which
the proof search is in PTIME. Let us explain how it works. With the usual
cut rule (and not the extended one above), whether the empty clause can be
derived, can be decided in PTIME using a unit strategy. This is not the case
with an extended cut rule. However, introducing some new rules and additional
syntactic constructions, we design a proof system, whose expressive power is the
same as the original proof system, and for which the unit strategy is complete,
yielding a PTIME decision procedure. In other words, our strategy, that cannot
be explained as a local strategy of application, can be reduced to a unit strategy,
thanks to some memorization.

Adding constraints. Our application case requires to consider constraints, typ-
ically expressing that some term does not occur in the left side of a deduction
relation. Such constraints have good stability properties: if they are satisfied by
two sets of literals, then they are satisfied by their union and, if a constraint is
satisfied by a set of literals S, then it is satisfied by any subset of S. Our main
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restriction is however that there are only a fixed set of possible constraints. We
show again that the satisfiability is in PTIME.

We cannot simply use the previous strategy, checking that constraints are
satisfied whenever we need to apply them. The extended deduction system of
the previous section is proved to be complete by a proof transformation that may
not preserve constraint satisfaction. We therefore refine the strategy, memorizing
additional information in the formulas: on the one hand, we store the constraints
that are necessarily satisfied by all instances of the clause (this is inherited in the
deduction rules) and, on the other hand, the constraints that have to be satisfied
in the remainder of the proofs. Using this new syntax and inference rules, we
show that they do not increase the expressiveness and yet that the unit strategy
is refutation complete for these new rules. This shows the PTIME membership.

In the next step, we show that the entailment problem is decidable in PTIME
in this new syntax. We need however to memorize a third component, which
depends on the instance of the entailment problem.

Final result. From the previous paragraphs, we can build a PTIME entailment
algorithm which, given S1 
 t1 . . . Sn 
 tn, S 
 t and clauses

A1 =

{
S 
 x, S;ui(x) 
 t(y) → S 
 t(y) ‖ Γi

S; sj(x) 
 v(y) → S 
 v(y) ‖ Δj

where Γi, Δj are finite sets of constraints, decides in PTIME whether S1 

t1, . . . , Sn 
 tn, A1, A0,A |= S 
 t.

This algorithm can be used as an oracle in a variant of the Basin and Ganzinger
algorithm, to decide the satisfiability of a set of clauses including formulas ex-
tending A0, A1 together with ground clauses with equality. Altogether, we obtain
a PTIME procedure for arbitrary ground clauses and saturated Horn clauses (as
in Basin & Ganzinger), together with the aforementioned clauses. This is exactly
what we needed for our application, that is checking satisfiability of clauses cor-
responding to the computational security of a protocol.

Beyond our tractability results, we hope that our techniques and ideas of mem-
orization can be reused in other contexts for the design of efficient
strategies.

2 Formal Setting

Let F be a finite set of function symbols (together with their arity) and P be
a finite set of predicate symbols together with their arity. T (F) is the set of
ground terms built on F (which is assumed to contain at least one constant)
and T (F ,X ) is the set of terms built on F and a set of variable symbols X . We
also use set variables (written using upper case letters X,Y, Z, ...) ranging in a
set SX and a function symbol, denoted by a semicolon, for set union. Extended
terms ET (F ,X ,SX ) are expressions s1; . . . ; sn where si ∈ T (F ,X ) ∪ SX . As
a shortcut, when n = 0 in the previous definition we denote the extended term
as ∅. A basic ordering is an ordering on terms, which is : (1) Compatible with
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substitutions and (2) such that, for every ground term t, the number of terms
smaller than t is polynomial in the size of t. (An example of such an ordering is
the subterm ordering).

Atomic formulas are of the following forms:

– P (t1, . . . , tn) where P ∈ P and t1, . . . , tn ∈ T (F ,X )
– t1 = t2 where t1, t2 ∈ T (F ,X )
– S 
 t where t ∈ T (F ,X ) and S ∈ ET (F ,X ,SX ).

We consider clauses that are built on these atomic formulas. The axioms for the
set theory ACIN (associativity, commutativity, idempotence and neutral element
∅) are implicitly assumed without mention on the left side of the 
. As usual,
Horn clauses are clauses with at most one positive literal.

Given an extended term S and a substitution σ, mapping variables of SX to
finite subsets of T (F) and variables of X to terms in T (F), Sσ is defined by
∅σ = ∅, (s;S)σ = {sσ}∪Sσ if s ∈ T (F ,X ), and (X ;S)σ = Xσ∪Sσ if X ∈ SX .

3 Tractability of Deducibility Axioms

We first consider the consistency problem of a very specific case: let C be a set
of ground clauses built on the deducibility predicate only. Is C ∪ {→ X ;x 

x, X 
 x → X ; y 
 x, X 
 x, X ;x 
 y → X 
 y} consistent? (We call
respectively r(eflexivity), w(eakening) and t(ransitivity) the three last clauses).

Consider for instance a ground clause a1, . . . , an 
 a →⊥. If we simply use
a unit resolution strategy (which is refutation complete for Horn clauses), this
single clause, together with the weakening clause, may generate all unit clauses
S 
 a →⊥ where S ⊆ {a1, . . . , an}. This should be avoided since we seek for a
polynomial time algorithm. Similar problems occur with transitivity, if we try to
use binary resolution with a simple strategy. Here is a more concrete example.

Example 1. Let C = {a1; a2; a3
a0 →⊥, → a1; a4
a0, → a2
a4}. C∪{w, t}
is provably unsatisfiable using binary resolution modulo ACIN only.

→ a1; a4
a0 X1
x1 → X1; y1
x1

→ a1; a4; y1
a0 X2
x2, X2;x2
y2 → X2
y2
a1; y1
a4 → a1; y1
a0

with unifiers X1 = a1; a4, X2 = a1; y1, x1 = a0, x2 = a4 and y2 = a0

a1; y1
a4 → a1; y1
a0

→ a2
a4 X3
x3 → X ; y3
x3

→ a2; y3
a4
→ a1; a2
a0

with unifiers X3 = a2, y1 = a2 and y3 = a1

and

→ a1; a2 
 a0 X4 
 x4 → X4; y4 
 x4

→ a1; a2; y4 
 a0 a1; a2; a3 
 a0 →⊥
⊥

with unifiers X4 = a1; a2, x4 = a0 and y4 = a3.
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This derivation introduces the clause → a1; a2 
 a0, where a1; a2 is a new
set (i.e. it does not appear in the initial sets). This is actually unavoidable: any
derivation of the empty clause requires as an intermediate step the derivation of
either → a1; a2 
 a0 or a1; a4; a3 
 a0 →⊥. Both of them involve sets that are
not in the initial class.

However if we move from the object level to the meta-level, viewing weakening
and transitivity as inference rules and deducibility atoms as clauses, we can
at least solve this very particular case. More precisely, consider the inference
system:

R
X ;x 
 x

X 
 x
W

X ; y 
 x

X 
 x X ;x 
 y
T

X 
 y

where X is a logical variable ranging over extended terms and x, y are logical
variables ranging over terms.
Let �R,W,T be the derivability relation associated with these two inference rules.

Lemma 2. Given ground atomic formulas S1 
 t1, . . . , Sn 
 tn and S 
 t, we
can decide in linear time whether {S1 
 t1, . . . , Sn 
 tn} �R,W,T S 
 t.

Proof. We associate with each term occurring in S1∪ . . .∪Sn∪S∪{t1, . . . , tn, t}
a proposition variable. We claim that S1 
 t1, . . . , Sn 
 tn �R,W,T S 
 t iff S → t
is derivable from S1 → t1, . . . , Sn → tn using the propositional binary resolution,
excluded middle and weakening rules only. Indeed we notice that T , R and W
can be simulated by resolution and excluded middle. For W the proof rewriting
is straightforward. We present the proof rewriting for T and R (the double bar
stands for multiple applications of a rule) :

S
 t S; t
u
T

S
u
=⇒

S → t S, t→ u
Res

S → u

R
S; t
 t =⇒

Excl
t→ t

====== Weak
S, t→ t

Conversely the resolution, excluded middle and weakening can be simulated by
R, T and W . The proof rewriting is straightforward for excluded middle and
weakening, we only present it for resolution :

S1 → t S2, t→ u
Res

S1, S2 → u
=⇒

S1
 t
======= W
S1;S2
 t

S2; t
u
========= W
S1;S2; t
u

T
S1;S2
u

With these observations we now have that derivability of S → t is equivalent
to unsatisfiability of S1 → t1, . . . , Sn → tn, S,¬t (where Si is a shortcut for the
conjunction of propositional variables corresponding to terms occurring in Si),
which can be decided in linear time: it is a HornSat problem.



98 H. Comon-Lundh, V. Cortier, and G. Scerri

Now, the trick of viewing the clauses w, t as new inference rules allows to de-
cide our problem in PTIME. We write �Resu+R+W+T for the derivability with
inference rules R, W , T and unit resolution.

Lemma 3. Given a set of ground Horn clauses (built on 
) C, the satisfiability
of C ∪ {r, w, t} is decidable in cubic time.

Proof. We show first that C ∪ {r, w, t} is unsatisfiable iff the empty clause can
be derived from C, using unit resolution R + W + T . If we can derive the empty
clause in this system, then we can derive the empty clause from C ∪ {r, w, t} by
resolution, thanks to simple proof rewriting rules :

R
S; t
 t =⇒ S; t
 t (instance of r)

π1

S
 t
W

S;u
 t
=⇒

π1

S
 t X 
x → X ; y
x
Res

S;u
 t

π1

S
 t
π2

S; t
u
T

S
u
=⇒

π1

S
 t X ;x
y, X 
x → X 
y
Res

S; t
y → S
y π2

S; t
u
Res

S
u
Conversely, if we cannot derive the empty clause from C using unit resolution R
+ W + T , then letM = {S 
 u | C �Resu+R+W+T S 
 u}. We claim thatM is
a model of C ∪{r, w, t}: AsM is closed by R,W, T , it is a model of {r, w, t} and,
if B1, . . . , Bn → H ∈ C, then either Bi /∈M for some i or else, by construction,
for every i, C �Resu+R+W+T Bi, hence, by unit resolution, C �Resu+R+W+T H .
In all cases,M |= B1, . . . , Bn → H .

It only remains to prove that whether C �Resu+R+W+T⊥ or not can be decided
in cubic time. Let B be the set of atomic formulas occurring in C. LetM be the
least fixed point of

f(X) = {S 
 u ∈ B | C ∪X �Resu S 
 u or C ∪X �R+W+T S 
 u}

Since f is monotone, there is a least fixed point, which is contained in B. Com-
puting M can be performed in cubic time, as there are at most |B| iterations
and each step requires at most a linear time, thanks to Lemma 2.

If the empty clause can be derived from M, C using unit resolution, then
C �Resu+R+W+T⊥. Let us show the converse implication. For this, we prove,
by induction on the proof size that, for every atomic formula S 
 t ∈ B,
C �Resu+R+W+T S 
 t implies S 
 t ∈ M.
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If the last rule of the proof is a unit resolution, then the proof can be written:

π1

S1 
 t1

π2

S2 
 t2

πn

Sn 
 tn
(S1 �t1, . . . , Sn �tn →S�t) ∈ C

S1
 t1, . . . , Sn
 tn → S
 t
S1 
 t1, . . . , Sn−1 
 tn−1 → S 
 t

...

S1 
 t1, S2 
 t2 → S 
 t

S1 
 t1 → S 
 t

S 
 t

S1 
 t1, . . . , Sn 
 tn ∈ B and, by induction hypothesis, S1 
 t1, . . . , Sn 
 tn ∈M.
It follows that M, C �Resu S 
 t, hence S 
 t ∈ f(M) =M.

If the last rule of the proof is W or T , then there are atomic formulas S1 

t1, . . . , Sn 
 tn such that S1 
 t1, . . . , Sn 
 tn �R+W+T S 
 t and, for every i,
either Si 
 ti ∈ C or the last rule in the proof of Si 
 ti is a resolution step and, as
noticed previously all, Si 
 ti are in B. In all cases Si 
 ti ∈ B and, by induction
hypothesis, Si 
 ti ∈ M. By definition of the function f , S 
 t ∈ f(M) =M.

If C �Resu+R+W+T⊥, then there is a negative clause S1 
 t1, . . . , Sn 
 tn →⊥
in C such that, for every i, C �Resu+R+T+W Si 
 ti, hence Si 
 ti ∈ M as we
just saw. Then ⊥ can be deduced from C,M using unit resolution (which can
be decided in linear time again).

Example 4. Applying Lemma 3 to Example 1, checking the satisfiability of C ∪
{r, w, t} simply amounts into checking whether {a1; a4 → a0, a2 → a4} (does
not) entail a1; a2; a3 → a0.

3.1 Adding Equality

Now, we assume that atomic formulas in C may contain equalities on terms (not
extended terms). The equality axioms (the equality is a congruence) are implicit
in what follows.

Lemma 5. Given a set of ground Horn clauses (built on 
 and =) C, the sat-
isfiability of C ∪ {r, w, t} is decidable in polynomial time.

Proof sketch: First, we extend Lemma 2. Given a finite set of equations E, the
transitivity rule is extended to

x =E z X 
 x X ; z 
 y
T (E)

X 
 y

Given S1 
 t1 . . . , Sn 
 tn, S 
 t and a finite set of ground equations E, we
can decide in polynomial time whether S1 
 t1, . . . , Sn 
 tn �R,W,T (E) S 
 t.
We only have to check, for every pair of terms u, v in S1, t1, . . . , Sn, tn, S, t,
whether u =E v. This can be completed in polynomial time, for instance using
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a quadratic time congruence closure algorithm. We may then choose one repre-
sentative for each congruence class and use the same proof as in Lemma 2 on the
representatives.

Then, as in Lemma 3, we consider the set B� of atomic formulas S 
 t oc-
curring in C and B= the set of equations occurring as atomic formulas in C. We
consider the monotone function

f(X,E) = ( {S 
 t ∈ B� | C ∪X �Resu(E) S 
 t or C ∪X �R+W+T (E) S 
 t},
{s = t ∈ B= | C ∪X �Resu(E) s = t} )

where �Resu(E) is the unit resolution on representatives of the clauses w.r.t. E.
The least fixed point of f can be computed in polynomial time, as each iter-

ation is polynomial and there is a polynomial number of iterations. C ∪ {r, w, t}
is satisfiable iff the empty clause can not be derived by unit resolution from this
least fixed point.

3.2 Adding a Function Axiom

We extend now the clauses specifying 
 with the clauses (denoted by f(F) later):
X 
 x1, · · · X 
 xn → X 
 g(x1, . . . , xn), for every function symbol g
in a set of function symbols F (which is later omitted).

Lemma 6. Given a set of ground Horn clauses (built on 
 and =) C, the sat-
isfiability of C ∪ {r, w, t} ∪ f(F)} is decidable in polynomial time.

Proof sketch: Again, adding an inference Fg for each of the new clauses, we
first show that deciding S1 
 t1, . . . , Sn 
 tn �R+W+T (E)+{Fg ,g∈F} S 
 t is in
PTIME. We use a proof similar to Lemma 5, with an additional observation:
given a finite set E of ground equations and ground terms t1, . . . , tn, t, we can
decide in PTIME whether there is a context C (built using function symbols
in F) such that C[t1, . . . , tn] =E t. To prove this we may for instance compute
a tree automaton At that recognizes the equivalence class of t and decide the
emptiness of the intersection of L(At) with the set of terms C[t1, . . . , tn]. All
these steps can be performed in a total time, which is polynomial in the size of
E, t1, . . . , tn, t.

Example 7. b 
 c, 
 a �R+W+T (g(g(a))=b)+Fg

 c since there is a context C (with

C[ ] = g(g( ))) such that C[a] = b.

4 More Clauses Using the Deducibility Predicate

We now enrich the class of clauses involving the deducibility predicate. Given
a term p (later called the pattern), we consider a finite set of clauses of the
following forms:

cs(u) : X ;u 
 p→ X 
 p where u is a term that does not share variables with p
cc(w) : X 
 y,X ;w 
 p→ X 
 p where w is a term that does not share variables

with p, and y is a variable of w.
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Example 8. The secrecy axiom described in introduction

X ; enc(x, pk) 
 n(y) → X 
 n(y)

is an instance of the first class of clauses above, with p = n(y) and u = enc(x, pk).
The condition sk /∈ X requires constraints, that are considered in Section 5.

As explained in the previous section, we may turn the additional clauses into
new inference rules, using ≤E , the matching modulo E (a term t satisfies u ≤E t
if there is a substitution σ such that t =E uσ).

u ≤E x X ;x 
 p
Stru

X 
 p

(y, w) ≤E (x, z) X 
 x X ; z 
 p
Cutw

X 
 p

Let I be the inference system defined by a finite collection of rules Stru,Cutw,
the rules R,W, T (E) for a finite set of ground equations E and the rules Fg for
a set of function symbols g.

We are going to prove that, again, I can be decided in polynomial time. How-
ever, we cannot use the same proof as in the previous section. S1 
 t1, . . . , Sn 

tn �I S 
 t can no longer be reduced to a problem S1 → t1, . . . , Sn → t1, S �Resu

t (modulo a PTIME oracle).

Example 9. Assume E is empty and we have a single rule Cutf(x,k) for the pat-
tern p = n. f(a, k) 
 f(b, k), f(b, k) 
 n �I a 
 n:

R
a 
 a

f(a, k) 
 f(b, k)
W

a; f(a, k) 
 f(b, k)

f(b, k) 
 n
W

a; f(a, k); f(b, k) 
 n
T

a; f(a, k) 
 n
Cutf(x,k)

a 
 n

We cannot use a unit version of T (or resolution) in this example. And moving
to a general binary resolution would yield an exponential procedure.

As before, after turning the clauses into inference rules, we turn the deducibility
atomic formulas into clauses. We call again I the resulting inference system. We
have to be careful however: this is a purely syntactic transformation and the
inference rules resulting from this translation are no longer correct in a classical
semantics. For instance Cutw becomes

A1, . . . , An → y w,B1, . . . , Bm → p

A1, . . . , An, B1, . . . , Bm → p

where the premises are matched modulo a set of ground equations E.
In order to apply a simple fixed point computation, we would like to be able to

transform any proof into a unit strategy proof. Since this is not possible with the
current proof system (as shown by Example 9), we introduce additional inference
rules that will allow such a strategy, however bookkeeping what the rest of the
proof owes, in order to enable a translation back into the original proof system.
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Example 10. Continuing Example 9, the unit proof of → n from the hypotheses
→ a, f(a, k)→ f(b, k), f(b, k)→ n will look like this:

→ a f(a, k)→ f(b, k)
Cut1f(x,k)→p f(b, k) f(b, k)→ n

Cut2

→ n

The rule Cut1u is a generalisation of Cutu since the constraint of being an instance
of the pattern p on the right is dropped. It bookkeeps however a duty as a mark
p on the arrow. The mark on a clause S →p t can in turn be erased only when a
clause S′, t → p is one of the premises. Such a mechanism allows both to use a
complete unit strategy and to enable reconstructing an original proof from the
extended one, as we will prove (here the annotation is erased in the last rule as
the second premise is an instance of S, f(x, k) 
 n).

Intuitively, the head s of a marked clause can only be used in a proof that
will end up deriving an instance of the pattern.

We extend the syntax, allowing both unmarked clauses S → t and marked clauses
S →p t. For simplicity, we first do not consider the set of ground equations E
nor the function axioms. We write S →? t when it does not matter whether the
arrow is marked or not. We then consider the inference system J consisting of
T (E), W and the following rules (for each Cutw there are two rules Cutiw and
for each rule Stru there are two rules Striu):

A1, . . . , An →? x B1, . . . , Bm, w →? v
Cut1w

A1, . . . , An, B1, . . . , Bm →p v

A1, . . . , An →? x w,B1, . . . , Bm → p
Cut2w

A1, . . . , An, B1, . . . , Bm → p

A1, . . . , An →? x B1, . . . , Bm, x→? v
Cut1

A1, . . . , An, B1, . . . , Bm →? v

in which the conclusion is marked iff one of the premises is marked.

A1, . . . , An →? x x,B1, . . . , Bm → p
Cut2

A1, . . . , An, B1, . . . , Bm → p

A1, . . . , An, u→? x
Str1u

A1, . . . , An →p x

A1, . . . , An, u→? p
Str2u

A1, . . . , An → p

Note that the above system has no classical semantics.

Lemma 11. Let S be a set of ground clauses, and s be a ground term. In case
E = ∅ and removing the function and reflexivity axioms from I, S �I→ s if and
only if S �J→ s.
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Proof sketch: For one implication we prove that W is not necessary, hence I
can be simulated by J . For the other implication, we rewrite a proof in J as
follows. We consider a last rule that introduces a mark. Since the marks must
eventually disappear, there is also a matching rule that removes the mark. This
part of proof is then rewritten as explained on the following example:

Sn → tn

S2 → t2

S1 → t1 S,wσ → vσ
Cut1w

S1, S →p vσ
Cut1w2

S′
2 →p vσ

...
Cut1wn

S′
n →p vσ S0, tσ

′ → pθ
Cut2t

S0, S
′
n → pθ

rewrites to

Sn → tn

S1 → t1

S,wσ → vσ S0, tσ
′ → pθ

Cutt
S0, S, wσ → pθ

Cutw
S0, S1, S → pθ

...
Cutwn

S0, S
′
n → pθ

The proof rewriting terminates and we end up with a proof in I. See Appendix
A for more details.

The unit strategy for J consists in applying the rules only when n = 0 for
the Cutiw rules (i.e. when the left premise of a Cutiw is a unit clause).

Lemma 12. If S �J→ s then → s is derivable from S in J using the unit
strategy.

Proof sketch: We prove it by induction on the proof size. We assume w.l.o.g. that
all proofs of literals (whether marked or not) labeling a node in the proof (except
the root) use a unit strategy. We consider the last step that does not comply with
the unit strategy. If A1, . . . , An →? s is its conclusion, then all atoms A1, . . . , An

can be proved in J with the unit strategy. We therefore simplify the premises
accordingly, which yields an inference rule complying with the unit strategy.

Theorem 13. If S is a set of ground clauses built on 
, we can decide in PTIME
the satisfiability of S, together with T,W and finitely many clauses cs, cc, that
are built on the same pattern p.

Proof sketch: we first observe that, thanks to the lemmas 11 and 12 (and using
a fixed point computation), given the ground atoms S1 
 t1, . . . , Sn 
 tn, S 
 t,
it is possible to decide in PTIME whether S1 
 t1, . . . , Sn 
 tn �I S 
 t. We
then conclude using an argument similar to the one given in Section 3.
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4.1 Adding Other Predicate Symbols

We now consider the case where the clauses cs, cn, cc are guarded with literals
built on a set of predicate symbols P not containing 
 and that are defined using
a saturated set of Horn clauses A0. For instance, cc(w) is extended to clauses
of the form P1(s1), . . . , Pn(sn), X 
 y, X ;w 
 p → X 
 p. The variables of
s1, . . . , sn are assumed to be a subset of the variables of w, y.

We modify the rules Cutiw adding as premises the literals P1(s1), ..., Pn(sn).
Lemma 11 still holds, provided we add to S finitely many ground atoms on
the new alphabet of predicates. To see this, we need to check that the proof
transformation yields the same instances of Pi(si). Lemma 12 is unchanged.
These properties rely on the fact that guards (and their instances) do neither
depend on the set variable X (nor its instances) nor on the instances of the
pattern.

Theorem 13 can then be extended to this case: when computing the fixed
point, the instances of applicable inference rules are known at each step and
we only have to check whether the corresponding instances of the guards are
consequences of A0 (and possibly a finite set of ground atoms), which can be
performed in PTIME, thanks to [6]. As a consequence, we get:

Theorem 14. Let P be a set of predicate symbols, not containing 
,= and A0

be a set of Horn clauses built on P and which is saturated w.r.t. a basic ordering.
If S is a set of ground clauses built on 
 (possibly with guards using P), we can
decide in PTIME the satisfiability of S ∪ A0, together with T,W and finitely
many clauses cn, cs, cc, that are built on the same pattern p and which may be
guarded by atomic formulas that use the predicate symbols in P.

4.2 Adding Equality

We can extend again Theorem 14 to ground equalities in the atomic formulas
of S. The procedure is the same as in Lemma 5: for a fixed E, Lemmas 11 and
12 can be extended, considering representatives modulo =E . Then we only have
to compute a fixed point of a function f on the atomic formulas of S, using the
PTIME oracles provided by (extensions of) Lemmas 11 and 12.

5 The General Case

Finally, we extend the results of the previous section to clauses with constraints.
A constraint Γ is a formula interpreted as a subset of ((T (F))∗)n (n-tuples

of finite sets of ground terms) if n is the number of free variables of Γ . We write
S1, . . . , Sn |= Γ when (S1, . . . , Sn) belongs to this interpretation. A constrained
clause is a pair of a clause and a constraint, which is written φ ‖ Γ . Given
a constrained clause φ ‖ Γ , we let �φ‖Γ � = {φσ|σ satisfies Γ}. A model of
φ ‖ Γ is, by definition, a model of �φ‖Γ �. A constraint Γ is monotone if

– if S1, . . . , Sn |= Γ and, for every i, S′
i ⊆ Si, then S′

1, . . . , S
′
n |= Γ

– if S1, . . . , Sn |= Γ and S′
1, . . . , S

′
n |= Γ , then S1 ∪ S′

1, . . . , Sn ∪ S′
n |= Γ .
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We typically use constraints of the form t /∈ X (where t ∈ T (F)), satisfied by
any S that does not contain t as subterm. Such constraints are monotone.

Adding a fixed set of possible constraints increases significantly the difficulty:
Lemmas 11 and 12 no longer hold, as shown by the following example:

Example 15. Consider the clause cf(y,k) : X 
 y, X ; f(y, k) 
 n → X 

n ‖f(a, k), f(b, k), f(c, k) /∈ X . Consider the ground deducibility formulas: S =
{(f(a, k) 
 f(b, k), f(b, k); f(c, k) 
 n}. Does cf(y,k) and S entail a; c 
 n ?

Following the procedure of Section 4,

→ c

→ a f(a, k)→ f(b, k)
Cut1f(y,k)→p f(b, k) f(b, k); f(c, k)→ n

Cut2

f(c, k)→ n
Cut2f(y,k)→ n

in which each Cutif(y,k) satisfies the constraint that f(a, k), f(b, k), f(c, k) do not
appear in the context: the instance of X is empty in each case. The procedure
would then incorrectly answers “yes” to the entailment question.

Indeed, the proof rewriting of Lemma 11 yields the following (invalid) proof,
in which the constraints are not satisfied in the first application of Cutf(x,k),
since the corresponding instance of X is the one element set f(c, k):

→ c

→ a

f(a, k)→ f(b, k) f(b, k); f(c, k)→ n
Res

f(a, k); f(c, k)→ n
Cutf(x,k)

f(c, k)→ n
Cutf(x,k)→ n

Our solution consists in designing another inference system, along the same ideas
as before, for which Lemmas 11 and 12 still hold. To do so, we memorize more
information in the mark (typically the constraints that need to be satisfied) so
that the matching rule (removing the mark) can be applied only if the actual
clauses would satisfy the constraints recorded in the mark.

Example 16. To explain the main idea, we give a simplified example of how the
new proof system works. Coming back to Example 15, in our system we get:

→ a f(a, k)→ f(b, k)
Cut1f(y,k)→f(a,b),f(b,k),f(c,k)/∈X f(b, k)

But we cannot apply Cut2 since its application requires that the context satisfies
the constraint in the mark, which is not the case. We could apply a Cut1, without
removing the mark but then the mark could not be removed any more since the
marks can never be removed from the “pattern premisse” of a Cutiw rule.
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If the clause is less constrained, for instance assume that we only impose
f(b, k) /∈ X , then we can prove → n as follows:

→ c

→ a f(a, k)→ f(b, k)
Cut1f(y,k)→f(b,k)/∈X f(b, k) f(b, k); f(c, k)→ n

Cut2

f(c, k)→ n
Cut2f(y,k)→ n

This time, we may remove the mark, as the instance of X is the singleton
{f(c, k)}, that does not contain f(b, k).

We get an analog of Lemmas 11 and 12, which yields a PTIME decision procedure
(because the number of possible marks is fixed).

Theorem 17. If S is a set of ground clauses built on 
, we can decide in PTIME
the satisfiability of S together with T,W and finitely many constrained clauses
cs, cc built on the same pattern p, provided the constraints are monotone.

Again, this can be extended, as in the theorem 14, guarding the clauses with
predicates that are defined by a saturated set of Horn clauses A0 (w.r.t. a basic
ordering). This can be extended also to the case where S contains equalities.

6 Conclusion

We designed a technique for proving tractability of a collection of proof systems
(or Horn clauses): the idea is to extend the proof system with marked clauses such
that the expressivity is unchanged while the unit strategy becomes complete. Our
technique captures a class of clauses relevant to a computer security application.

PTIME membership is obtained by nesting PTIME oracles. We did not suc-
ceed however in showing a more abstract combination result allowing, say, to
combine two tractable inference systems, one of which depends on the other.
For instance, when we add guards to another system (resp. equalities in the
input clauses) we would like to get automatically a tractability property from
the tractability of the system without guards (resp. without equality) and the
tractability of the guards entailment (resp. tractability of the word problem).

Another perspective is to provide a more abstract statement of the proof
method, which does not rely on the specific deducibility predicate. Moreover, our
work is not fully complete since we did not consider the function and reflexivity
axioms in the two last sections. We could also investigate the case of several
patterns and/or constraints that involve both a (non-ground) term and a set.
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A Proof of Lemma 11

Lemma 11. Let S be a set of ground clauses, and s be a ground term. In case
E = ∅ and removing the function and reflexivity axioms from I, S �I→ s if and
only if S �J→ s.

Proof. We first prove that, if there is a proof Π of s in I from S, then there is
a proof Π ′ without W . Indeed, we may push W to the bottom of the proof as
follows:

A1, . . . , An → x
W

A1, . . . , An, C → x B1, . . . , Bm, w → p
Cutw

A1, . . . , An, B1, . . . , Bm, C → p

can be rewritten to

A1, . . . , An,→ x B1, . . . , Bm, w→ p
Cutw

A1, . . . , An, B1, . . . , Bm,→ p
W

A1, . . . , An, B1, . . . , Bm, C → p

W also commutes with the rules Stru. Since the proof of a unit clause cannot
end with W , Π does not contain W .
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Now let us show that if there is a proof of → s in J then there is a proof
of → s in I : Consider a minimal (in number of Cut1, Cut1w, Str

1
u rules) proof

Π of S → t in J . Consider a subproof Π ′ of Π that uses once Cut2w, as a last
inference rule. We show that Π ′ can be rewritten into a strictly smaller proof
(w.r.t. the size). This contradicts the minimality of Π , hence this proves that
the minimal size proof does not make use of any extra rule.

First note that, according to labels inheritance, once a clause is annotated,
then the label cannot be removed completely, unless we apply Cut2w or Cut2.
Since the leaves of Π ′ are not annotated, we can write Π ′ as :

...

...
π1

S1 → t
R1

...
Rn

Sn →p t
π2

S,wσ → pσ
Cut2w

Sn, S → pσ

where R1, . . . , Rn are Cut1w, Cut
1 or Str1u.

We argue that Π ′ can be rewritten into

...

...

π1

S1 → t
π2

S,wσ → pσ
Cut2w

S1, S → pσ
R̃1

...
R̃n

Sn, S → pσ

This is a strictly smaller proof. It only remains to define the rules R̃i and check
that the above proof is a valid proof in the new inference system indeed.

If Rk =
V k
2 →p tk V k

1 , w′σ →p t

Sk →p t

we let R̃k =
V k
2 →p tk S, V k

1 , w′σ → pσ

S, Sk → pσ

The rule Cut1w′ is therefore replaced with a rule Cut2w′ .

If Rk =
V k
1 , vσ →p t

V k
1 →p t

we let R̃k =
S, V k

1 , vσ → pσ

S, V k
1 → pσ

The rule Str1v is replaced with a rule Str2v.

It is now enough to note that the choice of R̃k ensures that Π ′ is a valid proof
in the I inference system.
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Abstract. Automated reasoning systems which build on resolution or
superposition typically operate on formulas in clause normal form (CNF).
It is well-known that standard CNF translation of a first-order formula
may result in an exponential number of clauses. In order to prevent this
effect, renaming techniques have been introduced that replace subformu-
las by atoms over fresh predicates and introduce definitions accordingly.
This paper presents generalized renaming. Given a formula and a set of
subformulas to be renamed, it is suggested to use one atom to replace
all instances of a generalization of a given subformula. A generalized re-
naming algorithm and an implementation as part of the SPASS theorem
prover are described. The new renaming algorithm is faster than the pre-
vious one implemented in SPASS. Experiments on the TPTP show that
generalized renaming significantly reduces the number of clauses and the
average time taken to solve the problems afterward.

1 Introduction

Most automated reasoning systems operate on formulas in clause normal form
(CNF). Many problem formulations, however, are given in full propositional
or first-order logic. While every first-order formula can be translated into an
equisatisfiable formula in CNF [2], the conversion leads to an exponential blow-
up of the formula in the worst case. An obvious example is this formula in
disjunctive normal form (DNF),

(X1 ∧ Y1) ∨ (X2 ∧ Y2) ∨ · · · ∨ (Xn ∧ Yn) ,

with O (n) literals, for which the CNF variant obtained by exhaustive application
of distributivity laws has O (2n) literals.

A well-established workaround to this problem is formula renaming. Originally
due to Tseitin [10], the idea is to introduce new predicate symbols to replace
parts of the formula that might be “problematic”, i.e. that might be eventually
responsible for exponential blow-up of the result. These replacements avoid the
repeated application of distributivity laws. For example, a renamed variant of
the above formula is,

(R1 ∨ · · · ∨Rn) ∧ (R1 ↔ (X1 ∧ Y1)) ∧ · · · ∧ (Rn ↔ (Xn ∧ Yn)) .

In this manner, the maximum number of new symbols introduced is in O (n),
and the CNF translation also becomes linear in the size of the formula. It is

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 109–125, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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worth noting that renaming generates fewer clauses, without having an impact
on the individual clause size. Because of the introduction of new symbols, for-
mula renaming does not preserve logical equivalence. However, it is satisfiability-
preserving; meaning that the resulting formula is satisfiable if and only if the
original formula is satisfiable. This is not a problem in the context of automated
theorem proving; CNF translation employs Skolemization and therefore is itself
only satisfiability-preserving.

Existing work differs as to the criteria for choosing positions to rename. [8]
suggests the replacement of every subformula, while [4] suggests only those re-
placements that would decrease the size of the CNF result. [7] shows an efficient
method to find these “beneficial” replacements, which involves a linear-time com-
putation of numbers and some arithmetic manipulation.

For first-order formulas, the authors of [7] mention the benefit of renaming
several “compatible” subformulas using the same symbol. Two formulas ϕ1, ϕ2 are
compatible if they are both instances of a common formula ϕ. We call such a ϕ a
generalization of ϕ1 and ϕ2. For k compatible subformulas with a generalization
ϕ, we need only define one symbol with the “general” definition ϕ, as opposed
to k symbols that standard renaming would introduce. As an example, standard
renaming of the formula,

(P ∨ (Q1 (a1) ∧Q2 (a1))) ∧ · · · ∧ (P ∨ (Q1 (an) ∧Q2 (an))) ,

would yield the following formula of 4n clauses,

(P ∨R1) ∧ (P ∨R2) ∧ · · · ∧ (P ∨Rn)

∧ R1 ↔ Q1 (a1) ∧Q2 (a1)

∧ . . .

∧ Rn ↔ Q1 (an) ∧Q2 (an) .

Renaming of the compatible subformulas of the form Q1 (ai)∧Q2 (ai) using one
symbol yields a formula for which the CNF has only n+ 3 clauses,

(P ∨R (a1)) ∧ (P ∨R (a2)) ∧ · · · ∧ (P ∨R (an))

∧ ∀x [R (x)↔ Q1 (x) ∧Q2 (x)] .

This inspires what we denote by generalized formula renaming. We assume the
input to be a formula ψ, and a set Π of beneficial positions for renaming in ψ.
For every beneficial position determined by the system, we would also like to
rename all other compatible positions in ψ using the same predicate symbol.

Generalized renaming has several potential benefits. For redundant formulas,
the clause set can be significantly reduced. New symbols are introduced min-
imally, and therefore there are fewer definition clauses. The individual clauses
are also shortened by the replacements. Moreover, generalized renaming has the
advantage of preserving structural information, which we will later show can
have a significant effect on the time taken to find a proof.
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This work is the first to study the generalized renaming problem. We present
a formal generalized renaming algorithm with proof of correctness, and exper-
iments based on our implementation of the algorithm as part of the SPASS
automated theorem prover. Our tests show that generalized renaming is able to
reduce the number of clauses in the CNF result by up to 92.9%, when compared
to a standard renaming procedure where compatible subformulas are not con-
sidered. This significant reduction in size also reduces the time taken for CNF
translation, and allows for potential reduction of the total run time of the prover.
We will show cases where the performance of the prover is significantly enhanced
with generalized renaming, and discuss the general effect of this approach on au-
tomated theorem proving.

We begin by fixing the notation and going over the necessary background in
Section 2. Section 3 formally defines the problem and presents the algorithm.
We show our experiments and results in Section 4, concluding with a discussion.
All relevant proofs can be found in a technical report on [1].

2 Background

We rely mostly on the notation used in [7]. We assume a first-order language over
a signature Σ = (F ,R), where F and R are the sets of function and predicate
symbols respectively. The arity of function (predicate) symbol f (P ) is given by
arity (f) (arity (P )), with f/n denoting arity (f) = n. Additionally, we assume
an infinite set X of variable symbols disjoint from the symbols in Σ. Terms,
formulas, atoms, literals and clauses are defined in the usual way. A formula is
in clause normal form if it is a conjunction of clauses. The set of positions of a
term t (formula ϕ) is defined by: (1) ε ∈ pos (t) for any t, where t|ε = t, (2) if
t|π = f (t1, . . . , tn) for f ∈ F , then π.i is a position in t for all i = 1, . . . , n, such
that t|π.i = ti, (3) ε ∈ pos (ϕ) for any ϕ, where ϕ|ε = ϕ, (4) if ϕ|π = f (t1, . . . , tn)
for f ∈ F , then π.i is a position in ϕ for all i = 1, . . . , n, such that tϕ|π.i = ti, (5)
if ϕ|π = P (t1, . . . , tn) for P ∈ R, then π.i is a position in ϕ for all i = 1, . . . , n,
such that ϕ|π.i = ti, (6) if ϕ|π = ϕ1 * ϕ2 for * ∈ {∨,∧,→,↔}, then π.1 and
π.2 are positions in ϕ such that ϕ|π.1 = ϕ1, ϕ|π.2 = ϕ2, and (7) if ϕ|π = Qxϕ′

for Q ∈ {∀, ∃}, or ϕ|π = ¬ϕ′, then π.1 is a position in ϕ such that ϕ|π.1 = ϕ′.
We assume a prefix order ≤ on positions, with a corresponding strict ordering

<. Two positions π1, π2 are parallel, denoted by π1 ‖ π2, if they are incomparable
by ≤. In additional, there is the total lexicographic ordering <lex . The size of
a formula |ϕ| = |pos (ϕ)|. The top symbol of a term t (formula ϕ) is given by
topsymbol (t) (topsymbol (ϕ)). For a term t (formula ϕ), the function vars (t)
(vars (ϕ)) returns a set of variables that occur in t (ϕ). Similarly, freevars (ϕ) is
the set of free variables of ϕ.

The polarity of a position π in a formula ψ is denoted by pol (ψ, π). Substitu-
tions are defined in the usual way. We denote the identity substitution by σI . The
composition of two substitutions σ, τ is denoted by σ ◦ τ . We denote the most
general unifier by mgu (t1, t2). For two formulas ϕ1, ϕ2, subinst (ϕ1, ϕ2) : =
{π | ϕ2|π = ϕ1σ for some substitution σ} . The application of a substitution σ
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is extended to terms by the rule f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ) for all f ∈ F
with arity n. It is extended to formulas by (1) P (t1, . . . , tn)σ = P (t1σ, . . . , tnσ)
for every P ∈ P , (2) (¬ϕ) σ = ¬ (ϕσ), (3) (ϕ1 * ϕ2)σ = ϕ1σ * ϕ2σ for
* ∈ {∨,∧,→,↔}, and (4) (Qxϕ)σ = Qy [(ϕ {x �→ y})σ] for Q ∈ {∀, ∃}, where
y is a fresh variable not in the domain or range of σ or freevars (ϕ). An injective
substitution σ for which xσ ∈ X for all x ∈ X is called a variable renam-
ing. Syntactic equality on terms is defined in the usual way. For formulas, we
define syntactic equality up to the names of quantified variables. Namely, for
Q ∈ {∃, ∀}, Qxϕ1 = Qyϕ2 if and only if ϕ1 {x �→ z} = ϕ2 {y �→ z} for a fresh z.
In all other cases, it is defined in the usual way.

We define formula renaming for first-order logic as in [7].

Definition 1. (Formula Renaming) Let ψ, ϕ be first-order formulas, and π a
non-term position such that ψ|π = ϕ. Let freevars (ϕ) = {x1, . . . , xn}, and R a
fresh predicate symbol of arity n. A formula renaming of ψ at π is the first-order
formula ψ [π/R (x1, . . . , xn)] ∧ def (π, ψ,R), where the formula def (π, ψ,R) is a
polarity-dependent definition of the new predicate R, defined as:

def (π, ψ,R) : =

⎧⎪⎨
⎪⎩
∀x1, . . . , xn [R(x1, . . . , xn)→ ψ|π] if pol(ψ, π) = 1,

∀x1, . . . , xn [ψ|π → R(x1, . . . , xn)] if pol(ψ, π) = −1,
∀x1, . . . , xn [R(x1, . . . , xn)↔ ψ|π] if pol(ψ, π) = 0.

(1)

The formula def (π, ψ,R) defines the renaming predicate R in terms of ψ|π = ϕ,
according to the polarity of ϕ in ψ. This polarity-dependent definition is a well-
known optimization, first suggested by [5], eliminating implications that are not
useful for inferences. However, Equation 1 assumes that R is to be defined in
terms of a subformula ϕ of ψ. In case of generalized renaming, we would like to
define a renaming predicate R in terms of a generalization ϕ, where ϕ does not
generally occur in ψ. We overload the function def (π, ψ,R) with the following
variant.

def (ϕ, p,R) =

⎧⎪⎨
⎪⎩
∀x1, . . . , xn [R(x1, . . . , xn)→ ϕ] if p = 1,

∀x1, . . . , xn [ϕ→ R(x1, . . . , xn)] if p = −1,
∀x1, . . . , xn [R(x1, . . . , xn)↔ ϕ] if p = 0,

(2)

where freevars (ϕ) = {x1, . . . , xn} and p ∈ {−1, 0, 1}. In this context, p refers to
the polarity of the instances of ϕ. Because different instances of the same gener-
alization may occur with different polarities in ψ, we use one “general” polarity
which is compatible with all these instances. For a formula ψ, the polarity of
Π ⊂ pos (ψ) in ψ, pol (ψ,Π) = p if pol (ψ, π) = p for all π ∈ Π , pol (ψ,Π) = 0
otherwise.

For two formulas ϕ1 and ϕ2, we define the notion of generalization and com-
patibility as follows. A generalization of ϕ1 and ϕ2 is a formula ϕ such that for
some substitutions σ1, σ2, ϕσ1 = ϕ1 and ϕσ2 = ϕ2. The set of all generaliza-
tions of ϕ1 and ϕ2 is denoted by GEN(ϕ1, ϕ2). Two formulas ϕ1 and ϕ2 are
compatible, denoted by ϕ1 ∼ ϕ2, if GEN(ϕ1, ϕ2) = ∅.
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In order to minimize the introduction of new variables, and consequently
the arity of renaming predicates, we are interested in minimal generalizations.
A generalization ϕ ∈ GEN(ϕ1, ϕ2) is called minimal if for all generalizations
ϕ′ ∈ GEN(ϕ1, ϕ2), there exists some σ such that ϕ = ϕ′σ. It is clear to see that
minimal generalizations are equal up to variable renaming.

We extend the notion of generalization to sets of positions. Let ψ be a formula
and Π ⊂ pos (ψ). A generalization of Π in ψ is a formula ϕ such that for all
π ∈ Π , there is some σ such that ψ|π = ϕσ. The set of all generalizations of
Π in ψ is denoted by GEN(ψ,Π). A generalization ϕ ∈ GEN(ψ,Π) is called
minimal if for every ϕ′ ∈ GEN(ψ,Π) there is some σ such that ϕ = ϕ′σ.

Clearly, compatibility is an equivalence relation. For generalized renaming of
compatible subformulas, we will cluster subformulas into equivalence classes with
respect to compatibility. We denote these by compatibility classes. For a formula
ψ, the compatibility relation ∼ψ on pos (ψ) is an equivalence relation given by
π1 ∼ψ π2 if and only if ψ|π1 ∼ ψ|π2 . The equivalence class of π ∈ pos (ψ) with
respect to ∼ψ is denoted by [π]ψ. The quotient set of pos (ψ) by ∼ψ is given by

Qψ :=
{
[π]ψ | π ∈ pos (ψ)

}
.

3 Generalized Formula Renaming

The input to the renaming algorithm is a formula ψ and a set of positions
Π ⊂ pos (ψ) to be renamed in ψ. Consider the formula,

ψ := ∀x, y [P (x)↔ (Q (x)↔ (P (y)↔ (Q (y)↔ (P (b)↔ Q (b)))))]

∧ ((P (a1)↔ Q (a1)) ∧ · · · ∧ (P (an)↔ Q (an)))

We assume that Π = {111122, 1111222, 11112222}, since renaming at these po-
sitions eventually reduces the number of clauses in the CNF transformation. A
standard renaming of ψ at Π is the formula,

[ψ [πi/Ri (x1, . . . , xn)] ∧ def (πi, ψ,Ri)]πi∈Π ,
where {x1, . . . , xn} are the free variables of ψ|πi . Applying standard renaming
in our example yields the following formula,

∀x, y [P (x)↔ (Q (x)↔ R2 (y))]

∧ ∀x [R2 (x)↔ (P (x)↔ R1 (x))]

∧ ∀x [R1 (x)↔ (Q (x)↔ R0)]

∧ [R0 ↔ (P (b)↔ Q (b))]

∧ (P (a1)↔ Q (a1)) ∧ · · · ∧ (P (an)↔ Q (an))

for which the CNF translation has 2n+ 16 clauses. Individual renaming of any
of the subformulas P (ai) ↔ Q (ai) does not reduce the number of clauses due
to the need to introduce clauses for the definitions. However, we notice that the
atom R0 is used to rename a compatible subformula P (b)↔ Q (b), and can be
used to rename all subformulas P (ai)↔ Q (ai) as well, without the introduction
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of more definitions. Now, P (b) ↔ Q (b) , P (a1) ↔ Q (a1) , . . . , P (an) ↔ Q (an)
are instances of P (x)↔ Q (x). We use this generalization to define the predicate
R0, which is now assigned an arity of 1. This generalized renaming yields,

∀x, y [P (x)↔ (Q (x)↔ R2 (y))]

∧ ∀x [R2 (x)↔ (P (x)↔ R1 (x))]

∧ ∀x [R1 (x)↔ (Q (x)↔ R0 (b))]

∧ ∀x [R0 (x)↔ (P (x)↔ Q (x))]

∧ R0 (a1) ∧ · · · ∧R0 (an)

for which the CNF translation has n+ 16 clauses.
Formally, we define generalized renaming as follows.

Definition 2. (Generalized Formula Renaming) Let ψ be a formula and Π ⊂
pos (ψ) be a set of non-term positions in ψ. Then 〈ψ,Π〉 is a formula renaming
pair. Let sort lex (Π) = [π1, . . . , πn] be a list of the elements in Π, sorted in
descending lexicographic order. A generalized renaming of Π in ψ is given by
rename (ψ, sort lex (Π)), where,

rename (ψ,NIL) = ψ

rename (ψ, [πi | Π ]) = rename (rename (ψ, πi) , Π)

rename (ψ, πi) = ψ
[
πj
i /Ri (x1, . . . , xm)σj

i

]
πj
i∈[πi]ψ

∧ def (ϕi, pi, Ri)

where ϕi ∈ GEN
(
ψ, [πi]ψ

)
, ψ|πj

i
= ϕiσ

j
i freevars (ϕi) = {x1, . . . , xm}, pi =

pol
(
ψ, [πi]ψ

)
and Ri is a fresh predicate symbol of arity m.

Let ψSR, ψGR be the CNF translations of ψ produced by standard and gener-
alized renaming respectively. It is worth mentioning that whenever there is no
redundancy to be exploited in the input formula ψ, i.e. whenever [π] ψ = {π}
for all π ∈ Π , generalized renaming reduces to standard renaming of ψ at all
positions π ∈ Π , and ψSR = ψGR.

In general, ψGR contains at most as many clauses as ψSR. It is possible, how-
ever, that generalized renaming results in more clauses than standard renam-
ing by the above definition. When compatible instances of different polarities
are included in the renaming, a definition may expand into a full equivalence
where only an implication would suffice in the standard version. For exam-
ple, if only position π = 1 is beneficial in ψ := φσ1 ∧ ¬φσ2, standard re-
naming would yield A ∧ ¬φσ2 ∧ ∀x1, . . . , xn [A→ φσ1] for some atom A, where
freevars (φσ1) = {x1, . . . , xn}. Generalized renaming includes the compatible
subformula φσ2, yielding Bσ1 ∧ ¬Bσ2 ∧ ∀y1, . . . , ym [B ↔ φ] for some atom B,
where freevars (φ) = {y1, . . . , ym}, doubling the size of the definition. If we are
interested in minimizing the number of clauses, generalized renaming may be
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restricted to include only those compatible instances that will not expand the
definition. Both types of generalized renaming are included in our SPASS imple-
mentation.

3.1 A Generalized Renaming Algorithm

Detecting compatible subformulas and constructing the appropriate definitions
involves a process of repeated generalization. There are several issues to note
here. First, every replacement of the form ψ [π/R (x1, . . . , xm)σ] requires the
computation of the substitution σ. There are |ψ| such substitutions in the worst
case, each of size O (|ψ|), which means that computing them requires quadratic
time. To avoid this, we note that an upper replacement in the formula hides the
effect of all lower replacements. Therefore, we need only perform those replace-
ments at top-most renaming positions. A top-most position in ψ with respect to
Π ⊆ pos (ψ) is a position π such that for all π′ ∈ Π , π′ > π or π′ ‖ π. Top-most
renaming positions are the top-most positions in Π . The sum of sizes of formulas
at top-most renaming positions is at most linear.

However, nested renamings cause one renaming predicate to appear in the
definition of another, which can be seen in our example, where R0 (b) occurs
in the definition of R1 (x). This requires renaming steps to be performed in a
bottom-up manner, as indicated in the definition. Compatibility checks on sub-
formulas of a certain size can only be performed once all deeper subformulas
(of smaller size) have been renamed. In order to employ top-most replacement,
the definitions have to be constructed in such a way that is independent from
the replacement steps. We will later show that, since dependencies between def-
initions correspond to similar dependencies between subformulas, we can use
formula structure to compute the definitions correctly in a bottom-up manner,
independent from the replacements.

We now present an algorithm for generalized renaming on a formula renaming
pair 〈ψ,Π〉. Our algorithm performs replacements and generation of definitions
in two separate stages.

The first step is to cluster subformulas of ψ into compatibility classes. The
procedure described in Compute-Compatibility performs this task. The result
is a mapping M from subformulas to their respective generalizations.

Compute-Compatibility relies on a process of repeated generalization. For
this purpose, Generalize describes a minimal generalization procedure for two
input formulas ϕ1, ϕ2. Temporary substitutions are kept in σ1, σ2. A list L is used
to keep track of bound variables, to prevent generalization above a bound vari-
able position. It can be shown that the generalization returned by Generalize
is minimal.

At this point, every position π ∈ pos (ψ) is assigned a minimal generalization
ϕ ∈ GEN

(
ψ, [π]ψ

)
. Every such ϕ is assigned the polarity pol

(
ψ, [π]ψ

)
, and ϕ

is marked for renaming if and only if [π]ψ ∩Π = ∅.
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Let ϕ1, . . . , ϕn be the set of constructed generalizations, where for 1 ≤ i ≤ n,
ϕi ∈ GEN

(
[πi]ψ

)
for some πi, and ϕi is assigned polarity pi and renaming

predicate Ri. Because of possible nested renamings, Ri cannot be defined directly
in terms of ϕi. In order to define Ri correctly, we need to detect what we call
direct dependencies of ϕi on ϕj , where j = i, 1 ≤ j ≤ n, and ϕj is marked for
renaming. A direct dependency is the case where ϕi|π = ϕjσ for some π, σ such
that ϕi|π′ = ϕkσ

′ for no ϕk marked for renaming, 1 ≤ k ≤ n, k = i = j and
π′ < π. For every direct dependency ϕi|π = ϕjσ, ϕi should be replaced at π
with Rj (x1, . . . , xm)σ, where freevars (ϕj) = {x1, . . . , xm}.

1 Procedure: Compute-Compatibility (〈ψ,Π〉 , π)
Input: A formula renaming pair 〈ψ,Π〉 and a position π ∈ pos (ψ).
Result: A mapping M from subformulas of ψ|π to the respective

generalizations.

2 if ψ|π is a formula then
3 if ψ|π is not an atom then
4 Recursively compute compatibility for subformulas of ψ|π.
5 end
6 for all generalizations ϕ computed so far do
7 Set 〈ϕ, σ1, σ2〉 to Generalize (ψ|π, ϕ, ∅, ∅, ∅).
8 if ϕ �= ⊥ then
9 Set M (ψ|π) to ϕ.

10 if the polarity assigned to ϕ is different from pol (ψ, π) then assign
ϕ a polarity 0.

11 if (π ∈ Π) then mark ϕ for renaming.
12 break.
13 end
14 end
15 if no generalization has been found for ψ|π then
16 Construct a new generalization ϕ = ψ|π.
17 Assign ϕ the polarity pol (ψ, π).
18 if π ∈ Π then mark ϕ for renaming.
19 Set M (ψ|π) to ϕ.
20 end
21 end
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1 Procedure: Generalize (ϕ1, ϕ2, σ1, σ2, L)

Input: Formulas or terms ϕ1, ϕ2, substitutions σ1, σ2, and a list L of variables.
Output: 〈ϕ, σ1, σ2〉 where ϕi = ϕσi for i ∈ {1, 2} if ϕ1 ∼ ϕ2, 〈⊥,NIL,NIL〉

otherwise.

2 if topsymbol (ϕ1) = topsymbol (ϕ2) then
3 switch topsymbol (ϕ1) do
4 case predicate/function symbol P where ϕ1 = P (t1, . . . , tn) and

ϕ2 = P (s1, . . . , sn)
5 Create list A [1, . . . , n].
6 for i = 1 to n do
7 Set 〈t, σ1, σ2〉 to Generalize (ti, si, σ1, σ2, L).
8 if t = ⊥ then return 〈⊥,NIL,NIL〉.
9 A[i]← t.

10 end
11 return 〈P (A [1] , . . . , A [n]) , σ1, σ2〉.
12 case negation symbol ¬
13 Set 〈ϕ, σ1, σ2〉 to Generalize (ϕ1|1, ϕ2|1, σ1, σ2, L).
14 if ϕ = ⊥ then return 〈⊥,NIL,NIL〉.
15 return 〈¬ϕ, σ1, σ2〉.
16 case � ∈ {∨,∧,→,↔}
17 Set 〈ϕ′

1, σ1, σ2〉 to Generalize (ϕ1|1, ϕ2|1, σ1, σ2, L).
18 Set 〈ϕ′

2, σ1, σ2〉 to Generalize (ϕ1|2, ϕ2|2, σ1, σ2, L).
19 if ϕ′

1 or ϕ′
2 is ⊥ then return 〈⊥,NIL,NIL〉.

20 return 〈ϕ′
1 � ϕ′

2, σ1, σ2〉.
21 case Q ∈ {∀,∃} where ϕi = Qxiϕ

′
i

22 Rename xi in ϕ′
i to x /∈ vars (ϕi)∪ dom (σi)∪ range (σi). Add x to L.

23 Set 〈ϕ, σ1, σ2〉 to Generalize (ϕ′
1, ϕ

′
2, σ1, σ2, L).

24 if ϕ = ⊥ then return 〈⊥,NIL,NIL〉.
25 return 〈Qxϕ,σ1, σ2〉.
26 case variable x return 〈x, σI , σI〉.
27 endsw
28 else if ϕ1, ϕ2 are terms such that no x ∈ L occurs in ϕi then
29 if there is a variable x such that xσi = ϕi then return 〈x, σ1, σ2〉.
30 else
31 Let x be a fresh variable not in ϕi, dom (σi) , range (σi).
32 σi ← σi ∪ {x → ϕi}.
33 return 〈x, σ1, σ2〉.
34 end
35 else return 〈⊥,NIL,NIL〉.// formulas with different top symbols
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Instead of searching for these dependencies in a naive way, we notice that
for generalizations ϕ1, ϕ2 of ψ|π1 , ψ|π1π2 respectively, ϕ1|π2 = ϕ2σ for some σ.
This is due to the property of coverage. A formula ϕ covers another formula ψ
if for every formula ϕ′ and substitution σ such that ϕ = ϕ′σ, |subinst (ψ, ϕ)| =
|subinst (ψ, ϕ′)|. Coverage can be shown to hold for generalizations constructed
by our procedure (see technical report). Therefore, we may solve the dependen-
cies by constructing definitions in a bottom-up manner, guided by the structure
of ψ. At every position π in a bottom-up traversal of ψ, let ϕ be the generalization
assigned to ψ|π. We compute the definition def ϕ for ϕ, as well as a representa-
tive repϕ. If ϕ is marked for renaming, repϕ is simply the renaming atom for ϕ.
Otherwise, it is identical to def ϕ. The definition def ϕ can be easily computed
using repϕ′ , where ϕ′ are the generalizations of the immediate subformulas of
ψ|π.

Using our previous example, let ϕ1 = Q (x) , ϕ2 = P (x) ↔ Q (x), and ϕ3 =
Q (x)↔ (P (y)↔ Q (y)) be generalizations constructed for n+ 3 and n+1 and
1 instance(s) in ψ, respectively. Because ϕ1 is an atom unmarked for renaming,
def ϕ1

= repϕ1
= ϕ1. Now, ϕ2 is marked for renaming with renaming predicate

symbol R0, and so def ϕ2
= P (x) ↔ Q (x), and repϕ2

= R0 (x). Similarly,
ϕ3 is marked for renaming with predicate symbol R1, and repϕ3

= R1(x). We
construct def ϕ3

= repϕ1
↔
(
repϕ2

{x �→ b}
)
, because ϕ3 = ϕ1 ↔ ϕ2 {x �→ b}.

Finally, Replace-Topmost performs top-most replacement, by traversing
ψ in a top-down manner. If the current position π is a renaming position, it
is replaced by the corresponding renaming atom. Otherwise, recursive calls are
made to the immediate subformulas π.1 and π.2, if any.

4 Experiments

The generalized formula renaming algorithm is implemented as part of SPASS
version 3.8 [11]. The TPTP problem library [9], version 5.4.0, was used for test-
ing. Tests were run on a cluster of computing nodes with quad-core processors
2x Intel Xeon E5620 @ 2.40GHz, and 48GB RAM. The input set of beneficial re-
naming positions Π is computed using the same method in SPASS 3.7, suggested
in [7].

The first experiment compared generalized renaming to standard renaming on
all 7807 problems given in full first-order logic, from 36 different domains. In this
experiment, only the CNF translation was performed, and the number of clauses
and time taken for CNF translation was compared. For the second experiment,
we considered the subset of these problems for which CNF translation finished
within the given time limit, and generalized renaming was able to reduce the
number of clauses by at least 5%. These are 528 problems from 16 different
domains.

The CNF translation results can be found on the SPASS homepage [1].



Computing Tiny Clause Normal Forms 119

1 Procedure: Generate-Definitions (ψ, π)

Input: A formula ψ and position π ∈ pos (ψ).
Output: A conjunction δ of definition formulas for all generalizations of

subformulas at or below ψ|π.

2 Set δ to �.
3 Let ϕ be the generalization assigned to ψ|π.
4 if ϕ is not yet defined then
5 switch topsymbol (ψ|π) do
6 case negation symbol ¬
7 Set δ to Generate-Definitions (ψ, π.1).
8 Set ϕ1 to the generalization of (ψ|π.1).
9 Set def ϕ to ¬ (

repϕ1

)
σ, where ϕ = ¬ϕ1σ.

10 case one of {∀,∃}
11 Set δ to Generate-Definitions (ψ, π.1).
12 Set ϕ1 to the generalization of (ψ|π.1).
13 Set def ϕ to Qx

(
repϕ1

)
σ, where ϕ = Qx [ϕ1σ].

14 case � ∈ {∨,∧,→,↔}
15 Set δ to

Generate-Definitions (ψ, π.1) ∧Generate-Definitions (ψ, π.2).
16 Set ϕi to the generalization of (ψ|π.i) for i ∈ {1, 2}.
17 Set def ϕ to

(
repϕ1

)
σ1 �

(
repϕ2

)
σ2 for ϕ = ϕ1σ1 � ϕ2σ2.

18 otherwise Set def ϕ to ϕ. // predicate symbol
19

20 endsw
21 if ϕ is marked for renaming then
22 Set repϕ to R (x1, . . . , xn), where freevars (ϕ) = {x1, . . . , xn} and R/n is

a new predicate symbol.
23 Set δ to δ ∧ def

(
def ϕ, p, R

)
, where p is the polarity assigned to ϕ.

24 else Set repϕ to def ϕ.
25 Mark ϕ as defined.
26 end
27 return δ.

1 Procedure: Replace-Topmost (ψ, π)

Input: A formula ψ and position π.
Result: Every renaming position in ψ|π is replaced by the corresponding

renaming predicate.

2 if ψ|π is a non-atomic formula then
3 Let ϕ be the generalization assigned to ψ|π.
4 if ϕ is marked for renaming then set ψ to ψ

[
π/

(
repϕ

)
σ
]

for ψ|π = ϕσ.
5 else recursively perform top-most replacement on subformulas of ψ|π.
6 end
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4.1 Comparing the Size of CNF

In this experiment, we performed CNF translation on 7807 TPTP problems using
both standard renaming (SR), and generalized renaming (GR). The respective
number of clauses and time taken for CNF translation were compared. The
number of problems for which both versions terminated within the time limit of
one hour is 7231, leaving 576 particularly large problems. This is partly due to
the fact that the SPASS 3.8 implementation is not targeted towards very large
input files in general.

Fewer Clauses: Generalized renaming reduces the number of clauses in the CNF
result for 1983 (27.4%) of the problems. Clause reduction may be as high as
93%, as in problem ALG207+1. In this problem, 147 occurrences of subformulas
of the form (op (x1, y1) ≈ z1) ∨ · · · ∨ op (x7, y7) ≈ z7 are replaced by instances
of SkP0 (x1, y1, z1, . . . , x7, y7, z7), reducing the number of clauses from 1098 to
only 78. Average clause reduction over each problem domain also proves signifi-
cant, reaching 15.4% for some domains (Table 1a). For 528 problems, there is at
least 5% reduction in the number of clauses. We focus on these problems in our
theorem proving experiment in the next section. Table 1b shows clause reduc-
tion for hard problems. For some of the hardest TPTP problems (with rating
1.0), generalized renaming was able to reduce the number of clauses by up to
87%. Although this reduction in size does not yet enable SPASS to solve these
problems, the significant reduction in size means that generalized renaming is
able to discover a hidden structure in these problems. Developing new reasoning
mechanisms for the abbreviated structure is a new approach towards tackling
these problems in the future (see our discussion on theorem proving mechanisms
in the next section).

Less CNF Translation Time: On average, generalized renaming does not require
more time for CNF translation. In fact, while the average improvement in CNF
translation time is 0.6%, the time taken for CNF translation is significantly re-
duced in many cases. Naturally, this depends on the structure of the problem,
the applicability of generalized renaming, compared to the overhead required
for compatibility computation. Both the maximum improvement and deterio-
ration in CNF translation time are around 30%, for problems CSR086+2 and
CSR104+2 respectively.

4.2 Comparing Theorem Proving Time

For this experiment, SPASS was run on all 528 problems for which there was at
least 5% clause reduction, to test if this significant size improvement corresponds
to an improvement in proof times. For these problems, there was 30.9% average
clause reduction, and 37.8% average reduction in CNF translation time. The
time limit was set to 1 day. The total run time of the prover was compared.

For the problems solved by both versions, generalized renaming is able to
outperform standard renaming, as shown in Table 1. The time taken for theorem
proving is improved by 59.62%.
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Table 1. Some of the best results according to problem domain/difficulty

(a) Problem domains with signifi-
cant clause reduction.

Domain Clauses

Saved

CNF

Time

Saved

SWV 15.40% 93.14%

LCL 15.22% 16.28%

ALG 12.72% 3.87%

COM 3.35% 4.32%

MSC 2.93% 6%

(b) Hard problems with significant clause
reduction.

Problem

Count

Rating Maximum

Clauses Saved

32 1.0 86.9%

9 [0.9, 1.0[ 21.7%

21 [0.8, 0.9[ 23.8%

28 [0.7, 0.8[ 85.5%

27 [0.6, 0.7[ 85.7%

62 [0.5, 0.6[ 67.6%

Table 2. Problems where SPASS terminates within the time limit of 1 day, using both
renaming versions. Generalized renaming significantly outperforms standard renaming
with respect to theorem proving.

Problem

Count

Average CNF Size Average Time Time

Improvement

SR GR SR GR

381 287.88 194.90 294.39 118.88 59.62%

However, the effect of generalized renaming on the time taken to find a
proof for a specific problem is rather complex. Generalized renaming has two
main effects on the resulting clause set. First, generalization results in clauses
with more variables. This has many consequences. For one, ground clauses pro-
duced by standard renaming may correspond to non-ground ones produced
by generalized renaming, which means that certain mechanisms such as split-
ting or reduction may no longer be possible. An example of this is problem
ALG091+1, where generalized renaming succeeds in reducing the number of
clauses by 90.5%. However, the CNF result after generalized renaming contains
the clause (op (u, u) ≈ v ∨ SkP0 (w, x, y, v, u)). This clause cannot be split, be-
cause of the shared variables between the two literals. It corresponds, however,
to several ground clauses in the standard renaming version, each of which can
be split. In this case, splitting is essential to finding the proof. A mechanism of
splitting together with instantiation is needed, as suggested in [6]. However, this
has not yet been implemented.

It may also happen that some reductions performed using standard renaming
are not performed in the generalized version. For example, for ALG047+1 a
ground reduction turns into an instance of contextual rewriting after translation
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with generalized renaming. As this instance of contextual rewriting is currently
not implemented in SPASS, the problem can no longer be solved.

Second, the ordering of literals within a clause in one version may be different
from that within the corresponding clause in the other version, due to the reduc-
tion in size of literals at renaming positions. This means that some inferences
may no longer be possible, and vice versa, because the maximal literal in the
clause is different. When a renaming predicate SkP is introduced with an equiva-
lence formula as a definition SkP↔ ϕ, there are essentially two proof directions
for the prover to take. One direction is to apply inferences involving SkP in order
to expand the definition, i.e. revert the renaming. The other direction involves in-
ferences that do not revert the renaming, but use information about SkP to find
the proof. It is clear that these two proof attempts are complementary. While the
first direction is suited for some problems, the second may be better-suited for
a different class of problems. An example of this is problem NLP160+1, where
the prover sidetracks to irrelevant inferences involving the renaming predicate
SkP2, marked as maximal in the respective clauses. By enforcing an ordering in
which SkP2 is no longer maximal, the problem is solved.

Third, the change in the individual clause size and depth means that clauses
are selected in different order by the prover. It may happen that useful clauses
are only considered much later (or vice versa). In short, slight changes in the
shape of the input clause set may lead the prover down a very different path. The
outcome depends mostly on the problem, but also on the approach/heuristics
used by the prover.

Based on the above, we have implemented two additional settings in our gener-
alized renaming technique. The first setting, denoted by GC, prevents generalized
renaming of closed subformulas (i.e. subformulas with no free variables). For any
set of pairwise-compatible subformulas with no free variables, each subformula
is renamed separately, i.e. only if its renaming is beneficial with respect to the
number of clauses. This setting is well-suited for a number of TPTP problems
where ground reductions are particularly helpful in finding a proof.

The second setting, denoted by GMX, enforces proof attempts that do not ex-
pand renaming predicate definitions. When enabled, renaming predicates whose
definitions are expanded from an implication into a full equivalence by general-
ized renaming are assigned a minimal ordering with respect to other predicates.

Testing each setting individually against standard renaming on all 528 prob-
lems, we get the results shown in Table 3. Although SR manages to solve the
highest number of problems in total, it solves fewer problems than the three
versions of generalized renaming combined. This is because the different flavors
of generalized renaming are suited for different types of input problems. For ex-
ample, the 391 problems solved by plain GR are not the same as those solved by
GC. These initial results suggest that a more robust renaming procedure should
combine all these different versions.

By running a simple portfolio of GC for 30 seconds, GMX for 10 seconds and
plain generalized renaming for the rest of the timeout of 1 day, we obtain the
results summarized in Tables 4 and 5. Out of the problems solved by standard
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Table 3. Performance of standard renaming along with three versions of generalized
renaming.

Solved Unsolved

SR 414 114

Plain GR 391 137

GC 391 137

GMX 402 126

Table 4. Problems where SPASS terminates within the time limit of 1 day, using both
renaming versions with GC and GMX settings. The generalized renaming ensemble
significantly outperforms simple standard renaming.

Problem

Count

Average Time Time

Improvement

SR GR/GC/GMX

409 281.77 145.42 48.4%

Table 5. Problems where SPASS terminates within the time limit of 1 day, using both
renaming versions with GC and GMX settings. SPASS does not terminate using simple
SR.

Problem Time

(GR/GC/GMX)

Problem Time

(GR/GC/GMX)

LCL649+1.010 22.51 LCL659+1.020 0.3

LCL659+1.005 0.07 LCL660+1.005 1439.17

LCL659+1.010 0.17 LCL660+1.010 15080.06

LCL659+1.015 0.24 SWV024+1 2359.38

renaming, generalized renaming only fails to solve one problem, LCL684+1.005.
This problem is solved by the standard procedure in 30.14 seconds. On the
other hand, our technique is able to solve 8 problems that cannot be solved
using standard renaming. Out of 528 problems, 110 remain unsolved by both
procedures.

5 Conclusion

This paper provides a formal definition, algorithm and implementation for the
generalized renaming problem. Given a formula ψ, our goal is to obtain a shorter
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CNF result, by renaming ψ to an equisatisfiable variant ψ′. Instead of renaming
every subformula of ψ, we assume a set Π of renaming positions is given as
input. We rename ψ at all the given renaming positions, as well as positions of
compatible subformulas, which can be renamed at no additional cost. We define
compatible formulas as formulas that are instances of a common formula. Of
course, our generalized renaming technique is also applicable to the translation
of propositional formulas and SAT solving [3]. This is also an interesting starting
point for further experiments, because in SAT solving the strengthening of the
polarity of a definition often speeds up a subsequent solver run.

Our experiments show that generalized renaming reduces the number of CNF
clauses by up to 92.9%. For some problem domains, the average clause reduction
is as high as 15.4%. The time taken for CNF transformation is also significantly
reduced in the average case. More importantly, generalized renaming works for
some cases for which the standard renaming procedure fails. Although the time
taken to find a proof is improved by up to 59.62% in the general case, the effect
of introducing more variables is rather complex and may lead to an increase in
time. With the introduction of some new mechanisms, however, our technique is
able to outperform the standard procedure, with a time improvement of 48.4%.

Limitations and Future Work. Technically, logical operators may have arbitrary
number of arguments. Suppose some subformula φ is to be renamed in ψ :=
φ1 ∧ · · · ∧ φi ∧ φi+1 ∧ · · · ∧ φn, represented as one conjunction operator with n
arguments. If φi∧φi+1 ∼ φ, this is not detected by our algorithm; the conjunction
φi ∧ φi+1 does not exist from a technical point of view. In order to handle such
cases, compatibility computation should rely on a more sophisticated pattern-
matching procedure on term trees, instead of subformula checks. The algorithm
also not aware of associativity/commutativity. If some subformula φ of ψ :=
φ1 ∧ (φ2 ∧ φ3) is to be renamed and φ ∼ φ1 ∧φ2, this compatible instance is not
found in ψ. Since this is an NP problem, an efficient implementation modulo
associativity/commutativity must resort to heuristics or approximations that
provide accurate results without compromising efficiency.

As discussed in Section 4.2, there is potential to find more proofs/model by
adapting the inference and reduction mechanisms in SPASS to the structure of
the clauses generated by generalized renaming. For example, new variants of con-
textual rewriting can be implemented and dedicated to the renaming predicates
introduced by generalized renaming.

References

1. SPASS Current Prototypes and Experiments,
http://www.spass-prover.org/prototypes/index.html

2. Baaz, M., Egly, U., Leitsch, A.: Normal Form Transformations. In: Voronkov, A.,
Robinson, A. (eds.) Handbook of Automated Reasoning, ch. 5, pp. 273–333

3. Biere, A., Heule, M., Maaren, H.V., Walsh, T. (eds.): Handbook of Satisfiability.
IOS Press (2009)

http://www.spass-prover.org/prototypes/index.html


Computing Tiny Clause Normal Forms 125

4. Thierry Boy de la Tour. An Optimality Result for Clause Form Translation. Journal
of Symbolic Computation 14(4), 283–301 (1992)

5. Henschen, L., Lusk, E., Overbeek, R., Smith, B.T., Veroff, R., Winker, S., Wos,
L.: Challenge Problem 1. SIGART Newsletter (72), 30–31 (1980)

6. Hillenbrand, T., Weidenbach, C.: Superposition for bounded domains. In:
Bonacina, M.P., Stickel, M.E. (eds.) McCune Festschrift. LNCS (LNAI), vol. 7788,
pp. 68–100. Springer, Heidelberg (2013)

7. Nonnengart, A., Weidenbach, C.: Computing Small Clause Normal Forms. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 6, pp.
337–367 (2001)

8. Plaisted, D.A., Greenbaum, S.: A Structure-preserving Clause Form Translation.
Journal of Symbolic Computation 2(3), 293–304 (1986)

9. Sutcliffe, G., Suttner, C.: The TPTP Problem Library for Automated Theorem
Provers (September 2010), http://www.tptp.org/

10. Tseitin, G.S.: On the Complexity of Derivation in Propositional Calculus. Studies
in Constructive Mathematics and Mathematical Logic 8(115-125), 234–259 (1968)

11. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS Version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp.
140–145. Springer, Heidelberg (2009)

http://www.tptp.org/


System Description: E-KRHyper 1.4
Extensions for Unique Names and Description Logic

Markus Bender, Björn Pelzer, and Claudia Schon

Universität Koblenz-Landau, Institut für Informatik, 56070 Koblenz, Germany
{mbender,bpelzer,schon}@uni-koblenz.de

Abstract. Formal ontologies may go beyond first-order logic (FOL) in their ex-
pressivity, hindering the usage of common automated theorem provers (ATP) for
ontology reasoning. The Unique Name Assumption (UNA) is an extension to
FOL that is valuable for ontology specification, allowing the definition of dis-
tinct objects. Likewise, the Description Logic SHIQ is a popular language for
knowledge representation (KR). This system description provides details on the
extension of the prover E-KRHyper by the ability to handle both the UNA and
SHIQ. This ATP was developed for embedding in KR applications and hence
already equipped with special features and extensions to FOL, making it natural
to add the new capabilities in E-KRHyper version 1.4. We report on the theory,
the implementation and also the evaluation results of the new features.

1 Introduction

The expressivity of first-order logic (FOL) is often insufficient when specifying on-
tologies. This has led to logic extensions like the Unique Name Assumption (UNA),
which allows expressing that two constants are semantically distinct. Going further
than merely extending FOL, Description Logics provide entire logical languages in-
tended especially for knowledge representation (KR). Unfortunately automated the-
orem provers (ATP) are commonly restricted to FOL, which limits their usefulness for
ontology reasoning. We have therefore modified our prover E-KRHyper, giving it the
capability to handle both the UNA and the popular Description Logic SHIQ.

E-KRHyper (Knowledge Representation Hyper Tableaux with Equality) [31] is an
ATP and model generation system for FOL with equality. It is an implementation of
the E-hyper tableau calculus [12], which integrates a superposition-based handling
of equality [4] into the hyper tableau calculus [11]. Like its predecessor, the original
KRHyper [39] without equality, E-KRHyper has been designed for embedding in know-
ledge representation applications, see Section 2 for details.

E-KRHyper forms the reasoning component of the deduction-based question answer-
ing system LogAnswer [17,18]. The prover is also used in the controlled language pro-
cessor PENG Light [35], and it is part of the HETS framework [26] for formal methods
integration and proof management. (E-)KRHyper has also been used as an embedded
knowledge processing engine in applications like content composition for e-learning
[6,9], document management [8], database schema processing [7], semantic inform-
ation retrieval [5], ontology reasoning [14], and planning [13]. An excerpt has been
ported to mobile devices for user profile matching [36].

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 126–134, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Given this background we wish to keep improving E-KRHyper’s abilities in ontology
reasoning, so it was natural to soundly integrate the UNA [15] and SHIQ [16] both
on the formal level and in the implementation. In this system description we provide
details on the current version 1.4 of E-KRHyper, focussing on the new extensions, and
we evaluate the system on suitable benchmarks.

2 General Overview of E-KRHyper

E-KRHyper 1.4 is written in OCaml [24] and compatible with POSIX-compliant op-
erating systems and environments. It is available under the GNU GPL at [29]. As
E-KRHyper is geared towards embedding, it has been designed with operational flexib-
ility: like most ATP systems it can be invoked with file-based input, but it also features
an interactive mode in which it can communicate with applications or the user over
STDIN and STDOUT or other user-specified channels. This way E-KRHyper can re-
main operational over multiple reasoning tasks, with the logical input being modified
in-between, for example in order to test different conjectures on a common knowledge
base without having to reload the latter each time [30,19].

The prover accepts input in PROTEIN [10] and TPTP syntax [38] for FOL. A built-in
clausifier automatically converts formula expressions into CNF. To deal with very large
input theories E-KRHyper includes axiom selection methods like the SINE algorithm
[21]. Input may go beyond the expressivity of FOL with equality: E-KRHyper supports
stratified negation as failure [1], arithmetic evaluation as well as operations on list and
set constructs. Special interface literals allow the prover to access external knowledge
sources like web services or databases.

The proof procedure involves the construction of an E-hyper tableau, which is a tree
labelled with clauses. A branch may be extended by applying an inference rule to its
clauses and then appending the conclusion as a new leaf node. A branch is closed once
it contains the empty clause. Positive disjunctions can split branches. Ground substitu-
tions prevent sharing of variables between disjunct branches. This avoids the issue of
rigid variables, and it allows E-KRHyper to build the tableau depth-first, working only
on one branch at a time. Refutational completeness and a fair search control are ensured
by an iterative deepening strategy bounded by the term weights of clauses. A compre-
hensive set of simplification and deletion rules helps the prover to eliminate redundant
clauses and to avoid unnecessary inferences. If all branches are closed, E-KRHyper can
output a proof consisting only of the essential inference steps. On the other hand, a
branch that can be neither closed nor extended represents a model and proves the input
satisfiable. E-KRHyper can then enumerate models by computing additional branches.
The derivation process can also be refined to allow the computation of minimal models.

3 Extensions in Version 1.4

3.1 Support for the Unique Name Assumption

In automated theorem proving there are problems that need information on the inequal-
ity of certain constants [2,20,3]. In most cases such information about any two dis-
tinct constants c1 and c2 is provided by explicitly adding inequality facts of the form
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false ← c1 � c2 to the knowledge base. As the number of these facts grows quadrat-
ically in the number of constants, they clutter the knowledge base and distract human
readers of the problem from its actual proposition. Additionally it is safe to assume that
a larger knowledge base reduces the performance of a theorem prover in many cases,
which is another drawback of explicit inequality facts.

To avoid such a blow-up, native handling of inequality of constants can be used,
which removes the need for inequality facts. This can be done by using the Unique
Name Assumption (UNA), which states that two constants are semantically equal if and
only if they are syntactically equal. Instead of forcing the UNA onto all constants, we
apply it on a subset of the constants, called the distinct object identifiers (DOI). This is
a more flexible approach and mimics the TPTP’s way of dealing with the UNA [38,37].
We also use the TPTP’s syntax for defining DOI, i.e. a constant enclosed in double
quotes is treated as a DOI by E-KRHyper.

E-KRHyper’s underlying calculus was extended in a sound and correct way to allow
native handling of DOI and those changes have been implemented into E-KRHyper
accordingly [15]. The most significant change was the introduction of two rules to deal
with two kinds of formulæ that are important if DOI are used: unit contradictions, of
the form i � j← , and object tautology clauses, of the formA← i � j,B , where i and
j are two non-identical DOI,A [B] is a possibly empty set of head [body] literals.

An unit contradiction is a clause that is false by definition, so the modified version
of E-KRHyper closes a branch that contains a unit contradiction. On the opposite site,
an object tautology clause is always true and thus can neither contribute to deriving a
contradiction nor a model. Therefore object tautology clauses are deleted to prevent un-
needed inference steps on the clause and to keep the set of clauses as small as possible.

This implicit handling of non-identical constants makes the problems easier to com-
prehend and reduces the execution time of reasoning.

3.2 Support for SHIQ
SHIQ is a description logic (DL) with widespread usage. It is decidable and features
both inverse and transitive roles as well as qualified cardinality restrictions. Thanks to
this it has become the formal foundation of OIL (Ontology Inference Layer), the onto-
logy infrastructure of the Semantic Web [23]. Several dedicated DL-reasoners support
SHIQ, such as Pellet [28] and HermiT [27]. The latter even employs a modified ver-
sion of our own hyper tableau calculus. Adapting E-KRHyper to SHIQ was therefore
an obvious way for us to enhance the ontology reasoning abilities of our prover.

E-KRHyper accepts SHIQ converted into DL-clauses [27], which are basically
FOL-clauses extended by the possibility of having special positive at-least literals which
represent qualified number restrictions. For example, we can express that a car has at
least three wheels with the SHIQ-axiom car � (≥ 3 has.wheel), which translates
into the DL-clause (≥3 has.wheel)(x) ← car(x). Hence an at-least literal has the form
(≥n R.C)(x), with n ≥ 1 and where R is a binary predicate symbol (representing the DL-
role R), C is a unary (and possibly negated) predicate (representing the DL-concept C),
and x is a variable (to be instantiated by ground terms that represent DL-individuals).
E-KRHyper has been modified to handle such DL-clauses, and a corresponding at-least
inference rule has been added to the calculus to evaluate the new literals:
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at-least
(≥n R.C)(a)←

⋃
1≤i≤n{R(a, bi)←} ∪⋃1≤i≤n{C(bi)←} ∪⋃1≤i< j≤n{← bi � b j}

Thus given as a premise a positive at-least unit instantiated by a ground term a, the
rule creates n fresh ground terms b1, . . . , bn (the R-successors of a) and derives unit
clauses for these new individuals, ensuring that they satisfy the predicates R and C and
that they are pairwise distinct. The derived set is considered a conjunction, so all its
clauses are attached to the current branch as a segment of 2n +

(
n
2

)
nodes. To ensure

termination it may be necessary to block an application of the at-least rule, to prevent
it from generating useless successors for a given individual. For this we use a modified
version [16] of pairwise anywhere blocking [27].

As an optional optimization E-KRHyper can use its UNA functionality (see Sec-
tion 3.1): instead of ensuring the distinctness of successors via explicit inequalities, the
fresh b1, . . . , bn created by one application of the at-least rule can be treated as a spe-
cial type of DOI which only count as distinct with respect to each other, but which are
treated as normal terms otherwise. For example, b � b′ ← for some generated successor
terms b and b′ is only a unit contradiction if both b and b′ have been created in the same
at-least inference step.

4 Related Systems and Performance Evaluation

We have evaluated several aspects of E-KRHyper: the performance on FOL-problems in
general, and specifically the performance of the two new extensions, namely the UNA
implementation and the SHIQ capability. All tests were carried out on a computer
featuring an Intel Core 2 Quad (Q9550) @ 2.83GHz and 4GB PC2-6400 RAM.

For the general evaluation we tested E-KRHyper on the 15,560 FOL problems of the
TPTP v5.4.0, the most current release at the time of this writing. The prover was limited
to one CPU core, 1GB of memory and 300 seconds for each problem. E-KRHyper
solved 5,970 problems, corresponding to 38.4% of the test set.1 The TPTP rates the
difficulty of problems from 0.0 for the easiest to 1.0 for the hardest, the latter reserved
for problems not solved by any state-of-the-art prover. The hardest problems solved
by E-KRHyper were PUZ050-1 (rated at 0.94), SWW284+1 (0.93) and LCL650+1.020
(0.92). Overall E-KRHyper has a general performance that is slightly above average
among the provers listed at the TPTP website [37]. In comparison, the prover Otter
[25], which usually serves as a benchmark in the ATP community, solves 27% under
similar conditions, whereas top-ranking systems like Vampire [32] and E [33] have a
significant lead with 66% and 61% respectively.

4.1 Unique Name Assumption

In order to evaluate the UNA implementation we used a variation of the synthetic bench-
marks STORECOMM (SC) and STORECOMM-INVALID (SCI) [2], situated in the

1 The TPTP v5.4.0 contains merely two FOL problems with DOIs and none with DL-features,
so the prover modifications described in this paper lead only to a negligible improvement in
the TPTP performance compared to earlier versions of E-KRHyper.
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theory of arrays. A test case from SC is the task to show that two given permutations of
unique store operations on an array result in the same array. A test case from SCI is the
task to show that two given sequences of unique store operations that differ in at least
one stored element at an index do not result in the same array. This definition of SCI
differs from the definition in [2] and was chosen for technical reasons. We continue to
call it STORECOMM-INVALID or SCI in the context of this work. The term unique
store operation states that each index of an array is written to exactly one time.

As the theory of arrays is not natively supported by E-KRHyper, we axiomatize the
theory of arrays by using the following axioms:

sel(sto(A, I, E), I) = E (1)

sel(sto(A, I, E), J) = sel(A, J)⇐ I � J (2)

A = B⇐ sel(A, I) = sel(B, I) (3)

The function sel : ARRAY × INDEX → ELEMENT returns the element that is stored
at the given index of the given array, and the function sto : ARRAY × INDEX ×
ELEMENT → ARRAY returns an array that is constructed by storing a given element at
the given index of a given array.

To create a test case, four parameters are needed: a list p = 0, . . . , n − 1, a permuta-
tion of this list, called q, a flag v that indicates if we want to generate a test case for SC
or SCI and a flag d that indicates if this test case uses distinct object identifiers or not.

Independent of the chosen parameters every test case contains the three axioms that
describe the theory of arrays. Additionally every test contains n unique predicates of
the form index(ix) with 0 ≤ x < n introducing the constants that represent the arrays’
indices, which is needed for technical reasons. If distinct object identifiers are used,
these predicates look like index(”ix”), as constants in quotes denote DOI.

If no distinct object identifiers are used, we need to express that all indices are dis-
tinct, which is done by introducing

(
n
2

)
unique predicates of the form false :- ix = iy with

(x, y) ∈ Cn
2, where Cn

2 is the set of 2-combinations over {0, . . . , n − 1}. Additionally we

need to express that all elements are distinct, which is done by introducing
(

n
2

)
unique

predicates of the form false :- ex = ey with (x, y) ∈ Cn
2.

The actual property to be proven is then added by the equality predicate Tn,v,d(q) =
Tn,v,d(p), where Tk,v,d(l) is defined as follows:

Tk,v,d(l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a if k = 0

sto(Tk−1,v,d(l), il(k), e0) if k = 1 and v = 0 and d = 0

sto(Tk−1,v,d(l), ”il(k)”, ”e0”) if k = 1 and v = 0 and d = 1

sto(Tk−1,v,d(l), il(k), el(k)) if 0 ≤ k < n and v = 1 and d = 0

sto(Tk−1,v,d(l), ”il(k)”, ”el(k)”) if 0 ≤ k < n and v = 1 and d = 1

We generated four different types of test cases: SC[I] without DOI, and SC[I] with
DOI and considered arrays with 5, 15, . . . , 95 elements. For each of the 40 type-size-
combinations, 20 random instances were generated and then flattened.

For an easier comparison of the results with and without DOI, they were put into
relation by dividing the runtimes with DOI by the according runtimes without DOI. The
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Fig. 1. Relative execution times for S-COMM and S-COMM-INV

Table 1. Comparison of benchmark results for E-KRHyper, HermiT and Pellet

Ontology Name
Nr. of Runtimes (s)

Axioms Transformation E-KRHyper (w/o DOI) E-KRHyper (with DOI) HermiT Pellet
galen 5134 7.44 2.761 2.755 4.685 25.075
galen-ians-full-doctored 5668 8.70 2.987 2.992 4.887 28.102
galen-ians-full-undoctored 5911 8.27 3.152 3.148 7.596 29.441
not-galen 6825 13.61 3.570 3.565 11.057 28.665
emap 13730 19.09 4.270 4.259 10.894 64.533
vicodi_0 53876 11.79 2.699 2.675 10.522 106.831
vicodi_1 107529 16.26 6.941 6.893 12.632 233.324
vicodi_2 161182 18.50 13.246 13.221 15.074 387.200
vicodi_3 214835 20.05 19.092 19.201 17.719 512.019
vicodi_4 268488 24.95 24.411 24.590 18.819 ERROR

result of this operation can be seen in Fig. 1a [Fig. 1b] for SC [SCI], where the graph
shows the average, minimal and maximal runtime, for each size. It is easy to see that the
version with DOI outperforms the one without DOI and that the difference grows with
the size of the arrays. We assume that the specific structure of the problems influences
the runtime, which might lead to the visible fluctuations in the graphs. This has not yet
been investigated. We compared the results of the DOI version of E-KRHyper with the
results of the prover E, which is also able to handle DOI [34]. E solved the 200 problems
for SC [SCI] with an average runtime of 0.09 [0.08] seconds where E-KRHyper needed
1.5 [1.27] seconds. Fig. 1c shows that for E-KRHyper with DOI the runtime in relation
to the array size is quadratical. [15] provides details on the setup, benchmarking process
and the evaluation.

4.2 Description Logic

For an evaluation E-KRHyper’s performance on DL-ontologies we have chosen several
ontologies from [22] and checked them for consistency. Systems for comparison are
HermiT and Pellet. Tab. 1 shows the runtimes for those ontologies and provers.

The column Transformation lists the times needed to transform the ontologies into
DL-clauses, i.e. a suitable input for E-KRHyper. Even with adding the transformation
and inference times, E-KRHyper outperforms Pellet significantly. Adding the trans-
formation and inference time, HermiT outperforms E-KRHyper in all of the presented
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benchmarks, but the difference is not that big. Taking into account that HermiT is a
highly optimised reasoner for OWL ontologies and E-KRHyper is a versatile prover for
FOL with certain extensions, this result is impressive.

As it was our intention to compare E-KRHyper with DL-provers, the typical ontolo-
gies we used tend to feature only at-least literals with low cardinalities. An unfortunate
result of this is that the experimental optimisation to use DOI with the at-least rule
has hardly any effect, as seen in the table. A more thorough evaluation of this particular
optimisation would require tailor-made ontologies and must be regarded as future work.

5 Conclusion

E-KRHyper is a versatile automated theorem prover and model generator for first-order
logic with equality. In version 1.4 it remains above average in the TPTP-benchmark and
can compete with highly specialised and optimised DL provers. With the introduced
extensions it gains access to new application domains. For problems that rely on the
inequality of certain constants, we have shown that using DOI has significant benefits
over explicit inequality-facts. The possibility to reason in SHIQ with overall good
performance increases E-KRHyper’s field of use and makes it even more flexible.

Acknowledgements. We would like to thank Sonja Polster, who provided us with the
results of the DL-benchmarks.
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Abstract. We present a method for using first-order logic to specify the
semantics of preferences as used in common vote counting algorithms.
We also present a corresponding system that uses Celf linear-logic pro-
grams to describe voting algorithms and which generates explicit exam-
ples when the algorithm departs from its specification. When we applied
our method and system to analyse the vote counting algorithm used
for electing the CADE Board of Trustees, we found that it strictly dif-
fers from the standard definition of Single Transferable Vote (STV). We
therefore argue that “STV” is a misnomer for the CADE algorithm.

1 Introduction

Most research in electronic voting concerns correctness and voter-verifiability of
vote-casting. It is also vital that vote counting and tabulation of election results
enjoys the same trust as physical counting of paper ballots. Counting votes in a
“first past the post” scheme is easy, but there are numerous preferential voting
schemes for proportional representation where vote-counting is rather complex.

In social choice theory, the general problem of finding an election result that
perfectly reflects the electorate’s collective preferences has no solution. Collective
preferences can even be cyclic (Condorcet’s paradox). Various voting schemes
(and corresponding algorithms) exist that attempt to provide “good” election
results from the preferences expressed in voters’ ballots. They compromise in
different ways, for example w.r.t. majority rule vs. minority protection.

In preferential voting, the correct election result for a given set of votes is
usually defined algorithmically (in natural language or in pseudo-code) rather
than as clear, concise, formal and declarative specifications. A prominent class
of such algorithms is the Single Transferable Vote (STV) scheme (see Section 2).
Variants of STV are used in many jurisdictions around the world. Testing and
verification methods are useful for validating that an implementation refines a
high-level algorithmic description, but without good declarative specifications
they remain ineffective to gain deeper insight into the democratic nature of the
scheme. Unfortunately, the complexity of STV makes it difficult to render its
declarative properties succinctly: a possible solution is presented in Section 3.
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In Section 4, we then describe an automated reasoning system to check vote
counting schemes w.r.t. their declarative properties. Our technique applies to
STV but can be generalised to other schemes as well. Building on earlier work [4],
we use the concurrent logical framework Celf [8] for (1) representing vote count-
ing algorithms, (2) representing declarative properties, and (3) for building tools
such as a bounded model checker for constructing counter examples. The Celf
source code can be found at http://www.demtech.dk/wiki/CADE24-STV.

We applied our methodology to the “STV” vote-counting algorithm used to
elect the CADE Board of Trustees (Section 5) and found that this algorithm
does not implement a proportional voting scheme. Thus it is a misnomer to call
the CADE algorithm a scheme for Single Transferable Voting (Section 6).

Related work at the Australian National University has analysed a commercial
implementation of the Hare-Clark (STV) scheme used in Australian Capital
Territory parliamentary elections [6] while Cochran has formally specified and
analysed the Danish and Irish vote counting algorithms [3]. Both concentrate on
verifying implementations.We concentrate on analysing abstract algorithms.

2 The Single Transferable Vote Scheme

Single transferable vote (STV) is a preferential voting scheme [9] for multi-
member constituencies aiming to achieve proportional representation according
to the voters’ preferences. Suppose that C candidates, numbered 1, 2, . . . , C, are
competing for S > 0 vacant seats in an election. Furthermore, assume that V ≥ 0
votes have been cast and are collected in a ballot box. It is commonly agreed
that for k ≤ C, a vote [P1, P2, . . . , Pk] ranks a subset of the candidates with
Pi ∈ {1, 2, . . . , C} in decreasing order of preference. Each vote defines a partial
order on candidates. STV first computes a quota necessary to obtain a seat.
Different definitions of quotas are used in practice and the most common is the
Droop quota Q = .V/(S+ 1)/ + 1. Then, STV computes the result using an
iterative process, which repeats the following two steps until either a winner is
found for every seat or no further candidate can be elected:

1. Any candidate with Q or more first-preference votes is declared elected. The
Q votes used to elect such a candidate are removed from the ballot box. If
the elected candidate has more votes than the quota Q, these surplus votes
are transferred to the next candidates according to preference.

2. If no candidate reaches the quota, the candidate with the fewest first-pref-
erence votes is eliminated and that candidate’s votes are transferred in the
same way as described in step 1.

Example 1. Assume there are four candidates A,B,C,D for two vacant seats,
and the votes to be counted are [A,B,D], [A,B,D], [A,B,D], [D,C], [C,D]. The
Droop quota here is Q = .5/(2 + 1)/+ 1 = 2. In the first iteration, we tally first
preferences, only A meets the quota and is hence elected. Two votes [A,B,D] are
deleted, the third is a surplus vote. It is transferred and transformed into [B,D].
In the second iteration, no candidate reaches the quota, thus the weakest of

http://www.demtech.dk/wiki/CADE24-STV
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the remaining candidates B,C,D is eliminated – which one depends on the
kind of tie-breaker used as all three have exactly one first-preference vote at
that point. (1) If the tie-break eliminates B, the aforementioned transferred
vote [B,D] will be transferred again and will become a vote for D, so that D
will be elected in the next iteration. (2) If the tie-break eliminates C, the vote
[C,D] will be transferred into a vote for D, and thus D will be elected. (3) If the
tie-break eliminates D, then C will be elected, analogously, in the next iteration.
In summary, the algorithm reports either [A,D] or [A,C] as the election result
but not, for example, [A,B] or [B,D]. If the number of second-preference votes
is used as a tie-breaker, then B is eliminated first (case 1 above).

This illustrates that STV, as given above in informal English, defines an entire
family of vote counting algorithms. There are a number of parameters to play
with, which we name for later reference: the choice of quota (QUOTA/DROOP,
QUOTA/HARE, QUOTA/MAJORITY), the choice of tie-breaker (TIE), the
possible resurrection of already eliminated candidates when they receive trans-
ferred votes in later rounds (ZOMBIE), the automatic placement of candidates
once there are as many vacant seats as remaining candidates (AUTOFILL).

As we argue in Section 5, further options giving schemes that cannot be con-
sidered part of the STV family are the persistence of votes used in electing
candidates from one iteration to the next (NODEL), or restarting with the orig-
inal ballot box (RESTART) after a candidate has been elected (with the elected
candidate removed). RESTART is a combination of NODEL and ZOMBIE.

3 Semantic Criteria for Judging Voting Schemes

Voting schemes are frequently under-specified via something like “The members
of parliament must be elected by a regular, direct, and secret election”, or over-
specified via a concrete (pseudo-code) algorithm in the law text that may itself
contain bugs. So what is a good specification of STV?

Many semantic criteria have been proposed for preferential vote-counting al-
gorithms including the majority criterion, Condorcet criterion, monotonicity cri-
terion, to name a few [1]. The majority criterion says that if one candidate is
highest ranked by a majority of voters, then that candidate must be elected. A
violation of the majority criterion is clearly undemocratic. But to analyse and
distinguish variants of (democratic) voting schemes, stronger criteria are needed
that are tailored for the particular scheme. For some voting schemes, axiomatic
criteria can fully characterise the correct election result (e.g. the Borda Rule [5]).

However, for STV schemes, writing a declarative specification that fully char-
acterises the election result is hard. For our analysis of STV, we have instead
devised several semantic criteria that capture and approximate the essence of
STV and are suitable for program verification. We mention only two, but remark
that for a more thorough analysis more such criteria will have to be added.
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(1): There must be enough votes for each elected candidate.
(2): If the preferences of all voters w.r.t. two particular candidates are consistent,

then that collective preference is not contradicted by the election result.1

The first criterion only considers number of votes and ignores preferences, while
the second criterion only considers preferences and ignores number of votes.
This separation of the two dimensions (number of votes and preferences) is the
key to finding criteria that can be described declaratively. Due to space restric-
tions, we do not further consider Criterion 2 in this paper but concentrate on
Criterion 1.

The first criterion is only justified for versions of STV that do not use AUT-
OFILL. It captures the fact that the ballot box can be partitioned in such a
way that each partition justifies the seating of a candidate: Each class contains
quota Q ballots, each of which mentions the candidate elect at least once.

Example 2. Returning to Example 1, note that the election result [A,D] satisfies
Criterion 1 with the partition {[A,B,D], [A,B,D]}, {[C,D], [D,C]}, {[A,B,D]}.
The incorrect election result [B,D] also satisfies Criterion 1 choosing the same
partition (because the ordering of A and B is not considered), which shows
that the criterion is not a complete specification of the election result. But, the
incorrect result [A,B] is not supported by this or any other partition.

We use first-order logic over the theories of natural numbers and arrays with the
following notation in addition to the notation defined previously:

b: is the ballot box, where b[i, j] is the number of the candidate that is ranked
by voter i in the jth place. If the voter does not rank all candidates, then
b[i, j] = 0 for the empty places.

r: is the result, where r[i] is the ith candidate that is elected (1 ≤ i ≤ S). If
less than S candidates are elected, then r[i] = 0 for the empty seats.

We also use an existentially quantified array a that represents the partition
and the assignment of classes in the partition to elected candidates as
follows:

a[i] = k if the ith vote supports the kth elected candidate r[k]. If the ith vote
does not support any elected candidate, then a[i] = 0.

Then, the formula φ = ∃a(φ1 ∧ . . . ∧ φ4) is the existentially quantified
conjunction:

∀i
(
1 ≤ i ≤ V→ 0 ≤ a[i] ≤ S

)
(φ1)

∀i
(
1 ≤ i ≤ V→ (a[i] = 0→ r[a[i]] = 0

)
(φ2)

1 This criterion is weaker than what is known as the Condorcet criterion. We assume
a preference to be collective if all voters agree (or at least not disagree), while the
Condorcet criterion assumes a preference to be collective if it is supported by a
majority of voters. It is well known that the (stronger) Condorcet criterion is not
satisfied by standard STV, so it is not suitable for our purposes.
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∀i
(
(1 ≤ i ≤ V ∧ a[i] = 0)→ ∃j(1 ≤ j ≤ C ∧ b[i, j] = r[a[i]])

)
(φ3)

∀k
(
(1 ≤ k ≤ S ∧ r[k] = 0)→
∃count(count [0] = 0 ∧

∀i(1 ≤ i ≤ V→ (a[i] = k → count [i] = count [i− 1] + 1) ∧
(a[i] = k → count [i] = count [i− 1])) ∧

count [V] = Q)
)

(φ4)

Formulas φ1 and φ2 express well-formedness of the partition. Formula φ3 ex-
presses that only votes can support a candidate in which that candidate is
somewhere ranked. Formula φ4 expresses that each class supporting a partic-
ular elected candidate has exactly Q elements. To formalise this, we use an array
count such that count [i] is the number of supporters among votes 1, . . . , i that
support the kth elected candidate.

4 The System for Analysing Vote Counting Algorithms

Votes are resources that must be counted exactly once, which already suggests
that linear logics are well-suited for representing voting-algorithms (see Section 2
and Criterion 1 in Section 3). We therefore used the (linear) logical framework
Celf [8]. We considered using model checkers and SMT solvers for the bounded
model-checking part, but we stayed with Celf, mainly as a matter of convenience.
Because of space restrictions, we only sketch the system here.

4.1 Vote Counting Algorithms as Linear-Logic Programs

The Celf logical framework is based on intuitionistic linear logic. Its operational
semantics is proof search, which means that running a vote counting algorithm
is tantamount to constructing a derivation for “Γ ;Δ 
 run i C V S w d”. We
explain the symbols in turn. The Γ is the unrestricted (intuitionistic) context.
Its declarations, like AUTOFILL, NODEL, etc. define precisely the particular
STV algorithm to be analysed. During execution, Γ is also populated with as-
sumptions about who was elected and who was defeated.

The Δ to the right of Γ denotes the linear context that contains assump-
tions that must be used exactly once. It contains, for example, all information
about the ballot-box, running totals, etc. The ballot box is represented by a
multi-set of assumptions uncounted-ballot A L (first preference A, remaining
preferences L); the running totals as a multi-set of assumptions hopeful A N ,
summarising that A’s running total is N .

run is a 6-ary predicate, relating the number of times i that STV may be
restarted (see RESTART), the number of candidates C, the number of cast
votes V, the number of seats S that should be filled with each iteration, the
list of winners w, and the list of defeated candidates d. The total number of
seats filled by the algorithm is hence i× S.

To save space, we present only one of the rules implementing STV. An in-
troduction on how to represent STV counting algorithms in Celf is given in [4].
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This rule elects candidate A after receiving an additional vote that meets the
quota.

count/2 : count-ballots (S + 2) (H + 1) (U + 1) ⊗
uncounted-ballot A L ⊗
hopeful A N ⊗ !quota Q ⊗ !nat-lesseq Q (N + 1) ⊗
winners W D

� {counted-ballot A L ⊗ !elected A ⊗
winners (scons A (N + 1) W) D ⊗
count-ballots (S + 1) H U}.

All uppercase variables are universally bound, we write � for linear implication,
⊗ for multiplicative conjunction, ! for the bang modality permitting unrestricted
assumptions to appear in declarations, and {. . .} for the polarity shift from pos-
itive to negative formulas (as Celf implements a focused linear logic). The rule
count/2 can be read as a forward-chaining multi-set rewrite rule. When no can-
didate reaches the !quota Q, the candidate with the fewest votes must be elimi-
nated, and its (already counted) votes redistributed. The bang in front of quota
indicates that this is an unrestricted assumption that should not be consumed. It
is therefore mandatory to keep information about counted ballots around, and
we do this by replacing an uncounted-ballot A L by a counted-ballot A L.

Theorem 1 (Standard STV). Let Γ = QUOTA/DROOP,AUTOFILL,TIE,
and let Δ = ballot box + initialized running counts, then run 1 C V S w d is
provable if and only if w corresponds to the list of candidates elected by the
standard STV algorithm, and d is the list of defeated candidates.

4.2 Bounded Model Checker

Our bounded model checker is implemented in Celf, taking advantage of the
generate and test behaviour of logic programs. Our system provides an imple-
mentation of Criterion 1 as a linear logic program: sem W D. Other criteria may
be implemented analogously. The model checker generates all possible ballot
boxes up to a given bound. The bound comprises the maximal number of per-
mitted RESTARTsmaxi, the maximal number of candidatesmaxC, the maximal
size of the ballot box maxV, and the maximal number of seats maxS. Checking
the algorithm for a particular input corresponds to running the query:

Γ ;Δ 
 (run i c v s W D) & (sem W D)

As above, Γ selects the algorithm for the desired version of STV, Δ, i, c, v, s are
inputs for the algorithm that have been generated by the model checker. We use
additive conjunction & in a clever way: it copies the ballot box and allows the
box to be used both for running STV and for semantically checking the result.

As inherent in bounded model checking, we get a semi-decision procedure. The
analysis terminates for any given bound (this is easy to prove by an inspection of
the linear logic program). But only in the negative case, where we get a counter
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example, the model checker provides a definite answer to the question of whether
the algorithm always computes an election result satisfying the given criterion.

In the positive case, where the model checker constructs as many solutions to
the above query as there are ballot boxes, we can conclude that the particular
STV algorithm selected by Γ computes valid solutions for all possible elections
up to the given bound. Note, that this conclusion requires the vote counting to
be deterministic because the current version of the checker does not backtrack
over different results for the same input and only validates the first election re-
sult found for a particular ballot box. This is not a critical limitation in practice.
Although various ways of resolving non-determinism in STV exist, it is impor-
tant to clearly specify how it is resolved in real-world implementations of TIE.
Otherwise, choices by the election officials (or their computers) during count-
ing could influence the result, which is clearly undesirable. Our checker could
backtrack over election results but would require greater runtime.

The more interesting case is when the model checker fails to find a solution
for one of two reasons. Either, the STV algorithm did not manage to construct
an election result for some ballot box, a case that may happen, for example,
if AUTOFILL is not selected. Or the model checker was unable to justify an
election result w.r.t. the semantic criteria (the really negative case). The Celf
tracing model provides enough information to deduce where to find the culprit.

5 Case Study: CADE-STV

The bylaws of the Conference on Automated Deduction (CADE) give an al-
gorithm for counting the ballots for electing the Board of Trustees [2] which is
identical to Figure 1 except for typesetting. It has been implemented and used in
several elections for the CADE Board of Trustees. It has also been used several
times for the election of members to the TABLEAUX Steering Committee.

Note that the specification of CADE-STV is not formal. Although the pseudo
code language that is used may be intuitive for programmers, it does not come
with a precise operational semantics. Despite being semi-formal, the pseudo code
lacks precision in how to break a tie when eliminating or seating candidates.

The CADE-STV algorithm deviates from standard STV in using RESTART,
which combines NODEL and ZOMBIE. Moreover, QUOTA/MAJORITY is used
instead of QUOTA/DROOP and there is no AUTOFILL, which is unusual.
Presumably, QUOTA/MAJORITY was introduced into CADE-STV following
criticism of DROOP/QUOTA by David Plaisted [7].

Example 3. Let us run CADE-STV on Example 1. First, we compute the major-
ity quota Q = 3. In the first iteration, A has three first preferences, which means
that A is the majority winner and is seated. Since CADE-STV uses RESTART,
A’s votes are not deleted but are redistributed at the end of the first iteration.
Now the ballot box contains [B,D], [B,D], [B,D], [D,C], [C,D]. Following the
algorithm, we observe that now B is the majority candidate with 3 first prefer-
ence votes and is seated. The election is over, and the election result is [A,B].
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Problem: M voters must elect K of N candidates.
Input: M× N matrix, Tbl of votes.

Tbl(i, j) = p, 1 ≤ p ≤ N, means that voter i gave preference p to candidate j. Every
voter can support n (1 ≤ n ≤ N) of the N candidates, and has to give a preference
order between those n candidates. This is expressed by assigning a preference
between 1 (highest preference) to n (lowest preference) to each of the supported
candidates. Each of the values 1 . . . n is assigned to exactly one candidate. All
candidates not supported receive a preference of N + 1.

Weakest candidate: The candidate with the fewest votes of preference 1. Ties are bro-
ken by fewest votes of preference 2, then 3, etc.

Equally weak candidates: c is equally weak as w iff c and w have the same number of
votes of preference 1, 2, etc.

Output: List of K elected candidates in order of election.

Redistribute(k, Tbl):
for v <-- 1 to M

p <-- Tbl(v,k) {* v’s preference for candidate k *}
for c <-- 1 to N

p’ <-- Tbl(v,c) {* v’s preference for candidate c *}
if p’ > p and not p’ == N+1 then

decrement Tbl(v,c) by one
end for

end for
Now remove candidate k from Tbl {* column k *}

Procedure STV
Elected <-- empty
T <-- Tbl {* Start with the original vote matrix *}
for E <-- 1 to K

N’ <-- N-E+1 {* Choose a winner among N’ candidates *}
T’ <-- T {* store the current vote matrix *}
while (no candidate has a majority of 1st preferences)

w <-- one weakest candidate
for all candidates c {* remove all weakest candidates *}

if c is equally weak as w
Redistribute(c,T)

end for
end while
win <-- the majority candidate
Elected <-- append(Elected, [win])
T <-- T’ {* restore back to N’ candidates *}
Redistribute(win, T) {* remove winner & redistrb. votes *}

end for
End STV

Fig. 1. Description of the CADE-STV algorithm [2]

Standard STV and CADE-STV produce different results on the same votes.
Example 2 has already shown that [A,B] is “incorrect” as it violates Criterion 1.

Theorem 2. Let Γ = QUOTA/MAJORITY,RESTART and Δ = ballot box+
initialized running counts, then run S C V 1 w d is provable if and only if w is the
list of candidates elected by CADE-STV, and d is the list of defeated candidates.

Running the bounded model checker confirms that the election results computed
by CADE-STV do not always satisfy Criterion 1. Indeed, it finds smaller counter
examples than our running example, but these are not as illustrative.
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The effect of the differences between standard STV and CADE-STV is clar-
ified by the following theorem and its corollary: in certain cases, there is no
proportional representation in the election results computed by CADE-STV.

Theorem 3. If a majority of voters all vote identically with [P1, . . . , Pk], then
CADE-STV will elect exactly these candidates in exactly this order.

Proof. Since a majority of voters choose P1 as their first preference, no other
candidate can meet the “majority quota”. Thus P1 is elected in the first round.
When redistributing the ballots, each of the majority of ballots with P1 as first
preference have P2 as second preference. All become first preferences for P2.
Thus candidate P2 is guaranteed to have a majority of first preferences and is
elected in round two, and so on until all vacancies are filled. ��

Corollary 1. If the electorate consists of two diametrically opposed camps that
vote for their candidates only, in some fixed order, then all candidates from the
majority camp are elected and no candidates from the minority camp are elected.

Standard STV does not use RESTART (nor NODEL), so it elects the first ranked
candidate of the majority. It then distributes only the surplus votes, not all votes
as done by CADE-STV. Thus the second preference from the majority is not
necessarily elected next. Majorities do not rule outright in standard STV.

6 Conclusion

The experiments with our tool show that CADE’s “single transferable vote” vot-
ing scheme does not satisfy the intuitive semantic criterion defined in Section 3
and does not achieve proportional representation. We suspect that CADE’s vot-
ing scheme was intended to combine the advantages of preferential and majority
voting (nothing can happen that the majority does not want). Unfortunately, it
also combines their disadvantages (no proportional representation).

Our observations do not imply that CADE voting is undemocratic. But call-
ing the CADE algorithm “Single Transferable Vote” is a misnomer because the
goal of proportional representation is inherent to STV. The CADE algorithm is
actually closer to what is known as Majority Preference Voting.

CADE-STV has been used for many years. It has been implemented, tested,
re-implemented, and re-tested by various people. Its properties have been thor-
oughly discussed at various times by the CADE Trustees. But to our knowledge,
the problems outlined in this paper have not been observed before, which clearly
indicates that a formal analysis like the one presented here is indispensable.
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Abstract. Psychologists have argued that human behavior is the result
of the interaction between two different cognitive modules. System 1 is
fast, intuitive, and error-prone, whereas System 2 is slow, logical, and
reliable. When it comes to reasoning, the field of automated deduc-
tion has focused its attention on the slow System 2 processes. We argue
that there is an increasing role for forms of reasoning that are closer to
System 1 particularly in tasks that involve uncertainty, partial knowl-
edge, and discrimination. The interaction between these two systems of
reasoning is also fertile ground for further exploration. We present some
tentative and preliminary speculation on the prospects for automated
reasoning in the style of System 1, and the synergy with the more tradi-
tional System 2 strand of work. We explore this interaction by focusing
on the use of cues in perception, reasoning, and communication.

To be useful, a memory has to be recalled. Memory retrieval depends on
the presence of appropriate cues that an animal can associate with its
learning experiences. The cues can be external, such as a sensory stimu-
lus in habituation, sensitization, and classical conditioning, or internal,
sparked by an idea or an urge.

Eric Kandel, In Search of Memory [18]

The situation has provided a cue; this cue has given the expert access to
information stored in memory, and the information provides the answer.
Intuition is nothing more and nothing less than recognition.

Herbert Simon [38]

Over the last six decades, the field of Automated Reasoning has focused single-
mindedly on a specific form of reasoning, namely, logico-deductive inference.
Work on deductive inference has yielded significant progress, particularly in the
form of robust proof search methods, efficient decision procedures, and expressive
logics for proof checking. This progress has led to the modeling and verification
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of complex hardware and software systems [23,3], and the formalization of large
tracts of mathematical knowledge [13]. The field can certainly take pride in the
progress that it has made in the automation of deductive inference, and this line
of work certainly appears to have a bright future. However, logical deduction is
much too rigid and brittle for many tasks that call for mechanized reasoning.
For example, the availability of large volumes of data call for efficient forms
of inductive reasoning to extract meaningful rules from the data, and abduc-
tive reasoning to infer hidden information from visible observations. In many
applications, speed is essential, so that the cost of inference must be seen as a
factor. We present a few modest examples that motivate the diversification of
automated reasoning beyond deduction. More specifically, we outline a frame-
work we call cueology (pronounced “Q-ology”) for fast, approximate inference
for discriminative tasks based on cues.

First, a little detour through cognitive science as an explanation for the ti-
tle. In his 2012 book, Thinking, Fast and Slow [17], Daniel Kahneman surveys
the research on psychology, focusing on the interaction between two systems of
cognition. Cognitive psychologists have studied human reasoning to examine the
gap between “rational” modes of reasoning and those typically used by humans.
They have identified a dual-process architecture of cognition in the human mind
that combines two distinct systems. The first, System 1, is involuntary, paral-
lel, intuitive, and fallible, whereas the second, System 2, is effortful, sequential,
deliberative, and mostly reliable. As an example of a System 1 activity would
be to “drive a car on an empty road” in contrast to a System 2 activity such
as to “check the validity of a complex argument.” System 2 keeps a watchful
eye on System 1, and is activated either when System 1 perceives something
surprising or when a task is too difficult for it. However, System 2 is lazy, and
the combination of the two systems can often lead to errors. Sometimes, this is
because System 2 is not engaged, and in other cases, it is either preoccupied or
exhausted. As an example of the former, students are given the puzzle: A bat
and ball cost $1.10. The bat costs one dollar more than the ball. How much does
the ball cost? More than half the students respond with the incorrect answer:
10 cents. As an example of System 2 being preoccupied, a famous video 1 by
Chabris and Simons shows a basketball game between a team of players dressed
in white against another team dressed in black. It sets the viewer the tasks of
counting the number of passes between players from the white team. When the
subject is engaged in this intense System 2 activity, about halfway through the
video, a woman in a gorilla suite walks into the frame, thumps her chest and
walks across the court. This is typically missed by the subject engaged in the
counting task, a phenomenon called inattentional blindness.

Kahneman describes his various other ways in which the interaction of the
two systems of cognition leads to a number of fallacies, several of which were
identified in collaboration with Amos Tversky. Priming and repetition can eas-
ily bias thought. For example, polling stations located near a school influence
voters to vote in favor of pro-school ballot propositions. They are swayed by

1 http://www.theinvisiblegorilla.com/gorilla_experiment.html

http://www.theinvisiblegorilla.com/gorilla_experiment.html
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small sample sizes, and are not particularly consistent when it comes to calcu-
lating probabilities and risks. They are also prone to logical fallacies, as with the
conjunction fallacy. Here, subjects are told that Linda is thirty-one years old,
single, outspoken, and very bright. She majored in philosophy. As a student, she
was deeply concerned with issues of discrimination and social justice, and also
participated in antinuclear demonstrations. Is it more likely that she is a bank
teller or a bank teller who is active in the feminist movement? A substantial
majority of those tested pick the latter, even though the probability that Linda
is a bank teller and an active feminist cannot exceed the probability that Linda
is a bank teller.

Kahneman and Tversky have their critics, most prominently the psychologist
Gerd Gigerenzer [10] who argues that many of these fallacies are not flaws but the
result of Herbert Simon’s notion of bounded rationality. Most human reasoning
takes place in contexts where there is limited information and time. Gigerenzer
and his colleagues argue that fast and frugal heuristics, typically simple decision
trees based on a small subset of cues, are often sufficiently effective compared to
more complex decision structures that take some weighted combination of cues.
For example, a recognition heuristic can be used to construct a stock portfolio
that consistently beats the market by picking companies that are recognized by
a random sampling of people

Regardless of whether human cognition is a good model for automated rea-
soning, fields like cognitive psychology and probability theory offer a science of
rational reasoning that can serve as a foundation for both human and machine
cognition. The main challenge is to identify forms of reasoning that are rationally
justifiable, particularly in data-intensive contexts such as science, gambling, or
sports, where noise and uncertainty abound, and yet rationality is a clear ob-
jective. The dual-process model of mind is appropriate for extracting the signal
from the overwhelming quantity of sensory data. A good deal of the System 2
reasoning can be carried out off-line to identify suitable cues that are embedded
in System 1 processes that continue to be monitored by other System 2 processes.
Such a dual-process model is also applicable to traditional applications of au-
tomated reasoning where quick and unreliable inference heuristics are applied
first, and the more reliable but computationally intensive inference mechanisms
are only triggered when the easy heuristics fail.

We offer a very preliminary outline of a science of fast reasoning based on
cues that we term cueology. Section 1 briefly summarizes the common criticisms
against deduction. Section 2 gives a quick overview of probabilistic reasoning
using generative models and its relation to logical inference. Section 3 examines
the use of cues for fast and approximate prediction or discrimination tasks.
Section 4 discusses the synergy between fast and slow inference techniques in
automated reasoning, and the conclusions are presented in Section 5.

1 A Critique of Deductive Inference

We can regard perception, memory and induction as the three fundamen-
tal ways of acquiring knowledge; deduction on the other hand is merely
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a method of arranging our knowledge and eliminating inconsistencies or
contradictions.

F. P. Ramsey[32]

There is no question that logical deduction has been unreasonably effective both
at the foundational level of identifying the valid modes of reasoning, and at
the practical level of formalizing knowledge and automating reasoning. Logi-
cal precision and consistency are central to deduction: a claim A follows from
a knowledge base K exactly when K,¬A is inconsistent. Recent progress in
mechanized inference has substantially reduced the level of effort and difficulty
in formally verifying mathematical knowledge using interactive proof checkers.
SAT and SMT solvers are being used in a number of inferential tasks from rang-
ing from AI planning to hardware and software design and verification. However,
there is still a level of brittleness to deductive inference that makes it inappro-
priate for many tasks that do call for some form of inference. For example, data
frequently contain errors and noise. Inference based on such data needs to be
resilient to these errors. In many applications, speed is of the essence and can be
traded off for precision. Techniques from automated deduction can be adapted
for these applications, and there is already a considerable body of work in this
direction [8].

A number of criticisms have been levelled against the use of logic as a frame-
work for knowledge representation and reasoning. The basic objections are

1. Logical representations entail uniform methods of inference, where problem-
specific algorithms and representations can be more effective.

2. Logic is monotonic, so that no default inferences can be made in the absence
of knowledge.

3. Logic does not cope well with uncertainty, whereas knowledge in the real-
world is often fragmentary and unreliable.

These critiques actually highlight some of the strengths of logic. It serves as a
convenient interface so that inference mechanisms can be developed and opti-
mized for entire classes of models. Conversely, models can be developed without
being overly sensitive to the actual inference mechanisms. The success of SAT
solving illustrates this: it is not easy to develop bespoke algorithmic solutions
for many of the inference problems where generic SAT solvers are already quite
effective. The monotonicity of logic allows reasoning to be decomposed and fac-
tored into theories and lemmas. The idealized and unambiguous nature of logic
is what makes it so effective for building models and for identifying errors of
representation or reasoning.

By leveraging abstraction and modularity, inference algorithms have been suc-
cessful across a wide range of fields including databases, programming languages,
hardware and software verification, and symbolic systems biology. The success
of automated deduction can be extended to a range of other inference tasks
that do not require the same level of precision. Examples of such tasks include
expert systems, natural language processing, social network analysis, robotics,
and predictive analytics. Some of the benefits of this diversification can accrue
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to automated reasoning itself, for example, in learning, adapting, and matching
inference techniques to new challenges.

In the next section, we present probabilistic inference as a step in this
direction.

2 Probabilistic Inference

Our theme is simply: Probability Theory as Extended Logic. . . . the math-
ematical rules of probability theory are not merely rules for calculating
frequencies of “random variables”; they are also the unique consistent
rules for conducting inference (i.e., plausible reasoning) of any kind . . .

E. T. Jaynes, Probability Theory: The Logic of Science [15]

An acquaintance tells you she has two children, one is a boy born on Tuesday.
What is the probability she has two boys? It is tempting to think that the refer-
ence to Tuesday is irrelevant, and that the probability of the other child being
a boy is 1/2. There are two possibilities for the gender of each child, and seven
possibilities for the day of the week for the birthday. If we restrict ourselves to
the possibilities where at least one child is a boy born on a Tuesday, then either
the first child is a boy born on a Tuesday, and there are 14 possibilities for the
second child including 7 instances where the second child is a boy. Otherwise, if
the first child is not a boy born on a Tuesday but the second one is, and there
are 13 possibilities for the first child including 6 instances where the first child
is a boy. The probability is therefore 13/27.

Probabilistic inference as illustrated by this example is at the foundation of
a number of disciplines from information theory [24] to psephology (the study
of polling and elections) [37]. Applications of probabilistic inference range from
robotics to natural language understanding. On the one hand, probability is just
another mathematical theory that is easily formalized in interactive proof check-
ers, and such formalizations exist in Coq [2], and PVS [27]. On the other hand,
the practical applications of probabilistic inference employ specialized inference
mechanisms that are quite different from those of logical deduction. We give a
brief introduction to a few of the approaches to probabilistic inference. We then
present Markov Logic developed by Pedro Domingos and his colleagues [8] as a
combination of probabilistic and logical inference. We briefly describe the MC-
SAT inference algorithm [31] that is implemented in systems such as Alchemy
(http://code.google.com/p/alchemy-2/) and the Probabilistic Consistency
Engine (PCE; developed jointly with Sam Owre).

A probabability space is a triple 〈Ω,F , P 〉 consisting of

1. A sample space Ω which is a set of outcomes. We restrict our attention to
finite sample spaces of the form {e1, . . . , en}.

2. An event algebra F , a nonempty set of subsets of Ω closed under countable
unions and complements.

3. A probability measure P mapping events to probabilities so that P (E) ≥ 0
for all E ∈ F , P (Ω) = 1, and P (

⋃
iEi) = ΣiP (Ei), where 〈E0, E1, . . .〉 is a

sequence of pairwise disjoint events.

http://code.google.com/p/alchemy-2/
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Example 1. For a fair 6-sided dice, the probability P (i) for 1 ≤ i ≤ 6 is 1
6 , and

the probability of an even number, i.e., the event {2, 4, 6} is 1
6 + 1

6 + 1
6 = 1

2

The conditional probability of one event A relative to another one B is given
P (A ∩B)/P (B). Bayes’ theorem relates the conditional and marginal probabil-
ities of events A and B, where P (B) is nonzero.

P (A|B) =
P (B|A)P (A)

P (B)
.

The significance of Bayes theorem is that if M is a model and D is an observa-
tion, the posterior probability of a model M explaining the observation D, i.e.,
P (M |D) can be computed in terms of the prior probability P (M) of the model
M the probability P (D|M) of the observation given the model, and the marginal
probability probability of the observation. For example, if there are three com-
peting models M1,M2,M3, then we can find use Bayes theorem to identify the
model that best explains the observation.

Medical diagnosis offers a simple example of Bayesian reasoning as illustrated
by the following example from the Wikipedia page on Bayesian inference. We
have a test for a disease that returns positive or negative results. If the patient has
the disease, the test is positive with probability .99. If the patient does not have
the disease, the test is positive with probability .05. A patient has the disease
with probability .001. What is the probability that a patient with a positive test
has the disease? Abbreviating the event corresponding to the presence of the
disease as D, and the event corresponding to a positive test result as R, this can
be calculated as

P (D|R) = P (R|D)P (D)/P (R) = .99× .001/(.99× .001 + .05× .999) = 0.0194

This example illustrates why it is important to pay attention to the base rate
probability of the disease.

Two events E1 and E2 are said to be conditionally independent under a third
event C if P (E1 ∩ E2|C) = P (E|C)P (F |C). Conditional independence can be
exploited to construct compact probabilistic models.

For a sample space Ω, a random variable X ranging over some value space V
is a mapping from Ω to V . For x ∈ V , the probability mass function P (X = x) is
computed as P (E), whereE = {e ∈ Ω|X(e) = x}. Conditional independence can
be extended to random variables so that X and Y are conditionally independent
given Z if P (X = x, Y = y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z) for
x, y, z ∈ V , assuming X , Y , and Z range over the same value space V .

A system is often described in terms of a vector of random variables X1, . . . ,
Xn. These have a joint distribution P (X = x). For some inference tasks, the
vector of random variables will be divided into two classes: the observable vari-
ables X and the hidden variables Y . For example, in classification problems,
the random variables consist of a class Y and the observations X1, . . . , Xn. The
objective is to determine P (Y |X = x). Bayes theorem can be used to recom-
pute this as P (X = x|Y = y)P (Y = y)/P (X = x). If we assume that Xi and
Xj , with i = j, are conditionally independent with respect to Y , then we get
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P (Y = y|X = x) = 1
ZP (Y = y)

∏n
i=1 P (Xi = xi|Y = y). The näıve Bayes classi-

fier is based on this assumption of conditional independence between the obser-
vations. The classification can then be chosen as the y such that P (Y = y|X = x)
is maximal.

In some systems, there is a third set of internal variables W that are neither
hidden nor observed and could be parameters to the model. There are four basic
inference problems associated with probability:

1. Marginal probabilities: P (Xi = x) =
∑

x:xi=x P (X = x). The marginal
probability isolates the probability distribution for a single random variable
(or a subset of the random variables) by marginalizing over the distributions
of the other variables.

2. Most Likely Explanation (MLE): argmax yPr(Y = y|X = x). The MLE
problem is that of finding the most likely assignment of the hidden variables
given a specific observation.

3. Maximum a Posteriori (MAP): argmax y

∑
w Pr(Y = y|X = x,W = w). The

MAP problem is that of finding the most likely assignment of a subset of
the hidden variables given a specific observation.

4. Conditional distribution: P (Y = y|X = x) =
∑

w P (Y =y,W=w,X=x)

P (X=x)
. The

conditional probability computes the probability distribution of the hidden
variables given the observations while marginalizing out the internal vari-
ables.

Techniques for carrying out the above forms of inference are quantitative ver-
sions of logical inference, and logic can be used as a knowledge representation
framework for probabilistic models. The first step is to build a compact represen-
tation of a probabilistic knowledge base involving a system of random variables.
For this, joint probability distributions are unduly verbose. For Boolean ran-
dom variables, where V = {0, 1}, there are 2n possible choices for x. Graphical
models exploit conditional independence to describe the joint probability more
compactly [4,20]. A Bayesian network [7,26,29] is a directed acyclic graph G
consisting of nodes Xi, where each Xi is a random variable. To each node Xi,
there is a set of parent variables π(Xi) with an edge from each Xj, for Xj in
π(Xi), to Xi. In a Bayesian network, the joint probability distribution can be
written as P (X = x) =

∏
i pi(x), where

pi(x) = P (Xi = xi|
∧

{Xj∈π(Xi)}
Xj = xj)

In undirected graphical models such as Markov random fields, the random vari-
ables are connected by a set of cliques Γ , where each clique C is a subset of
X and

⋃
Γ = X. To each clique C in Γ , there is a joint distribution FC

over the variables in C. Since each random variable is conditionally indepen-
dent of other random variables given its neighbors in the graph, the over-
all joint distribution is computed from the clique-wise joint distributions as
P (X = x) = 1

Z

∏
{C∈Γ} FC(XC = xC), where XC and xC are X and x re-

stricted to C. The normalization constant Z =
∑

x

∏
{C∈Γ} FC(XC = xC).
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Factor graphs are bipartite graphs with factor nodes f1, . . . , fm in addition to

random variables X1, . . . , Xn. Let X
j
represent the subset containing those vari-

ables that have edges to fj in the factor graph. The joint probability distribution

is then computed as P (X = x) = 1
Z

∏m
j=1 fj(X

j
), where Z is a normalization

constant that ensures that the summation of the joint distribution is 1. The
set of factor nodes connected to a random variable X is N(X) and the set of
random variables connected to a factor node f is M(f). Both directed and undi-
rected graphical models can be represented as factor graphs. For tree-shaped
factor graphs, marginal and conditional probabilities can be computed exactly
by means of variable elimination and message passing algorithms. Approximate
algorithms based on Markov Chain Monte Carlo algorithms such as Gibbs sam-
pling and Metropolis-Hastings sampling define random walks through the sample
space of assignments for the random variables [25]. MCMC algorithms have sev-
eral advantages. They are anytime algorithms that deliver approximate answers.
It is easy to estimate marginal distributions and expected values of random vari-
ables by tabulating the values assigned to the variables in the generated samples.

Potential functions in a graphical model are more conveniently represented
as feature functions fk using a log-linear model as P (X = x) = 1

Z e
(
∑

k wkfk(x)).
In Markov logic [34,8], the random variables Xi are all Boolean. Each feature
function corresponds to the truth value of the k’th formula in the knowledge
base under the assignment x. The weight wi assigned to a formula is a measure
of the incremental log-odds of the formula, as shown below. When the weight is
maximal, i.e.,∞, Markov logic reduces to ordinary propositional logic. However,
even in this case, it is possible to compute probabilities. For example, the problem
at the beginning of this section has no probabilities in the input constraints. In
the absence of probabilities, all assignments of truth values to the variables are
equally probable. Given a knowledge baseKB that is a conjunction of maximally
weighted formulas, the probability of a formula F can be defined as

|{M |M |= KB ∧ F}|
|{M |M |= KB}|

If the knowledge base is a conjunction of formulas F1 ∧ . . . ∧ Fn, where each
formula Fi has an associated weight wi, then we define fi so that fi(M) = 1
if M |= Fi, and fi(M) = 0, otherwise. Models have an associated probability
in the KB: PKB(M) given by 1

Z e
∑

i wifi(M), where Z is a normalization factor.
The probability PKB(F ) of a formula F is the aggregate over the models of F :∑

{M|M|=F} PKB(M).

Example 2. Let KB be over two variables A and B and contain a single formula
A ∨B with weight w.

A B PKB(M) ¬B
� � ew 0
� ⊥ ew �
⊥ � ew 0
⊥ ⊥ e0 �
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The normalization factor Z =
∑

M e
∑

i wifi(M), which is 3ew + 1. The formula

¬B has probability ew+1
3ew+1 .

At SRI, we have implemented a solver for Markov Logic Networks called the
Probabilistic Consistency Engine (PCE). This system is based on the MC-
SAT algorithm of Poon and Domingos [31], which is also implemented in their
Alchemy system. MC-SAT takes a set K of weighted clauses as input and gener-
ates a sequence of models 〈x(0), . . . , x(i), . . .〉. Hard clauses are facts (and nega-
tions given by the closed-world assumption) and clauses with maximal weight.
The first step in the algorithm is to generate an assignment x0 using the Walk-
SAT algorithm [35]. Each iterative step generates an assignment xi+1 from xi

by choosing a subset Ki of the clauses satisfied by xi. A subset K̂i of Ki is
constructed by excluding κ ∈ Ki with weight w from K̂i with probability e−w.
The SampleSAT algorithm [42] blends simulated annealing with WalkSAT to

generate a random assignment xi+1 for the selected constraints K̂i. PCE has
been used for applying domain knowledge to the task of information extraction
from natural language text![9].

Prior to the implementation of PCE, we were using the weighted MaxSAT and
MaxSMT capability of the Yices solver to carry out the MLE inference [28] for
finding the most likely assignment x, i.e., argmaxxPKB(x). MaxSampleSAT [19]
is another approach for constructing the most likely assignment. Model counting
and weighted model counting [12,11] have also been used for computing the
probability of a formula in a knowledge base.

We have only covered the propositional case of probabilistic inference in
Markov Logic, but the expressiveness can be enhanced in several directions.
Sorts and relations over sorts can be added so that p(a, b, c) represents a rela-
tion p across a of sort A, b of sort B, and c of sort C. If the sorts are all finite,
then each atom p(a, b, c) can be represented by a distinct Boolean variable. Even
though relations make the Markov Logic formulas compact since it is possible
to write formulas like ∀(p : Person).¬(democrat(p) ∧ republican(p)). However,
inference with this kind of grounding can be expensive. There are two ways to
mitigate the cost. One way is by lazily grounding the formulas as needed to
solve the query. The other way is through lifted inference using more refined
representations and rules that operate at the symbolic level (in analogy with
resolution).

To summarize, there are strong connections between logical inference and
probabilistic inference. Exact computation of probabilities in Markov logic net-
works is a #P -complete problem. However, there are fast methods based on
MCMC sampled that can be used to compute reasonable approximations. Prob-
abilistic programming languages like the stochastic lambda calculus [33] and
Church [14] use this kind of sampling as an execution mechanism to make infer-
ences on computations defined over distributions. The PRISM model checker [21]
also employs probabilistic inference to compute probabilistic/temporal proper-
ties of Markov chains and their extensions.
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3 Cueology

In the previous section, we briefly covered probabilistic inference in generative
models where we are explicitly modelling the causal links within a system of
random variables and using these links to identify probable causes from specific
observations. The problem with generative models is that there might be a large
number of observable and hidden variabes of which only a small subset might
be relevant to a given inference task such as making a reasonably accurate pre-
diction. Discriminative models define classifiers that are trained to make such
predictions. In this section, we examine the problem of identifying those observ-
able features that can be used to build minimalist discriminators for making
predictions.

To motivate this, we return briefly to the idiosyncracies of human (or even,
animal) cognition. Architectures for cognition must be designed to deal with a
deluge of sensory input and internally stored data. A sentient agent, and partic-
ularly its System 1 component, has to quickly extract the signal and the meaning
of the signal from this mountain of data. The meaning or the significate is typ-
ically something that is hidden or implicit, possibly because it is in the past,
the future, or the non-observable present. For example, one might want to make
predictions that answer questions such as: Is the oncoming baseball pitch a slider
or a fastball? Do the clouds and wind indicate rain this evening? Will the enemy
attack by land or sea? Is North Korea about to conduct a nuclear test? How will
the stock market react to the latest employment report?

Similar questions can also be asked about the hidden present: Is that an ‘a’
or an ‘o’? Is this lesion malignant? Does the bell indicate feeding time? Is the
pasta done, the banana over-ripe, or the coffee stale?

Reading social signals is an extremely important part of human interaction:
Is my interlocutor happy or bored? Are we talking about the same thing? Have
we reached agreement? Is the witness lying? Did I detect a trace of sarcasm?

Extracting meaning from signals can also be a key to deciphering the past:
Did someone eat my porridge? Can we tell who did it? Did the Neanderthals
have a spoken language?

In each case, we have to somehow divine the hidden information on the basis
of limited observations even as we are bombarded with other irrelevant stimuli.
For example, it is too late for a batter to react to a pitch after observing that it
is a slider or a fastball. When a ball is travelling across 60 feet at 90+ miles an
hour, it reaches the batter in less than half a second. Good batters exploit other
information such as the wind-up, the release point/angle/speed/spin, to assist
in the decision to take a swing at the ball. Even the pitcher’s facial expression
might be relevant. Conversely, we are often subconsciously generating informa-
tion through facial expressions, tonal modulation, and body language, that can
be perceived by others as an indication of our mood or emotional state. Pitchers
might also have “tells”, that is, mannerisms that reveal the likely nature of the
forthcoming pitch. In some cases, we might wish to mask this information by
sending out false signals or no signals (as in the poker face of a card player).
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The common factor in the above examples is the use of cues : signals that
are used to perceive information or to generate it. Cues are an important and
ubiquitous part of inference. They are used for recognizing friends, storing and re-
trieving memories, discerning intent, and much else. Cues are significant enough
that they can be studied as an independent subject. We propose a very prelim-
inary framework called cueology for such a study of the relationship between
implicit information and explicit observation. Our senses are bombarded with
information, and we can only be conscious of a small fraction of it. Cues provide
a way to focus our consciousness on those signals that carry the most salience.
The cognitive cycle uses cues to trigger sensitivity to other cues so that we have
accurate information to guide our actions. By integrating cues, we are able to
recognize complex patterns such as letters, alphabets, words, pictures, and tasks,
and can quickly discriminate between different symbols, moods, or situations.

Cues are also a key component of formal human knowledge. We are really
seeking cues when we pose questions such as: How can we recognize the species
of a given plant or animal? How can we detect a subatomic particle? How do we
tell the temperature or measure blood pressure? Is a given substance acidic or
alkaline? Is it edible or poisonous? How do we diagnose a disease from symptoms?
How does one infer the intended topic of a search from the query string? What
is the best way to prove a given conjecture of a certain form?

Experts in a given field are often well-trained at recognizing cues. A stewardess
glances at a passenger’s book to guess the best language for communication. An
art historian can recognize the painter from a painting or instinctively detect a
fake, and a literary sleuth can identify the writer from the text. A good program-
mer can rapidly identify the bugs in a piece of code. This is because learning
and experience have trained the expert to distinguish reliable cues, those that
have high predictive and discriminative value, from the unreliable ones.

Cues can also be unreliable. One such difficulty arises in switching from steer-
ing left-hand drive cars on the right lane to right-hand drive cars on the left lane.
A driver typically cues the position of the car within a lane off the closest lane
marker, e.g., the left-side lane marker for a left-hand drive car, and this same
cue does not work so well when switching to a right-hand side drive. Magicians
are adept at exploiting human cue response to draw attention away from the
locus of deception. The conjunction fallacy can be seen as a side effect of this
kind of ‘miscue’ since the information given about Linda is more a cue for her
turning out to be an active feminist than a bank teller.

Cues have been studied in a large number of areas, including law [41], eco-
nomics [22], magic2, neural computing [1], and sports [6], among many others.
A search for the words cue theory on Wikipedia yields hundreds of relevant hits.
We examine cues from the viewpoint of inference. Here, the key question is:
what is a cue and when is one cue better than another? If X and Y are Boolean
random variables, then X is a cue or sign for a significate Y in context G if
X = true significantly raises the probability of Y = true. One convenient way
of measuring the skew introduced by a cue is the odds of Y = true which is

2 See http://www.nytimes.com/2007/08/21/science/21magic.html.

http://www.nytimes.com/2007/08/21/science/21magic.html
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given by P (Y = true)/(1− P (Y = true)) = P (Y = true)/P (Y = false). Log-
odds, i.e., the logarithm ln(P (Y = true/P (Y = false))) is even more convenient
since ln(P (Y = true/P (Y = false))) = −ln(P (Y = false/P (Y = true))). The
strength of a cue X for Y is given by the incremental log-odds, i.e.,

ln

(
P (Y = true|X = true, G)

P (Y = false|X = true, G)

)
− ln

(
P (Y = true|G)

P (Y = false|G)

)
.

Measuring the strength of cue as the incremental log-odds is effective for inferring
the presence of the significate Y when we have already observed X . Such a cue
can be termed a post-cue. For example, an effective post-cue might be one that
is rarely present even when the significate is present, but when it is present, it
raises the probability of the significate in a significant way. In contrast, a pre-cue
is one that is used to set up an observation for the significate. In this case, we
have to choose whether to observe one cue or another. We might for example
only be interested in observing cues that raise the probability of the significate
above a threshold. This might be the threshold at which we decide to act as
if the significate is present. Then the cost of making an incorrect prediction
based on a cue is also relevant. Even when we have two cues that each raise
the probability of the significate above the threshold, they might differ in the
coverage. Type 1 errors (false positives, or loss of precision) occur when the cue
is present, but the significate is absent. The probability of Type 1 errors is given
by P (Y = false|X = true), and the probability of the Type 1 non-error case is
given by P (Y = true|X = true). Type 2 errors (false negatives, or loss of recall)
occur when the cue is absent, but the significate is present. The probability of
Type 2 errors is P (Y = true|X = false), and the probability of the non-error
case is given by P (Y = false|X = false). A cue X measured by incremental
log-odds might minimize Type 1 errors at the expense of Type 2 errors. For
example, we might have a diagnosis for cancer that strongly indicates cancer,
but it does so only in a small number of actual cases of cancer, while a different
diagnosis might covers a larger number of actual cases but with a large false
positive rate. There is a cost even with correct decisions which might be the cost
of observing the cue. If E1 and C1 are the costs associated with Type 1 error
and non-error decisions, and E2 and C2 are the costs associated with the Type
2 error and non-error decisions, then the cue must be chosen to minimize the
expected cost.

A cue X can also be used to obtain a better distribution of the significate
variable Y . For example, we might be able to discern from the way a baby is
crying, that she is either sleepy or hungry, but is more likely to be sleepy than
hungry. The cue can then be added to the context in the hope of uncovering
some other useful cue in this new context. Typically, the cue X will be used to
narrow the distribution of a parameter Z, where we know P (Y = y|W = w). In
such cases, the greater discriminating power of the cue is given by the Kullback-

Leibler (KL) divergence which is given by
∑

y P (Y = y|X = x)ln
(

P (Y=y|X=x)
P (Y =y)

)
,

where the probability P (Y = y|X = x) is obtained by marginalizing over the
parameter W .
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The above discussion emphasizes the analytic aspect of using cues to uncover
hidden information, but there is also a synthetic aspect to cues. In the synthetic
form, cues are used to implicitly communicate hidden information or to create
certain associations. Advertising is a ubiquitous application of synthetic cueol-
ogy. The distinctive shape of a soft-drink bottle, the deep reddish-orange hue of a
laundry detergent, or the swoosh of a sporting goods maker, are cues that create
strong associations with specific products, and help discriminate these products
from their competition. Synthetic cues are used in language for communicating
mental states. They are also helpful in designing choice architectures that subtly
bias user behavior [39].

We have outlined a framework called cueology that emphasizes the use of signs
or cues for extracting the hidden significate. The main thesis of cueology is that
hidden information can typically be uncovered by identifying and observing the
relevant cues. For natural cognition, we can state a strong cueing hypothesis that
the nervous system is a cueing network that integrates sensory and non-sensory
(e.g., memory-based) cues.

Cueology also raises the engineering challenge of building cue-based archi-
tectures for fast, parallel inference. One of the challenges for building such an
architecture is feature identification. What features of a domain are relevant for
constructing simple but highly discriminative cues. The other challenge is that of
determining from the data, the exact contexts in which a specific cue is effective.
Some cues are helpful in isolating situations in which other cues can be effective.
A cueing architecture filters the data for certain cues and triggers other cue fil-
ters based on the cues that have been detected. The architecture also analyzes
models and data, offline or online, to identify useful cueing relations.

In Todd and Gigerenzer’s words [40,10], cues offer a fast and frugal heuristic
for inference and reasoning. They are a way of quickly filtering the signal from
the noise. Gigerenzer and his colleagues [10] have mostly examined cues from a
cognitive viewpoint, but cues have a clear role to play in more rational forms
of inference, and there is a science underlying the use of cueing relations in this
kind of inference. In the next section, we argue that cues have a role to play in
automated reasoning as well.

4 Discussion

Polya showed that even a pure mathematician actually uses these weaker
forms of reasoning most of the time. Of course when he publishes a new
theorem he will try very hard to invent an argument which uses only the
first kind but the reasoning process which led him to the theorem in the
first place almost always involves one of the weaker forms. . .

E. T. Jaynes, Probability Theory: The Logic of Science [15]

Having seen some of the background in probabilistic inference with both gen-
erative and discriminative models, and the connections to logical reasoning, we
can now examine the argument that automated reasoning can be diversified to
incorporate broader forms of inference. While there are connections to human
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cognition, the emphasis here is not on modelling or explaining human perfor-
mance but on developing a rational, high-performance architecture for inference
tasks that combine various forms of inference: deductive, inductive, and abduc-
tive. Specifically, the dual-process models integrating System 1 and System 2
reasoning can be emulated in artificial systems as well.

Inference tasks need deductive reasoning. For human cognition, this point is
quite controversial (see Pinker [30]). However, if we want high performance in
terms of both efficiency and accuracy of the results, then deductive reason-
ing is indispensable. Many inference problems involve a rich set of constraints
that include hard (e.g., logical) and soft (e.g., probabilistic) rules as well as
observational data. Planning is a typical example, where a plan must satisfy
certain logical constraints but it must also cope with uncertainty in the oper-
ating environment and the flexibility afforded by the soft rules and objectives.
In the future, many complex problems are going to be addressed with cognitive,
inference-based solutions, and the relevant inference architectures will have to
incorporate a mix of logical, inductive, and abductive inference.

Deduction can itself exploit broader forms of inference. Many deductive in-
ference procedures already exploit heuristics. For example, SAT solvers use
activity-based heuristics like VSIDS for prioritizing the search decisions among
the unassigned variables. Machine learning techniques are already being used to
construct useful interpolants [36]. Saturation-based theorem provers must de-
cide on orderings and strategies. Induction theorem provers guess the induction
scheme based on the recursion schemes of the function symbols that appear in the
conjecture. Synthesis as a way of instantiating first-order or higher-order quan-
tifiers often exploits inductive reasoning for generalizing from instances. Loosely
constrained synthesis tasks, particularly those that involve templates, can be
solved by MCMC sampling to identify the parameters of the template. Template-
based invariant generation is an example where such probabilistic search can be
effective.

Deductive inference itself can exploit cues. By now we have accumulated a
large body of data in the form of definitions, theorems, and proofs. We typi-
cally do not retain information from failed proof attempts, but this too might
be useful. This data can be mined in order to identify the features that can
serve as cues for specific inference strategies. It can also be used to pick out
the lemmas that might be relevant to the current proof attempt. The rippling
heuristic for induction [5] is an example where the simplifications are classified
in terms of the relevance for bridging the gap between the induction hypothesis
and the induction goal. Other cues might help highlight how universal quanti-
fiers can be processed, e.g., by induction or Skolemization, or if an existential
quantifier should be eliminated or explicitly instantiated. The proof data can
also be mined for identifying popular inference steps, both individual steps as
well as combinations, given the features of the goal.

Human cognitive architectures offer useful lessons for artificial inference.Mod-
ern multi-core architectures can be exploited to carry out the analog of System
1 reasoning with a massive degree of parallelism. Such a System 1 could be used
to identify promising inference strategies and to extract the relevant background
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information. In many cases, System 1 might be able to solve the inference prob-
lem. For computational, as opposed to cognitive, processing, even System 2 rea-
soning can be parallelized. Stanovich, West, and Toplak [16] outline a tripartite
architecture which further decomposes the System 2 layer into an algorithmic
mind and a reflective mind that questions the goals, beliefs, and assumptions
that are employed by the algorithmic mind. Adding a reflective layer to an
automated reasoning system remains a difficult and intriguing challenge.

5 Conclusions

A large fraction of computing is about inference, and deductive inference is
central to computational and mathematical reasoning with hard constraints.
Increasingly, computational problems involve reasoning with uncertainty con-
strained by rules and probability distributions drawn from the data. Deductive
techniques have already proved quite useful in such reasoning tasks, and we need
to continue to diversify these techniques to address these newer challenges. We
also need to exploit the availability of large volumes of data and the associated
analytical techniques for mining this data, to enhance the effectiveness of de-
ductive inference itself. Such a combination of analytical and empirical inference
can offer an interface layer for bridging the gap between problems and efficient
inference techniques.

From the point of view of purely deductive reasoning, it makes sense to develop
architectures that combine fast, approximate, cue-triggered, rule-based reason-
ers with slower, algorithmic, and reflective ones. The use of iterative abstraction
refinement can be seen as combinations of fast reasoning with abstractions, and
slow reasoning for refining the level of abstraction and inference when fast rea-
soning fails.

Cues are used in both natural and artificial cognition to discern and convey
information. Inference plays a central role in identifying cues and integrating
information derived from multiple cues. We propose cueology as a unified, inter-
disciplinary study of cues.
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Abstract. It is the exception that provers share and trust each oth-
ers proofs. One reason for this is that different provers structure their
proof evidence in remarkably different ways, including, for example, proof
scripts, resolution refutations, tableaux, Herbrand expansions, natural
deductions, etc. In this paper, we propose an approach to foundational
proof certificates as a means of flexibly presenting proof evidence so that
a relatively simple and universal proof checker can check that a certificate
does, indeed, elaborate to a formal proof. While we shall limit ourselves
to first-order logic in this paper, we shall not limit ourselves in many
other ways. Our framework for defining and checking proof certificates
will work with classical and intuitionistic logics and with proof structures
as diverse as resolution refutations, matings, and natural deduction.

1 Introduction

Consider a world where the multitude of computational logic systems—theorem
provers, model checkers, type checkers, static analyzers, etc.—can trust each
other’s proofs. Such a world can be constructed if computational logic systems
can output their proof evidence in documents with a clear semantics that can
be validated by a trusted checker. By the term proof certificate we shall mean
documents that contain the evidence of proof generated by a theorem prover.
In this paper, we propose a framework for defining the semantics of a wide
range of proof evidence using proof-theoretic concepts. As a result, we refer to
this approach to defining certificates as “foundational” since it is based not on
the technology used to construct a specific theorem prover but rather on basic
insights into the nature of proofs provided by the modern literature of proof
theory.

The key concept that we take from proof theory is that of focused proof systems
[1,15,16]. Such proof systems exist for classical, intuitionistic, and linear logics
and they are composed of alternating asynchronous and synchronous phases.
These two phases allow for a natural interaction to be set up between a process
that is attempting to build a proof (the checker) and the information contained
in a certificate. During the asynchronous phase of proof construction, the checker
proceeds without reference to the actual certificate since this phase consists of
invertible inference rules. During the synchronous phase, information from the
certificate can be extracted to guide the construction of the focused proof. The
definition of how to check a proof certificate essentially boils down to defining
the details of this interaction.

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 162–177, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The main structure for our framework contains the following components.

– The kernel of our checker is a logic program specification of the focusing
framework LKU proof system [16]. Since this implementation of LKU is high-
level and direct, we can have a high degree of confidence that the program
does, in fact, capture the LKU proof system.

– By restricting various structural rules, LKU can be made into a focused
proof system for classical logic, for intuitionistic logic, and for multiplicative-
additive linear logic. The specifications of these restrictions are contained in
separate small logic definition documents.

– The kernel implementation of LKU actually adds another premise to every
inference rule: in particular, the asynchronous rules get a premise involv-
ing a clerk predicate that simply manages some bookkeeping computations
while the synchronous rules get a premise involving an expert predicate that
extracts information from the certificate to provide to the inference rule.
A proof certificate definition is a document that defines these two kinds of
predicates as well as a translation function from theorems of the considered
system to equiprovable LKU formulas.

– A proof certificate is a document consisting of the structured object contain-
ing the proof evidence supporting theoremhood for a particular formula.

To illustrate this architecture, we present a number of different proof certificates.
For example, a certificate for resolution refutations can be taken as a list of
clauses (including those arising from the original theorem and those added during
resolutions) and a list of triples that describes which two clauses resolve to yield
a third clause. Such an object should be easy to produce for any theorem prover
that uses binary resolution (with implicit factoring). By then adding to the kernel
the logic definition for classical logic (given in [16]) and the definitions of the
clerk and expert predicates (given in Section 4.3), resolution refutations can be
checked. The exact same kernel (this time restricted to intuitionistic logic) can
be used to check natural deduction proofs (i.e., simply and dependently typed
λ-terms): all that needs to be changed is the definition of the clerk and expert
predicate definitions.

Before presenting specific examples of proof certificate definitions for first-
order classical logic in Section 4, we describe focused proof systems in the next
section and, in Section 3, we describe how we have augmented and implemented
that proof system within logic programming. The current implementation of
our proof checking system is available at https://team.inria.fr/parsifal/
proofcert/.

2 Proof Theory Architecture

The sequent calculus of Gentzen [10] (which we assume is familiar to the reader)
is an appealing setting for starting a discussion of proof certificates. First of all,
sequent calculus is well studied and applicable to a wide range of logics. The in-
troduction rules, structural rules (weakening and contraction), and the identity

https://team.inria.fr/parsifal/
proofcert/
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rules (initial and cut) provide a convincing collection of “atoms” of inference.
Additionally, cut-elimination theorems are deep results about sequent calculus
proof systems that not only prove them to be consistent but also offers cut-free
proofs as a normal form for proof. Girard’s invention of linear logic [11] provides
additional extensions to our understanding of the sequent calculus, including
such notions as additive and multiplicative connectives, exponentials, and polar-
ities. Finally, this foundation of Gentzen and Girard lifts naturally and modu-
larly to higher-order logic and to inductive and coinductive fixed points (such
as Baelde’s μMALL [4]). In this paper, we shall concentrate on first-order (and
propositional) logic: we leave the development of proof certificates for higher-
order quantification and fixed points for later work.

The sequent calculus has a serious downside, however: sequent proofs are far
too unstructured to directly support almost any application to computer science.
What one needs is a flexible way to organize the “atoms of inference” into much
larger and rigid “molecules of inference.” The hope would be, of course, that
these larger inference rules can be structured to mimic the notion of proof found
in computational logic systems. For example, early work on the proof-theoretic
foundations of logic programming [19] showed how sequent calculus proofs rep-
resenting logic programming executions could be built using two alternating
phases: the backchaining phase is a focused application of left-rules and the
goal-reduction phase is a collection of right-rules. Andreoli [1] generalized that
earlier work by introducing focused proofs for linear logic in which such phases
were directly captured and generalized. Subsequently, Liang & Miller presented
the LKF and LJF focused proof systems for classical and intuitionistic logics
[15] and later the LKU proof system [16] that unified LKF and LJF. While our
current approach to foundational proof certificates is based on LKU (allowing
the checking of proofs in classical as well as intuitionistic logic), we shall illus-
trate our approach by considering the simpler LKF subsystem of LKU. Before
presenting LKF in detail, we consider the following few elements of its design.

Additive vs multiplicative rules. We shall use t, f , ∧, ∨, ∀, and ∃ as the logical
connectives of first-order classical logic and sequents will be one-sided. As is
familiar to those working with the sequent calculus, there is a choice to make
between using the additive and multiplicative versions of the binary connective
∧ and ∨ (and their units t and f , respectively): the most striking difference
between these two versions is illustrated with ∨:

Additive:

 Θ,Bi


 Θ,B1 ∨B2
i ∈ {1, 2} Multiplicative:


 Θ,B1, B2


 Θ,B1 ∨B2

These two inference rules are inter-admissible in the presence of contraction and
weakening. For this reason, one usually selects one of these inference rules and
discards the other one. In isolation, however, these inference rules are strikingly
different: the multiplicative version is invertible while the additive version reveals
that one disjunct is not needed at this point of the proof. The LKF proof system
will contain the additive and multiplicative versions of disjunction, conjunction,
truth, and false: their presence will improve our flexibility for describing proofs.
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� Θ ⇑ t−, Γ

� Θ ⇑A,Γ � Θ ⇑B,Γ

� Θ ⇑A ∧− B,Γ

� Θ ⇑ Γ

� Θ ⇑ f−, Γ

� Θ ⇑A,B, Γ

� Θ ⇑A ∨− B,Γ

� Θ ⇓ [t/x]B

� Θ ⇓ ∃x.B

� Θ ⇓ t+
� Θ ⇓B1 � Θ ⇓B2

� Θ ⇓B1 ∧+ B2

� Θ ⇓Bi i ∈ {1, 2}
� Θ ⇓B1 ∨+ B2

� Θ ⇑ [y/x]B,Γ y not free in Θ, Γ,B

� Θ ⇑ ∀x.B, Γ � ¬Pa, Θ ⇓ Pa
init

� Θ ⇑B � Θ ⇑ ¬B
� Θ ⇑ · cut

� Θ,C ⇑ Γ

� Θ ⇑ C,Γ
store

� Θ ⇑N

� Θ ⇓N
release

� P,Θ ⇓ P

� P,Θ ⇑ · decide

Here, P is a positive formula; N a negative formula; Pa a positive literal; C a positive
formula or negative literal; and ¬B is the negation normal form of the negation of B.

Fig. 1. LKF: a focused proof systems for classical logic

Polarized connectives. We polarize the propositional connectives as follows: those
inference rules that are invertible introduce the negative version of the connec-
tive while those inference rules that are not necessarily invertible introduce the
positive version of the connective. Thus the additive rule above for the disjunc-
tion introduces ∨+ while the multiplicative rule introduces ∨−. The universal
quantifier is obviously polarized negatively while the existential quantifier is po-
larized positively. Literals must also be polarized: these can be polarized in an
arbitrary fashion as long as complementing a literal also flips its polarity. We say
that a non-literal formula is positive or negative depending only on the polarity
of its top-level connective.

Phases organize groups of inference rules. The inference rules for LKF are given
in Figure 1. Notice that these inference rules involve sequents of the form 
 Θ⇑Γ
and 
 Θ ⇓B where Θ is a multiset of formulas, Γ is a list of formulas, and B is
a formula. Such sequents can be approximated as the one-sided sequents 
 Θ,Γ
and 
 Θ,B, respectively. Furthermore, introduction rules are applied to either
the first element of the list Γ in the ⇑ sequent or the formula B in the ⇓ sequent.
This occurrence of the formula B is called the focus of that sequent. Proofs in
LKF are built using two kinds of alternating phases. The asynchronous phase is
composed of invertible inference rules and only involves ⇑-sequents in the con-
clusion and premise. The other kind of phase is the synchronous phase: here, rule
applications of such inference rules often require choices. In particular, the intro-
duction rule for the disjunction requires selecting either the left or right disjunct
and the introduction rule for the existential quantifier requires selecting a term
for instantiating the quantifier. The initial rule can terminate a synchronous
phase and the cut rule can restart an asynchronous phase. Finally, there are
three structural rules in LKF. The store rule recognizes that the first formula to
the right of the ⇑ is either a negative atom or a positive formula: such a formula
does not have an invertible inference rule and, hence, its treatment is delayed
by storing it on the left. The release rule is used when the formula under focus
(i.e., the formula to the right of the ⇓) is no longer positive: at such a moment,
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the phase changes to the asynchronous phase. Finally, the decide rule is used at
the end of the asynchronous phase to start a synchronous phase by selecting a
previously stored positive formula as the new focus.

Impact of the polarity assignment. Let B be a first-order formula and let B̂ re-
sult from B by placing either + or − on occurrences of t, f , ∧, and ∨ (there are
exponentially many such placements). It is proved in [15] that B is a classical
theorem if and only if 
 ·⇑ B̂ has an LKF proof. Thus the different polarizations
do not change provability but can radically change the structure of proofs. A
simple induction on the structure of an LKF proof of 
 ·⇑B (for some polarized
formula B) reveals that every formula that occurs to the left of ⇑ or ⇓ in one
of its sequents is either a negative literal or a positive formula. Also, it is im-
mediate that the only occurrence of a contraction rule is within the decide rule:
thus, only the positive formulas are contracted. Since there is flexibility in how
formulas are polarized, the choice of polarization can, at times, lead to greatly
reduced opportunities for contraction. When one is able to eliminate or constrain
contractions, naive proof search can sometimes become a decision procedure.

3 Software Architecture

Of the many qualities that we might want for a proof checker—universality,
flexibility, efficiency, etc.—the one quality on which no compromise is possible
is that of soundness. If we cannot prove or forcefully argue for the soundness of
our checkers, then this project is without reason d’être.

3.1 Programming Language Support

An early framework for building sound proof checkers was the “Logic of Com-
putable Functions” (LCF) system of Gordon, Milner, and Wadsworth [12]. In
that framework, the ML programming language was created in order to sup-
port the task of building and checking proofs in LCF with a computing facility
that provided strong typing and the abstractions associated to higher-order pro-
gramming and abstract datatypes. Given the design of ML, it was possible to
declare a type of theorems, say, thm, and to admit certain functions that are
allowed to build elements of type thm (these encode axioms and inference rules).
These latter functions could then be bundled into an abstract datatype and the
programming language would enforce that the only items that eventually were
shown to have type thm were those that ultimately were constructed from the ax-
ioms and inference rules encoded into the theorem abstract datatype. Of course,
trusting that a checker written in this approach to LCF meant also trusting that
(1) ML had the type preservation property and (2) the language implementation
was, in fact, correct for the intended semantics (i.e., that the addition function
translated to the intended addition function, etc.).

This ML/LCF approach to proof checking is based on the most simple notion
of proof (variously named after Hilbert or Frege) as a linear sequence of formulas
arising from axioms and applications of inference rules.
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∀Θ∀Γ. async(Θ, [t−|Γ ]).

∀Θ∀Γ∀A∀B. async(Θ, [(A ∧− B)|Γ ]) :- async(Θ, [A|Γ ]), async(Θ, [B|Γ ]).

∀Θ∀Γ∀A∀B. sync(Θ,A ∨+ B) :- sync(Θ,A); sync(Θ,B).

∀Θ∀Γ∀P. async(Θ, []) :- memb(P,Θ), pos(P ), sync(Θ,P ).

∀Θ∀B∀C. async(Θ, []) :- negate(B,C), async(Θ,B), async(Θ,C).

Fig. 2. Five logic programming clauses specifying LKF inference rules

The material in Section 2 illustrates that there can be a great deal more to
the structure of proof than is available in such linear proof structures. We are
fortunate that in order to take advantage of that rich structure, we do not need
to invent a meta-language (in the sense that ML was invented to support LCF):
an appropriate meta-language already exists in the λProlog programming lan-
guage [18]. In contrast to the functional programming language ML, λProlog is
a logic programming language. Like ML, λProlog is also strongly typed and has
both higher-order programming and abstract datatypes. λProlog has a number
of features that should make it a superior proof checker when compared with
ML. In particular, λProlog’s operational semantics is based on search and back-
tracking: this is in contrast to the notion of exception handling that is part of
the non-functional side of ML. Furthermore, λProlog comes with much more of
logic built into the language: in particular, it contains a logically sound notion
of unification and substitution for expressions involving bindings (these latter
features of λProlog are not generally provided by Prolog).

Although we shall not assume that the reader is familiar with λProlog, famil-
iarity with the general notions of logic programming is particularly relevant to
proof checking. Notice that it is nearly immediate to write a logic program that
captures the LKF proof system in Figure 1. First select two binary predicates,
say async(·, ·) and sync(·, ·), denoting the ⇑ and ⇓ judgments. Second write one
Horn clause for each inference rule: here the conclusion and the premises of a
rule correspond to the head and the body of such a clause. (The declarative
treatment of the inference rules involving the quantifiers is provided directly by
λProlog.) Of the fourteen Horn clauses that correspond to the fourteen inference
rules in Figure 1, five are illustrated in Figure 2: these clauses correspond to the
introduction rules for t−, ∧−, and ∨+ as well as the decide and cut rules. Some
additional predicates have been introduced to specify membership in a multiset,
the negation of a formula, and determining if a given formula is positive or not.

The full program can easily be seen to be sound in the sense that the sequent

 · ⇑ B has an LKF proof if the atom async([], B) has a proof using this logic
program. Using standard depth-first search strategies would result, however,
in surprisingly few proofs of the atom async([], B): the clauses specifying the
cut rule and the decide rule would immediately result in looping computations.
We present this logic program not to suggest that it is appropriate for proving
theorems but to show how to modify it to make it into a flexible proof checker.
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te(Ξ)

Ξ � Θ ⇓ t+
Ξ1 � Θ ⇓B1 Ξ2 � Θ ⇓B2 ∧e(Ξ,Ξ1, Ξ2)

Ξ � Θ ⇓B1 ∧+ B2

Ξ ′ � Θ ⇓Bi i ∈ {1, 2} ∨e(Ξ,Ξ ′, i)

Ξ � Θ ⇓B1 ∨+ B2

Ξ ′ � Θ ⇓ [t/x]B ∃e(Ξ,Ξ ′, t)
Ξ � Θ ⇓ ∃x.B

Ξ1 � Θ ⇑B Ξ2 � Θ ⇑ ¬B cute(Ξ,Θ,Ξ1, Ξ2, B)

Ξ � Θ ⇑ · cut

Ξ ′ � Θ ⇑N releasee(Ξ,Ξ ′)

Ξ � Θ ⇓N
release

inite(Ξ,Θ, l) 〈l,¬Pa〉 ∈ Θ

Ξ � Θ ⇓ Pa
init

Ξ ′ � Θ ⇓ P decidee(Ξ,Θ,Ξ ′, l) 〈l,P 〉 ∈ Θ positive(P )

Ξ � Θ ⇑ · decide

Ξ ′ � Θ ⇑ Γ fc(Ξ,Ξ ′)

Ξ � Θ ⇑ f−, Γ

Ξ1 � Θ ⇑A,Γ Ξ2 � Θ ⇑B,Γ ∧c(Ξ,Ξ1, Ξ2)

Ξ � Θ ⇑A ∧− B,Γ

Ξ ′ � Θ ⇑A,B, Γ ∨c(Ξ,Ξ ′)

Ξ � Θ ⇑A ∨− B,Γ

Ξ ′ � Θ ⇑ [y/x]B,Γ ∀c(Ξ,Ξ ′) y not free in Ξ,Θ, Γ,B

Ξ � Θ ⇑ ∀x.B,Γ

Ξ � Θ ⇑ t−, Γ
Ξ ′ � Θ, 〈l,C〉 ⇑ Γ storec(Ξ,C,Ξ ′, l)

Ξ � Θ ⇑ C,Γ
store

Fig. 3. The augmented LKF proof system LKFa

3.2 Clerks and Experts

Consider being in possession of a proof certificate of a theorem and being asked to
build an LKF proof of that theorem. The construction of the asynchronous phase
is independent of any proof evidence you have (hence the name “asynchronous”
for this phase). At the end of the asynchronous phase, the construction of the
LKF proof can proceed with either the cut rule or the decide rule: in both cases,
genuine information (a cut formula or a focus formula) must be communicated
to the checker. Furthermore, the synchronous phase needs to determine which
disjunct to discard in the ∨+ rule and which term to use in the ∃ rule. To capture
this sense of information flowing between a checker and a certificate, we present
in Figure 3 an augmented version of LKF, called LKF a. The augmentations to
the LKF inference rules is done in three simple steps: (i) a proof certificate term,
denoted by the syntactic variableΞ is added to every sequent; (ii) every inference
rule of LKF is given an additional premise using either an expert predicate or a
clerk predicate; and (iii) the multiset of formulas to the left of the arrows ⇑ and
⇓ are extended to be a multiset of pairs of an index and a formula. Thus, the
LKF proof system can be recovered from LKFa by removing all occurrences of
the syntactic variable Ξ and by removing all premises with a subscripted e or c
as well as replacing all occurrences of tuples such as 〈l, B〉 with just B.

The expert predicates are used to intermediate between the needs for infor-
mation of the cut rule and the synchronous phase and the information that
is present in a proof certificate. All of them examine the certificate Ξ and re-
turns the information needed to continue with as many certificates as there are
premises in the rules. For example, the disjunction expert returns either 1 or 2
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depending on which disjunct this introduction rule should select. The intension
of the existential quantifier expert is that it returns a term t that is to be used
in this introduction rule. Notice that the conjunction expert does nothing more
than determine the proof certificates to be used in its two premises. The expert
for the t+ determines whether or not it should allow the proof checking process
to end with this inference rule. The cut expert examines both the proof certifi-
cate and the context Θ and extracts the necessary cut formula for that inference
rule. Notice that if this predicate is defined to always fail (i.e., it is the empty
relation), then checking this certificate will involve only cut-free LKF proofs.
Finally, the decide expert gives the positive formula with which to start the new
asynchronous phase.

The introduction rules of the asynchronous phase are given an additional
premise that involves a clerk predicate: these new premises do not extract any
information from the certificate but rather they take care of bookkeeping cal-
culations involving the progress of the asynchronous phase. For example, the
∧c(Ξ,Ξ1, Ξ2) judgment can be used to record in Ξ1 the fact that proof checking
is on the left branch of this conjunction as opposed to the right branch.

One of the strengths of our approach to proof certificates is that experts can
be non-deterministic since this allows a trade-off between the size of a certificate
and proof-reconstruction time. For example, let Ξ be a particular certificate and
consider using it to introduce an existential quantifier. This introduction rule
queries the expert ∃e(Ξ,Ξ ′, t). If the Ξ certificate explicitly contains the term
t, the expert can extract it for use in this inference rules. If the certificate does
not contain this term then the judgment ∃e(Ξ,Ξ ′, t) could succeed for every
term t (and for some Ξ ′). In this case, the expert provides no information as
to which substitution term to use and, therefore, the certificate can be smaller
since it does not need to contain the (potentially large) term t. On the other
hand, the checker will need to reconstruct an appropriate such term during the
checking process (using, for example, the underlying logic programming mech-
anism of unification). When experts are queried during the synchronous phase,
their answers may be specific, partial, or completely unconstrained.

The three remaining rules (store, init, decide) of LKFa reveal the structure of
the collection of formulas we have been designating with the syntactic variable
Θ. In our presentation of the LKF proof system, this structure has been taken
to be a multiset of formulas. In our augmented proof system, we shall take this
sequent context to be a multiset of pairs 〈I, C〉 where C is a formula and I is
an index. When we need to refer to a specific occurrence of a formula in Θ (in,
say, the decide rule), an index is used for this purpose. It is the clerk predicate
associated to the store inference rule that is responsible for computing the index
of the formula when it is moved from the right to the left of the ⇑. When the
expert predicate in the decide rule describes the formula on which to focus, it
does so by returning that formula’s index. Finally, the initial expert determines
which stored negative literal should be the complement of the focused literal.
In the augmented form of both the decide and initial rules, additional premises
have been added to check that the indexes returned by the expert predicates
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are, indeed, indexes for the correct kind of formula: in this way, a badly defined
expert cannot lead to the construction of an illegal LKF proof.

The structure of the indexing scheme is left open for the certificate definition
to describe. As we shall illustrate later, indexes can be based on, for example, de
Bruijn numbers, path addresses within a formula, or formulas themselves. It is
possible for a formula to occur twice in the context Θ with two different indexes.
We shall generally assume, however, that the indexes functionally determine
formulas: if 〈l, C1〉 ∈ Θ and 〈l, C2〉 ∈ Θ then C1 and C2 are equal.

Assume that we have a logic programming system that provides a sound
implementation of Horn clauses (for example, unification contains the occurs-
check). A proof of Ξ 
 ·⇑B within a logic programming implementation of LKF a

(along with the programs defining the experts and clerks) immediately yields an
LKF proof of 
 · ⇑ B. This follows easily since the logic programming proof of
this goal can be mapped to an LKF proof directly: the only subtlety being that
the mapping from indexes to formulas must be functional so that the indexes
returned by the decide and initial rules are given a unique interpretation in the
LKF proof. Notice that no such LKF proof is actually constructed: rather, it is
performed. Notice also that this soundness guarantee holds with no restrictions
placed on the implementation of the clerk and expert predicates.

3.3 Defining a Proof Certificate Definition

In order to define a proof certificate for a particular format, we first need to
translate theorems into LKU formulas. This operation stays outside the kernel
and its correctness has to be proved. Furthermore we need to define the specific
items that are used to augment LKF. In particular, the constructors for proof
certificate terms and for indexes must be provided: this is done in λProlog by
declaring constructors of the types cert and index. In addition, the definition
must supply the logic program defining the clerk predicates and the expert pred-
icates. Writing no specification for a given predicate defines that predicate to
hold for no list of arguments. Figures 4, 5, and 6 are examples of such proof
certificate definitions.

4 Some Certificate Definitions for Classical Logic

We now present some proof certificate definitions for classical logic: the first
two deal with propositional logic while the third additionally treats first-order
quantification. The first step is to define a translation function from classical
formulas to LKF formulas. In this case, this boils down to choosing a polarization
of the logical connectives and atomic formulas. Our first two examples of proof
certificates are based on assigning negative polarizations to all atoms and to all
connectives: i.e., we only use ∧−, ∨−, t−, and f−. A useful measurement of an
LKF proof is its decide depth, i.e., the maximum number of instances of the
decide rule along any path from the proof’s root to one of its leaves.
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cnf : cert idx : form -> index

∀C. storec(cnf, C, cnf, idx(C)). ∧c(cnf, cnf, cnf).

∀Θ∀l. inite(cnf, Θ, l). ∨c(cnf, cnf).

∀Θ∀l. decidee(cnf, Θ, cnf, l). fc(cnf, cnf).

releasee(cnf, cnf).

Fig. 4. A checker based on a simple decision procedure

4.1 A Decision Procedure

There is a simple decision procedure for checking whether or not a classical
propositional formula is a tautology and we can design a proof certificate def-
inition that implements such a decision procedure. This example illustrates an
extreme trade-off between certificate size (here, constant-size) and proof recon-
struction time (exponential time). In particular, notice that there is an LKF
proof of a propositional formula if and only if that proof has decide depth 1
(possibly 0 if the formula contains no literals). The structure of an LKF proof of
a tautology first builds the asynchronous phase, which ends with several premises
all of the form 
 L ⇑ · for some multiset of literals L. Such a sequent is prov-
able if and only if L has complementary literals: in that case, the LKF proof is
composed of a decide rule (selecting a positive literal) and initial (matching that
atom with a negative literal).

This decision procedure can be specified as the proof certificate definition
in Figure 4. The single constant cnf is used for the certificate and formulas
are used to denote indexes (thereby trivializing the notion of indexes) so we
need a constructor to coerce formulas into indexes. Figure 4 also contains the
specifications of the clerk and expert predicates. Notice that the initial expert
does not behave expertly: it relates the cnf certificate to all indexes l and all
contexts Θ. Our definition of this predicate here can be unconstrained since the
index that it returns is not trusted: that is, the initial rule in LKF a will check
that l is the index of the complement of the focus formula. In the usual logic
programming sense, the check in the premise is all that is necessary to select
the correct index. A similar statement holds for the decide expert predicate
definition.

4.2 Matings

Let B be a classical propositional formula in negation normal form. Andrews
defined a matingM for B as a set of complementary pairs of literal occurrences
in B [2]. A mating denotes a proof if every vertical path in B (read: clause in the
conjunctive normal form of B) contains a pair of literal occurrences given by set
M. A certificate definition for proof matings is given in Figure 5. Indexes are, in
fact, paths in a formula since they form a series of instructions to move left or
right through the binary connectives or to stop (presumably at a literal). There
are two constructors for the cert type: aphase is applied to a list of indexes and
sphase is applied to a single index. These two constructors are used to mimic
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root : index left, right : index -> index

aphase : list index -> cert sphase : index -> cert

∀I∀Is. ∨c(aphase([I |Is]),aphase([left(I),right(I)|Is])).
∀I∀Is. ∧c(aphase([I |Is]),aphase([left(I)|Is]),aphase([right(I)|Is])).
∀I∀Is. fc(aphase([I |Is]), aphase(Is)).

∀C∀I∀Is. storec(aphase([I |Is]), C, aphase(Is), I).
∀I. releasee(sphase(I),aphase([I ])).

∀Θ∀l. decidee(aphase([]), Θ, sphase(l), l)

∀Θ∀k∀l. inite(sphase(k), Θ, l) :- 〈k, l〉 ∈ M.

Fig. 5. Mating certificate definition

(using paths) the LKF asynchronous and synchronous sequents (using formulas).
The initial expert will only select index l if it isM-mated to the focused formula
(with path address k). Here, we have assumed thatM contains ordered pairs of
occurrences in which the first occurrence names a positive literal and the second
occurrence names a negative literal. Thus, in order to determine ifM is a proof
mating for the formula B, set B̂ to be the polarization of B using only negative
connectives and check if the goal formula async([root], B̂) succeeds from the
logic program composed of the augmented LKF system, the clerk and expert
predicate definitions above, and an encoding of the 〈k, l〉 ∈ M predicate.

4.3 Resolution Refutations

A (resolution) clause is a closed formula that is the universal closure of a dis-
junction of literals (the empty disjunction is false). When we polarize, we use
the negative versions of these connectives and we assign negative polarity to
atomic formulas. We assume that a certificate for resolution contains the fol-
lowing items: a list of all clauses C1, . . . , Cp (p ≥ 0); the number n ≥ 0 which
selects the last clause that is part of the original problem (i.e., this certificate is
claiming that ¬C1 ∨ · · · ∨ ¬Cn is provable and that Cn+1...Cp are intermediate
clauses used to derive the empty one); and a list of triples 〈i, j, k〉 where each
such triple claims that Ck is a binary resolution (with factoring) of Ci and Cj .
If the implementer of a resolution prover wished to output refutations, this kind
of document should be easy to accommodate.

Checking this structure is done in two steps. First, we check that a particular
binary resolution is sound and then we check that the list of resolvents leads
to an empty clause. It is a simple matter to prove the following: if clauses C1

and C2 yield resolvent C0 as a binary resolvent (allowing also factoring), then
the focused sequent 
 ¬C1,¬C2 ⇑ C0 has a proof of decide depth 3 or less. We
can also restrict such a proof so that along any path from the root sequent to
its leaves, the same clause is not decided on more than once. The first part of
Figure 6 contains the ingredients of a checker for the claim 
 ¬C1,¬C2 ⇑ C0.
This checking uses two constructors for indexes. The first is used to reference
clauses (i.e., the expression idx(i) denotes ¬Ci) and the second constructor is
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idx : int -> index lit : form -> index

dl : list int -> cert ddone : cert

∀L. ∨c(dl(L), dl(L)). ∀L. te(dl(L)).
∀L. fc(dl(L), dl(L)). ∀L. ∀c(dl(L), dl(L)).

∀C∀L. storec(dl(L), C, dl(L), lit(C)). ∀L. ∃e(dl(L), dl(L), T ).
∀L∀P∀Θ. decidee(dl(L), Θ, ddone, lit(P )). ∀L. ∧e(dl(L), dl(L), dl(L)).

∀I∀Θ. decidee(dl([I ]), Θ, dl([]), idx(I)). ∀l∀Θ. inite(ddone, Θ, l).

∀I∀J∀Θ. decidee(dl([I, J ]), Θ, dl([J ]), idx(I)). ∀l∀L∀Θ. inite(dl(L), Θ, l).

∀I∀J∀Θ. decidee(dl([J, I ]), Θ, dl([J ]), idx(I)). ∀L. releasee(dl(L), dl(L)).
rdone : cert rlist : list (int * int * int) -> cert

rlisti : int -> list (int * int * int) -> cert

∀R. fc(rlist(R), rlist(R)).

∀C∀l∀R. storec(rlisti(l, R), C, rlist(R), idx(l)).

te(rdone).

∀I∀Θ. decidee(rlist([]), Θ, rdone, idx(I)) :- 〈idx(I), t〉 ∈ Θ.

∀I, J,K,R,C,N,Θ. cute(rlist([〈I, J,K〉|R]), Θ, dl([I, J ]), rlisti(K,R),N) :-

〈idx(K), C〉 ∈ Θ, negate(C,N).

Fig. 6. Resolution certificate definition in two parts

used to index literals that need to be stored: here the literal is used to provide
its own index. The first two cert constructors in that figure are used to control
the sequencing of decide rules involving two (negated) clauses. The first of these
constructors provides the sequent of clause indexes (at most 2) used to build a
proof and the second constructor is used to signal that the proof should finish
with the selection of stored literals and not with additional clauses.

The clerks for this part of the checking process do essentially no computation
and just move certificates around unchanged: the exception is the store clerk
that provides the trivial index lit(C) for the literal C. The only expert that
provides information to guide proof reconstruction is the decide expert which
transforms the choice of clauses to consider from two to one to none. Given
these clerks and experts, it is now the case that if Ci and Cj resolve to yield
Ck then dl([i, j]) 
 ¬C1, . . . ,¬Cm ⇑ Ck is provable. With only small changes,
the binary resolution checker can be extended to hyperresolution: in this case,
the experts will need to attempt to find a proof of decide depth n + 1 when
attempting to resolve together n ≥ 2 clauses.

To describe a checker for a complete certificate, we use three additional con-
structors for certificates as well as the additional clauses in the second part of
Figure 6. Notice that the decide expert only proposes a focus at the end of the
checking process when the list of triples (resolvents) is empty: this expert only
succeeds if one of the clauses is t (the negation of the empty clause). It is the
cut expert that is responsible for looping over all the triples encoding resolvents.
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Notice that the cut-formula is the clause Ck and that the left premise invokes
the resolvent checking mechanism described above. The right premise of the
cut carries with it an index (in this case, k) so that the next step in the proof
checking knows which index to use to correctly store that formula. The LKF
proof that is implicitly built during the checking of a resolution contains one cut
rule for every resolvent triple in the certificate.

4.4 Capturing General Computation within Proofs

The line between computation and deduction is certainly movable and one that
a flexibly designed proof certificate definition should allow to be moved. As
we saw in Section 4.1, we can use naive proof reconstruction to compute, for
example, the conjunctive normal form of a propositional formula. We can go
further, however, and allow for arbitrary Horn clause programs to be computed
on first-order terms during proof reconstruction. For example, if one needs to
check a proof rule that involves a premise that requires one number to divide
another number, it is an easy matter to write a (pure) Prolog program that
computes this binary relationship on numbers. Such Horn clauses can be added
to the sequent context and a proof certificate could easily guide the construction
of a proof of that premise from such clauses.

5 Adequacy of Encoding

Our use of the augmented LKF proof system as our kernel guarantees soundness
no matter how the clerk and expert predicates are defined. On the other hand,
one might want to know if the checker is really checking the proof intended in the
certificate. A checker for a mating could, in fact, ignore the mating and run the
decision procedure from Section 4.1 instead. The kernel itself cannot guarantee
the adequacy of the checking: knowledge of the certificate definition is necessary
to ensure that. As our examples show, however, the semantics of the clerk and
expert predicates is clearly given by the LKF a proof system and certificate
definitions are compact: thus, verifying certificates should be straightforward.

Some aspects of a proof certificate are not possible to check using our kernel.
Consider defining a minimal proof mating to be a proof mating for which no
mated pairs can be removed and still remain a proof mating. We see no way to
capture this minimality condition: that is, we see no way to write a certificate
definition that successfully approves a mating if and only if it is a minimal proof
mating. A similar observation can be made with resolution: if 
 ¬C1,¬C2 ⇑ C0

has a proof (even a proof of decide depth 3) it is not necessarily the case that C0

is the resolvent of C1 and C2. For example, the resolution of ∀x[p(x) ∨ r(f(x))]
and ∀x[¬p(f(x))∨ q(x)] is ∀x[r(f(f(x)))∨ q(x)]. At the same time, it is possible
to prove the sequent


 ∃x[¬p(x)∧¬r(f(x))], ∃x[p(f(x))∧¬q(x)]⇑∀x[r(f(f(f(x))))∨q(f(x))∨s(f(x))].
This formula is similar to a resolvent except it uses a unifier that is not most
general and it has an additional literal. Thus, when this check succeeds, what is
checked is its soundness and not its technical status of being a resolvent.
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6 The More General Kernel

As we have mentioned, a more general kernel for proof checking is based not on
LKF but the LKU proof system [16]. Instead of the two polarities in LKF, there
are four polarities in LKU: the polarities −1 and +1 denote positive and negative
polarities of linear logic while the polarities −2 and +2 denote the positive and
negative polarities of classical logic. Intuitionistic logic use formulas that have
subformulas of all four polarities. In order to restrict the LKU proof system to
emulate, say, LKF or LJF, one simply needs to describe certain restrictions to
the structural rules (store, decide, release, and init) of LKU. The logic definition
documents (see Section 1) declare these restrictions.

The LKU proof system makes it possible to use the vocabulary for structuring
checkers in LKF (clerks, experts, store, decide, release) to also design checkers in
the intuitionistic focused framework LJF. The main subtleties with using LKU
is that we must deal with a linear logic context: since such contexts must be split
into two contexts occasionally, some of the expert predicates need to describe
which splitting is required. We have defined certificate definitions for simple and
dependent typed λ-calculus: that is, the LKU kernel can check natural deduction
proofs in propositional and first-order intuitionistic logic (de Bruijn numerals
make a natural index for store/decide).

7 Related and Future Work

The first mechanical proof checker was de Bruijn’s Automath [8] which was able
to check significant mathematical proofs. As we have mentioned in Section 3,
another early proof checker was the ML implementation of LCF’s tactics and tac-
ticals [12] (for a λProlog implementation of these, see [18]). As the number and
scope of mechanical theorem proving systems has grown, so too has the need to
have one prover rely on other provers. For example, the OpenTheory project [14]
aims at having various HOL theorem provers share proofs. Still other projects
attempt to connect SAT/SMT systems with more general theorem provers, e.g.,
[3,6,9]. In order for prover A to not blindly trust proofs from prover B, prover
B may be required to generate a certificate that demonstrates that it has for-
mally found a proof. Prover A will then need to check the correctness of that
certificate. In this way, prover A only needs to check individual certificates and
not rely on trusting the whole of prover B. Of course, every pair of communicat-
ing provers could involve certificates of different formats and different certificate
checker. Our goal here is to base such certificates on foundational and proof-
theoretic principles and to describe programmable checkers that are guaranteed
to be sound. Also, since that checker is based on well understood and well ex-
plored declarative concepts (e.g., sequent calculus, unification, and backtracking
search), that checker can be given many different implementations.

The Dedukti proof checker [5] implements λΠ modulo, a dependently typed
λ-calculus with functional rewriting. Given a result of Cousineau & Dowek [7]
that any functional Pure Type System can be encoded into λΠ modulo, Dedukti
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can check proofs in such type systems. As we have described above, the proof
certificate setting described here allows one to capture both dependently typed
λ-terms and computations (not just functional computations). As a result, we
should be able to design, following [7], proof certificates for pure type systems.
The dependently typed λ-calculus LF has recently been extended to LFSC [20]
and to LFP [13] so that various kinds of computations can be treated by the
type checker instead of being explicitly detailed within the typed λ-term itself.
Such proof objects should similarly be captured in our setting.

Getting provers to trust each other’s proofs using the techniques described in
this paper will require the development and acceptance of an infrastructure and
associated tools, something that can clearly take time. One area where proof
certificates can make an early impact is in theorem proving competitions. In
such competitions, theorem provers should not be trusted but rather the proof
certificates that they emit should be checked. In that case, our framework for
foundational proof certificates can provide a clear semantics for what constitutes
a proof certificate.

Besides the proof certificates definitions that we have described above, we
have designed other examples (including proof nets for multiplicative linear logic
and Frege proofs) and plan to develop more. This work on foundational proof
certificates is part of a more ambitious project to design proof certificates that
also allow for induction and coinduction: such certificates should allow model
checkers and inductive theorem provers to communicate with each other. We
also hope to eventually allow counterexamples to be checked and to interact
with (partial) proofs [17].

We have only considered the problem of communicating and checking formal
proofs between machines. Of course, proofs are important to humans as well.
Given the fact that proof certificates can be elaborated into a LKU sequent
proof, it might well be possible to use proof-theoretic results to construct tools
that allow humans to browse and interact with formal proofs in order to learn
from them. We leave such considerations for future work.

8 Conclusion

In a world where proof certificates can be designed flexibly and given precise
semantics and where proof checkers can be given a high degree of trust, the
sharing of proofs should become “feature zero” for all new theorem provers. That
is, implementers looking to get their provers accepted broadly will need to first
consider how to communicate their proof evidence as a checkable certificate. In
such a world, proofs can be liberated from the technologies that produced them
(e.g., Coq, Isabelle, and Mizar) and can be seen as the universal and eternal
objects logicians and proof theorists have long been working to place at the
foundations of mathematics and computer science.

Acknowledgments. We thank Jean Pichon, Thanos Tsouanas, and the review-
ers for their comments on an earlier draft of this paper. This work was funded
by the ERC Advanced Grant ProofCert.
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Abstract. Recent applications of decision procedures for nonlinear real
arithmetic (the theory of real closed fields, or RCF) have presented a
need for reasoning not only with polynomials but also with transcenden-
tal constants and infinitesimals. In full generality, the algebraic setting
for this reasoning consists of real closed transcendental and infinitesimal
extensions of the rational numbers. We present a library for computing
over these extensions. This library contains many contributions, includ-
ing a novel combination of Thom’s Lemma and interval arithmetic for
representing roots, and provides all core machinery required for building
RCF decision procedures. We describe the abstract algebraic setting for
computing with such field extensions, present our concrete algorithms
and optimizations, and illustrate the library on a collection of examples.

1 Overview and Related Work

Decision methods for nonlinear real arithmetic are essential to the formal verifi-
cation of cyber-physical systems and formalized mathematics. Classically, these
decision methods operate over the theory of real closed fields (RCF), the first-
order theory of the reals with addition, multiplication and equality and inequality
predicates. RCF is decidable, admits quantifier elimination, and a variety of ma-
ture (though necessarily worst-case hyperexponential) decision procedures exist
for it. Much research has gone into making RCF decision procedures practical,
especially for restricted classes of formulas commonly arising in applications.

In recent years, it has become apparent that the classical approach underlying
most complete RCF methods, the ‘real algebraic number approach,’ is insufficient
for many applications. This approach has its roots in the most influential strand
of RCF decision procedure research, the theory of cylindrical algebraic decom-
position (CAD) [2,3]. In CAD and related techniques, one makes crucial use of
the following observation: Since RCF is a complete theory with 〈R,+, ∗, <, 0, 1〉
as a model, then, when implementing an RCF decision procedure, one is free to
compute over any RCF while still being sure that the resulting computations
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are valid over R. This is important from a computational point of view, as R is
uncountable with uncomputable basic operations.

In the classical approach, instead of working over R, one works over the real
algebraic numbers Ralg, the subfield of R consisting of real numbers that are roots
of univariate polynomials with integer coefficients. This structure is a countable
real closed field with computable basic operations, and thus provides a logically
sufficient computational substructure for making RCF decisions.1 Note, though,
that this field contains no transcendental elements such as π or e. Indeed, a real
number is transcendental precisely when it is not algebraic.

On the one hand, this lack of transcendental elements seems logically incon-
sequential and even computationally desirable, as transcendentals are undefin-
able over RCF and almost all of them are uncomputable. However, various new
applications have given rise to a need for computing in real closed fields con-
taining transcendentals. This need is especially apparent when one considers
cyber-physical systems [19,1,8]. In this setting, one needs to reason about ODEs
which govern the continuous dynamics of a mixed discrete-continuous system.
Solving for such trajectories gives rise to arithmetical constraints involving both
the standard RCF operations and the constant e. If these ODEs occur in the
context of aircraft maneuvers with angular positions, then one often needs to
reason also with π. Similar combinations of RCF with transcendental constants
arise in mainstream efforts in formalized mathematics, such as Thomas Hales’s
Flyspeck project, where many inequalities of this form await verification [15].

Finally, in addition to RCFs containing common transcendental constants,
there is also a need for computing in RCFs containing infinitesimals. This stems
from applications as well, albeit indirectly: as RCF is computationally infeasible,
many researchers have focused on developing decision procedures for restricted
but practically useful fragments of the theory. In two of the most useful frag-
ments, the ∃ and ∃∀ fragments, novel decision methods have been developed
which rely on infinitesimals [5,14,7]. Some of these procedures, such as the singly
exponential Grigor’ev-Vorobjnov ∃RCF method, are also of immense theoretical
interest. However, many of them have never been implemented. The lack of a
viable library for computing with real closed fields containing infinitesimals has
been an impediment to this line of research. A robust library providing the com-
putational substructure for reasoning in such real closed fields would remove a
serious obstruction to work on nonlinear real arithmetic, allowing decision pro-
cedure researchers to focus on higher-level concerns, especially on novel decision
methods which can then rely on this foundational library as a black-box.

In this paper, we present a library for computing in real closed fields containing
computable transcendental, infinitesimal and algebraic elements. In particular,
our library supports computing over real closed transcendental and infinitesimal
extensions of the rational numbers. This is realized through the theory of real
closures, a classical technique in real algebraic geometry which allows one to
construct new real closed fields from arbitrary ordered fields.

1 In fact, Ralg is the prime model of RCF, which means Ralg isomorphically embeds
into every real closed field. In this sense, Ralg is the “smallest” real closed field.
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Our main contribution is threefold:

1. We show how real closed fields containing computable transcendental, in-
finitesimal and algebraic elements can all be constructed and computed in
using a single uniform method. This includes a novel approach to repre-
senting algebraic elements which combines a classical result in real algebraic
geometry known as Thom’s Lemma with modern interval arithmetic.

2. We develop the abstract algebra in a concrete algorithmic manner, and
present several optimizations we have devised over the naive methods. These
optimizations have been vital to making our library practical.

3. We describe how researchers can immediatly make use of our library, make
it available for download (source included), and give examples designed to
help the decision procedure researcher easily get started in this area.

Related Work. The combination of transcendental constants and infinitesimals
with nonlinear real arithmetic has been explored in many ways.

In the MetiTarski prover for transcendental inequalities [1,8], of which the
second author of this paper is a coauthor, transcendentals are approximated
to a fixed accuracy using families of algebraically-expressible upper and lower
bounds. This approach does not integrate the transcendentals into the RCF field
arithmetic, but rather uses a combination of resolution theorem proving and the
algebraic bounds to reduce the proof of an inequality involving transcendentals
to a sequence of pure RCF decisions (taken over Ralg). This is sufficient for
many applications, especially for classes of engineering problems with non-tight
inequalities, but fails when the bounds are insufficient, especially when equality
reasoning is needed. Modifications to MetiTarski which make use of our library
should allow for much more powerful reasoning with transcendental constants,
especially with regards to proving tight inequalities and identities.

A very different incorporation of transcendental constants has been taken
by the interval constraint propagation (ICP) community, as exemplified by the
tools RealPaver [13], RSolver [20], iSat [10] and dReal [12]. Their methods are
incomplete even for ∃RCF, but are extremely effective in some classes of ap-
plications. Unlike complete RCF decision methods, their foundations are not
based upon real closed field arithmetic, but rather on computing with inter-
val approximations to field values. This arithmetic can be very efficient and is
always sound, but it comes at the cost of the so-called interval dependency prob-
lem. This commonly gives rise to the over-approximation of intervals and is a
source of incompleteness. Our work combines interval approximations with exact
techniques stemming from real algebraic geometry, yielding a library for exact
computations suitable for building complete RCF decision methods.

Major research on reasoning with infinitesimals has been done both in the
ACL2 [11] and Isabelle/HOL [9] proof assistants. These efforts have focused on
a particular class of real closed fields, the Hyperreals, which provide the basis for
the nonstandard analysis (NSA) approach to differential calculus. In NSA, the
Hyperreals are used mainly to justify the consistency of the NSA axioms, espe-
cially the crucial Transfer Axiom, and one does not compute with their elements
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in the same way that one does when working over a countable, computable real
closed field like Ralg during RCF decision procedures. In particular, the Hy-
perreals are a wildly uncomputable structure which depend on the choice of a
non-principal ultrafilter over N.2 Thus, though both works involve real closed
fields containing infinitesimals, our goals and approaches are very different.

The closest work to ours is that of Rioboo [21]. In this work, a library for com-
putation in the real closure of a single infinitesimal extension of an ordered field
was built within the computer algebra system Axiom. Though we share many
goals and some high-level aspects of the approach (in particular, the explicit use
of field towers as in the generic real closure method of Ligatsika, Rioboo and Roy
[17]), our work is very different. First, the Rioboo infinitesimal methods revolve
around a representation of algebraic elements using Puiseux series, a generaliza-
tion of power series allowing fractional exponents. We take a completely different
approach, combining Thom’s Lemma with interval arithmetic. Second, Rioboo’s
library does not support extensions involving transcendental constants such as π
and e. Making use of intervals in the root representation is crucial to the way we
treat transcendental constants. Finally, his implementation only supports the use
of a single infinitesimal, though he discusses supporting multiple infinitesimals
as future work. Our library supports multiple transcendentals, infinitesimals and
algebraic elements simultaneously.

Finally, let us mention the groundbreaking work of Coste-Roy and its later
refinements which showed how Thom’s Lemma could be used algorithmically
to represent algebraic elements over arbitrary real closed fields, even those con-
taining infinitesimals [6,18,3]. We build our root representation upon this work,
combining their derivative sign condition chains with interval arithmetic tech-
niques, resulting in novel root isolation and sign determination methods.

2 Theoretical Background

An ordered field is a field equipped with a total order ≤ upon its elements s.t.

∀xyz [(x ≤ y ⇒ x+ z ≤ y + z) ∧ (0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x ∗ y)].

Both Q and R with their respective orderings are ordered fields. The complexes
cannot be made into an ordered field as neither

√
−1 ≤ 0 nor 0 ≤

√
−1 is

consistent with the ordered field axioms. A field is real closed iff it is an ordered
field with two additional properties: First, positive elements are squares

∀x
(
0 ≤ x⇒ ∃y(x = y2)

)
,

and second, all polynomials of odd degree have a root. This latter property is
expressed using an axiom scheme, with one axiom for each n ∈ N:

∀a0a1 . . . a2n∃z
(
z2n+1 + a2nz

2n + . . .+ a1z + a0 = 0
)
.

2 Note that it is consistent with ZF that no non-principal ultrafilters on N exist.
Thus, to build a Hyperreal field, an uncomputable choice principle is needed. The
wild uncomputability is contributed both from R and the ultrapower construction.
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Observe that R and Ralg are real closed but Q is not.
Let K1,K2 be fields s.t.

K1 = 〈K1,+K1 , ∗K1 ,−K1 , 0K1 , 1K1〉 and K2 = 〈K2,+K2 , ∗K2 ,−K2 , 0K2 , 1K2〉

and K1 ⊂ K2. If the function symbols of K1 and K2 agree over all elements of
K1 (i.e., 0K1 = 0K2 , 1K1 = 1K2 , ∀x, y ∈ K1(x +K1 y = x +K2 y), and so on),
then we say that K1 is a subfield of K2, that K2 is an extension field of K1, and
that K2/K1 (pronounced “K2 over K1”) is a field extension.3 When no confusion
should arise, we use K1 ⊂ K2 to indicate that K1 is a subfield of K2.

If K1 ⊂ K2 and S ⊂ K2, then K1(S) denotes the smallest subfield of K2

extending K1 and containing S. If ς ∈ K2 then K1(ς) denotes K1({ς}). We say
that K1(S) is the result of adjoining the elements of S to K1. An extension of
the form K1(ς)/K1 is called simple. If ς is the root of a polynomial in K1[x],
then the extension K1(ς)/K1 is algebraic, and ς is algebraic over K1. Other-
wise, the extension is transcendental, and ς is transcendental over K. We can
iterate the process of taking simple extensions so as to obtain non-simple ones,
i.e., K ⊂ K(ς1) ⊂ (K(ς1))(ς2). We write K(ς1, ς2) for (K(ς1))(ς2). In this case,
K(ς1, ς2)/K(ς1) is simple, but K(ς1, ς2)/K is not. A (finite or infinite) sequence
of extensions K1 ⊂ K2 ⊂ . . . ⊂ Kn ⊂ . . . is called a field tower.

Example 1. Q ⊂ R ⊂ C is a field tower, and from it we can deduce that Q and
R are both subfields of C. However, the extension C/Q is very different than the
extension C/R. In particular, to obtain C from Q one must adjoin uncountably
many elements, while to obtain C from R one need only adjoin

√
−1.

Let us now examine the process of field adjunction. Consider the field Q(
√
2)

resulting from adjoining
√
2 to Q. Since

√
2 is a root of the polynomial x2− 2 ∈

Q[x], the extension Q(
√
2)/Q is algebraic. How can we build this field extension?

Since a field is closed under its arithmetic operations, we know that as
√
2 ∈

Q(
√
2), then, for instance, 1/

√
2, 23/

√
2 + 1/2, and 11/(3 ∗

√
2) all must be in

Q(
√
2) as well. This suggests that we consider elements of Q(

√
2) to be formal

ratios of elements of the polynomial ring Q[
√
2], where

√
2 is taken to be a

symbolic indeterminate subject to the constraint that
√
2 ∗
√
2 = 2. In fact, the

situation is more subtle than this, and we describe it algorithmically in Sec. 3.3.
For transcendental extensions, we also make use of ratios of polynomials. If τ

is transcendental overK, then K(τ) is isomorphic to K(x), where K(x) is the field
of fractions of the polynomial ring K[x], i.e., the field of formal rational func-
tions drawn from {p(x)/q(x) | p(x), q(x) = 0 ∈ K[x], gcd(p(x), q(x)) = 1}. This
isomorphism holds because as τ is transcendental, it has no nontrivial algebraic
relationships with the elements of K.

Let us return now to ordered fields. If K is an ordered field, then the subfields
and extension fields of K we are interested in are those which respectK’s ordering
relation, i.e., K1 ⊂ K ⊂ K2 implies ≤K1 ⊂ ≤K ⊂ ≤K2. Any extension or subfield
of an ordered field that we consider in this paper shall be of this form.

3 Note that this field extension notation using “/” is purely formal, and does not imply
a quotient structure or anything along those lines. See Ex. 1 for an example use.
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If K is an ordered field, then it is possible to adjoin an infinitesimal element ε
to K by treating K(ε)/K as a transcendental extension whose ordering extends
the ordering of K subject to the following constraint:

ε > 0 ∧ ∀k ∈ K (k > 0 ⇒ ε < k) .

We describe algorithmically the orderings in field extensions in Sec. 3.
Finally, let us turn to real closures. It is a fundamental result in real algebraic

geometry that every ordered field K possesses a unique minimal algebraic real
closed extension. This field is called the real closure of K and is written K̃. For
example, Q̃ = Ralg and R̃ = R. In this work, we are concerned with computing

in real closed fields K̃, where K is obtained from Q by finitely many transcen-
dental and infinitesimal extensions. In passing from K to K̃, a countably infinite
collection of algebraic elements will be adjoined. However, to compute over K̃,
we only need, at any given time, an extension of K by finitely many algebraic
elements. K̃ is obtained “in the limit.”4

To provide general support for nonlinear real arithmetic decision methods,
including those methods requiring transcendentals and infinitesimals, we must
provide all of the basic ordered field operations (arithmetic and ordering) over ar-

bitrary subfields of K̃. The most challenging aspect occurs over proper algebraic
extensions of K, as this requires reasoning about the roots α ∈ K̃ of polynomials
p ∈ K[x]. If K contains no infinitesimal elements, then these roots can always be
isolated using intervals with rational endpoints. However, if K contains infinites-
imal elements, then the situation is considerably more complicated.

3 Implementing Field Extensions

Our package implements towers of extensions beginning with Q. Rationals are
implemented as a pair of multi-precision integers. We support three kinds of
extensions: transcendental, infinitesimal and algebraic. In our library, there is
always a linear order ≺ between fields in a given tower. Consider a tower
Q ⊂ Q(ς1) ⊂ . . . ⊂ Q(ς1, ς2, . . . , ςk). Then, it will hold that Q(ς1, . . . , ςi) ≺
Q(ς1, . . . , ςi+1). Moreover, our field extensions must be constructed in a sequence
s.t. transcendental extensions ≺ infinitesimal extensions ≺ algebraic extensions.

Abstractly, we can view a field extension as a mapping that, given an imple-
mentation for the operations of an ordered field K, “lifts” these operations to
the field extension K(ς). In this Section, we describe how we implement these
operations for each kind of extension. Let us fix some preliminaries.

Let B be the set of binary rationals (also known as dyadic rationals). B con-
sists of rationals of the form a/2k. B does not form a field, but it forms a ring and
is closed under division by 2. The implementation of addition and multiplication
for binary rationals is more efficient than that for rational numbers. Moreover,

4 The situation is similar with packages for rational arithmetic. These packages allow
one to compute over Q by constructing rationals “on demand” as they are needed.
Of course, at any given time, only finitely many rationals have been constructed.
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binary rationals can be normalized using just bit-shifting operations, instead
of expensive integer gcd and division. Finally, division can be approximated to
any precision using the same approach used in floating point arithmetic.5 We
say an interval of the form (l, u) is a B∞-interval if l, u ∈ (B ∪ {−∞,∞}) and
0 ∈ (l, u). We produce interval approximations for all elements of our extension
fields. For every non-zero element a, interval(a) is a B∞-interval (l, u) containing
a. Moreover, if a is not constructed using infinitesimals, then l, u ∈ B, and we
then provide a procedure to refine the size of (l, u) to any desired precision. As
the associated interval for a non-zero element never contains zero, the sign of
any element can be read off from its associated interval. This allows us to decide
comparisons between field elements by reducing the comparison of a and b to
the sign of a− b.

3.1 Transcendental Extensions

At the bottom of our field towers, we support computable transcendental reals
such as π and e. For adjoining a transcendental element τ , we require the user
to provide a procedure approximate(τ) s.t. given any i ∈ N, approximate(τ)(i)
returns an open interval (l, u) s.t. τ ∈ (l, u) and l, u ∈ B. Moreover, the ap-
proximation must converge in the following sense: Let width(l, u) = u− l. Then,
for any k there must exist an i s.t. width(approximate(τ)(i)) ≤ 1/2k. In our
prototype, we provide implementations of approximate(π) and approximate(e).

When extending a field K with an irrational number τ , it is the user’s respon-
sibility to guarantee that τ is indeed transcendental with respect to K. If this is
not the case, then our implementation may not terminate when executing the
sign determination algorithm in K(τ). Note that transcendence is always relative
to the field being extended, e.g., π and

√
π are both transcendental over Q, but√

π is not transcendental over Q(π) as it is a root of x2 − π ∈ (Q(π))[x].
As discussed in Sec. 2, we represent the elements of K(τ) as formal rational

functions p(τ)/q(τ), with τ treated as an indeterminate. Since τ is transcendental
overK, it is easy to check that q(τ) is not the zero polynomial by simply verifying
that q(τ) is not identically zero using standard polynomial arithmetic over K[τ ].

The field operations for K(τ) are based on polynomial arithmetic build upon
the arithmetic operations of the field arithmetic for K. We use the standard
normal form of rational functions where the polynomial gcd of the numerator
and denominator is one, and the denominator is a monic polynomial. In this
representation, two values are equal iff they have the same normal form. The
polynomial gcd is implemented using the standard Euclidean algorithm based
on the polynomial remainder algorithm because it can be easily implemented for
polynomials in K[x] when K is a computable field.

Example 2. Given 1
2π,

1
π+1 ∈ Q(π), their sum is equal to

1
2π

2+ 1
2π+1

π+1 .

5 Note that we can view binary rationals as arbitrary precision floating point numbers
with negative exponents.
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The approximating interval of size 1/2k for a non-zero element a = p(τ)/q(τ)
is computed using interval arithmetic. Our procedure keeps refining the interval
approximations for τ and the coefficients of p(τ) and q(τ) until the resulting
interval for a does not contain zero and has width ≤ 1/2k. It is easy to see that
this procedure always terminates when τ is transcendental over K.

Since the approximating interval does not contain zero, we can use it to infer
the sign of any element of K(τ). Moreover, we can decide whether a < b by
computing the sign of a− b. For efficiency in the actual implementation, we first
try to compare a and b using their approximating intervals. If the intervals do
not overlap, then we can answer the query by simply comparing the lower and
upper bounds of the intervals. Otherwise, we refine the approximating intervals
until they do not overlap or their size is smaller than a user-provided threshold.
If the threshold is reached, then we compute the sign of a− b.

3.2 Infinitesimal Extensions

An infinitesimal extension K(ε)/K adjoins a new infinitesimal to K. Our imple-
mentation supports an arbitrary number of infinitesimals. Each new infinitesimal
is infinitely smaller than any previously added infinitesimal. Note that every in-
finitesimal is also transcendental with respect to K. Because of this, we also use
formal rational functions to represent the elements of K(ε). It then suffices to
present the interval machinery we use to compute the ordering relation.

Note that 1/ε is larger than any element of K. We say 1/ε is an infinite value.
The initial interval approximation for ε is the interval (0, 1/2kε), where kε ∈ N

is a user-specified parameter. Thus, the initial interval approximation for 1/ε
is (2kε ,∞). We say intervals of the form (−∞, u) and (l,∞) are non-refinable.
Only elements constructed using infinitesimals may have non-refinable intervals.

Given a non-zero polynomial p(ε) of the form anε
n + . . . + a1ε + a0 with

a0 = 0, the approximating interval of width 1/2k for p(ε) is the approximating
interval of width 1/2k for a0. If a0 = 0, we say p(ε) is infinitesimal. Consider p(ε)
infinitesimal and let ai be the first non-zero coefficient. If ai is negative, then
the approximating interval for p(ε) is (−1/2kε, 0), otherwise it is (0, 1/2kε).

Let k ∈ K(ε) s.t. k = (anε
n + . . . + a1ε + a0)/(ε

m + . . . + b1ε + b0) = 0. If
a0 = 0 and b0 = 0, then an approximating interval of size 1/2k is computed by
refining the intervals for a0 and b0 until the desired precision is reached. If either
a0 or b0 is non-refineable, then k is also non-refinable. Note that we never have
a0 = 0 and b0 = 0, since in this case the numerator and denominator can be
simplified by dividing them by ε. Thus, if a0 = 0, we must have b0 = 0, and k
is an infinitesimal value. If b0 = 0, then a0 = 0, and k is an infinite value. Note
that even when we cannot refine an approximating interval for k, we can still
compute a B∞-interval containing k.

3.3 Algebraic Extensions

At the top of our towers sit algebraic extensions. Recall that an algebraic exten-
sion K(α)/K is obtained by adjoining to K a root α of a polynomial p ∈ K[x].



186 L. de Moura and G.O. Passmore

Given such an extension, we call p the defining polynomial of α. Note that the
algebraic extensions of K that we support are always subfields of K̃. To represent
elements of K(α), we need to be able to compute with roots of p which reside in

the real closure K̃. Thom’s Lemma is a classical result in real algebraic geometry
which guarantees that we can always distinguish the roots of a polynomial over
a real closed field (even those containing infinitesimals) using only the signs of
its derivatives [6]. We base our representation upon this fact, and introduce a
number of enhancements. Due to space limitations, we are forced to only present
the most salient aspects of how we compute in algebraic extensions.6

Sign assignments. Given a set of polynomials Q, a sign assignment S is a map-
ping from Q to {−1, 0, 1}. To improve readability, we shall represent S using sets
of atoms. For example, {q1 �→ −1, q2 �→ 0} is represented as {q1 < 0, q2 = 0}. We
identify a root α of a polynomial p using a pair consisting of an open B∞-interval
and a sign assignment for a subset of the derivatives of p. The sign assignment
stores the sign of these derivatives at α. If K does not contain infinitesimal ex-
tensions, then the sign assignments are not necessary for distinguishing roots.
For example,

√
2 can be encoded as (x2 − 2, (1, 2), {}), i.e., as the only root of

x2 − 2 within (1, 2) satisfying the empty sign assignment.

Example 3. Let Q(ε)/Q be an infinitesimal extension. The three roots of the
polynomial ε2x5 − εx3 − εx2 + 1 ∈ (Q(ε))[x] can be encoded as

(ε2x5 − εx3 − εx2 + 1, (−∞, 0), {})
(ε2x5 − εx3 − εx2 + 1, (0,∞), {60ε2x2 − 6ε > 0})
(ε2x5 − εx3 − εx2 + 1, (0,∞), {60ε2x2 − 6ε < 0})

We need a sign assignment to distinguish the two positive roots because they
are bigger than any real number, and cannot be isolated using an interval. In
the example above, the sign of the third derivative was used to distinguish be-
tween these two roots. Recall that Thom’s Lemma guarantees that we can always
distinguish the roots of a polynomial over an RCF using only the signs of its
derivatives. Since the interval contains only two roots that need to be discrimi-
nated, we only need to find one derivative that has a different sign for each root.
We use the third derivative, because it is the lowest degree derivative which dis-
criminates the two roots. For example, the fourth derivative 120ε2x is not used
because it is positive for both roots. Later, we show how the Sign Determination
Algorithm is used to compute the signs of these derivatives. This example also
demonstrates that we often need only a proper subset of the derivatives.

Square-free polynomials. We say a polynomial p ∈ K[x] is minimal if p does not
contain a non-trivial factor. A polynomial is square-free if it is does not have
roots with multiplicity greater than 1. Note that given a square-free polynomial
p and an interval (a, b) that contains only one root of p s.t. a and b are not
roots of p, it follows that sign(p(a)) = −sign(p(b)), where sign is a function that

6 Further details shall be in an expanded version. See Sec. 4 for a source code URL.
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maps a value into the set {−1, 0, 1}. Given a polynomial p, we define the func-
tion sqf(p) = p/gcd(p, p′), where p′ is the first derivative of p. It is well-known
that sqf(p) is square-free with the same roots as p. WLOG, let us now consider
polynomials of the form anx

n + . . . + a0 s.t. a0 = 0. In our representation, we
do not require defining polynomials to be minimal because polynomial factoriza-
tion over extension fields is an expensive operation. Instead, we use square-free
polynomials because they are faster to be computed, and more importantly, as
the Intermediate Value Theorem holds over every real closed field, we can refine
the (refinable) interval (a, b) containing a single root α by just computing the
sign of p at the midpoint m: If sign(p(a)) = sign(p(m)), then the new interval
is (m, b). If sign(p(b)) = sign(p(m)), then the new interval is (a,m). In the very
unlikely case when sign(p(m)) = 0, then α is actually the binary rational m.

Polynomial remainder sequences and Sturm-Tarski. Let quo(q, p) and rem(q, p)
denote the polynomial quotient and remainder (resp.) of q, p ∈ K[x], i.e., q =
quo(q, p) · p + rem(q, p) s.t. deg(rem(q, p)) < deg(p), where deg(p) is the degree
of p. If p is the defining polynomial for α, then p(α) = 0 and consequently
q(α) = rem(q, p)(α). This allows us to use polynomial remainders to simplify
any q(α). The signed polynomial remainder srem(q, p) is defined as −rem(q, p).
A Sturm polynomial sequence [s1; s2; . . . ; sk] for polynomials p and q is defined
inductively as s1 = p, s2 = q, si = srem(si−2, si−1), where srem(sk−1, sk) = 0.
We use sturm(p, q) to denote the Sturm polynomial sequence for p and q. Given a
sequence S of polynomials in K[x], we use sv(S, a) for the number of sign changes
(ignoring zeroes) in the sequence when each polynomial is evaluated at a. For
example, sv([2+x2+x3; 2x+3x2; −18+2x; −1], 0) = 1, since there is only one
sign variation in the sequence evaluated at 0. We use pos(q, p, a, b), neg(q, p, a, b)
and zero(q, p, a, b) to denote the number of roots β of p s.t. β ∈ (a, b) and q(β) is
positive, negative and zero respectively. The Sturm-Tarski Theorem states that
given a polynomial sequence S = sturm(p, q · p′), it holds that7

sv(S, a)− sv(S, b) = pos(q, p, a, b)− neg(q, p, a, b).

Following Basu-Pollack-Roy [3], we define a Tarski Query TaQ(q, p; a, b) as

TaQ(q, p; a, b) = sv(sturm(p, q · p′), a)− sv(sturm(p, q · p′), b)

and remark that

TaQ(1, p; a, b) = zero(q, p, a, b) + pos(q, p, a, b) + neg(q, p, a, b),

TaQ(q, p; a, b) = pos(q, p, a, b)− neg(q, p, a, b),

TaQ(q2, p; a, b) = pos(q, p, a, b) + neg(q, p, a, b).

Moreover, TaQ(1, p; a, b) is the number of roots of p in the interval (a, b). If α is
the only root of p in the interval (a, b), then the sign of q(α) can be determined
using TaQ(q, p; a, b).

7 The Sturm-Tarski Theorem is actually for half-open intervals of the form (a, b].
WLOG, we assume that for any root α encoded as (p, (a, b), S), b is not a root of p.
If it is, we encode α as (p/(x− b), (a, b), S) instead.
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Sign determination. Tarski Queries are also used to implement the Sign Deter-
mination Algorithm [3]. Given a set of polynomials Q = {q1, . . . , qk}, signdet(Q,
p, a, b) returns the feasible sign assignments of Q at the roots of p in the in-
terval (a, b). Actually, it computes more than that: for each sign assignments
S, it returns the number of roots of p in (a, b) that satisfy S. For example,
for Q = {q}, signdet can compute the feasible sign assignments by comput-
ing TaQ(1, p; a, b), TaQ(q, p; a, b) and TaQ(q2, p; a, b) and solving the system of
equations above. For Q = {q1, q2}, in the worst case, we have to compute
TaQ(h, p; a, b) for each h in the set {1, q2, q22 , q1, q1q2, q1q22 , q21 , q21q2, q21q22}. In gen-
eral for a set Q = {q1, . . . , qk}, signdet will, in the worst case, have to compute 3k

Tarski Queries for polynomials of the form
∏

q∈Q,i∈{0,1,2} q
i, and solve a system

of 3k equations. We implement a more efficient signdet of Ben-Or et al. [4].
Now, assume that α is encoded as (p, (a, b), S), and we want to determine the

sign of q(α). We can decide that by computing R = signdet(poly(S)∪{q}, p, a, b),
where poly(S) is the set of polynomials occurring in S. Then,

if S ∪ {q = 0} ∈ R then q(α) = 0,
if S ∪ {q > 0} ∈ R then q(α) > 0,
if S ∪ {q < 0} ∈ R then q(α) < 0.

We know that one and only one of the cases above can be true because p has
only one root in the interval (a, b) satisfying the sign conditions S.

To compute an upper-bound for the positive roots of (
∑n

i=0 aix
i) ∈ K[x], we

use Knuth’s bound 2(max{ k
√
(−an−k/an) | 1 ≤ k ≤ n, an−k < 0}). As the ai

may be neither integer nor rational values, we estimate (−an−k/an) using the
approximating intervals for an−k and an. Let s be the upper bound of the result-
ing interval. If the upper-bound for s is ∞, then so is the sought upper-bound.
Otherwise, we compute the least integer j s.t. s ≤ 2j. The value j can be easily
computed based on the bit-wise log2 operation for integers. Finally, we approx-

imate the kth root as 2
j
k+1. Note that if K does not contain infinitesimals, then

the computed upper-bound is a binary rational of the form 2m. The lower-bound
for a positive root is computed by computing the upper-bound for xnp(1/x). For
negative roots, we compute the bounds for the positive roots of p(−x).

Clean representations. We represent elements of K(α) as polynomials q(α). We
define inductively the predicate clean(a). If a ∈ Q, then clean(a) holds if a is an
integer. If a is an element of a transcendental or infinitesimal extension K(ς),
then clean(a) holds if a is of the form p(ς)/1 and for all coefficients c of p(ς),
clean(c) holds. Similarly, if a is an element of an algebraic extension, then clean(a)
holds if a is represented by a polynomial with clean coefficients. When clean(a)
holds, we say a is clean. In our experiments, we observed that minimizing the
use of gcd (especially with non-clean elements) is by far the most important
optimization. Many operations with clean elements produce clean elements, and
consequently do not require expensive normalization operations based on gcd.

Let a and b be clean elements of transcendental or infinitesimal extensions.
Then, a+ b, −a and a · b are also clean. We recall that for algebraic extensions
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K(α), an element a is represented as a polynomial q(α), and this polynomial
can be (optionally) simplified to rem(q, p), where p is the defining polynomial
for α. If p is monic with clean coefficients and a is clean before applying the
simplification, it will remain clean after applying it. Unfortunately, this is not the
case for non-monic polynomials. For example, rem(α3+1, 3α2−1) = 1+(2/3)α.

To minimize the generation of non-clean elements, we generate Sturm se-
quences using polynomial pseudo-remainders. We use pquo(q, p) and prem(q, p)
to denote the polynomial pseudo-quotient and pseudo-remainder of q, p ∈ K[x],
and remark that ldq = pquo(q, p) ·p+prem(q, p), where l is the leading coefficient
of p, and d is the number of iterations used to compute pquo(q, p) and prem(q, p).
The signed pseudo remainder is defined as

sprem(q, p) =

{
prem(q, p), if l < 0 ∧ d is odd
−prem(q, p), otherwise

The main motivation for this is that for any element a, sign(sprem(q, p)(a)) =
sign(srem(q, p)(a)). Because for Tarski Queries only the number of sign alterna-
tions matter, we can use sprem instead of srem when generating Sturm sequences.

Given a polynomial p with clean coefficients, if we disable the algebraic nor-
malizations using non-monic defining polynomials, and compute Sturm sequences
using sprem, then all elements in the generated sequence are clean. With this
approach, we observed a dramatic performance improvement (cf. Sec. 4).

Now, let us show how we represent elements of K(α) as polynomials even
when the defining polynomial p for α is not minimal. When p is minimal, given
a non-zero element a represented using a polynomial q(α), we can represent 1/a
using a polynomial h(α). Let r be rem(q, p). As p is minimal, gcd(p, r) = 1. Then,
using the extended gcd algorithm we can compute polynomials h and g such that
g · p+ h · r = 1 Since, p(α) = 0 and r(α) = q(α), we have h(α) · q(α) = 1. If p is
not minimal, the gcd(p, r) may be different from 1, with h the zero polynomial.
To cope with this problem, we simply replace the defining polynomial p for α
with (p/ gcd(p, r)) whenever gcd(p, r) = 1.

Root isolation. Finally, we summarize all the steps used in our root isolation
procedure for polynomials p ∈ K[x]. First, we make sure that 0 is not a root of
p, p is square-free and has clean coefficients. Then, we estimate the lower and
upper bounds for positive and negative roots. WLOG, we focus on the positive
case. If the upper-bound is ∞, we use the sign determination procedure for dis-
tinguishing the positive roots using the signs of the derivatives of p. If the upper
bound is not ∞, we try to isolate the roots using interval bisection and binary
search. If K does not depend on infinitesimals, the procedure always terminates.
If K depends on infinitesimals, to guarantee termination, we interrupt the bi-
nary search if the size of the interval in a branch is smaller than a user provided
parameter, and switch to the approach based on sign determination. Note that
if p does not depend on infinitesimal values, then more efficient root isolation
methods can be used [23].
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4 Examples
In this section, we present a small set of examples using our package. Our library
was implemented as a module in the Z3 theorem prover8, and we provide a C
API and Python bindings.

Introductory examples. We demonstrate the basic capabilities of our package
using the Python bindings. A polynomial is described as a list of coefficients.
MkRoots returns the roots of a polynomial as a list. In the following command
we consider the roots of x2 − 2. In Python, ** is the power operator.

msqrt2, sqrt2 = MkRoots([-2, 0, 1])

print(sqrt2)

>> root(x^2 + -2, (0, +oo), {})

print(1/sqrt2)

>> 1/2*root(x^2 + -2, (0, +oo), {})

print(sqrt2**2 == 2)

>> True

print(sqrt2.decimal(10))

>> 1.4142135623?

print(sqrt2**3 + 1)

>> 2*root(x^2 + -2, (0, +oo), {}) + 1

The procedure MkInfinitesimal creates a new infinitesimal extension, while Pi
and E return π and e respectively. In the following example, we extract the first
(and only) root of the polynomial x3 + ε x2 + (

√
2 + π)x− π.

eps = MkInfinitesimal("eps")

pi = Pi()

r = MkRoots([-pi, sqrt2 + pi, eps, 1])[0]

print(r)

>> root(x^3 + eps*x^2 + (root(x^2 + -2, (0, +oo), {}) + pi)*x +

-1*pi, (0, +oo), {})

print(r.decimal(10))

>> 0.6337173142?

Now, we show basic computations with infinitesimals and transcendentals. First,
we compare 2 + 2π + π2 − 2ε− 2πε+ ε2 < 2 + 2π + π2, and then we compare ε
and 3

√
ε.

print(2 + 2*pi + pi**2 - 2*eps - 2*pi*eps + eps**2 < 2 + 2*pi + pi**2)

>> True

eps3 = MkRoots([-eps, 0, 0, 1])[0]

print(eps3 > eps)

>> True

print(1/eps > 1000000000000000000000000000)

>> True

The examples above are stored in the file basic.py.

8 The code is available at http://z3.codeplex.com/wikipage?title=CADE24. Exper-
iments were done on an Intel Core i7-2620 2.7Ghz CPU with 8Gb RAM, and the
package was compiled using the GMP multi-precision library.

http://z3.codeplex.com/wikipage?title=CADE24
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MetiTarski. MetiTarski uses the nlsat [16] nonlinear solver in Z3. Real algebraic
number computations are often a bottleneck for nlsat, and were implemented
using the textbook approach of polynomials with integer coefficients and an
interval with binary rational endpoints. The following example was extracted
from a MetiTarski/Z3 execution trace where nlsat times out after 30 min. In this
example, nlsat assigns the first root of the following polynomial to variable x.

216 x15 + 4536 x14 + 31752 x13 − 520884 x12 − 42336 x11 − 259308 x10+
3046158 x9 + 140742 x8 + 756756 x7 − 5792221 x6 − 193914 x5 − 931392 x4+
3266731 x3 + 90972 x2 + 402192 x+ 592704

Then, it replaces x with the assigned value in the polynomial y3 + x3 + 1, and
timeouts trying to isolate the roots of the result. In our package presented in
this paper, these two operations are performed in 0.05 secs (nlsat.py).

Tower of extensions. In this example, we create a tower of extensions containing
two transcendental (π and e), one infinitesimal (ε), and 5 algebraic extensions.
The algebraic extensions are the first roots of the following 5 polynomials:

r0 := x4 +−2 ε x3 + (ε2 − 4)x2 + 4ε x+ 4− 2ε2 + 4
r1 := (−ε6 + 8ε4 − 20ε2 + 16)r0 − 8ε5 + 32ε3 − 32ε+ (2ε4 − 8ε2 + 8)x2

r2 := x5 + 3 x3 + r1 x
2 − 1

r3 := x5 + r1 x
3 + π r2 x

2 − 3
r4 := 8 x5 + r3 x

4 + e x2 + x− 7

All roots are isolated in 0.28 secs (tower8.py). However, if we do not use clean
representations (cf. Sec. 3), it takes 31 secs for the 4th polynomial, and times
out after 30 min in the last one (tower8 eager norm.py).

Rioboo examples [21]. All solved in a negligible amount of time (rioboo*.py).

Strzebonski examples [22]. All solved in a negligible amount of time (strz.py).

5 Conclusion

We have presented a library for computing in real closed transcendental and
infinitesimal extensions of the rationals. This provides a computational sub-
structure sufficient for implementing many advanced (and hitherto practically
unexplored) decision methods for nonlinear real arithmetic. We hope that both
the library and the ideas underlying it will prove useful to the community, and
that it may become the foundation of new practically useful decision methods.
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Abstract. We present a novel decision procedure for non-linear real
arithmetic: a combination of iSAT, an incomplete SMT solver based on
interval constraint propagation (ICP), and an implementation of the
complete cylindrical algebraic decomposition (CAD) method in the li-
brary GiNaCRA. While iSAT is efficient in finding unsatisfiability, on satis-
fiable instances it often terminates with an interval box whose
satisfiability status is unknown to iSAT. The CAD method, in turn, al-
ways terminates with a satisfiability result. However, it has to traverse
a double-exponentially large search space.

A symbiosis of iSAT and CAD combines the advantages of both meth-
ods resulting in a fast and complete solver. In particular, the interval
box determined by iSAT provides precious extra information to guide
the CAD-method search routine: We use the interval box to prune the
CAD search space in both phases, the projection and the construction
phase, forming a search “tube” rather than a search tree. This proves to
be particularly beneficial for a CAD implementation designed to search
a satisfying assignment pointedly, as opposed to search and exclude con-
flicting regions.

1 Introduction

The formal modeling of systems and their properties along with corresponding
analysis and synthesis methods require the usage of appropriate logics. In addi-
tion, many algorithms from this area need decision procedures for satisfiability
checking, i.e., algorithms to decide whether there exists an assignment of values
to the variables occurring in a formula such that the formula evaluates to true. A
typical example is bounded model checking [4], a technique to encode counterex-
amples of a certain length by formulas; a solution to such a formula provides a
counterexample, which can be used for the correction of the erroneous system.

In this context, propositional logic with SAT solving as a decision procedure
is widely used for discrete systems. For more complex systems more expres-
sive logics, e.g., fragments of first-order logic over some theories, are necessary.
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Satisfiability-modulo-theories (SMT ) solving turned out to be a very success-
ful technique, which combines SAT solving with theory decision procedures: the
Boolean structure of a formula is handled by a SAT solver, whereas the consis-
tency of sets of theory atoms is checked by a theory solver. In the last decade a
lot of effort has been put into the development of efficient SMT solvers for, e.g.,
equality logic with uninterpreted functions and linear real arithmetic.

Recently, increasing interest is devoted to solvers for quantifier-free non-linear
real arithmetic (QFNRA). However, available SMT solvers for this expressive,
highly challenging logic are rare. One of the reasons is the complexity of the
available methods for checking sets of polynomial constraints over the reals for
consistency. This circumstance complicates an embedding into an efficient SMT-
solving framework. Z3 [12] and iSAT [9] are among the most prominent SMT
solvers for QFNRA. Z3 uses an elegant adaption of the cylindrical algebraic
decomposition (CAD) method and is complete for QFNRA. iSAT is based on
the efficient technique of interval constraint propagation (ICP), yielding a fast
but, in its current version, incomplete tool.

In this paper we introduce an extension of iSAT with an adapted variant of
the CAD method, turning iSAT into a practically efficient and complete SMT
solver for QFNRA. Because of the high complexity of solving polynomial con-
straints, we implement a full-lazy interaction between ICP and CAD. The iSAT
algorithm recursively splits the initially bounded search space into smaller boxes
and applies ICP to reduce the box sizes by cutting down provably unsatisfying
parts. Under certain conditions, iSAT can detect that all points in a box are solu-
tions, or else, that no solutions are in a box. In all other cases, iSAT continues to
split the respective box. To assure termination, iSAT stops this splitting process
when the box size reaches a lower threshold. This is the point when we invoke our
CAD solver: to decide whether the remaining box contains a satisfying solution.

In turn, we use such a box to restrict the CAD search space. This could easily
be formulated by extending the original constraints with constraints represent-
ing the bounds to the variables as given by the box. However, this would only
complicate the CAD computation. Instead, we adapt the CAD method itself to
be able to use the given bounds to prune the search. To this end, we implement
approaches similar to the ones proposed in [11], but kept simple enough for ef-
ficiency maintenance. The CAD method consists of two phases, the projection
and the construction phase. For the projection phase, we propose a novel prun-
ing operator. The composition of our pruning operator and Hong’s improved
projection operator [10] generalizes Hong’s projection operator as well as the
model-based projection operator introduced in [12]. For the construction phase,
we modify the procedure for the computation of CAD cells to consider only those
cells which have a non-empty intersection with the given box. These modifica-
tions together allow us to take full advantage of the interval boxes of iSAT to
reduce the size of the CAD remarkably. Our tool and the benchmarks we used
are available at http://ginacra.sourceforge.net/cade2013.html.

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://isat.gforge.avacs.org/
http://ginacra.sourceforge.net/cade2013.html
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Besides the related approaches [12,11] already mentioned, we are aware of
[14,1,16], where approximation together with some form of validation is used to
speed up the CAD computation.

2 Preliminaries

We use Z to denote the set of integers and N to denote the set of natural numbers
including 0. We use the notation ]a, b[ = {c ∈ R | a < c < b} for open intervals,
[a, b] = {c ∈ R | a ≤ c ≤ b} for closed intervals and define half-open intervals
analogously. Furthermore, we permit unbounded open and half-open intervals
by using ∞ or −∞ as bounds. IR denotes the set of all intervals in R. We call
I1 × · · · × In ∈ IR

n an interval box composed of the intervals Ij ∈ IR, 1 ≤ j ≤ n.
Given an interval I ∈ IR, �I denotes the lower or left bound and I� the upper
or right bound of I.

2.1 Real Arithmetic

We start with a formal definition of our input language, quantifier-free non-
linear real arithmetic (QFNRA). QFNRA formulas ϕ are Boolean combinations
of constraints c which compare polynomials p to 0. A polynomial p can be a
constant, a variable x, or a sum, difference or product of polynomials:

p ::= 0 | 1 | x | (p+ p) | (p− p) | (p · p)
c ::= p = 0 | p < 0 | p > 0
ϕ ::= c | (¬ϕ) | (ϕ ∧ ϕ)

Further operators such as disjunction ∨, implication → etc. and the weak rela-
tions ≤ and ≥ can be defined as syntactic sugar. We define · to bind stronger
than +,− and ¬ stronger than ∧ stronger than ∨ and sometimes omit paren-
theses when causing no confusion. We use the standard semantics of QFNRA
formulas.

Let p = a1x
e1,1
1 · · ·xen,1

n + · · ·+ akx
e1,k
1 · · ·xen,k

n be a polynomial with aj ∈ Z

and ei,j ∈ N for 1 ≤ i ≤ n and 1 ≤ j ≤ k. By deg(p) := max1≤j≤k(
∑n

i=1 ei,j) we
denote the degree of p. A formula ϕ is linear if deg(p) ≤ 1 for all polynomials p
in ϕ, and non-linear otherwise. We denote the set of all polynomials with integer
coefficients and variables x1,. . .,xn for some n ≥ 1 by Z[x1,. . .,xn]. A polynomial
p ∈ Z[x1,. . .,xn] is called univariate if n = 1, and multivariate otherwise.

2.2 Satisfiability-Modulo-Theories (SMT) Solving

In this paper, we tackle the following problem:

QFNRA Satisfiability Problem.
Given: QFNRA formula ϕ over the variables x1, . . . , xn.
Question: Is there an assignment α : {x1, . . . , xn} → R satisfying ϕ?
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ϕ

SAT solver sat/unsat

Add/delete constraints Provide deduction/reason

Theory solver

Boolean skeleton

Fig. 1. Basic scheme of an SMT solver

To solve this problem we use the technique of satisfiability-modulo-theories
(SMT ) solving, whose basic scheme is depicted in Fig. 1.

The Boolean skeleton of a QFNRA formula replaces each polynomial con-
straint in the formula by a fresh Boolean variable, resulting in a propositional
logic formula. The propositional satisfiability problem poses the question whether
there exists an assignment to the propositions in such a formula rendering the
formula true.

Most modern SAT solvers, offering efficient solutions to this problem, are
based on the DPLL procedure [7]. The input formula is required to be in con-
junctive normal form (CNF), i.e., it is a conjunction of clauses, whereas each
clause is a disjunction of literals, the latter being variables or their negations.
The Tseitin transformation [17] can be used for an equisatisfiable transformation
of propositional logic formulas into CNF with linear complexity (in the number
of operators) on the cost of adding linearly many new variables.

Given an input propositional logic formula in CNF, DPLL-style SAT-solvers
assign values to variables following some heuristics and apply Boolean constraint
propagation (BCP) to detect implications of the assignments. Such implications
stem from unit clauses with all literals but one being false, implying that the last
literal must be true in order to satisfy the formula. When the propagation leads
to a conflict, i.e., when all literals of a clause are false, the solver uses conflict
resolution to derive a reason for the conflict. Conflict-driven clause learning
(CDCL) [15] can be used to exclude this and similar conflicts from future search.

SMT solving generalizes SAT solving by allowing literals of the input formula
to be atoms from some theories, in our case QFNRA constraints, or their nega-
tions. A SAT solver works on the Boolean skeleton of the underlying problem
and assigns true or false to the theory atoms. The SAT solver is complemented
by a theory solver offering a decision procedure for the conjunction of constraints
from the underlying theory.

There are different approaches how to combine a theory solver and a SAT
solver in an SMT application. In the full lazy approach, the SAT solver first
searches for a complete satisfying assignment for the Boolean skeleton. If the
skeleton is unsatisfiable then the input formula is also unsatisfiable. If a satisfying
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assignment is found, the SAT solver invokes the theory solver to check whether
the conjunction of those theory atoms, which satisfy the clauses, is consistent.
If this is the case then the input formula is satisfiable. Otherwise, the Boolean
skeleton is refined with a conflict clause which forbids the current combination
of the conflicting theory atoms for the future search. In the less lazy approach,
the theory solver is invoked more frequently also for partial assignments. In some
other solvers, the separation between SAT and theory solving is not so strict (see
Section 3). More details on SMT solving can be found, e.g., in [5, Ch.26].

3 The SMT Solver iSAT

In contrast to most other SMT solvers, in iSAT [9] the separation between the
theory solver and the SAT solver is not so strict. Instead, iSAT tightly integrates
interval constraint propagation (ICP) (see e.g. [3]) into the SAT framework.
This deep integration has the advantage of sharing the common core of the
search algorithms between the propositional and the theory-related part of the
solver.

The iSAT solver allows Boolean and interval-bounded integer-valued and real-
valued variables. Boolean assignments for propositions are extended with interval
valuations ρ : Var→ IR assigning to each numerical variable from Var its current
interval bound. Note that in iSAT all variables have initial intervals.

Beyond linear and non-linear integer and real arithmetic expressions, iSAT
supports transcendental functions and a collection of further operators and func-
tions. Examples for iSAT theory atoms are x2 + y2 = z2, |v −w| ≤ min(v, w) or
3
√
x+ sin y < ez. But in this paper we focus on non-linear problems only.
As a preprocessing step iSAT applies some basic arithmetic simplifications to

the input formula (e.g., the expression 2x+3x is rewritten to 5x). Furthermore, it
tries to detect contradictions, tautologies and subsumptions (e.g., x < 5∧ x < 7
is simplified to x < 5, and x < 5∧x > 7 is reduced to false). The preprocessed
formula is then rewritten into CNF with the Tseitin transformation.

The iSAT algorithm operates on CNFs containing only simple bounds and
primitive constraints as theory atoms. Simple bounds compare a variable to a
constant. Primitive constraints are equalities containing exactly one unary or
binary operator. Constraints of other forms are decomposed by a Tseitin-like
satisfiability-equivalent transformation into simple bounds and primitive con-
straints. E.g., the theory atom x + y2 > 0 is replaced by h1 > 0 and the unit
clauses h1 = x + h2 and h2 = y2 are added to the clause set, where h1 and h2

are type-consistent fresh auxiliary variables.
The three basic elements decision, propagation and conflict resolution of the

DPLL framework are also present in iSAT, but they are extended for the oper-
ation on integer- and real-valued intervals in addition to the Boolean domain.
Deciding an integer- or real-valued variable corresponds to splitting its interval
into two intervals and selecting the lower or upper one.

In the propagation phase, ICP is executed in addition to BCP. ICP tries
to narrow the interval bounds of numerical variables based on simple bounds

http://isat.gforge.avacs.org/
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and primitive constraints. However, if a new bound has a negligible progress
compared to the existing bound then the new bound is ignored to prevent infinite
propagation sequences and thus to guarantee the termination of the ICP process.
Furthermore, primitive constraints are checked whether they are still consistent
with the current interval valuations of the variables. A primitive constraint c is
consistent under an interval valuation iff there exist values in the intervals of the
involved variables which evaluate c to true. Inconsistency can be detected when
ICP deduces an empty interval for one of the involved variables.

ICP is incomplete, i.e., iSAT may terminate with an inconclusive answer,
because in general equations like x = y ·z can only be satisfied by point intervals.
But reaching such point intervals by ICP cannot be guaranteed for real-valued
variables. In such cases iSAT will return an interval box with a possible solution
called a candidate solution. In [8] an approach is presented to check whether
there exists a satisfying assignment in a candidate solution. Beside the fact that
the approach is heuristic and thus may not succeed in all cases it is also unable
to detect the unsatisfiability of an interval box. Using the CAD overcomes these
two problems.

4 Cylindrical Algebraic Decomposition (CAD)

In this work, we use the cylindrical algebraic decomposition (CAD) method,
introduced by Collins [6], to check the satisfiability of a set of non-linear real
arithmetic constraints comparing polynomials to 0. Although the CAD method
originally was designed to perform quantifier elimination, its adaption to our
setting of solving constraint systems is marginal because the basic scheme of
the CAD method is still the same. The CAD method decomposes the state
space into a finite number of connected regions called cells in which the involved
polynomials are sign-invariant, i.e., in which the truth values of the constraints
are invariant. The method also allows to get a sample point from each of the
cells. The satisfiability check of the constraint set can thus be done by checking
whether one of the finitely many sample points satisfies all the constraints. The
finite union of the satisfying cells builds the solution set of the given constraints.

Fig. 2 shows an example of a solution set in R2 for three constraints. In
general, such solution sets are unions of open or closed connected subsets of Rn

whose boundaries are defined by the real zeros of the considered polynomials
over n variables. However, a CAD of the solution space is usually an even finer
decomposition of Rn, arranged in cylinders in each dimension. We describe the
precise structure of a CAD by an explanation of the actual CAD computation.
We use the constraint set defined in Example 1 in order to illustrate the method.

Example 1. We consider the constraint set {x2 + y2 > 4, x + 2 = y, x2y > 1}.
A picture of its solution set in R2 is given in Fig. 2.

Let Pn ⊆ Z[x1, . . . , xn] be a set of multivariate polynomials over n ≥ 1 variables.
The CAD method decomposes the state space Rn into a finite number of disjoint
subsets (cells) ∪m

i=1Ri such that in each cell Ri the polynomials in Pn are sign
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x2y > 1

x+ 2 = y

x2 + y2 > 4

x

y

1 2 3 4-4 -3 -2 -1

-3

-2

-1

1

2

3

4

common solutions

Fig. 2. Solution sets of the constraints x2 + y2 > 4 (every point outside the circle
around the center with radius 2), x+2 = y (angle bisecting line) and x2y > 1 (hatched
area)

invariant, i.e., for all p ∈ Pn either p(a) > 0, p(a) < 0 or p(a) = 0 for all a ∈ Ri.
Such a CAD can be used to decide consistency of a set of constraints comparing
polynomials from Pn to 0 by substituting a sample point from each of the CAD
cells into the constraints. The CAD is done in two phases, the projection phase
and the construction phase, as illustrated in Fig. 3.

4.1 Projection Phase

The left side of Fig. 3 depicts the projection phase. From the input set Pn, the
CAD method computes another set of polynomials projxn

(Pn) ⊆ Z[x1, . . . , xn−1]
so that the following holds: Let R ⊆ Rn−1 be a connected set such that each
p ∈ projxn

(Pn) is sign-invariant on R. Then there is a decomposition R × R =⊎k
i=1 R × Si of the cylinder over R with k ∈ N \ {0} and Si ⊆ R connected for

1 ≤ i ≤ k so that each p ∈ Pn is sign-invariant on R× Si for 1 ≤ i ≤ k. We call
the operation projxn

a (CAD) projection operator.
There are several implementations of projection operators in the literature. In

this work, we use Hong’s improved projection operator [10]. We illustrate such
a CAD projection in Example 2: The given projection eliminates the variable x
from the input set over the variables x and y. For a deeper insight into how the
projection works, we refer to the before-mentioned articles on CAD [6,10].

Example 2 (CAD projection). We consider the polynomials corresponding to
the constraint set of Example 1 P = {x2 + y2 − 4, x + 2 − y, x2y − 1} ⊆
Z[x, y]. Then projx(P ) contains the 3 coefficients from the input polynomials
2− y, y, y2 − 4, but also 5 polynomials representing multiple or common roots,
such as −y3 + 4y − 1, y3 − 4y2 + 4y − 1, y6 − 8y4 + 2y3 + 16y2 − 8y + 1.
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Pn ⊆ Z[x1, . . . , xn]

Pn−1 := projxn
(Pn)

...

P1 := projx2
(P2)

projxn

projxn−1

projx2

Zn :=
⋃

z∈Zn−1

{z} × samp({p(z) | p ∈ Pn})

...

Z2 :=
⋃

z∈Z1

{z} × samp({p(z) | p ∈ P2})

Z1 := samp(P1)

samp

samp

samp

samp

Fig. 3. The basic CAD method in a nutshell: the projection phase on the left, the
construction phase on the right

We call Pi := projxi+1
(Pi+1) ⊆ Z[x1, . . . , xi] the ith successive projection for

0 < i < n. We start the construction phase with the set of univariate polynomials
P1.

4.2 Construction Phase

In the construction phase, as sketched on the right side of Fig. 3, the CAD
method starts with computing the set Z1 ⊆ R of representatives for the cells of
a CAD of the real line. Let r1 < · · · < rk be the real roots of the polynomials in
P1, then the maximal sets where each p ∈ P1 is sign-invariant are the intervals
]−∞, r1[ , [r1, r1], ]r1, r2[ , . . . , [rk, rk], ]rk,∞[ . This family of intervals is a CAD
of R. We call a representative of such an interval (CAD) sample, i.e., samples
are real roots of univariate polynomials, the points between these roots, and one
point less than the smallest and one greater than the largest root. The set of
samples of a set of univariate polynomials U is denoted by samp(U).

The procedure to compute CAD samples is one of the most important parts
of the CAD method. Hence, we shed some more light on algorithms for finding
real roots of polynomials.

The heart of real root isolation is counting real roots of a univariate poly-
nomial in a given interval. By p′ we denote the formal derivative of a uni-
variate polynomial p, and by (p mod q) the remainder of the division of the
polynomials p by q. Given a univariate polynomial p, its Sturm sequence is
S = (p0, . . . , pk) with p0 = p, p1 = p′, pi = −(pi−2 mod pi−1) for 2 ≤ i ≤ k,
and pk a rational constant. Let S(t) for t ∈ Q denote the sequence of the non-zero
pi(t) values, and let Var(S(t)) be the number of sign changes in S(t). Sturm’s
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theorem (see e.g. [2, Theorem 2.50]) states that p has Var(S(a)) − Var(S(b))
many real roots in ]a, b[ if a and b are no roots of p themselves. For exam-
ple, the Sturm sequence of p = x2 − 2 is S = (x2 − 2, 2x, 2). Therefore, p has
Var(S(−2))−Var(S(2)) = 2− 0 = 2 real roots in ]− 2, 2[ .

In this example, a radius of 2 around 0 already suffices to capture all real
roots of p. To obtain such an upper bound on the radius covering all roots of
a univariate polynomial p =

∑k
i=0 cix

i, ck = 0, we can use the Cauchy bound
C(p) :=

∑k
d=0

∣∣∣ cdck
∣∣∣. In order to isolate all real roots of p by intervals, the interval

]−C(p),C(p)[ can be successively split, e.g. by its midpoint, until intervals are
found for which Sturm’s theorem determines exactly one real root. An interval
containing exactly one real root r of p is called an isolating interval for r, and
〈p, ]a, b[ 〉 an interval representation for r. Given two interval-represented real
roots r1 and r2, we are able to effectively compute arithmetic operations such
as r1 + r2, −r1, r1 · r2, r−1

1 , as well as relations such as r1 = r2 and r1 < r2 (see,
e.g., [13, p. 327ff]).

Example 3 shows possible CAD samples including interval-represented roots.

Example 3 (CAD samples). Given projx(P ) from Example 2, samp(projx(P ))
contains 19 samples, e.g., the roots r1 := 〈−y3 + 4y − 1, ]−17

8 , −67
32 [ 〉, r2 :=

〈−y3 + 4y − 1, ] 61
160 ,

31
80 [ 〉, r3 := 〈−y3 + 4y − 1, ] 3180 ,

15
8 [ 〉 of −y3 + 4y − 1 and

corresponding intermediate points −3 < r1 < −1 < r2 < 1
3 < r3 < 15

8 . The
isolating intervals of the real roots in samp(projx(P )) are even tighter because
of several refinements when computing the whole example; however, we omit
these details for the sake of readability.

Hence we have Z1 = samp(P1) and continue with the computation of Zi+1

with Zi+1 :=
⋃

(a1,...,ai)∈Zi
{(a1, . . . , ai, ai+1) | ai+1 ∈ samp({p(a1, . . . , ai, xi+1) |

p(x1, . . . , xi+1) ∈ Pi+1})} for all 1 < i < n. Note that p(a1, . . . , ai, xi+1) is
indeed a univariate polynomial. We call a point z ∈ Zn ⊆ Rn a (CAD) sample
point.

Because samp({p(z) | p ∈ Pi+1}) contains all samples of a CAD of R for
each z ∈ Zi, we can conclude by induction on i, 1 ≤ i < n, that Zn contains
sample points for all sign-invariant connected components of Rn. Note that the
calculation of p(z) for given p ∈ Pi+1, z ∈ Zi, 1 ≤ i < n can be performed by
computing resultants [2, Sec. 4.2].

If m = |P | and d be the maximum degree of all polynomials occurring in P
and if we assume that |proj(P )| ≤ m2d2 as in [10], then |Zn| is dominated by
O(m2n−1d2

n+n−1). This worst case can occur even for linear input formulas, as
showed in [18].

5 iSAT Adaption

ICP works well for robust combinations of theory atoms, but may fail to give
a conclusive answer for non-robust ones. Here, a set of theory atoms is meant
to be robust, if the atoms maintain their truth value under small perturbations
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of the constants in the atoms. Nonetheless even a candidate solution contains
useful information which can be used as a guiding path for a complete method
like the CAD method.

Whereas iSAT operates on a CNF enriched with primitive constraints as unit
clauses, the CAD method is fed with the non-decomposed theory atoms together
with the current interval valuation of the variables occurring in those atoms in
a full-lazy manner. The CAD method is used whenever iSAT is unable to give a
conclusive answer by itself. As mentioned earlier the focus of this paper are non-
linear problems. Note, that we could also allow the actual input logic of iSAT
and would then simply avoid calling the CAD method when, e.g. transcendental
functions, occur. In order to determine which theory atoms have to be passed
to the CAD method, each simple bound originating from a decomposed theory
atom keeps a link to its original non-decomposed form.

iSAT would stop its search with a candidate solution, because each primitive
constraint is still consistent under the current interval valuation of the variables.
However, it is unknown whether there exists a point interval for each variable
satisfying all primitive constraints. In such a case, having the link back from the
simple bounds to the original theory atoms makes it possible to determine the
set of atoms to pass to the CAD method to get a definitive answer. The solver
terminates with a satisfiable result when the CAD method finds a solution within
the given interval box defined by the candidate solution. Otherwise a conflict
clause excluding this set of atoms is created and the search continues. Note, that
iSAT could call the CAD method even in case of unbounded problems making
the extension of iSAT complete for QFNRA.

6 CAD Adaption

In Section 4 we showed that the two phases of the CAD method, the projec-
tion and the construction phase, can be both extremely inefficient because of
their doubly-exponential search space. However, because our CAD-method im-
plementation is designed to traverse all sample points for a satisfying one, we can
mainly avoid this worst case behavior when we assume that a possible solution
lies within a given interval box.

At first, we formally fix the situation of a call to the CAD solver within the
ICP solver. Let, throughout this section, B = I1 × · · · × In ∈ IR

n an interval
box with B = ∅, P = {p1, . . . , pm} polynomials with pi ∈ Z[x1, . . . , xn] over
n ≥ 1 variables and p1 ∼1 0, . . . , pm ∼m 0 be constraints with ∼i∈ {<,=, >} for
1 ≤ i ≤ m. We are interested in the satisfiability of

m∧
i=1

pi(x1, . . . , xn) ∼i 0 ∧
n∧

i=1

xi ∈ Ii. (1)

The constraints representing the bounds can be formulated using the polynomials
PB := {xi − bi | bi ∈ {�Ii, Ii�} ∩ R, 1 ≤ i ≤ n}. Note that the infinity bounds
are excluded in this representation.
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A straightforward approach to solve (1) is to construct a CAD of Rn w.r.t.
P∪PB and search a satisfying sample point. We refer to this solution approach as
lazy method because the bounds are checked at the very end of the construction
phase – lazily.

This section, however, is devoted to an approach we call eager method : the
bounds are incorporated deeply into the CAD phases in order to restrict the
search space w.r.t. B, as opposed to leaving it untouched and checking member-
ship in B at the end. The adaption of the CAD method for the eager approach
is two-fold: a reduction of the sets of polynomials computed in the projection
phase and an early pruning of the CAD samples in the construction phase.

Projection Phase. Based on the interval box B, we define a pruning operator
prunB so that |prunB(P )| ≤ |P |.

Definition 1 (Interval-based polynomial pruning). Let Q ⊆ Z[x1, . . . , xn].
We call the operation prunB(Q) := {p ∈ Q | p(r) = 0 for some r ∈ B} interval-
based polynomial pruning.

The set prunB(P ) consists of those polynomials from P which have a real root
in the given interval box. Thus, prunB(P ) ⊆ P .

Note that the composition prunB ◦ projxi
is an implementation of the projec-

tion operator introduced in [11], generalizing the model-based projection opera-
tor described in [12] where the authors prune the output of the operator using
numbers, possibly interval-represented, instead of arbitrary intervals.

The polynomial pruning prunB(Q) can be straightforwardly implemented by
testing whether p ∈ Q has a root inside B by constructing a CAD. Because
this approach can be very inefficient, we first compute an over-approximation of
{p(a) | a ∈ B} by interval arithmetic and check whether (0, . . . , 0) is contained.
If not, we can safely prune p. Otherwise we compute a CAD w.r.t. p and prune
p if no satisfying sample for p = 0 is found. Else, we have to keep p for the
computation of the CAD of P and, as an optimization, we can reuse all projection
polynomials computed for p.

We demonstrate the “tube” effect of the interval-based polynomial pruning in
the projection phase by two examples depicted in Fig. 4 and Example 4.

Example 4 (Interval-based polynomial pruning). Let P be as in Ex. 2. We con-
sider the two interval boxes B1, B2 ∈ IR

2 with B1 = [−3, 0]2 (cf. left picture
in Fig. 4), B2 = ]1, 4[ × ]2, 4[ (cf. right picture in Fig. 4) and PB1 , PB2 their
polynomial representations each having 4 additional input polynomials.

The projection projx(P ∪PB1) has 14 elements. Fortunately, prunB1
(P ∪PB1)

already removes x2y − 1 resulting in a smaller projection prunB1
(projx(P ∪

PB1)) of 9 elements. The projection projx(P ∪ PB2) contains 18 elements and
prunB2

(P ∪ PB2) leaves just x+ 2− y so that prunB2
(projx(P ∪ PB2)) consists

only of 8 linear elements.

The example shows that B restricts the set of projections in such a way that
the problem can become significantly smaller, e.g., for B2 the initial problem is
reduced to a linear polynomial only.



204 U. Loup et al.

B1

x

y

1 2 3 4-4 -3 -2 -1

-3

-2

-1

1

2

3

4 B2

x

y

1 2 3 4-4 -3 -2 -1

-3

-2

-1

1

2

3

4

Fig. 4. Solution sets of the constraints x2 + y2 > 4, x+ 2 = y and x2y > 1 intersected
with the boxes B1 = [−3, 0]2 and B2 = ]1, 4[ × ]2, 4[

Construction Phase. We can use the interval box B to restrict also the sample
construction for each dimension.

Definition 2 (Interval-based samples). Let U ⊆ Z[xi] be a set of univariate
polynomials. We define the set sampB(U) by

sampB(U) := samp(U ∪ PIi ) ∩ [�Ii, Ii�].

sampB(U) is called a set of interval-based (CAD) samples.

Let U ⊆ Z[xi]. The important aspects of sampB(U) are, first, the inclusion of
the bounds as real roots in order to ensure that points between possible real
roots of U and the bounds of Ii are constructed, and second, the intersection
with the closed version of Ii to prune all samples outside the bounds of Ii but
not the bounds themselves in order to guarantee that the bounds are available
for the sample construction in higher dimensions.

In our implementation of sampB(U), we use Ii as initial interval for the real
root isolation due to Sturm’s theorem rather than the Cauchy bounds so that
only real roots inside Ii are found. We then apply the usual CAD sample con-
struction and remove the outer samples at the left and right bounds.

Joining of the Two Adapted Phases. The new operators from the Definitions
1 and 2 enable us to define the eager method. We depict its scheme in Fig. 5
referring to the scheme of the native CAD method in Fig. 3.

In the adapted projection phase, we use the adapted ith successive projection
Pi := prunB(projxi+1

(Pi+1 ∪ PIi+1 )) for 0 < i < n. In particular, we project
the polynomials representing the bounds only when the corresponding variable
is projected and do not keep the bound-representing polynomials themselves in
the projections. Moreover, the interval-based polynomial pruning is applied after
each projection and to the input set P .
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Pn := prunB(P )

Pn−1 := prunB(projxn
(Pn ∪ PIn))

...

P1 := prunB(projx2
(P2 ∪ PI2))

prunB ◦ projxn

prunB ◦ projxn−1

prunB ◦ projx2

Zn :=
⋃

z∈Zn−1

{z} × sampB({p(z) | p ∈ Pn})

...

Z2 :=
⋃

z∈Z1

{z} × sampB({p(z) | p ∈ P2})

Z1 := sampB(P1)

sampB

sampB

sampB

sampB

Fig. 5. Eager method to solve (1)

The adapted construction phase, in turn, is working analogously to the native
construction phase as shown in Fig. 3, except that the interval-based sample
operator sampB is used.

Both phases work hand in hand. Firstly, prunB could cut off also the poly-
nomials in PB which are important to construct samples between the bounds
and possible real roots inside B. This shortcoming is tackled by sampB, as it
always produces the bounds of B as roots. Moreover, the projection of the bound-
representing polynomials together with other polynomials have to be generated.
We force this by adding the respective polynomials from PB for the projections.

7 Experimental Results

We have embedded three versions of the CAD procedure of Section 6 into iSAT:
iSAT+CAD1 implementing the lazy method, iSAT+CAD2 the eager method without
interval-based polynomial pruning and iSAT+CAD3 the eager method itself. We
compared our approaches with two well-known solvers also based on CAD: Z3
and Redlog (calling rlcad). Table 1 shows the performances of iSAT and our
CAD implementation embedded in a DPLL-style SMT solver, SMT+CAD.

The tests cover the benchmark sets hong (Hon), meti-tarski (Met), zankl
(Zan) and keymaera (Key) as described in [12]. In addition, we tested the set
Laser (Las) containing unrolled bounded model checking instances which de-
scribe whether a laser can reach a target state traversing a labyrinth of reflecting
obstacles.
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Table 1. Results obtained on a 2.1 GHz AMD with a timeout of 200 seconds

bench (#) Hon (20) Met (8276) Las (381) Zan (166) Key (421) all (9264)
# sec # sec # sec # sec # sec # sec

iSAT+CAD3 20 0.1 7634 18840.0 331 758.6 31 195.4 331 216.4 8347 20010.5
- sat 0 0.0 4967 15678.1 0 0.0 12 183.8 0 0.0 4979 15861.7
- unsat 20 0.3 2667 3161.9 331 758.6 19 11.6 331 216.4 3368 4148.8

iSAT+CAD2 20 0.3 7321 29143.5 331 710.2 31 181.4 329 196.2 8032 30231.6
- sat 0 0.0 4667 26301.6 0 0.0 12 170.9 0 0.0 4679 26472.5
- unsat 20 0.3 2654 2841.9 331 710.2 19 10.5 329 196.2 3353 3759.1

iSAT+CAD1 20 0.3 6732 23092.9 331 755.0 31 182.4 328 307.8 7442 24338.4
- sat 0 0.0 4125 20673.8 0 0.0 12 170.4 0 0.0 4137 20844.2
- unsat 20 0.3 2607 2419.0 331 755.0 19 12.0 328 307.8 3305 3494.1

iSAT 20 0.2 2614 285.4 331 719.1 19 10.2 307 2.6 3291 1017.5
- sat 0 0.0 123 2.1 0 0.0 0 0.0 0 0.0 123 2.1
- unsat 20 0.2 2491 283.4 331 719.1 19 10.2 307 2.6 3168 1015.4

SMT+CAD 2 0.2 5358 29494.8 17 4.9 15 1.3 307 581.3 5699 30082.5
- sat 0 0.0 3746 14151.8 0 0.0 11 0.9 0 0.0 3761 14152.7
- unsat 2 0.2 1612 15343.0 17 4.9 4 0.4 307 581.3 1942 15929.8

Z3 11 353.5 8257 593.1 237 2340.7 91 173.5 418 10.0 9014 3470.7
- sat 0 0.0 5350 253.0 7 240.0 61 113.5 0 0.0 5418 606.5
- unsat 11 353.5 2907 340.1 230 2100.6 30 60.0 418 10.0 3596 2864.2

Redlog 3 2.7 7403 28472.2 17 13.6 17 205.9 243 721.9 7683 29416.2
- sat 0 0.0 4969 14023.8 0 0.0 12 42.3 2 143.2 4983 14209.4
- unsat 3 2.7 2434 14448.3 17 13.6 5 163.5 241 578.7 2700 15206.8

8 Outlook

From our results we can conclude that extra input information such as bounds
for the variables can aid the CAD search routine and improve its efficiency.
Following that line, we want to connect the two procedures even tighter. iSAT
is an SMT solver calling the CAD solver for consistency checks, just as a theory
solver in the SMT framework. Empirical data from the field of SMT solving
shows that a tremendous speed-up can be gained if the respective theory solver
supports incremental adding and removing of constraints plus the generation of
minimal reasons in case of a conflict and theory deductions in case of no conflict.

Moreover, our results show that, in contrast to a conflict-oriented approach
such as in Z3 [12], a solution-oriented implementation of the CAD method as in
SMT+CAD is widely inefficient on the SMT benchmarks. However, its adaption and
combination with an incomplete ICP solver in a prototypical implementation is
already almost at eye level with highly developed SMT solvers such as Z3. We
expect that a bound-using adaption of a complete NRA solving strategy not
only composed of the CAD method would be even more beneficial.

Our CAD implementation uses arbitrary-precision arithmetic for computing
with interval bounds. In contrast, iSAT is mainly implemented based on fast
floating-point arithmetic. It is possible to use validated floating-point compu-
tations in the CAD method, too. Thus, we could improve the efficiency of our
CAD solver and reduce the overhead of the CAD solver calls within iSAT.

Acknowledgments. We appreciate the very interesting and detailed comments
by the anonymous reviewers.
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dReal: An SMT Solver for Nonlinear Theories

over the Reals�
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Abstract. We describe the open-source tool dReal, an SMT solver for
nonlinear formulas over the reals. The tool can handle various nonlinear
real functions such as polynomials, trigonometric functions, exponential
functions, etc. dReal implements the framework of δ-complete decision
procedures: It returns either unsat or δ-sat on input formulas, where δ
is a numerical error bound specified by the user. dReal also produces
certificates of correctness for both δ-sat (a solution) and unsat answers
(a proof of unsatisfiability).

1 Introduction

SMT formulas over the real numbers can encode a wide range of problems in
theorem proving and formal verification. Such formulas are very hard to solve
when nonlinear functions are involved. Our recent work on δ-complete decision
procedures provided a new framework for this problem [10,11]. We say a decision
procedure is δ-complete for a set S of SMT formulas, where δ is a positive rational
number, if for any ϕ from S, the procedure returns one of the following:

– unsat: ϕ is unsatisfiable.
– δ-sat: ϕδ is satisfiable.

Here, ϕδ is a syntactic variant of ϕ that encodes a notion of numerical perturba-
tion on logic formulas [10]. With such relaxation, δ-complete decision procedures
can fully exploit the power of scalable numerical algorithms to solve nonlinear
problems, and at the same time provide suitable correctness guarantees for many
correctness-critical problems. dReal implements this framework. It solves SMT
problems over the reals with nonlinear functions, such as polynomials, sine, ex-
ponentiation, logarithm, etc. The tool is open-source1, built on opensmt [5] for
the high-level DPLL(T) framework, and realpaver [14] for the Interval Constraint
Propagation algorithm. It returns unsat or δ-sat on input formulas, and the user
can obtain certificates (proof of unsatisfiability or solution) for the answers.

In this paper we describe the usage, design, and some results of the tool.

� This research was sponsored by the National Science Foundation grants no.
DMS1068829, no. CNS0926181 and no. CNS0931985, the GSRC under contract no.
1041377, the Semiconductor Research Corporation under contract no. 2005TJ1366,
and the Office of Naval Research under award no. N000141010188.

1 dReal is available at http://dreal.cs.cmu.edu.

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 208–214, 2013.
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Related Work. SMT solving for nonlinear formulas over the reals has gained
much attention in recent years and many tools are now available. The symbolic
approaches include Cylindrical Decomposition [6], with significant recent im-
provement [19,16], and Gröbner bases [20]. A drawback of symbolic algorithms
is that it is restricted to arithmetic, namely polynomial constraints, with the
exception of [1]. On the other hand, many practical solvers incorporate scalable
numerical computations. Examples of numerical algorithms that have been ex-
ploited include optimization algorithms [4,18], interval-based algorithms [8,7,12],
Bernstein polynomials [17], and linearization algorithms [9]. All solvers show
promising results on various nonlinear benchmarks. Our goal is to provide an
open-source platform for the rigorous combination of numerical and symbolic
algorithms under the framework of δ-complete decision procedures [10].

2 Usage

2.1 Input Format

We accept formulas in the standard SMT-LIB 2.0 format [2] with extensions. In
addition to nonlinear arithmetic (polynomials), we allow transcendental func-
tions such as sin, tan, arcsin, arctan, exp, log, pow, sinh. More nonlinear func-
tions (for instance, solution of differential equations) can be added when needed,
by providing the corresponding numerical evaluation algorithms. Floating-point
numbers are allowed as constants in the formula.

Bound information on variables can be declared using a list of simple atomic
formulas. For instance “(assert (< 0 x))”, which sets x ∈ (0,+∞) at parsing
time. Also, the user can set the precision by writing “(set-info :precision

0.0001).” The default precision is 10−3, and can be set through command line.

Example 2.1. The following is an example input file. It is taken from the Fly-
speck project [15]. (Filename flyspeck/172.smt2. Flyspeck ID (6096597438b))

(set-logic QF_NRA)

(set-info :precision 0.001)

(declare-fun x () Real)

(assert (<= 3.0 x))

(assert (<= x 64.0))

(assert (not (> (- (* 2.0 3.14159265) (* 2.0 (* x (arcsin (* (cos

0.797) (sin (/ 3.14159265 x))))))) (+ (- 0.591 (* 0.0331 x))

(+ (* 0.506 (/ (- 1.26 1.0) (- 1.26 1.0))) 1.0)))))

(check-sat)

(exit)

2.2 Command Line Options

After building, dReal can be simply used through:
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dReal [--verbose] [--proof] [--precision <double>] <filename>

The default output is unsat or delta-sat. When the flags are enabled, the following
output will be provided.

– If --verbose is set, then the solver will output the detailed decision traces
along with the solving process.

– If --proof is set, the solver produces an addition file “filename.proof”
upon termination, and provides the following information.
• If the answer is delta-sat, then filename.proof contains a witnessing
solution, plugged into a δ-perturbation of the original formula, such that
the correctness can be easily checked externally.

• If the answer is unsat, then filename.proof contains a trace of the
solving steps, which can be verified as a proof tree that establishes the
unsatisfiability of the formula.

– The --precision flag gives the option of overwriting the default precision,
and the one set in the benchmark.

When the --proof flag is set, the solver produces a file that certifies the answer.
In the delta-sat case, the solution is plugged in the formula, and its correctness
can be checked externally. For the unsat cases, we provide a proof checker that
verifies the proof. It can be used with the following command:

proofcheck [--timeout <int>] <filename>

The proof checker will create a new folder called filename.extra, which con-
tains auxiliary files needed. It is possible for the proof checking procedure to
produce a large number of new files, so setting a timeout is important. By de-
fault, the timeout is 30min. The proof checker will return either “proof verified”
or “timeout”.

Example 2.2. With default parameters, dReal solves the formula in Example 2.1
in 10ms, returning unsat, on a machine with a 32-core 2.3GHz AMD Opteron
Processor and 94GB of RAM. We then run proofcheck on the same machine.
The proof checker returns “proof verified” in 10.08s, after making 8 branching
steps and checking 77 axioms.

3 Design

3.1 The δ-Decision Problem

The standard decision problem is undecidable for SMT formulas over the reals
with trigonometric functions. Instead, we proposed to focus on the so-called δ-
decision problem, which relaxes the standard decision problem. Let δ be any
positive rational number. On a given SMT formula ϕ, we ask for one of the
following answers:

– unsat: ϕ is unsatisfiable.
– δ-sat: ϕδ is satisfiable.
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When the two cases overlap, either answer can be returned. Here, ϕδ is called
the δ-perturbation (or δ-weakening) of ϕ, which is formally defined as follows.

Definition 3.1 (δ-Weakening [10]). Let δ ∈ Q+ ∪ {0} be a constant and ϕ

be a Σ1-sentence in a standard form ϕ := ∃Ix (
∧m

i=1(
∨ki

j=1 fij(x) = 0)). The

δ-weakening of ϕ defined as: ϕδ := ∃Ix (
∧m

i=1(
∨k

j=1 |fij(x)| ≤ δ)).

Solving the δ-decision problem is as useful as the standard one for many prob-
lems. For instance, suppose we perform bounded model checking on hybrid sys-
tems, and encode safety properties as an SMT formula ϕ. Then following stan-
dard model checking techniques, if we decide that ϕ is unsat, then the system is
indeed “safe” with in some bounds; if we decide that ϕ is δ-sat, then the system
would become “unsafe” under some δ-perturbation on the system. In this way,
when δ is reasonably small, we have essentially taken into account the robustness
properties of the system, and can justifiably conclude that the system is unsafe
in practice.

3.2 DPLL〈ICP〉
Interval Constraint Propagation (ICP) [3] is a constraint solving algorithm that
finds solutions of real constraints using a “branch-and-prune” method, combin-
ing interval arithmetic and constraint propagation. The idea is to use interval
extensions of functions to “prune” out sets of points that are not in the solution
set, and “branch” on intervals when such pruning can not be done, until a small
enough box that may contain a solution is found. In a DPLL(T) framework, ICP
can be used as the theory solver that checks the consistency of a set of theory
atoms. We use opensmt [5] for the general DPLL(T) framework, and integrate
realpaver [14] which performs ICP. We now describe the design of the interface.
A high-level structure of the theory solver is shown in Algorithm 1.

Check and Assert. For incomplete checks in the assert function, we use the
pruning operator provided in ICP to contract the interval assignments on all
the variables, by eliminating the boxes in the domain that do not contain any
solutions. At complete checks, we perform both pruning and branching, and
look for one interval solution of the system. That is, we prune and branch on
the interval assignment of all variables, and stop when either we have obtained
an interval vector that is smaller than the preset error bound, or when we have
traversed all the possible branching on the interval assignments.

Backtracking and Learning. We maintain a stack of assignments on the variables,
which are mappings from variables to unions of intervals. When we reach a
conflict, we backtrack to the previous environment in the pushed stack. We also
collect all the constraints that have appeared in the pruning process leading to
the conflict. We then turn this subset of constraints into a learned clause and
add it to the original formula.



212 S. Gao, S. Kong, and E.M. Clarke

Algorithm 1. Theory Solving in DPLL〈ICP〉
input : A conjunction of theory atoms, seen as constraints,

c1(x1, ..., xn), ..., cm(x1, ..., xn), the initial interval bounds on all
variables B0 = I01 × · · · × I0n, box stack S = ∅, and precision δ ∈ Q+.

output: δ-sat, or unsat with learned conflict clauses.

1 S.push(B0);
2 while S �= ∅ do
3 B ← S.pop() ;
4 while ∃1 ≤ i ≤ m,B �= Prune(B, ci) do
5 //Pruning without branching, used as the assert() function.

B ← Prune(B, ci);

6 end
7 //The ε below is computed from δ and the Lipschitz constants of

functions beforehand.

8 if B �= ∅ then
9 if ∃1 ≤ i ≤ n, |Ii| ≥ ε then

10 {B1, B2} ← Branch(B, i); //Splitting on the intervals

S.push({B1, B2});
11 else
12 return δ-sat; //Complete check() is successful.

13 end

14 end

15 end
16 return unsat;

Witness for δ-Satisfiabillity. When the answer is δ-sat on ϕ(x), we provide a
solution a ∈ Rn, such that ϕδ(a) is a ground formula that can be easily checked
to be true. It is important to note that the solution witnesses δ-satisfiability,
instead of standard satisfiability of the original formula. While the latter problem
is undecidable, any point in the interval assignment returned by ICP can witness
the satisfiability of ϕδ when the intervals are smaller than an appropriate error
bound.

Proofs of Unsatisfiability. When the answer is unsat, we produce a proof tree
that can be verified to establish the validity of the negation of the formula,
i.e., ∀x¬ϕ(x). We devised a simple first-order natural deduction system, and
transform the computation trace of the solving process into a proof tree. We
then use interval arithmetic and simple rules to check the correctness of the proof
tree. The proof check procedure recursively divide the problem into subproblems
with smaller domains. More details can be found in [13].

4 Results

Besides solving the standard benchmarks [16] (data shown on the tool website),
we managed to solve many challenging nonlinear benchmarks from the Flyspeck
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project [15] for the formal proof of the Kepler conjecture. The following is a
typical formula:

∀x ∈ [2, 2.51]6.
(
−

π − 4 arctan
√
2
5

12
√
2

√
Δ(x)

+
2

3

3∑
i=0

arctan

√
Δ(x)

ai(x)
≤ −π

3
+ 4 arctan

√
2

5

)

where ai(x) are quadratic and Δ(x) is the determinant of a nonlinear matrix.
We solved 828 out of the 916 formulas (returning unsat) with a timeout of 5
minutes and δ = 10−3, without domain-specific heuristics. The proof traces
of these formulas can be large. In Table 1, we list some of the representative
benchmarks to show scalability. Complete tables are on the tool page.

Table 1. Experimental results. #OP = Number of nonlinear operators in the problem,
TIMES = Solving time in seconds, TO = Timeout (30min), PC = Proof Checked,
#PA = Number of proved axioms, #SP = Number of subproblems generated by proof
checking, TIMEPC = Proof-checking time in seconds, #D = Number of iteration depth
required in proof checking.

Problem# #OP TimeS Result Trace Size PC #PA #SP TimePC #D

506 49 0:00.01 UNSAT 519 Y 3,108 3,107 190.200 9

504 48 0:00.01 UNSAT 507 Y 2,322 2,321 172.250 9

746 2,729 0:00.22 UNSAT 20,402 Y 134 135 156.940 99

785 81 0:00.79 UNSAT 2,530,262 Y 1,968 1,454 100.620 5

505 48 0:00.01 UNSAT 477 Y 1,390 1,389 84.030 9

814 96 0:00.50 UNSAT 1,349,482 Y 885 638 79.010 5

783 832 0:00.06 UNSAT 6,386 Y 211 210 57.890 9

815 96 0:00.48 UNSAT 1,394,542 Y 912 688 45.620 5

760 2,792 0:00.22 UNSAT 20,991 Y 71 70 34.470 9

816 97 0:00.15 UNSAT 423,074 Y 335 254 30.310 5

260 90 0:45.10 UNSAT 306,508,373 N —– —— —— –

884 94 0:25.75 UNSAT 181,766,839 N —– —— —— –

461 36 0:25.20 UNSAT 133,865,608 N —– —— —— –

871 80,230 0:16.38 UNSAT 610,809 N —– —— —— –

525 43 4:38.01 δ-SAT ———— – —– —— —— –
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Abstract. Difference logic is commonly used in program verification
and analysis. In the context of fixed-precision integers, as used in assem-
bly languages for example, the use of classical difference logic is unsound.
We study the problem of deciding difference constraints in the context of
modular arithmetic and show that it is strongly NP-complete. We discuss
the applicability of the Bellman-Ford algorithm and related shortest-
distance algorithms to the context of modular arithmetic. We explore
two approaches, namely a complete method implemented using SMT
technology and an incomplete fixpoint-based method, and the two are
experimentally evaluated. The incomplete method performs considerably
faster while maintaining acceptable accuracy on a range of instances.

1 Introduction

We consider the problem of adapting classical difference logic over Z [2] to the
congruence class used in modulo-m integer arithmetic, here denoted Zm. Under-
standing this class is important for the design of automated reasoning that is
concerned with machine arithmetic. Our particular interest in this arises from
our work on analysis and verification of low-level code. We wish to improve
static analysis techniques for low-level programming languages that use w-bit
fixed-precision integers, that is, we are interested in the particular case m � 2w.
Much of the literature on program analysis and software verification uses dif-
ference logic and similar numeric abstract domains, tacitly assuming unbounded
integers. It is well known that, in that context, difference logic can be decided in
O��V ��C�� deterministic time, for variables V and constraints C. In the context
of Zm, the decision problem becomes strongly NP-complete.

Consider the program fragment shown in Figure 1. Conventional static anal-
ysis with difference bound matrices [4] or octagons [11] will derive the bounded
difference constraint 0 � y � x � 6 and determine that the branch y � x will
never be executed. In a context of fixed-precision integers, owing to possible over-
flow, this conclusion is clearly wrong. Nevertheless, in some sense the derived
invariant is meaningful, as y lies between x and x � 6 on the modular integer
number circle.

The challenge is to ensure that program analysis “understands” machine oper-
ations so as to remain faithful to machine arithmetic. Previous work has mainly

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 215–230, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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unsigned int x � Æ;
unsigned int y � x;
for(int i � 0; i � 6; i��)

if(Æ)
y��;

if(y � x) ERROR;

Fig. 1. Unbounded relational analysis will deem ERROR unreachable; however, on
systems with fixed-width integers, y may wrap to 0 if x is very large

dealt with non-relational abstract domains, notably interval domains [15,16,8].
Simon and King [17] considered adapting convex polyhedra to modular arith-
metic by computing a convex approximation relative to a fixed wrapping point.
Other approaches consider instead systems of equations [13] and disequations [9]
under modular arithmetic. SMT�BV� [10] problems involve a variety of con-
straints over Z2w ; solvers for these problems typically convert the arithmetic
operations to SAT. These techniques are complete, but may be too slow to be
viable for certain applications, such as invariant synthesis.

One critical issue with classical abstract domains such as interval domains,
octagons, and so on, is that they rely on having a linear ordering, �, on the set
of integers. The only way to capture a non-trivial concept of ordering on Zm is
to discuss order only with respect to some reference point. For example, we may
decide that x � y means, loosely, that “starting from 0 and moving clockwise
on the number circle, x is encountered no later than y”—a natural reading
when unsigned integer representation is used. Or, we may decide that it means
“starting from �m	2, x is met no later than y”—when signed representation
is used. To complicate matters, many low-level languages, such as LLVM and
assembly languages, fail to provide signedness information, relying on the fact
that arithmetic operations such as addition, subtraction and multiplication are
agnostic with respect to signedness. Navas et al. [14] point out that analysis of
such languages, in order to maintain precision, has to be signedness-agnostic as
well, which means superposing signed/unsigned assumptions during analysis.

For the remainder of this paper, we assume all inequalities are unsigned.
Signed inequalities x�s y can be expressed in terms of unsigned inequalities:
x�s y iff x� m

2 � y� m
2 . This does, however, require the introduction of shifted

variables x� � �x� m
2 � mod m and y� � �y � m

2 � mod m.
Classical integer difference constraints provide lower and upper bounds on

integer differences x � y, and these bounds have consequences for order. For
example, for positive k, a constraint x� y 
 k allows us to deduce x 
 y. When
we move to Zm, this link between difference and order is lost. For example,
assuming signed arithmetic, �x � �2w�1, y � 2w�1 � 1� satisfies x� y 
 0 but
not x 
 y. Hence an important step towards getting a handle on “wrapped”
difference logic is to separate the aspects of proximity and (relative) order.
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bellman ford(�V,E�)
% Introduce a fresh least element.
V � = V � �v��
E� = E � ��v�, 0, vi� � vi � V �
% Initialize relations
D�v�� := 0
for(vi � V )

D�vi� := ��
% Progressively expand the set of paths to each node.
for(k � �1, . . . , �V ��)

for(��vi, w, vj� � E�)
D�vj� � max�D�vj�, D�vi� � w�

% Check for any inconsistencies
for(��vi, w, vj� � E�)

if(D�vi� � w � D�vj�)
return UNSAT

return SAT

Fig. 2. Pseudo-code for the Bellman-Ford algorithm for checking satisfiability of a set
of unbounded difference logic constraints

The following contributions are made in this paper:

– We study the complications that arise when reasoning about difference con-
straints takes place in the presence of modular arithmetic.

– We offer a simple proof that, in that context, for m � 2, decidability of
difference constraints is NP-complete.

– We propose a framework for combined reasoning about proximity and order
and use this to develop an efficient but incomplete decision procedure.

– We evaluate the resulting method, comparing it to two more traditional
SMT-based decision procedures.

In Section 2 we recapitulate the classical case. In Section 3 we discuss “wrapped”
difference constraints and develop the different approaches: a complete method
based on SMT�BV� (bit-vector) technology, one using SMT�DL� (difference
logic), and an incomplete fixpoint-based method. Section 4 contains the evalua-
tion and Section 5 concludes.

2 Deciding Difference Logic

The classical method for deciding difference logic1 is the Bellman-Ford algo-
rithm [2]. For later reference, we show it in Figure 2. It uses a graph

1 The term “separation logic” is sometimes used [18,19]. To avoid confusion with
Reynolds-O’Hearn separation logic, we use the alternative “difference logic”.
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x� w � 0
y � x � 1
z � y � 1
x� z � 1

(a)

v� w x

y

z

0
1

1
1

0

0

0

0

(b)

Fig. 3. (a) A set of difference constraints. (b) the corresponding graph representation
(v� is a freshly introduced root vertex).

representation of constraints, each variable giving rise to a node, and each dif-
ference constraint giving rise to a weighted directed edge. The algorithm relies
on these inference rules for difference logic (� denotes unsatisfiability):

Inversion: α � y � x � β iff �β � x� y � �α

Resolution:
α1 � y � x � β1 α2 � z � y � β2

α1 � α2 � z � x � β1 � β2

Tightening:
α1 � y � x � β1 α2 � y � x � β2

max�α1, α2� � y � x � min�β1, β2�

Contradiction:
α � y � x � β, α � β

�

Example 1. Consider the set of constraints shown in Figure 3(a). The graph cor-
responding to these constraints is given in Figure 3(b). Note that the constraints
are satisfiable if and only if there are no positive-weight cycles in the graph.2

After computing the longest paths of length up to �V �, we have:

�D�v�� � 0, D�w� � 0, D�x� � 3, D�y� � 3, D�z� � 3�

However, performing another iteration would still increase the path lengths,
since, for example, D�z� � 1 � D�x�. This indicates the presence of a positive-
weight cycle. ��

3 Wrapped Difference Constraints

In this section, we consider systems of constraints of the form α � y�x � β (which
we sometimes write it as y � x � �α, β�) under modular arithmetic. Given that

2 Presentations of difference logic sometimes express the problem in terms of shortest
(rather than longest) paths, in which case unsatisfiability corresponds to negative
(rather than positive) cycles.
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we are concerned with numerical proximity as well as ordering, we allow these
intervals to cross m; such a wrapped interval �α, β� is interpreted as follows:3

γ�α, β� �

�
�d � α � d� d � β� if α � β
�d � α � d� d � m� 1� � �d � 0 � d� d � β� otherwise

For example, in a modulo-16 context, the wrapped interval �14, 2� denotes the
set �0, 1, 2, 14, 15�. In this modulo-m context, a one-sided constraint (such as y�
x 
 3) is essentially meaningless; the usual inequalities under Zm are implicitly
bounded by 0 and m� 1. On the other hand, containment of wrapped intervals
is easily expressed:

�α, β� � �α�, β�� iff γ�α, β� � γ�α�, β��

We can perform certain operations, similar to those of Section 2, on the number
circle. However, of Section 2’s inference rules, only inversion remains sound.

Example 2. Consider, for k � 1, this set of constraints:

1 � y � x � k, 1 � z � y � k, 1 � x� z � k (1)

Resolving the first two constraints, we get 2 � z � x � 2k, or, equivalently,
�2k � x� z � �2. Under standard difference logic, (1) would be unsatisfiable:

1 � x� z � k �2k � x� z � �2
1 � x� z � �2

�

However, as illustrated here, in the modular-
arithmetic case, this set of constraints is sat-
isfiable if k is sufficiently large. For example,
the constraints are satisfiable in Z16, for k � 7
(take, say, x � 1, y � 6, z � 11). ��

x

x� 7

yy � 7
z

z � 7

The n constraints

α1 � x2 � x1 � β1, . . . , αn�1 � xn � xn�1 � βn�1, αn � x1 � xn � βn

induce the constraint α � 0 � β, where α � α1�� � ��αn and β � β1�� � ��βn.
This latter constraint is unsatisfiable exactly when 0 falls outside �α, β�, a condi-
tion which is reminiscent of the positive-weight cycle condition for conventional
difference logic.

In principle a variant of a shortest-path algorithm could be used to detect these
inconsistent cycles; however, this requires computing the intersection of wrapped
intervals. Consider the two intervals shown in Figure 4(a). The intersection of

3 The definition overloads the square bracket notation: The function γ takes a possibly
wrapped interval and expresses its meaning in terms of ordinary intervals.
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(a) (b) (c)

Fig. 4. (a) A pair of intervals on the number circle, (b) the intersection of the two
intervals and (c) an optimal over-approximation of the intersection

these two intervals is no longer a single interval. Indeed, the intersection of k
wrapped intervals produces up to min�k, m2 � disjoint feasible intervals; when

combined with resolution, min�2
k
2 , m

2 � intervals can be generated. For example,
with these constraints:

0 � y � x � 2, 0 � z � y � 4, 2 � y � x � m, 4 � z � y � m

we have y � x � �0, 2� and z � y � �0, 4�, which yields z � x � �0, 2, 4, 6�. There
are four equally good interval approximations of this set.

3.1 Interval Sets

We could represent the feasible relations between two variables exactly by explic-
itly maintaining the set of (disjoint) feasible intervals. To reason about bounded
difference constraints, we require two operations: intersection of interval-sets
(denoted �) and pointwise addition of interval-sets (denoted �).

A�A� �
�

�α,β��A

�
�α�,β���A�

����
���

�α, β� if α � �α�, β�� � β � �α�, β��
�α, β�� if α � �α�, β�� � β� � �α, β�
�α�, β� if α� � �α, β� � β � �α�, β��
�α�, β�� if α� � �α, β� � β� � �α, β�

���	
��


A�A� �
�

�α,β��A

�
�α�,β���A���α� α�, β � β���

The operation � can be implemented in O��A���A��� time; � requires O��A��A���
time in the worst case. In the case of �, the results are normalized by merging
overlapping intervals. Note that � and � are both commutative and associative.
Also note that the full interval, �, is a neutral element for �, while ��0, 0��
is neutral for �. It would be convenient if the resulting structure formed a
semiring, as this would allow us to use the algebraic shortest distance framework
of Mohri [12]. Unfortunately, while we do have the property

�a� b�� c � �a� c� � �b� c�
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it is not the case that � distributes over �. As a counter-example, consider Z16,
and take A � �0, 8� and B � �9, 0�. We have A��A�B� � A��0, 0� � A, while
�A�A�� �A�B� � ��� � �. As we shall see in Section 3.6, this complicates
the operation of longest path algorithms.

3.2 Wrapped-Interval Approximation

For the analysis of programs that use Zm for a large m (and usually m is 232 or
264), representing the feasible values precisely is impractical. In this section, we
propose the construction of an over-approximation of the set of feasible intervals.

We adopt a “wrapped interval” representation [14], approximating the set of
feasible intervals with a single interval. A wrapped interval is any sequence of
consecutive numbers on the modulo-m number circle; for example, with m � 16,
the interval �8, 0� is the set �8, 9, . . . , 15, 0�. Given a set of integers modulo m,
there may be several minimal approximations in the form of wrapped inter-
vals; for example, the set �0, 8� may be approximated by �0, 8� or by �8, 0�, two
intervals of equal cardinality. To ensure a deterministic choice, we use a total
ordering � over wrapped intervals, ordering them primarily by cardinality and
then lexicographically (we write x �m y for �x � y� mod m for binary infix
operator �):

�α, β� � �α�, β�� iff �β �m α� � �β� �m α�� � ��β �m α � β� �m α�� � α � α��

This allows us to define an over-approximation of the meet which selects the
approximation with minimum cardinality, breaking ties by favouring the lexico-
graphically smallest left-bound.

�α, β� �L �α
�, β�� �

��������
�������

if α  �α�, β�� � α�  �α, β� then �
else if �α, β� � �α�, β�� then �α, β�
else if �α�, β�� � �α, β� then �α�, β��
else if α�  �α, β� then �α, β��
else if α  �α�, β�� then �α�, β�
else min���α, β�, �α

�, β���

�α, β�� �α�, β�� �

�
� if �β �m α� � �β� �m α�� 
 m� 1
�α�m α�, β �m β�� otherwise

Notice that, using this approximation, �L lacks several properties provided by
typical lattice operations. �L is absorptive and commutative but not associative.

Example 3. With m � 16, consider A � �8, 15�, B � �12, 9�, and C � �0, 10�. We
have �A�L B��L C � �8, 15��L�0, 10� � �8, 10�. On the other hand, we have
A�L�B�L C� � �8, 15��L�0, 9� � �8, 9�. ��

Also, �L is not monotone (nor decreasing) with respect to the inclusion ordering
� (however, �L is monotone with respect to the cardinality ordering �).
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0̄

(a)

0̄

(b)

0̄

(c)

Fig. 5. (a) When the concrete range covers the entire circumference of the number
circle, the proximity bounds cannot be reduced further. (b) The concrete bounds can,
however, be reduced to the next corresponding proximity bound. (c) If both sets of
endpoints are mutually contained, there can be no reduction.

0̄

(a)

0̄

(b)

Fig. 6. If the union of the concrete and proximity intervals do not cover the entire
number circle, each can be tightened to the region satisfying both

Example 4. Consider the intervals A � �0, 10�, A� � �0, 8�, B � �8, 1� on Z16. A
�

is clearly a subset of A, however A�L B is incomparable with A��L B. Namely,
A�LB � �8, 1�, while A��L B � �0, 8�. So �L fails to be monotone. ��

3.3 Combining Wrapped Difference with Relative Order

The wrapped interval constraints discussed so far express proximity only. They
cannot express constraints such as x � y. This can be fixed, however, by al-
lowing “concrete” interval information. Thus we combine proximity and range
constraints in pairs ��α, β�, �d,D�� with the semantics:

γ��α, β�, �d,D�� � ��x, y� � Z2
m � y �m x � �α, β� � y � x � �d,D��

Note that, with x, y � �0,m�1�, the value of y�x can be anywhere between�m�1
andm� 1 (2m� 1 possible values). Hence � � ��0,m� 1�, ��m� 1,m� 1��. Fig-
ure 5(a) depicts an interval pair (assuming m � 16, the pair is ��4, 9�, ��15, 15��),
the first interval shown by a solid arc, the second by a dashed arc.
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We normalise interval pairs by propagating information from each component
to the other. Let dm be d projected onto the range �0,m� 1�. We can use this
to determine how far the lower (respectively upper) bound of the concrete range
must be adjusted to reach the corresponding proximity bound. This difference
is then mapped back onto the concrete range. Note the use of �d,D�m, the
projection of the interval onto �0,m � 1�, defined as �d,D�m � �0,m � 1� if
D � d 
 m, and �d,D�m � �dm, Dm�, otherwise.

norm ��α, β�, �d,D�� � ��α�, β��, �d�, D��� where

d� �

�
d if dm � �α, β�
d� �α�m dm� otherwise

D� �

�
D if Dm � �α, β�
D � �Dm �m β� otherwise

�α�, β�� �

�
�α, β� if α � �d,D�m � dm � �α, β�
�α, β� � �d,D�m otherwise

Details of the definition are justified by considering the cases shown in Figures 5
and 6. The following theorem says that norm establishes the tightest possible
consistent bounds.

Theorem 1. Let �A�, C �� � norm �A,C�. For allA�, C�, if γ�A�, C���γ�A,C�
then A�

� A� � C �
� C�.

Proof. Consider a pair ��α�, β��, �d�, D��� � norm ��α, β�, �d,D��. In the case that
α � �dm, Dm� and dm � �α, β�, as illustrated in Figure 5(c), neither bound can
be tightened. If �α, β� and �d,D�m do not intersect, we have d��α�m dm� � D,
and the result correctly represents �.

This leaves the case where there is some overlap between �α, β� and �d,D�m,
but the intervals do not cross at both ends. In that case, �α, β���d,D�m is the
largest interval consistent with both �α, β� and �d,D�. If dm  �α, β�, we must
adjust d to the next point on the number circle consistent with �α, β� – that is,
α. The minimum distance d must be shifted is α�m dm, in which case d�m � α.
By similar reasoning, if Dm  �α, β�, we must reduce D by Dm �m β, giving
D�

m � β. Both d�m and D�
m are in �α�, β��. Assume there were some element of

c � �α�, β�� such that c  �d�, D��m. As c � �α�, β��, we have c � �α, β� � c � �d,D�.
Then c is either in the interval �d, d��, or �D�, D�. However, this cannot be the
case, as there are no elements of �α, β� in either interval. Therefore, all elements
of �α�, β�� must be consistent with �d�, D��.

We conclude that norm computes the tightest intervals that preserve the
semantics of the input pair. ��

In the case of the complete interval set representation, �α�, β�� can be computed
with a standard join; the additional case is to avoid losing information when
the intervals overlap in two places (analogous to the case in Figure 4(a)). Using
normalisation, we can define the necessary operators on the combined domain:
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��αx, βx�, �dx, Dx�� � ��αy, βy�, �dy, Dy�� �

norm ��αx, βx� � �αy, βy�, �max�dx, dy�,min�Dx, Dy���

��αx, βx�, �dx, Dx��� ��αy, βy�, �dy, Dy�� �

norm ��αx, βx���αy, βy�, �dx � dy, Dx �Dy��

3.4 NP-Completeness of Wrapped Difference Constraints

As already observed by Bjørner et al. [1], wrapped difference constraints are
NP-complete. In this section we give a simpler proof, using, as do Bjørner et al.,
reduction from graph 3-colourability. We strengthen the result [1] by showing
NP-completeness for all cases m � 2. For m � 2, the problem can be solved in
polynomial time in the same manner as 2-colouring.

First, given an assignment to variables �v1, . . . , vn�, we can check, in polyno-
mial time, whether each difference constraint is satisfied; so wrapped difference
logic is in NP. It remains to show that the problem is NP-hard.

Assume m � 2; consider a 3-colourability instance G � ��v1, . . . , vn�, E�.
We construct a system of �E� � n difference constraints in Zm over variables
�x, x1, . . . , xn�:

– For each vertex vi, introduce the constraint xi � x � �0, 2� (for m � 3 this is
a vacuous constraint, so it can be omitted).

– For each edge �vi, vj� � E, introduce the constraint xi � xj � �1,m� 1�.

The system of constraints can be generated in linear time. We claim that it is
satisfiable iff G is 3-colourable.

Assume the set of constraints can be satisfied and let ν be a satisfying val-
uation. For each xi, we have ν�xi� � �ν�x�, ν�x� �m 1, ν�x� �m 2�, owing to
the constraint xi � x � �0, 2�. Taking ν�x�, ν�x� �m 1, and ν�x� �m 2 as three
“colours”, we choose the colour ν�xi� for node vi. This gives a 3-colouring of
G, because, for adjacent vertices vi and vj , the colours ν�xi� and ν�xj� must be
different, owing to the constraint xi � xj � �1,m� 1�.

Conversely, assume that G is 3-colourable. Call the three colours used in the
colouring 0, 1, and 2. We claim that the valuation ν which maps x to 0 and xi

to the colour of vi satisfies the generated constraints. The constraints of form
xi � x � �0, 2� are satisfied by construction. The constraints of form xi � xj �
�1,m� 1� are similarly satisfied, as the “difference” between the “colours” of vi
and vj are precluded from being 0.

It follows that wrapped difference logic is NP-complete. Note that the usual
directionality of edges in the graph generated by difference constraints is irrele-
vant here, since in modulo m arithmetic, x�y � �1,m�1� and y�x � �1,m�1�
(and x !� y) are equivalent. Also note that the reduction does not synthesize m
from a 3-colourability instance. Rather, m is a fixed constant in the transfor-
mation. As 3-colourability is strongly NP-complete, and the transformation
is pseudo-polynomial [7], wrapped difference logic is also strongly NP-complete.
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3.5 SMT Encodings: Two Complete Decision Procedures

A common approach for solving problems over Z2w is satisfiability modulo bit-
vectors (SMT�BV�) [10]. In an SMT�BV� solver, each w-bit word x is typically
translated into a vector vx ofw Boolean variables. Operations on Z2w are encoded
using Boolean formulae to simulate the corresponding hardware circuit.

We can readily couch wrapped difference constraints in terms of SMT�BV�.
Letting -bv denote w-bit bit-vector subtraction, encode each constraint directly:

For a constraint x � y: vx �u vy

For a constraint y � x � �i, j�: �vy -bv vx� -bv i�u j -bv i

SMT�BV� solvers typically use complete methods for solving bit-vector con-
straints. These, then, provide a complete decision procedure for wrapped differ-
ence constraints.

An alternative way is to use satisfiability modulo difference logic (SMT�DL�).
Each variable is constrained to the interval �zero, zero �m� 1�. We encode the
concretization of a wrapped interval �i, j� as a disjunction of concrete difference
constraints, using similar reasoning to that illustrated in Figure 5:

For a variable x: 0 � vx � zero � m� 1

For a constraint x � y: vx �u vy

For a constraint
y � x � �i, j�:

�������
������

�
� �m� 1 � vy � vx � �m� j
� �m� i � vy � vx � j
� i � vy � vx � m� 1


� if jm � im

�
�m� i � vy � vx � �m� j

� i � vy � vx � j

�
otherwise

3.6 An Incomplete Decision Procedure

Ideally, we would like an efficient, sound and complete decision procedure. Given
that wrapped difference constraints are NP-complete, it seems highly unlikely
that such a procedure exists. The SMT approaches are sound and complete,
but can exhibit exponential running time. For use in an abstract interpretation
framework, we require the analysis to be efficient, and we can afford to sacrifice
completeness (but not soundness). We must therefore develop a sound over-
approximation which maintains reasonable accuracy without excessive cost.

Given the similarities between wrapped difference constraints and classical
difference logic, it seems likely that variants of shortest-path algorithms would
provide suitable heuristics. Indeed, the problem of detecting a set of inconsistent
wrapped difference constraints is very similar to the algebraic shortest distance
framework of Mohri [12]. As observed in Section 3.1, our � and � operators
lack some critical semiring properties; however, the structure of the problem
remains the same. It is worth noting that all edges have an inverse; for any
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y � x � �0, m�2�
z � y � �0, m�2�
v � z � �1, 1�
w � v � �1, 1�
z �w � �1, 1�

(a)

x y z

v

w

�0, m
2
� �0, m

2
�

�1,
1�

�1
,1

�
�1, 1�

(b)

Fig. 7. The cycle z � w � v � z is inconsistent. However, this information is lost
when applying Bellman-Ford from the root x.

a b c

d

�0, 8� �0, 8�

�8
, 0
� �1, 1�

Fig. 8. After running the Floyd-Warshall algorithm (with variables ordered lexico-
graphically), we have c� a � �, rather than the tightest bound of �0, 9�

edge y � x � �α, β�, there is a corresponding edge x � y � �m � β,m � α�. As
the inverse is easily computed, there is no need to store both edges explicitly.
Similarly, we do not need to compute �z�y���y�x� if we have already computed
�x� y� � �y � z�.

In principle, the Bellman-Ford algorithm [2] provides a suitable sound over-
approximation. Unfortunately, in the context of modular arithmetic, it quickly
loses information about infeasible paths.

Example 5. Consider the set of constraints in Figure 7. The cycle z  w  v 
z has value �3, 3�, which is an inconsistent self-loop (assuming m � 3). However,
applying Bellman-Ford from root node x, we quickly determine that z � x � �.
Then, as �� �1, 1� � �, we derive the same relation for v � x and w � x. We
cannot then deduce the existence of an inconsistent cycle. ��

This example suggests that a single-source approach is unlikely to work. An
alternative approach is to use an all-pairs shortest path algorithm to derive the
strongest relation between each pair of variables. The obvious algorithm to use is
the Floyd-Warshall algorithm [5]. However, as mentioned in Section 3.1, � does
not distribute over �; as a result, a direct application of the Floyd-Warshall
algorithm is not guaranteed to reach a fixpoint with respect to every pair of
variables.

Example 6. Consider a problem in Z16, with the constraint graph given in Fig-
ure 8. The algorithm computes the longest paths via first a then b (neither
tightening any constraints). Since d � c � �15, 15� and c � b � �0, 8�, paths via c
tighten d� b to �8, 0� � �15, 7� � �15, 0� (note that c� b is still �0, 8�, and d� a
is still �). Once we compute paths via d, we tighten c � b to �0, 1�. After the
algorithm has finished, c�a has still not yet been tightened to the correct value
of �0, 9�. ��
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wrapdiff fixpoint(�V,E�)
Q := "
% Initialize relations
R := ��vi, vj� � � � vi, vj � V �
Adj := �vi � " � vi � V �
for(�vj � vi � r� � E)

update rel(vi, vj , r�R�vi, vj�)
while�#Q.empty���

�vi, vj� := Q.pop��
for(vk � Adj�vj�$�vi�)

rik := R�vi, vk���R�vi, vj��R�vj , vk��
if�rik � �� return UNSAT

update rel(vi, vk, rik)
for(vk � Adj�vi�$�vj�)

rkj := R�vk, vj���R�vk, vi��R�vi, vj��
if�rkj � �� return UNSAT

update rel(vk, vj , rkj)
% If we reach a fixpoint without unsatisfiability,
% assume satisfiability
return SAT

update rel(vi, vj , rij)
if(rij % R�vi, vj�)

R�vi, vj� := rij
Q.insert��vi, vj��
Adj�vi� := Adj�vi� � �vj�
Adj�vj� := Adj�vj� � �vi�

Fig. 9. Computation of a fixpoint of a set of difference constraints

We could modify the Floyd-Warshall algorithm to continue iterating until a
fixpoint is reached. However, this performs a great deal of redundant work;
particularly given that most such constraint systems are quite sparse, so many
edges are �. Instead, we use a worklist-based algorithm to compute the fixpoint
directly. We maintain a queue of �vi, vj� pairs which have changed, and update
any adjacent �vi, vk� or �vk, vj� edges. This method is given in Figure 9. R
maintains the relations between each pair of variables, and Q is the queue of
updated edges. Since c�� � � for all c, we need not compute R�vi, vj��R�vj , vk�
unless both R�vi, vj� andR�vj , vk� are not�. Adj holds, for each vertex vi, the set
of adjacent vertices vk such that R�vi, vk� % �. When an edge �vi, vj� is changed,
we need only test elements in Adj�vi� and Adj�vj�. We must, however, ensure
Adj is updated whenever an edge ceases to be � – this is done in update rel. Adj
can be maintained in constant time with O�n2� space and initialization time.
As mentioned, we do not need to keep track of both an edge and its inverse; we
similarly avoid adding �vj , vi� to the queue if �vi, vj� has already been added.
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This procedure is sound, as each step in the algorithm is the application of
an inference of the form x� z � �x� y�� �y � z�.

Theorem 2. The procedure wrapdiff fixpoint terminates.

Proof. Using either the disjoint-set lattice or the interval over-approximation,
the � operation is monotone (according to the � and � orderings respectively)
and non-increasing. At each step of wrapdiff fixpoint, either some R�vi, vk� or
R�vk, vj� must decrease, or all entries remain constant and the size of Q de-
creases. As both the disjoint-set and interval domains are finite, there cannot be
any infinite descending chains. Hence wrapdiff fixpoint must terminate. ��

The fixpoint time complexity is clearly bounded by O�mn3�. However, in practice
the algorithm runs much faster; we suspect a tighter bound exists which is not
dependent on m.

Proposition 1. In cases where a classical difference constraint solver soundly
proves unsatisfiability, wrapdiff fixpoint also proves unsatisfiability.

Proof. Classical difference constraints are unsatisfiable if there is some cycle
C � �c1, c2, . . . , ck� in the graph, such that SC �

�
C � 0. This conclusion

is only sound if there is a corresponding cycle C � � ��c�k, . . . ,�c�2,�c�1� which
prevents the cycle from wrapping to 0. Let SC� �

�
C �, and let SC � pm � r

such that r � �1,m � 1�. The cycle C excludes 0 only if SC� � �p � 1�m. Note
that for each edge ci � C, ci � c�i � 0 (otherwise, the cycle �ci, c

�
i� is trivially

unsatisfiable).
Consider the behaviour of wrapdiff fixpoint on the corresponding constraints

��c1, c
�
1�m, �c2, c

�
2�m, . . . , �ck, c

�
k�m�. The interval size c�i � ci is non-negative. As

SC� � SC � m, the size of each partial-sum interval �
�j

i�1�ci, c
�
i�m� is less than

m, so the interval cannot wrap. Adding all the edges then yields the inter-
val �SC , SC��m, which does not contain 0. If 0  

�k
i�1�ci, c

�
i�m, we also have�k�1

i�1 �ci, c
�
i�m��ck, c

�
k�m � �. (A��B % � means there is some x such that

x � A,�x � B. Therefore 0 � x� ��x� � A�B.)
Hence, if a cycle exists which allows classical difference logic to soundly con-

clude unsatisfiability, wrapdiff fixpoint will do the same. ��

4 Experimental Evaluation

In this section, we evaluate the performance of the two SMT-based methods,
and the incomplete shortest-path approach. For the SMT�BV� approach, we
used the stp solver [6]; for the SMT�DL� encoding, we used the Z3 theorem
prover [3]. The shortest-path algorithm is implemented in C++. The evaluation
was conducted on a 3.00GHz Core2 Duo with 2Gb of RAM running Ubuntu
GNU/Linux 10.04. Reported times are in milliseconds.

We compared the performance of the two approaches on a set of randomly
generated problems over Z232 with an increasing number of variables. 100 in-
stances were generated for each problem size between 20 and 200 variables. To



Solving Difference Constraints over Modular Arithmetic 229

Table 1. Comparing the SMT	BV
 and SMT	DL
 approaches with wrapdiff fixpoint.
Time reported (in milliseconds) is the average runtime over 100 instances of each size.

�V � �C� timeBV timeDL timefix #U #fp

20 24 50.8 19.2 0.2 24 1
40 48 99.9 24.4 0.4 22 1
60 72 150.0 29.8 0.8 22 1
80 96 197.5 36.4 1.1 29 1
100 120 268.9 43.3 1.7 22 0
120 144 341.3 50.9 2.0 21 0
140 168 404.0 59.0 2.6 22 1
160 192 494.9 65.9 2.8 27 0
180 216 537.7 73.2 3.4 31 1
200 240 675.6 85.5 3.9 25 0

ensure a mix of satisfiable and unsatisfiable instances, the number of constraints
�C� was fixed to 1.2�V �. Of these, 1

10 are ordering constraints, the remainder be-
ing uniformly distributed proximity constraints.4 Results are given in Table 1.
timeBV , timeDL and timefix denote the time for each method to solve all in-
stances of the given size. #U indicates the number of unsatisfiable instances,
and #fp the number of instances which the fixpoint-based method incorrectly
reported to be satisfiable.

On these instances, the SMT�DL� encoding is considerably faster than the
SMT�BV� encoding. The incomplete method is generally around 30 times faster
than the SMT�DL� method, while having a very low false positive rate.

5 Conclusion

Difference logic is useful for program verification and analysis. However, for
machine-arithmetic-aware program analysis and verification, classical difference
logic is unsound. We have shown that, when extended to modular arithmetic,
difference constraints are NP-complete even for Z3. We have presented two com-
plete methods based on SMT techniques, and a sound heuristic based on a
fixpoint computation. The heuristic runs substantially faster than the complete
methods, and correctly determines unsatisfiability for the majority of the ran-
dom instances we tested. It would be interesting to develop alternative techniques
which improve precision without sacrificing performance. Further work will in-
volve embedding this method in an abstract interpretation framework for static
analysis.

Acknowledgments. This work was supported through ARC grant
DP110102579. We are grateful to the anonymous reviewers who identified a
number of critical misprints in the draft version and suggested an improved
SMT encoding which we have adopted.

4 The solver and instances are available at ww2.cs.mu.oz.au/~ggange/moddiff/
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unification algorithms to asymmetric ones, demonstrating it for exclusive-
or with uninterpreted function symbols.We demonstrate how asymmetric
unification can improve performanceby running the algorithm on a set of
benchmark problems. We also give results on the complexity and decid-
ability of asymmetric unification.

1 Introduction

The symbolic analysis of cryptographic protocols has been one of the most suc-
cessful applications of model-checking to security. In such an analysis, messages
are symbolic terms constructed out of function symbols and variables. Message
terms often satisfy some equational properties: e.g. that decryption with a key
cancels out encryption with the same key or that a symbol satisfies exclusive-or
properties. Also, the network is assumed to be under the control of a hostile
intruder who can read and modify all traffic, perform any operation available to
a legitimate principal, and may be in league with a set of corrupted principals,
and thus have access to their keys.

Protocol execution paths are usually computed by unifying messages received
with messages sent. Since equational properties are usually involved, the unifi-
cation must be modulo the equational theory describing those properties. The
following strategy to achieve unification in protocol analysis, which we call
variant-based unification, is used in one form or another by many cryptographic
protocol analysis tools, including ProVerif [3], OFMC [2], Maude-NPA [7] and
Tamarin [17] (see [7] for a detailed comparison). The equational theory is de-
composed into (R,E), where R is a set of sort-decreasing rewrite rules that are
confluent, terminating, and coherent modulo E (discussed further in Section 2).
Given two terms m1 and m2 to be unified, complete sets of irreducible variants
ofm1 and m2 with respect to (R,E) are computed,1 and each irreducible variant
of m1 is E-unified with each irreducible variant of m2. Any unifier that results
in either side of the equation being reducible using R modulo E is discarded as
redundant. If the complete set of irreducible variants is guaranteed to be finite
(that is, (R,E) has the finite variant property [5]), this gives a finitary unification
procedure [9].

Example 1. Let us consider the following equational theory (Σ,E,R) for the
exclusive-or theory, where R consists of the following equations oriented into
rules,2 and E contains the associativity and commutativity (AC) axioms for ⊕:

X ⊕ 0 = X X ⊕X = 0 X ⊕X ⊕ Y = Y

For term t = M ⊕M , (0, id) is the only variant. For term s = X ⊕ Y , the set of
its most general variants is

1 A set V of term-substitution pairs (u, ρ) is a complete set of variants of term t
with respect to (R,E) iff for any substitution θ there is a (u, ρ) ∈ V such that the
R/E-canonical form tθ↓R/E of tθ satisfies: tθ↓R/E=E uρ (more in Section 2).

2 Note that the first two equations are not AC-coherent, but adding the third equation
(with variable Y ) is sufficient to recover that property (see [20,6]).
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{ (X ⊕ Y, id),
(Z, {X �→ 0, Y �→ Z}), (Z, {X �→ Z, Y �→ 0}),
(Z, {X �→ Z ⊕ U, Y �→ U}), (Z, {X �→ U, Y �→ Z ⊕ U}),
(0, {X �→ U, Y �→ U}), (Z1 ⊕ Z2, {X �→ U ⊕ Z1, Y �→ U ⊕ Z2})}

since any possible variant of s is an instance of one of the terms according to the
substitution. For term u = X ⊕ n(A, r), the set of its most general variants is

{(X ⊕ n(A, r), id), (Z, {X �→ n(A, r) ⊕ Z}), (0, {X �→ n(A, r)})}.

Now, given the unification problem Y ⊕ n(B, r′) = X ⊕ n(A, r) arising in [7] for
a simple protocol, the set of irreducible variants for each side is similar to the
variants shown above for term u and the pairwise AC-unification of them gives
the following substitutions as solutions to the unification problem:

{X �→ n(B, r′)⊕ Z, Y �→ n(A, r) ⊕ Z}
{X �→ n(A, r)⊕ Y ⊕ n(B, r′)} {Y �→ n(B, r′)⊕X ⊕ n(A, r)}
{X �→ n(A, r), Y �→ n(B, r′)} {X �→ n(A, r) ⊕ Z, Y �→ n(B, r′)⊕ Z}

However, there is only one most general unifier for the exclusive-or theory,
{X �→ n(A, r) ⊕ Y ⊕ n(B, r′)}.

The use of variant-based unification is motivated by two key features. First, it is
theory-generic and can be applied to many of the theories and combinations of
theories that arise in cryptographic protocol analysis. Second, it makes possible
many state space reduction techniques common in cryptographic protocol analy-
sis tools that require messages to be in irreducible form. This is the case, for ex-
ample, when states in which certain subterm patterns appear are discarded. For
example, Maude-NPA discards as unreachable any state in which the intruder
learns a term containing a nonce before that nonce is generated. Consider a case,
discussed in [7] in which the term learned is of the form n(A, r) ⊕X , where ⊕
satisfies the equational theory of exclusive-or and n(A, r) is a nonce. If X is
instantiated to n(A, r) later in the search, the term reduces to 0, but variable X
may appear in other positions so that the nonce could not have been generated,
making this instantiation impossible; this is represented in our approach as an
irreducibility constraint.

Such a strategy, although it has clear advantages, introduces performance
costs due to the fact that the attempt to unify each pair of generated irreducible
variants can lead to inefficiency, both because of the time it takes to generate all
irreducible variants of both terms and because the size of the most general set
of unifiers may be larger than optimal, as shown in Example 1. The latter also
causes the state space to be larger than expected, since each produced unifier
generally results in the creation of a new state. However, it may be possible to
relax the irreducibility conditions on messages. For example, Maude-NPA only
requires received messages to be in irreducible form. This led to the formula-
tion in [7] of the concept of contextual symbolic reachability analysis in which
irreducible variants, together with associated irreducibility constraints, are com-
puted on only some of the terms appearing in a state. In [7] this was proved sound
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and complete with respect to state reachability analysis achieved via equational
unification.

However, contextual symbolic reachability analysis opens up a new problem:
how best to unify two terms, one of which must satisfy an irreducibility con-
straint.3 Indeed, the only instance of an asymmetric unification algorithm we
could find was a modified variant-based unification, called asymmetric variant-
based unification, which is similar to variant-based unification described above
except that no variant is computed for the side with an irreducibility constraint.

Example 2. Following Example 1, for the asymmetric unification problem
Y ⊕ n(B, r′) = X ⊕ n(A, r) where X ⊕ n(A, r) is irreducible, the solutions com-
puted by asymmetric variant-based unification are:

{X �→ n(B, r′)⊕ Z, Y �→ n(A, r) ⊕ Z} {Y �→ n(B, r′)⊕X ⊕ n(A, r)}

However, there is only one most general asymmetric unifier for the exclusive-or
theory: {Y �→ n(B, r′)⊕X ⊕ n(A, r)}.

This problem, which we call asymmetric unification has, to the best of our knowl-
edge, not been investigated before. Thus we ask the question: Is it possible to find
asymmetric unification algorithms that can be used in cryptographic protocol
analysis and are more efficient than asymmetric variant-based unification?

With this question in mind, we study asymmetric unification as a problem
in its own right. After some preliminaries necessary to understanding the paper
in Section 2, Section 3 gives a formal definition of asymmetric unification and
shows its relation to variant-based unification. Section 4 outlines a general pro-
cedure for converting a symmetric algorithm to an asymmetric one, and applies
it to exclusive-or with uninterpreted function symbols. In Section 5 we study
the complexity and decidability of asymmetric unification, and show there are
theories for which symmetric unification is decidable and asymmetric unification
is undecidable. Section 6 gives some experimental results on an implementation
of this algorithm for asymmetric exclusive-or in Maude-NPA, comparing its per-
formance with the asymmetric variant-based unification, and provides evidence
that variant-based unification is far from optimally efficient but theory-generic.
Section 7 concludes the paper and discusses future work.

2 Preliminaries

We follow the classical notation and terminology from [19] for term rewriting,
and from [16] for rewriting logic and order-sorted notions. We assume an order-
sorted signature Σ = (S,≤, Σ) with poset of sorts (S,≤). We also assume an
S-sorted family X = {Xs}s∈S of disjoint variable sets with each Xs countably
infinite. TΣ(X )s is the set of terms of sort s, and TΣ,s is the set of ground
terms of sort s. We write TΣ(X ) and TΣ for the corresponding order-sorted

3 Note that an irreducibility constraint on a term s that that does appear in the
unification problem can be made part of the problem by adding the equation s = s.
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term algebras. For a term t, Var(t) denotes the set of variables in t. A substitu-
tion σ ∈ Subst(Σ,X ) is a sorted mapping from a finite subset of X to TΣ(X ).
Substitutions are written as σ = {X1 �→ t1, . . . , Xn �→ tn} where the domain
of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by terms
t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions are
homomorphically extended to TΣ(X ). The application of a substitution σ to
a term t is denoted by tσ. A Σ-equation is an unoriented pair t = t′, where
t, t′ ∈ TΣ(X )s for some sort s ∈ S. An equational theory (Σ,E) is a pair with
Σ an order-sorted signature and E a set of Σ-equations. The E-subsumption
preorder t 5E t′ (meaning that t is more general than t′ modulo E) holds be-
tween terms t, t′ ∈ TΣ(X ) iff there is a substitution σ such that tσ =E t′; such
a substitution σ is called an E-match from t′ to t. For substitutions σ, ρ and a
set of variables V we define σ =E ρ (over V ) if xσ =E xρ for all x ∈ V ; and
σ 5E ρ (over V ) if there is a substitution η such that (ση)|V =E ρ|V . We say σ
is equivalent to ρ if σ &E ρ and ρ &E σ. An E-unifier for a Σ-equation t = t′

is a substitution σ such that tσ =E t′σ. For Var(t) ∪Var(t′) ⊆W , a set of sub-
stitutions CSUW

E (t = t′) is said to be a complete set of unifiers for the equality
t = t′ modulo E away from W iff: (i) each σ ∈ CSUW

E (t = t′) is an E-unifier of
t = t′; (ii) for any E-unifier ρ of t = t′ there is a σ ∈ CSUW

E (t = t′) such that
σ|W 5E ρ|W (i.e., there is a substitution η such that (ση)|W =E ρ|W ); and (iii)
for all σ ∈ CSUW

E (t = t′), Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩W = ∅.
A rewrite rule is an oriented pair l → r, where l ∈ X and l, r ∈ TΣ(X )s

for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R
a set of rewrite rules. The rewriting relation on TΣ(X ), written t →R t′ or
t →p,R t′ holds between t and t′ iff there exist p ∈ PosΣ(t), l → r ∈ R and a
substitution σ, such that t|p = lσ, and t′ = t[rσ]p. The relation→R/E on TΣ(X )
is =E ;→R; =E . A relation →R,E on TΣ(X ) is defined as: t →p,R,E t′ (or just
t →R,E t′) iff there is a non-variable position p ∈ PosΣ(t), a rule l → r in R,
and a substitution σ such that t|p =E lσ and t′ = t[rσ]p. The transitive (resp.
transitive and reflexive) closure of→R,E is denoted →+

R,E (resp.→∗
R,E). A term

t is called →R,E-irreducible (or just R,E-irreducible) if there is no term t′ such
that t→R,E t′. For→R,E confluent and terminating, the irreducible version of a
term t is denoted by t↓R,E. In order to guarantee soundness and completeness of
→R/E-reducibility by→R,E-reducibility, we require R to be a set of rewrite rules
that are: (i) sort-decreasing, (ii) confluent, (iii) terminating, and (iv) coherent
modulo E (see [12,20,6]). We call (Σ,E,R) a decomposition of an order-sorted
equational theory (Σ,G) if G = R � E and R and E satisfy the four conditions
above. Given a decomposition (Σ,E,R) of an equational theory, (t′, θ) is an
R,E-variant [9] (or just a variant) of term t iff tθ↓R,E =E t′ and θ↓R,E =E θ. A
decomposition (Σ,E,R) has the finite variant property [9] (also called a finite
variant decomposition) iff for each Σ-term t, a complete set of its most general
variants is finite (see Example 1 for a complete set of variants for terms M ⊕M
and X ⊕ Y ).
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3 Asymmetric Unification

We give a formal definition of asymmetric unification.

Definition 1 (Asymmetric Unification). Given a decomposition (Σ,E,R)
of an equational theory (Σ,E ∪ R), a substitution σ is an asymmetric R,E-
unifier of a set P of asymmetric equations {t1 =↓ t′1, . . . , tn =↓ t′n} iff for each
asymmetric equation ti=↓ t′i in P , σ is an (E ∪R)-unifier of the equation ti = t′i
and (t′i↓R,E)σ is in R,E-normal form. A set of substitutions Ω is a complete set
of asymmetric R,E-unifiers of P iff: (i) every member of Ω is an asymmetric
R,E-unifier of P , and (ii) for every asymmetric R,E-unifier θ of P there exists
a σ ∈ Ω such that σ 5E θ (over V ar(P )).

In the following, we always assume that in every asymmetric equation t=↓ t′, t′

is in normal form; otherwise, we can always normalize t′.

Example 3. Consider the asymmetric unification problem Y ⊕ n(B, r′)=↓ X ⊕
n(A, r) arising in [7] for a simple protocol demonstrating the usefulness of the
contextual symbolic reachability analysis framework. Then, there is a most gen-
eral ⊕-unifier X �→ Y ⊕ n(B, r′) ⊕ n(A, r). However, this is not an asymmetric
unifier; but an equivalent ⊕-unifier is Y �→ X ⊕ n(B, r′)⊕ n(A, r), which is the
singleton most general asymmetric unifier.

For any (E ∪R)-unifier θ of P and substitution τ , θτ is also an (E ∪R)-unifier
of P . But this is not necessarily the case for asymmetric R,E-unifiers.

Example 4. Consider Example 3 and the most general exclusive-or asymmetric
unifier Y �→ X ⊕n(B, r′)⊕n(A, r). If we apply the substitution X �→ n(A, r) to
the above unifier, the resulting substitution is no longer an asymmetric unifier
of the original asymmetric unification problem.

The question now arises of how to produce such asymmetric algorithms that
improve upon the generic variant-based algorithm described above. We discuss
one such approach in the next section.

4 An Asymmetric Unification Algorithm for the Theory
of Exclusive OR with Uninterpreted Function Symbols

There are two metrics to be considered when optimizing asymmetric unification
algorithms for cryptographic protocol analysis. One of course is speed of execu-
tion. The other is the size of the most general set of unifiers. Each such unifier
results in the production of a new state, so minimizing the size of this set helps
to keep the size of the state space down.

One way of minimizing both execution time and mgu size is to convert a sym-
metric algorithm that has already been optimized for these features. In that case,
we need to keep unifiers produced by the original algorithm whenever possible.
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We outline a general approach and illustrate it for exclusive-or of Example 1
together with uninterpreted function symbols, chosen because it is the simplest
theory appearing in cryptographic protocol analysis that combines both cancel-
lation rules and a non-trivial theory E in the decomposition (Σ,E,R).

Given a decomposition (Σ,E,R) of (Σ,G), and an asymmetric unification
problem Γ = {t1 =↓ t′1, . . . , tn =↓ t′n}, the key steps of the approach are:

1. First compute a complete finite set S of G-unifiers using a finitary unification
algorithm for G. If S is empty, then there are no asymmetric unifiers.

2. For each such unifier σ from the previous step, check whether every t′iσ is in
R,E-normal form. All such unifiers are retained also as asymmetric unifiers.

3. For a unifier σ such that some t′iσ is not in R,E-normal form, compute an
equivalent asymmetric unifier if possible.

4. If both of the previous steps fail, this implies that σ or its equivalents cannot
be asymmetric unifiers in their full generality. However, there may be some
instances obtained by instantiating variables in them which are asymmetric
unifiers. A complete set of instances of a given unifier is generated by suitably
instantiating variables. This step may be expensive, so it is employed only
as a last resort (as demonstrated in Table 4 of Section 6 using unification
problems manually chosen to stress this point). For each such instance the
above steps are repeated.

We explain below how steps (1)–(4) yield an asymmetric unification algorithm
for exclusive or with uninterpreted symbols (XOR) from a symmetric one. Vari-
ables appearing in Γ are called original variables to distinguish them from new
variables, called support variables by the inference rules. For a unification prob-
lem Γ and an XOR unifier σ we say in the assignment x �→ t ⊕ T ∈ σ some
original variable x has a conflict at some simple term t if

– there exists u =↓ v[x ⊕ s] ∈ Γ and
– there exists T ′ such that sσ = t⊕ T ′

where s and t are simple terms (i.e., a term that does not have ⊕ as its outermost
symbol) and T ′ might be empty. The significance of conflicts is that a substitu-
tion of x cannot include t as a subterm, in order to ensure the irreducibility of
the right side of equations in Γ .

We present the algorithm as a collection of inference rules on a triple of sets:

σ‖Υ‖Δ
σ′‖Υ ′‖Δ′ ,

where σ is an XOR unifier of Γ , Υ is a set of constraint pairs in which each
member has the form (v, s) (to mean that a substitution of v cannot include s
as a subterm to ensure the irreducibility of the right side of equations in Γ ) ,
and Δ is a set of disequations of the form s ⊕ t =? 0, with s and t having the
same topmost uninterpreted function symbol.

A complete set of XOR-unifiers is first generated using an XOR-unification
algorithm. For each XOR unifier σ, the algorithm starts with a triple σ‖∅‖∅.
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The algorithm may generate numerous branches, some of which lead to a dead
end because either (i) no inference rule is applicable or (ii) the candidate for
an XOR unifier violates a constraint in the second component or a disequation
in the third component. Different branches can generate equivalent asymmetric
unifiers or asymmetric unifiers which are instances of other asymmetric unifiers.

We use the following notation. The result of applying a substitution θ to
Υ = {(v1, s1), · · · , (vn, sn)} is Υθ = {(vi, siθ ↓)|(vi, si) ∈ Υ}; we will rewrite
(vi, t1⊕ · · ·⊕ tn) to (vi, t1), · · · , (vi, tn). A substitution δ satisfies Υ iff δ satisfies
every constraint pair in Υ , i.e., given a pair (v, s) ∈ Υ , δ satisfies (v, s) iff δ(v)⊕
δ(s) is irreducible using R,E (in this case the rules are the theory of XOR from
Example 1). If δ does not satisfy Υ , then δ violates Υ . Similarly, δ satisfies Δ
iff δ satisfies every disequation s⊕ t = 0 ∈ Δ, in other words (sδ ⊕ tδ) does not
rewrite to 0.

The Inference System

All inference rules below are don’t care nondeterministic rules. They are grouped
as: Splitting,Branching and Instantiation. The algorithm runs in two phases.
In the first phase, the Splitting and Branching rules are applied, attempting
to generate an asymmetric XOR unifier equivalent to the original XOR unifier.
The Splitting rule is applied as much as possible to (i) move all toplevel origi-
nal variables out of the range of an XOR unifier, while (ii) eliminating conflicts
between original variables and subterms with which they appear in t′is in Γ .
Once it is no longer applicable, an XOR unifier equivalent to the original uni-
fier is constructed such that its range only includes new variables at top levels.
Then, branching rules are repeatedly applied attempting to eliminate conflicts
between support variables with other variables and nonvariable subterms The
Non-Variable Branching rule, which eliminates a conflict between a support
variable and a nonvariable subterm, is repeatedly applied first. This is followed
by (i) the Auxiliary Branching rule and (ii) the Variable Branching rule.
The last two rules may not eliminate any conflicts; however they are helpful
later during the second phase. In this first phase, if any of the branches yields
an asymmetric XOR unifier, the algorithm terminates; it is not necessary to
consider other branches as all asymmetric XOR unifiers from various branches
are equivalent.

If the first phase does not succeed in generating an equivalent asymmetric
XOR unifier, all branches generated from the first phase must be considered in
the second phase. Instantiation rules are now applied to generate instances of
equivalent XOR unifiers. The Decomposition Instantiation rule generates
instances of an XOR unifier so that the rules x⊕ x⊕ y �→ y and x⊕ x �→ 0 are
applicable, whereas the Elimination Instantiation rule generates instances by
setting support some variables to 0. It is possible that an XOR unifier generated
by the Elimination Instantiation rule is equivalent to the original XOR uni-
fier (since it may have been generated by instantiating a support variable to 0
implying that it was unnecessary to introduce that support variable).
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If along a branch, a result of Decomposition Instantiation is not an asym-
metric XOR unifier, the algorithm moves again to the first phase and applies
Splitting, since some of the original variables underneath interpreted function
symbols may get elevated to the top level in substitutions of original variables.
Elimination Instantiation is repeatedly applied only after Decomposition
cannot be applied any further. If the result is not an asymmetric XOR unifier,
then the Branching rules are applied by returning to the first phase (Splitting
is not applicable in this case).

The Splitting Rule

This rule transforms an XOR unifier σ into an equivalent XOR unifier σ′ such
that all the top variables in Range(σ′) are support variables.

[x �→ y ⊕ S ⊕ T ] ∪ σ‖Υ‖Δ
([x �→ y ⊕ S ⊕ T ] ∪ σ) ◦ θ‖Υθ‖Δθ

where θ = {y �→ v ⊕ S} and v is a fresh support variable. The rule is applied
only if (i) x, y ∈ V ars(Γ ) and (ii) y /∈ V ars(S).

Even though S and T can be chosen in any way, if x has a conflict at some
simple term s in S ⊕ T , then for efficiency in our implementation, we will put s
into S, unless y ∈ V ars(s). After Splitting there will be no top level original
variables in the range of σ. So from now on, we assume that all the top variables
which appear in the range of σ are support variables.

The Branching Rules

The main objective in applying the two branching rules is to try to transform
an XOR unifier into an equivalent one without conflicts.

Non-Variable Branching. This rule considers the case that some original
variable x has a conflict at some non-variable simple term s.

σ‖Υ‖Δ
σ ◦ θ‖(Υ [v′/v] ∪ (v′, s))θ‖Δθ

∨
σ‖Υ ∪ {(v, s)}‖Δθ

where there exists an assignment [x �→ v ⊕ s⊕ S] ∈ σ and θ = [v �→ v′ ⊕ s] with
v′ being a fresh support variable, under the conditions that x has a conflict at a
simple nonvariable terms s in Γ where (i) v /∈ V ars(s) and (ii) (v, s) /∈ Υ .

Above, Υ [v′/v] means: replace all occurrences of the variable v in the first
component of every pair in Υ by the variable v′. The first branch is used when
the conflict between x and s is successfully resolved using v by introducing a new
support variable v′; the second branch is used when that is not possible, thus
leading to an additional constraint (v, s) implying that v and s are in conflict.
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Auxiliary Branching. This rule is applied when an original variable conflict
with another original variable in Γ and their substitutions in an XOR unifier
share a common part.

σ‖Υ‖Δ
σ ◦ θ‖(Υ [v′/v] ∪ (v′, s))θ‖Δθ

∨
σ‖Υ ∪ {(v, s)}‖Δ

where θ = {v �→ v′ ⊕ s} with v′ being a fresh support variable, and there exist
two assignments [x �→ v ⊕ s ⊕ S, y �→ v ⊕ S′] in σ. This rule is applied only if
(i) x, y are in conflict in Γ , (ii) s is a simple non-variable term and v /∈ V ars(s)
and (iii) (v, s) /∈ Υ .

The additional simple nonvariable term s in the substitution for x in an XOR
unifier is used to possibly eliminate the conflict with a new variable v′, which
stands for the common shared part of x and y. The reader will notice that
unlike the Non-Variable Branching rule, both branches after this rule still
have conflicts in the substitutions of x and y which are in conflict in Γ . So this
rule does not solve the conflict directly; it is preparing for the instantiation part.

Variable Branching. This rule is similar to the Auxiliary Branching rule
and is applied when two original variables x and y have a conflict in Γ and
share a common support variable v1 in their substitutions in an XOR unifier.
The key difference from the Auxiliary Branching rule is that instead of the
substitution for x having a simple nonvariable term that is not in conflict with
v1, it has another support variable v2. The common support variable v1 is then
split into two parts: the common part of x and y, represented by v12, and the
remaining parts of x and y, represented by v′1 and v′2, respectively.

σ‖Υ‖Δ
σ ◦ θ‖Υ ′θ‖Δθ

∨
σ‖Υ ∪ {(v1, v2)}‖Δ

where σ includes [x �→ v1 ⊕ v2 ⊕ S, y �→ v1 ⊕ S′], θ = [v1 �→ v12 ⊕ v′1, v2 �→
v12⊕v′2], v12, v

′
1 and v′2 are fresh support variables, and Υ ′ = (Υ [v12/v1)[v12/v2]∪

Υ [v′1/v1]∪Υ [v′2/v2]∪{(v12, v′1), (v12, v′2), (v′1, v′2), (v′1, v12), (v′2, v12), (v′2, v′1)}. This
rule is applied only if (i) x and y have a conflict in Γ and (ii) (v1, v2) /∈ Υ .

The first branch is the case when v1 and v2 have a common part, whereas the
second branch is the case when v1 and v2 have nothing in common.

Instantiation Rules

The following instantiation rules are used for solving conflicts by instantiating
support variables based on the equations x+ x→ 0 and x+ 0→ x

Decomposition Instantiation. This rule is used to solve the case that some
original variable x has a conflict with a simple nonvariable term t.

σ‖Υ‖Δ
σ ◦ θ1‖Υθ1‖Δθ1

∨
· · ·
∨

‖σ ◦ θn‖Υθn‖Δθn
∨

σ‖Υ‖Δ′′
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where there exists an assignment [x �→ s⊕t⊕S] in σ, x has a conflict with a simple
nonvariable subterm s in Γ and s and t have the same topmost uninterpreted

symbol; {θ1, · · · , θn} is a complete set of XOR unifiers of s
?
= t and Δ′′ =

Δ ∪ {s⊕ t =? 0}.

Elimination Instantiation. This rule is used to solve the case that some
original variable x has a conflict at some support variable v.

[x �→ v ⊕ S] ∪ σ‖Υ‖Δ
([x �→ S] ∪ σ) ◦ θ‖Υθ‖Δθ

where θ = {v �→ 0}, x and y are in conflict in Γ for some y. The rule is applied
only if yσ = v ⊕ S′ with S′ having at least one subterm.

Because v maps to 0, all pairs (v, s) in Υ will be removed from Υ .

Theorem 1. The asymmetric unification algorithm described above is sound,
terminating, and complete.

Proof. Soundness easy to establish since we need to show that if an inference rule
generates an asymmetric XOR unifier, then that unifier is either equivalent to
an XOR unifier or an instance of an XOR unifier. Termination and completeness
are nontrivial. We sketch the proofs below; detailed proofs are given in [14].

For termination, we must prove that the algorithm does not go into cycles
or keep on introducing new variables in the first phase; the termination of the
second phase is easy to establish. The intertwining of two phases also terminates
if it can be proved that throughout the algorithm, only a bounded number of
new variables are introduced by various rules. Only the Splitting and Branching
rules introduce new variables. We thus first prove that they are applied only
finitely often. We then complete the proof of the absence of cycles by proving
that the Instantiation rules are applied only finitely often.

Intuitively, the number of new variables generated is bounded by (i) the num-
ber of all possible subsets of nonvariable subterms in the original problem and (ii)
an original variable sharing exclusively with another original variable, two origi-
nal variables, and so on. The substitution for any original variable x is an XOR
of (i) a subset of nonvariable subterms appearing in the original problem and
their instances due to the Decomposition Instantiation Rule, (ii) original vari-
ables with which x has no conflict and (ii) new variables standing for disjoint
subsets of original subterms in the substitution of x different from substitutions
of variables in conflict with x (much like v12, the common part of x and y, and
v′1 and v′2, the parts of x and y that are disjoint from each other in the Variable
Branching rule). New variables also serve as placeholders to allow for genera-
tion of conflict-free instances of an XOR unifier in case that it does not have an
equivalent asymmetric XOR unifier.

Once it is proved that the algorithm only introduces finitely many new vari-
ables (thus implying that the Splitting rule and the three Branching rules are
only applied finitely many times), the proof of termination becomes easier since
it only needs to be made sure that the two instantiation rules cannot be applied
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infinitely often. The Elimination Instantiation rule reduces the size of the triple
since variables get instantiated to 0 and then simplified.

The Decomposition Instantiation rule reduces the number of simple terms in
the substitutions for the original variables along the branch due to the unification
of s, t in x �→ s⊕ t⊕S thus replacing s⊕ t⊕S by θi(S). For the branch in which
the disequation s ⊕ t =? 0 is added, the set of instances of the original XOR
unifier being investigated get reduced4.

To prove completeness we must show that every inference rule only prunes
those non-asymmetric instances of an XOR unifier. Discarding of instances of an
XOR unifier can take place only with the instantiation rules. The Decomposition
Instantiation rule does not discard any instances of an XOR unifier since the
branching is done based on whether two nonvariable subterms s and t are XOR
unifiable or not. The Elimination Instantiation rule discards instances of an XOR
unifier by considering only the case when a new variable is made equal to 0, while
not considering the case when that new variable is not equal to 0, but this is
done only if no other way is possible. ��

5 Decidability of Asymmetric Unification

It is easy to see that asymmetric R,E-unification is at least as hard as E ∪ R-
unification, since every asymmetric R,E-unifier is also an E∪R-unifier.However,
nothing can be said about its asymmetric unifiers of a problem from its set of
unifiers. The unification problem could have a nonempty set of unifiers, whereas
the asymmetric unification problem need not have any asymmetric unifier. Or,
the unification problem could have a single most general unifier, whereas the
asymmetric unification problem has exponentially many solutions, as illustrated
using the following asymmetric unification problem:

x1 ⊕ . . .⊕ xn =↓ a1 ⊕ . . . an, x1 ⊕ . . .⊕ xn =↓ x1 ⊕ . . .⊕ xn

which has a single unifier x1 �→ x2 ⊕ ...⊕ xn ⊕ a1 ⊕ ...⊕ an, and n! asymmetric
unifiers.

We show that there exist theories for which unification is decidable and
asymmetric unification is undecidable. These results are obtained by using a
restricted version of the Modified Post Correspondence Problem (MPCP) [11,
Section 9.4.2]. First, we define the theory (Σ,Rμ) based on the MPCP version
here and prove that unification modulo Rμ (and hence asymmetric unification
modulo Rμ) is undecidable by a reduction from MPCP. Moreover, matching
modulo Rμ is shown to be decidable and finitary. We use these facts to extend
(Σ,Rμ) to a theory for which unification is decidable but asymmetric unification
is not.

4 The set of all possible instances of an XOR unifiers which must considered for in-
vestigating equivalent asymmetric XOR unifiers is finite since original variables only
need to be instantiated by an XOR of a subset of finitely many nonvariable subterms,
variable subterms and new variables.
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Let Ω = {a, b}, and let P = {(αi, βi) | i = 1, . . . , n} ⊆ Ω+ × Ω+ be a
finite set of pairs of non-empty strings over Σ. Then consider the following
restricted version of the Modified Post Correspondence Problem (MPCP) which
is undecidable [10, Theorem 4.4]:

Instance: A non-empty string α ∈ Ω+.
Question: Does there exist a sequence of indices i1, . . . , ik ∈ {1, . . . , n} such
that αi1αi2 . . . αikα = βi1βi2 . . . βik?

We constructRμ from this problem as follows. We start by defining the signature
of Rμ as Ω′ = Ω′

1 ∪ Ω′
3 where Ω′

1 = {a, b, 1, . . . , n} and Ω′
3 = {f}. Thus Ω′ has

n+2 unary function symbols and one ternary function symbol. Additionally, we
convert strings in the MPCP instance to terms as usual. For any string w ∈ Ω∗,
let w̃(x) denote the term formed by treating a and b as unary function symbols
and the concatenation operator as function composition; in other words,

λ̃(x) = x, ãu(x) = a(ũ(x)), b̃u(x) = b(ũ(x)).

For each pair (αi, βi) of the MPCP we create a rule

f(x, i(y), z)→ f(α̃i(x), y, β̃i(z))

Let Rμ be the set of all such rules, and let Σ be the set of symbols involved in
creating them. This system is confluent and terminating: we observe that Rμ

is left-linear and has no critical pairs, hence is orthogonal. Thus the confluence
of the system follows. In addition it is easy to show that Rμ is terminating,
since each application of rules of Rμ decreases the number of occurrences of a
symbol j ∈ {1, . . . , n} in a term. Finally, (Σ, ∅,Rμ) is trivially sort-decreasing
and coherent, since all symbols have the same sort, and E is empty. In particular,
by the following lemma, every congruence class modulo R is finite.

Lemma 2. Let R be a convergent term rewriting system. If R−1 is terminating
then every congruence class modulo R is finite.

Lemma 3. Matching modulo Rμ is decidable and finitary.

Proof. Note that R−1
μ is terminating; hence by Lemma 2 for each term s, the

congruence class [s]Rμ is finite. It was shown by Bürkert, Herold and Schmidt-
Schauß [4] that if R is a theory where every congruence class is finite then the
matching problem modulo R is decidable and is of matching type finitary. ��

Lemma 4. Let c be an arbitrary constant. The following unification problem
has a solution if and only if the instance of the MPCP problem has a solution.

f(α(c), V, c) =?
Rμ

f(X, c, X)

Proof. The “if” part is straightforward: assume that αi1αi2 . . . αikα =
βi1βi2 . . . βik for some indices i1, . . . , ik ∈ {1, . . . , n}. Then

τ = {X �→ βi1βi2 . . . βik(c), V �→ ikik−1 . . . i1(c)}
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is a unifier for the unification problem. Note that we have

αi1αi2 . . . αikα(c) = βi1βi2 . . . βik(c) and thus

f(α(c), τ(V ), c) −→∗
Rμ

f(αi1αi2 . . . αikα(c), c, βi1βi2 . . . βik(c))

≡ f(α(τ(X)), c, τ(X))

Conversely, suppose θ is a solution for the above equation. Then the following
necessarily holds: θ(f(α(c), V, c)) = f(α(c), θ(V ), c) −→!

Rμ
f(θ(X), c, θ(X)).

Now a solution for the MPCP instance can be obtained from θ(V ) as follows.
Each rewrite step reveals an ij ∈ {1, . . . , n} by deleting the top symbol from
θ(V ). Otherwise Rμ does not apply to f(α(c), θ(V ), c) and hence we conclude
that there exists no sequence of i1, . . . , ik ∈ {1, . . . , n}. Thus by using ij’s we
form a solution to the MPCP problem. ��

We now extend Rμ by adding a special constant ⊥ (annihilator) such that, if it
occurs in a term t, then t reduces to ⊥. That is, we add the rules

a(⊥)→ ⊥, b(⊥)→ ⊥, f(x, y, ⊥)→ ⊥, f(x, ⊥, y)→ ⊥,

f(⊥, x, y)→ ⊥, and i(⊥) → ⊥, i ∈ {1, . . . , n}

Let R⊥ be the set of those new rules. Then we denote R = Rμ ∪R⊥ the system
extended by annihilator rules. Note that R is convergent as well.

Since equations where both sides contain variables can be trivially solved by
setting the variables to ⊥, we can show that

Theorem 5. Unification modulo R is decidable.

Proof. Without loss of generality, we may consider a problem consisting of one
equation s =?

R t. In the case that s or t are ground, the problem reduces to one
of matching modulo Rμ, which is decidable by Lemma 3. In the case that both
s and t contain variables, the problem becomes ⊥ =?

R ⊥ after substituting ⊥ to
the variables on both sides and reducing. Thus it has a trivial solution. ��

Theorem 6. Asymmetric unification modulo R is undecidable.

Proof. Consider the problem f(α(c), V, c) =↓?R f(X, c, X). A unifier obtained
by substituting ⊥ to the variables on both sides would violate asymmetry. More-
over, it is impossible to obtain a unifier by subsituting ⊥ to the variables in the
left side alone. Thus the problem has an asymmetric unifier modulo R if and
only if it has an asymmetric unifier modulo Rμ. Since f(X, c, X) is irreducible
modulo Rμ no matter what substitution is made to X , the problem has an asym-
metric unifier modulo Rμ if and only if it has a symmetric unifier. The result
follows from Lemma 4 and the undecidability of MPCP. ��
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Table 1. Unification Problems in ESORICS12 protocol

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
NS1 ⊕ NS2 =↓ NS3 ⊕ NA 153 12 153 1 0 91
NS1 ⊕ NA =↓ NS2 ⊕ NS3 137 5 121 1 11 80

NS1 ⊕ NS2 =↓ NS3 ⊕ NS4 ⊕ NS5 286 54 116 1 59 98
NS1 ⊕ NS2 =↓ NS3 ⊕ NS4 ⊕ NA 159 36 115 1 27 97

NS1 ⊕ NS2 =↓ NA 127 4 114 1 10 75
NS1 ⊕ NS2 =↓ null 128 1 105 1 17 0

NS1 ⊕ NS2 =↓ null ⊕ NS3 130 7 105 1 20 85

Table 2. Unification Problems in WEPP protocol

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
M1 ⊕ M2 =↓ M3 ⊕ pair(V1,M4) 51 12 44 1 13 91

pair(V, rc4(V1, kAB) ⊕ ([NA, c(NA)]))
=↓ pair(V1,M1) 30 1 29 1 3 0

M1 ⊕ M2 =↓ M3 ⊕ V1 33 12 32 1 3 91
M1 ⊕ M2 =↓ M3 ⊕ ([N1, c(N2)]) 34 12 30 1 11 91

M1 ⊕ M2 =↓ M3 ⊕ pair(V1, pair(V2,M4)) 36 12 30 1 16 91

6 Experiments with Unification Problems Arising in
Protocol Analysis

We implemented a variant-based algorithm for XOR and an algorithm produced
by applying the procedure outlined in Section 4 to the special-purpose XOR al-
gorithm of [13] in Maude-NPA and experimentally compared their performance.
We have run the experiments presented in this Section in an Intel Xeon machine
with 4 cores and 24GB of memory, using Maude 2.7, which includes a built-in
implementation of the variant generation.

Tables 1, 2 and 3 gather the results of unification problems from the follow-
ing protocols: (i) the running protocol example of [7], referred as ESORICS12,
(ii) the Wired Equivalent Privacy Protocol (WEPP) of [1], and (iii) the TMN
protocol of [18,15], respectively. Table 4 gathers the results of some more com-
plex problems manually defined by the authors to stress the algorithms. Here
each unification problem combines several subproblems, shown below the table.
The ESORICS12, WEPP and TMN protocols were used in the experiments per-
formed in [7], in order to compare the contextual symbolic reachability approach
presented in that paper with other approaches. However, the experiments pre-
sented in this Section are more focused on concrete unification problems that

Table 3. Unification Problems in TMN protocol

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
M1 ⊕ M2 =↓ M3 ⊕ M4 115 18 105 1 8 94

M1 ⊕ M2 =↓ M3 ⊕ M4 ⊕ M5 5749 1 74 1 98 0
M1 ⊕ M2 =↓ M3 ⊕ pair(M4,M5) 71 12 71 1 0 91
pair(M1,M2)=↓ pair(M3,M4) 65 1 70 1 -1 0

M1 ⊕ M2 =↓ pair(M3,M4) 67 4 71 1 0 91
M1 ⊕ M2 =↓ null ⊕ M3 66 7 70 1 -6 85
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Table 4. Other Unification Problems

Unif. Problem T. A-V # A-V T. D-A # D-A % T. % #
SP4 ∧ SP1 ∧ SP2 422 4 68 3 83 25
SP5 ∧ SP1 ∧ SP2 408 24 131 7 67 70
SP6 ∧ SP1 ∧ SP2 416 100 491 15 -18 85
SP7 ∧ SP1 ∧ SP2 454 360 3732 31 -722 91

SP8 ∧ SP1 ∧ SP2 ∧ SP3 151387 3 47 1 99 66
SP9 ∧ SP1 ∧ SP2 ∧ SP3 153913 33 80 3 99 66

SP10 ∧ SP1 ∧ SP2 ∧ SP3 154137 201 157 7 99 96
SP11 ∧ SP1 ∧ SP2 ∧ SP3 154534 1053 349 15 99 98
SP12 ∧ SP1 ∧ SP2 ∧ SP3 160114 5073 829 31 99 99

SP1 = M1 ⊕ M2 =↓ M1 ⊕ M2

SP2 = M1 ⊕ M3 =↓ M1 ⊕ M3

SP3 = M1 ⊕ M4 =↓ M1 ⊕ M4

SP4 = M1 ⊕ M2 ⊕ M3 =↓ a ⊕ b
SP5 = M1 ⊕ M2 ⊕ M3 =↓ a ⊕ b ⊕ c
SP6 = M1 ⊕ M2 ⊕ M3 =↓ a ⊕ b ⊕ c ⊕ d

SP7 = M1 ⊕ M2 ⊕ M3 =↓ a ⊕ b ⊕ c ⊕ d⊕ e
SP8 = M1 ⊕ M2 ⊕ M3 ⊕ M4 =↓ a
SP9 = M1 ⊕ M2 ⊕ M3 ⊕ M4 =↓ a ⊕ b
SP10 = M1 ⊕ M2 ⊕ M3 ⊕ M4 =↓ a ⊕ b ⊕ c
SP11 = M1 ⊕ M2 ⊕ M3 ⊕ M4 =↓ a ⊕ b ⊕ c ⊕ d
SP12 = M1 ⊕M2 ⊕M3 ⊕M4 =↓ a⊕ b⊕ c⊕d⊕ e

occur during the analysis of these protocols and the efficiency of asymmetric
unification algorithms when solving them in terms of number of unifiers and
execution time.

In each table the first and second columns show, respectively, the execution
time (in milliseconds) and the number of unifiers obtained using the asymmetric
variant-based unification algorithm. The third and fourth columns show, respec-
tively, the execution time (in milliseconds) and the number of unifiers obtained
using the special-purpose asymmetric unification algorithm for exclusive-or. Fi-
nally, the two last columns present a percentage that reflects the performance
improvement of the special-purpose asymmetric unification algorithm with re-
spect to the asymmetric variant-based algorithm in terms of execution time and
number of unifiers obtained, respectively.

On the average the special-purpose asymmetric unification algorithm is about
8% faster than the variant-based one, and generates about 71% fewer unifiers.
Note, however, that in many cases the reduction in the number of unifiers is more
than 90%. Moreover the asymmetric variant-based unification algorithm does not
provide a minimal set of unifiers, whereas the special-purpose asymmetric algo-
rithm does in all our examples. Indeed, all the asymmetric unification problems
extracted from protocols have a singleton most general asymmetric unifier, as
shown in Tables 1, 2, and 3. However, as shown in Table 4, the special-purpose
algorithm can sometimes be slower than the variant-based one, even when it gen-
erates a smaller most general set of asymmetric unifiers. The reason is that the
post-processing step of the algorithm explained in Section 4 in which appropri-
ate asymmetric unifiers are only instances of the computed unifiers is sometimes
very expensive.

7 Conclusions and Future Work

We have shown how asymmetric unification arises in a natural way when analyz-
ing cryptographic protocols. We have investigated the complexity and decidabil-
ity of the problem and shown that variant-based unification can be adapted to



Asymmetric Unification 247

obtain a theory-generic asymmetric unification algorithm. We have also outlined
an approach for converting symmetric algorithms to asymmetric ones and ap-
plied it to an exclusive-or algorithm. Our experimental results are encouraging,
not only for increasing speed but for reducing the number of unifiers.

We plan to refine our procedures for converting algorithms by applying them
to other theories of interest to cryptographic protocol analysis. We conjecture
that our method for converting symmetric algorithms to asymmetric ones can
be developed into an algorithm for certain classes of unification algorithms and
will investigate this further. We will also investigate combining asymmetric al-
gorithms, since combined theories are a common occurrence in cryptographic
protocols. Variant-based narrowing lends itself relatively easily to such combi-
nation. Special-purpose asymmetric unification algorithms will not be as easy to
combine, but we have been investigating combination techniques that take ad-
vantage of special properties of the theories of interest to cryptographic protocol
analysis and plan to apply them in the asymmetric setting.
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Abstract. A novel approach is described for the combination of uni-
fication algorithms for two equational theories E1 and E2 which share
function symbols. We are able to identify a set of restrictions and a com-
bination method such that if the restrictions are satisfied the method
produces a unification algorithm for the union of non-disjoint equational
theories. Furthermore, we identify a class of theories satisfying the re-
strictions. The critical characteristics of the class is the hierarchical orga-
nization and the shared symbols being restricted to “inner constructors”.

1 Introduction

Unification (or equation solving) is a fundamental problem in science and has
been studied in different forms for thousands of years. In computer science, the
concept of unification was popularized by Robinson with his resolution rule of
inference for proving valid formulas in first-order predicate calculus. Since then,
unification has been studied very extensively in theoretical computer science
and artificial intelligence. Unification is extensively used in automated reasoning
systems and other tools, such as cryptographic protocol analysis tools.

Even though the unification problem over a general first-order theory is un-
decidable, the problem is decidable for many first-order theories and numer-
ous algorithms have been proposed. A critical question in the search for such
methods is how to obtain a unification algorithm for the combination of non-
disjoint equational theories when there exists unification algorithms for the con-
stituent theories. The problem is known to be difficult and can easily be seen
to be undecidable in the general case. Therefore, previous work has focused on
identifying specific conditions and methods in which the problem is decidable.
We continue the investigation in this paper, building on previous combination
results, [5, 11, 18] and [13]. We are able to develop a novel approach to the
non-disjoint combination problem. The approach is based on a new set of re-
strictions and combination method such that if the restrictions are satisfied the
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method produces an algorithm for the unification problem in the union of non-
disjoint equational theories. Furthermore, we identify a set of properties on the
constituent theories, E1 and E2, such that theories characterized by these prop-
erties satisfy the restrictions and thus the combination algorithm is valid for
these theories. The main properties of this class are: a hierarchical organization
of E1 and E2, R1 is a left-linear, convergent rewrite system corresponding to E1,
and the shared symbols are “inner constructors” of R1 which are not equated
in E2.

Due to space constraints we do not attempt to give a complete review of
the related work in this active research field but rather point the reader to
a non-exhaustive list of related and important works. Combination methods
for theories with disjoint signatures have been investigated in [22, 21], solved
in general in [19] and extended in [5, 9]. Combination methods for theories
with non-disjoint signatures is an active area. Some excellent work in this area
includes [11, 18, 8, 7, 3].

2 Preliminaries

We use the standard notation of equational unification [6] and term rewriting
systems [4]. The set of Σ-terms, denoted by T (Σ,X ), is built over the signature
Σ and the (countably infinite) set of variables X . The terms t|p and t[u]p denote
respectively the subterm of t at the position p, and the term t having u as
subterm at position p. The symbol of t occurring at the position p (resp. the top
symbol of t) is written t(p) (resp. t(ε)). A Σ-rooted term is a term whose top
symbol is in Σ. The set of variables of a term t is denoted by V ar(t). A term is
ground if it contains no variables. A term t is linear if each variable of t occurs
only once in t. A Σ-substitution σ is an endomorphism of T (Σ,X ) denoted by
{x1 �→ t1, . . . , xn �→ tn} if there are only finitely many variables x1, . . . , xn not
mapped to themselves. We call domain of σ the set of variables {x1, . . . , xn} and
range of σ the set of terms {t1, . . . , tn}. Application of a substitution σ to a term
t (resp. a substitution φ) may be written tσ (resp. φσ).

An alien subterm of a Σ1 � Σ(1,2)-rooted term t (resp. Σ2-rooted term) is
a Σ2-rooted subterm (resp. Σ1 � Σ(1,2)-rooted subterm) of t such that all its
superterms are Σ1 �Σ(1,2)-rooted (resp. Σ2-rooted).

Given a first-order signature Σ, and a set E of Σ-axioms (i.e., pairs of Σ-
terms, denoted by l = r), the equational theory =E is the congruence closure
of E under the law of substitutivity. By a slight abuse of terminology, E will
be often called an equational theory. An axiom l = r is variable-preserving if
V ar(l) = V ar(r). An axiom l = r is linear (resp. collapse-free) if l and r are lin-
ear (resp. non-variable terms). An equational theory is variable-preserving (resp.
linear/collapse-free) if all its axioms are variable-preserving (resp. linear/collapse-
free). An equational theory E is finite if for each term t, there are finitely many
terms s such that t =E s.

A Σ-equation is a pair of Σ-terms denoted by s =? t. An E-unification prob-
lem is a set of Σ-equations, S = {s1 =? t1, . . . , sm =? tm}. The set of variables
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of S is denoted by V ar(S). Given a signature Σ′ ⊆ Σ, S|Σ′ denotes the set of
Σ′-equations occurring in S.

A solution to S, called an E-unifier , is a substitution σ such that siσ =E tiσ
for all 1 ≤ i ≤ m. A substitution σ is more general modulo E than θ on a set of
variables V , denoted as σ ≤V

E θ, if there is a substitution τ such that xστ =E xθ
for all x ∈ V . Two substitutions θ1 and θ2 are equivalent modulo E on a set of
variables V , denoted as θ1 ≡V

E θ2, if and only if xθ1 =E xθ2 for all x ∈ V . A
Complete Set of E-Unifiers of S is a set of substitutions denoted by CSUE(S)
such that each σ ∈ CSUE(S) is an E-unifier of S, and for each E-unifier θ of S,
there exists σ ∈ CSUE(S) such that σ ≤V ar(S)

E θ.
A set of equations S is said to be in standard form over a signature Σ if and

only if every equation in S is of the form x =? t, where x is a variable and t is
one of the following: (a) a variable different from x, (b) a constant, or (c) a term
of depth 1 that contains no constants. It is not generally difficult to decompose
equations of a given problem into simpler standard forms.

Definition 1. A set of equations is said to be in dag-solved form (or d-solved
form) if and only if they can be arranged as a list x1 =? t1, . . . , xn =? tn where
(a) each left-hand side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n: xi does
not occur in tj ([16]). Each xi in this case is called a solved variable. A set of
equations S are said to be in Σ-solved form if and only if it is in standard form
and S|Σ is in dag-solved form.

Definition 2. A theory E is subterm collapse-free if and only if for all terms t
it is not the case that t =E u where u is a strict subterm of t.

Definition 3. We say there exists a cycle in a unification problem if it contains
a set of equations

⋃n−1
i=1 {xi =

? ti[xi+1]} ∪ {xn =? tn[x1]} where t1, . . . , tn are
non-variable terms and x1, . . . , xn are distinct variables.

The following is a well know property of subterm collapse-free theories (see [10]).

Proposition 1. If E is subterm collapse-free, then any E-unification problem
containing a cycle has no solution.

Definition 4. For a convergent rewrite system R we define a constructor of R
to be a function symbol f which does not appear at the root on the left-hand side
of any rewrite rule of R. We define an inner constructor to be a constructor f
the satisfies the following additional restrictions:

(i) f does not appear on the left-hand side on any rule in R.
(ii) f does not appear as the root symbol on the right-hand side of any rule

in R.
(iii) there are no function symbols below f on the right-hand side of any rule

in R.

We consider two equational theories E1 and E2 built over the signatures Σ1 and
Σ2. Let Σ(1,2) = Σ1 ∩Σ2. Here we will use some notations and methods already
developed in the combination literature (See [5]).
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The elements of Σi are called i-symbols. A term t is called an i-term if its
root symbol is an i-symbol or t is a variable. Notice, that the shared symbols
are both 1 and 2 symbols. We say that a Σi-term and a Σi-equation are i-pure.

We also use the notion of an alien subterm. An alien subterm of a 1-term (2-
term), t, is a non-variable subterm s that is a 2-term (1-term). A decomposition
algorithm can be defined that uses variable abstraction ([5]) to replace any alien
subterm u in a term t by a fresh variable x and adds the equation x =? u. By
first converting a unification problem into standard form we have also applied
variable abstraction on the entire unification problem. Decomposition problems
usually employ a splitting procedure to split non-pure equations, s =? t into
two pure equations x =? t and x =? s where x is a new variable. An equation
between two variables is always 1 and 2-pure.

We call a term (e.g., a variable) fresh if it is created by applying an inference
rule (or a unification algorithm) and did not previously exist.

3 Combination Procedure

We want to investigate conditions to build an E1 ∪ E2-unification algorithm by
using two algorithms A1 and A2 solving two different kinds of E1∪E2-unification
problems. Consider an E1 ∪ E2-unification problem P in standard form. The
approach taken is as follows:

1. Run A1 on the Σ1 � Σ(1,2)-equations of P . Let P ′ denote the resulting set
of equations.

2. Run A2 on the Σ2-equations of P ′.
3. Collect the resulting problems that are in dag-solved forms.

As in disjoint combination [5], we perform a variable identification step before
applying A1 and A2 in order to guess a priori all possible identifications of
variables occurring in P . Hence, we apply A1 and A2 not only on P but on
all possible unification problems obtained from P by identifying some variables.
In Section 3.2, we show why the classical variable identification introduced for
disjoint combination is sufficient in our non-disjoint setting.

For this approach to work we need to place some restrictions on the theo-
ries and algorithms. These restrictions are introduced next, in Section 3.1. The
combination algorithm, denoted by C, is formally presented in Figure 2. The
correctness of C is proved in Section 3.3. After introducing the combination al-
gorithm and proving its correctness based on the following restrictions we show,
in Section 4, how these restrictions can be satisfied by a class of equational
theories.

3.1 Restrictions

We present a set of “restrictions” or assumptions on the theories and correspond-
ing algorithms. Let Σ1 and Σ2 be finite signatures and let X be a countably
infinite set of variables. Consider two subterm collapse-free equational theories
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E1 over the set of terms T (Σ1,X ) and likewise E2 over T (Σ2,X ) such that
Σ1 ∩Σ2 = Σ(1,2) = ∅.

Restriction 1. (Algorithm A1) Let P be a set of Σ1 � Σ(1,2)-equations. Algo-
rithm A1 computes a set of problems {Qk}k∈K such that⋃

k∈K CSUE1∪E2 (Qk) is a CSUE1∪E2(P) and for each k ∈ K:

(i) Qk consists of (Σ1 �Σ(1,2))-equations and Σ(1,2)-equations.
(ii) Qk is in standard form and (Σ1 �Σ(1,2))-solved form.
(iii) No fresh variable occurring in a nonvariable Σ(1,2)-term in Qk can appear

as solved in Qk.

Note that A1 is a special type of algorithm that returns a “partial” solution
to an E1 ∪ E2-unification problem. A1 is needed to solve some portion of the
problem, namely the Σ1 �Σ(1,2)-pure, but a standard E1-unification algorithm
is not sufficient, even for Σ1 � Σ(1,2)-pure E1 ∪ E2 problems. A standard E1-
unification algorithm may return an error even though a solution exists.

Example 1. Let E1 := {h(a, x, y) = g(x ∗ y), h(b, x, y) = g(y ∗ x)} and let E2 be
the commutative theory for ∗. Then, h(a, a, z) =? h(b, a, b) is not solvable in E1

but is in E1 ∪ E2.

Restriction 1 ensures that completeness is not lost by ensuring that a CSU for
all the partial solutions is a CSU for the original problem. To explain Restriction
1(iii), let us note that A1 may generate fresh Σ(1,2)-equations, e.g. z =? f(x, y)

where f ∈ Σ(1,2), together with some Σ1 � Σ(1,2)-equations, e.g. x =? s, y =? t.

If A2 later generates x =? y, then this may lead to the reapplication of A1, to
solve x =? s, x =? t. If x and y are from the initial set of variables, this problem
can be discarded without loss of generality, since the variable identification per-
formed initially generates another unification problem where x and y are already
identified. The problem remains if x or y are fresh variables. In order to avoid
it, we introduce Restriction 1(iii), where only the occurrences of fresh variables
are restricted (see also Example 4).

Restriction 2. (Algorithm A2)
Algorithm A2 computes a finite complete set of 2-pure unifiers of 2-pure E1∪E2-
unification problems.

Example 2. Consider E1 = {r(f(x)) = r(g(x))} and E2 = {r(g(x)) = r(h(x))}
and the unification problem r(f(x)) =? r(h(x)). The problem in standard form
consists of the equations {x1 =? r(x2), x1 =? r(x3), x2 =? f(x), x3 =? h(x)},
which is already in Σ1 � Σ(1,2)-solved form. Thus the problem to be solved by

A2 is the 2-pure problem {x1 =? r(x2), x1 =? r(x3), x3 =? h(x)}, which ad-
mits the E1 ∪ E2-unifiers σ1 = {x1 �→ r(f(x)), x2 �→ f(x), x3 �→ h(x)} and
σ2 = {x1 �→ r(h(x)), x2 �→ h(x), x3 �→ h(x)}. Notice that the solution σ1 fails
Restriction 2 because it is not 2-pure. Since we require that A2 be able to solve
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2-pure E1 ∪ E2-unification problems with only 2-pure solutions, this theory is
beyond the scope of our algorithm C. In Section 4 we give a family of theories
that satisfy this restriction.

We restrict A2 to compute only 2-pure substitutions. This is used to avoid pos-
sible reapplications of A1 after A2.

Restriction 3. (Errors)

(i) A Σ1 �Σ(1,2)-rooted term cannot be E1 ∪ E2-equal to a Σ2-rooted term.
(ii) E1∪E2 is subterm collapse-free. Therefore, an E1∪E2-unification problem

including a cycle has no solution.

Example 3. Consider E1 = {f(x) = 0} and E2 = {g(x) = 0}. Restriction 3 is not
satisfied since f(x) =E1∪E2 0 where f ∈ Σ1�Σ(1,2) and 0 ∈ Σ2. Hence, checking

the unifiability of f(x) =?
E1∪E2

g(x) is beyond the scope of our combination
algorithm C.

The failure rules associated with Restriction 3 are given in Figure 1.

An Example Theory. We present a theory, called EAC , for which we applied
our approach [13] and show that EAC satisfies the restrictions 1, 2 and 3. The
axioms of EAC are as follows:

exp(exp(x, y), z) = exp(x, y � z) (1) (x � y)� z = x� (y � z) (3)

exp(x ∗ y, z) = exp(x, z) ∗ exp(y, z) (2) x� y = y � x (4)

Here, EAC = E1 ∪ E2 where E1 consists of axioms (1) and (2) and E2 axioms
(3) and (4). Also, Σ1 = {exp, ∗,�}. Σ2 = {�}. In other words, E1 ∪ E2 involves
AC operator �. The theory EAC has the following AC-convergent system [13]:

exp(exp(x, y), z)→ exp(x, y � z)
exp(x ∗ y, z)→ exp(x, z) ∗ exp(y, z)

Note that Σ1 �Σ(1,2) = {exp, ∗}. In [13], we develop a procedure A1 (called R1

in [13]) that returns a {exp, ∗}-solved form. Furthermore, it is shown in [13] that
A1 terminates and that it is sound and complete. This implies that A1 satisfies
Restriction 1(i). The second part of the restriction, is satisfied by the checking of
A1 which does not have any rule as defined. EAC satisfies also Restriction 2 and
3, where A2 is the standard AC-unification algorithm. This is a consequence of
results showing the fact that � is an inner constructor with respect to the AC-
convergent rewrite system associated with axioms (1) and (2) above. Therefore,
we get the following result.

Proposition 2. EAC satisfies Restriction 1, Restriction 2 and Restriction 3.

We will use this theory to illustrate more results in the paper.
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Conflict: If s(ε) ∈ Σ1 �Σ(1,2) and t(ε) ∈ Σ2.

{v =? s, v =? t} ∪ P −→ Fail

Cycle: If P contains a cycle
P −→ Fail

Fig. 1. Failure rules

Some of the steps below are non-deterministic, hence lead to computation paths.
Throughout each path, the failure rules of Figure 1 are applied eagerly after each
step. Let V = V ar(P).

Step 0: Variable Identification
Guess a partition on V and set variables in each subset equal to each other. This
requires adding fresh equations of type u =? w, where u,w ∈ V and u and w belong
to the same subset in the partition. Let us denote the enumeration of the partitions
of V as π1, π2, . . . , πm. Once a partition is selected, the unification problem P is
modified by adding the fresh equations between variables to the unification problem.
We denote the modified problems by Pπi , 1 ≤ i ≤ m.

Step 1: Run A1

We apply A1 to the Σ1 � Σ(1,2)-equations of Pπi . If A1 fails for all πi, report failure
and stop. Otherwise, we now have a modified, by A1, set of unification problems
from Pπi , Pπi

1 , . . .Pπi
n for n ≥ 1, such that all the Σ1 �Σ(1,2)-equations in each Pπi

j ,
are in (Σ1 �Σ(1,2))-solved form.

Step 2: Run A2

Run Algorithm A2 on the 2-pure equations of each Pπi
j . If A2 equates variables in V

not equated by πij discard that particular Pπi
j . If none of the remaining Pπi

1 , . . .Pπi
n

exit with success, return failure. Otherwise, return success.

Fig. 2. C: Unification Algorithm for the combined theory E1 ∪E2

3.2 Variable Identification

We are concerned with the fact that some variables from P could be equated by
A2 and then cause reapplication of the inference rules of A1. The way to avoid
ping-ponging between the two unification algorithms is to guess, right at the
beginning, a successful partition of the set of variables of P in a way that variables
contained in each subset of each partition are set equal to each other. That is,
we perform variable identification on V ar(P). For variable identification, we
initially consider the set of all variables V ar(P) in the problem. However, some
improvements are possible depending on syntactic properties of the equational
theory considered, as is done in [13].

Let us assume that A1 creates fresh variables that could cause the need for
reapplication of the rules of A1 during the application of algorithm A2. We call
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such variables “Ping-Pong Variables” as it implies back-and-forth mechanism
between the algorithms.

Example 4. Consider again the theory EAC and suppose that z is a fresh variable
created by A1 such that z =? exp(x1, y1), and x2 =? y2 � z. Now if this could
happen the AC-unification algorithm (A2) could equate z, by using the equation
x2 =? y2 � z, to another variable, say x3, such that x3 =? x4 ∗ x5, resulting in
the equation exp(x1, y1) =

? x4 ∗x5. Since this fresh equation would cause failure
in the AC algorithm we would need to “ping-pong” back to A1 to handle the
fresh equation. The process could continue to repeat. Therefore, we ensure these
variables don’t occur in the following results.

Definition 5. (Ping-Pong Variable) A variable x is a ping-pong variable if

1. x is a fresh variable created by A1.
2. A1 did not create an equation x =? y, where y is a variable from the initial

standard form problem.
3. x occurs in x =? t where t is a Σ1 �Σ(1,2)-rooted term.
4. x occurs in a Σ(1,2)-rooted term generated by A1.

Lemma 1. Let P be a modified problem produced by C in step (2) (i.e., an
output of A1) and assume that z is fresh variable created by A1. If A2 equates z to
another variable y and that equality converts a subset of P into non-(Σ1�Σ(1,2))-
solved form, then either z is a ping-pong variable or P is not unifiable.

Proof. Let z be the fresh variable created by A1 and assume that A2 creates the
equality z = y, where due to the equality a subset of equations, ρ ∈ P , is not in
dag-solved form. Now, if ρ = {x1 =? t1, . . . , xm =? tm} is not in solved form
then one of the following situations must be present; (1) the left hand sides are
not all distinct, (2) there exists a cycle in the equations. To create situation (1)
the equality z = y needs to create duplicate left hand sides. This implies that
xi = z =? ti and xj = y =? tj . If z is equated to another variable by A2 it must
occur in the 2-pure equations. Since z cannot be both equal to a Σ1�Σ(1,2)-term
and a Σ(1,2)-term, an error by Restriction 3, z must be contained in a Σ(1,2)-
rooted term. Thus, z is a ping-pong variable. Situation (2) implies there is a
cycle between Σ1 �Σ(1,2)-equations, a failure condition. ��

Based on Restriction 1 of A1 we get the following result.

Lemma 2. Let Q be a Σ1 �Σ(1,2)-solved form, computed by A1. There are no
ping-pong variables in Q.

Example 5. In [13] it is shown that R1 does not produce equations of the form
z =? exp(x, y) or z =? x ∗ y, where z is a fresh variable occurring in a �-rooted
equation.

Algorithm A2 could still create different subsets of equated variables from V .
Because V is finite we easily get the following result.
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Lemma 3. For each possible set of equalities I of the variables in V by the
algorithm A2 there exists a partition πi on V that corresponds to I when the
variables in each subset of πi are equated.

Therefore, we can “guess” a (or generate all the) partition(s) of V . For each
partition we can modify the original unification problem by pre-equating the
variables in the subsets of the partition, thus guessing the action of A2. Because
there exists a partition for each action of A2 on V , including not equating any of
the variables, we only have to apply A1 once. This is because if for any particular
partition, say πi, algorithm A2 equates two variables in V not equated by πi we
can discard that particular modified unification problem because we know there
exists a partition that does correctly correspond to the action of A2.

3.3 Termination, Soundness and Completeness

Given two theories E1 and E2, with corresponding algorithms A1 and A2, satis-
fying Restrictions 1 through 3, we show C is terminating, sound and complete.

Theorem 1. C terminates.

Proof. We assume that the algorithms A1 and A2 terminate. There is a finite
number of partitions of V , thus only a finite number of Pπi . Since A1 terminates
and is finitary, there are only a finite number of Pπi

j problems produced. ��

Lemma 4. Let P be an E1 ∪ E2-unification problem and σ an E1 ∪ E2-unifier
of P. Then, there exists a partition πi of V, and an index j, such that σ is an
E1 ∪ E2-unifier of Pπi

j .

Proof. σ naturally induces a partition of the set of variables from P , i.e., if
x, y ∈ V and xσ =E1∪E2 yσ then x and y are in the same subset of the partition.
Denote this partition as πi. Then we can modify P to Pπi and σ remains a
unifier of Pπi . ��

We want to prove that if a problem is unifiable there exists at least one partial
solved form produced from A1 such that if C returns success after running A2

that solved form is still intact.

Lemma 5. Let θ be an E1 ∪ E2-unifier of an E1 ∪ E2-unification problem P.
There exist a partition πi, a Σ1 � Σ(1,2)-solved form P ′ obtained by applying
A1 on Pπi, a Σ2-solved form P ′′ obtained by applying A2 on P ′

|Σ2
such that

P ′
|Σ1�Σ(1,2)

∪ P ′′ is in a dag-solved form for which the related substitution σ

satisfies σ ≤V ar(P)
E1∪E2

θ.

Proof. By assumption, A1 and A2 transform an E1∪E2-unification problem into
an equivalent set of E1∪E2-unification problems. Moreover, the failure rules are
also sound and complete. It remains to show that the final problems (different
from Fail) are indeed dag-solved forms. The algorithm A2 will apply to P ′

|Σ2
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and may possibly add to P ′
|Σ1�Σ(1,2)

fresh equations between variables. But these

additional equations cannot convert P ′
|Σ1�Σ(1,2)

into a non-solved form according

to Lemma 1 and Lemma 2. Therefore, all final problems P ′′′ different from Fail
are such that P ′′′

|Σ1�Σ(1,2)
is in solved form and P ′′′

|Σ2
is in solved form. Such a

final problem P ′′′ is necessarily in dag-solved form, for otherwise a failure rule
would apply. ��

Theorem 2. Let A1 and A2 be algorithms satisfying Restrictions 1 through 3.
The algorithm C is sound and complete, which means that E1 ∪ E2-unification
is finitary.

Proof. The soundness directly follows from the fact that each time an E1 ∪ E2-
unification problem P is transformed into P ′ by C, then any E1 ∪ E2-unifier of
P ′ is an E1 ∪ E2-unifier of P . The completeness is proved by Lemma 5. ��

4 A Class of Hierarchically Combinable Theories

In this section we consider a class of hierarchically defined theories. We investi-
gate the problem of satisfying Restrictions 1 through Restriction 3. The class of
theories is defined by the following set of properties. The two key properties being
the hierarchical organization and the shared symbols being inner constructors.
We assume that E1 and E2 are subterm collapse-free. The class is then defined
by the following properties.

1. Properties of E1:
R1 is a left-linear, convergent term rewrite system corresponding to E1.

2. Properties of E2:
E2 is a linear, finite equational theory.

3. Properties of the shared symbols:
If f ∈ Σ(1,2), then f is an inner constructor of R1.
If f and g are inner constructors of R1, then f -rooted terms cannot be
equated to g-rooted terms in E2.

The EAC theory, is an example of a theory that is contained in the above defined
class. The convergent rewrite theory associated with the first two axioms is left-
linear and � is an inner constructor. The lower theory is the AC-theory for �.

By assuming these properties, we can show that an E2-unification algorithm
is sufficient to satisfy Restriction 2. Moreover, these properties are sufficient to
satisfy Restriction 3. With respect to Restriction 1, it is possible to build a
complete “syntactic” method to generate the partial solved forms of A1.

4.1 Satisfying Restriction 1

The first and critical step to satisfying Restriction 1 is the construction of an
inference system G such that the standard forms of leaves in the search tree
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generated by G are the Σ1 � Σ(1,2)-solved forms corresponding to a complete
set of E1 ∪ E2-unifiers of the input problem, thus satisfying the majority of
Restriction 1. Another way to view the inference system G is as a method for
reducing E1 ∪ E2-unification problems to a set of E2-unification problems.

We still have to identify examples of theories for which G can be turned into
a terminating algorithm. Moreover, the computed Σ1�Σ(1,2)-solved forms must
satisfy Restriction 1 (iii) to avoid ping-pong variables when running C. Before
presenting the procedure we need some results on the relation between R1 and
E2. Immediate from the properties we have the following.

Lemma 6. Let s1, s2 and t be terms such that s1 ←→E2
s2 −→R1

t. Then there
exists a term t′ such that s1 −→R1

t′ ←→∗
E2

t.

Lemma 7. −→R1
◦ ←→∗

E2
is terminating if and only if −→R1

is terminating.

Proof. The “only if” part is trivial. The “if” part is a consequence of the fact
that (−→R1

◦ ←→∗
E2

)∗ ⊆−→∗
R1
◦ ←→∗

E2
according to Lemma 6. ��

Lemma 8. R1 is convergent modulo E2. That is, for any s, t

s =R1∪E2 t if and only if s ↓R1 =E2 t ↓R1

Proof. The result is a consequence of [15], Theorem 3.5. There a set of restrictions
is given on a rewrite theory and equational theory. The key restrictions of [15]
are:
(1) R1 be left-linear. (2) Critical pairs of R1 are joinable modulo E2. (3) Critical
pairs of R1 and E2 are joinable modulo E2. (4) −→R1

◦ ←→∗
E2

is Noetherian.
(1) is satisfied by assumption. (2) is a consequence of R1 being a convergent

system. (3) is a consequence of the fact that the only shared symbols are inner-
constructors of R1. Since inner-constructors don’t appear on the left-hand sides
of the rules in R1, there is no overlap between the left hand sides of R1 with
either side of the identities in E2. Finally, (4) follows from Lemma 7. ��

We modify the general syntactic E-unification procedure G, presented in [6],
which consists of a set of non-deterministic inference rules. This procedure is
based on the methods developed in [14, 20]. The modifications are to the rules (i)
and (ii). The resulting system is presented in Figure 3. Note that in constructing
this procedure one could also start with another general E-unification method
such as [14, 17, 12]. The algorithm could also be constructed from scratch as
in [13].

Let e[u] denote an equation with subterm u, let P and S denote sets of equa-
tions. Initially P is a set of Σ1�Σ(1,2)-equations and S is empty. A computation
path in the modified G (from now just called G) is a sequence of rule starting
from an initial system P : ∅ and ending in a system P : S such that no additional
rules from G can be applied and S is in solved form.

We start by showing that the R1 portion of any E1 ∪E2 proof corresponds to
a computation path in G. Note, in our procedure G, we introduce fresh variables
by considering the fresh variants of rules in R1. These variables can be seen
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(i) LP {e[u]} ∪ P : S −→ {l =? u, e[r]} ∪ P : S
Where:
– u is a non-variable Σ1 �Σ(1,2)-rooted subterm.
– l→ r is a fresh variant of a rule in R1.
– The root symbol of l and u are identical and l =? u is not subject to another

rule before being subjected to decomposition.
(ii) Trivial {s =? s} ∪ P : S −→ P : S
(iii) Decomposition

{f(u1, . . . , un) =
? f(v1, . . . , vn)} ∪ P : S

−→ {u1 =? v1, . . . , un =? vn} ∪ P : S

Where f ∈ Σ1 �Σ(1,2).
(iv) Orient {t =? x} ∪ P : S −→ {x =? t} ∪ P : S
(v) Variable Elimination {x =? t} ∪ P : S −→ P [t/x] : S[t/x] ∪ {x = t}

Fig. 3. Unification procedure G

as existentially quantified variables [16]. Hence, an equation x =? t can be re-
moved from a solved form when x is existentially quantified, and so existentially
quantified variables do not appear in the domain of unifiers.

Lemma 9. Let s =? t be a Σ1 � Σ(1,2)-equation. For each E1 ∪ E2-unifier

θ of s =? t such that θ is R1-normalized and sθ, tθ are ground terms, there
exists a sequence of LP applications in G that correspond to the R1 steps in
sθ →∗

R1
(sθ) ↓R1=E2 (tθ) ↓R1←∗

R1
tθ such that θ is an E1 ∪ E2-unifier of any

unification problem in this sequence.

Proof. For an R1-normalized θ, a ground term sθ and any R1-rewrite sequence
sθ →∗

R1
s′ reducing sθ to the R1-normal form s′, there exists a rewrite proof

sθ →∗ s′ such that no rewrite step can take place at a term introduced by
any substitution. This is known as a “basic” rewrite proof (see [6], Section 4).
According to the assumption and Lemma 8, we have sθ −→∗

R1
s′, tθ −→∗

R1

t′, and s′ =E2 t′ where s′ and t′ are respectively the R1-normal forms of sθ and
tθ. We examine sθ −→∗

R1
s′, as tθ −→∗

R1
t′ follows analogously. If sθ −→∗

R1
s′ is

a basic rewrite proof then the result follows from a simple induction argument
on the length of the derivation. If there are no rewrite steps, sθ = s′, then no
LP step is required as it is already in normal form and E2-unifiable. Otherwise,
we get a set of rewrite steps of the form

sθ = s1
p1,θ−−−−→

l1→r1
s1[r1θ]p1 = s2 −→ . . . −→ sn

pn,θ−−−−→
ln→rn

sn[rnθ]pn = s′

Since at each reduction the redex is not contained in θ, each reduction corre-
sponds to an application of LP at the same position. That is, for any (k)th step

of the rewrite proof sk
pk,θ−−−−→

lk→rk
sk[rkθ]pk

= sk+1 there exists a LP application

such that {s′′[u]pk
=? t} ∪ P ;S =⇒LP {lk =? u, s′′[rk]pk

=? t} ∪ P ;S where
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s′′θ = sk. Furthermore since uθ = sk|pk
= lkθ and (s′′[u]pk

)θ →R1 (s′′[rk]pk
)θ, θ

is a E1 ∪E2-unifier of {lk =? u, s′′[rk]pk
=? t}. ��

Let us denote a system P ;S resulting from an exhaustive application of the rules
in G as a G-normal form.

Lemma 10. Let P be a set of Σ1 �Σ(1,2)-equations. If θ is an E1 ∪E2-unifier
of P, then there exists a sequence, P ; ∅ =⇒∗ P ′;S, in G such that P ′;S is in
normal form w.r.t G and θ is an E1 ∪ E2-unifier of P ′ ∪ S.

Proof. We can modify the same proof strategy used in [6] (Lemma 4.9) but mod-
ified due to Lemma 9 and the fact that our procedure stops before considering
E2. Let θ be a R1-normal solution to P . For all u =? v ∈ P , If uθ =R1∪E2 vθ
then by Lemma 8 uθ ↓R1=E2 vθ ↓R1 . By Lemma 9, there exists a P ′;S having
the same solution, obtained by a sequence of LP applications, P ;S =⇒LP P ′;S,
such that P ′;S is a R1-normal form. In addition, since the LP rule doesn’t add
equations to S, S = ∅. Thus, S is in solved form.

Now if uθ = vθ is in R1-normal form. Then, only rules (ii)-(v) can be applied.
In this case the problem reduces to syntactic unification. In [6] a complexity
measure is defined and it is shown that the syntactic unification rules will trans-
form the system into a system lower in the complexity measure and having the
same solution. In addition, it is also shown that any equation introduced into S
maintains a solved form. ��
We can characterize the normal forms produced in G by the following result.

Lemma 11. The standard form of any G-normal form is a Σ1 � Σ(1,2)-solved
form.

Proof. Consider the equations s =? t such that s(ε), t(ε) ∈ X ∪ (Σ1 � Σ(1,2)).
When these equations occur in a G-normal form, P ;S, they occur necessarily in
S. Otherwise, one of the rules of G could be applied contradicting the assumption
that P ;S is a G-normal form. A G-normal form, P ;S, can be converted to a Σ1�

Σ(1,2)-solved form by converting the system into standard form. The equations
in S will clearly be in Σ1 � Σ(1,2)-solved form and the equations in P will be
converted to Σ1�Σ(1,2)-solved form due to variable abstraction. In addition the
conversion maintains unifiability. ��
Lemma 12. Let P be a set of Σ1 � Σ(1,2)-equations. Then, the normal forms
computed by G are equivalent to Σ1 �Σ(1,2)-solved forms {Qk}k∈K such that⋃

k∈K

CSUE1∪E2(Qk) is a CSUE1∪E2(P)

In addition, Qk consists of (Σ1 �Σ(1,2))-equations and Σ(1,2)-equations.

Proof. If P is E1∪E2-unifiable the result follows from Lemma 10 and Lemma 11.
If the problem is not E1 ∪E2-unifiable then there are two possibilities. First, no
Σ1�Σ(1,2)-solved form exist, in which case the result follows. Second, there exist
one of more G-normal forms. But since all the conversions maintain unifiability,
the resulting solved forms will not be E2-unifiable. Lastly, since R1 can only
introduce Σ1 symbols the last result follows. ��
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4.2 Satisfying Restriction 2

We prove that an E2-unification algorithm is sufficient to solve 2-pure problems
modulo E1 ∪E2, the restriction on A2. To state this result, let us consider some
technical concepts introduced initially for disjoint combination [5]. We define the
following bijection between the set of (E1 ∪E2)-equivalence classes of terms and
a set of variables, so-called abstraction variables. This is helpful to obtain the
proof of next lemma which states that variable abstractions are not affected by
rewrite steps at any position in a term.

Let X and Y be disjoint sets of variables that are countably infinite. Let
T (Σ1 ∪ Σ2,X ) be the set of Σ1 ∪ Σ2-terms over X . We define a bijection φ :
T (Σ1 ∪ Σ2,X )/=E1∪E2

−→ Y and denote tφ the φ-abstraction of t defined as

follows:
If t ∈ X , then tφ = t. If t = f(t1, . . . , tn) and f ∈ Σ2, then tφ =

f(tφ1 , . . . , t
φ
n). Otherwise, tφ = φ([t]E1∪E2), where [t]E1∪E2 denotes the

equivalence class of t modulo E1 ∪ E2.
Note that third case applies to Σ1 � Σ(1,2)-rooted terms and φ-abstractions

of 2-terms are 2-pure terms.

Lemma 13. For any terms s and t, if s ←→E1∪E2 t, then sφ =E2 tφ.

Proof. Note that if s is Σ1�Σ(1,2)-rooted (resp Σ2-rooted), then s ←→E1∪E2 t
implies that t is Σ1 � Σ(1,2)-rooted (resp. Σ2-rooted), due to the form of rules
in R1 and equalities in E2, plus the subterm collapse-freeness of E1 and E2.

Let s ←→E1∪E2 t and assume that the←→E1∪E2-step is applied at a position
p in s. Let us first consider that s is Σ2-rooted. There are two cases to consider:
1. p is not in an alien subterm. We can only apply ←→E2 at p according to our
assumptions on E1 and E2. Then there exists an equation l = r in E2 and a
substitution σ such that s[lσ)]p ←→ s[rσ]p = t. Consider the φ-abstraction sφ of
s. Note that p is still a non-variable position in sφ and we can find substitution
σ′ such that sφ[lσ′]p ←→E2 sφ[rσ′]p = tφ. Thus we get sφ ←→E2 tφ.
2. p is in an alien subterm occurring at position q. A ←→E1∪E2-step is applied
at p, which implies that s|p =E1∪E2 t|p, and so s|q =E1∪E2 t|q. Hence the
alien subterms s|q and t|q are abstracted to the same variable by φ, that is
(s|q)φ = (t|q)φ. Following the definition of φ-abstraction, we get sφ = tφ.

If s is Σ1�Σ(1,2)-rooted, then t is Σ1 �Σ(1,2)-rooted. Hence, sφ = tφ, and so

sφ =E2 tφ.
Finally, if s is a variable, then there is no t such that s ←→E1∪E2 t. ��

Lemma 14. E2-unification is sound and complete for solving 2-pure E1 ∪ E2-
unification problems.

Proof. Consider an E1 ∪ E2-unifier σ of s =? t where s and t are 2-pure. By
induction and Lemma 13, sσ =E1∪E2 tσ implies sσφ =E2 tσφ where in fact σ is
an instance of σφ. ��

Hence, an E2-unification algorithm provides an algorithm A2 satisfying Restric-
tion 2 since it computes a complete set of 2-pure unifiers.
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4.3 Satisfying Restriction 3

We first show that the assumptions imply the first part of Restriction 3.

Lemma 15. A Σ1 �Σ(1,2)-rooted term cannot be E1 ∪E2-equal to a Σ2-rooted
term.

Proof. If a Σ1 � Σ(1,2)-rooted term is E1 ∪ E2-equal to a Σ2-rooted term, then
Lemma 13 contradicts the fact that E2 is subterm collapse-free. ��

The following lemma is useful to show that E1 ∪ E2 is subterm collapse-free.

Lemma 16. For any term t and any strict subterm u of t, if t −→+
R1

t′ then
t′ =E2 u.

Proof Sketch. If t −→+
R1

t′, then t′ = u for any strict subterm u of t, otherwise
it would contradict the fact that E1 is subterm collapse-free. To prove that
t′ =E2 u, let us first introduce the notion of layer defined via the bijection φ used
to define φ-abstraction in Section 4.2. A 1-layer (resp. 2-layer) of a term s is a
1-pure (resp. 2-pure) term which is obtained from any Σ1 �Σ(1,2)-rooted (resp.
Σ2-rooted) subterm s′ of s having no direct Σ1�Σ(1,2)-rooted (resp. Σ2-rooted)
superterm, by replacing each alien subterm s′′ of s′ by the variable φ([s′′]E1∪E2),
where [s′′]E1∪E2 denotes the equivalence class of s′′ modulo E1∪E2. We are now
ready to state the following facts:

(1) According to the form of rules in R1, we can show that t′ and t have neces-
sarily different 1-layers. Then, this can be extended to any subterm of t, since E1

is subterm collapse-free: t′ and any subterm of t have different 1-layers. Hence,
t′ and u have necessarily different 1-layers.
(2) Since E2 is subterm collapse-free, E2 is a set of equalities between non-
variable 2-pure terms having the same set of variables. Therefore, t′ =E2 u
implies that t′ and u have the same 1-layers.
Consequently, it is not possible to have t′ =E2 u. ��

Theorem 3. E1 ∪ E2 is subterm collapse-free.

Proof. Assume that t =E1∪E2 u for a strict subterm u of t. We can assume that
u is in R1-normal form. By Lemma 8, we have that t ↓R1=E2 u. If t ↓R1= t, then
we get t =E2 u, which contradicts the fact that E2 is subterm collapse-free. If
t ↓R1 = t, then we get a contradiction by Lemma 16. ��

4.4 Unifiability of Partial Solved Forms

Theorem 4. E1∪E2-unifiability of Σ1�Σ(1,2)-solved forms is decidable if gen-
eral E2-unification is decidable.

Proof. We use the notion of unification with (linear) constant restriction [5]
and the fact that E2-unification with linear constant restriction corresponds to
general E2-unification. A Σ1�Σ(1,2)-solved form can be decomposed into P1∪P2
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where P1 denotes the solved form containing onlyΣ1�Σ(1,2)-equations between a
variable and a non-variable. Let σ1 be the idempotent substitution corresponding
to the solved form P1. This substitution defines a constant restriction: If x is in
the domain of σ1, then x must be considered as a (free) constant in E2. If x is in
the domain of σ1 and y occurs in xσ1, then the constant x must not occur in the
solution of y in E2. Let < be a linear constant restriction satisfying the above
constant restriction. We are now ready to state that P1∪P2 is E1∪E2-unifiable
iff P2 is E2-unifiable with the linear constant restriction <: (⇐) We can that
show that for any E2-unifier σ2 of P2 satisfying the linear constant restriction
<, σ1 ◦ σ2 is an E1 ∪ E2-unifier of P1 ∪ P2. (⇒) If σ is an E1 ∪ E2-unifier of
P1 ∪ P2, then σφ is an E2-unifier of P2. Moreover, σφ satisfies a linear constant
restriction extending the restriction given by σ1. Otherwise, it would be possible
to contradict Restriction 3. ��

As a consequence, we can consider in our assumptions a general E2-unifiability
algorithm (that is, E2-unifiability with free symbols) instead of an E2-unification
algorithm to get an E1 ∪ E2-unifiability algorithm.

4.5 Inner Constructor Definitions and Undecidable Results

Suppose we weaken Definition 4, such that inner constructors can appear on the
left hand side and have constants below them. The following convergent system,
Ru

1 , satisfying the new definition, where + is the inner constructor:

B(x1 ∗ x2, x3 ∗ x4)→ f(b+ a, g(x1, x2, x3, x4))
f(a+ b, g(x1, x2, x3, x4))→ B(x1, x3) ∗B(x2, x4)

Now let our second theory, Eu
2 , be the commutative theory for +. Then Ru

1 ∪
Eu

2 -unification is undecidable due to the undecidability result for the theory of
Synchronous Distributivity, B(u ∗ v, x∗ y) −→ B(u, x)∗B(v, y), presented in [2].

5 Conclusion and Perspective

Building on previous combination results [5, 11, 18], and our own earlier work [13],
we are able to identify a set of restrictions and a combination method such that
if the restrictions are satisfied the method produces a unification algorithm in
the union of non-disjoint equational theories. Furthermore, we identify a class
of theories that satisfy the restrictions and thus the combination problem for
these theories is decidable. The theory EAC , which is of interested in the area
of cryptographic protocol analysis, is also presented as a theory for which the
method is applicable.

Another candidate theory where the approach may be applicable is a par-
tial theory of Cipher Block Chaining, also of interest in cryptographic proto-
col analysis and studied in [1]. The theory has the axiom: bc(cons(x, Y ), z) =
cons(h(x, z), bc(Y, h(x, z))) which can be oriented from left to right. Notice that
the symbol h in a left to right orientation would be an inner constructor.
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The symbol h could then be given some equational properties, like AC, which
would be a natural extension. The AC theory for h would form the lower theory
E2. The combination method would then be applicable for obtaining an unifi-
cation algorithm for this AC-cipher block chaining theory. Interestingly, the full
theory studied in [1], includes the additional axiom bc(nil, z) = nil. Although
this would violate the restriction on subterm collapse-free theories, it may still
be possible to extend the combination result to this and similar cases by first
“removing” the collapsing conditions by a closure method.

With respect to efficiency, it should be possible to improve the algorithm by
cutting down on the number of partitions. The first example of this can be seen
in [13] where only a particular subset of the variables are needed to form the par-
titions and thus the number of partitions is reduced. This type of improvement
may be possible in many cases. More efficient methods for enumerating these
types of partitions could be developed, where the fact that these partitions will
correspond to equalities between variables is taken into account. Some efficiency
can be obtained if the enumeration is done by enumerating the more “granular”
(less variables equated) partitions first and then preceding down the lattice of
partitions to partitions where more variables are equated. If a unifier is found
for one particular partition, all partitions that are both comparable and lower
in the lattice are unifiable but with less general unifiers. Therefore, paths in
the lattice of partitions could be pruned. Finally, it may also be possible to ap-
ply a deterministic approach. Rather than guessing a priori all possible variable
identifications, allow the algorithms to ping-pong but provide a measure that is
reduced at each application of an algorithm.
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Abstract. PRocH1 is a proof reconstruction tool that imports in HOL
Light proofs produced by ATPs on the recently developed translation of
HOL Light and Flyspeck problems to ATP formats. PRocH combines sev-
eral reconstruction methods in parallel, but the core improvement over
previous methods is obtained by re-playing in the HOL logic the detailed
inference steps recorded in the ATP (TPTP) proofs, using several inter-
nal HOL Light inference methods. These methods range from fast variable
matching and more involved rewriting, to full first-order theorem proving
using the MESON tactic. The system is described and its performance is
evaluated here on a large set of Flyspeck problems.

1 Introduction, Motivation, and Related Work

Independent verification of proofs found by Automated Theorem Provers (ATPs)
is not an uncommon topic in automated reasoning research. Systems like IVY [3]
rely on very detailed proof output from ATPs (Otter, Prover9), which is then
independently replayed and checked by a trusted system (ACL2). This technique
has been used several times, e.g., for replaying the MESON and Otter/Prover9
proofs in HOL Light, replaying the Otter/Prover9 proofs in Mizar, and replay-
ing the Metis proofs in HOL and Isabelle. The GDV [6] tool is even parametric:
any ATP system understanding TPTP can be used for independent verification.
The Metis/Isabelle combination has been used also as a part of the Sledgeham-
mer [4] tool that uses arbitrary ATPs to discharge Isabelle proof obligations. If
an ATP proof is found, and Metis can reconstruct the proof NeededLemmas 

Conjecture, then metis(NeededLemmas) is a valid Isabelle tactic, that is in
practice used as an ATP proof importer. In HOL Light, MESON can be used in the
same way for importing the proofs found by ATPs on FOL problems produced
by the recently developed “HOL(y)Hammer” (HH) tool [2].

However, Metis and MESON are on average weaker than state-of-the art ATPs
like Vampire and E. As ATPs and premise-selection tools get stronger, the ability
of Metis and MESON to reconstruct (in short time usable in large ITP libraries) the
ATP proof just from the proof premises decreases. Also, proofs in ITP systems
like Isabelle, HOL Light and Mizar should (eventually) strive for human readabil-
ity. Even if the strength of Metis and MESON grew, a single call to them would get
hard to understand, requiring further explanation. These reasons motivate our
work on a general tool that reconstructs TPTP proofs in HOL Light, using not
just the proof premises, but also the steps recorded in the TPTP proof format.
1 Proch (pronounced as “prokh”) means “dust/powder” in Polish. The proof is (also)

reconstructed from fine-grained inference dust.
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2 Using Existing Approaches on HOL Light Problems

In total, the experiments with ATP-proving of HOL Light and Flyspeck theorems
described in [2] have produced 7247 proofs when using Vampire, E (run under the
Epar [8] scheduler) and Z3, sometimes with high timelimits (900s). Only Vampire
and E produce full TPTP proofs, but Z3 also prints the necessary premises (un-
sat core). These proofs are pseudo/cross-minimized, i.e., each proof was re-run
by all ATPs using the proof premises only, while the number of proof premises
was decreasing. Using the resulting sets of premises, Epar can find 6318 proofs
in 30s. This set is used for further evaluations here. Table 1 shows the perfor-
mance of the potential proof-importing tools, i.e., MESON, Metis, and Prover9 run
with 300s time limit. Note that (unlike MESON) both Metis and Prover9 are just
run externally, i.e., not reconstructing a valid HOL proof. As mentioned above,
low proof times are important for working with large ITP libraries containing
(tens of) thousands of theorems, each typically proved using several of the low-
level (MESON, Metis, Mizar “by”, etc.) “atomic” calls. Table 2 therefore shows the
performance of the above methods when using only 1 second for reconstruction.

Table 1. MESON, Metis, and Prover9 with 300s on the 6318 Epar proofs

method MESON Metis Prover9

replayed 5255 4595 4672
replayed (%) 83.1 72.7 73.9

Table 2. MESON, Metis, and Prover9 with 1s on the 6318 Epar proofs

method MESON Metis Prover9

replayed 5014 2803 4111
replayed (%) 79.3 44.3 65.0

Particularly the numbers obtained for Metis are considerably worse than the
numbers obtained so far with Metis-based proof reconstruction in Sledgeham-
mer [1], where only 10% of ATP proofs are lost by Metis. One possible reason is
that Metis has been well-integrated with Sledgehammer, e.g., by using customized
Sledgehammer-generated term orderings. Another part of explanation could be
that the proofs found by HH on Flyspeck are on average harder than the proofs
found by Sledgehammer on the Judgement Day benchmark. The reasons can be
that the Judgement Day benchmark consists of goals that are on average easier,
the HH premise selection might be more precise (allowing more involved ATP
proofs), and also ATP systems like Vampire and E have been strengthened since
the time of the Judgement Day evaluation.
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3 PRocH System Description

The HH tool runs in parallel several (now 14) AI/ATP combinations on a given
HOL problem, and if a proof is found, it is pseudo/cross-minimized by further
parallel running of the ATPs (and their strategies). PRocH then follows by trying
in parallel several (old and new) proof reconstruction methods. Unlike the above
methods that can only use the ATP proof premises to find their own detailed
proof, the most complicated of the PRocH’s methods (hh_recon) also tries to
reconstruct in HOL Light the TPTP proofs created by the ATP systems. In this
its closest relative is the isar_proof Sledgehammer function described in [4],
from which it probably differs by complete reliance on type annotations. In some
sense, PRocH’s hh_recon is so far less ambitious than isar_proof, because it
does not yet attempt to write a HOL proof script. This also allows to treat some
constructs (e.g., higher-order application) differently from isar_proof during
the reconstruction. PRocH’s use is now similar to HOL’s MESON tactic, i.e., a call
to hh_recon[HOLPremises] will try to justify a given HOL conjecture by going
through the following stages (described more in the following subsections):

1. Translation to FOL: A HOL Light problem in the form HOLPremises 

HOLConjecture is translated to an untyped FOF TPTP problem, where
part of the FOF encoding of terms are annotations encoding their HOL type.

2. Running ATPs: An external ATP is run on the first-order problem producing
a TPTP proof.

3. Parsing: The untyped FOF and CNF formulas in the TPTP proof are parsed
back into typed HOL terms (making use of the encoded type annotations).
This part also has to handle skolemization.

4. Replaying: The justification structure of the TPTP proof is replayed on the
parsed HOL Light terms, resulting in a valid HOL Light proof.

3.1 Translation to FOL and Producing FOL Proofs

The translation to FOL is described in [2], but we show a brief example here.
The translation has to encode higher-order features like lambda abstraction, cur-
rying, quantification over function variables and their application. As a leading
example, consider the following higher-order theorem FORALL_ALL2

∀P l. (∀x. ALL (P x) l) ⇐⇒ ALL (λs. ∀x. P x s) l

saying that each x-image of a binary relation (predicate) P(x,y) contains (is true
for) all elements of a list l iff for all elements s of l the unary predicate “P(x,s)
is true for all x” is true. To express this in FOL, first the lambda function
is lifted from the context (its definition is created and used as an antecedent)
and the higher-order applications are made explicit as follows:

∀l P F. (∀s. happ F s ⇐⇒ (∀x. happ (happ P x) s))
=⇒ ((∀x. ALL (happ P x) l) ⇐⇒ ALL F l)

2 http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/lists.html#FORALL_ALL

http://mws.cs.ru.nl/~mptp/hol-flyspeck/trunk/lists.html#FORALL_ALL
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The formulas before and after the lambda-lifting and happ-introduction con-
versions are logically equivalent in the HOL logic,3 and such conversions are
used to change the initial HOL proof state into a form ConvHOLPremises 

ConvHOLConjecture that will later correspond to the formulas reconstructed
from the ATP proof. After these conversions, the implicit polymorphic HOL
type domains (A,B) are explicitly introduced as variables and quantified over,
and type annotations are added for all HOL terms using the s and p wrappers
(and happ is shortened to i), resulting in the following FOF formula:

![A,B,L,P,F]:
(![S]:(p(s(bool,i(s(fun(B,bool),F),s(B,S))))

<=> ![X]:p(s(bool,i(s(fun(B,bool),i(s(fun(A,fun(B,bool)),P),s(A,X))),
s(B,S)))))

=>
(![X]:p(s(bool,all(s(fun(B,bool),i(s(fun(A,fun(B,bool)),P),s(A,X))),

s(list(B),L))))
<=> p(s(bool,all(s(fun(B,bool),F),s(list(B),L))))))

This way the HOL problem ConvHOLPremises 
 ConvHOLConjecture
is translated to an untyped FOF TPTP problem FOLPremises 

FOLConjecture, on which ATPs like E and Vampire are run, producing deriva-
tions in the TPTP format [7]. Unlike the fixed and very detailed Otter/Prover9
IVY format, the TPTP proof steps may be justified by arbitrary inference
method, and thus may in theory be arbitrarily hard. In practice, for E and Vam-
pire the (overwhelming number of) proof steps are detailed and easy to check
with weak ATPs. Several interesting steps from E’s proof of FORALL_ALL are as
follows:

fof(2,axiom,p(s(bool,t)), file(’f1’, aTRUTH)).
fof(4,axiom, (~(p(s(bool,f)))<=>p(s(bool,t))), file(’f1’, aBOOL_CASES_AX)).
fof(5,conjecture, (![A,B,L,P,F]: ... ), file(’f1’, cFORALL_ALL)).
fof(6,negated_conjecture, ~(![A,B,L,P,F]: ... ),

inference(assume_negation,[status(cth)],[5])).
...
fof(25,negated_conjecture,?[X10]:?[X11]:?[X12]:?[X13]:?[X14]: ...,

inference(variable_rename,[status(thm)],[24])).
fof(26,negated_conjecture,![X15]:(~(p(s(bool,i(s(fun(esk3_0,bool),esk6_0)...,

inference(skolemize,[status(esa)],[25])).
...
cnf(33,plain,(~p(s(bool,f))),inference(cn,[status(thm)],[32,theory(equality)])).
...
cnf(6393,negated_conjecture,(p(s(bool,f))),

inference(spm,[status(thm)],[6320,5512,theory(equality)])).
cnf(6404,negated_conjecture,($false),

inference(sr,[status(thm)],[6393,33,theory(equality)])).
cnf(6405,negated_conjecture,($false),6404,[’proof’]).

3 For HOL speakers, e.g., the happ functor is just the HOL identity, i.e., we use:
happ_def = new_definition ‘(happ : ((A -> B) -> A -> B)) = I‘;;
happ_conv_th = prove (‘!(f:A->B) x. f x = happ f x‘, ... );;
happ_conv = REWR_CONV happ_conv_th;;
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Such TPTP proofs produced by ATPs on the type-annotated input are the
starting point for the HOL proof reconstruction. This is done in two stages:
reconstruction of HOL terms/formulas, and reconstruction of the justification
structure (HOL proof).

3.2 Reconstructing Terms and Formulas

The TPTP proof format is first parsed into suitable ML data structures using
a lexer/parser combination created with ocamllex/ocamlyacc. For terms/formulas,
parts of the HOL Light parsing mechanisms are re-used. In particular we gradu-
ally construct the intermediate HOL Light preterm structure, on whose final form
the HOL Light retypeckeck function is called to obtain a HOL term. The preterm
is constructed using variable/constant constructors (Varp), binary applications
(Combp), abstractions (Absp), and type annotations (Typing).

Initially, the preterm just mirrors the FOL term structure, and in several
passes the HOL structure is recovered from the type annotations. The recov-
ery process might fail if the ATPs did proof-relevant operations that break the
type annotation, however, at least with the resolution/paramodulation infer-
ences done by E this practically does not happen. The first step is discovery
of HOL type variables in formulas. For every type annotation s(type, term) all
variables (and skolem constants) that appear in the left argument are considered
to be type variables. In the next step, quantifications over such type variables
are removed (they are implicitly universal in the HOL logic). During skolemiza-
tion, type variables might have become arguments to newly introduced skolem
functors. Such type arguments are removed, they are implicit in the HOL logic.

After that the s and p annotations are changed into Typing constructors with
the appropriate types, and HOL Light’s retypeckeck is called on the transformed
preterm to obtain a HOL term.

3.3 Replaying ATP Proofs in HOL Light

As mentioned above, the problem HOLPremises � HOLConjecture is in HOL
Light first converted (packaging the conversions in HH_TAC) to the equivalent
ConvHOLPremises � ConvHOLConjecture problem. This problem (proof state) is
then further transformed using the HOL formulas reconstructed from the ATP
proof, and using mechanisms implemented by the HOL Light subgoal package to
handle the ATP proof steps. Given the topologically sorted list of proof steps,
for every proof step a HOL tactic is applied, depending on the type of the step.
Axioms are looked up among the HOL goal assumptions (using their name) and
proved using these assumptions. The negated conjecture is introduced by trans-
forming the goal using HOL’s REFUTE_TAC (“R”) (proof by contradiction). Skolem-
ization steps are justified using HOL’s CHOOSE_TAC (“C”), and for plain inference
steps (SZS status THM) we gradually try three increasingly complex methods:
matching (MATCH_ACCEPT_TAC - “m”), rewriting (REWRITE_TAC - “r”), and HOL’s full
first-order ATP (MESON_TAC - “1” or “2” depending on the number of premises).
The final contradiction concludes the HOL proof using HOL’s ACCEPT_TAC (“A”).
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For the reconstruction of the proof of FORALL_ALL, the sequence of this steps is as
follows: mR1rrC1111111mC1111122222221222A.

4 Evaluation

Table 4 shows 1s evaluation of the reconstruction methods tried on the 6318
Epar proofs. The methods (tactics) are described in Table 3.4 PRocH tries (after
the HH conversion) three methods in parallel, i.e., its total CPU time can be 3s.
This is not very significant for the comparison, see the 300s results of MESON and
Prover9 in Table 1. The methods in Table 4 are ordered from top to bottom by a
greedy covering sequence (the last column), where the next method always adds
most to the previous methods. The unique number of solutions, SOTAC and
Σ−SOTAC [2] are metrics that show the usefulness in the whole population.

Table 3. Names and descriptions of the tactics tried for proof reconstruction

Method Description

PRocH HH conversion, then parallel replay with HH_RECON, MESON, and Prover9.
MESON Standard MESON_TAC conversion then MESON and its replay.
SIMP SIMP_TAC: Simplification by repeated conditional contextual rewriting.
Prover9 Standard Prover9 conversion then Prover9 and its proof replay.
REWRITE REWRITE_TAC: goal simplification by repeated unconditional rewriting.
INT_ARITH Basic algebra and linear arithmetic over the integers.
COMPLEX_FIELD Basic “field” facts over the complex numbers.

Table 4. Performance of reconstruction tactics run in 1s on 6318 Epar proofs

Prover Theorem (%) Unique SOTAC Σ−SOTAC Greedy (%)

PRocH 5687 (90.0) 418 0.404 2298.50 5687 (90.0)
MESON 5014 (79.3) 118 0.367 1839.30 5862 (92.7)
SIMP 2384 (37.7) 54 0.290 692.30 5968 (94.4)
INT_ARITH 407 ( 6.4) 4 0.236 95.95 5972 (94.5)
REWRITE 1540 (24.3) 3 0.249 382.87 5975 (94.5)
COMPLEX_FIELD 84 ( 1.3) 2 0.270 22.68 5977 (94.6)
Prover9 2208 (34.9) 1 0.293 646.40 5978 (94.6)

The performance of the three submethods used by PRocH are shown in Table 5.
They are again ordered by their greedy covering sequence. The HH preprocessing
significantly improves the Prover9-based replay, but more important for the overall
performance gain is the large number (406, i.e., 6.4% of 6318) of unique solutions
4 We tried more tactics, but they did not find more solutions. Higher times help very

little, see: http://cl-informatik.uibk.ac.at/users/cek/recon_stats.html

http://cl-informatik.uibk.ac.at/users/cek/recon_stats.html
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contributed by HH_RECON. Finally, the performance of PRocH and MESON is compared
in Figure 1 depending on the count of premises in the reconstructed proof. As
the number of premises goes up (ATP proofs get more involved), PRocH becomes
more and more necessary.

Table 5. Performance of the three submethods used by PRocH

Prover Theorem (%) Unique SOTAC Σ−SOTAC Greedy (%)

HH + Prover9 4737 (74.9) 253 0.412 1954.00 4737 (74.9)
HH + HH_RECON 4299 (68.0) 406 0.421 1811.50 5499 (87.0)
HH + MESON 4737 (74.9) 188 0.406 1921.50 5687 (90.0)
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Fig. 1. PRocH and MESON dependence on premise nr. (Epar proof nr. in brackets)

5 Conclusion and Future Work

96.4% of the 6318 Epar proofs are reconstructed in 300s by some of the methods.
To a great extent this validates the AI/ATP proof methods developed in [2],
which were so far only verified by manual checking that the most striking (much
shorter) AI/ATP proofs are really valid. 94.4% of the 6318 Epar proofs are recon-
structed in 1s by one of the five (sub)methods run in parallel, i.e., the top three
methods from Table 4, where PRocH consists of the three parallel submethods
from Table 5. This makes the replay of more involved proofs fast and practical.

It would be good to postprocess the verbose ATP proofs into more compact,
structured [10], and human-readable proofs that would be stored directly as HOL
Light code. Running proof-shortening tools in a loop is a simple method that
already helps a lot, e.g., when importing Otter/Prover9 proofs into Mizar. Tools
for lemma and concept introduction [5,9] can be experimented with, and with
stronger AI/ATP assistance are becoming more and more important.
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An Improved BDD Method for Intuitionistic

Propositional Logic: BDDIntKt System
Description

Rajeev Goré and Jimmy Thomson

Logic and Computation Group, Australian National University

Abstract. We previously presented a decision procedure for satisfia-
bility and validity in propositional intuitionistic logic Int using Binary
Decision Diagrams (BDDs). We now present some further optimisations
which greatly improve performance. Primarily we focus on the impact
and placement of an explicit mechanism for BDD variable ordering.

1 Introduction

We assume the reader is familiar with the syntax and Kripke semantics of propo-
sitional intuitionistic logic (Int). We also assume that the reader is familiar with
the notions of satisfiability, validity and global logical consequence in Int.

For many logics, we can decide the validity of a formula ϕ0 by constructing
the set of all subsets of some closure cl(ϕ0), and checking whether these subsets
can support a (counter) model that makes ϕ0 false. If no such model exists, then
we can safely declare ϕ0 to be valid using this finite model property (fmp).

We previously showed how to implement this “fmp method” for Int with-
out explicitly constructing all exponentially many subsets of the closure by
using Binary Decision Diagrams (BDDs) [3]. Here, we present some specific
optimisations that significantly improve performance of the BDD method.
See: http://users.cecs.anu.edu.au/~rpg/BDDBiKtProver/optimised

-bddintkt.tgz

1.1 A Terse Overview of the Basic Algorithm

Given ϕ0, our goal is to construct a finite modelM= (Wf ,%f , ρ) by constructing
a sequence of frames (W0,%0), (W1,%1), . . ., (Wf ,%f) such that the final frame
gives a model which is “canonical” in two senses: if ϕ0 is satisfiable (falsifiable)
then some world of Wf satisfies (falsifies) ϕ0. We can then decide whether ϕ0 is
satisfiable or valid by checking whether such worlds exist.

We first compute Atoms(ϕ0) = {ψ ∈ subfml(ϕ0) | ψ ∈ Prop ∨ ψ = ψ1 →
ψ2}, where Prop is the set of all atomic propositions. Any subset of Atoms(ϕ0)
corresponds to a classical valuation on the atoms since each atom is either in the
set or not. Thus W = 2Atoms(ϕ0) contains all valuations over Atoms(ϕ0), and
contains any valuation corresponding to any world in any model for ϕ0. Under

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 275–281, 2013.
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this view, each w ∈ W is both a world and a valuation. Thus the denotation of an
atom a ∈ Atoms(ϕ0) is �a� := {w ∈ W | a ∈ w}. The denotations �ϕ ∧ ψ� and
�ϕ ∨ ψ� of arbitrary conjunctions and disjunctions from cl(ϕ0) are computed
using intersections and unions of the denotations of their subformulae. Using
these denotations, we compute %max ⊆ W ×W , an over approximation of the
intuitionistic Kripke binary relation, and Wrefl, the subset of W where %max is
reflexive.

We then monotonically refine an initial approximation W0 ⊆ W towards
Wf ⊆ W , using the constructed %max relation to enforce the correct modal
interpretation of the elements of cl(ϕ0) in all the worlds. Since %i is just the
restriction of %max to Wi we do not need to compute it explicitly.

Once Wf has been computed, the final step is to determine which, if any,
worlds in Wf satisfy and falsify ϕ0, giving the satisfiability and validity of ϕ0.

In [3], we started with W0 = W but noted that we could instead start with
W0 = Wrefl. Using this latter approach, we can compute Wf as the greatest
fixpoint of the sequence W0 :=Wrefl,W1, · · · ,Wf where X =W \X and:

Wrefl =
⋂

φ→ψ∈Atoms(ϕ0)

�φ→ ψ� ∪ �φ� ∪ �ψ�

Wϕ→ψ
i = �ϕ→ ψ� ∪ {x | (x, y) ∈ %max ∧ y ∈ (Wi ∩ �ϕ� ∩ �ψ�)}

Wi+1 = Wi ∩
⋂

ϕ→ψ∈Atoms(ϕ0)

Wϕ→ψ
i

1.2 Basic Implementation Details

We now give some lower level details on how BDDs are actually used to perform
these computations since all our optimisations are at this implementation level.

First, we analyse the initial formula ϕ0 and create the set of atoms Atoms(ϕ0).
During this process, we create two BDD variables a and a′ for each atom, and
construct the BDDs representing �ψ� and �ψ�′ for each subformula ψ of ϕ0

according to the definition of �·�. For atoms a, the BDD representing �a� is
the BDD which is true exactly when the variable for a is true. For non-atomic
formulae, the BDD representing �ψ� is a conjunction or disjunction of the BDDs
representing the conjuncts or disjuncts as appropriate. The unprimed variables
like a give rise toW while the primed variables like a′ give rise to a “photocopy”
W ′ of W so that %max is actually a subset of W ×W ′: see [3] for details.

During this initial creation of the BDD variables, we implicitly specify an
ordering on the BDD variables according to when they are created, so if the
atoms are examined in different orders then the variable ordering can be different.

After the initial analysis, we construct the BDD for %max corresponding to
the intuitionistic Kripke relation: see [3] for details. For Int, after definingWrefl

as above, we can in fact reduce the intuitionistic relation to simply enforcing
persistence, so it is a relatively simple conjunction over all atoms:
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%max =
∧

a∈Atoms(ϕ0)

�a� ⇒ �a�′ =
⋂

a∈Atoms(ϕ0)

(�a� ×W ′) ∪ (W × �a�′).

We next compute Wrefl, the initial over approximation from Section 1.1. Any
global assumptions are also conjoined with this initial state. The set Wrefl is a
conjunction of formulae, and the conjuncts can be arbitrarily complex.

The remainder of the procedure is the fixpoint computation: while the BDD
Wi = Wi−1, compute Wφ→ψ

i for each atom φ → ψ, and conjoin the resulting

BDDs with Wi to give Wi+1. To compute Wφ→ψ
i , we take Wi and replace all

variables with their next-state (primed) duplicates giving W ′
i , and then conjoin

with �φ�′∧¬�ψ�′: recall that these are (classical, not intuitionistic) operations on
BDDs. Next, we conjoin with the relation BDD %max and existentially quantify
out all the primed BDD variables referring to the next state. This leaves us with
a BDD representing those worlds which have some potentially good successor
satisfying the required conditions. Finally, disjoin with �φ→ ψ� to give Wφ→ψ

i .
Once Wi = Wi−1, all that remains is to determine whether Wi ∧ ¬�ϕ0� = ⊥.

2 Optimisations

We continue to use pre-processing optimisations such as rewriting formulae to
equivalent simpler formulae, and converting Γ |= ψ → φ into Γ, ψ |= φ [3]. The
following implementation rather than algorithmic changes, also helped.

Reduced ordered BDDs give unique representations of a given Boolean func-
tion and allow fast comparisons and efficient storage. The ordering placed on the
BDD variables has a significant impact on the time and memory behaviour of
BDD operations. Using a good ordering can give significantly smaller represen-
tations of the same Boolean function, so finding a good ordering is important.

Initial Order. When analysing the pre-processed formulae to find the atoms and
precompute the BDDs for denotations, the order in allocating atoms gives an
initial ordering on the BDD variables. After some experimentation, we decided
on the following approach: for each non-propositional atom a, construct BDDs
for all components in a depth-first left to right manner, creating new BDD
variables for encountered atoms not already associated with a BDD variable.
Then construct the BDD variable for a itself. Once all non-propositional atoms
are handled, finally construct the BDD for the initial formula in a depth first left
to right manner, stopping at atoms and creating new variables as appropriate.

Dynamic Reordering. The BDD library [1] we used has the ability to dynamically
change the ordering of the BDD variables to try to find a better ordering, and this
reordering takes more time when there are more and larger BDDs constructed.

Single Reordering. We investigated a number of dynamic reordering policies,
changing when dynamic reordering would be attempted. Initially, we disabled
all reordering and kept the ordering initially created when analysing ϕ0. We then
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tried a single dynamic reordering after Wrefl was constructed, the idea being
that the BDDs that had been constructed up to that point would be broadly
similar to the ones to follow, so choosing an ordering based on that may be
helpful, and doing only a single ordering would incur only minimal overheads.

More Reordering. After examining the performance on the benchmarks, we
noted that there was often a bottleneck in computingWrefl, before any variable
ordering occurred. We therefore tried another policy of reordering more often, af-
ter every conjunct in the large conjunctions. This causes many more reorderings
and thus leads to more overhead, but the improved variable ordering can result
in improved efficiency, using less memory and speeding up further operations.

Automatic Reordering. We also tried a policy where reordering is performed
automatic by the BDD package based on usage rather than at our behest. This
has less predictable behaviour, but by reordering only when needed, it can reduce
overhead while still giving the time and space benefits of more reorderings.

Why Automatic Ordering Wasn’t Used Originally. When first implementing the
BDD procedure, we reasoned that the large amount of memory available should
be provided up-front to reduce subsequent allocation overheads. Consequently,
garbage collection and dynamic reordering took a long time since they consider
all BDD nodes. Also, the automatic reordering in BuDDy is triggered by an
increase in the number of BDD nodes, so if there are many initial BDD nodes,
automatic reorderings are far apart and slow. We therefore tried to minimise the
number of reorderings. Since then, through experimenting with different options,
we have found that a better option is to start with relatively few BDD nodes
and attempt to keep that number small, which interacts better with reorderings.

Structure Sharing. Because of their uniqueness, BDDs can often share structure.
Suppose we have 3 BDDs a, b and c, each referring to the variables in the sets V A,
V B and V C, respectively, with V A < V B < V C in the variable ordering. The
BDD for a∧ b will share the existing BDD for b in its entirety, but cannot share
the existing BDD for a since all a’s “exits” to � must now point to b. Moreover,
the BDD for (a∧ b)∧ c will share the existing BDD for c in its entirety, but will
share nothing with the BDD for a ∧ b. Constructing a ∧ (b ∧ c) instead gives an
identical BDD, since it represents the same Boolean function, but which contains
the intermediate BDD for b ∧ c in its entirety, which in turn contains the BDD
for c in its entirety. This results in more sharing and greater efficiency.

Sorted Conjunctions. To try to benefit from this concept, in each large conjunc-
tion or intersection in the decision procedure above, we compute the BDD for
each of the conjuncts first, then sort those BDDs such that the “lowest” BDDs
(in the tree sense) are combined first, giving greater potential for sharing. In the
above example, this would select c first since V C is the “lowest” set of variables,
then it would conjoin with b, and finally with a, effectively computing a∧ (b∧c).

3 Results

We initially used the ILTP v1.1.2 propositional benchmarks [5]
with a 600 second timeout. However, with some combinations of
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none- none+ once- once+ more- more+ auto- auto+ GnaA Gna fCube Imogen

SYJ201 11 50 11 50 50 50 25 49 49 50 50 32
SYJ202 16 16 16 16 16 16 12 12 12 11 8 8
SYJ203 24 26 24 26 50 50 50 50 50 24 50 50
SYJ204 50 50 50 50 50 50 50 50 50 50 50 50
SYJ205 21 23 20 22 50 50 50 50 50 22 50 50
SYJ206 50 50 50 50 50 50 50 50 50 50 10 50

SYJ207 12 50 11 50 50 50 33 50 49 50 50 24
SYJ208 13 13 11 11 9 10 9 9 10 10 37 37
SYJ209 23 25 23 24 50 50 50 50 50 23 50 50
SYJ210 50 50 50 50 50 50 50 50 50 50 50 50
SYJ211 14 14 16 16 42 36 50 44 46 9 50 50
SYJ212 35 35 50 50 50 50 50 50 45 32 50 45

Total 319 402 332 415 517 512 479 514 511 381 505 496

Fig. 1. Number of instances solved by each configuration

optimisations all instances except for pigeonhole formulae were solved in
less than 20 seconds each. To get a better idea of how the optimisations
perform in the long term, we use an extended (unofficial) set of benchmarks
(http://www.iltp.de/download/SYJ2xx-50/SYJ2xx-50.tar.gz) based on
the ILTP, with 50 instances instead of 20 for each of the SYJ2xx formulae,
except for SYJ202 and SYJ208 which go only up to 38. This unofficial set was
kindly provided by the developers of the library, Jens Otten and Thomas Raths.
We also compared the provers on the same randomly generated formulae as
in [3]. All benchmarks were performed on 64bit Ubuntu 10.04 with a Core 2
Duo 3.0 GHz processor and 8GB RAM.

Our previous [3] results were from an implementation written in OCaml. To
experiment with the BuDDy BDD library more easily and to try to control
the lifetime of BDDs more precisely, we moved to a C++ implementation. In
the process, some ‘arbitrary’ orders changed, so we include results for ‘Gna’ (our
previous OCaml implementation), and ‘GnaA’ (the OCaml implementation with
automatic variable reordering). All of our other results are from our C++ imple-
mentation. We tried each variant of dynamic reordering (none, reordering once
after computing initial conditions, reordering more during each conjunction,
and automatic reordering) both with (+) and without (-) sorted conjunctions.

We also include results for Imogen v3.0 [4] and fCube v7.0 [2] on the extended
benchmarks to compare against other state of the art theorem provers.

From Figure 1 we observe some trends. Sorting conjunctions with no or limited
reordering can give significant performance gains, for example in SYJ201 and
SYJ207. Without sorting conjunctions, some of these instances require over 4
million BDD nodes, indicating large BDDs and expensive operations on them.
With sorted conjunctions these same instances require fewer than 8000 nodes.
This effect is less pronounced when more dynamic variable ordering is applied,
since the variable reordering also achieves more compact BDDs. Gna, the OCaml
implementation from [3], performs significantly better than none-, the C++
implementation without any reordering or sorting, on SYJ201/207 primarily

http://www.iltp.de/download/SYJ2xx-50/SYJ2xx-50.tar.gz
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because the order in which the conjunction for Wrefl is computed is (arbitrarily)
reversed, highlighting the importance of computing conjunctions efficiently.

Classes SYJ202 and SYJ208 are encodings of the pigeonhole principle, and
most of the time goes into computing the BDD for the initial formula. Also, this
BDD appears to be large and difficult to reduce, so reordering gives no benefit
but takes up time. Reducing the effort put into dynamic variable reordering
leaves more time for constructing the BDDs, and leads to better performance.

SYJ204 and SYJ210 are trivialised by normalisation and converting top level
implications into global assumptions. In the case of SYJ204, once Wrefl is com-
puted the formula is immediately found to be valid, while for SYJ210, one iter-
ation of the fixpoint is required to discover that Wf =Wrefl.

SYJ205 and SYJ211 benefit from increased dynamic BDD variable reorder-
ing, although for SYJ205, the overhead of a single reordering on a large BDD
outweighs the benefits on the remaining fixpoint computation. On both classes,
the bottleneck is the initial state computation, and adding BDD variable re-
orderings helps to improve performance. For SYJ211, sorting conjunctions gives
considerably worse results. Further inspection showed that the ILTP version of
these formulae used ai and bi as propositions, while the extended versions simply
use pi for both. The structure is identical, but the names have been changed.
We think that this interacts with our relatively naive lexicographical initial BDD
variable ordering giving an“unstable” situation where, as the initial condition is
computed, the “best” ordering keeps changing. If we rename propositions back
to ai and bi as with the original problem set, then performance improves signifi-
cantly. Further work in choosing an initial ordering is likely to help since, ideally,
the chosen names for propositions should not have any impact on performance.

SYJ206 is rewritten to � by the formula normalisation preprocessing step.
SYJ212 is not so trivialised, but dynamic variable reordering assists greatly.

On the random (typically “obviously” invalid) formulae we see that initially
doing extra work does not pay off, but on larger formulae the benefits outweigh
the costs. These formulae exposed a bug in fCube-7.0, again highlighting their
utility. The repaired version now performs worse on some classes.



An Improved BDD Method for Intuitionistic Propositional Logic 281

Overall, when dynamic variable ordering helps, it helps a lot. If the number
of BDD nodes is small, then constructing the fixpoint formulae and dynamically
reordering the BDD variables is very fast, meaning that the number of BDD
nodes can probably remain small. Computing reorderings after each conjunct in
the large conjunctions performed much better than we expected for this reason,
although it is probably excessive. Automatic reordering based on load tends
to work well for these reasons, but sometimes it can trigger a reordering at
an intermediate point, and this appears to result in optimising for the wrong
formulae and allows the number of BDD nodes to increase more.

4 Conclusion, Further Work and Acknowledgements

We have dramatically improved performance by paying closer attention to the
BDD variable ordering. Dynamically reordering either using the automatic policy
in the BDD package [1] or based on milestones in the decision procedure can keep
the BDDs involved small, which translates to faster operations. A combination
of the automatic reordering based on runtime usage, along with reorderings at
certain milestones, may be more effective, and requires further investigation.

Variable ordering affects the size of intermediate BDDs, and computing large
conjunctions by sorting them according to variable order can significantly im-
prove performance. However, combining both dynamic variable reordering and
sorting conjunctions can lead to interference and reduced performance.

The primary difference in performance between the improved version of fCube
and the better performing versions of our prover is the invalid pigeon-hole class
SYJ208. Since fCube is a goal-directed procedure, it can stop as soon as it finds
an open branch while the BDD method must continue until it reaches a fixpoint
before it can determine invalidity. Performance differs on class SYJ206 as well,
but very simple pre-processing techniques trivialise this class.

The initial BDD variable ordering clearly plays a significant role in perfor-
mance, even with dynamic reordering enabled. This is our current focus.

We thank the anonymous reviewers for their comments and suggestions.
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Abstract. In this paper, we present a general framework for modularly
comparing two (imperative) programs that can leverage single-program
verifiers based on automated theorem provers. We formalize (i) mutual
summaries for comparing the summaries of two programs, and (ii) rel-
ative termination to describe conditions under which two programs rel-
atively terminate. The two rules together allow for checking correctness
of interprocedural transformations. We also provide a general framework
for dealing with unstructured control flow (including loops) in this frame-
work. We demonstrate the usefulness and limitations of the framework
for verifying equivalence, compiler optimizations, and interprocedural
transformations.

1 Introduction

The ability to compare two programs statically has applications in various do-
mains. Comparing successive versions of a program for behavioral equivalence
across various refactorings and ensuring that bug fixes and feature additions
do not introduce compatibility issues, is crucial to ensure smooth upgrades [3].
Comparing different versions of a program obtained after various compiler trans-
formations (translation validation) is useful to ensure that the compiler does not
change the semantics of the source program [9,8]. There are two enablers for
program comparison compared to the more general problem of (single) program
verification. First, one of the two programs serves as an implicit specification for
the other program. Second, exploiting simple and automated abstractions for
similar parts of the program can lead to greater automation and scalability.

Although several systems have been developed in recent years for equivalence
checking of imperative programs, there has been a lack of general framework
for comparing programs. Current systems provide solutions to specific instances
of the problem — translation validators focus on intraprocedural loop optimiza-
tions [8], regression verification focuses on simple interprocedural refactorings [3].

In this paper, we describe a framework for comparing programs modularly. We
develop two contracts for comparing two programs: (i) First, we formalize mu-
tual summaries to relate the summaries of two (possibly recursive) procedures.
Mutual summaries naturally generalize postconditions used for single program
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c ∈ {. . . ,−1, 0, 1, . . .}
x ∈ Vars
R ∈ Relations
U ∈ Functions
e ∈ Expr ::= x | c | U(e, . . . , e) | old(e) | 〈e, e〉 | e.1 | e.2
φ ∈ Formula ::= true | false | e relop e | φ ∧ φ | ¬φ | R(e, . . . , e) | ∀u.φ
s ∈ Stmt ::= skip | assert φ | assume φ | x := e | havoc x |

s; s | 〈s, s〉 | s $ s | s �� s | x := call f(e, . . . , e)
p ∈ Proc ::= int f(x : int, . . .) : r { s }

Fig. 1. A simple programming language

verification. (ii) Second, we formalize a relative termination specification that
describes a condition RT(f, h) on inputs of two procedures f and h under which
the procedure h terminates whenever f terminates. Such contracts are useful to
ensure that transformations do not change the terminating executions, and are
important for ensuring that two transformations compose. We then provide a
proof rule for checking mutual summaries and relative termination modularly.
We show that these checks can be encoded using modular (single) program
verifiers, and can be discharged efficiently using modern satisfiability modulo
theories (SMT) solvers [2]. Finally, we provide a general framework for dealing
with unstructured control flow (including loops) in this framework.

We demonstrate the usefulness of our approach on illustrative examples from
equivalence checking, including conditional equivalence checking and translation
validation. We encode proofs of various compiler loop optimizations such as
software pipelining and loop unrolling. Our framework currently lacks the au-
tomation provided for specific forms of equivalence checking (e.g. automatically
synthesizing a class of simulation relations for compiler transformations [8]). On
the other hand, we show examples of comparing two programs with interprocedu-
ral changes for eliminating non-tail recursion (§4.3), monotonic behavior (§3.1),
conditional equivalence (§4.3) and refactorings (§4.3) that were not amenable
to automated theorem provers. We are currently incorporating the ideas in this
paper into SymDiff [5], a language agnostic semantic diff framework that uses
the modular program verifier Boogie [1], and the Z3 SMT solver [2].

2 Background

Figure 1 describes a programming language with recursive procedures and an
assertion language. Loops and unstructured jumps can be translated into this
language (§4.1). The language supports variables (Vars) and various operations
on them. Expressions (Expr) can be variables, constants, or the result of applying
a function U to a list of expressions. The expression old(e) refers to the value
of e at the entry to a procedure. The expressions e.1 and e.2 extract the first
and second components of a pair 〈e1, e2〉. Formula represents Boolean valued
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〈skip, σ〉 ⇓ σ 〈assert φ, σ〉 ⇓ σ 〈g := e, σ〉 ⇓ eval(e[σ/g ]) 〈havoc g , σ〉 ⇓ σ′

φ[σ/g]

〈assume φ, σ〉 ⇓ σ

〈sf , σ〉 ⇓ σ′

where sf is the body of f

〈call f(), σ〉 ⇓ σ′

〈s1, σ1〉 ⇓ σ′
1

〈s2, σ2〉 ⇓ σ′
2

〈〈s1, s2〉, 〈σ1, σ2〉〉 ⇓ 〈σ′
1, σ

′
2〉

〈s1, σ〉 ⇓ σ′

〈s2, σ′〉 ⇓ σ′′

〈s1; s2, σ〉 ⇓ σ′′
(〈s1, σ〉 ⇓ σ′) ∨ (〈s2, σ〉 ⇓ σ′)

〈s1 $ s2, σ〉 ⇓ σ′

〈s1, σ〉 ⇓ σ′

〈s2, σ〉 ⇓ σ′

〈s1 �� s2, σ〉 ⇓ σ′

Fig. 2. Dynamic semantics

expressions and can be the result of relational operations on Expr , Boolean
operations ({∧,¬}), or quantified expressions (∀u.φ).

A state σ of a program at a given program location is a valuation of the
variables in scope, which may include procedure parameters, locals and global
variables. Figure 2 presents big-step dynamic semantics 〈s, σ〉 ⇓ σ′, which says
that statement s executes to completion, transforming the initial state σ into
a new state σ′. For simplicity, the formalizations in the paper (e.g. Figure 2)
assume that the program contains only one variable, a global variable named g.
The value of the global implicitly defines the state in such cases. (Note that g
can hold tuples and arrays, which can be used to encode additional variables,
procedure parameters, and procedure return values.) Most statements in Stmt
are standard, we only describe the non-standard ones here: The assignment
statement is standard (we assume an evaluation function eval (e) that evaluates
closed expressions to values). havoc x scrambles the value of a variable x to
an arbitrary value. s 6 t denotes a demonic non-deterministic choice to either
execute statements in s or t, and can be used to model conditional statements [1].
The statement s � t denotes angelic non-deterministic choice, where the choice
of executing s or t may be made in whichever way is most beneficial to the
verification process. Finally, the statement 〈s1, s2〉 requires that the current state
be a pair value (σ = 〈σ1, σ2〉); if this is satisfied, then 〈s1, s2〉 evaluates s1 in state
σ1 to produce a new state σ′

1, separately evaluates s2 in state σ2 to produce a new
state σ′

2, and then combines the two new states into a single new state that is a
pair value: 〈σ′

1, σ
′
2〉. We do not expect programmers to use the statements s � t

and 〈s1, s2〉 directly; these statements are used for instrumenting programs when
checking relative termination and mutual summaries respectively.

Figure 3 presents axiomatic static semantics for statements s, expressed as
a weakest (liberal) precondition φ = wp(s, φ′). The definition of wp(s, φ′) is
standard except for the 〈s1, s2〉 statement and call statement. The definition of
wp(〈s1, s2〉, φ)

(wp(s1,wp(s2, φ[〈g1, g2〉/g][g/g2])[g2/g][g/g1])[g1/g])[g.1/g1, g.2/g2]
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wp(skip, φ) = φ wp(assert φ′, φ) = φ′∧φ
wp(assume φ′, φ) = φ′ =⇒ φ wp(g := e, φ) = φ[e/g]
wp(havoc g, φ) = ∀g. φ wp(s1; s2, φ) = wp(s1,wp(s2, φ))
wp(s1 $ s2, φ) = wp(s1, φ)∧wp(s2, φ) wp(s1 �� s2, φ) = wp(s1, φ)∨wp(s2, φ)
wp(call f(), φ) = ∀g′. Rf (g, g

′) =⇒ φ[g′/g]

wp(〈s1, s2〉, φ) = (wp(s1,wp(s2, φ[〈g1, g2〉/g][g/g2])[g2/g][g/g1])[g1/g])[g.1/g1, g.2/g2]

Fig. 3. Static semantics

is long but not particularly deep; intuitively, it just extracts the two components
of g.1 and g.2 the input state g into temporary variables g1 and g2, and then
shuffles these values in and out of g to capture the effects of evaluating s1 on g1
and s2 on g2. Similarly, the effect of a call to a procedure f is simply replaced
by an uninterpreted relation Rf (g, g

′),

wp(call f(), φ) = ∀g′. Rf (g, g
′) =⇒ φ[g′/g]

where g is the state before the call and g′ is the state after the call completes. We
often use R =

⋃
f{Rf} to refer to set of relation symbols over all the procedures.

The following proposition connects the dynamic and static semantics:

Proposition 1. (Basic Soundness) If 〈s, σ〉 ⇓ σ′ and wp(s, φ)[old(g)/g] is valid
and no symbol in R appears free in φ, then φ[σ/old(g), σ′/g] is valid.

In the next section, we will illustrate how the mutual summaries and the relative
termination contracts constrain the relation Rf for a procedure.

3 Mutual Summaries and Relative Termination

A program P consists of a set of procedures {f1, . . . , fk}, identified by their
names. We let f, h, fi, hi range over procedure names. The set P contains a
union of procedures from two versions of a program. We use the notation a

.
=

λf, h. φ(f, h) to be an indexed (by a pair of procedures) set of formulas such
that φ(f, h) denotes the formula for the pair (f, h). We extend this notation to
refer to an indexed set of expressions, constants, sets of states, etc.

3.1 Mutual Summaries

For any pair of procedures f ∈ P and h ∈ P , a mutual summary MS (f, h) is a
relation over the input and output states of f and h. It is expressed as a formula
over two copies of the input and the output variables. In general, f and h may
have different sets of parameters and return values. In the case where f and h
both take a single parameter x, return a single return value r, and access a single
global variable g, the relation looks like:

λx1, x2, g1, g2, r1, r2, g
′
1, g

′
2. φ(x1, x2, g1, g2, r1, r2, g

′
1, g

′
2)
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int g;
void Foo1(int x){

if (x < 100){
g := g + x;
Foo1(x + 1);

}
}

void Foo2(int x){
if (x < 100){

g := g + 2*x;
Foo2(x + 1);

}
}

Fig. 4. Running example

where xi, gi, ri and g′i refer to the state of the parameters, input globals, return
and the output globals for the i-th procedure. For brevity, we will identify a
mutual summary directly with φ(x1, x2, g1, g2, r1, r2, g

′
1, g

′
2), instead of the rela-

tion (that is, avoid the λ). The semantics from Figures 2 and 3 contain just one
variable g, so we write (using a curried function that accepts a pair of pre-states
and a pair of post-states):

λg1, g2.λg
′
1, g

′
2. φ(g1, g2, g

′
1, g

′
2)

Definition 1 (mutual summaries). For procedures f and h with bodies sf
and sh, MS (f, h) holds if for every tuple of states (σf , σ

′
f , σh, σ

′
h) such that

〈sf , σf 〉 ⇓ σ′
f and 〈sh, σh〉 ⇓ σ′

h, MS (f, h)〈σf , σh〉〈σ′
f , σ

′
h〉 evaluates to true.

Example 1. Consider the two programs in Figure 4. Consider the following mu-
tual summary MS (Foo1, Foo2) for this pair of procedures:

(x1 = x2 ∧ x1 ≥ 0 ∧ g1 ≤ g2) =⇒ (g′1 ≤ g′2)

The summary states that if the procedures Foo1 and Foo2 are executed in two
states where the respective parameters are equal and greater than 0, and if the
value of the global at entry to Foo1 is less than or equal to the value of the
global at entry to Foo2, and if both procedures terminate, then the value of the
global at exit from Foo1 will be less than or equal to the value of the global at
exist from Foo2.

3.2 Relative Termination

One difficulty with using mutual summaries is that they do not compose, since
they only talk about partial correctness. Consider three procedures A1, A2 and
A3 and mutual summaries MS (A1, A2) and MS (A2, A3) that express that A1 and
A2 (respectively A2 and A3) are equivalent when both procedures terminate on an
input. We cannot conclude that A1 and A3 are equivalent when both procedures
terminate on an input, since A2 may not terminate on any input.

The relative termination specification expresses the circumstances in which
f ’s termination implies h’s termination. For any pair of procedures f ∈ P and
h ∈ P , a relative termination specification RT(f, h) is a relation over the input
states of f and h. It is expressed as a formula over two copies of the input
variables. The relative termination specification RT(f, h) is a relation
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AXIOMS = AXIOMSMS∧AXIOMSRT

AXIOMSMS = ∀f1 , f2 , σ1 , σ
′
1 , σ2 , σ

′
2 .

Rf1(σ1, σ
′
1)∧Rf2(σ2, σ

′
2) =⇒ MS(f1, f2)〈σ1, σ2〉〈σ′

1, σ
′
2〉

AXIOMSRT = ∀f1 , f2 , σ1 , σ
′
1 , σ2 .

Rf1(σ1, σ
′
1)∧RT (f1, f2)〈σ1, σ2〉 =⇒ ∃σ′

2. Rf2(σ2, σ
′
2)

CONDITIONS =
R does not occur free in MS , and
R does not occur free in RT , and
∀f1, f2.
(AXIOMS =⇒ wp(〈sf1 , sf2 〉,MS(f1 , f2 ) old(g) g)[old(g)/g ])∧
(AXIOMS∧RT (f1 , f2 ) g =⇒ wp(〈sf1 , at(sf2 )〉, true))

Fig. 5. Conditions and axioms

λx1, x2, g1, g2. φ(x1, x2, g1, g2)

where xi and gi refer to the state of the parameters and input globals for the i-th
procedure. In general, f and h may have different parameters. For the semantics
from Figures 2 and 3, where there are no parameters, we write:

λg1, g2. φ(g1, g2)

Definition 2 (relative termination). For procedures f and h with bodies sf
and sh, RT (f, h) holds if for every tuple of states (σf , σh) such that there exists
a σ′

f such that 〈sf , σf 〉 ⇓ σ′
f and RT (f, h)〈σf , σh〉 is true, there is some σ′

h such
that 〈sh, σh〉 ⇓ σ′

h.

Note that we do not insist that every execution from a pre-state eventually
terminates, but rather at least one. For the example in Figure 4, although
RT (Foo1, Foo2) = true is the weakest condition for relative termination (since
both Foo1 and Foo2 always terminate), proving such a relative termination spec-
ification requires reasoning about the two programs separately using ranking
functions. We later show that a stronger condition RT (Foo1, Foo2) = x1 ≤ x2

can be proved modularly without any other proof rules.

3.3 Modular Checking

We now describe a method to decompose the checking that a program P satisfies
a set of mutual summaries MS and relative termination specifications RT .

Figure 5 expresses the assumptions in AXIOMS and the checks for guar-
anteeing the mutual summaries and relative termination as a condition in
CONDITIONS that must be satisfied. The AXIOMS consists of assumptions for
MS and RT specifications respectively. The AXIOMSMS assumes MS (f1, f2) on
the pre-post states of f1 and f2. The AXIOMSRT assumes f2 terminates when-
ever it starts from a state σ2 that is related (by RT (f1, f2)) to a terminating
input state σ1 of f1 (we defer discussion of at() until we explain AXIOMSRT ).
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The check for mutual summaries is given by:

AXIOMS =⇒ wp(〈sf , sh〉,MS (f , h) old(g) g)[old(g)/g]

where sf and sh are the bodies of the procedures f and h. Intuitively, this
formula prescribes a sequence of steps for checking that MS (f, h) holds. First,
we assume AXIOMS holds. Second, we assign the global state variable g an
initial value of old(g). Third, we symbolically execute the statement 〈sf , sh〉,
which assigns a new state to the variable g. (This has the effect of executing sf
on g.1 and separately executing sg on g.2.) Finally, we assert that in this new
state g, relative to the old state old(g), the mutual summary MS (f, h) holds.
Observe that this is analogous to modular (single) program verification, where
we symbolically execute a single procedure body sf and than assert that f ’s
postcondition holds. The key novelty in mutual summaries is that the checking
process executes two procedure bodies, and asserts a summary that can mention
the state of both procedures.

The checking procedure ensures that if sf and sg execute on concrete states
σf and σg, then the mutual summary MS (f, h) relates the new states σ′

f and σ′
g

to the old states σf and σg:

Theorem 1. For procedures f and h with bodies sf and sh, if CONDITIONS
is satisfied then MS (f, h) holds; that is, if 〈sf , σf 〉 ⇓ σ′

f and 〈sh, σh〉 ⇓ σ′
h hold

for any σf , σ
′
f , σh, σ

′
h, then MS (f, h)〈σf , σh〉〈σ′

f , σ
′
h〉 is true.

The procedure bodies sf and sh may contain call statements. For example, the
procedure bodies in Figure 4 contain recursive calls to the procedures. Sup-
pose that procedure body sf contains a call statement call f ′() and procedure
body sh contains a call statement call h′(). The weakest precondition (Figure 3)
inserts an assumption Rf ′(gf , g

′
f ), where gf and g′f are the states before and

after the call f ′() statement. Similarly, the weakest precondition inserts an as-
sumption Rh′(gh, g

′
h) for call h′(). These assumption may trigger AXIOMSMS

(Figure 5), which then produces an assumption about MS (f, h)〈gf , gh〉〈g′f , g′h〉.
This assumption may be used to help prove the weakest precondition for 〈sf , sh〉,
so that mutual summaries for recursive procedures are established inductively,
assuming mutual summaries for callees while checking summaries for callers. Ob-
serve that this is analogous to modular (single) program verification, where we
assume the postconditions of callees while checking the contracts in the caller.

We now show how RT are checked modularly. Figure 5 imposes the following
condition for guaranteeing properties of relative termination:

AXIOMS ∧ RT (f , h) g =⇒ wp(〈sf , at(sh)〉, true)

Essentially, the formula requires that the weakest precondition of 〈sf , at(sh)〉 be
implied by the axioms and the termination condition RT (f, h). Figure 6 defines
at(sh) as a transformation on sh that include inserting an assert statement before
each call in sh, and converting each assume statement in sh into an assertion.
The purpose of checking this is to verify that all the termination assertions in
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at(skip) = skip
at(assert φ) = assert φ
at(assume φ) = assert φ
at(g := e) = g := e
at(havoc g) = havoc g

at(s1 ; s2 ) = at(s1 ); at(s2 )
at(〈s1 , s2 〉) = assert false
at(s1 $ s2 ) = at(s1 ) �� at(s2 )
at(s1 �� s2 ) = assert false
at(call f ()) = assert (∃g ′. Rf (g , g

′)); call f ()

Fig. 6. Assertions for checking relative termination. at(s) replaces a statement with a
new statement.

at(sh) hold, where each termination assertion verifies that a potentially non-
terminating statement actually terminates. In particular, call statements may
fail to terminate and assume statements may block. If these inserted assertions
are satisfied, then sh is guaranteed to terminate:

Theorem 2. For procedures f and h with bodies sf and sh, if CONDITIONS
is satisfied then RT (f, h) holds; that is, if 〈sf , σf 〉 ⇓ σ′

f and RT (f, h)〈σf , σh〉 is
valid for any σf , σ

′
f , σh, then there is some σ′

h such that 〈sh, σh〉 ⇓ σ′
h.

As with mutual summaries, relative termination is assumed for callees when
checking termination of the callers, so that relative termination for recursive
procedures can be established inductively.

Given these rules, one can prove that the MS (Foo1, Foo2) = (x1 = x2 ∧ x1 ≥
0 ∧ g1 ≤ g2) =⇒ (g′1 ≤ g′2) holds for Figure 4. One can similarly prove that
RT (Foo1, Foo2) = x1 ≤ x2 holds, assuming it holds for nested pairs of calls.
In both cases, we use the fact that whenever x1 ≤ x2, Foo2 cannot execute the
nested recursive call to itself without Foo1 calling itself. Although the condition
RT (Foo1, Foo2) = x1 ≥ x2 holds, it cannot be proved modularly using only these
proof rules. This is expected, as these rules are only sound, but not complete.

3.4 Proof Sketch

We have proven the main theorems (Theorem 1 and Theorem 2).1 The key
lemma is a proof that the axioms in Figure 5 are valid.

Lemma 1. (Full Soundness) If CONDITIONS is satisfied and 〈s, σ〉 ⇓ σ′ and
(AXIOMS =⇒ wp(s , φ)[old(g)/g]) is valid and no symbol in R appears free in
φ, then φ[σ/old(g), σ′/g] is valid.

The main challenge in the proof of this lemma is that the validity of the ax-
ioms depend on the conditions in Figure 5, which in turn mention the axioms.
To break this circularity, we build up the axiom validity inductively on the call
depth (maximum number of nested calls) in an execution 〈s, σ〉 ⇓ σ′. The base
case uses empty relations Rf1 = ∅, . . . , Rfk = ∅, meaning that there are no calls

1 Detailed proofs are available off the extended technical report page at
http://research.microsoft.com/apps/pubs/?id=154989.
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void MutualCheck〈f, h〉
(xf : int, xh : int){
chkTerm := false;
gf := g;
inline rf := call f(xf );
g′f := g;
havoc g;
gh := g;
inline rh := call h(xh);
g′h := g;
assert

MS(f, h)(xf , xh, gf , gh,
rf , rh, g

′
f , g

′
h);

}

void RelTermCheck〈f, h〉
(xf : int, xh : int){
gf := g;
chkTerm := false;
inline rf := call f(xf );
g′f := g;
havoc g;
gh := g;
assume

RT(f, h)(xf , xh,
gf , gh);

chkTerm := true;
inline rh := call h(xh);
g′h := g;

}

axiom(
∀x1, x2, g1, g2, r1, r2, g

′
1, g

′
2.

{Rf (x1, g1, r1, g
′
1),

Rh (x2, g2, r2, g
′
2)}

(Rf (x1, g1, r1, g
′
1)∧

Rh (x2, g2, r2, g
′
2))

=⇒
MS(f, h)(x1, x2, g1, g2,
r1, r2, g

′
1, g

′
2))

axiom(
∀x1, x2, g1, g2.
{RT(f, h)(x1, x2, g1, g2)}
(RT(f, h)(x1, x2, g1, g2)
∧Rf (x1, g1, r1, g

′
1))

=⇒
(∃r2, ∃g′

2. Rh(x2, g2, r2, g
′
2)))

free post Rf (x, old(g), r, g)
pre chkTerm =⇒

∃r, ∃g′.Rf (x, g, r, g
′)

modifies g
int f(x : int) : r;

Fig. 7. Encoding the rules into a modular program verifier Boogie

(call depth 0). The inductive case assumes relations Rf1 , . . . , Rfk for call depth
n, and increases the membership of these relations to include executions with
call depth n+ 1.

3.5 Encoding in Boogie

By exploiting the close analogy between mutual summaries, relative termina-
tion, and traditional modular (single) program verification, we can use auto-
mated single-program verification tools like Boogie to check mutual summaries
and relative termination for a subset of programs described in Figure 1. We re-
strict ourselves to the case of programs that do not contain any angelic choice
statements (s � t), and the only use of a demonic choice (s 6 t) or an as-
sume statement in the program syntax comes from the modeling of conditional
statements. These restrictions along with absence of loops ensure that the only
source of non-termination comes from nested procedure calls. Figure 7 shows an
encoding of the axioms and conditions from Figure 5.

First, we define the predicate Rf for each procedure f over the input and
output symbols, and add it as a “free” postcondition for f . The “free” post-
conditions of a procedure are unchecked postconditions that are only assumed
at call sites, but never asserted. The precondition (guarded by a ghost global
variable chkTerm) captures the assertion for checking relative termination.

Second, we define a procedure MutualCheck〈f, h〉 that checks a mutual
summary MS (f, h). Note that the global variable chkTerm is set to false — this
has the effect of turning off the relative termination assertions at call-sites. We
write “inline r := call f(x)” to inline the body of f (upto calls). The assert checks
the mutual summary MS (f, h) after executing f and h on their copies of globals.
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Third, we define a procedure RelTermCheck〈f, h〉 that defines how to
check the relative termination of h with respect to f under RT(f, h). The set-
ting chkTerm = true enables assertions of termination before potentially non-
terminating statements while checking the body of h.

Finally, the axiom(.) encode the axioms in AXIOMS . Each axiom has a set of
triggers that control when the axioms are instantiated [2]. The triggers represent
a list of expressions inside {.}, containing all the bound variables in a quantified
axiom.

4 Applications

In this section, we show the application of our approach towards various examples
of intraprocedural and interprocedural transformations.2

4.1 Loops and Unstructured Control

In this section, we provide a general framework for translating arbitrary un-
structured control flow graphs (including loops) into recursive procedures. Un-
structured control flow is fairly common when dealing with low-level programs
such as binaries. The general scheme requires that certain locations in a program
be decorated as special function labels (FLABEL). Given a program where every
cycle passes through at least one function label, the following simple algorithm
transforms this program into a set of mutually recursive procedures. First, each
function label becomes a procedure, whose parameters are all local variables and
procedure parameters in scope. Second, the body for each procedure is the col-
lection of statements reachable from that procedure’s function label via paths
that do not pass through a function label. Finally, each goto statement to a func-
tion label (or implicit fall-through to a function label) becomes a tail-recursive
call to the procedure for that function label. Notice that in the second step, the
same statements might be included separately in different procedures, if those
statements are reachable from different function labels. In the worst case, each
statement could be included in each generated procedure, so the worst-case size
of the resulting program is the product of the original program size and the
number of function labels. Figure 8 shows an example of such loop extraction.

Although the general scheme allows the user flexibility in the choice of FLABELS
to eliminate loops, one can automate the extraction for structured programs. For
such programs, it suffices to identify the set of loop heads as FLABEL. We have
implemented a variant of this scheme in Boogie to automate the translation of
structured loops into tail-recursive procedures. 3 For the examples in this paper,
we however explicitly mention the set of FLABEL locations.

2 Detailed Boogie examples used in this paper are available off the extended technical
report page at http://research.microsoft.com/apps/pubs/?id=154989.

3 The exact Boogie options to be specified are ‘‘/printInstrumented /extractLoops

/deterministicExtractLoops ’’.
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4.2 Intraprocedural Translation Validation

This section describes the use of mutual summaries to perform (intraprocedural)
translation validation [9], focusing on the validation of compiler loop optimiza-
tions. The validation consists of three steps: (1) eliminating unstructured control
(including loops), (2) providing mutual summaries, (3) user-specified inlining of
calls to recursive procedures zero or more times to express the effect of loop
optimizations such as loop unrolling.

In describing the examples in this section, we follow the approach by Kundu
et al. [4] to express parameterized versions of programs, where the effect of a
loop-free and call-free block of statements is modeled as an application of an
uninterpreted function. The type of the globals is an uninterpreted type T, and
there is a single global g of this type representing the global state unless otherwise
noted.

void A(){
i := 0;

While1:
if(i < E(n)){

g := S1(g,i);
g := S2(g,i);
i := i + 1;

L1: //FLABEL
goto While1;

}
}

void B(){
i := 0;
g := S1(g,i);

While2:
if(i < E(n)-1){

g := S2(g,i);
i := i + 1;

L2: //FLABEL
g := S1(g,i);
goto While2;

}
g := S2(g,i);
i := i + 1;

}

(a)

void A’(){
i := 0;
if(i < E(n)){

g := S1(g,i);
g := S2(g,i);
i := i + 1;
r := call L1(i);

}
}

int L1(int i){
i’ := i;
if(i’ < E(n)){

g := S1(g,i’);
g := S2(g,i’);
i’ := i’ + 1;
r := call L1(i’);
return r;

}
}

(b)

void B’(){
i := 0;
g := S1(g,i);
if(i < E(n)-1){

g := S2(g,i);
i := i + 1;
r := call L2(i);
return ;

}
g := S2(g,i);
i := i + 1;

}

int L2(int i){
i’ := i;
g := S1(g,i’);
if(i’ < E(n)-1){

g := S2(g,i’);
i’ := i’ + 1;
i’ := call L2(i’);
return i’;

}
g := S2(g,i’);
i’ := i’ + 1;
return i’;

}

(c)

Fig. 8. Example of software pipelining. (a) Input programs and (b,c) programs after
loop extraction for A and B respectively.

Software Pipelining. Figure 8 describes the encoding of software pipelining,
where E, S1 and S2 represent uninterpreted predicates or functions. The op-
timization can be expressed as a composition of two transformations [4] (a)
transformation from A to B, and (b) replacing the sequence of statements

g := S2(g, i); i := i+ 1; g := S1(g, i);
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in B with

g := S1(g, i+ 1); g := S2(g, i); i := i+ 1

We only describe the proof of the transformation from A to B. The latter fol-
lows under the assumption that the call-free statements g := S1(g,i+1) and
g := S2(g,i) commute. Although it is easy to see that the second transforma-
tion cannot affect termination, a rigorous proof of the composed transformation
would need the use of relative termination (omitted for brevity).

Apart from the use of FLABEL to extract loops into recursive procedures, the
interesting part of the proof is in the following mutual summaries used to express
the relationships between the two versions:

– MS (A′, B′)
.
= (E(n) > 0 ∧ g1 = g2) =⇒ g′1 = g′2

– MS (L1, L2)
.
= (E(n) > 0 ∧ i1 = i2 ∧ g1 = g2 ∧ i2 < E(n))

=⇒ (g′1 = g′2 ∧ r1 = r2)

– MS (L1, L1)
.
= i1 ≥ E(n) =⇒ (g′1 = g1 ∧ r1 = i1)

The constraint E(n) > 0 present in the summaries is the condition under which
the transformation is sound. The constraint i2 < E(n) is a precondition for
L2 that is expressed as an antecedent in the mutual summary for MS (L1, L2).
Finally, the MS (L1, L1) is a postcondition for L1 that is required to reason about
the last iteration of the loop in L1 — it expresses that when input i ≥ E(n), then
L1 does not transform the state and returns the input i. We believe that only
the last postcondition is the additional price paid for using mutual summaries
instead of traditional simulation relations in earlier works [4].

Loop Unrolling. Figure 9 describes the example of loop unrolling, where B

performs two iterations of the loop whenever i + 1 < E(n). The interesting
part for the proof is that the body of extracted procedure L1 has to be inlined
once inside itself to match it up with L2. We omit the resulting mutual summaries
that express (A′, B′) and (L1, L2) are equivalent (modulo termination).

void A(){
i := 0;

L1: //FLABEL
if(i < E(n)){

g := S1(g,i);
i := i + 1;
goto L1;

}
}

void B(){
i := 0;

L2; //FLABEL
if(i + 1 < E(n)){

g := S1(g,i); i := i + 1;
g := S1(g,i); i := i + 1;
goto L2;

}
if(i < E(n)){

g := S1(g,i); i := i + 1;
}

}

Fig. 9. Example of loop unrolling. Input programs A and B.
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T a, b; //globals
void A(){

i := 0;
L1: //FLABEL

if(i < E(n)){
a := S1(a,i);
if (F(b)){

a := S2(a,i);
}
i := i + 1;
goto L1;

}
}

void B(){
i := 0;
if (F(b)){

L2: //FLABEL
if(i < E(n)){

a := S1(a,i); a := S2(a,i); i := i + 1;
goto L2;

}
} else {

L3: //FLABEL
if(i < E(n)){

a := S1(a,i); i := i + 1;
goto L3;

}
}

}

Fig. 10. Example of loop unswitching

Loop Unswitching. Figure 10 describes the example of loop unswitching. Here
the loop in A (at L1) is split into two loops in B since the condition F(b) does
not change in the loop. The mutual summaries for this proof are:

– MS (A′, B′)
.
= (a1 = a2 ∧ b1 = b2) =⇒ a′1 = a′2

– MS (L1, L2)
.
= (F (b1) ∧ i1 = i2 ∧ a1 = a2 ∧ b1 = b2) =⇒ (a′1 = a′2 ∧ r1 = r2)

– MS (L1, L3)
.
= (¬F (b1) ∧ i1 = i2 ∧ a1 = a2 ∧ b1 = b2) =⇒ (a′1 = a′2 ∧ r1 = r2)

The interesting part of the mutual summaries is the presence of the conditions
under which the loop L1 matches with L2 or L3. This is also one of the instances
where the mutual summaries relate one procedure (L1) to multiple procedures
(L2 and L3).

Other Compiler Optimizations. In addition to the optimizations shown in
this section, we have been able to prove many other examples of loop optimiza-
tions handled by previous works [13,4]. The notable exceptions are transforma-
tions such as loop reversal and loop interchange that may change the order of
updates to an array. Previous works have used a special Permute rule [13],
that tries to permute the order of updates in a loop. We are currently inves-
tigating encoding this rule using mutual summaries and relative termination.
Nevertheless, our approach already handles many examples of interprocedural
transformations that are beyond the ability the Permute rule (§ 4.3).

4.3 Interprocedural Transformations

In this section, we show the applications of our approach towards instances of
interprocedural transformation.

Compiler Optimizations. Our approach can be used to prove various com-
piler optimizations that require global (or interprocedural) analysis. The proof
of tail recursion elimination can be done easily after the loop is extracted into
a tail-recursive procedure using FLABEL. The proof for inlining will be similar
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T a, b; //globals
void A(){

call B(0);
}
void B(int i){

if(i < E(n)){
call B(i+1);
a := S1(a,i);
b := S2(b,i);

}
}

void C(){
call D(0); call E(0);

}
void D(int i){
if(i < E(n)){

call D(i+1); a := S1(a,i);
}

}
void E(int i){
if(i < E(n)){

call E(i+1); b := S2(b,i);
}

}

Fig. 11. Example of restricted interprocedural loop fission

to the proof of loop unrolling discussed in earlier section. Similarly, global con-
stant propagation can be encoded using mutual summaries that express that a
particular global or return variable has a constant value.

In addition to common compiler optimizations, Figure 11 demonstrates a
transformation of a single non-tail recursive procedure into two non-tail recur-
sive procedures (corresponds to a restricted interprocedural version of loop fis-
sion optimization). This can be handled using mutual summaries (omitted).

f1(n) {
if (n == 0) {

return 1;
} else {

return
n * f1(n - 1);

}
}

f2(n, a) {
if (n == 0) {

return a;
} else {

return
f2(n - 1, a * n);

}
}

Fig. 12. Example for tail vs. non-tail recursive
factorial

Figure 12 shows two implemen-
tations of factorial, one tail re-
cursive and one not tail recursive.
We can prove that these compute
the same result (f1(n) = f2(n, 1))
using the following mutual sum-
mary: MS (f1, f2)

.
= (n1 =

n2) =⇒ (r1 ∗ a2 = r2).

Conditional Equivalence. Bug
fixes and feature additions result

in two versions of a program that are behaviorally equivalent only under a subset
of inputs. We show that mutual summaries can be used for showing conditional
equivalence even for recursive procedures. Figure 13 contains two versions of a
procedure f (denoted as f1 and f2 respectively) that recursively evaluates an
expression rooted at the argument x. The new version differs in functionality
when an additional argument u is provided that indicates “unsigned” arithmetic
instead of the signed arithmetic represented by {+,-}. The following mutual
summary MS (f1, f2) validates that the two procedures agree when u is off:
(x1 = x2 ∧ u = 0) =⇒ r1 = r2.

Most examples in this Section have different set of inputs for the two versions,
and thus not amenable to be abstracted with a common uninterpreted func-
tion [3]. Let us briefly comment on the relationship with previous works that use
identical uninterpreted functions to abstract equivalent procedures [8,3]. Using
an uninterpreted function (instead of mutual summaries) to represent equivalent
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int f1(int x){
if (Op[x] = 0)

return Val[x];
a := f1(A[x]);
b := f1(B[x]);
if (Op[x] = 1)

return a + b;
else if (Op[x] = 2)

return a - b;
else

return 0;
}

int f2(int x, int u){
if (Op[x] = 0)

return Val[x];
a := f2(A[x], u);
b := f2(B[x], u);
if (Op[x] = 1){

if (u) return uAdd(a,b);
else return a + b;

} else if (Op[x] = 2){
if (u) return uSub(a,b);
else return a - b;

} else return 0;
}

Fig. 13. Example for feature addition and conditional equivalence

void D(ref x){
d[x] := U(d[x]);

}
void A(ref x){

if (x != null){
call A(next[x]);
call D(x);

}
}
void B(ref x){

if (x != null){
call D(x);
call B(next[x]);

}
}

(a)

void AD(x,y){
inline call A(x);
call D(y);

}
void DA(x,y){

call D(y);
inline call A(x);

}
void DD(x,y){

inline call D(x);
inline call D(y);

}

(b)

Mutual summaries (A vs. B)
MS(A, B) : (x1 = x2 ∧ d1 = d2) =⇒ d′

1 = d′
2

MS(A, A) : (x1 = x2 ∧ d1 = d2) =⇒ d′
1 = d′

2
MS(D, D) : (x1 = x2 ∧ d1 = d2) =⇒ d′

1 = d′
2

MS(AD, DA) : (x1 = x2 ∧ y1 = y2 ∧ d1 = d2) =⇒
d′
1 = d′

2
MS(DA, AD) : (x1 = x2 ∧ y1 = y2 ∧ d1 = d2) =⇒
d′
1 = d′

2
MS(DD, DD) : (x1 = x2 ∧ y1 = y2 ∧ d1 = d2) =⇒
d′
1 = d′

2

Relative termination conditions (A vs. B)
RT(AD, DA) : (x1 = x2 ∧ y1 = y2 ∧ d1 = d2)
RT(DA, AD) : (x1 = x2 ∧ y1 = y2 ∧ d1 = d2)
RT(DD, DD) : (x1 = x2 ∧ y1 = y2 ∧ d1 = d2)
(c)

Fig. 14. Example of list traversal transformation. (a) Two different implementations
A, and B of list traversal, (b) auxiliary procedures introduced during the proof, (c) MS
and RT used to prove A and B equivalent.

procedures is an optimization for the purpose of equivalence checking; it avoids
introducing the implication ((x1 = x2 ∧ g1 = g2) =⇒ r1 = r2 ∧ g′1 = g′2) explic-
itly in the formula to the theorem prover. However, the use of an uninterpreted
function is restricted to modeling deterministic procedures, and only works when
compared procedures have identical sets of arguments and globals.

List Traversal. Finally, we describe an example that requires careful interplay
between mutual summary and relative termination specifications and well be-
yond the realm of present approaches using automated provers. Consider the
two versions A and B of a program in Figure 14. Each version traverses elements
in a list following the next field and updates the data field by an uninterpreted
function U in the procedure D. The procedure B is a tail-recursive version of A.
The transformation can be applied (either manually or by a compiler) to opti-
mize the performance of the implementation. Preservation of semantics includes
showing that the two versions diverge on the same inputs; it is easy to see that
neither program terminates when the input is a cyclic list.
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Although the change from A to B just swaps the order of calls to D and the
recursive call, it has a global impact. Figure 15 demonstrates that the order of
invoking the procedure D differs when A and B are invoked on the same input
u0

.
= x, u1

.
= next[u0], . . . , uk+1

.
= next[uk]. This makes proving the semantic

equivalence of such transformations non-trivial. An intuition to understand the
transformation from A to B is to think of creating intermediate programs that
progressively transform an execution of A to an execution of B. Figure 15 shows
the execution of such an intermediate program T that follows B’s execution and
then follows A’s executions.

D(u0) 

D(u1) 

D(uk) 

D(uk+1) 

A(u0) 

D(u0) 

D(u1) 

D(uk) 

D(uk+1) 

B(u0) 

D(uk) 

D(uk+1) 

D(u0) 

D(u1) 

T(u0) 

Fig. 15. Executions of different procedures over
time

To handle such transforma-
tions, we need to provide a
specification that allows com-
muting the calls to A and D.
Such a specification can be
obtained by introducing com-
posed procedures AD, DA (Fig-
ure 14(b)) and writing mu-
tual summary specifications
on them. The procedure AD

invokes A followed by D, and
inlines the body (not nested
callees) of A. The mutual
summaries MS (AD, DA) and
MS (DA, AD) (Figure 14(c)) ex-
press the fact that the sum-

maries of AD and DA are equal on any input — in other words, A and D commute.
To leverage these auxiliary composed procedures in the proof, we have to

relate the summary relations of these procedures (e.g. RAD) with that of the un-
derlying procedures (RA and RD). For a procedure fh composed of f and h, we
automatically introduce the following axiom, which says that fh has a termi-
nating execution if and only if f and h have a terminating execution through
some intermediate global value g2:

∀x1, x2, g1, g
′
1. Rfh(x1, x2, g1, g

′
1)⇐⇒ (∃g2. Rf (x1, g1, g2) ∧ Rh(x2, g2, g

′
1))

For this axiom to be sound, we require that at least one of f and h be inlined
in fh. Although we do not yet have a formal proof of soundness for this axiom,
we require the inlining for the axiom to fit within the inductive framework of
Section 3.4. Intuitively, before the inductive step adds (x1, x2, g1, g

′
1) to Rfh , the

proof considers Rfh(x1, x2, g1, g
′
1) to be false, and thus requires that at least one

of Rf (x1, g1, g2) and Rh(x2, g2, g
′
1) be false for the axiom to hold, meaning that

there cannot be calls in fh that introduce both the assumptions Rf (x1, g1, g2)
and Rh(x2, g2, g

′
1).

We need similar specifications for showing that D commutes with itself. Fig-
ure 14(c) contains all the mutual summary specification for this proof. The mu-
tual summaries such as MS (A, A) are needed to express that A is deterministic,
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a requirement to be able to prove the commute mutual summaries described
above. Figure 14(c) also lists the relative termination conditions that were spec-
ified for this proof. Given the above mutual summaries and relative termination
conditions (all of which express equality of inputs and outputs), we can show
that all these specification are true to establish that if A and B start out with
the same inputs and A terminates, then so does B with equal outputs.

5 Related Work

Our work is most closely related to work on proving equivalence in the context
of compiler validation. Translation validation [9] is an approach for validating
compilers by ensuring that each pair of source and target programs produced by
the compiler are semantically equivalent. Necula [8] provided techniques to in-
fer simulation relations by performing a lock-step analysis of the two programs,
that generates simulation relations for simple compiler optimizations. Mutual
summaries can capture such proofs that are based on establishing simulation
relations. Zuck et al. [13] provide a rule Permute that allows proving more
complex optimizations that permute order of execution of loops (e.g. in loop
reversal optimization). Tate et al. [11] provide an approach called equality sat-
uration where an equality saturated program expression graph (PEG) can be
used to capture equivalent programs. Tristan et al [12] instead provide rules
for normalizing PEGs to perform translation validation. These approaches are
automated and have been applied on various production compilers. Various do-
main specific languages (Cobalt [6], PEC [4]) have been devised to express com-
piler transformations as rewrite rules in a language. However, these approaches
cannot validate interprocedural transformations (§ 4.3). Finally, the CompCert
project [7] uses interactive theorem provers to provide an end-to-end correct-
ness guarantee of semantic preservation by a compiler; this results in greater
flexibility but less automation than approaches based on automated theorem
provers. Pnueli and Zaks [10] generalize simulation-relation based translation
validation to check simple interprocedural optimizations such as tail-recursion
elimination, global constant propagation and inlining. However, program trans-
formations such as translating a non tail-recursive procedure to its tail-recursive
counterparts (Figure 14, Figure 12) will not be possible in this approach. Godlin
and Strichman [3] describe automated methods for checking equivalence and
mutual termination (under equal inputs) of mutually recursive procedures using
uninterpreted functions as summaries. Our approach is not limited to proving
equivalence but can be used to compare arbitrary mutual summaries. Mutual
summaries provide more extensibility (at the cost of automation) by relating the
summaries of two procedures with an arbitrary relation. This allows us to not
only prove intraprocedural optimizations (that are not possible in [3]), but also
new examples of interprocedural transformations (§4.3), including those that
cannot be proved earlier (§6 in [3]). Relative termination allows reasoning about
termination under specific conditions and generalizes the earlier work of checking
mutual termination [3].
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6 Conclusion

In this paper, we provided a general framework for comparing programs using
program verifiers and automated theorem provers. We are currently working on
extending the framework to handle more complex program transformations (e.g.
the Permute rule [13]), and automating the generation of mutual summary
and the relative termination specifications. For most of the simple equality spec-
ifications used in this paper, we expect to leverage existing invariant synthesis
techniques (e.g. predicate abstraction) to infer a majority of these specifications.
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agnostic semantic diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012)

6. Lerner, S., Millstein, T.D., Chambers, C.: Automatically proving the correctness
of compiler optimizations. In: Programming Language Design and Implementation
(PLDI 2003), pp. 220–231 (2003)

7. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Principles of Programming Languages (POPL 2006), pp.
42–54 (2006)

8. Necula, G.C.: Translation validation for an optimizing compiler. In: Programming
Language Design and Implementation (PLDI 2000), pp. 83–94 (2000)

9. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

10. Pnueli, A., Zaks, A.: Validation of interprocedural optimizations. In: Compiler
Optimization Meets Compiler Verification (COCV 2008) (2008)

11. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new approach to
optimization. In: Principles of Programming Languages (POPL 2009), pp. 264–276
(2009)

12. Tristan, J., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-
idation for llvm. In: Programming Language Design and Implementation (PLDI
2011), pp. 295–305 (2011)

13. Zuck, L.D., Pnueli, A., Goldberg, B., Barrett, C.W., Fang, Y., Hu, Y.: Transla-
tion and run-time validation of loop transformations. Formal Methods in System
Design 27(3), 335–360 (2005)



Reuse in Software Verification

by Abstract Method Calls�
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Abstract. A major obstacle facing adoption of formal software verifica-
tion is the difficulty to track changes in the target code and to accomo-
date them in specifications and in verification arguments. We introduce
abstract method calls, a new verification rule for method calls that can be
used in most contract-based verification settings. By combining abstract
method calls, structured reuse in specification contracts, and caching of
verification conditions, it is possible to detect reusability of contracts au-
tomatically via first-order reasoning. This is the basis for a verification
framework that is able to deal with code undergoing frequent changes.

1 Introduction

Why is formal verification of software so much slower in industrial uptake than
hardware verification? After all, it is expensive and requires special expertise
for the hardware side, too. And on many occasions, software is safety-critical or
at least errors are very expensive to fix, so there should be, a business case for
formal software verification. But there is one decisive difference between soft-
and hardware: software is, to a much greater extent than hardware, a moving
target. Most application software is constantly changed to accomodate bug fixes
or feature requests and to realize ever shorter time-to-market cycles. As compi-
lation and deployment is cheap, this is no problem. But our current approaches
to formal specification and verification do not support fast-paced changes: spec-
ification and verification effort is largely wasted when changes occur, systematic
reuse is not possible (see Sect. 6 for a discussion). To improve the situation,
two things are required: (i) formal specifications and verification proofs must
be equipped with a systematic reuse principle; (ii) the reuse principle employed
in the targeted code must match the one in specifications and proofs, so it is
possible to reflect code changes when reasoning formally about them.

The standard composition principle of modern programming languages are
procedure or method calls. To render formal verification scalable with the size
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of target programs, most approaches use a formalization of Meyer’s design-by-
contract principle [15], where the behavior of a method is captured in the form
of a contract between caller and callee. Contract-based specification has been
realized for industrial target languages such as Java by specification languages
such as JML [13] or in specific program logics, e.g., [2, Ch. 3]. The central idea
of contract-based formal verification is to substitute a method call in the target
code with a declarative specification of the effect of the call, obtained from the
obligation that the callee ensures in its contract. For this to work, two things are
necessary: first, the called method must have been successfully verified against its
contract; second, the application requirements of the contract must be fulfilled
in the call context. The problem of keeping up with target code changes during
verification can be formulated in this framework as follows: Assume we have
successfully verified a given piece of code p. Now, one of the methods m called
in p is changed, i.e., m’s contract in general is no longer valid. Therefore, this
contract cannot be used in our proof of p which is accordingly broken and must
be redone with the new contract of m. If p contains loops, then new invariants
must be found, which is time consuming and expensive.

A rather restrictive approach to the change problem is Liskov’s principle [14]:
here, the new contracts must be substitutable for the old ones or, equivalently,
only code changes that respect the existing contracts are permitted. But, even
with optimizations [8,9], this is too restrictive in practice, because already very
simple code modifications tend to break existing contracts. A more fundamental
solution is called for, and this is the contribution of our paper.

Our approach consists of two elements: the first is a structured reuse princi-
ple for both code and contracts. Changes to target code and to contracts are
expressed as “deltas” that describe explicitly the difference to the most recent
version. Deltas in contracts foster reuse of specifications and make reused parts
syntactically explicit. The details are in Sect. 3. But the problem remains that
modified contracts are in general no longer applicable in a proof. It is impossible
to figure out at method-call time whether a modified contract (or parts of it)
might still be applicable or useful for the proof at hand. Therefore, the second
ingredient of our approach is to disentangle in proofs the analysis of program
code and the application of method contracts. This is achieved with abstract
contracts in Sect. 4. In Sect. 5 we show that by combining abstract contracts,
structured reuse of contract-based specification, and caching of first-order goals,
it is possible to establish reusability of contracts by first-order reasoning. The
result is a verification framework for programs under change, where reusable
verification tasks are detected automatically.

2 Verification Framework

As mentioned above, we work in a contract-based [15] verification setting. Our
approach is largely agnostic of the target language. Let us assume an imperative,
class-based language with calls of methods whose implementation is known. (Re-
solving, for example, dynamic dispatch is an orthogonal problem to our concerns
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and not considered here.) In the examples, we use a subset of Java. Our termi-
nology follows closely that of KeY and JML [2,13]. We use an obvious notation
to access classes C and methods m within a program P : P .C, P .C.m, etc.

Definition 1. A program location is an expression referring to an updatable
heap location (variable, formal parameter, field access, array access). A contract
for a method m consists of:

1. a first-order formula r called precondition or requires clause;

2. a first-order formula e called postcondition or ensures clause;

3. a set of program locations a (called assignable clause) that occur in the body
of m and whose value can potentially be changed during execution.

We extend our notation for accessing class members to cover the constituents of
contracts: C.m.r is the requires clause of method m in class C, etc.

Definition 2. Let m(p) be a call of method m with parameters p. A total correct-
ness expression has the form 〈m(p)〉Φ and means that whenever m is called then
it terminates and in the final state Φ holds where Φ is either again a correctness
expression or it is a first-order formula. (Partial correctness adds nothing to our
discussion: we omit it for brevity.)

In first-order dynamic logic [2] correctness expressions are just formulas with
modalities. One may also encode correctness expressions as weakest precondi-
tion predicates and use first-order logic as a meta language, as typically done
in verification condition generators (VCGs). Either way, we assume that we can
build first-order formulas over correctness expressions, so we can state the in-
tended semantics of contracts: Validity of the formula r → 〈m(p)〉e expresses
the correctness of m with respect to the pre- and postcondition of its contract.
In addition we must state correctness of m with respect to its assignable clause:
one can assume [10] there is a formula A(a, m) whose validity implies that m can
change at most the value of program locations in a. To summarize:

Definition 3. A method m of class C satisfies its contract if the following holds:

|= C.m.r → 〈m(p)〉C.m.e ∧ A(C.m.a, C.m) (1)

The presence of contracts makes formal verification of complex programs pos-
sible, because each method can be verified separately against its contract and
called methods can be approximated by their contracts (see method contract
rule below). The assignable clause of a method limits the program locations a
method call can have side effects on.1 To keep the treatment simple (and also
in line with most implementations of verification systems), we do not admit
metavariables to occur in first-order formulas.

1 We are aware that this basic technique is insufficient to achieve modular verifica-
tion. Advanced techniques for modular verification, e.g. [1], would obfuscate the
fundamental questions considered in this paper and can be superimposed.



Reuse in Software Verification by Abstract Method Calls 303

interface IAccount {

Unit deposit(Int x);

Unit withdraw(Int x);

Unit move(Int x, IAccount a, IAccount b);

}

class Account implements IAccount {

Int balance = 0;

@requires x > 0;

@ensures balance == \old(balance) + x;

@assignable balance;

Unit deposit(Int x) { balance = balance + x; }

@requires a != b ∧ amount > 0;

@ensures a.balance+b.balance <= \old(a.balance)+\old(b.balance)

Unit move(Int amount, IAccount a, IAccount b) {

a.withdraw(amount); // dual of deposit
b.deposit(amount); } }

Fig. 1. Specification of a Bank Account Class

Example 1. Fig. 1 shows a simple bank account interface and its implementation.
Contract elements appear before the method they refer to and start with a @.
The method deposit(x) is specified with a contract whose precondition in the
@requires clause says that the balance should be positive. The postcondition in
the @ensures clause expresses that the balance after the method call is equal to
the balance before the method call plus the value of parameter x. For simplicity,
we use the JML keyword \old to access prestate values, but saving old values
in renamed locations is equally possible. The obvious dual method withdraw(x)

is not shown. Method move(amount,a,b) moves an amount between accounts.
This should not increase the overall balance as stated in its @ensures clause.

In a calculus for verification of a method like move(amount,a,b) against its
contract, methods calls (here, deposit(x) and withdraw(x)) must be replaced
by their contracts using the method contract rule to achieve scalability:

methodContract
Γ � m.r Γ � Um.a(m.e → 〈ω〉Φ)

Γ � 〈m(p);ω〉Φ
(2)

The rule is applied to the conclusion below the line: in a proof context Γ (a
set of formulas) we need to establish correctness of a program starting with a
method call m(p) with respect to a postcondition Φ (typically, an ensures clause).
We assume that the underlying verification calculus has associated the formal
parameters of m with the actual parameters p. The rule uses the contract of
m and reduces the problem to two subgoals. The first premise establishes that
the requires clause is fulfilled, i.e., the contract is honoured by the callee. That
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is exploited in the second premise, where the ensures clause can now be used
to prove the remaining program ω correct. But one must be careful with the
possible side effects the call might have had on the values of locations listed
in the assignable clause of m’s contract. As we cannot know these, we use a
substitution Um.a to set all locations occurring in m.a to fresh Skolem symbols
not occurring elsewhere (see [2, Sect. 3.8] for details). It is intentional that we
do not commit to a specific calculus or program logic. Soundness of the method
contract rules is formally stated here:

Theorem 1. If the implementation of m satisfies its contract, then rule (2) is
sound.

Proof. The method contract rule is fairly standard except for the use of the
substitution Um.a which encodes the assignable clause of the contract. In [4] a
theorem is shown from which the correctness of (2) follows as a special case.

Remark 1. In general, a JML contract may involve several specification cases,
connected by the keyword also. It is possible to reduce this by propositional
reasoning to proof obligations of the form that occur in the premisses of rule (2).
So we assume wlog to deal with a single specification case at verification time.
Similarly, each JML specification case may have multiple requires and ensures
clauses, implicitly connected by conjunction. For simplicity, we assume wlog the
presence of at most one requires/ensures clause per specification case.

The question we focus on in the following is: What happens with a correctness
proof when the implementation of a called method changes? Liskov’s well-known
substitutability principle [14], rephrased in terms of contracts, gives one answer.

Definition 4 (Substitutable Contract). For two methods m, m′, with con-
tracts m.r, m′.r′, m.e, m′.e′, m.a, m′.a′,the second method’s contract is substitutable
for the first if the following holds:

(m.r → m′.r′) ∧ (m′.e′ → m.e) ∧ (m′.a′ ⊆ m.a) (3)

The next lemma is immediate by the definition of contract satisfaction (Def. 3),
propositional reasoning over (3), and monotonicity of postconditions in total
correctness formulas.

Lemma 1. If a method m′ satisfies its contract, then it satisfies as well any
contract substitutable for it.

This justifies Liskov’s principle and guarantees that a proof stays valid, whenever
we replace a method by one whose contract is substitutable for it. As we shall
soon see, substitutability is much too restrictive to be practically useful.

3 Delta-Oriented Reuse of Programs and Contracts

If a program evolves due to bug fixes, newly added features or other modifi-
cations, the program code itself and also its specification in form of method



Reuse in Software Verification by Abstract Method Calls 305

delta DFee(Int fee);

modifies class Account {

modifies Unit deposit(Int x) { if (x>=fee) original(x-fee); } }

Fig. 2. Delta for introducing a fee to the bank account

contracts changes. To enable systematic reuse for verification, we need to repre-
sent changes explicitly. To this end we use the ideas from delta-oriented program-
ming [17,6] (DOP), a code reuse technique originally developed for implementing
static variability in software product line engineering. A delta is simply a con-
tainer of descriptions of modifications applied to a program or a specification. It
can be thought of as the “diff” between subsequent versions of a program and
its associated contracts. Hence, deltas are a flexible concept that can be used to
represent anticipated and unanticipated changes of programs and specifications
in a structured manner. The case for DOP is made elsewhere [6,17]. Let it suf-
fice to say that deltas achieve a separation of concerns between the modelling
of variability and the modelling of data and code design, which are conflated in
standard OO languages.

3.1 Program Deltas

Different flavours of DOP can be found in the literature, but they have in com-
mon that deltas may add, remove, and modify elements of the target program.
At the class level, we use the keywords modifies, adds, and removes preceding
the changed class declaration. With adds, new classes can be created and with
removes a whole class can be removed. A modified class contains further di-
rectives that may change its method and field declarations, for which the same
keywords are used (for fields, only adds and removes are permitted). In general,
the modifies directive is a mere convenience, as it can be replaced by a suitable
combination of removes and adds.

A modified method declaration can be completely replaced or it can be a
wrapper using the original call. The keyword original stands for a call to the
most recent version of the currently modified method and it must match its type
signature. The original construct makes code reuse possible and is reminiscent of
super calls in standard OO languages. A main difference between original and
super is that the former, as all other changes contained in a delta, are resolved at
compile time, when applying a delta to an existing program. The same method
can be modified and wrapped in several subsequent delta applications capturing
individual changes.

Example 2. We want to extend the account class of Ex. 1 with a feature to charge
a fee for each deposit. This is realized in the delta in Fig. 2. Delta declarations
begin with the keyword delta, followed by a name and optional parameters,
here, the amount of the transaction fee. The delta modifies class Account and
its method deposit(x) by wrapping and reusing the previous version with an
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product AccountWithFee(Base, DFee(2));

// results in :
interface IAccount { Unit deposit(Int x); }

class Account implements IAccount {

Int balance = 0 ;

Unit deposit(Int x) { if (x>=2) balance = balance + (x-2); } }

Fig. 3. Result of applying the DFee delta to the bank account (shown partially)

original call. The conditional around the call to original ensures that the de-
posited amount is not lower than the fee to avoid counter-intuitive results.

Obviously, the application of a delta to a given program may fail. The modi-
fies and removes directives implicitly assume the existence of program elements
that may be missing, the type signature of an original call may not match, etc.
Therefore, compilation in DOP is a two-stage process: in a first step, deltas
are applied in a user-specified sequence, where the well-definedness of each delta
application is checked, and the result is a flattened, delta-free program to be pro-
cessed further with a standard compiler. To specify products resulting from delta
applications, we use the keyword product, followed by a name and a sequence
of the deltas that are to be applied.

Example 3. Fig. 3 shows the declaration of a bank account product with de-
posit fee derived from Ex. 1 (for which the name Base is used by convention)
and subsequent application of the DFee delta of Ex. 2, where the parameter is
instantiated with 2 units. The declaration of class Account is generated auto-
matically by the delta compiler.

3.2 Contract Deltas

Changing program code typically requires changing method contracts since a
change might intentionally cause a different functionality that has to be reflected
in the contract. Hence, it is natural to extend the concept of deltas to contracts.
Following [5,12], we permit the keywords adds, modifies, and removes in front
of specification cases and requires/ensures/assignable clauses. If there is more
than one specification case we use names to distinguish them. A name clause is
of the form “@case <name>;” and this name can be used to qualify a modifies
or removes directive.

Going beyond [5], and in analogy to program deltas, we allow reuse of speci-
fications in modified and added contract clauses using the keyword original. As
with program deltas, this means that the most recent version of the contract
clause is replaced by the original keyword when the delta is applied. If there is
more than one specification case, original can be qualified with a name.

Example 4. For the contract of the modified deposit(x)method in DFee (Fig. 2),
we want to reuse the contract of the original method shown in Fig. 1. This can
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delta DFee(Int fee);

modifies class Account {

// modify the only existing specification case
modifies @requires \original ∧ x >= fee;

modifies @ensures balance == \old(balance) + x - fee;

// add a new specification case
adds also @case TrivialAmount

@requires \original ∧ x < fee;

@assignable \nothing;

modifies Unit deposit(Int x) { if (x>=fee) original(x-fee); }

modifies @requires \original ∧ amount>=fee

of Unit move(Int amount, IAccount a, IAccount b) }

Fig. 4. Delta changing the specification of the deposit method

@requires x > 0 ∧ x >= 2;

@ensures balance == \old(balance) + x - 2;

@assignable balance;

also
@case TrivialAmount

@requires x > 0 ∧ x < 2;

@assignable \nothing;

Unit deposit(Int x) { if (x>=2) balance = balance + (x-2); }

Fig. 5. Result of applying the DFee program and contract delta

look as in Fig. 4. Note that we need two specification cases: one when the fee
does not exceed the deposited amount and one when it does. The first is obtained
as a modification of the existing contract: in the requires clause, a suitable pre-
condition is added to the original requires clause. The previous version of the
ensures clause is replaced by a new version which takes the deduction of the fee
into account. The assignable clause is untouched. The second case is obtained
by adds. Again, the original precondition is reused. In this case, the balance of
the account remains unchanged, which is implied by the new assignable clause.
While this is sufficient, it is hard to detect and, therefore, to exploit.

Example 5. If we compute the product shown in Fig. 3 by delta application
including the base contract and the contract of the delta we obtain the contract
of the modified deposit(x) method shown in Fig. 5.

3.3 Verification of Deltas

The main question in a formal verification context is: how to prove that a program
delta satisfies its contract delta? In general, this is not possible for a delta in
isolation, for two reasons: the first is, before actually applying a delta, its code
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and its contract are partially unknown. In a previous paper [12] we addressed
this issue by imposing a number of constraints: occurrences of original in requires
clauses must be of the form original ∨ r′, in ensures clauses of the form original ∧
e′, and in assignable clauses of the form original\a′. This ensures substitutability
of reused contracts and makes Lemma 1 applicable. The second problem is that
a method satisfying its contract might cease to do so after modification of either
code or contract. In [12] we imposed two conditions relative to a given partial
order ≺ of delta applications: (i) modified contracts in ≺-larger deltas must
be substitutable, and (ii) calls to methods that might have been modified are
replaced with the ≺-minimal contract of that method. Under these conditions,
satisfaction of each contract in the base and in all deltas implies that all contracts
in any ≺-compatible product are satisfied [12, Thm. 1]. Unfortunately, these
restrictions are too severe in practice:

Example 6. Consider the contracts in Figs. 1, 4. The ensures clause of the mod-
ified contract introduces the parameter fee and bears no logical relation to the
clause it replaces. In the added specification case, the implicitly given default
ensures clause “@ensures true;” is weaker, not stronger as required.

4 Abstract Method Calls

Ex. 6 shows that already minor changes to programs violate Liskov’s principle.
This makes reuse of verification effort problematic in general:

Example 7. Consider method move() from Fig. 1 which transfers money between
two accounts. Its contract states that money might be lost, because of fees or
similar, but it strictly excludes generation of money. Its implementation calls
deposit() to credit the receiving account. To prove that move() satisfies its
contract requires applying the method contract rule (2) to deposit(). Changing
the contract of deposit() to the version in Fig. 5, entails that neither of the
two specification cases satisfies Liskov’s principle (see Ex. 6). Consequently, in
the verification of move() no reuse is possible.

The previous example highlights an unfortunate property of the usual verifica-
tion setup: assuming we use a complete2 verification method, intuitively, the
logical information in the proof with the call to the original deposit() should
be sufficient to justify the contract of move() even for the version with a fee.
But this cannot be detected easily, because the proof of move()’s contract uses
the ensures clause of deposit(). Now, when deposit()’s contract is changed, it
is impossible to disentangle the information from deposit()’s contract and the
steps used to prove move(). To achieve such a separation we need a technique
that splits method invocation from the actual contract application. This is the
central contribution of this paper and explained now.

The main technical idea is to introduce a level of indirection into a method
contract that allows us to delay the substitution of its concrete requires and

2 Relatively complete, with respect to Peano arithmetic, of course.
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// abstract contract
@requires R;

@ensures l1 == \def(l1) && ... && ln == \def(ln) && E;

@assignable l1, ..., ln;

// definitions allowing us to ‘‘ instantiate ’’ the contract
@def R = R’, \def(l1) = E1, ..., \def(ln) = En, E = E’;

Fig. 6. Shape of an abstract method contract

@requires R;

@ensures balance == \def(balance);
@assignable balance;

@def R = x > 0, \def(balance) = \old(getBalance()) + x;

Unit deposit(Int x) {...}

Fig. 7. Abstract method specification for deposit without fee

ensures clause. We call this an abstract method contract. It has the shape shown
in Fig. 6. Its abstract section consists of the standard requires, ensures, and
assignable clauses. As before, the assignable clause specifies all locations that
might be changed by the specified method. The requires and ensures clauses,
however, now merely contain placeholders R, E, and \def(li), which are defined
by concrete formulas and terms in the definitions section, which must contain
a definition for each placeholder in the abstract section. The ensures clause is
a conjunction of equations specifying the post value of each possibly changed
location in the assignable clause and additional properties E on the post state.
Please note that Fig. 6 is merely a convenient notation. The formal definition of
an abstract method contract is given in Def. 5 below.

The main restriction inherent to abstract method contracts is that the assign-
able clause explicitly lists updatable locations (i.e., it is not abstract). Never-
theless, it is part of the abstract section, so that it is shared by all clients of
the contract. This is necessary to ensure that applying any abstract contract for
a method has the same result before definitions are unfolded. Another, minor
restriction is the equational form, which enforces that the post value for any
assignable location is well-defined after contract application. Field accesses oc-
curring in definitions are expressed using getter methods, e.g., getBalance() is
used to access the balance field. This ensures that their correct value is used
when definitions are unfolded.

Example 8. Fig. 7 reformulates the contract of method deposit() in terms of
an abstract method contract.

Abstract method contracts are fully compatible with contract deltas, with the
restriction that assignable clauses may not be changed. The only difference is
that all changes specified in a delta are acted upon in the definition section of an
abstract contract—the abstract section remains completely unchanged. In our
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@assignable balance;

@requires R;

@ensures balance == \def(balance);
@def R = \original Base(R) && x>=2, \def(balance) = \old(getBalance())+x-2;

Unit deposit(Int x) {...}

Fig. 8. Abstract method specification case for a successful deposit() with fee

example, the application of the delta in Fig. 4 results in an abstract contract
with two specification cases, one of which is shown in Fig. 8.3

It is perhaps surprising that original still occurs after delta application. The
explanation is that the abstract shape of contracts does not force us anymore
to unfold original references immediately. As we shall see in Sect. 5, it can have
advantages not to do so. To indicate that the original has been in fact resolved,
we add a reference (here: Base) to its container. Now we can define abstract
method contracts formally:

Definition 5 (Abstract method contract). An abstract method contract
Cm for a method m is a quadruple (r, e, U, defs) where

– r, e are logic formulas representing the contract’s pre- and postcondition,
– U is an explicit substitution representing the assignable clause, and
– defs is a list of pairs (defSym , ξdefSym ) where defSym are non-rigid (i.e.,

state dependent) function or predicate symbols used as placeholders in r, e,
and ξ their defining term or formula. For each \def(li) there is a unique
function symbol in defs. For simplicity, we refer to both with \def(li), as
long as no ambiguity arises.

Placeholders must be non-rigid to prevent the program logic calculus to per-
form simplifications over them that are invalid in some program states. To
ensure soundness of the abstract setup we add the definitions of the place-
holders (i.e., the contents of the definition section of each abstract contract)
as a theory to the logic, just like other theories, such as arithmetic, etc. This
means that the notion of contract satisfaction (Def. 3) is now able to consider

expandDef

ξdefSym

defSym

defined symbols in abstract contracts. Additionally the rule on the
right that substitutes placeholders by their definitions (by a slight
abuse of notation, but with obvious meaning for function symbols)
is now obviously sound. The advantage of this setup is that we can
still use the old method contract rule (2), which simply ignores the definition
section. As we changed neither the satisfaction of contracts nor the method
contract rule, Thm. 1 still holds.

3 There is a technicality here about represening multiple specification cases for abstract
method contracts. This is inessential and distracting, so we don’t give details.
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5 Application Scenarios

5.1 Abstract Verification

Rule (2) now uses only to abstract section of an abstract method contract, but
is otherwise completely unchanged. Hence, its application yields the same result
for all method contracts that share the same abstract section. This allows us to
define the following general verification process: Assume we want to establish
that a method m satisfies a contract C. In the first phase the rules of the under-
lying calculus are applied until only first-order proof goals are remaining. This
can be done, for example, with symbolic execution or with a VCG and typically
involves manual annotation of the target program with suitable loop invariants.
During this phase all calculus rules, including SMT and first-order solvers, ex-
cept for expandDef may be used to close subgoals. If the implementation of m
contains a call to another method n we use an abstract contract Cn for the lat-
ter. Because of this, some first-order subgoals will usually remain open. Let us
call this partial proof p.

There are two things one can do at this stage: first, we can use the expandDef
rules of the definition section of Cn and first-order reasoning on the open subgoals
of p. If m satisfies C and suitable invariants were chosen in p, this completes
the proof by first-order reasoning. Second, assume now we made changes to n
and modified the definition section of its contract, let’s call it C′

n. As long as Cn

and C′
n have the same abstract section, we can reuse proof p completely. To test

whether p still satisfies C after the change, it is sufficient to use the expandDef
rules of the definition section of C′

n on p. Again, this is a first-order problem.
This is significant, because coming up with the right invariants is usually much
more expensive than first-order reasoning.

Example 9. Applying the verification rules of KeY [2] to show that move() sat-
isfies its contract (Fig. 1), while using abstract contracts of deposit() and
withdraw(), results in a partial proof p with the open first-order goal

\def(a.balance) + \def(b.balance) ≤ \old(a.balance)+ \old(b.balance)

If we use the expandDef rules gained from the definition sections (cf. Fig. 7) we
obtain the goal

\old(a.getBalance())− x+ \old(b.getBalance())+ x

≤ \old(a.balance)+ \old(b.balance)

which is trivial for an SMT solver. In addition, we can reuse p after applying
the DFee delta to deposit(), because the abstract contracts in Figs. 7, 8 have
identical abstract sections. With the rules gained from the definition section of
Fig. 8 the resulting subgoal is still first-order provable.

5.2 Liskov for Free

A nice feature of our approach is that preservation of changed contracts as jus-
tified by Liskov’s substitutability principle (Sect. 3.3) is detected automatically.



312 R. Hähnle, I. Schaefer, and R. Bubel

Let n′ be a method whose contract Cn′ is substitutable (3) for n’s contract Cn

and assume m invokes n. Abstract verification first constructs a partial proof
pm for m and its contract that has open first-order verification conditions Vm.
These contain placeholders from Cn. Assume we can finish pm by expanding
their definitions plus first-order reasoning.

To verify that m still satisfies its contract when n is replaced with n′, we
proceed as follows: in Vm substitute each placeholder from Cn with its corre-
sponding placeholder from Cn′ . This is possible, because both contracts have
identical abstract sections. After expanding the definitions, by substitutabil-
ity (3), one first-order subsumption step is enough to obtain the definitions from
Cn, which have been proven already. Therefore, (complete) first-order reasoning
will automatically detect such a situation.

5.3 Experiments

We performed preliminary experiments using the KeY verification system4. The
necessary abstract method contracts and definition expansion rules have been
provided manually. Manual steps for saving and loading of the partial proof
were also necessary, but will be fully automatic once proper support for abstract
method calls is implemented.

The example used in this paper showed only modest gains by abstract method
calls, which is not surprising considering the low complexity of the involved
methods. Verifying the more complex method requestTransaction() which
calls deposit() and contains a loop, we achieved savings of 90%. Savings refer to
the ratio of partial proof size

proof size (proof size measured in number of nodes (branches)):

Example Partial Proof Proof (Base) Savings Proof (DFee) Savings

move 100 (6) 477 (10) 21% 517 (10) 19%
reqTrans 887 (20) 976 (23) 91% 979 (23) 91%

5.4 Program Evolution

For verifying a program that evolves by changing methods via delta operations,
we can proceed as follows: For each contract Cm of each method m contained in
the initial program, we construct a proof (e.g., by VCG or symbolic execution)
using the abstract method contracts. We store the proof and also the open
subgoals in a cache for future reference. Then, we unfold the definitions in the
abstract method contract Cm and use, e.g., an SMT solver to close the open
subgoals to verify the method.

If the program evolves by delta application, we consider several cases: If the
implementation of a methodm and its contractCm as well as all abstract sections
of contracts Cn for methods n called by m remain unchanged, we can completely
reuse the stored partial proof for Cm as in Sect. 5.1. For contracts of called
methods n that are unchanged, we can reuse previous proof goals stored in the

4 The experiments are available at http://www.key-project.org/cade13/tud/

http://www.key-project.org/cade13/tud/
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cache. If the contracts of the called methods n are changed, but substitutable
for Cn, we obtain the proof as described in Sect. 5.2. If the contracts of called
methods are changed in other ways, we unfold their definitions and obtain the
proof by first-order reasoning and store the new proof goals in the cache. If the
implementation of method m or its contract changed, we need to construct a new
proof for C′

m as for the initial program. Here, we do not unfold the definitions
of original when the partial proof is stored in the cache in order to be able to
reuse partial proofs also for different instantiations of original. If, in the newly
constructed proof, contracts for methods n called by m did not change or their
contracts are substitutable wrt. previous contracts, we can reuse proof goals
stored in the cache or apply the principle of Sect. 5.2. If a method is newly
added, it has to be verified from scratch and the proof is stored in the cache.

6 Related Work

Previous work on deductive verification of evolving programs [3,16] proposes
proof replay to ameliorate verification effort. The old proof is replayed; when
this is no longer possible, a new proof rule is guessed. Paper [3] uses a similarity
function to control replay, while [16] uses differencing operations. Unlike our
work, proof replay is unrelated to the program or specification reuse principle.

In [9], a set of allowed changes to evolve an OO program is introduced which
is similar to delta operations. For verified method contracts, a proof context is
constructed which keeps track of proof obligations. Program changes cause the
proof context to be adapted so that the proof obligations that are still valid
are preserved and new proof goals are created. The proof context is similar to
the proof cache proposed in Sect. 5.4, but reuse only happens at the level of
contracts, not on the level of (partial) proofs as in our work. Earlier work along
the same lines in the context of VCG is [11].

There is some recent work targeting efficient verification of delta-oriented pro-
grams in the context of software product line engineering, where static program
variability is considered, in contrast to program evolution, which is considered
here. In [5], it is assumed that one program variant has been fully verified.
From the structure of a delta to generate another program variant it is analyzed
which proof obligations remain valid in the new product variant and need not
be reestablished. The main result of [12], and its restrictions, are discussed in
Sect. 3.3. In [7], methods in a delta are verified based on a contract which makes
assumptions on the contracts of the called methods explicit. The main difference
to our work is that reuse in the approaches above only happens at the level of
the proof obligations limiting their reuse potential.

7 Conclusion

We presented a framework for systematic reuse of verification effort for programs
and specification under change. Its distinctive feature is that reuse takes place at
the level of code, specification, and proofs with a matching reuse principle. Our
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work highlights the importance of first-order ATP in verification of programs
that undergo frequent changes. Detaching the usage from the validation of con-
tracts turns the test for reusability of previously cached results from a specific
verification problem into a general first-order problem. A logical next step is to
investigate the nature and the complexity of the resulting first-order problems.
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Abstract. Dynamic logic is an established instrument for program veri-
fication and for reasoning about the semantics of programs and program-
ming languages. In this paper, we define an extension of dynamic logic,
called Dynamic Trace Logic (DTL), which combines the expressiveness
of program logics such as dynamic logic with that of temporal logic. And
we present a sound and relatively complete sequent calculus for proving
validity of DTL formulae.

Due to its expressiveness, DTL can serve as a basis for proving func-
tional and information-flow properties in concurrent programs, among
other applications.

1 Introduction

Overview. Dynamic logics (DL) [8] are multi-modal first-order logics where each
legal sequential program fragment π (i.e., a sequence of statements) gives rise
to a modal operator [π]. The formula [π]ϕ expresses “in any state in which π
terminates, ϕ holds.” An interesting special case are deterministic programing
languages, for which there is at most one terminal state. Program logics like DL
are more expressive than Hoare logics in that programs are part of formulae,
which can be self-composed. This allows, for instance, to express information-
flow properties such as non-interference [12]. In other regards, however, standard
dynamic logic lacks expressiveness: The semantics of a program is a relation
between states; formulae can only describe the input/output behaviour of pro-
grams. It is inadequate for reasoning about non-terminating programs and for
verifying temporal properties.

To combine the advantages of dynamic logic and temporal logic, our Dynamic
Trace Logic uses trace-based program semantics and the well-known temporal
operators � (always), ♦ (eventually), • (weak next), ◦ (strong next), U (until),
W (weak until), and R (release) similar to those of Linear Temporal Logic (LTL).
In DTL, the formula �π�ϕ expresses that ϕ holds for the (possibly infinite) trace
of the program π when started in the current state. For example, the formula

�π��∀u.∀v.(X .
= u ∧ ◦(X .

= v)→ u ≤ v)

is a two-state invariant. It says that the value of the program variable X must
increase or remain the same throughout the trace of π. Proving such two-state
� This work has been supported by Deutsche Forschungsgemeinschaft (DFG) under

project “Program-level Specification and Deductive Verification of Security Proper-
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invariants is the basis of the rely-guarantee approach for verifying concurrent
programs.

Target Programing Language. In the following, we use a simple while language
as target programing language without method calls or any feature of object-
orientation. However, our language distinguishes between local variables with
state-internal assignments and global variables with assignments inducing state
transitions. The rationale behind this is that, in a concurrent setting, only global
variables can be observed by the environment.

Of course, to be useful in practice, DTL needs to be extended to real-world
programing languages. The KeY verification system (co-developed by the au-
thors) is built on a calculus for JavaDL, a dynamic logic for sequential Java
[3,5]. This has been used as a basis to extend DTL to Java and implement the
DTL calculus (a prototypical implementation exists). Additional rules needed to
handle full (sequential) Java can be derived from the KeY rules for the [·] modal-
ity by analogy. Since a language like Java incorporates a lot of features, in par-
ticular object-orientation, and various syntactic sugars, the rule set is rather
voluminous in comparison to simple while languages. These special cases can,
however, be reduced to a smaller set of base cases. For instance, the assignment
x=y++ containing a post-increment operator is transformed into two consecutive
assignments x=y and y=y+1 during symbolic execution.

Related Work. In earlier work [6], we have extended Dynamic Logic with a
modality also written �·�, where �π�ϕ stands for “ϕ holds throughout the execu-
tion of π.” This can be seen as a special case of DTL because the same property
can be expressed in DTL as �π��ϕ. That is, in our earlier work, the temporal
formula was restricted to the form �ϕ with ϕ not containing further temporal
operators. Platzer [10] introduced Temporal Dynamic Logic (dTL), where pro-
grams are hybrid programs; in particular, they are indeterministic, and therefore,
traces are branching. It features formulae of the shapes �π��ϕ (“for all traces,
ϕ always holds”) and 〈〈π〉〉♦ϕ (“there is a trace such that eventually ϕ holds”)
where ϕ is a state formula. There is no further combination of temporal opera-
tors. Similar to our setting in this paper, traces can be of finite or infinite length.
Platzer presents a sequent calculus for dTL, which, however, is incomplete, much
due to the continuous state space of hybrid programs.

Reasoning about temporal properties is traditionally the domain of model
checking. Nevertheless, there is some work on deductive techniques (tableaux,
sequent calculi, resolution etc.) applied to temporal logics. Good sources on the
topic of theorem proving for propositional linear-time logics are an article by
Wolper [15] and the textbook chapters by Goré [7] and Reynolds and Dixon [11].
The work by Wolper introduces a tableau method for propositional LTL. A
calculus for first-order LTL has been presented by Abadi and Manna [1]. It is
known that, although LTL is decidable, there does not always exist a finite proof
tree. The proof graph may contain cycles in the presence of eventualities (i.e.,
formulae with a positive occurrence of U). There are different techniques to deal
with this. In the calculus presented in this paper, we use program invariants.
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Language-based program verification is usually done w.r.t. state or two-state
formula (pre and post). Program verification w.r.t. temporal specifications has
been considered by Schellhorn et al. [13], where programs themselves are formu-
lae of Interval Temporal Logic (ITL) [9]. In an earlier work, they have presented
a sequent calculus for ITL [14], which allows to prove the correctness of programs
w.r.t. ITL specifications.

Structure of this Paper. Syntax and semantics of our logic DTL are defined in
Sects. 2 resp. 3 (including syntax and semantics of the while language that we
use as the target programing language in this paper). In Sect. 4, we present our
sequent calculus for DTL. Notions of soundness and completeness are defined in
Sect. 5, and we sketch soundness and completeness proofs. Complete proofs can
be found in an extended version of this paper [4].

2 Syntax of DTL

Signatures and Expressions. We assume disjoint sets LVar of local program
variables and GVar of global program variables to be given. In addition, there
is a set V of logical variables. Logical variables are rigid, i.e., they cannot be
changed by programs and – in contrast to program variables – are assigned the
same value in all states of a program trace. Quantifiers can only range over logical
variables and not over program variables. In this paper, the sets of function and
predicate symbols are fixed. They only contain the usual integer and boolean
operators with their standard semantics.

Definition 1 (Expressions). Expressions of type integer are constructed as
usual over integer literals, local and global variables, logical variables, and the
operators +, −, ∗. Expressions of type boolean are constructed using the relations
.
=, >, < on integer expressions, the boolean literals true and false, and the logical
operators ∧, ∨, ¬.

Programs. Programs are written in a simple while language, with the (mathe-
matical) integers as the only data type. Expressions can be of types integer and
boolean; they do not have side-effects. The program language does not contain
features such as functions and arrays; and there are no object-oriented features.
As discussed above, all such features can be added, but we keep the programing
language simple for the presentation in this paper.

The only special feature is the distinction between local variables (written
in lowercase letters) and global variables (written in uppercase). As will be ex-
plained in Sect. 3, we consider assignments to global variables to be the only
program statements that lead to a new observable state. As a technical restric-
tion, to ensure that there cannot be a program that gets stuck in an infinite loop
without ever progressing to a new observable state, we demand that in every
loop execution, an assignment to a global variable is executed.1

1 This property is undecidable in general, but a sufficient syntactical criterion could be
that every possible execution path contains an assignment (which may be ineffective,
e.g., X = X;).
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Definition 2 (Statements, programs). Programs and statements are induc-
tively defined, where statements are of the form:

– x = a; where x ∈ LVar and a is an expression of type integer (assignment to
local variable),

– X = a; where X ∈ GVar and a is an expression of type integer (assignment to
global variable),

– if (a) {π1} else {π2} where a is an expression of type boolean not containing
logical variables and π1 and π2 are programs (conditional), or

– while(a) {π} where a is an expression of type boolean not containing logical
variables and π is a program that contains at least one assignment to a global
variable on every execution path (loop).

Programs are finite sequences of statements. The empty program is denoted by ε.

State Updates. An important property of the calculus for DTL presented in
Sect. 4 (as well as the calculus for JavaDL used in the KeY System) is that
programs are symbolically executed starting from an initial state – in contrast
to wp-calculi where one starts with a postcondition and works in a backwards
manner. In order to capture the state transitions in between, we use a prefix
on formulae, called state update. Updates can be thought of as “delayed substi-
tutions,” i.e., a substitution takes place once the program has been completely
eliminated.

Definition 3 (State updates). Let x be a (local or global) program variable,
and let a be an expression. Then, {x := a} is an update.

For instance, {x := 4} and {x := x + 1} are updates. Applying these updates
(after each other, from right to left) to the formula x

.
= 5 yields 4 + 1

.
= 5.

DTL Formulae. Formulae have the general appearance U�π�ϕ where U is a
sequence of updates, π is a program, and ϕ is a formula (that may or may
not contain temporal operators and further sub-formulae of the same form).
Intuitively, U�π�ϕ expresses that ϕ holds when evaluated over all traces τ such
that the initial state of τ is (partially) described by U and the further states of τ
are constructed by running the program π.

Definition 4 (Formulae). State formulae and trace formulae are inductively
defined as follows:

0. All boolean expressions (Def. 1) are state formulae.
1. All state formulae are also trace formulae.
2. If ϕ and ψ are (state or trace) formulae, then the following are trace formu-

lae: �ϕ (always), •ϕ (weak next), ϕ U ψ (until).
3. If U is an update and ϕ a state formula, then Uϕ is a state formula.
4. If π is a program and ϕ a trace formula, then �π�ϕ is a state formulae.
5. The sets of state and trace formulae are closed under the logical operators
¬,∧, ∀.
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In addition, we use the following abbreviations:

♦ϕ := ¬�¬ϕ, ◦ϕ := ¬•¬ϕ,
ϕ W ψ := ϕU ψ ∨�ϕ, ϕ R ψ := ¬(¬ϕ U ¬ψ),
ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ→ ψ := ¬ϕ ∨ ψ,
∃x.ϕ := ¬∀x.¬ϕ.

A formula is called non-temporal if it neither contains a temporal operator nor
a program modality �π�.

3 Semantics of DTL

Expressions and formulae are evaluated over traces of states (which give meaning
to program variables) and variable assignments (which give meaning to logical
variables). The domain of DTL is always Z, irregardless of the state (constant
domain).

Definition 5 (States, variable assignments). A state s is a function assign-
ing integer values to all local and global variables, i.e., s : LVar ∪GVar → Z.

A variable assignment β is a function assigning integer values to all logical
variables, i.e., β : V → Z.

We use the notation s{x �→ d} to denote the state that is identical to s except
that the variable x is assigned the value d ∈ Z. Likewise, we write β{x �→ d}
and τ{x �→ d} (where τ is a trace, see below) with the obvious semantics.

Definition 6 (Traces). A trace τ is a non-empty, finite or infinite sequence of
(not necessarily different) states.

We use the following notations related to traces: (i) |τ | ∈ N∪{∞} is the length of
a trace τ . (ii) τ1 · τ2 is the concatenation of traces. (iii) τ [i, j) for i, j ∈ N∪ {∞}
is the subtrace beginning in the i-th state (inclusive) and ending before the
j-th state. (Indices out of bounds are treated as τ [0, j) or τ [i, |τ |), respectively.)
(iv) τ [i] for i < |τ | is the state at position i in τ .

Definition 7 (Semantics of expressions). Given a state s and a variable as-
signment β, the value as,β of an expression a in a state s is the integer or boolean
value resulting from interpreting program variables x by xs, logical variables u
by uβ, and using the standard interpretation for all functions and relations.

Program expressions that do not contain logical variables are independent of β,
and we write as instead of as,β. If a is a boolean expression, we write s, β |=a
resp. s |= a to denote that as,β resp. as is true.

As mentioned in Sect. 2, we consider assignments to global variables to be the
only statements that lead to a new observable state. By specifying which vari-
ables are local and which are global, the user can thus determine which states
are “interesting” and are to be included in a trace.
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For the feasibility of proving DTL formulae, it is important that not too many
irrelevant intermediate states are included in a trace because, if a formula such
as �π��ϕ is to be proven valid, intermediate states require sub-proofs showing
that ϕ holds in each of them.

Definition 8 (Trace of a program). Given an initial state s, the trace of a
program π, denoted trc(s, π), is defined by (the greatest fixpoint of):

trc(s, ε) = 〈s〉
trc(s, x = a; ω) = trc(s{x �→ as}, ω)
trc(s, X = a; ω) = 〈s〉 · trc(s{X �→ as}, ω)

trc(s, if (a) {π1} else {π2} ω) =
{
trc(s, π1 ω) if s 
 a
trc(s, π2 ω) if s � a

trc(s, while (a) {π} ω) =
{
trc(s, π while (a) {π} ω) if s 
 a
trc(s, ω) if s � a

where ε is the empty program and ω is a program.

We have now everything needed to define the semantics of DTL formulae in a
straightforward way. The valuation of a formula is given w.r.t. a trace τ and a
variable assignment β. This is expressed by the validity relation, denoted by 
.

Definition 9 (Semantics of formulae). Let τ be a trace and β a variable
assignment. The validity relation is the smallest relation satisfying the following.

τ, β 
 a iff aτ [0],β = true
(in case a is an expression, see Def. 7)

τ, β 
 ¬ϕ iff τ, β � ϕ
τ, β 
 ϕ ∧ ψ iff τ, β 
 ϕ and τ, β 
 ψ
τ, β 
 ∀u.ϕ iff for every d ∈ Z: τ, β{u �→ d} 
 ϕ
τ, β 
 �ϕ iff τ [i,∞), β 
 ϕ for every i ∈ [0, |τ |)
τ, β 
 ϕ U ψ iff τ [j, i), β 
 ϕ and τ [i,∞), β 
 ψ

for some i ∈ [0, |τ |) and all j ∈ [0, i)
τ, β 
 •ϕ iff τ [1,∞), β 
 ϕ or |τ | = 1

τ, β 
 {x := a}ϕ iff τ{x �→ aτ [0]}, β 
 ϕ
τ, β 
 �π�ϕ iff trc(τ [0], π), β 
 ϕ

A formula ϕ is valid if τ, β 
 ϕ for all τ and all β.

4 A Sequent Calculus for DTL

In this section, we present a sequent calculus for DTL, which we call CDTL. It
is sound and relatively complete, i.e., complete up to the handling of arithmetic
(see Sect. 5). The calculus consists of the following rule classes:
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Classical Logic Rules. These rules simplify formulae whose top-level operator
is a quantifier or a propositional operator.

Simplification and Normalization Rules. Rules for simplifying formulae of
the form U�π�ϕ, where the top-level operator in ϕ is not temporal.

Rules for Temporal Operators. Rules that apply to formulae U�π�ϕ with a
top-level temporal operator in ϕ, and that do not change the program π.

Program Rules. Rules that apply to formulae of the form U�π�ϕ, and that
analyze and/or simplify the program π. Not surprisingly, this class has the
most complex rules, including invariant rules for loops.

Rules for Data Structures. Since our focus in this paper is not on how to
handle arithmetics, we use oracle rules for arithmetics.

Other Rules. This category includes the closure and the cut rule.

Most rules of the calculus are analytic and therefore can be applied automati-
cally. The rules that require user interaction are: (a) the rules for handling while
loops (where a loop invariant has to be provided), (b) the cut rule (where the
right case distinction has to be used), and (c) the quantifier rules (where the
right instantiation has to be found). Traces are uniquely determined by sym-
bolic program executions of the deterministic programing language. The general
idea behind our calculus is to explore a trace until it terminates or reaches a
fixpoint (induced by a non-terminating loop). Thus, proofs usually consist of al-
ternating applications of temporal logic rules (which decompose trace formulae,
e.g., �ϕ to •�ϕ∧ϕ) and program rules (which let us step forward in the trace).
Those steps are explicitly given through assignments in the program.

In the rule schemata, Γ,Δ denote arbitrary, possibly empty multi-sets of for-
mulae, ϕ, ψ denote arbitrary formulae, U stands for a (possibly empty) sequence
of updates, π, ω for programs, γ is a state formula, x and X are local and global
program variables, n and u are logical variables, a is an expression of type integer,
and b is an expression of type boolean.

As usual, the schematic sequents above the horizontal line in a schema are
its premisses and the single schematic sequent below the horizontal line is its
conclusion. Note, that in practice the rules are applied from bottom to top. Proof
construction starts with the original proof obligation at the bottom. Therefore,
if a constraint is attached to a rule that requires a variable to be “new,” it has
to be new w.r.t. the conclusion.

Definition 10 (Soundness, derivability).

1. A sequent Γ 
 Δ is valid (in state s and under variable assignment β) if
and only if the formula

∧
γ∈Γ γ →

∨
δ∈Δ δ is valid (w.r.t. s, β).

2. A rule Γ1 
 Δ1 · · · Γn 
 Δn

Γ0 
 Δ0
is sound if, for all valid instances of

premisses Γi 
 Δi, also the instance of Γ0 
 Δ0 is valid.
3. A sequent is derivable (with CDTL) if it is an instance of the conclusion of

a rule schema and all corresponding instances of the premisses of that rule
schema are derivable sequents. In particular, all sequents are derivable that
are instances of the conclusion of a rule that has no premisses (rules R22,
R31, and R33).
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Table 1. Rules for quantifiers, propositional operators, and state updates. In rule R5,
the substitution needs to be admissible; rule R6 introduces a fresh variable u′. Rules R7
and R8 make use of weak substitution (Def. 12).

Γ � ϕ,Δ
Γ,¬ϕ � Δ

R1
Γ, ϕ � Δ
Γ � ¬ϕ,Δ R2

Γ, ϕ, ψ � Δ
Γ, ϕ ∧ ψ � Δ

R3
Γ � ϕ,Δ Γ � ψ,Δ

Γ � ϕ ∧ ψ,Δ
R4

Γ, ϕ[u/a], ∀u.ϕ � Δ
Γ, ∀u.ϕ � Δ

R5
Γ � ϕ[u/u′], Δ
Γ � ∀u.ϕ,Δ R6

Γ,Uϕ[x�a] � Δ

Γ,U{x := a}ϕ � Δ
R7

Γ � Uϕ[x�a],Δ
Γ � U{x := a}ϕ,Δ R8

4.1 Classical Logic and Update Rules

The rules for quantifiers, propositional operators, and updates are shown in Ta-
ble 1. Note that the expressions that are used to instantiate universal quantifiers
in rule R5 must be chosen in such a way that the substitution is admissible:

Definition 11 (Admissible substitution). A substitution u/a of a logical
variable u ∈ V with an expression a is admissible w.r.t. a formula ϕ if there
is no variable v in a such that u is free in ϕ and, after replacing a for some
free occurrence of u in ϕ, the occurrence of v in a is (i) bound by a quantifier
in ϕ[u/a] (in case v is a logical variable) or is (ii) in the scope of a program
modality �π� that contains an assignment to v (in case v is a program variable).

For example, using X to instantiate the universal quantifier in the DTL formula
∀u.(u .

= 0→ �X = 1;��u
.
= 0) is not admissible. Indeed the result would be in-

correct as the original formula is valid while X
.
= 0→ �X = 1;��X

.
= 0 is not

even satisfiable. In order to deal with updates, we introduce the notion of weak
substitutions, which avoid such clashes by definition.

Definition 12 (Weak substitution). For a state formula ϕ and an update
{x := a} define the formula ϕ[x#a] according to the following schema: (i) if ϕ is
an expression, then ϕ[x#a] = ϕ[x/a], (ii) if ϕ begins with an update or a program
modality, then ϕ[x#a] = {x := a}ϕ, (iii) if ϕ is a propositional junction, then the
weak substitution is propagated, e.g., (ϕ1∧ϕ2)[x#a] = ϕ1[x#a]∧ϕ2[x#a], (iv) if ϕ
begins with a quantifier, then the weak substitution is propagated (possibly under
renaming the bound variable so that it does not occur in a).

4.2 Simplification and Normalization Rules

As said above, our calculus contains simplification rules that apply to formulae
of the form U�π�ϕ, where the top-level operator in ϕ is not temporal. They are
shown in Table 2. In particular, they include normalization rules which deal with
negated trace formulae through replacement by the respective dual formula.
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Table 2. Simplification and normalization rules. In rule R16, γ is a state formula.
Rule R17 introduces a fresh variable u′; in rule R18, the substitution needs to be
admissible.

Γ � U�π�ϕ, U�π�ψ,Δ

Γ � U�π�(ϕ ∨ ψ),Δ
R9

Γ � U�π�ϕ,Δ Γ � U�π�ψ,Δ

Γ � U�π�(ϕ ∧ ψ),Δ
R10

Γ � U�π�¬ϕ,Δ
Γ � ¬U�π�ϕ,Δ

R11
Γ � U�π��¬ψ, U�π�(¬ψ U (¬ϕ ∧ ¬ψ)),Δ

Γ � U�π�¬(ϕU ψ),Δ
R12

Γ � U�π�¬ϕ,Δ
Γ, U�π�ϕ � Δ

R13
Γ � U�π�ϕ,Δ

Γ � U�π�¬¬ϕ,Δ R14

Γ � U�π�◦¬ϕ,Δ
Γ � U�π�¬•ϕ,Δ R15

Γ � Uγ,Δ
Γ � U�π�γ,Δ

R16

Γ � U�π�ϕ[u/u′],Δ
Γ � U�π�∀u.ϕ,Δ R17

Γ � U�π�ϕ[u/a], U�π�∃u.ϕ,Δ
Γ � U�π�∃u.ϕ,Δ R18

Rule R12 for negated until avoids introducing the dual R into the sequent.
Therefore, no rules for R are required in the calculus. Soundness of R12 fol-
lows from the well-known equivalence ϕ R ψ ↔ ψ W (ϕ ∧ ψ) in LTL and the
definitions of R and W, which applies to finite traces as well (cf., e.g., [2]).

Since (for conciseness of the calculus) we only include program and temporal
logic rules for the right-hand side of a sequent, we need rule R13 that allows to
move a formula with a modality from the left of a sequence to the right.

In case ϕ is a state formula, rule R16 can be used to remove the program
modality (as a state formula is evaluated in the initial state of a trace). Further
simplification rules are applied to split formulae such as �π�(�ϕ ∧ ψ).

4.3 Rules for Temporal Operators

Table 3 shows the rules that handle temporal operators without changing the
program. Rules R19 to R21 “unwind” temporal formulae by splitting them into a
“future” part and a “present” part. Rules R22 and R23 handle the case of an empty
program (i.e., empty remaining trace) for weak and strong next, respectively.
Rule R22 also closes a proof branch.

Table 3. Rules for handling temporal operators

Γ � U(�π�◦(ϕ U ψ) ∧ �π�ϕ), U�π�ψ,Δ

Γ � U�π�ϕ U ψ,Δ
R19

Γ � U(�π�•�ϕ ∧ �π�ϕ),Δ

Γ � U�π��ϕ,Δ
R20

Γ � U�π�◦♦ϕ, U�π�ϕ,Δ

Γ � U�π�♦ϕ,Δ R21
Γ � U��•ϕ,Δ R22

Γ � Δ
Γ � U��◦ϕ,Δ R23
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4.4 Program Rules

The program rules are shown in Table 4. Assignments to local and global vari-
ables are handled by the rules R24 and R26, respectively. The former can be
applied on any formula ϕ, while the latter one, which handles assignments to
global variables, steps to the next state and consumes a (weak or strong) next
operator.

Table 4. Program rules. The schematic symbol •◦ stands for • or ◦.
Γ � U{x := a}�ω�ϕ,Δ

Γ � U�x = a; ω�ϕ,Δ
R24

Γ, Ub � U�π1 ω�ϕ,Δ Γ, U¬b � U�π2 ω�ϕ,Δ

Γ � U�if (b) {π1} else {π2} ω�ϕ,Δ
R25

Γ � U{X := a}�ω�ϕ,Δ

Γ � U�X = a; ω�•◦ϕ,Δ
R26

Γ � U�if (b){π while (b) {π}} else {} ω�ϕ,Δ

Γ � U�while (b) {π} ω�ϕ,Δ
R27

An if statement is handled by splitting the formula in two parts, each con-
taining the alternative program and the remaining program code as shown in
rule R25. Similarly, loops can be handled by unwinding, as shown in rule R27.
In the case in which the loop condition holds, the loop body is symbolically
executed and then again the whole loop. In the second case where the loop con-
dition does not hold, the loop is simply skipped. However, the number of loop
iterations may not be known in advance, or the loop may not even terminate.
In those cases, we need invariants.

Invariant rules are an established technique for handling loops in calculi for
program logics. The basic idea is to have a state formula γ (the invariant) which
holds in all states before and – if it terminates – after an execution of the loop
body. If we can show that preservation, it only remains to show that ϕ holds on
the remaining trace. The rules are shown in Table 5.

For a trace formula of the shape �ϕ, the four premisses of R28 intuitively
state that (i) γ holds in the beginning; (ii) it is preserved by each loop iteration
(i.e., it actually is an invariant), here a possible post-π state is characterized

Table 5. Invariant rules

Γ � Uγ,Δ γ, b � �π��(•false → γ) γ � b, �ω��ϕ

γ, b � �π | while (b) {π} ω�ϕ

Γ � U�while (b) {π} ω��ϕ,Δ

R28

Γ � ∃u.(u ≥ 0 ∧ UVuγ),Δ n ≥ 0 � Vn+1(γ → (b ∧ �π�♦(•false ∧ Vnγ)))

� V0(γ → �while (b) {π} ω�♦ϕ)
Γ � U�while (b) {π} ω�♦ϕ,Δ

R29

R30
Γ � ∃u.(u ≥ 0 ∧ UVuγ),Δ

� V0(γ → �while (b) {π} ω�ϕ1 U ϕ2)

n ≥ 0 � Vn+1(γ → (b ∧ �π�♦(•false ∧ Vnγ)))

n > 0 � Vn(γ → �π | while (b) {π} ω�ϕ1)

Γ � U�while (b) {π} ω�ϕ1 U ϕ2,Δ
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by the temporal formula •false; (iii) if the loop terminates, indicated by the
negated loop condition b, then �ϕ holds on the remaining trace; and (iv) for every
loop iteration, ϕ holds throughout, i.e., for the remaining trace from every state
during loop iterations. As an invariant abstracts from concrete loop iterations,
the context Γ,Δ must be discarded in the all but the first premiss.

Note that – in contrast to invariant rules in state-based dynamic logic – it is
not sound in premiss (iv), to decompose the program trace and to only regard the
subtrace induced by π in isolation, i.e., just proving �π��ϕ is not sound. As an
example, consider the formula �while (X>0){X = X-1;}��••false, which is not
valid, but the formula �X = X-1;��••false, containing the loop body, obviously
is. This means for a sound rule, that we have to consider the remaining trace as
well. However, we are only interested in those traces which begin in the subtrace
induced by the loop body π.

For this reason, we introduced another, two-place program modality: �π | ω�ϕ
means that for any state in the subtrace induced by π, trace formula ϕ holds for
the remaining trace including ω. More formally, we define �π | ω�ϕ as a short-
hand for �x = 0;π x = 1;ω�(ϕW x

.
= 1) where local program variable x does not

occur in π, ω, or ϕ. Even though the resulting formula is syntactically longer
here, it is easier to prove in the sense that there are fewer states in which ϕ has
to hold.

In the case of R29 (“diamond”) and R30 (“until”), the invariant is accom-
panied by a sequence of updates Vu with an integer expression u, which de-
scribes the progress made through each loop iteration. The general shape of Vu
is {x1 := f1(u)} · · · {xk := fk(u)} where x1, . . . , xk are variables appearing in γ
and f1, . . . , fk are functions. The intuition behind it is that V0γ describes either
a state in which the loop terminates immediately or a fixpoint of the loop. Such
a state must be reached in a finite number of iterations, which is guaranteed
since n is decreasing in every iteration. For this reason, premiss (ii) requires
executions of the loop body to terminate. In Rule R30, there is a fourth premiss
stating that ϕ1 holds throughout the loop body for every iteration where n > 0.

4.5 Rules for Data Structures

Our calculus is basically independent of the domain of computation resp. data
structures that are used. We therefore abstract from the problem of handling
the data structure(s) and just assume that an oracle is available that can decide
the validity of non-temporal formulae in the domain of computation (note that
the oracle only decides pure first-order formulae). In the case of arithmetic, the
oracle is represented by rule R31 in Table 6.

Of course, the non-temporal formulae that are valid in arithmetic are not
even enumerable. Therefore, in practice, the oracle can only be approximated,
and rule R31 must be replaced by a rule (or set of rules) for computing resp. enu-
merating a subset of all valid non-temporal formulae (in particular, these rules
must include equality handling). This is not harmful to “practical complete-
ness.” Rule sets for arithmetic are available, which – as experience shows – allow
to derive all valid non-temporal formulae that occur during the verification of
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Table 6. Oracle rules and induction rule for handling arithmetic (n is fresh)

if
∧

Γ → ∨
Δ is a valid non-temporal formula: Γ � Δ R31

Γ � ϕ(0),Δ Γ, ϕ(u) � ϕ(u+ 1),Δ

Γ � ∀u.ϕ(u),Δ R32

Table 7. The closure and the cut rule

Γ, ϕ � ϕ,Δ R33
Γ, ϕ � Δ Γ � ϕ,Δ

Γ � Δ
R34

actual programs. Using powerful SMT solvers, this can be done fully automat-
ically in many cases. Typically, an approximation of the computation domain
oracle contains a rule for structural induction. In the case of arithmetic, that is
rule R32. This rule, however, not only applies to non-temporal formulae but also
to DTL formulae containing programs.

The remaining rules, which are shown in Table 7, are the cut rule R34 (with
an arbitrary cut formula ϕ) and the closure rule R33 which closes a proof branch.

5 Soundness and Completeness

Soundness of the calculus CDTL (Corollary 1) is based on the following theorem,
which states that all rules preserve validity of the derived sequents.

Theorem 1. For all rule schemata of the calculus CDTL, R1 to R34, the following
holds: If all premisses of a rule schema instance are valid sequents, then its
conclusion is a valid sequent.

Corollary 1. If a sequent Γ 
 Δ is derivable with the calculus CDTL, then it is
valid, i.e.,

∧
Γ →
∨
Δ is a valid formula.

Proving Theorem 1 is not difficult. The proof is, however, quite large as soundness
has to be shown separately for each rule; the proof is given in [4, App. A].

The calculus CDTL is relatively complete; that is, it is complete up to the
handling of the domain of computation (the data structures). It is complete
if an oracle rule for the domain is available – in our case the oracle rule for
arithmetic, R31. If the domain is extended with other data types, CDTL remains
relatively complete; and it is still complete if rules for handling the extended
domain of computation are added.

Theorem 2. If a sequent is valid, then it is derivable with CDTL.

Corollary 2. If ϕ is a valid DTL formula, then the sequent 
 ϕ is derivable.

Due to space restrictions, the proof of Theorem 2, which is quite complex, cannot
be given here. The basic idea of the proof is the same as that used by Harel [8]
to prove relative completeness of his sequent calculus for first-order DL. An
extensive proof sketch can be found in [4, App. B]. The following lemma is
central to the completeness proof.
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R31� {X := 5}��◦♦X ≥ 4, 5 ≥ 4, �X=5;�X ≥ 4
R8� {X := 5}��◦♦X ≥ 4, {X := 5}X ≥ 4, �X=5;�X ≥ 4
R16� {X := 5}��◦♦X ≥ 4, {X := 5}��X ≥ 4, �X=5;�X ≥ 4
R21� {X := 5}��♦X ≥ 4, �X=5;�X ≥ 4

R26� �X=5;�◦♦X ≥ 4, �X=5;�X ≥ 4
R9� �X=5;�(◦♦X ≥ 4 ∨X ≥ 4)

R21� �X=5;�♦X ≥ 4

Fig. 1. Example proof tree (rules focus on the solid black formulae)

Lemma 1. For every DTL formula ϕDTL there is an (arithmetical) non-tempo-
ral first-order formula ϕFOL that is logically equivalent to ϕDTL, i.e., for all
traces τ and variable assignments β:

τ, β 
 ϕDTL iff τ, β 
 ϕFOL .

The above lemma states that DTL is not more expressive than first-order arith-
metic. This holds as arithmetic – our domain of computation – is expressive
enough to encode the behaviour of programs. In particular, using Gödelization,
arithmetic allows to encode program states (i.e., the values of all the variables
occurring in a program) and finite (sub-)traces into a single number. Further it
is then possible to construct, for every DTL formula ψ, state s, program π, and
n ∈ N, a FOL formula ϕψ,s,π,n encoding that trc(s, π)[n,∞) 
 ψ.

Note that Lemma 1 states a property of the logic DTL that is independent
of any calculus. It implies that a DTL formula could be decided by constructing
an equivalent non-temporal formula and then invoking the computation domain
oracle – if such an oracle were actually available. But even with a good approxi-
mation of an arithmetic oracle, that is not practical (the non-temporal first-order
formula would be too complex to prove automatically or interactively). And, in-
deed, the calculus CDTL does not work that way.

The (relative) completeness of CDTL requires an expressive computation do-
main and is lost if a simpler domain and less expressive data structures are used.
The reason is that in a simpler domain it may not be possible to express the
required invariants for all possible while loops.

6 Conclusions and Further Directions

In this paper, we have defined the logic DTL, which stems from a novel combina-
tion of dynamic logic and first-order temporal logic. In contrast to [6,10], there
is no restriction on the shape of trace formulae. Through this, we have got an
expressive logic allowing to describe complex temporal properties of programs.
An example proof can be found in Figure 1. Of course, this is a fairly simple
program and trace property, but it already requires some proof steps. More elab-
orate examples (e.g., including proof splits) cannot be given in this paper due
to limited space.
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One major aim of this work is to express information flow properties in a
concurrent setting. In current work in progress, we have sketched an idea how to
reason about possible information flows throughout program execution. We still
regard only sequential executions of sub-programs (i.e., threads), but execution
traces instead of initial and final states. The rationale behind this is that an
attacker may be in control of another thread running on the same memory
and thus may read variables at any time. For absence of information flow, we
show that traces beginning in states which only differ in the values of secret
variables are bisimilar in public observations. In earlier work, the information
flow policy of non-interference for sequential programs is expressed through self-
composition of dynamic logic formulae [12]. This basic idea can be combined
with declassification, i.e., the controlled release of information, under temporal
constraints, which means to specify when information may be released.

State-based dynamic logics, both for deterministic and indeterministic lan-
guages, have the well-known property of compositionality. For example, the for-
mulae [π ω]ϕ and [π][ω]ϕ are logically equivalent. This is important since pro-
gram complexity imports much to the overall complexity of a DL formula. This
does not apply to our situation as traces may not be decomposed in general. For
purposes like loop invariants (see Table 5), however, program decompositions
are indispensable. This has lead us to the auxiliary notation �π | ω�ϕ, which
talks about all traces beginning in π but extending into ω. Another possibility
to make proofs more feasible would be to introduce additional rules for special,
commonly used patterns of trace formulae – such as �♦γ where γ is a state
formula – for which we know that decompositions are sound.

The sequent calculus CDTL here has been prototypically implemented in the
current development version of the interactive KeY prover. Instead of the simple
toy language introduced in this paper, the implemented calculus works on actual
Java programs. The efforts so far suggest that most program rules can be adapted
straight away from the present rules for the [·] modality.
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Abstract. Ontology-based data access (OBDA) generalizes query an-
swering in databases towards deduction since (i) the fact base is not
assumed to contain complete knowledge (i.e., there is no closed world
assumption), and (ii) the interpretation of the predicates occurring in
the queries is constrained by axioms of an ontology. OBDA has been
investigated in detail for the case where the ontology is expressed by
an appropriate Description Logic (DL) and the queries are conjunctive
queries. Motivated by situation awareness applications, we investigate an
extension of OBDA to the temporal case. As query language we consider
an extension of the well-known propositional temporal logic LTL where
conjunctive queries can occur in place of propositional variables, and
as ontology language we use the prototypical expressive DL ALC. For
the resulting instance of temporalized OBDA, we investigate both data
complexity and combined complexity of the query entailment problem.

1 Introduction

Situation awareness tools [2,12] try to help the user to detect certain situations
within a running system. Here “system” is seen in a broad sense: it may be a
computer system, air traffic observed by radar, or a patient in an intensive care
unit. From an abstract point of view, the system is observed by certain “sensors”
(e.g., heart-rate and blood pressure monitors for a patient), and the results of
sensing are stored in a fact base. Based on the information available in the
fact base, the situation awareness tool is supposed to detect certain predefined
situations (e.g., heart-rate very high and blood pressure low), which require a
reaction (e.g., fetch a doctor or give medication).

In a simple setting, one could realize such a tool by using standard database
techniques: the information obtained from the sensors is stored in a relational
database, and the situations to be recognized are specified by queries in an
appropriate query language (e.g., conjunctive queries [1]). However, in general
we cannot assume that the sensors provide us with a complete description of
the current state of the system, and thus the closed world assumption (CWA)
employed by database systems (where facts not occurring in the database are
assumed to be false) is not appropriate (since there may be facts for which it
is not known whether they are true or false). In addition, though one usually
does not have a complete specification of the working of the system (e.g., a
∗ Partially supported by DFG SFB 912 (HAEC) and GRK 1763 (QuantLA).

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 330–344, 2013.
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complete biological model of a human patient), one has some knowledge about
how the system works. This knowledge can be used to formulate constraints on
the interpretation of the predicates used in the queries, which may cause more
answers to be found.

Ontology-based data access [11,17] addresses these requirements. The fact
base is viewed to be a Description Logic ABox (which is not interpreted with
the CWA), and an ontology, also formulated in an appropriate DL, constrains
the interpretations of unary and binary predicates, called concepts and roles
in the DL community. As an example, assume that the ABox A contains the
following assertions about the patient Bob:

systolic_pressure(BOB, P1), High_pressure(P 1),
history(BOB, H1), Hypertension(H1), Male(BOB)

which say that Bob has high blood pressure (obtained from sensor data), and is
male and has a history of hypertension (obtained from the patient records). In
addition, we have an ontology that says that patients with high blood pressure
have hypertension and that patients that currently have hypertension and also
have a history of hypertension are at risk for a heart attack:

∃systolic_pressure.High_pressure � ∃finding.Hypertension
∃finding.Hypertension � ∃history.Hypertension � ∃risk.Myocardial_infarction

The situation we want to recognize for a given patient x is whether this patient is
a male person that is at risk for a heart attack. This situation can be described by
the conjunctive query ∃y.risk(x, y) ∧ Myocardial_infarction(y) ∧ Male(x). Given
the information in the ABox and the axioms in the ontology, we can derive
that Bob satisfies this query, i.e., he is a certain answer of the query. Obviously,
without the ontology this answer could not be derived.

The complexity of OBDA, i.e., the complexity of checking whether a given
tuple of individuals is a certain answer of a conjunctive query in an ABox w.r.t.
an ontology, has been investigated in detail for cases where the ontology is ex-
pressed in an appropriate DL and the query is a conjunctive query. One can
either consider the combined complexity, which is measured in the size of the
whole input (consisting of the query, the ontology, and the ABox), or the data
complexity, which is measured in the size of the ABox only (i.e., the query and
the ontology are assumed to be of constant size). The underlying assumption is
that query and ontology are usually relatively small, whereas the size of the data
may be huge. In the database setting (where there is no ontology and CWA is
used), answering conjunctive queries is NP-complete w.r.t. combined complexity
and in AC0 w.r.t. data complexity [8,1]. For expressive DLs, the complexity of
checking certain answers is considerably higher. For instance, for the well-known
DL ALC, OBDA is ExpTime-complete w.r.t. combined complexity and co-NP-
complete w.r.t. data complexity [7,13,6]. For this reason, more light-weight DLs
have been developed, for which the data complexity of OBDA is still in AC0 and
for which computing certain answers can be reduced to answering conjunctive
queries in the database setting [5].
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Unfortunately, OBDA as described until now is not sufficient to achieve sit-
uation awareness. The reason is that the situations we want to recognize may
depend on states of the system at different time points. For example, assume
that we want to find male patients that have a history of hypertension, i.e., pa-
tients that are male and at some previous time point had hypertension.1 In order
to express this kind of temporal queries, we propose to extend the well-known
propositional temporal logic LTL [16] by allowing the use of conjunctive queries
in place of propositional variables. For example, male patients with a history of
hypertension can then be described by the query

Male(x) ∧ �−�−(∃y.finding(x, y) ∧ Hypertension(y)),

where �− stands for “previous” and �− stands for “sometime in the past.” The
query language obtained this way extends the temporal description logic ALC-
LTL introduced and investigated in [4]. In ALC-LTL, only concept and role
assertions (i.e., very restricted conjunctive queries without variables and existen-
tial quantification) can be used in place of propositional variables. As in [4], we
also consider rigid concepts and roles, i.e., concepts and roles whose interpreta-
tion does not change over time. For example, we may want to assume that the
concept Male is rigid, and thus a patient that is male now also has been male in
the past and will stay male in the future.

Our overall setting for recognizing situations will thus be the following. In
addition to a global ontology T (which describes properties of the system that
hold at every time point, using the DL ALC), we have a sequence of ABoxes
A0, A1, . . . An, which (incompletely) describe the states of the system at the
previous time points 0, 1, . . . , n−1 and the current time point n. The situation to
be recognized is expressed by a temporal conjunctive query, as introduced above,
which is evaluated w.r.t. the current time point n. We will investigate both the
combined and the data complexity of this temporal extension of OBDA in three
different settings: (i) both concepts and roles may be rigid; (ii) only concepts
may be rigid; and (iii) neither concepts nor roles are allowed to be rigid. For the
combined complexity, the obtained complexity results are identical to the ones
for ALC-LTL, though the upper bounds are considerably harder to show. For the
data complexity, the results for the settings (ii) and (iii) coincides with the one
for atemporal OBDA (co-NP-complete). For the setting (i), we can show that
the data complexity is in ExpTime (in contrast to 2-ExpTime-completeness for
the combined complexity), but we do not have a matching lower bound.

The details of the proofs can be found in the accompanying technical
report [3].

2 Preliminaries

While in principle our temporal query language can be parameterized with any
DL, in this paper we focus on ALC [20] as a prototypical expressive DL.
1 Whereas in the previous example we have assumed that a history of hypertension

was explicitly noted in the patient records, we now want to derive this information
from previously stored information about blood pressure, etc.
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Definition 2.1 (syntax of ALC). Let NC, NR, and NI, respectively, be non-
empty, pairwise disjoint sets of concept names, role names, and individual
names. The set of concept descriptions (or concepts) is the smallest set such that
all concept names A ∈ NC are concepts, and if C, D are concepts and r ∈ NR,
then ¬C (negation), C � D (conjunction), and ∃r.C (existential restriction) are
also concepts.

A general concept inclusion (GCI) is of the form C � D, where C, D are
concepts, and an assertion is of the form C(a) or r(a, b), where C is a concept,
r ∈ NR, and a, b ∈ NI. We call both GCIs and assertions axioms. A TBox (or
ontology) is a finite set of GCIs and an ABox is a finite set of assertions.

The semantics of ALC is defined in a model-theoretic way.

Definition 2.2 (semantics of ALC). An interpretation is a pair I = (ΔI , ·I),
where ΔI is a non-empty set (called domain), and ·I is a function that assigns to
every A ∈ NC a set AI ⊆ ΔI , to every r ∈ NR a binary relation rI ⊆ ΔI × ΔI ,
and to every a ∈ NI an element aI ∈ ΔI .

This function is extended to concept descriptions as follows: (¬C)I := ΔI\CI;
(C � D)I := CI ∩ DI ; and (∃r.C)I := {d ∈ ΔI | ∃e ∈ ΔI : (d, e) ∈ rI ∧ e ∈ CI}.
The interpretation I is a model of the GCI C � D if CI ⊆ DI , of the assertion
C(a) if aI ∈ CI , and of r(a, b) if (aI , bI) ∈ rI . We write I |= α if I is a model
of the axiom α, I |= T if I is a model of all GCIs in the TBox T , and I |= A
if I is a model of all assertions in the ABox A.

We assume that all interpretations I satisfy the unique name assumption (UNA),
i.e., for all a, b ∈ NI with a 
= b we have aI 
= bI . We now introduce a temporal
query language that generalizes a subset of first-order queries called conjunctive
queries [1,8] and the temporal DL ALC-LTL [4]. In the following, we assume
(as in [4]) that a subset of the concept and role names is designated as being
rigid. The intuition is that the interpretation of the rigid names is not allowed to
change over time. Let NRC denote the rigid concept names, and NRR the rigid
role names with NRC ⊆ NC and NRR ⊆ NR. We sometimes call the names in
NC \ NRC and NR \ NRR flexible. As usual, all individual names are implicitly
assumed to be rigid.

Definition 2.3. A temporal knowledge base (TKB) K = 〈(Ai)0≤i≤n, T 〉 con-
sists of a finite sequence of ABoxes Ai and a global TBox T .

Let I = (Ii)i≥0 be an infinite sequence of interpretations Ii = (Δ, ·Ii) over a
fixed non-empty domain Δ (constant domain assumption). Then I is a model
of K (written I |= K) if (i) Ii |= Ai for all i, 0 ≤ i ≤ n, (ii) Ii |= T for all i ≥ 0,
and (iii) I respects rigid names, i.e., xIi = xIj for all x ∈ NI ∪ NRC ∪ NRR and
all i, j ≥ 0.

We denote by Ind(K) the set of all individual names occurring in the TKB K.
As query language, we use a temporal extension of conjunctive queries.

Definition 2.4. Let NV be a set of variables. A conjunctive query (CQ) is of
the form φ = ∃y1, . . . , ym.ψ, where y1, . . . , ym ∈ NV and ψ is a finite conjunction
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of atoms of the form A(z) for A ∈ NC and z ∈ NV ∪ NI (concept atom); or
r(z1, z2) for r ∈ NR and z1, z2 ∈ NV ∪ NI (role atom). The empty conjunction
is denoted by true. Temporal conjunctive queries (TCQs) are built from CQs
using the constructors ¬φ1 (negation), φ1 ∧ φ2 (conjunction), �φ1 (next), �−φ1
(previous), φ1Uφ2 (until), and φ1Sφ2 (since).

We denote the set of individuals occurring in a TCQ φ by Ind(φ), the set of
variables occurring in φ by Var(φ), and the set of free variables occurring in
φ by FVar(φ). We call a TCQ φ with FVar(φ) = ∅ a Boolean TCQ. As usual,
we use the following abbreviations: φ1 ∨ φ2 (disjunction) for ¬(¬φ1 ∧ ¬φ2), �φ
(eventually) for trueUφ, �φ (always) for ¬�¬φ, and analogously for the past:�−φ for trueSφ, and �−φ for ¬�−¬φ. A union of CQs is a disjunction of CQs.

For our purposes, it is sufficient to define the semantics of CQs and TCQs only
for Boolean queries. As usual, it is given using the notion of homomorphisms [8].

Definition 2.5. Let I = (Δ, ·I) be an interpretation and ψ be a Boolean CQ.
A mapping π : Var(ψ) ∪ Ind(ψ) → Δ is a homomorphism of ψ into I if

– π(a) = aI for all a ∈ Ind(ψ);
– π(z) ∈ AI for all concept atoms A(z) in ψ; and
– (π(z1), π(z2)) ∈ rI for all role atoms r(z1, z2) in ψ.

We say that I is a model of ψ (written I |= ψ) if there is such a homomorphism.
Let now φ be a Boolean TCQ. For an infinite sequence of interpretations I =
(Ii)i≥0 and i ≥ 0, we define I, i |= φ by induction on the structure of φ:

I, i |= ∃y1, . . . , ym.ψ iff Ii |= ∃y1, . . . , ym.ψ
I, i |= ¬φ1 iff I, i 
|= φ1
I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2
I, i |= �φ1 iff I, i + 1 |= φ1
I, i |= �−φ1 iff i > 0 and I, i − 1 |= φ1
I, i |= φ1Uφ2 iff there is some k ≥ i such that I, k |= φ2

and I, j |= φ1 for all j, i ≤ j < k
I, i |= φ1Sφ2 iff there is some k, 0 ≤ k ≤ i such that I, k |= φ2

and I, j |= φ1 for all j, k < j ≤ i

Given a TKB K = 〈(Ai)0≤i≤n, T 〉, we say that I is a model of φ w.r.t. K if
I |= K and I, n |= φ. We call φ satisfiable w.r.t. K if it has a model w.r.t. K.

It should be noted that Boolean TCQs generalize ALC-LTL formulae as intro-
duced in [4]. More precisely, every TCQ that contains only assertions instead of
general CQs and contains no past operators (�− or S) is an ALC-LTL formula.
ALC-LTL formulae may additionally contain local GCIs C � D. Such a GCI
can, however, be expressed by the TCQ ¬∃x.A(x) if we add the (global) GCIs
A � C �¬D, C �¬D � A to the TBox. Thus, TCQs together with a global TBox
can express all ALC-LTL formulae. TCQs are more expressive than ALC-LTL
formulae since CQs like ∃y.r(y, y), which says that there is a loop in the model
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without naming the individual which has the loop, can clearly not be expressed
in ALC.

Before defining the main inference problem for TCQs to be investigated in this
paper, we introduce some notation that will be used later on. The propositional
abstraction ̂φ of a TCQ φ is built by replacing each CQ occurring in φ by a
propositional variable such that there is a 1–1 relationship between the CQs
α1, . . . , αm occurring in φ and the propositional variables p1, . . . , pm occurring
in ̂φ. The formula ̂φ obtained this way is a propositional LTL-formula [16]. Recall
that the semantics of propositional LTL is defined using the notion of an LTL-
structure, which is an infinite sequence J = (wi)i≥0 of worlds wi ⊆ {p1, . . . , pm}.
The propositional variable pj is satisfied by J at time point i ≥ 0 (written
J, i |= pj) iff pj ∈ wi. The satisfaction of a complex propositional LTL-formula
by an LTL-structure is defined as in Definition 2.5.

A CQ-literal is a Boolean CQ ψ or a negated Boolean CQ ¬ψ. We will often
deal with conjunctions φ of CQ-literals. Since such a formula φ contains no
temporal operators, the satisfaction of φ by an infinite sequence of interpretations
I = (Ii)i≥0 at time point i only depends on the interpretation Ii. For simplicity,
we then often write Ii |= φ instead of I, i |= φ. By the same argument, we use
this notation also for unions of CQs. In this context, it is sufficient to deal with
classical knowledge bases K = 〈A, T 〉, i.e., temporal knowledge bases with only
one ABox, and we similarly write I0 |= K instead of I, 0 |= K.

3 The Entailment Problem

We are now ready to introduce the central reasoning problems of this paper, i.e.,
the problem of finding so-called certain answers to TCQs and the corresponding
decision problems.

Definition 3.1. Let φ be a TCQ and K = 〈(Ai)0≤i≤n, T 〉 a temporal knowledge
base. The mapping a : FVar(φ) → Ind(K) is a certain answer to φ w.r.t. K if for
every I |= K, we have I, n |= a(φ), where a(φ) denotes the Boolean TCQ that is
obtained from φ by replacing the free variables according to a. The corresponding
decision problem is the recognition problem, i.e., given a, φ, and K, to check
whether a is a certain answer to φ w.r.t. K. The (query) entailment problem is to
decide for a Boolean TCQ φ and a temporal knowledge base K = 〈(Ai)0≤i≤n, T 〉
whether every model I of K satisfies I, n |= φ (written K |= φ).

Note that, for a TCQ φ, a temporal knowledge base K, and i ≥ 0, one can com-
pute all certain answers by enumerating all mappings a : FVar(φ) → Ind(K) and
then solving the recognition problem for each a. Since there are |Ind(K)||FVar(φ)|

such mappings, in order to compute the set of certain answers, we have to solve
the recognition problem exponentially often.

As described in the introduction, in a situation awareness tool we want to
solve the recognition problem for temporal knowledge bases K = 〈(Ai)0≤i≤n, T 〉
and TCQs. The intuition is that the ABoxes Ai describe our observations about
the system’s states at time points i = 0, . . . , n, where n is the current time point,
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and the TCQ describes the situation we want to recognize at time point n for a
given instantiation of the free variables in the query (e.g., a certain patient).

Obviously, the entailment problem is a special case of the recognition problem,
where a is the empty mapping. Conversely, the recognition problem for a, φ,
and K is the same as the entailment problem for a(φ) and K. Thus, these two
problems have the same complexity.

Therefore, it is sufficient to analyze the complexity of the entailment prob-
lem. We consider two kinds of complexity measures: combined complexity and
data complexity. For the combined complexity, all parts of the input, i.e., the
TCQ φ and the temporal knowledge base K, are taken into account. For the
data complexity, the TCQ φ and the TBox T are assumed to be constant, and
the complexity is measured only w.r.t. the data, i.e., the sequence of ABoxes.
As usual when investigating the data complexity of OBDA [5], we assume that
the ABoxes occurring in a temporal knowledge base and the query contain only
concept and role names that also occur in the global TBox.

It turns out that it is actually easier to analyze the complexity of the com-
plement of this problem, i.e., non-entailment K 
|= φ. This problem has the
same complexity as the satisfiability problem. In fact, K 
|= φ iff ¬φ has a model
w.r.t. K, and conversely φ has a model w.r.t. K iff K 
|= ¬φ.

We first analyze the (atemporal) special case of the satisfiability problem
where φ is a conjunction of CQ-literals. The following result will turn out to be
useful also for analyzing the general case.

Theorem 3.2. Let K = 〈A, T 〉 be a knowledge base and φ be a conjunction of
CQ-literals. Then deciding whether φ has a model w.r.t. K is ExpTime-complete
w.r.t. combined complexity and NP-complete w.r.t. data complexity.

Proof (Sketch). The lower bounds easily follow from the known lower bounds
for concept satisfiability in ALC w.r.t. TBoxes [19] and for the data complexity
of query answering of Boolean CQs in ALC [6]. To check whether there is an
interpretation I with I |= K and I |= φ, we reduce this problem to a query non-
entailment problem of known complexity. First, we instantiate the non-negated
CQs in φ by omitting the existential quantifiers and replacing the variables by
fresh individual names. The set A′ of the resulting atoms can thus be viewed
as an additional ABox that restricts the interpretation I. The above problem is
thus equivalent to finding an interpretation I with I |= 〈A ∪ A′, T 〉 and I 
|= ρ,
where ρ is the union of Boolean CQs that results from negating the conjunction
of all negated CQs in φ. This is the same as asking whether the knowledge base
〈A ∪ A′, T 〉 does not entail the union of conjunctive queries ρ. The complexity
of this kind of entailment problems is known: it is ExpTime-complete w.r.t.
combined complexity [7,13] and co-NP-complete w.r.t. data complexity [15]. ��

We now describe an approach to solving the satisfiability problem (and thus the
non-entailment problem) in general. The basic idea is to reduce the problem
to two separate satisfiability problems, similar to what was done for ALC-LTL
in Lemma 4.3 of [4]. Let K = 〈(Ai)0≤i≤n, T 〉 be a TKB and φ be a Boolean
TCQ, for which we want to decide whether φ has a model w.r.t. K. Recall
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that the propositional abstraction ̂φ of φ contains the propositional variables
p1, . . . , pm in place of the CQs α1, . . . , αm occurring in φ. We assume in the
following that αi was replaced by pi for all i, 1 ≤ i ≤ m. We now consider a
set S ⊆ 2{p1,...,pm}, which intuitively specifies the worlds that are allowed to
occur in an LTL-structure satisfying ̂φ. To express this restriction, we define the
propositional LTL-formula

̂φS := ̂φ ∧ �−�
⎛

⎝

∨

X∈S

⎛

⎝

∧

p∈X

p ∧
∧

p/∈X

¬p

⎞

⎠

⎞

⎠ .2

If φ has a model w.r.t. K, i.e., there is a sequence of interpretations I = (Ii)i≥0
that respects rigid names, is a model of K, and satisfies I, n |= φ, then there
exist a set S ⊆ 2{p1,...,pm} and a propositional LTL-structure that satisfies ̂φS at
time point n. In fact, for each interpretation Ii of I, we set Xi := {pj | 1 ≤ j ≤
m and Ii satisfies αj}, and then take S := {Xi | i ≥ 0}. We say that S is induced
by I. The fact that I satisfies φ at time point n implies that its propositional
abstraction satisfies ̂φS at time point n, where the propositional abstraction ̂I =
(wi)i≥0 of I is defined by wi := Xi for all i ≥ 0. However, guessing a set S
and then testing whether the induced LTL-formula ̂φS is satisfiable at time
point n is not sufficient for checking whether φ has a model w.r.t. K. We must
also check whether the guessed set S can indeed be induced by some sequence
of interpretations that is a model of K. The following definition introduces a
condition that needs to be satisfied for this to hold.

Definition 3.3. Given a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping
ι : {0, . . . , n} → {1, . . . , k}, we say that S is r-consistent w.r.t. ι and K if there
exist interpretations J1, . . . , Jk, I0, . . . , In such that

– the interpretations share the same domain and respect rigid names;3
– the interpretations are models of T ;
– for i, 0 ≤ i ≤ k, Ji is a model of χi :=

∧

pj ∈Xi
αj ∧

∧

pj /∈Xi
¬αj ; and

– for i, 0 ≤ i ≤ n, Ii is a model of Ai and χι(i).

The intuition underlying this definition is the following. The existence of the
interpretation Ji (1 ≤ i ≤ k) ensures that the conjunction χi of the CQ-literals
specified by Xi is consistent. In fact, a set S containing a set Xi for which this
does not hold cannot be induced by a sequence of interpretations. The interpre-
tations Ii (0 ≤ i ≤ n) are supposed to constitute the first n + 1 interpretations
in such a sequence. In addition to inducing a set Xι(i) ∈ S and thus satisfying
the corresponding conjunction χι(i), the interpretation Ii must thus also satisfy
the ABox Ai. The first and the second condition ensure that a sequence of in-
terpretations built from J1, . . . , Jk, I0, . . . , In respects rigid names and satisfies

2 Note that a formula �−�ψ is satisfied iff ψ holds at all time points.
3 This is defined analogously to the case of sequences of interpretations (Defini-

tion 2.3).
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the global TBox T . Note that we can use Theorem 3.2 to check whether inter-
pretations satisfying the last three conditions of Definition 3.3 exist. As we will
see below, the difficulty lies in ensuring that they also satisfy the first condition.

Satisfaction of the temporal structure of φ by a sequence of interpretations
built this way is ensured by testing ̂φS for satisfiability, which can basically be
done using algorithms for testing satisfiability in propositional LTL [23].

Lemma 3.4. The TCQ φ has a model w.r.t. the TKB K iff there is a set S =
{X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping ι : {0, . . . , n} → {1, . . . , k} such that

1. S is r-consistent w.r.t. ι and K, and
2. there is an LTL-structure J = (wi)i≥0 such that J, n |= ̂φS and wi = Xι(i)

for all i, 0 ≤ i ≤ n.

The proof of this lemma is similar to, but more involved than the proof of a
similar characterization for satisfiability in ALC-LTL [4].

As shown later, the overall complexity of the satisfiability problem depends
on which symbols are allowed to be rigid. To achieve these complexity results,
we obtain the set S and the function ι either by enumeration, guessing, or di-
rect construction, depending on the case under consideration. Given S and ι, it
remains to check the two conditions of the lemma. To check the second condi-
tion, we construct a Büchi automaton similar to the standard construction for
satisfiability of LTL-formulae [23]. Emptiness of this automaton is equivalent to
satisfiability of ̂φS . The details can be found in [3].

The main difference to the standard construction is the additional condition
wi = Xι(i) for i, 0 ≤ i ≤ n. We check this by attaching a counter taking
values from {0, . . . , n + 1} to the states of the automaton. Transitions where the
counter is i < n + 1 check if the current world corresponds to Xι(i) and increase
the counter by 1. At i = n, we ensure that ̂φS is satisfied. Similar to what is
done in [4], we do not construct the automaton directly for ̂φS , which would
yield an automaton of double-exponential size in the size of φ, but rather for ̂φ.
The additional restrictions of ̂φS are enforced by restricting this automaton to
states that satisfy a world from S. The size of the constructed automaton only
depends linearly on the number n of input ABoxes, which is important for the
results about data complexity, and exponentially on the size of φ. Furthermore,
emptiness of Büchi automata can be checked in polynomial time in the size of
the automaton [23].

Lemma 3.5. Given a set S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} and a mapping
ι : {0, . . . , n} → {1, . . . , k}, the problem of deciding the existence of an LTL-
structure J = (wi)i≥0 such that J, n |= ̂φS and wi = Xι(i) for all i, 0 ≤ i ≤ n, is
in ExpTime w.r.t. combined complexity and in P w.r.t. data complexity.

For the r-consistency test, we need to use different constructions depending on
which symbols are allowed to be rigid. Using these constructions, we obtain the
complexity results for the entailment problem shown in Table 1. Note that rigid
concept names can be simulated by rigid role names [4], which is why there are
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Table 1. The complexity of the entailment problem for TCQs

Data complexity Combined complexity

NRC = NRR = ∅ co-NP-complete ExpTime-complete

NRC �= ∅, NRR = ∅ co-NP-complete co-NExpTime-complete

NRR �= ∅ co-NP-hard/in ExpTime 2-ExpTime-complete

only three cases to consider. The lower bounds can be obtained by simple reduc-
tions from the atemporal entailment problem [6] and the satisfiability problem
of ALC-LTL [4]. In the following sections, we only present the ideas for the up-
per bounds in the most interesting case (no rigid role names, but rigid concept
names). For the other two cases, the proofs are quite similar to the ones for
ALC-LTL [4]. For rigid concepts, the proofs still follow the lines of the proofs
in [4], but need considerably more effort to deal with CQs instead of assertions
(see [3] for more details).

4 Data Complexity for the Case of Rigid Concepts

To obtain an upper bound for the data complexity of the non-entailment prob-
lem in the case where NRC 
= ∅ and NRR = ∅, we consider the conditions of
Lemma 3.4 in more detail. First, note that, since S ⊆ 2{p1,...,pm} is of constant
size w.r.t. the input ABoxes and ι : {0, . . . , n} → {1, . . . , k} is of size linear in
n (the number of ABoxes), guessing S and ι can be done in NP. Additionally,
according to Lemma 3.5, LTL-satisfiability can be tested in P.

We now show that the r-consistency of S w.r.t. ι and K can be checked in NP,
which yields the desired data complexity of co-NP for the entailment problem.
We use a renaming technique similar to the one employed in [4]. For every i,
1 ≤ i ≤ k, and every flexible concept name A (every role name r) occurring in
φ or in T , we introduce a copy A(i) (r(i)), which is a fresh concept (role) name.
We call A(i) (r(i)) the i-th copy of A (r). The CQ α(i) (the GCI β(i)) is obtained
from a CQ α (a GCI β) by replacing every occurrence of a flexible name by its
i-th copy. Similarly, for 1 ≤ � ≤ k, the conjunction χ

(i)
� is obtained from χ� (see

Definition 3.3) by replacing each CQ αj by α
(i)
j .

The basic idea is to decide the existence of models of the conjunctions of
CQ-literals γi ∧ χS w.r.t. the TBox TS , where

γi :=
∧

α∈Ai

α(ι(i)), χS :=
∧

1≤i≤k

χ
(i)
i , TS := {β(i) | β ∈ T and 1 ≤ i ≤ k}.

One can see from the proof of Theorem 3.2 that this problem can be decided in
NP in the size of the input ABoxes. The main reason is that the negated CQs do
not depend on the input ABoxes. In fact, negated CQs only occur in χS , which
only depends on the query φ. Thus, the union of CQs ρ constructed in the proof
of Theorem 3.2 does not depend on the input ABoxes and the same is true for
the TBox TS .
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However, for r-consistency we have to make sure that rigid consequences of
the form A(a) for a rigid concept name A and an individual name a are shared
between these conjunctions of CQ-literals. Let RCon(T ) denote the rigid concept
names occurring in T . Similar to what was done in Lemma 6.3 of [4], we now
guess a set D ⊆ 2RCon(T ) and a mapping τ : Ind(φ) ∪ Ind(K) → D. The idea is
that D fixes the combinations of rigid concept names that occur in the models
of γi ∧ χS and τ assigns to each individual name one such combination. Note
that D only depends on T and τ is of size linear in the size of the input ABoxes,
which is why we can guess D and τ in NP w.r.t. data complexity. We now define

χτ :=
∧

a∈Ind(φ)∪Ind(K)

⎛

⎝

∧

A∈τ(a)

A(a) ∧
∧

A∈RCon(T )\τ(a)

A′(a)

⎞

⎠ ,

where A′ is a rigid concept name that is equivalent to ¬A in T .4 Note that χτ

is of polynomial size w.r.t. the size of the input ABoxes.
We need one more notation to formulate the main lemma of this section. We

say that an interpretation I respects D if

D = {Y ⊆ RCon(T ) | there is a d ∈ ΔI such that d ∈ (CY )I},

where CY :=
�

A∈Y A �
�

A∈RCon(T )\Y ¬A.

Lemma 4.1. If NRC 
= ∅ and NRR = ∅, then S is r-consistent w.r.t. ι and K
iff there exist D ⊆ 2RCon(T ) and τ : Ind(φ) ∪ Ind(K) → D such that each of the
conjunctions γi ∧ χS ∧ χτ , 0 ≤ i ≤ n, has a model w.r.t. TS that respects D.

Proof (Sketch). For the “if” direction, assume that Ii are the required models for
γi ∧χS ∧χτ . Similar to the proof of Lemma 6.3 in [4], we can assume w.l.o.g. that
their domains Δi are countably infinite and for each Y ∈ D there are countably
infinitely many elements d ∈ (CY )Ii . This is a consequence of the Löwenheim-
Skolem theorem and the fact that the countably infinite disjoint union of Ii with
itself is again a model of γi ∧ χS ∧ χτ . The latter follows from the observation
that for any CQ there is a homomorphism into Ii iff there is a homomorphism
into the disjoint union of Ii with itself.

Consequently, we can partition the domains Δi into the countably infinite
sets Δi(Y ) := {d ∈ Δi | d ∈ (CY )Ii} for Y ∈ D. It is now easy to see that
the domains Δi are essentially the same up to isomorphisms between Δi and
Δj for 0 ≤ i, j ≤ n that relate the elements of Δi(Y ) to those of Δj(Y ), and
respect the individual names, i.e., map each aIi to aIj . We can now construct the
models required by Definition 3.3 from the models Ii by appropriately relating
the flexible names and their copies. For example, interpreting the rigid concept
names as in Ii and the flexible names as their ι(i)-th copies in Ii yields a model
4 We can assume w.l.o.g. that for each rigid concept name in T , there is a rigid

concept name equivalent to its negation in T . We can introduce them if needed
while multiplying the size of the TBox by at most 2. We cannot include ¬A(a) in χτ

since this could result in polynomially many negated CQs in the size of the ABoxes.
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of χι(i) w.r.t. 〈Ai, T 〉, and similarly for the models of χj and T for 1 ≤ j ≤ k.
These models share the same domain and respect rigid names. Note that the
interpretation of the names in NRC \ RCon(T ) and NI \ (Ind(φ) ∪ Ind(K)) is
irrelevant and can be fixed arbitrarily.

For the “only if” direction, it is easy to see that one can combine the inter-
pretations Ii, J1, . . . , Jk from Definition 3.3 to a model I ′

i of γi ∧ χS w.r.t. TS
by interpreting the j-th copy of a flexible name as the original name in Jj . For
a ∈ Ind(φ)∪Ind(K), we define τ(a) := Y ⊆ RCon(T ) iff a ∈ (CY )I0 . Furthermore,
we let D contain all those sets Y ⊆ RCon(T ) such that there is a d ∈ (CY )I′

i

for some 0 ≤ i ≤ n. To obtain models of γi ∧ χS ∧ χτ w.r.t. TS that respect
D, we still need to ensure that all Y ∈ D are represented in each of the models
I ′

i. To do this, we construct the disjoint union I ′′
i of I ′

i with all other I ′
j for

0 ≤ j ≤ n. It remains to show that this interpretation is still a model of TS and
the conjunction γi ∧ χS ∧ χτ . This can be seen as follows. For the non-negated
CQs in this conjunction, clearly there is a homomorphism into I′′

i if there is one
into I ′

i. For the negated CQs in χS , we need the additional assumption that each
of them is connected in the sense that the variables and individual names are
related by roles (see [18] or [3] for an exact definition). It follows from a result
in [21] that this is without loss of generality (see [3]). Given this assumption,
the non-existence of a homomorphism into any of the components of I′′

i clearly
implies the non-existence of a homomorphism into their disjoint union I′′

i . ��

It remains to show that we can check the existence of a model of γi ∧ χS ∧ χτ

w.r.t. TS that respects D in nondeterministic polynomial time. For this, observe
that the restriction imposed by D can equivalently be expressed as

χD := (¬∃x.AD(x)) ∧
∧

Y ∈D
∃x.AY (x),

where AY and AD are fresh concept names that are restricted by adding the GCIs
AY � CY , CY � AY for each Y ∈ D, and AD �

�
Y ∈D ¬AY ,

�
Y ∈D ¬AY � AD

to TS . We call the resulting TBox T ′
S . Since χD and T ′

S do not depend on the
input ABoxes, by Theorem 3.2 we can check the consistency of γi ∧χS ∧χτ ∧χD
w.r.t. T ′

S in NP w.r.t. data complexity.

Theorem 4.2. If NRC 
= ∅ and NRR = ∅, then the entailment problem is in
co-NP w.r.t. data complexity.

5 Combined Complexity for the Case of Rigid Concepts

Unfortunately, the approach used in the previous section does not yield a com-
bined complexity of co-NExpTime. The reason is that the conjunctions χS and
χD are of exponential size in the size of φ, and thus Theorem 3.2 only yields
an upper bound of 2-ExpTime. In this section, we describe a different approach
with a combined complexity of co-NExpTime.

As a first step, we rewrite the Boolean TCQ φ into a Boolean TCQ ψ of linear
size in the size of φ and K such that answering φ at time point n is equivalent
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to answering ψ at time point 0 w.r.t. a trivial sequence of ABoxes. This is done
by compiling the ABoxes into the query and postponing the query φ using the�-operator (see [3] for details). We can thus focus on deciding whether a Boolean
TCQ φ has a model w.r.t. a TKB K = 〈∅, T 〉 that has only one empty ABox in
the sequence. Note that this compilation approach does not allow us to obtain a
low data complexity for the entailment problem since after encoding the ABoxes
into φ the size of χS is exponential in the size of the ABoxes.

We now again analyze how to check the two conditions in Lemma 3.4. First,
observe that guessing S = {X1, . . . , Xk} ⊆ 2{p1,...,pm} can be done in nondeter-
ministic exponential time in the size of φ. Furthermore, by Lemma 3.5, the LTL-
satisfiability test required by the second condition can be realized in ExpTime.
It remains to determine the complexity of testing r-consistency of S w.r.t. K =
〈∅, T 〉. Similarly to the approach used in the previous section and to the proof
of Lemma 6.3 in [4], we start by guessing a set D ⊆ 2RCon(T ) and a mapping
τ : Ind(φ) → D. Since D is of size exponential in T and τ is of size polynomial in the
size of φ and T , guessing D and τ can also be done in NExpTime. By Lemma 4.1,
it suffices to test whether χS ∧ χτ has a model w.r.t. TS that respects D. Instead
of applying Theorem 3.2 directly to this problem, which would yield a complexity
of 2-ExpTime, we split the problem into separate sub-problems for each compo-
nent χi of χS . The correctness of this approach is stated in the next lemma. For
the special case of ALC-LTL, this was shown in Lemma 6.3 in [4]. The proof for
the general case is similar to the proof of Lemma 4.1 above.

Lemma 5.1. If NRC 
= ∅ and NRR = ∅, then S is r-consistent w.r.t. K = 〈∅, T 〉
iff there exist D ⊆ 2RCon(T ) and τ : Ind(φ) → D such that each of the conjunctions
χ̂i := χi ∧ χτ , 1 ≤ i ≤ k, has a model w.r.t. K that respects D.

Note that the size of each χ̂i is polynomial in the size of φ and T and the number
k of these conjunctions is exponential in the size of φ. Thus, it is enough to show
that the existence of a model of χ̂i w.r.t. K that respects D can be checked in
exponential time in the size of φ and T . Similar to the proof of Theorem 3.2, we
can reduce this problem to a non-entailment problem for a union of Boolean CQs:
there is an interpretation that is a model of χ̂i and T and respects D iff there is
a model of 〈A, T 〉 that respects D and is not a model of ρ (written 〈A, T 〉 
|= ρ
w.r.t. D), where A is an ABox obtained by instantiating the non-negated CQs
of χ̂i with fresh individual names and ρ is a union of CQs constructed from the
negated CQs of χ̂i.

It thus suffices to show that we can decide query non-entailment 〈A, T 〉 
|= ρ
w.r.t. D in time exponential in the size of A, T , and ρ. To this purpose, we
further reduce this problem following an idea from [13]. There, the notion of a
spoiler is introduced. A spoiler is an ALC∩-knowledge base that states properties
that must be satisfied such that a query is not entailed by a knowledge base.5
It is shown that 〈A, T 〉 
|= ρ iff there is a spoiler 〈A′, T ′〉 for 〈A, T 〉 such that
〈A ∪ A′, T ∪ T ′〉 is consistent. Additionally, all spoilers can be computed in time
exponential in the size of 〈A, T 〉 and ρ, and each spoiler is of polynomial size.
5 ALC∩ extends ALC by role conjunctions of the form r1 ∩· · ·∩rn for r1, . . . , rn ∈ NR.
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We show in [3] that the above reduction is still correct in the presence of D,
i.e., we have 〈A, T 〉 
|= ρ w.r.t. D iff there is a spoiler 〈A′, T ′〉 for 〈A, T 〉 such
that there is a model of 〈A∪A′, T ∪T ′〉 that respects D. It now remains to show
that the existence of such a model can be checked in exponential time in the size
of 〈A ∪ A′, T ∪ T ′〉, and therefore in exponential time in the size of φ and T .

For classical ALC∩-knowledge bases, the consistency problem (without D) is
ExpTime-complete [22]. The complexity does not increase for checking the exis-
tence of a model of a Boolean ALC∩-knowledge base that respects D.6 We show
this in [3] using a notion of quasimodels similar to the one in [4], but extended to
deal with role conjunctions. The main difference is that we must introduce ad-
ditional concept names that function as so-called pebbles, which mark elements
that have specific role predecessors, an idea borrowed from [9,10,14].

Lemma 5.2. Let B be a Boolean ALC∩-knowledge base of size n, A1, . . . , Ak

be concept names occurring in B, and D ⊆ 2{A1,...,Ak}. Then the existence of a
model of B that respects D can be decided in time exponential in n.

Combining the reductions of this section, we get the desired complexity result.

Theorem 5.3. If NRC 
= ∅ and NRR = ∅, then the entailment problem is in
co-NExpTime w.r.t. combined complexity.

6 Conclusions

We have introduced a new temporal query language that extends the temporal
DL ALC-LTL to using conjunctive queries as atoms. Our complexity results
on the entailment problem for such queries w.r.t. temporal knowledge bases are
summarized in Table 1. Without any rigid names, we observed that entailment of
TCQs is as hard as entailment of CQs w.r.t. atemporal ALC-knowledge bases, i.e.,
in this case adding temporal operators to the query language does not increase
the complexity. However, if we allow for rigid concept names (but no rigid role
names), the picture changes. While the data complexity remains the same as
in the atemporal case, the combined complexity of query entailment increases
to co-NExpTime, i.e., the non-entailment problem is as hard as satisfiability in
ALC-LTL. If we further add rigid role names, the combined complexity (of non-
entailment) again increases in accordance with the complexity of satisfiability in
ALC-LTL. For data complexity, it is still unclear whether adding rigid role names
results in an increase. We have shown an upper bound of ExpTime (which is one
exponential better than the combined complexity), but the only lower bound we
have is the trivial one of co-NP.

Further work will include trying to close this gap. Moreover, it would be
interesting to consider temporal queries based on inexpressive DLs such as DL-
Lite [5], and check under what conditions query answering can be realized using
classical (temporal or atemporal) database techniques.
6 Boolean knowledge bases generalize ABoxes and TBoxes by allowing arbitrary

Boolean combinations of axioms instead of only conjunctions.



344 F. Baader, S. Borgwardt, and M. Lippmann

References
1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Baader, F., Bauer, A., Baumgartner, P., Cregan, A., Gabaldon, A., Ji, K., Lee,

K., Rajaratnam, D., Schwitter, R.: A novel architecture for situation awareness
systems. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607,
pp. 77–92. Springer, Heidelberg (2009)

3. Baader, F., Borgwardt, S., Lippmann, M.: On the complexity of temporal query
answering. LTCS-Report 13-01, Technische Universität Dresden, Germany (2012),
http://lat.inf.tu-dresden.de/research/reports.html

4. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans.
Comput. Log. 13(3) (2012)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro,
M.,Rosati,R.:Ontologiesanddatabases:TheDL-Liteapproach. In:Tessaris,S.,Fran-
coni, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.)
Reasoning Web. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. KR 2006 (2006)

7. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query con-
tainment under constraints. In: Proc. PODS 1998 (1998)

8. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Proc. STOC 1977 (1977)

9. Danecki, R.: Nondeterministic propositional dynamic logic with intersection is de-
cidable. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 34–53. Springer,
Heidelberg (1985)

10. De Giacomo, G., Massacci, F.: Combining deduction and model checking into
tableaux and algorithms for Converse-PDL. Inform. Comput. 162(1-2) (2000)

11. Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology based access
to distributed and semi-structured information. In: Proc. DS 1999 (1999)

12. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Human
Factors 37(1) (1995)

13. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008)

14. Massacci, F.: Decision procedures for expressive description logics with intersection,
composition, converse of roles and role identity. In: Proc. IJCAI 2001 (2001)

15. Ortiz, M., Calvanese, D., Eiter, T.: Characterizing data complexity for conjunctive
query answering in expressive description logics. In: Proc. AAAI 2006 (2006)

16. Pnueli, A.: The temporal logic of programs. In: Proc. FOCS 1977 (1977)
17. Poggi, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.:

Linking data to ontologies. J. Data Sem. X (2008)
18. Rudolph, S., Glimm, B.: Nominals, inverses, counting, and conjunctive queries or:

Why infinity is your friend! J. Artif. Intell. Res. 39(1) (2010)
19. Schild, K.: A correspondence theory for terminological logics: Preliminary report.

In: Proc. IJCAI 1991 (1991)
20. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-

ments. Artif. Intell. 48(1) (1991)
21. Tessaris, S.: Questions and Answers: Reasoning and Querying in Description Logic.

Ph.D. thesis, University of Manchester (2001)
22. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge

Representation. Ph.D. thesis, RWTH Aachen (2001)
23. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inform. Com-

put. 155(1) (1994)

http://lat.inf.tu-dresden.de/research/reports.html


Verifying Refutations with Extended Resolution
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Abstract. Modern SAT solvers use preprocessing and inprocessing tech-
niques that are not solely based on resolution; existing unsatisfiability
proof formats do not support SAT solvers using such techniques. We
present a new proof format for checking unsatisfiability proofs produced
by SAT solvers that use techniques such as extended resolution and
blocked clause addition. Our new format was designed with three goals:
proofs should be easy to generate, proofs should be compact, and vali-
dating proofs must be simple. We show how existing preprocessors and
solvers can be modified to generate proofs in our new format. Addition-
ally, we implemented a mechanically-verified proof checker in ACL2 and
a proof checker in C for the proposed format.

1 Introduction

Satisfiability (SAT) solvers have become the core search engine in many tools
used for combinational [1,2] and sequential equivalence checking [3,4], bounded
[5] and unbounded model checking [6], and debugging [7]; thus, it is crucial
that SAT solvers produce correct results. Presently, some of the best solvers use
implementation techniques for which no tools exist to validate the correctness
of their results because existing proof formats can only express a subset of the
implemented techniques. We introduce a new proof format to express refutation
proofs produced by SAT solvers that covers all existing techniques. Additionally,
we implemented new tools to verify these refutation proofs.

State-of-the-art SAT solvers are used for a variety of applications. These ap-
plications rely on SAT solvers to be efficient enough to solve large problems and
provide the correct results. Solvers are often used not only to find a solution for
a Boolean formula, but also to make the claim that no solution exists. If a solver
claims that a formula is satisfiable, we can check a reported solution linearly in
the size of the formula. Yet if a solver claims that a formula has no solutions, we
have to trust that the solver fully exhausted the search space for the problem.
This is complicated by the fact that state-of-the-art SAT solvers employ a large
array of complex techniques to maximize efficiency. Errors can be introduced at
a conceptual level and an implementation level [8].

One approach to gain assurance that a SAT solver is correct is to validate
the output of the SAT solver. A proof trace is a sequence of clauses that are
claimed to be redundant with respect to a given formula. If a SAT solver reports
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that a given formula is unsatisfiable, it can provide a proof trace that can be
checked by a smaller, easier-to-trust program called a proof checker. We only
need to trust the proof checker; such a checker can validate the results of multiple
solvers. Ideally, a proof trace should be compact, easy to obtain, efficient to verify,
expressive enough to capture all solving techniques, and it should facilitate a
simple checker implementation. We can then either trust that the proof checker
is correct or go a step further and formally verify the implementation of the
proof checker. By focusing our efforts on a proof checker, we gain assurance
while avoiding the need to trust or formally verify a variety of solvers with
differing implementations.

SAT solvers have traditionally been checked by emitting a resolution-based
proof that is validated by an external checker [9,10,11]. Validating such
resolution-based proofs is fast and simple; however, emitting proofs in resolution-
based formats is hard and these proofs can be very large. Clausal proofs [10,12]
are an alternative approach to resolution-based proofs, and are primarily checked
using unit propagation. Clausal proofs are compact and easy to emit, yet verifi-
cation tools based on clausal approaches are slower and more complex.

Extended Resolution (ER) [13] is the basis for some techniques used during
learning [14] and preprocessing [15] in state-of-the-art SAT solvers. Refutations
using ER can be exponentially smaller than refutations based solely on resolu-
tion. Examples include the pigeon-hole problems where Haken [16] showed that
resolution proofs are exponential in size, while Cook [17] demonstrated how to
construct polynomial-sized refutations based on ER.

The only (resolution-based) proof-checking tool that can deal with ER is
tracecheck, which checks proofs emitted by the EBDDRES [18,19] solver. It simply
treats ER clauses as input clauses, and thus does not verify them. Moreover, it
is hard to express some techniques, such as bounded variable addition [15], using
(multiple applications of) the extension rule. Other techniques, such as blocked
clause addition [20], are based on a generalization of ER that cannot be expressed
by conventional ER.

To overcome these problems, we propose a new clausal-proof format to com-
pactly express techniques that go beyond resolution. Our proof format is based
on a recently-introduced redundancy property of clauses called Resolution Asym-
metric Tautology (RAT) [21]. All preprocessing and inprocessing techniques used
in contemporary state-of-the-art SAT solvers can be simulated by adding and
removing RAT clauses [21]. It is easy to emit a refutation in our RAT format for
most techniques used in today’s solvers and the proofs are compact. We present
two tools to check proofs in the proposed format: a mechanically verified checker
in the ACL2 theorem prover [22] and a small, fast implementation in C.

Our paper proceeds by presenting some preliminary information in Section 2.
Section 3 deals with redundancy properties of clauses. We provide in Section 4
some motivating examples of why a proof format should exist that supports
techniques based on ER. In Section 5, we detail resolution proofs and clausal
proofs as methods to add clauses that are logically implied by a formula. Our
new proof format is presented in Section 6 and two implementations of checkers
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for this format are discussed in Section 7. We give an evaluation in Section 8,
and we conclude in Section 9.

2 Preliminaries

We briefly review necessary background concepts: conjunctive normal form
(CNF), extended resolution, and Boolean constraint propagation.

2.1 Conjunctive Normal Form

For a Boolean variable x, there are two literals, the positive literal, denoted by x,
and the negative literal, denoted by x̄. A clause is a finite disjunction of literals,
and a CNF formula is a finite conjunction of clauses. A clause is a tautology if
it contains both x and x̄ for some variable x. The set of literals occurring in a
CNF formula F is denoted by LIT(F ). A truth assignment for a CNF formula F
is a partial function τ that maps literals l ∈ LIT(F ) to {t, f}. If τ(l) = v, then
τ(l̄) = ¬v, where ¬t = f and ¬f = t. Furthermore:

– A clause C is satisfied by assignment τ if τ(l) = t for some l ∈ C.
– A clause C is falsified by assignment τ if τ(l) = f for all l ∈ C.
– A CNF formula F is satisfied by assignment τ if τ(C) = t for all C ∈ F .
– A CNF formula F is falsified by assignment τ if τ(C) = f for some C ∈ F .

A CNF formula with no satisfying assignments is called unsatisfiable. A clause
C is logically implied by formula F if adding C to F does not change the set of
satisfying assignments of F . Two formulas are logically equivalent if they have the
same set of solutions over the common variables. Two formulas are satisfiability
equivalent if both have a solution or neither has a solution.

2.2 Resolution and Extended Resolution

The resolution rule states that, given two clauses C1 = (x ∨ a1 ∨ . . . ∨ an) and
C2 = (x̄ ∨ b1 ∨ . . . ∨ bm), the clause C = (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm), can be
inferred by resolving on variable x. We say C is the resolvent of C1 and C2 and
write C = C1 � C2. C is logically implied by any formula containing C1 and
C2. Resolution can also be applied to sets of clauses. Let Sx be a set of clauses
containing literal x and Sx̄ a set of clauses containing literal x̄. Sx � Sx̄ is the
set of non-tautological resolvents R := C1 � C2 with C1 ∈ Sx and C2 ∈ Sx̄.

For a given CNF formula F , the extension rule [13] allows one to iteratively
add definitions of the form x := a ∧ b by adding clauses (x ∨ ā ∨ b̄) ∧ (x̄ ∨ a) ∧
(x̄ ∨ b) to F , where x is a new variable and a and b are literals in the current
formula. Extended Resolution [13] is a proof system, whereby the extension rule is
repeatedly applied to a CNF formula F , followed by applications of the resolution
rule. This proof system surpasses what can be done using only resolution; it can
even polynomially simulate extended Frege systems [23].
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2.3 Boolean Constraint Propagation

For a CNF formula F , Boolean constraint propagation (BCP) (or unit propaga-
tion) simplifies F based on unit clauses; that is, it repeats the following until
fixpoint: If there is a unit clause (l) ∈ F , remove all clauses that contain the
literal l from the set F \ {(l)} and remove the literal l̄ from all clauses in F .
The resulting formula is referred to as BCP(F ). If (l) ∈ BCP(F ) for some unit
clause (l) /∈ F , we say that BCP assigns the literal l to t (and the literal l̄ to f).
If (l), (l̄) ∈ BCP(F ) for some literal l ∈ LIT(F ) (or, equivalently, ∅ ∈ BCP(F )),
we say that BCP derives a conflict.

Example 1. Consider the formula F = (a) ∧ (ā ∨ b) ∧ (b̄ ∨ c) ∧ (b̄ ∨ c̄). We have
(a) ∈ F , so BCP(F ) removes literal ā, resulting in the new unit clause (b). After
removal of the literals b̄, two complementary unit clauses (c) and (c̄) are created.

3 Verification Using the RAT Redundancy Property

Clausal proof checking relies on the addition of redundant clauses to a CNF for-
mula. Refutations are a sequence of clauses, terminating with the empty clause,
that are redundant w.r.t. a given formula. The most basic redundancy property
is T (tautology). RAT is a redundancy property of clauses, computable in poly-
nomial time, that preserves satisfiability; all preprocessing, inprocessing, and
solving techniques in state-of-the-art SAT solvers can be expressed in terms of
addition and removal of RAT clauses [21]. In this section, we provide an overview
of redundancy properties that are covered by RAT.

For a clause C, (asymmetric literal addition) ALA(F,C) computes the unique
clause resulting from repeating the following until fixpoint: if l1, . . . , lk ∈ C and
there is a clause (l1 ∨ · · · ∨ lk ∨ l) ∈ F \ {C} for some literal l, let C := C ∪ {l̄}.
A clause C has property AT (asymmetric tautology) with respect to a CNF
formula F if and only if ALA(F,C) has property T. Clauses with the property
AT are also known as reverse unit propagation (RUP) clauses [10,12]. A clause
C is RUP (or has AT) if unit propagation on an assignment that falsifies C will
result in a conflict. More formally, let C denote the set of unit clauses that falsify
all literals in C. Clause C is RUP if and only if ∅ ∈ BCP(F ∪ C).

Given a CNF formula F and a clause C ∈ F , C has property RP (with
P ∈ {T,AT}) if and only if either (i) C has the property P , or (ii) there is a
literal l ∈ C such that for each clause C′ ∈ F with l̄ ∈ C′, each resolvent in
C � C′ has P . In the latter case, we say C has RP on l. Clauses with property
RT (resolution tautology) with respect to a CNF formula F are also known as
blocked clauses [20].

If a clause C has one of the redundancy properties w.r.t. a CNF formula F , one
can add C to F and preserve satisfiability, or remove C from F and preserve un-
satisfiability. We will focus on adding redundant clauses to a given formula either
with the redundancy property AT, which is the strongest redundancy property
that preserves logical equivalence, or RAT, which is the strongest redundancy
property that preserves satisfiability equivalence. Fig. 1 shows the relationships
between clause redundancy properties.



Verifying Refutations with Extended Resolution 349

T

AT

CDCL learning

DP resolution

subsumption

RAT

extended learning

bounded variable addition

RT

extended resolution

blocked clauses
preserve

logical equivalence
preserve

satisfiability

Fig. 1. Relationships between clause redundancy properties that can be computed
in polynomial time. Techniques shown in an area denote the cheapest check one can
apply to verify a proof trace from a SAT solver that uses that technique. All techniques
used in state-of-the-art SAT solvers can expressed as a sequence of RAT clauses [21].
The dashed line separates techniques that preserve logical equivalence and those that
preserve satisfiability.

Example 2. Let formula F = (a ∨ b) ∧ (b ∨ c) ∧ (b̄ ∨ c̄).

– The clause (a ∨ ā) is a tautology because it contains a and ā and therefore
has T and thus AT, RT and RAT.

– The clause (a ∨ c̄) does not have T. However, it has RT (and RAT) with
respect to F on literal a, because F contains no clauses with literal ā. Fur-
thermore, it also has AT because unit propagation under the assignment
(ā ∧ c) results in a conflict.

– The clause (ā ∨ c) has RAT, but not T, AT, or RT. It is clear that (ā ∨ c)
does not have T. Unit propagation under the assignment (a ∧ c̄) does not
result in a conflict, so (ā ∨ c) does not have AT. Also, (ā ∨ c) does not have
RT, because there is a non-tautological resolvent on ā with (a ∨ b) and on c
with (b̄∨ c̄). Finally, there is only one resolvent on literal ā. The resolvent of
(ā∨c) and (a∨b) is (b∨c), which is already in F . Therefore, unit propagation
on the assignment (b̄ ∧ c̄) will result in a conflict. Hence, (ā ∨ c) has RAT.

4 Extended Resolution in Practice

This section provides an overview of several techniques that use Extended Res-
olution or a generalization. We will present these techniques as motivating ex-
amples for our proof format (discussed in Section 6) based on RAT clauses.

4.1 Manually-Constructed Proofs

A classic problem known to be hard for resolution provers is the pigeon-hole
problem. A pigeon-hole problem of size n (denoted by PHn) describes whether
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n pigeons can be placed in n− 1 holes such that each hole contains at most one
pigeon. Although the problem is easy for any n from an abstract level, it is hard
to refute the straight-forward translation of pigeon-hole problems into a CNF
formula. The number of resolutions to derive the empty clause is exponential in
n, and SAT solvers also require exponential runtime on these problems.

Let Boolean variable xi,j denote whether pigeon i is in hole j with i ∈ {1..n}
and j ∈ {1..n−1}. The straight-forward SAT translation of PHn consists of a
set of clauses describing that pigeon i is in at least one hole, and a set of clauses
enforcing that if pigeon i is in hole j that pigeon k > i cannot be in hole j.∧

i∈{1..n}
(xi,1 ∨ xi,2 ∨ · · · ∨ xi,n−1) ∧

∧
i,j∈{1..n−1}

∧
k∈{i+1..n}

(x̄i,j ∨ x̄k,j) (1)

Although the problem is hard for resolution [16], polynomial-size refutations
do exist for the Extended Resolution [13] technique. ER can reduce PHn into
PHn−1. Applying the reduction n−1 times, results in the trivial PH1. The
first step of the reduction is introducing auxiliary Boolean variables yi,j with
i ∈ {1..n−1} and j ∈ {1..n−2}. When all reduction steps are applied, these
variables yi,j encode that pigeon i is in hole j in the PHn−1 problem. Let

yi,j := xi,j ∨ (xn,j ∧ xi,n−1) (2)

The definition can be translated into clauses that have all RT on yi,j .

(yi,j ∨ x̄i,j)∧ (yi,j ∨ x̄n,j ∨ x̄i,n−1)∧ (ȳi,j ∨ xi,j ∨ xn,j)∧ (ȳi,j ∨ xi,j ∨ xi,n−1) (3)

By adding the clauses (3) with i ∈ {1..n− 1}, j ∈ {1..n− 2} to the formula, the
clauses encoding the left set of clauses of (1) with yi,j variables are:

(yi,1 ∨ yi,2 ∨ · · · ∨ yi,n−2) (4)

Notice that the clauses (4) have AT after the presence of (3): First assign
yi,1, yi,2, . . . , yi,n−2 to false, then BCP assigns xi,1, xi,2, . . . , xi,n−2 to false us-
ing (yi,j ∨ x̄i,j). This in turn makes xi,n−1 true by (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n−1).
After these assignments, all the clauses (yi,j∨x̄n,j∨x̄i,n−1) become unit assigning
all xn,1, xn,2, . . . , xn,n−2 to false. Now, (xn,1 ∨xn,2 ∨ · · · ∨xn,n−1) assigns xn,n−1

to true, and a conflict arises because the clause (x̄i,n−1 ∨ x̄n,n−1) is falsified.
The right set of clauses of (1) using yi,j variables is required to finish the

reduction. These (ȳi,j∨ ȳk,j) don’t have RAT. Yet the clauses (ȳi,j∨ ȳk,j∨xi,n−1)
have AT and in the presence of (ȳi,j ∨ ȳk,j ∨ xi,n−1), (ȳi,j ∨ ȳk,j) has AT as well.

(ȳi,j ∨ ȳk,j ∨ xi,n−1); (ȳi,j ∨ ȳk,j) (5)

So by adding the clauses (3), (4), and (5) —all having RT or AT, and thus RAT—
we can reduce the PHn problem into a PHn−1 problem. Repeating this n − 1
times results in a refutation. A similar, but much larger proof of unsatisfiability
can be obtained by combining resolution and ER, as in [17].
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4.2 Extended Learning

Our manually-constructed extended resolution proof above illustrates the poten-
tial of introducing new variables; however, it is hard to capitalize on this potential
in practice. Most applications of the extension rule will result in useless variables
which can slow down the search. The most serious study of practical ER during
search looks for a pattern between consecutive conflict clauses [14]. When such
a pattern is found, a new variable is introduced.

The pattern consists of conflict clauses that differ in exactly one literal. Given
two successive conflict clauses C = (l1 ∨ α) and D = (l2 ∨ α) with α being a
disjunction of literals, the extension rule is applied using z := (l̄1 ∨ l̄2). Newly
introduced variables are used to shorten future conflict clauses. Let γ be a dis-
junction of literals. If a conflict clause (l1 ∨ l2 ∨ γ) is found and the variable
z := (l1 ∨ l2) was created in the past, (z ∨ γ) is added to the learned clause
database.

4.3 Bounded Variable Addition

One of the most effective preprocessing/inprocessing techniques is Bounded Vari-
able Elimination (BVE) [24]. This technique tries to reduce the sum of the num-
ber of variables and the number of clauses by eliminating variables. Given a
CNF formula F , let Fl denote the subset of clauses of F that contains literal l.
BVE searches for a variable x, such that it can replace Fx and Fx̄ by the set of
non-tautological resolvents of Fx � Fx̄ if and only if |Fx � Fx̄| ≤ |Fx|+ |Fx̄|.

Recently a complementary technique was proposed, called Bounded Variable
Addition (BVA) [15], that introduces new variables. BVA uses the same metric
for substitution: new variables are added while the sum of the number of variables
and clauses strictly decreases. BVE is based on resolution and therefore one can
use existing resolution and clausal proof formats to verify an implementation.
However, BVA cannot be simulated by resolution and simulation by ER is non-
trivial. Yet a proof trace of BVA can elegantly be expressed using RAT clauses.

BVA works as follows. Given a CNF formula F and a new Boolean variable x,
BVA searches for sets of clauses Gx (clauses containing literal x) and Gx̄ (clauses
containing literal x̄), such that all non-tautological resolvents of Gx � Gx̄ are
in F and |Gx � Gx̄| > |Gx|+ |Gx̄|. Whenever BVA finds such a Gx and Gx̄, it
replaces the resolvents by: F := (F ∪Gx ∪Gx̄) \Gx � Gx̄.

Example 3. Consider the formula F = (a∨c)∧(a∨d)∧(a∨e)∧(b∨c)∧(b∨d)∧(b∨e).
For F there exists Gx = (a∨x)∧(b∨x) and Gx̄ = (x̄∨c)∧(x̄∨d)∧(x̄∨e) such that
all non-tautological resolvents of Gx � Gx̄ are in F and |Gx � Gx̄| > |Gx|+|Gx̄|.
All clauses added by the extension rule are blocked (have RT) on the new vari-
able. However, this is not the case with BVA. In Example 3, none of the clauses
in Gx and Gx̄ are blocked; all these clauses have RAT on the new variable.
Without loss of generality consider a clause C ∈ Gx. All resolvents R := C � C′

with C′ ∈ Gx̄ are either tautologies or R is subsumed by F (namely, R ∈ F ).
Both tautologies and subsumptions are asymmetric tautologies, and therefore,
C has RT.
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5 Existing Proof Formats

Conflict-driven clause learning (CDCL) [25] is the leading paradigm of mod-
ern SAT solvers. A core aspect of CDCL solvers is the addition and removal of
clauses. The main form of reasoning is known as conflict analysis, which adds
clauses. Additionally, state-of-the-art CDCL solvers use preprocessing and inpro-
cessing techniques that both add and remove clauses. Proof formats for CDCL
solvers express how to check that a clause addition step preserves satisfiability.
This section provides an overview of existing formats. In next section, we present
our new format.

We appeal to the notion that lemmas are used to construct a proof of a
theorem. Here, lemmas represent the learned clauses and the theorem is the
statement that the formula is unsatisfiable. From now on, we will use the term
clauses to refer to input clauses, while lemmas will refer to added clauses.

5.1 Resolution Proofs

The early approaches to prove refutations produced by SAT solvers were based
on resolution [9]. The lemmas computed by CDCL solvers can be simulated
by a sequence of resolutions [26]. Let L be a lemma and {C1, . . . , Cn} be the
input clauses. For each L, one must specify a sequence such that L = (((Ci � 
Cj) . . . ) � Ck). This sequence may use added lemmas to construct new lemmas.

As resolution is an elementary operation, simple and fast checking algorithms
exist [9,10,11]. However, resolution proofs can be huge (dozens of gigabytes).
It may also be hard to modify a SAT solver to emit a resolution refutation;
for instance, one must determine the clauses on which to apply resolution, and
specifying the order may be difficult. Since only a handful of (mostly outdated)
solvers support resolution-based proofs, a user would need to modify a solver
to emit resolution proofs. Even for the author(s) of a SAT solver this is not an
easy task. In the case one wishes to integrate a portfolio of SAT solvers into a
SMT solver or theorem prover, it would be a daunting task to enhance them all
to emit resolution proofs.

5.2 Clausal Proofs

An alternative approach using clausal proofs was proposed by Goldberg and
Novikov [12]. They observed that each lemma L learned by CDCL conflict anal-
ysis can be checked using BCP. Lemmas, like clauses, are disjunctions of literals.
If BCP(F ∪ L) results in a conflict, i.e., produces the empty clause ∅, then L
is implied by F . Notice that this corresponds to the redundancy property AT.
Lemmas with AT are also known as reverse unit propagation (RUP) lemmas [10].

Clausal proofs are represented as a queue of lemmas (L1, . . . , Lm) such that
Lm = ∅. Given a CNF formula F , a clausal proof of F consists of lemmas Li

that are redundant w.r.t. F . Let F0 = F and Fi := Fi−1 ∪{Li}. Existing clausal
proof formats expect that lemma Li has AT w.r.t. Fi−1. In our proposed format
(see Section 6) lemmas should have the more general RAT redundancy property.
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The elegance of clausal proofs is that they can be expressed in conjunctive
normal form; however, the order of the lemmas is important. Clausal proofs
are significantly smaller when compared to resolution proofs, and only minor
modifications of a SAT solver are required to output such proof records. However,
checking of clausal proofs can be quite expensive. Checking algorithms for clausal
proofs are also typically more complex than those for resolution proofs, making
it harder to trust or prove correctness of the algorithm.

RUPchecker (CNF formula F , queue Q of lemmas)

1 while Q is not empty

2 L := Q.pop()

3 F ′ := BCP(F ∪ L)

4 if ∅ /∈ F ′ then return “checking failed”

5 F := BCP(F ∪ L)

6 if ∅ ∈ F then return “unsatisfiable”

7 return “all lemmas validated”

BCP (CNF formula F )

11 while ∃ (x) ∈ F do

12 for C ∈ F with x̄ ∈ C do

13 C := C \ {x̄}
14 for C ∈ F with x ∈ C do

15 F := F \ {C}
16 return F

Fig. 2. Pseudo-code to check clausal proofs for lemmas with AT (or RUP lemmas)

Fig. 2 shows the pseudo-code of a clausal, proof-checking algorithm for lemmas
with AT. The input is a CNF formula F and a queue Q of lemmas representing
a refutation of F . Lemmas are sorted in chronological order as learned by the
SAT solver. While Q is not empty (line 1), its front lemma L is popped (line 2).
If unit propagation on F using L does not derive a conflict, then we fail to check
that L is logically implied by F and terminate (line 3 and 4). Otherwise, L is
added to F . In case L was unit, the new F is simplified using BCP (line 5). If
unit propagation results in a conflict, a top-level contradiction is found, meaning
that the formula is unsatisfiable (line 6). If the algorithm reaches the end (line
7), all lemmas in Q were validated but no top-level conflict was encountered.

6 The RAT Proof Format

In this section, we propose the new RAT proof format. This is an alternative
clausal-proof format that supports both AT (or RUP) and RAT lemmas.

The main decision regarding a proof format for ER and its generalizations
was whether to use a resolution-style or clausal-style proof format. Apart from
the known disadvantages of resolution-style proofs (recall Section 5.1), there
is another drawback of ER proofs: techniques like blocked clause addition [20],
cannot be expressed using the extension rule. Consequently, if one wants to verify
all known techniques, a clausal-style proof format seems the most viable option.

We considered whether to specify the simplest redundancy property for each
lemma. All redundancy properties are covered by RAT, so it is not necessary to
distinguish between them; however, efficiency may be gained by distinguishing



354 M.J.H. Heule, W.A. Hunt Jr., and N. Wetzler

them. In practice, the majority of lemmas has the AT property; therefore, by
first checking for AT, which is part of the RAT check, we reduce overhead.

In case a lemma does not have AT, our proof format expects the lemma to
have RAT on its first literal. Fig. 3 shows three refutations in the RUP (mid
left) and RAT formats (both on the right). The last RAT refutation shows that
one can introduce new variables in a RAT proof — which is not allowed in RUP
proofs.

CNF formula

p cnf 4 16

1 2 3 4 0

1 2 3 -4 0

1 2 -3 4 0

1 2 -3 -4 0

1 -2 3 4 0

1 -2 3 -4 0

1 -2 -3 4 0

1 -2 -3 -4 0

-1 2 3 4 0

-1 2 3 -4 0

-1 2 -3 4 0

-1 2 -3 -4 0

-1 -2 3 4 0

-1 -2 3 -4 0

-1 -2 -3 4 0

-1 -2 -3 -4 0

smallest RUP proof

1 2 3 0

1 2 0

1 3 0

1 0

2 3 0

2 0

3 0

0

smallest RAT proof

1 0

2 0

3 0

0

RAT proof with ER

5 1 2 0

5 1 -2 0

5 -1 2 0

5 -1 -2 0

-5 3 4 0

-5 3 -4 0

-5 -3 4 0

-5 -3 -4 0

5 1 0

5 0

3 0

0

Fig. 3. An example of a CNF problem in the typical DIMACS format (left) as well
as three refutations; one in the RUP format (mid left) and two in RAT format (right).
The proofs in the middle show a smallest proof (in the number of lemmas) for RUP
and RAT. Whitespaces can be of any length; the spacing is to improve readability. A
0 marks the end of clauses and lemmas. The RUP and RAT formats have the same
syntax. Only the RAT format allows lemmas to have the RAT redundancy property.

7 Implementation

We have implemented1 a RAT checker in ACL2 that is concise in its expression,
and, more importantly, mechanically verified. Our proof of correctness for our
RAT checker hinges on the mechanical proof of the redundancy of the RAT
property presented in Section 3. We did this by modeling the RAT proof-checking
algorithm as an ACL2 function, and then we used the ACL2 mechanical proof-
checking system to assure that our RAT proof-checking algorithm is valid.

1 The material presented in the paper, such as the formal proof, our tools, and the used
benchmarks are available on www.cs.utexas.edu/~marijn/rat/. Our proof contains
roughly 150 ACL2 (definitions and proof request) events.

www.cs.utexas.edu/~marijn/rat/
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Apart from our mechanically verified checker, we implemented a concise RAT
checker in C (about 200 lines of code). Fig. 4 shows its pseudo-code. Our RAT
checker extends the RUP checker pseudo-code (recall Fig. 2) and uses the same
input parameters, initialization (lines 1 and 2), and termination (lines 8 to 10).
Before validating a lemma L, it first checks whether L has AT (line 3). Otherwise,
the expensive RAT check is applied. According to the RAT proof format, lemma
L should have RAT on its first literal l (line 4). We compute for all clauses
C′ ∈ Fl̄ (line 5), the resolvent R := C′ � L (line 6), and check whether R has
AT (line 7). If all these R have AT, L is added to F (line 8); otherwise, we return
“checking failed”.

RATchecker (CNF formula F , queue Q of lemmas)

1 while Q is not empty

2 L := Q.pop()

3 if ∅ /∈ BCP(F ∪ L) then // check if L has AT, otherwise

4 let l be the first literal in L. // assume L has RAT on l

5 forall C′ ∈ Fl̄ do

6 R := C′ �� L

7 if ∅ /∈ BCP(F ∪R) then return “checking failed”

8 F := BCP(F ∪ L)

9 if ∅ ∈ F then return “unsatisfiable”

10 return “all lemmas validated”

Fig. 4. Pseudo-code to check Resolution Asymmetric Tautology (RAT) proofs

In general, the RAT check (lines 4 to 7) is more expensive than the AT check
(line 3), because one has to do the AT check for each R. However, in practice,
for half the RAT lemmas, Fl̄ is empty and we skip lines 4 to 7.

The main reason why a RAT checker is more complex and less efficient, as
compared to a RUP checker, is the requirement in line 5 to compute Fl̄, the set
of clauses containing literal l̄. In order to do this computation efficiently, the
checker needs to maintain a full occurrence list of all clauses. Alternatively, a
RUP checker could use a watch-pointer data structure.

Notice that for all checks (lines 3 and 7), all literals l′ ∈ L\l will be assigned to
false. One can optimize a RAT checker by first assigning all the literals l′ ∈ L \ l
to false followed by unit propagation and perform the checks on this assignment.
This optimization is implemented in our C checker.

8 Evaluation

To demonstrate the usefulness of the RAT proof format, we experimented with
our tools on the problems discussed in Section 4. We ran our tests on a 4-core
Intel Xeon CPU E31280 3.50GHz, 32 Gb RAM machine running Ubuntu 10.04.
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8.1 Manually-Constructed Proofs

The first experiment evaluates the performance of our RAT checking tools on the
manually-contructed proofs of PHn problems presented in Section 4.1. Although
these problems are notoriously hard for SAT solvers, the manually-contructed
proofs are small and can be checked in a fraction of a second using our C imple-
mentation, see Table 1. The ACL2 checker is significantly slower, but was not
written with speed in mind.

Table 1. Evaluation of manually-constructed proofs of PHn problems. The first column
shows the benchmark name. The next two columns show the number of variables in
the input formula and in the proof. The number of original, AT, and RAT clauses, as
well as their sum (total) is shown in the next four columns. The last two columns show
the time (in seconds) to check the proofs using our C and ACL2 implementations.

#variables #clauses time
benchmark input proof input AT RT total C ACL2

PH6 30 70 81 160 145 386 0.003 0.26
PH7 42 112 133 280 301 714 0.005 1.55
PH8 56 168 204 448 560 1,212 0.007 7.91
PH9 72 240 297 672 960 1,929 0.010 34.26
PH10 90 330 415 960 1,545 2,920 0.014 129.78
PH11 110 440 561 1,320 2,365 4,246 0.016 440.69
PH12 132 572 738 1,760 3,476 5,974 0.020 1358.65

8.2 Extended Learning

We modified the solver GlucosER 1.0 [14], which combines CDCL learning and
ER, such that it emits a proof in the proposed RAT format2. We evaluated the C
checking tool on benchmarks where GlucosER has an edge over SAT solvers with-
out ER learning, such as the PHn instances and the Urquhart benchmarks [27].

Table 2 shows the results of the second experiment with our C checking tool.
Compared to the prior results, the C tool requires much more time to verify the
output of GlucosER. Notice that although GlucosER uses ER, it cannot compete
with the manually-constructed proofs on the same problems.

8.3 Bounded Variable Addition

The technique BVA, discussed in Section 4.3, is a helpful preprocessing technique
for several families of benchmarks, including the PHn problems and some hard
bioinformatics [28] benchmarks. We modified a preprocessing tool which includes
a BVA implementation, coprocessor [29], and the Glucose 2.1 solver [30] (the
winner of the SAT 2012 Challenge) to output lemmas in the RAT format. We ver-
ified the merged file consisting of the original problem and the lemmas produced
by the preprocessor and solver.

2 Additionally, we removed the code that allows reuse of variables that have been
eliminated. The removal of this part of the code made it easier to verify and has no
noticeable effect on the performance.
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Table 2. Evaluation of Extended Learning on PHn and Urquhart benchmarks. The
first column shows the benchmark name. The next two columns show the number of
variables in the input formula and in the proof. The number of original, AT, and RAT
clauses, as well their sum (total) is shown in the next four columns. The last two
columns show the time (in seconds) to solve the benchmarks and to check the emitted
proofs using our C checker.

#variables #clauses time
benchmark input proof input AT RT total solving checking

PH10 90 379 415 99,682 867 100,973 5.28 24.72
PH11 110 814 561 260,677 2,112 263,350 13.51 72.08
PH12 132 1,450 738 1,512,453 3,954 1,517,145 145.29 3,521.23

Urq 3 5 45 2,126 446 281,761 6,243 288,450 8.33 17.38
Urq 3 6 54 3,842 688 1,156,477 11,364 1,168,529 52.69 152.36
Urq 3 7 42 1,147 342 102,950 3,315 106,607 2.20 3.95
Urq 3 8 44 1,518 416 149,286 4,422 154,124 3.70 5.86

Table 3 shows the results regarding the performance improvements due to
BVA and the RAT proof checking costs. The performance difference when using
Glucose 2.1 on the original and BVA-preprocessed instances is huge: the largest
instance cannot be solved in 12 hours, while the preprocessed formula is solved
in two minutes. It is important to check that these gains are not caused by a
bug. Our proof checker confirms that the refutation is correct.

Table 3. Evaluation of checking RAT produced by BVA preprocessing on PHn and
bioinformatics (rbclY) benchmarks. The timeout (denoted by —) is 12 hours. The
first column shows the benchmark name. The next three columns show the number
of variables, the number of clauses, and the solving time (in seconds) of the original
formula. The next three columns show the same information for the BVA preprocessed
formula. The last three columns show the number of AT and RAT clauses in the proofs,
as well as the time (in seconds) to check the proofs using our C checker.

original BVA preprocessed RAT proof checking
benchmark #vars #cls time #vars #cls time #AT #RAT time

PH10 90 330 7.71 117 226 1.25 42,853 198 4.19
PH11 110 440 84.42 151 281 12.34 225,959 295 152.82
PH12 132 572 494.29 187 342 8.45 181,603 402 69.01

rbcl 07 1,128 57,446 52.92 1,784 7,598 2.88 72,073 19,681 6.76
rbcl 08 1,278 67,720 1,763.36 1,980 9,004 10.72 151,894 22,830 37.58
rbcl 09 1,430 79,118 — 2,190 10,492 129.20 882,213 26,639 2,631.28

We are working on techniques to decrease the time to check RAT proofs.
Initial results indicate that RAT verification can be realized in a time similar to
the solving time. Improvement to the speed will likely increase the complexity
of the checker implementation.
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9 Conclusions

We presented a new clausal proof format for SAT solvers. The crucial differ-
ence is that we allow lemmas to have the redundancy property RAT. Since all
techniques used in state-of-the-art SAT solvers can be simulated by the addition
and removal of RAT lemmas [21], our new format facilitates the verification of
results produced by SAT solvers. For most techniques, it is easy to modify a
solver to emit a proof in our format, which includes CDCL and ER learning,
and bounded variable addition.

Two major challenges remain to conveniently verify the results of SAT solvers.
Our C implementation may be slow when a solver emits a huge proof. It is still
an open question whether only minor modifications to SAT solvers are needed
for all techniques. For example, Gaussian elimination of XOR constraints can
be simulated using ER [18,19] techniques, but these methods require several
modifications for SAT solvers that use Gaussian elimination.

Our new format and our tools are the first, complete approach toward SAT
solver verification. We expect them to be used to check implementations of the
more complex techniques, in particular those based on ER. Our new format and
tools support the development of new techniques that may further capitalize on
the strength of ER.
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Abstract. In this paper we study possibilities of using hierarchical rea-
soning, quantifier elimination and model generation for the verification
of parametric hybrid systems, where the parameters can be constants
or functions. Our goal is to automatically provide guarantees that such
systems satisfy certain safety or invariance conditions. We first analyze
the possibility of automatically generating such guarantees in the form
of constraints on parameters, then show that we can also synthesise so-
called criticality functions, typically used for proving stability and/or
safety of hybrid systems. We illustrate our methods on several examples.

1 Introduction

In this paper we study possibilities of using hierarchical reasoning, quantifier
elimination and model generation for the analysis and verification of increas-
ingly more general classes of parametric hybrid systems (where the parameters
can be either constants or functions, possibly modeling parametric “updates”
of the system and/or environment). Our goal is to give methods which allow
to automatically provide guarantees that such systems satisfy certain safety or
invariance conditions. Our main contributions can be described as follows:

– We refine the methods for generating constraints on parameters which we
gave in [15,3,4] and apply them to increasingly more complex hybrid systems
(including non-linear hybrid systems or families of hybrid systems).

– We study possibilities of automatically generating criticality functions (used
to characterize regions where safety properties can be guaranteed).

There exist approaches to the verification of parametric hybrid automata (e.g.
by Henzinger et al. [1], Frehse [6], Wang [17], Tiwari et al. [7] and Cimatti et
al. [2], Platzer et al. [10,11]) possibly used for synthesis [16]. However, in most
cases only situations in which the parameters are constants were considered. In
[15] and [3,4] we made first steps towards the verification of hybrid systems with
a more complex form of parametricity, but with a focus on linear hybrid au-
tomata. We here extend these results to parametric hybrid automata, and also
explore possibilities of generating criticality functions in order to give guarantees
for safety in such systems. The main advantage of our method for generating
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criticality functions compared with existing approaches based on Lyapunov func-
tion computation (cf. e.g. [12]) is that we restrict to very simple properties of
the continuous variables (such as monotonicity properties) and thus avoid the
complexity introduced by the complicated dynamics.

Structure. Section 2 introduces the main definitions and results on local the-
ory extensions and hybrid automata used in the paper. In Section 3 we present
a general result on generating constraints on parameters under which certain
formulae are invariant (which we apply for the verification of parametric lin-
ear hybrid automata, then extend to parametric hybrid automata and systems
thereof). In Section 4 we present a method for generating criticality functions.

2 Preliminaries

We present the main definitions and results on local theory extensions and hybrid
automata used in the paper. For details on local theory extensions we refer to
[13,8,9]; for details on hybrid automata we refer for instance to [1].

Local Theory Extensions. Let T0 be a theory with signature Π0 = (S,Σ0,
Pred), where S is a set of sorts, Σ0 a set of function symbols, and Pred a set of
predicate symbols. We consider extensions T1 of T0 with new function symbols
in a set Σ1 whose properties are axiomatized with a set K of clauses1 whose free
variables are considered to be universally quantified (Notation: T0 ⊆ T1 = T0∪K,
where T1 has signature Π = (S,Σ0 ∪Σ1,Pred) - also written Π = Π0 ∪Σ1). An
extension T0 ⊆ T1 = T0 ∪ K is local [13] if it satisfies condition (Loc):2

(Loc) For every finite set G of ground clauses T1∪G |=⊥ iff T0∪K[G]∪G |=⊥
where K[G] is the set of instances of K where all terms starting with an extension
function are in the set st(K, G) of all ground terms occurring in K or G.

A similar extended locality condition (ELoc) [9] can be defined for theory exten-
sions in which K consists of augmented clauses ((ELoc) states that T1∪Γ |=⊥ iff
T0∪K[Γ ]∪Γ |=⊥ holds for all Σ0-extended ground clauses Γ = Γ0∪G, where Γ0

is a Πc
0-sentence and G is a finite set of ground Πc-clauses). In [8] we introduced

Ψ -(extended) locality conditions (LocΨ ) and (ELocΨ ), where Ψ is a closure oper-
ator on ground terms, in which the instances of K to be considered without loss
of completeness are K[ΨK(G)] instead of K[G], where ΨK(G) = Ψ(st(K, G)).

Hierarchical reasoning. Consider a Ψ -local theory extension T0 ⊆ T0 ∪K. Condi-
tion (LocΨ ) requires that, for every set G of ground Πc clauses, T0 ∪K ∪G |=⊥
iff T0 ∪ K[ΨK(G)] ∪ G |=⊥. In all clauses in K[ΨK(G)] ∪G the function symbols
in Σ1 have as arguments only ground terms, so K[ΨK(G)]∪G can be flattened

1 We can also consider sets K of augmented clauses, i.e. of axioms of the form
(Φ(x1, . . . , xn) ∨ C(x1, . . . , xn)), where Φ(x1, . . . , xn) is an arbitrary first-order for-
mula in the base signature Π0 and C(x1, . . . , xn) is a clause containing Σ1-functions.

2 In what follows, when we refer to sets G of ground clauses we assume that they are
in the signature Πc = (S,Σ ∪ C,Pred), where C is a set of new constants.
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and purified3. The set of clauses thus obtained has the form K0∪G0∪Def, where
Def consists of ground unit clauses of the form f(c1, . . . , cn)=c, where f∈Σ1,
c, c1, . . . , cn are constants, and K0 and G0 do not contain Σ1-function symbols.

Theorem 1 ([13,8]). Let K be a set of clauses. Assume that T0 ⊆ T1 = T0 ∪K
is a Ψ -local theory extension. For any set G of ground clauses, let K0 ∪G0 ∪Def
be obtained from K[ΨK(G)]∪G by flattening and purification, as explained above.
Then the following are equivalent to T1 ∪G |=⊥:

(1) T0∪K[ΨK(G)]∪G |=⊥ .

(2) T0∪K0∪G0∪Con0 |=⊥, where Con0={
n∧

i=1

ci≈di → c≈d |f(c1, . . . , cn)≈c∈Def
f(d1, . . . , dn)≈d∈Def }.

As a consequence we obtain the following decidability transfer result.

Theorem 2 ([13,8]). If the theory extension T0 ⊆ T1 = T0 ∪ K satisfies condi-
tion (LocΨ ) then satisfiability of ground clauses G w.r.t. T1 is decidable provided
K[ΨK(G)] is finite and K0∪G0∪Γ0∪Con0 belongs to a decidable fragment of T0.
Similar results hold for extended Ψ -local extensions (then K,K0 and G0 may
contain arbitrary Π0-sentences and G is a set of Σ0-extended ground clauses).

The (Ψ -)locality of an extension can be recognized by proving embeddability of
partial into total models assuming that the extension clauses are flat and linear
[13,8,9]. If we can guarantee that the support of the total model which we obtain
is the same as the support of the partial model we start with, then condition
(ELocΨ ) is guaranteed. The locality proof also explains how to construct models
of satisfiable ground (extended) clauses starting from models of their instances.

We present some theory extensions which are Ψ -local. In what follows we will
denote by R both the set of real numbers and the theory of real numbers (more
precisely the theory of real closed fields) and by LI(R) linear arithmetic over R.

Monotonicity, Boundedness for Monotone Functions. Any extension of a
theory for which ≤ is a partial order with functions satisfying4 Monσ(f) and/or
Boundt(f) is local (cf. e.g. [8]). The extensions satisfy condition (ELoc) if e.g. in
T0 all finite and empty infima (or suprema) exist.

Monσ(f)
∧
i∈I

xi≤i
σiyi ∧
∧
i�∈I

xi ≈ yi → f(x1, .., xn) ≤ f(y1, .., yn)

Bounds,t(f) ∀x1, . . . , xn(s(x1, . . . , xn) ≤ f(x1, . . . , xn) ≤ t(x1, . . . , xn))

where s, t are new functions or s(x1, . . . , xn) and t(x1, . . . , xn) are Π0-terms with
variables among x1, . . . , xn and: (i) s, t have the same monotonicity as f in any
model and (ii) ∀x1, . . . , xn s(x1, . . . , xn) ≤ t(x1, . . . , xn).

Convexity/Concavity [14]. Let T0 be R, the theory of real numbers (or the
many-sorted combination of the theories of real numbers (sort real) and integers

3 The function symbols in Σ1 are separated from the other symbols by introducing, in
a bottom-up manner, new constants ct for subterms t=f(c1, . . . , cn) where f∈Σ1 and
ci are constants, together with definitions ct=f(c1, . . . , cn) (C is a set of constants
containing all constants introduced by flattening and purification).

4 For i ∈ I , σi∈{−,+}, and for i �∈ I , σi = 0; ≤+=≤,≤−=≥.
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(sort int)). Let f be a unary function symbol with arity real→real (or resp.
int→real). Then T0⊆T0∪Convf and T0⊆T0∪Concf satisfy condition (ELoc) where:

Conv(f) ∀x, y, z
(
x < z ≤ y → f(z)−f(x)

z−x ≤ f(y)−f(x)
y−x

)
.

and the concavity condition Concf is the convexity condition for −f .
Linear Combinations of Functions. Let f1, . . . , fn, f, g be unary function
symbols. The extension R ⊆ R∪BS satisfies condition (ELoc), where BS contains

conjunctions of axioms of type ∀t(a≤
n∑

i=1

aifi(t)≤b), ∀t(g(t)≤
n∑

i=1

aifi(t)≤f(t)),

or ∀t, t′(t<t′ → a≤
n∑

i=1

ai
fi(t

′)−fi(t)
t′−t ≤b), where a, b ∈ R and (i) g is convex

and f concave and (ii) either g and f satisfy the condition ∀t(g(t) ≤ f(t)) or
correspond to Π0-terms and |=T0 ∀t g(t) ≤ f(t). Using arguments similar to
those used in [14] it can be proved that if we additionally require the functions
to be continuous locality is still preserved.

If I is an interval of the form (−∞, a], [a, b] or [a,∞) then we can define versions
of monotonicity/boundedness, convexity/concavity and boundedness axioms for
linear combinations of functions and of their slopes relative to the interval I
(then conditions (i) and (ii) for f and g are relative to the interval I).

Hybrid Automata. A hybrid automaton (abbreviated HA in what follows) [1]
is a tuple S = (X,Q, flow, Inv, Init, E, guard, jump) consisting of:

(1) A finite set X = {x1, . . . , xn} of real valued variables and a finite set Q of
control modes, that together define the state space of the system;

(2) A family {flowq | q ∈ Q} of predicates over the variables in X ∪ Ẋ (where

Ẋ = {ẋ1, . . . , ẋn}, where ẋi is the derivative of xi) specifying the continuous
dynamics in each control mode; a family {Invq | q ∈ Q} of predicates over
the variables in X defining the invariant conditions for each control mode;
and a family {Initq | q ∈ Q} of predicates over the variables in X , defining
the initial states for each control mode.

(3) A finite multiset E with elements in Q×Q (the control switches). Every
(q, q′) ∈ E is a directed edge between q (source mode) and q′ (target mode);
a family of guards {guarde | e ∈ E} (predicates overX); and a family of jump
conditions {jumpe | e ∈ E} (predicates overX∪X ′, where X ′ = {x′

1, . . . , x
′
n}

is a copy of X consisting of “primed” variables).

A state of S is a pair (q, a) consisting of a control mode q ∈ Q and a vector
a = (a1, . . . , an) that represents a value ai ∈ R for each variable xi ∈ X . A
state (q, a) is admissible if Invq is true when each xi is replaced by ai. There
are two types of state change: (i) A jump is an instantaneous transition that
changes the control location and the values of data variables according to the
jump conditions; (ii) In a flow, the state can change due to the evolution in
a given control mode over an interval of time: the values of the data variables
change continuously according to the flow rules of the current control location;
all intermediate states are admissible. A run of S is a finite sequence s0s1 . . . sk
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of admissible states sj such that (i) the first state s0 is an initial state of S (the
values of the variables satisfy Initq for some q ∈ Q), (ii) each pair (sj , sj+1) is
either a jump of S or the endpoints of a flow of S.
Notation. In what follows we use the following notation. If x1, . . . , xn ∈ X we
denote the sequence x1, . . . , xn with x, the sequence ẋ1, . . . , ẋn with ẋ, and the
sequence of values x1(t), . . . , xn(t) of these variables at a time t with x(t).

Verification Problems. We are interested in invariant checking or bounded
model checking under given constraints on parameters, and in deriving con-
straints between parameters which guarantee that a certain safety property is an
invariant of the system or holds for paths of bounded length. We studied this
problem in [15] and [3,4] but only for very simple types of linear hybrid systems.
In this paper we continue this direction of research in two different ways:

Deductive Verification and Synthesis. We identify possibilities for gener-
ating conditions on parameters under which a certain formula (i) is an in-
variant or (ii) holds for paths of bounded length. For simplicity we will here
focus on (i); (ii) can be solved in a similar way.

Criticality Functions. We give methods for generating criticality functions
which ensure that a hybrid automaton satisfies certain safety conditions.

Example 1 (Running example). We consider a temperature controller, mod-
eled as a hybrid automaton with two modes: a heating mode (in which the en-
vironment of the object is heated) and a normal mode (heating is switched off).
The control variable is x (the temperature of the object). We assume that the
system has two parameters (which can be functional or not).

– The temperature of the heated environment (due to the heater): a constant h
or (if it changes over time) a unary function h (input and output sort: real).

– Perturbation of the temperature of the environment due to external causes
(e.g. external temperature), modeled using a constant f or (if it changes in
time) a unary function f (input and output sort: real).

Invariants and flows in the two modes are described below (k > 0 is a constant
which depends only on the surface of the object which is being heated):

Mode 1 (Heating): Invariant: Ta ≤ x(t) ≤ Tb; Flow:
dx
dt = −k(x− (h+ f)),

Mode 2 (Normal): Invariant: Tc ≤ x(t) ≤ Td; Flow:
dx
dt = −k(x− f).

Control Switches. We have two control switches:

e12: switch from Mode 1 to Mode 2 (if the temperature of the object becomes too
high heating is switched off): guarde12 : x ≥ Tb; jumpe12 : (x

′ = x).
e21: switch from Mode 2 to Mode 1 (if the temperature of the object becomes too

low heating is switched on): guarde21 : x ≤ Tc; jumpe21 : (x
′ = x).

Let Safe = Tm ≤ x(t) ≤ TM (a safety condition for the heater). Our goals are:

(1) check that Safe is an invariant (or that it holds on all runs of bounded length),
(2) generate constraints which guarantee that Safe is an invariant,
(3) generate a criticality function which would provide a guarantee for safety.
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In Sect. 3 we give methods for solving (1) and (2) for increasingly larger classes
of parametric hybrid automata. We then solve (3) by using methods for model
generation in local theory extensions (Sect. 4).

3 Deductive Verification and Synthesis

We present a general result which will be used for the verification of parametric
linear hybrid automata (Sect. 3.1) and, in extended form also for more general
classes of parametric hybrid automata, possibly interconnected (Sect. 3.2–3.3).

Let T0 be a Π0-theory and let ΣP be a set of parameters (function and constant
symbols). Let Σ be a signature such that Σ∩(Σ0∪ΣP ) = ∅, containing functions
which can change their values during flows and jumps. Let Σ′ = {f ′ | f ∈ Σ} be
a disjoint copy of Σ representing the new functions after the updates. Let KF
be a set of clauses over Π0∪Σ∪ΣP expressing the properties of the functions in

Σ ∪ΣP , and let Update(x, x′, f , f
′
) (containing for every x also x′ and for every

f ∈ Σ also f ′ ∈ Σ′) be a set of clauses expressing the way the variables and the
functions in Σ are changed during updates.

Let Ψ be a set of clauses in the signature Π0∪ΣP∪Σ which can contain (implic-
itly universally quantified) variables as arguments of the functions in ΣP ∪Σ.

Example 2. In Example 1, T0 is the theory of real numbers. The parameters
in ΣP are Tm, TM , Ta, Tb, Tc, Td (constants) and h, f (functions). The set of
functions which change their values is Σ = {x}; Σ′ = {x′}. An example of set
of axioms describing the properties of parameters is: KF = {Tm ≤ TM , Ta ≤
Tc ≤ Tb ≤ Td, k ≥ 0, ∀t(0 ≤ h(t))}. We have two types of updates: updates due
to flows (in which x is the value of the variable x at the beginning of the flow
and x′ the value at the end of the flow) and updates due to jumps (described by
the jump conditions). More complex examples are given in Sect. 3.1–3.3.

Theorem 3 ([15]). Let Γ0 be a set of constraints on the parameters. Assume
that Γ0, Ψ,KF and Update are sets of clauses which define the following chain
of theory extensions satisfying condition ELoc: T0 ⊆ T0 ∪ Γ0 ⊆ T0 ∪ Γ0 ∪ Ψ ⊆
T0 ∪ Γ0 ∪ Ψ ∪ KF ⊆ T0 ∪ Γ0 ∪ Ψ ∪ KF ∪ Update. Assume that either (i) ground
satisfiability in T0 is decidable and all variables in these theory extensions occur
below extension functions, or (ii) satisfiability of ∃∀ formulae is decidable in T0.
Then we can decide whether Ψ is an invariant (using repeatedly Theorem 1).

If T0 has quantifier elimination then we can construct a constraint on the pa-
rameters Γ which guarantees that Ψ is an invariant:

Theorem 4. Assume that the theory T0 has quantifier elimination. We can con-
struct a universally quantified formula ∀xΓ (x) (containing also some of the pa-
rameters) such that for every structure A with signature Π0∪Σ∪Σ′∪ΣP which
is a model of T0, if A |= ∀xΓ (x) then Ψ is an invariant w.r.t. interpretation A.

Proof: We use instantiation, renaming (as in Thm. 1) and quantifier elimination
in T0 to construct a formula Γ such that if Ψ is not invariant w.r.t. A, i.e.
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A |= T0 ∪ KF ∪ ∃x, x′(Ψ(x.f) ∧ Update(x, x′, f , f
′
) ∧ ¬Ψ(x′, f

′
)) then A is a

model of ∃x¬Γ (x), so, if A |= ∀yΓ (y) then Ψ is an invariant w.r.t. A. �

In what follows we present applications of this result to increasingly more com-
plex classes of hybrid automata.

3.1 Parametric Linear Hybrid Automata

A hybrid automaton S is a linear hybrid automaton (LHA) if it satisfies the
following two requirements [1]:

1. Linearity: For every control mode q ∈ Q, the flow condition flowq, the invariant
condition Invq, and the initial condition Initq are convex linear predicates5. For
every control switch e = (q, q′) ∈ E, the jump condition jumpe and the guard
guarde are convex linear predicates. In addition, as in [3,4], we assume that the
flow conditions flowq are conjunctions of non-strict linear inequalities.

2. Flow independence: For every control mode q ∈ Q, the flow condition flowq

is a predicate over the variables in Ẋ only (and does not contain any variables
from X). This requirement ensures that the possible flows are independent from
the values of the variables, and only depend on the control mode.

We also consider parametric linear hybrid automata (PLHA), defined as linear
hybrid automata for which a set ΣP = Pc∪Pf of parameters is specified (consist-
ing of parametric constants Pc and parametric functions Pf ) with the difference
that for every control mode q ∈ Q and every mode switch e:

(1) the linear constraints in the invariant conditions Invq, initial conditions Initq,
and guard conditions guarde are of the form: g ≤

∑n
i=1 aixi ≤ f ,

(2) the inequalities in the flow conditions flowq are of the form:
∑n

i=1 biẋi ≤ b,
(3) the linear constraints in jumpe are of the form

∑n
i=1 bixi + cix

′
i ≤ d,

(possibly relative to an interval I) where the coefficients ai, bi, ci and the bounds
b, d are either numerical constants or parametric constants in Pc; and g and f
are (i) constants or parametric constants in Pc, or (ii) parameteric functions in
Pf satisfying the convexity (for g) resp. concavity condition (for f), or concrete
functions with these convexity/concavity properties such that ∀t(g(t) ≤ f(t)).
The flow independence conditions hold as in the case of linear hybrid automata.

Note: In the definition of PLHA we allow a general form of parametricity,
in which the bounds in state invariants, guards and jump conditions can be
expressed using functions with certain properties. Such parametric descriptions
of bounds are useful for instance in situations in which we want to verify systems
which have non-linear behavior and use a parametric approximation for them.

Example 3. Consider the hybrid automaton S presented in Example 1. If in the
heating mode the invariant is Ta ≤ x(t) ≤ Tb and the flow is dx

dt = −k(x−(h+f)),
where f, h are constants, then we can approximate the flow by the linear flow:

− k(Tb − (h+ f)) ≤ ẋ ≤ −k(Ta − (h+ f)). (1)

5 An atomic linear predicate is a strict or non-strict linear inequality. A convex linear
predicate is a finite conjunction of linear inequalities.
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We can obtain similar bounds for ẋ also for mode 2. Thus, we can approximate
S using a linear hybrid automaton S′. If we can guarantee safety in S′, then
safety is preserved for all possible runs which satisfy the flow conditions of S′,
in particular also for all runs of S, so S is safe.

We give methods of deciding whether a formula Ψ is an invariant and of deriving
conditions that guarantee that a PLHA S has a given safety property. To use
Thm. 4, we analyze the possible updates in PLHA by jumps and flows.

Jumps. A jump update can be expressed by the linear inequality
Jumpe(x, x

′) = guarde(x) ∧ jumpe(x, x
′).

Flows. Assume that flowq(t) =
∧nq

j=1(
∑n

i=1 c
q
ij ẋi(t) ≤j c

q
j). We alternatively ax-

iomatize flows in mode q in the time interval [t0, t1] (where 0≤t0≤t1) as follows:

Flowq(t0, t1) = ∀t(t0≤t≤t1→Invq(x(t))) ∧ ∀t, t′(t0≤t<t′≤t1→flowq(t, t
′))

where: flowq(t, t
′) =

nq∧
j=1

(

n∑
i=1

cqij(xi(t
′)− xi(t)) ≤j c

q
j(t

′ − t)).

In [3,4] we showed that for LHA no precision is lost with this axiomatization. We
can, in fact simplify the axiomatization of flows further by suitably instantiating
the universal quantifiers in Flowq and obtain:

Theorem 5 ([4]). The following are equivalent for any LHA:

(1) Ψ is an invariant of the automaton.
(2) For every q ∈ Q and e = (q, q′) ∈ E, the formulae Finit(q), F ′

flow(q) and
Fjump(e) are unsatisfiable, where:

FInit(q) Initq(x(t0)) ∧ ¬Ψ(x(t0))
F ′
flow(q) Invq(x(t0)) ∧ Ψ(x(t0)) ∧ flowq(t0, t) ∧ Invq(x(t)) ∧ ¬Ψ(x(t)) ∧ t ≥ t0

Fjump(e) Ψ(x(t))∧Jumpe(x(t), x
′(0))∧Invq′(x′(0))∧¬Ψ(x′(0)).

Let S be a parametric LHA with parameters ΣP = Pc ∪ Pf . Assume that the
properties of the parameters are expressed as Γ0∧Γf , where Γ0 is a conjunction of
linear inequalities representing the relationships between parameters in Pc and
Γf is a set of (universally quantified) clauses expressing the properties of the
functional parameters (in Pf ) – containing the convexity/concavity conditions
for the bounding functional parameters. Let Ψ be a property expressed as convex
linear predicate overX , possibly containing parameters (constants as coefficients;
either constants or functions as bounds in the linear inequalities). In [4] we
showed that checking whether Ψ is an invariant is decidable in PTIME if bounds
are not functional and in EXPTIME otherwise.6

Since the theory of reals allows quantifier elimination, the following result is
a direct consequence of Thm. 4.

6 The proof in [4] is direct; this result can also be proved using the fact that extensions
with axioms expressing boundedness conditions on linear combinations of functions
and of their slopes define local theories and therefore (i) updates by flows as well as
updates by jumps define local theory extensions for any extension of the reals; (ii)
any convex predicate Ψ defines a local extension of the theory of reals.
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Theorem 6. Let S be a PLHA and Ψ be a property expressed as a convex linear
predicate over X, possibly containing parameters. We can effectively derive a set
Γ of (universally quantified) constraints on the parameters such that whenever
Γ holds in an interpretation A, Ψ is an invariant w.r.t. A.

This method for constraint synthesis can in particular be used for:

1. Invariant generation: Let S be a fixed (non-parametric) LHA. We consider
invariant “templates” Ψ expressed by linear inequalities with parametric bounds
and coefficients and determine constraints on these parameters which ensure that
Ψ is an invariant. By finding values of the parameters satisfying these constraints
we can generate concrete invariants.

2. Generation of control conditions: Assume that Ψ is fixed (non-parametric),
but that the mode invariants, the flow conditions, the guards, and the jumps
are represented parametrically (as conjunctions of a bounded number of linear
inequalities). We can determine constraints on the parameters which ensure that
Ψ is an invariant. By finding values of the parameters satisfying these constraints
we can determine control conditions which guarantee that Ψ is invariant.

Example 4. Consider a variant of the HA in Example 1 in which Ta, Tb are
functional parameters, Inv1 is ∀t(Ta(t) ≤ x(t) ≤ Tb(t)), and the flow in mode 1
is described by: −k(xb−g) ≤ ẋ ≤ −k(xa−g) (for simplicity we abbreviated h+f
by g). Let Ψ = (Tm≤x(t)≤TM ). Assume that the properties of the parameters
are axiomatized by KF : {∀t(xa ≤ Ta(t)), ∀t(Tb(t) ≤ xb), xa < xb, Tm < TM}.
We derive a condition Γ which guarantees that Ψ is preserved under flows in
mode 1 using Thm. 4 as follows. Consider the formula:

∃t0, t1 (Tm ≤ x(t0) ≤ TM ) ∧ (Ta(t0) ≤ x(t0) ≤ Tb(t0)) ∧
(x(t1) ≤ x(t0)− k(t1 − t0)(xa − g) ∧ x(t0)− k(t1 − t0)(xb − g) ≤ x(t1))
(Ta(t1) ≤ x(t1) ≤ Tb(t1)) ∧ (x(t1) < Tm ∨ TM < x(t1)).

After purification we obtain:

∃t0, t1, Ta0, Tb0, x0, x1(Tm ≤ x0 ≤ TM ) ∧ (Ta0 ≤ x0 ≤ Tb0) ∧
(x1 ≤ x0 − k(t1 − t0)(xa − g) ∧ x0 − k(t1 − t0)(xb − g) ≤ x1) ∧
(Ta1 ≤ x1 ≤ Tb1) ∧ (x1 < Tm ∨ TM < x1).

After eliminating the quantifiers ∃x0, x1 (assuming KF holds and Tm ≤ TM)
and then replacing back Ta0, Ta1 and Tb0, Tb1 we obtain:

∃t0, t1 (Ta(t0) ≤ TM ∧ Tm ≤ Tb(t0)∧
Tm ≤ Tb(t1) + k(t1 − t0)(xb − g) ∧ Ta(t0) ≤ Tb(t1) + k(t1 − t0)(xb − g)∧
Ta(t1) + k(t1 − t0)(xa − g) ≤ TM ∧ Ta(t1) + k(t1 − t0)(xa − g) ≤ Tb(t0)∧
[((k(t1 − t0)(xb − g) > 0) ∧ Ta(t1) < Tm ∧ Ta(t0) < Tm + k(t1 − t0)(xb − g))∨
((k(t1 − t0)(xa − g) < 0) ∧ Tb(t1) > TM ∧ TM + k(t1 − t0)(xa − g) < Tb(t0))]).

The condition Γ1 which ensures that Ψ is an invariant under flows in mode 1 is:

∀t0, t1 ((Ta(t0) ≤ TM ∧ Tm ≤ Tb(t0)∧
Tm ≤ Tb(t1) + k(t1 − t0)(xb − g) ∧ Ta(t0) ≤ Tb(t1) + k(t1 − t0)(xb − g)∧
Ta(t1) + k(t1 − t0)(xa − g) ≤ TM ∧ Ta(t1) + k(t1 − t0)(xa − g) ≤ Tb(t0)

→ [((k(t1 − t0)(xb − g) ≤ 0) ∨ Ta(t1) ≥ Tm ∨ Ta(t0) ≥ Tm + k(t1 − t0)(xb − g))∧
((k(t1 − t0)(xa − g) ≥ 0) ∨ Tb(t1) ≤ TM ∨ TM + k(t1 − t0)(xa − g) ≥ Tb(t0))]).
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Invariant generation. Assume that the control of the LHA (i.e. the functions
Ta, Tb and their bounds xa, xb) is fixed, e.g. k = 1, Ta is the constant function
xa = 15 and Tb is the constant function xb = 20, h = 25 and f = 10. We can
use the constraint in Γ1 to determine for which values of the constants Tm and
TM Ψ is an invariant under flows in mode 1 (we can check that it is, e.g., for
Tm = 15 and TM = 20). The generation of control conditions for guaranteeing
that a (non-parametric) Ψ is invariant is similar.

3.2 Parametric Hybrid Automata

We now extend the methods developed above for parametric LHA to more
general HA. For the sake of simplicity, we only consider (parametric) hybrid
automata S with one continuous variable x. (The case when we have several
variables is similar, but the presentation is more complicated.) Let Σ = {x}
and Σ′ = {x′}. Assume that mode invariants, initial states, guards and jump
conditions are expressed as sets of clauses in an extension of the theory of real
numbers with additional functions in a set Σ1 = Σ ∪ ΣP , where ΣP is a set
of parameter names (both functions and constants). We study the problem of
deriving constraints on parameters which guarantee that a certain formula is an
invariant. We therefore analyze the possible updates by jumps and flows.

Jumps. Assume that the guards and the jump conditions are given by formulae
in a certain extension of the theory of real numbers. A jump update can be
expressed by the formula: Jumpe(x, x

′) = guarde(x) ∧ jumpe(x, x
′).

Flows. In the case of parametric hybrid automata, the flows are described by
differential equations. As we restrict to the case of one continuous variable x, we
assume that in mode q the flow is described by: dx

dt (t) = fq(x(t)). Thus:

Flowq(t0, t1) = ∀t(t0≤t≤t1→Invq(x(t))) ∧ ∀t(t0≤t≤t1→dx
dt (t) = fq(x(t))).

Let Ψ be a set of clauses in the signature Π0∪ΣP∪Σ which can contain (implic-
itly universally quantified) variables as arguments of the functions in ΣP ∪Σ.

Theorem 7. (1) For every jump e we can construct a universally quantified
formula ∀xΓe(x) (containing also some of the parameters) such that for every
structure A with signature Π0 ∪ Σ ∪ Σ′ ∪ ΣP if A is a model of T0 and of
Γe then Ψ is an invariant under the jump e (in interpretation A).

(2) For every flow in a mode q we can construct a universally quantified formula
∀xΓq(x) (containing also some of the parameters) such that for every struc-
ture A with signature Π0 ∪Σ ∪Σ′∪ΣP if A is a model of T0 and of Γq then
Ψ is an invariant under flows in q (in interpretation A).

Proof: (1) follows from Thm. 4 for the case of jump updates. (2) Assume that A
is a model in which Ψ is not invariant under flows in mode q. Then there exist
time points t0 < t1 such that (i) A |= ∀t(t0≤t≤t1 → Invq(x(t))) and (ii) the
interpretation in A of the function x, xA : R → R is differentiable and has the
property that ∀t(t0≤t≤t1→dx

dt (t) = fq(x(t))). Then, by the mean value theorem:

A |= Ψ(t0) ∧ ∀t(t0≤t≤t1 → Invq(x(t)))∧
∀t, t′(t0≤t<t′≤ t1→∃c(t≤c≤t′ ∧ x(t′)−x(t)

t′−t = fq(x(c)))) ∧ ¬Ψ(x(t1)).
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Therefore, A is a model of any set of instances of the formula above, in particular
of those instances in which the universally quantified variables are instantiated
with the constants {t0, t1} (we can take more or fewer instances, depending on
how strong we want the condition Γq to be). For every choice of instances for
the pair of variables t, t′ in the flow description above we need to replace the
existentially quantified variable c with a new constant. We can now continue as
in the proof of Thm. 4 and obtain the formula Γq. �

Example 5. Consider a variant of the HA in Example 1 in which f and h are
unary functions, and the invariants and flow in the two modes are described by:

Mode 1 (Heating): Invariant: Inv1(x(t)) := x(t) ≤ TM

Flow: dx
dt (t) = −k(x(t)− (h(t) + f(t)))

Mode 2 (Normal): Invariant: Inv1(x(t)) := Tm ≤ x(t)
Flow: dx

dt (t) = −k(x(t)− f(t))
Let Ψ(t) = Tm ≤ x(t) ≤ TM . We derive constraints which guarantee that this
Ψ is invariant in mode 2. We proceed as in the proof of Theorem 7: If A is an
interpretation in which Ψ is not invariant then there exist t0, t1 ∈ R such that:

(a) t0 < t1 ∧ ∀t(t0 ≤ t ≤ t1 → Tm ≤ x(t))

(b) ∀t′, t′′(t0 ≤ t′ < t′′ ≤ t1 → ∃y(t ≤ y ≤ t′ ∧ x(t′)−x(t)
t′−t

= −k(x(y)− f(y))))
(c) (Tm ≤ x(t0) ∧ x(t0) ≤ TM ) ∧ (x(t1) > TM ∨ x(t1) < Tm)

This also holds if we instantiate t with t0, and t1; t
′ with t0; and t′′ with t1, so:

A |= (Tm ≤ x(t0)) ∧ (Tm ≤ x(t1)) ∧ ∃y(t0 ≤ y ≤ t1 ∧ x(t1)−x(t0)
t1−t0

= −k(x(y)− f(y)))∧
(Tm ≤ x(t0) ∧ x(t0) ≤ TM ) ∧ (x(t1) > TM ∨ x(t1) < Tm)

We know that there exists a value for y, say a ∈ R for which the formula holds.
We introduce a new constant c; let Ac be the expansion of A in which the inter-
pretation of c is cA := a. Then:

Ac |= (Tm≤x(t0)) ∧ (Tm ≤ x(t1)) ∧ x(t1)−x(t0)
t1−t0

= −k(x(c)− f(c))∧
(Tm≤x(t0) ∧ x(t0)≤TM ) ∧ (x(t1)>TM ∨ x(t1)<Tm)

We purify the formula introducing the abbreviations: d0 = x(t0), d1 = x(t1) and
d = x(c) and df = f(c). We obtain the following set of constraints:

∃c, d, d′, t0, t1, c0, c1 [Tm≤c0 ∧ Tm≤c1 ∧ c1−c0
t1−t0

= −k(d− df )∧
(Tm≤c0 ∧ c0≤TM ) ∧ (c1>TM ∨ c1<Tm)]

We eliminate the variables t0, t1, c0, and c1 (we used REDLOG [5]) under the
assumption that t0 < t1 and t0 ≤ c ≤ t1 and obtain the equivalent formula:

∃c, d, d′(−k(d− df ) > 0 ∧ TM > Tm)

We now replace again the constants d and df with the terms they represent and
obtain: ∃c(−k(x(c)−f(c)) > 0 ∧ TM > Tm). We can conclude that if TM > Tm

then Ψ is invariant under all flows in mode 2 if ∀c k∗(f(c)−x(c))≤0 (i.e. if the
system does not heat in this state because of the external temperature). Of course
this is only a sufficient condition.
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3.3 Interconnected Families of Hybrid Automata

We can also consider systems of interconnected parametric hybrid automata
{S1, . . . , Sn} with a parametric number of components under the assumptions:

(1) The invariants, guards, jump and flow conditions of S1, . . . , Sn can all be
expressed similarly (and can be written globally, using indices);

(2) The relationships between the hybrid automata are uniform (and can again
be expressed globally using indices);

(3) The topology of the system can be represented using data structures (e.g.
arrays, lists, trees).

A general formalization of such situations is out of the scope of this paper. We
here present the ideas on an example.

Example 6. Consider a family of n water tanks with a uniform description,
modeled by hybrid automata S1, . . . , Sn. Assume that every Si has one continuous
variable Li (representing the water level in Si), and that the input and output in
mode q are described by parameters ini and outi. Every Si has one mode in which
the water level evolves according to rule L̇i = ini − outi. We write L(i, t), in(i)
and out(i) instead of Li(t), ini and resp. outi.
Assume that the water tanks are interconnected in such a way that the input
of system Si+1 is the output of system Si. A global constraint describing the
communication of the systems is therefore:

∀i(2 ≤ i ≤ n− 1→ (in(i) = out(i− 1)) ∧ in(1) = in.

An example of a “global” update describing the evolution of the systems Si during
a flow in interval [t0, t1]:

∀i(L(i, t1) = L(i, t0) + (in(i)− out(i))(t1 − t0)).

Let Ψ(t) = ∀i(L(i, t) ≤ Loverflow). Assume that ∀i(in(i) ≥ 0 ∧ out(i) ≥ 0). We
generate a formula which guarantees that Ψ is an invariant as in the proof of
Thm. 4. We start with the following formula (for simplicity of presentation we
already replaced in(i) with out(i− 1)):

∃t0, t1 t0 < t1 ∧ (∀i(L(i, t0) ≤ Loverflow) ∧ ∃j(L(j, t1) > Loverflow))∧
∀i((i = 1 ∧ L(1, t1) = L(1, t0) + (in− out(1))(t1 − t0))∨

(i > 1 ∧ L(i, t1) = L(i, t0) + (out(i − 1)− out(1))(t1 − t0))).

We skolemize (replacing j with the constant i0) and instantiate all universally
quantified variables i in the formula with i0. After replacing T (i0, tj) with cj,
out(i0 − 1) with d1, and out(i0) with d2 we obtain:

∃t0, t1∃c0, c1[t0 < t1 ∧ (c0 ≤ Loverflow) ∧ c1 > Loverflow∧
((i0 = 1 ∧ c1 = c0 + (in− d2)(t1 − t0)) ∨ (i0 > 1 ∧ c1 = c0 + (d1 − d2)(t1 − t0)))].

We eliminate c1 and c0 using quantifier elimination and obtain:
∃t0, t1[t0<t1 ∧ ((i0 = 1 ∧ −(in− d2)(t1 − t0)<0) ∨ (i0 > 1 ∧ −(d1 − d2)(t1 − t0)<0))].

This is equivalent (after eliminating also t0, t1) with:
((i0 = 1 ∧ (in− d2) > 0) ∨ (i0 > 1 ∧ (d1 − d2) > 0)).

We replace d1, d2 back and reintroduce the existential quantifier for i0:
∃i0((i0 = 1 ∧ (in− out(i0)) > 0) ∨ (i0 > 1 ∧ (out(i0 − 1)− out(i0)) > 0)).
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The negation is ∀i((i=1 → (in−out(i0))≤0) ∧ (i>1 → (out(i−1)−out(i))≤0)).
This condition guarantees that Ψ is an invariant for the family of systems.

Similar results can be obtained if updates are caused by changes in topology (in-
sertion or deletion of water tanks in the system).

4 Generating Criticality Functions

We study possibilities of proving safefy properties for hybrid automata by gener-
ating so-called criticality functions, i.e. functions which measure the “distance”
(in a certain sense) from the current state and a safe state and are guaranteed to
decrease during the evolution of the system. If such criticality functions can be
constructed then the system can be proved to be safe. For keeping the notation
and the proofs simple, we consider hybrid automata with only one continuous
variable x. All definitions below are formulated for this special case.

Definition 8. Let S be a hybrid automaton with a finite set Q of modes s.t.:
(i) the dynamics in mode q is given by dx

dt (t) = fq(x(t)), and (ii) the invariant
of mode q is Invq. A family of criticality functions for this system is a family of
maps cq : R→ R, q ∈ Q with the following properties:

(1) ∀x, cq(x) ≥ 0;

(2) for all q ∈ Q, whenever Invq(x) holds, we have
dcq
dx

dx
dt ≤ 0;

(3) for all mode switches e = (q1, q2) ∈ E and all x, x′ with guarde(x) ∧ jumpe
(x, x′) we have cq2(x

′) ≤ cq1(x).

Let Safe(x) be a safety property expressed by a formula with free variable x, con-
taining x but not ẋ. Then the family {cq}q∈Q is a family of criticality functions
relative to Safe if there exists k > 0 such that for all q ∈ Q:

(4) For all x ∈ R, (Invq(x)→ (Safe(x)↔ cq(x) ≤ k)).

By (2) and (3), cq will never increase throughout any run of the system. By (4),
it is impossible for a run beginning in a state satisfying Safe to end in a state
which does not satisfy Safe, as this would require an increase of cq(x).

Techniques used for computing Lyapunov functions can also be used for comput-
ing criticality functions (linear matrix inequalities, convex feasibility problem).
In [12], in order to compute criticality functions the hybrid system is decom-
posed as follows: strongly connected components/cycles are detected; predicates
at border nodes are used in order to obtain smaller optimization problems.

Our goal is to exploit simpler properties of the functions describing the evolution
of state vectors at each mode to compute a family of criticality functions. We
will focus on monotonicity properties.

Assumption 1. In what follows we assume that for every mode q ∈ Q we have:
(1) Invq defines a convex set and (2) if the flow condition in q is dx

xt (t) = fq(x(t))
then the function fq is continuous and the set {x ∈ R | fq(x) = 0} is finite.
Remark 9. Let S be a hybrid system. Assume that the flow in mode q is given
by dx

dt (t) = fq(x(t)). Let I ⊆ {x | Invq(x)}. If fq(x(t)) ≥ 0 for all t ∈ I then x is
increasing on I and if fq(x(t)) ≤ 0 for all t ∈ I then x is decreasing on I.
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Lemma 10. Let S be a HA satisfying Assumption 1, with real valued variable
x and set of modes Q such that for every q ∈ Q the flow in mode q is given by
dx
dt (t) = fq(x(t)). We can construct a HA S′ with the same variable x and with
set of modes Q′ with the property that: (1) in every mode q ∈ Q′ x is monotone
(either decreasing or increasing), and (2) for every run in S from state s to state
s′ there exists a run in S′ from s to s′ and vice versa.

Proof: We construct S′ as follows: For every mode q we analyze the sign changes
of the function fq. Let x1, y1, . . . , xn, yn ∈ R with x1 < y1 . . . xn < yn be all the
points at which fq changes its sign. (For instance we can have fq(x) ≤ 0 for
all x ∈ (−∞, x1], fq(x) ≥ 0 for all x ∈ [xi, yi]; fq(x) ≤ 0 for all x ∈ [yi, xi+1];
and fq(x) ≤ 0 for all x ∈ [yn,∞).) Let Posfq (x) = {x ∈ R | fq(x) ≥ 0} and
Negfq (x) = {x ∈ R | fq(x) ≤ 0}. Clearly, Posfq is a union of intervals in a set
Iqpos and Negfq is a union of intervals in a set Iqneg. We split mode q accordingly
in new modes {qi,I | I ∈ Iqpos} and {qd,J | J ∈ Iqneg} with invariants (in S′):
Invqu,I = Invq ∧ CI (CI is the constraint characterizing interval I). For every
u ∈ {i, d} and every I, the flow in mode qu,I (in S′) is the same as the flow in q
in S. We have the same jumps from qu,I to q′v,J as between q and q′ (provided
the guards are compatible with CI). In addition we can define in a natural way
back and forth jumps between modes qi,I and qd,J for adjacent intervals I, J .
It is easy to check that there exists a run in S from state s to state s′ iff there
exists a run in S′ from s to s′. �

In the modes qi,I , x is increasing as a function of time, so every criticality function
is decreasing (as a function of x). Similarly every criticality function is increasing
(as a function of x) in the modes qd,J where x is decreasing.

Theorem 11. Let S be a HA satisfying Assumption 1, and let S′ be the HA
obtained from S as in Lemma 10. Let Safe(x) be a set of clauses with free variable
x describing a safety condition and let K be the conjunction of the following
axioms (where q ranges over the set Q′ of nodes in S′):

(1) ∀x(cq(x) ≥ 0),
(2) axioms expressing that cq is increasing in all modes of S′ in which x is

decreasing and decreasing in all modes of S′ in which x is increasing,
(3) conditions ensuring that for every control switch (q1, q2), cq1(x) ≥ cq2(x

′),
(4) the condition that ∀x(Invq(x)→ (cq(x) ≤ k ↔ Safe(x))).

We can decide whether K is satisfiable. Every model of K yields a family of
criticality functions for S′ and Safe and thus also guarantees safety of S.

Proof: It is easy to check that K defines a local theory extension, so it is satisfiable
iff the set of instances in which the variables are instantiated with constants
occurring in K is satisfiable. If K is satisfiable we can use methods for model
generation for obtaining a family of functions with the desired properties. �

Example 7. Consider a variant of the hybrid automaton from Example 1 where
Inv1 = x ≤ TM and Inv2 = x ≥ Tm and the functions describing the flow are
f1(x) = −k(x− (h+ f)) for mode 1 and f2(x) = −k(x− f) for mode 2. Clearly,
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if x ≥ (h+f) then f1(x) ≤ 0 and if x ≤ (h+f) then f2(x) ≥ 0. We can therefore
split mode 1 into two modes with the following invariants:

Mode 1d: Invariant: x(t) ≤ TM ∧ x(t) ≥ (h+ f)
Mode 1i: Invariant: x(t) ≤ TM ∧ x(t) ≤ (h+ f)

In mode 1d the temperature x decreases; in mode 1i it increases. Similarly, we
can split mode 2 into two modes: 2d (invariant: Tm ≤ x(t)∧ x(t) ≥ f), in which
the temperature x decreases and 2i (invariant: Tm ≤ x(t) ∧ x(t) ≤ f), in which
the temperature increases.
We want to find criticality functions c1d , c1i , c2d , c2i satisfying the conditions in
Definition 8. These conditions can be reformulated, using instead of the flow
conditions in every mode only the monotonicity of the function x.

Positivity:
∀x, cq(x) ≥ 0 for q ∈ {1d, 1i, 2d, 2i}
Flow:
∀x, x′ [(h+ f ≤ x ≤ TM ∧ h+ f ≤ x′ ≤ TM ∧ x ≤ x′) → c1d(x)≤c1d (x′)]
∀x, x′ [(x ≤ TM ∧ x ≤ h+ f ∧ x′ ≤ TM ∧ x′ ≤ h+ f ∧ x ≤ x′) → c1i(x

′)≤c1i(x)]
∀x, x′ [(Tm ≤ x ∧ f ≤ x ∧ Tm ≤ x′ ∧ f ≤ x′ ∧ x ≤ x′) → c2d(x)≤c2d (x′)]
∀x, x′ [(Tm ≤ x ≤ f ∧ Tm ≤ x′ ≤ f ∧ x ≤ x′) → c2i(x

′)≤c2i(x)]
Jumps:
c1d (Tm)≤c2d (Tm) c1i(Tm)≤c2d (Tm) c1d (Tm)≤c2i(Tm) c1i(Tm)≤c2i(Tm)
c2d (TM )≤c1d (TM ) c2i(TM )≤c1d (TM ) c2d (TM )≤c1i(TM ) c2i(TM )≤c1i(TM )
c1d (h+ f)≤c1i(h+ f) c1i(h+ f)≤c1d (h+ f) c2d (f)≤c2i(f) c2i(f)≤c2d (f)
Invq(x)→ ((Tmin ≤ x ∧ x ≤ Tmax)↔ cq(x) ≤ k), for q ∈ {1d, 1i, 2d, 2i}.
All conditions above form a set K of clauses which define a local theory extension.
The set of clauses is satisfiable iff the set of instances in which the variables are
instantiated with constants occurring in K is satisfiable. These constants are
Tm, f, h+f, TM . We use methods for constructing total models from partial ones
in local theory extensions and obtain a family of functions c1d , c1i , c2d , c2i : R→
R satisfying K. Assume for example that the set of instances has a model in which
Tm < f ≤ h + f < TM . Let b1 = h + f and b2 = f . We can easily construct
a total model for K by constructing for q = 1, 2, cqd = cqi := cq, where the
function cq is strictly decreasing in the interval (−∞, bq] and strictly increasing
in the interval [bq,+∞); cq(Tm) = cq(TM ) = k and cq(bq) = cqd(bi) = cqi(bq).

5 Conclusions

In this paper we refined methods for generating constraints on parameters which
we proposed in [15,3,4] and applied then to increasingly more complex hybrid
automata (parametric linear hybrid automata, parametric hybrid automata, in-
terconnected families of hybrid automata). We then showed that we can use
possibilities of automated model generation in local theory extensions for gen-
erating criticality functions in hybrid automata. We would like to continue the
work analyzing possibilities of modeling systems of similar, interconnected para-
metric hybrid automata with a parametric number of components with a general
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topology defined by using data structures, and of decomposing complex hybrid
automata in order to simplify the verification tasks.
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Abstract. SMT-based applications increasingly rely on SMT solvers being able
to deal with quantified formulas. Current work shows that for formulas with quan-
tifiers over uninterpreted sorts counter-models can be obtained by integrating a
finite model finding capability into the architecture of a modern SMT solver. We
examine various strategies for on-demand quantifier instantiation in this setting.
Here, completeness can be achieved by considering all ground instances over the
finite domain of each quantifier. However, exhaustive instantiation quickly be-
comes unfeasible with larger domain sizes. We propose instantiation strategies to
identify and consider only a selection of ground instances that suffices to deter-
mine the satisfiability of the input formula. We also examine heuristic quantifier
instantiation techniques such as E-matching for the purpose of accelerating the
search. We give experimental evidence that our approach is practical for use in
industrial applications and is competitive with other approaches.

1 Introduction

Solvers for satisfiability modulo theories (SMT) are concerned with the problem of
determining the satisfiability of a set of formulas in some first order theory T , which
is possibly the combination of several sub-theories. SMT solvers use sophisticated and
very effective techniques for deciding the satisfiability of ground formulas. While some
of them can reason about quantified formulas, they do so using incomplete methods.
Hence they often report “unknown” when they fail, after some predetermined amount
of effort, to prove a quantified input formula unsatisfiable. For many client applications,
however, it is very useful to know when such formulas are indeed satisfiable. Current
SMT solvers are able to produce models of satisfiable quantified formulas only in fairly
restricted cases [8], which limits their scope and usefulness. To address this limitation,
in previous work we have developed a general method for efficient finite model finding
in SMT [13]. More precisely, since SMT solvers work in sorted logics with both built-in
and free (“uninterpreted”) sorts, the method looks for models that interpret the latter as
finite domains—and so is restricted to SMT formulas with quantifiers ranging only over
the free sorts.

Like finite model finders for standard first-order logic, our method is based on check-
ing universal quantifiers exhaustively over candidate models with increasingly large
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domains for the free sorts, until an actual model is found. It contrasts with previous
approaches for not relying on the explicit introduction of domain constants for the free
sorts, as done by MACE-style model finders [6], and for being able to reason modulo
more theories than just the theory of equality, contrary to SEM-style model finders [15].
The model finder described in [13] incorporates into a general architecture used by
many SMT solvers [12] an efficient mechanism for deciding the satisfiability of a set of
ground SMT formulas under finite cardinality constraints for the free sorts. This is used
to find first a candidate model, a model M of a set of ground formulas generated from
the input formula ϕ. To check that M satisfies ϕ as well, the model finder then checks,
by exhaustive instantiation, that all the ground instances of ϕ over the universe of M
are satisfied by M . When this check fails, the model finder looks for a new candidate
model, possibly under extended cardinality bounds for the free sorts.

Contribution. The contribution of this paper consists in two major improvements to
work described in [13]: (1) a method for constructing and representing candidate models
efficiently and (2) a model-based instantiation approach that avoids the explicit genera-
tion and checking of all the ground instances of the input formula. The two are strictly
related since the new instantiation approach takes advantage of the way the model is
represented to identify entire sets of instances that do not need to be considered.

Related Work. The data structure we use to represent candidate models is inspired
by the context data structure introduced in the Model Evolution calculus [2]. The way
we construct these models is similar to the generalization mechanism of the Inst-Gen
calculus [7]. An instance generation approach similar to ours is taken by [10] for the
local theory extensions method. There, the number of generated instances is reduced
by finding an unsatisfiable core of relevant ground literals that are in conflict with a
candidate model. A different model-based instantiation approach is followed by the Z3
SMT solver [8] where the solver itself is used as an oracle for checking the satisfiability
of candidate models.

Formal Preliminaries. We work in the context of many-sorted first-order logic with
equality. A (many-sorted) signature Σ consists of a set Σs ⊆ S of sort symbols and a set
Σf of (sorted) function symbols, f S1···SnS, where n ≥ 0 and S1, . . . ,Sn,S ∈ Σs. We drop
the sort superscript from function symbols when it is clear from context or unimportant.
Without loss of generality, we use equality, denoted by≈, as the only predicate symbol.

Given a signature Σ, well-sorted terms, atoms, literals, clauses, and formulas are
defined as usual, and referred to respectively as Σ-terms, Σ-atoms and so on. A ground
term (resp. formula) is a Σ-term (resp. formula) with no variables. A Σ-sentence is a
Σ-formula with no free variables. Where x = (x1, . . . ,xn) is tuple of sorted variables we
write ∀xϕ as an abbreviation of ∀x1 · · ·∀xn ϕ. A Σ-formula is universal if it has the form
∀xϕ where ϕ is a quantifier-free formula.

A Σ-structure M maps each S ∈ Σs to a non-empty set SM , the domain of S in M ,
and each f S1···SnS ∈ Σf to a total function f M : SM

1 × ·· ·× SM
n → SM . A satisfiability

relation |= between Σ-structures and Σ-sentences is defined as usual. A Σ-structure M
satisfies (or is a model of ) a Σ-sentence ϕ if M |= ϕ. Entailment between (sets of)
sentences, also denoted by |=, is also defined as usual.
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Given a set G of ground formulas, let TG be the set of all terms occurring in G. A
set A of equalities and disequalities between terms in TG is a (complete) arrangement
for G if A is satisfiable and for all s, t ∈ TG of the same sort, s ≈ t or s ≈ t is in A. An
arrangement A for G satisfies G if A |= G. A set E ⊆ {s≈ t | s, t ∈ TG} is a congruence
(for G) if it is closed under entailment: for all s, t ∈ TG, E |= s ≈ t iff s ≈ t ∈ E . The
congruence closure E∗ of E (wrt. G) is the smallest congruence for G that includes E .
By construction, E∗ is an equivalence relation over TG. For any such relation, we will
assume as fixed for every sort S with terms in G, a set VS = {vS

1, . . . ,v
S
nS
} consisting of

an arbitrary representatives for each equivalence class in E∗’s over terms of sort S. We
call VS the set of S-values for E∗ and say that terms of sort Si have value vS

i in E∗. For
each term t we denote by vE∗(t) its value in E∗. It can be shown (see, e.g., [1]) that E is
satisfied by a structure M that interprets each sort S as VS. We call M a normal model
of E . By reducing G to disjunctive normal form it is easy to show that G is satisfiable
iff it is satisfied by a normal model of some set E of equalities over TG.

A congruence E∗ over TG can be uniquely extended to the arrangement E∗ ∪{s ≈ t |
s≈ t /∈ E∗} for G. Moreover, that arrangement satisfies G whenever E∗ |= G. So in the
paper we will often identify congruences and their associated arrangements.

A substitution σ is a mapping from variables to terms of the same sort, such that the
set {x | xσ = x}, the domain of σ, is finite. Unifying substitutions, most general unifiers
(mgu’s), and term variants are defined as usual. Let % be the usual instantiation (quasi-
)ordering between terms/atoms: s% t iff sσ = t for some substitution σ. If T is a set of
terms and t a term, a most-specific generalization of t in T is any term s ∈ T such that
(1) s% t and (2) for all s′ ∈ T with s% s′ % t, s′ is a variant of s.

2 Quantifier Instantiation for Finite Model Finding

Our finite model finding method has been developed so that it can be tightly inte-
grated into a multi-theory version of the DPLL(T ) architecture [12]. A description of
our model finder in terms of that architecture is provided in [13]. For the purposes of
this paper, it is enough to give a high-level, stand-alone description of the basic model
finding procedure restricted to general satisfiability problems (with no theories).

We can ignore the background theory T in this paper because any set of ground
formulas generated by the model finder can be purified Nelson-Oppen-style into one set
FT of formulas built only with symbols of T and free constants, and one set F built only
with free symbols. After adding to FT and F a suitable set of equality constraints over
their shared free constants, as prescribed by the Nelson-Oppen combination method,
if FT and F are satisfiable their respective models can be always amalgamated into
a model of the original problem. Given our restriction on the quantifiers of the input
problem, the model finder never needs to instantiate over the sorts of the theory T . So
we can focus here just on finding models for non-theory formulas.

Without loss of generality, we consider only input problems that are the union G∪Q
of a set G of ground Σ-formulas and a set Q of non-ground universal Σ-sentences for
some finite signature Σ. Moreover, G contains a term of sort S for each S ∈ Σs. We fix
G, Q and Σ as above for the rest of the section.
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Basic Model Finding Procedure. A basic version of the procedure, which is
parametrized by a quantifier instantiation heuristic H , works as follows:

1. if G is unsatisfiable return “unsat”; else, find a satisfying arrangement E∗ for G

2. for each sort S ∈ Σs, let VS be the set of S-values of E∗; let V =
⋃

S∈Σs VS

3. using H choose a set Ix of valuations, substitutions from x to V, for each ∀xϕ ∈Q

4. if the union of all sets Ix is empty, return “sat”; otherwise, for each ∀xϕ ∈ Q, add
the instances {ϕσ | σ ∈ Ix} to G, and go to Step 1

Step 1 is achieved in our model finder with a novel satisfiability solver, also described
in [13], for ground formulas with finite cardinality constraints (FCC) on their sorts.
If G is satisfiable, the FCC solver finds a model of G where each sort has a domain
of minimal size. As in other model finders, this is done to minimize the number of
possible instances of the formulas in Q. Step 2 is a by-product of the congruence closure
procedure used by the FCC solver: to construct each VS it is enough to collect the
representatives of the congruence classes computed for S. We provide more details on
this in Section 2.1. The heuristic H should be such that whenever

⋃
∀xϕ∈Q Ix is empty

M satisfies Q as well. We discuss how the sets Ix are constructed in Section 2.2.

We represent normal models using the following data structure parametrized by the
sets of S-values VS for some arrangement A.

Definition 1 (Defining map). Let f S1···SnS ∈Σf and let x1, . . . ,xn be distinct variables of
respective sort S1 . . . ,Sn. A defining map for f is a finite set Δ f of well-sorted (directed)
equations of the form f (t1, . . . , tn) ≈ v with v ∈ VS and ti ∈ {xi}∪VSi for i = 1, . . . ,n,
satisfying the following requirements.

1. If t1≈ v1, t2≈ v2 ∈Δ f with v1 = v2 and t1 and t2 have an mgu σ, then σ is non-empty
and t1σ = v ∈ Δ f for some v.

2. f (x1, . . . ,xn)≈ v ∈ Δ f for some v.

A Σ-map is a set Δ =
⋃

f∈Σf Δ f where each Δ f is a defining map for f .

By construction of Δ, every flat term, i.e., every Σ-term t = f (v1, . . . ,vn) with v1, . . . ,vn ∈⋃
S VS, has exactly one most specific generalization s among the left-hand sides of

equalities in Δ f . The existence of s is guaranteed by Point 2 in Definition 1; its unique-
ness by Point 1. The value of t in Δ is the value v in the (unique) equality s≈ v ∈ Δ f .

Intuitively, a Σ-map Δ represents a normal model M where each sort S is interpreted
as the term set VS and each function symbol f S1···SnS is interpreted as the function f M

mapping every (v1, . . . ,vn) ∈ SM
1 ×·· ·× SM

n to the value of f (v1, . . . ,vn) in Δ.

Proposition 1. Let Δ be a Σ-map.

1. Δ induces a unique Σ-structure MΔ modulo isomorphism.
2. The satisfiability of universal Σ-sentences in MΔ is decidable.
3. Every normal model of G is induced by a Σ-map.



Quantifier Instantiation Techniques for Finite Model Finding in SMT 381

We omit the simple proof of this proposition. For Point 2, we just observe that ground
terms can be evaluated in MΔ bottom-up by computing the value in Δ of flat terms
f (v1, . . . ,vn). That evaluation allows one to decide ground satisfiability in MΔ in the
obvious way. Since every domain of MΔ is finite, the ground satisfiability procedure
can be extended to universal Σ-sentences by exhaustive instantiation of their quantifiers
by all values of the corresponding sort.

We rely on normal models constructed from Σ-maps to be able to check the satis-
fiability of our problem G∪Q without having to generate all ground instances of its
quantified formulas.

2.1 Constructing Normal Models

Given an arrangement A for the ground portion G of our input problem we wish to
construct a normal model M of G that satisfies the quantified portion Q as well. We
will refer to M as a candidate model (of G∪Q). We do this in concrete by building
a Σ-map from A following a strategy that tries to maximize the number of satisfied
ground instances of formulas in Q. For each function symbol f in Σ, we start building
its defining map Δ f by putting in Δ f the equality f (v1, . . . ,vn)≈ v0 for each term t0 of
the form f (t1, . . . , tn) in G where vi = vA(ti) for i = 0, . . . ,n.

Collecting these equalities may produce only a partial definition for f . To complete
it so that the corresponding Σ-structure satisfies G, one can use arbitrary output values
for the remaining input tuples. Previous approaches such as the model-based quantifier
instantiation approach implemented in the Z3 SMT solver [8] choose the same default
values for all input tuples unconstrained by A. Such choices may lead to an infinite
series of model checking steps and subsequent instantiations of Q if the wrong default
values are chosen. We too use default values, but we select them in a more informed
way, inspired by the instantiation heuristics used in the iProver theorem prover [11].
The main idea is to use the valuation of certain ground terms to guide the selection of
default values for function symbols.

Similarly to iProver, we attempt to lift the model of a ground abstraction of quanti-
fied formulas. We first associate to each sort S a distinguished ground Σ-term eS of G,
which we will write ambiguously here just as e when convenient. Let σe be the sub-
stitution mapping all variables of sort S to eS for each sort S. For all f S1···SnS ∈ Σf, fix
n distinct variables x1, . . . ,xn of respective sort S1 . . . ,Sn. Then, for all ground Σ-terms
f (t1, . . . , tn), let

f (t1, . . . , tn)
∀ = f (u1, . . . ,un)

where ui = xi if ti = e, and ui = vA(ti) otherwise, for i = 1, . . . ,n. To guide the construc-
tion of a Σ-map, instead of starting with G we start with Ĝ = G∪{ϕσe | ∀yϕ ∈ Q} .

Once we find a satisfying arrangement A for Ĝ, we look at the values it gives to the
terms containing the distinguished terms e in order to determine the choice of default
values for the function symbols. As a simple example, suppose Q = {∀y f (g(y)) ≈
h(a,y)}, Ĝ = G∪{ f (g(e)) ≈ h(a,e)}, and suppose A is a satisfying arrangement for
Ĝ such that vA(g(e)) = v and vA(h(a,e)) = u. To complete the defining map Δg for
g we use v as the default value for g, that is, we add the equation g(x1) ≈ v to Δg.
Similarly, we add the equation h(a,x2) ≈ u to Δh. The rationale for this choice is that,
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together with f (v) ≈ u in Δ f , this will guarantee in this case that the corresponding
normal model satisfies Q. Of course, this heuristic is not always successful in finding a
satisfying model for Q right away. We describe later the corrective measures we take to
find a better model, that is, one that falsifies fewer ground instances of formulas in Q.

The general procedure for constructing a Σ-map is the following.

Model Construction Procedure. Assuming that Ĝ = G∪{ϕσe | ∀yϕ ∈ Q} is satisfi-
able, let A be a satisfying arrangement for it.

1. select a subset T of TĜ.

2. for each f ∈ Σf,
(a) let D1 = { f (vA(t1), . . . ,vA(tn))≈ vA(t) | t ∈ TĜ, t = f (t1, . . . , tn)}
(b) let D2 = { f (t1, . . . , tn)∀ ≈ vA(t) | t ∈ T, t = f (t1, . . . , tn)}
(c) let Δ f = D1∪D2 and let {ti ≈ vi}0≤i≤m be an arbitrary enumeration of Δ f ; for

all ti ≈ vi, t j ≈ v j that are unifiable with mgu σ, if tiσ does not already occur as
a left-hand side in Δ f , add tiσ≈ vi to Δ f

(d) unless f (x1, . . . ,xn) already occurs as a left-hand side in Δ f , add f (x1, . . . ,xn)≈
v for some arbitrary value v of the same sort

3. let Δ =
⋃

f∈Σf Δ f �
Proposition 2. The set Δ constructed by the procedure above is a Σ-map. Moreover,
the Σ-structure M induced by Δ is a normal model of Ĝ.

The first step of the model construction procedure is intended to choose a selection of
terms containing the distinguished terms e. This selection is driven by the arrangement
A itself and the way it satisfies the formulas of G. It is currently defined as follows.

Let A be a satisfying arrangement for Ĝ. For all ψ = ∀yϕ ∈ Q, a ground formula ϕ′
is selectable for ψ if A |= ϕ′ and ϕ′ |= ϕσe. We have a strategy that chooses a selectable
formula sel(ϕ) for each ψ = ∀yϕ ∈ Q and then selects all terms in sel(ϕ). The set T in
Step 1 of the model construction procedure is the collection of all these selected terms.
The formula sel(ϕ) is extracted from ϕσe itself. For formulas ϕ in CNF it is simply a
conjuction of literals, with each literal coming from a conjunct of ϕσe.

Example 1. Say Q = {∀y( f (y) ≈ g(y)∨h(y) ≈ b)} and

Ĝ = {g(b)≈ a, h(a)≈ b, h(b)≈ b, a≈ f (a)}∪{ f (a) ≈ g(a)∨h(a) ≈ b}

where all terms have the same sort and e = a. The congruence closure E∗ of the set E
of equalities in Ĝ extends to an arrangement A that satisfies f (a) ≈ g(a). With A we
would select f (a) ≈ g(a) for Q’s only formula, with selected terms f (a) and g(a).

Assuming the values of A are {a, b, g(a)}, a Σ-map constructed from A could be

Δ = {a≈ a}∪{b≈ b}∪{g(a)≈ g(a), g(b)≈ a, g(x1)≈ g(a)}∪
{h(a)≈ b, h(b)≈ b, h(x1)≈ b}∪{ f (a)≈ a, f (x1)≈ a} .

The Σ-structure induced by Δ almost satisfies Q. It does not for falsifying the instance
f (b) ≈ g(b)∨h(b) ≈ b. Adding that instance to Ĝ, we can construct an arrangement like
A but with the additional value f (b). This can lead to a Σ-map Δ′ = Δ∪{ f (b)≈ f (b)}
whose induced Σ-structure does satisfy G∪Q. �
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proc eval(Δ, t,σ) ≡ match t with
| f (t1, . . . , tn) → for j = 1, . . . ,n let (v j,Xj) = eval(Δ, t j,σ)

choose a critical argument subset C of {1, . . . ,n}
return ( f MΔ(v1, . . . ,vn),

⋃
i∈C Xi))

| x → return (σ(x), {x})

Fig. 1. The eval procedure. MΔ is the model induced by Δ.

2.2 Checking Models

As mentioned earlier, once we have a candidate model, i.e., a normal model M sat-
isfying the ground formulas in G, a straightforward way to check that it satisfies the
quantified formulas in Q is to check all of their ground instances over the finitely many
values V of M . Since a universal formula with n quantified variables each ranging over
a domain of size at least k has at least nk such instances, this is feasible in practice only
when both n and k are small.

To increase the scalability of our model finding method we have developed a tech-
nique that identifies entire sets of instances satisfiable in M without actually generating
and checking those instances individually. Since the technique is based on the model M
(actually, on the Σ-map that represents M ), we will refer to it as the model-based ap-
proach, as opposed to the naive approach consisting of generating and checking every
possible ground instances.

The main idea of the model-based approach is to determine the satisfiability in M of
some ground instance ϕσ of a quantified formula ∀xϕ ∈ Q, generalize ϕσ to a whole
set of F of instances equisatisfiable with ϕσ in M , and then look for further instances
only outside that set. The set F is computed by identifying which variables of ϕ actu-
ally matter in determining the satisfiability of ϕσ. Technically, for each ψ = ∀xϕ ∈ Q,
valuation σ = {x �→ v} into V, and ground instance ϕ′ = ϕσ of ψ, if M |= ϕ′ we com-
pute a partition of x into x1 and x2 and a corresponding partition of v into v1 and v2

such that M |= ∀x2 ϕ{x1 �→ v1}; similarly, if M |= ¬ϕ′ we compute a partition such
that M |= ∀x2¬ϕ{x1 �→ v1}. In either case, we then know that all ground instances of
ϕ{x1 �→ v1} over V are equisatisfiable with ϕ′ in M , and so it is enough to consider
just ϕ′ in lieu of all them. We will refer to the elements of x1 above as a set of critical
variables for ϕ (under σ)—although strictly speaking this is a misnomer as we do not
insist that x1 be minimal.

Checking and Generalizing Ground Instances. Treating quantifier-free formulas as
Boolean terms (which evaluate to either true or false in a Σ-structure depending on
whether they are satisfied by the model or not), we developed a general procedure that,
given the Σ-map of a candidate model M , a term t, and a valuation σ of t’s variables,
computes and returns both the value of tσ in M and a set of critical variables for σ.

The procedure, defined recursively over the input term and assuming a prefix form
for the logical operators as well, is sketched in Figure 1. When evaluating a non-variable
term f (t1, . . . , tn), eval determines a critical argument subset C for it. This is a subset of
{1, . . . ,n} such that the term f (s1, . . . ,sn) denotes a constant function in M where each
si is the value computed by eval for ti if i ∈C, and is a unique variable otherwise. If f is
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a logical symbol, the choice of C is dictated by the symbol’s semantics. For instance, for
≈(t1, t2), C is {1,2}; for ∨(t1, . . . , tn), it is {1, . . . ,n} if the disjunction evaluates to false;
otherwise, it is {i} if ti is the one with the best set Xi of critical variables among the el-
ements of {t1, . . . , tn} that evaluate to true, where “best” is defined in term of another
heuristic measure. If f is a function symbol of Σ, eval computes C by first constructing
a custom index data structure for interpreting applications of f to values. The key fea-
ture of this data structure is that it uses information on the sets X1, . . .Xn to choose an
evaluation order for the arguments of f . For space constraints, we give just a concrete
example of how this choice is made. Say eval, given the term t = f (g(x,y,z),v2,h(x)),
computes the values v1,v2,v3 and the critical variable sets {x,y,z}, /0, {x} for the three
arguments of f , respectively. With those sets, it will use the evaluation order (2,3,1) for
those arguments—meaning that the second argument is evaluated first, then the third,
etc. Using the index data structure, it will first determine if f (x1,v2,x3) has a constant
interpretation in M . If so, then the evaluation depends on no variables and the returned
set of critical variables for t will be /0. Otherwise, if f (x1,v2,v3) has a constant interpre-
tation in M, then the evaluation depends on {x}, or else it depends on the entire variable
set {x,y,z}.

The next example gives more details on the whole process of generalizing a ground
instance to a set of ground instances equisatisfiable with it in the given model.

Example 2. Let Q = {∀y∀z f (z) ≈ g(y,b)∨ h(y,z) ≈ b} and Ĝ = { f (a) ≈ a, f (b) ≈
b, g(a,a) ≈ b, h(a,a) ≈ b, f (a) ≈ g(a,b)∨ h(a,a) ≈ b} where a is the only distin-
guished ground term. Consider a Σ-map Δ constructed as in Example 1 and containing
the following defining maps:

Δg = {g(a,b) ≈ a, g(a,a)≈ b, g(x1,b)≈ a, g(x1,x2)≈ b}
Δ f = { f (b)≈ b, f (a)≈ a, f (x1)≈ a} Δh = {h(a,a) ≈ b, h(x1,x2)≈ b}

The table below shows the bottom-up calculation performed by eval on the formula
ϕ = f (z) ≈ g(y,b)∨h(y,z) ≈ b with Δ above and σ = {y �→ a,z �→ a}.

input output critical arg. subset
z (a,{z}) //
y (a,{y}) //
b (b, /0) //

f (z) (a,{z}) {1}
g(y,b) (a, /0) {2}

input output critical arg. subset
h(y,z) (b, /0) /0

f (z)≈ g(y,b) (true,{z}) {1,2}
h(y,z) ≈ b (false, /0) /0

f (z)≈ g(y,b)∨h(y,z) ≈ b (true,{z}) {1}

For most entries in the table the evaluation is straightforward. For a more interesting
case, consider the evaluation of g(y,b). First, the arguments of g are evaluated, respec-
tively to (a,{y}) and (b, /0), but with evaluation order (2,1). After evaluating y to b,
using an indexing data structure built from Δg for the evaluation order (2,1), eval is
able to quickly determine that the term g(x1,b) has constant value a for all x1. Hence it
returns an empty set of critical variables for g(y,b).

Similarly, the fact that eval returns (true,{z}) for the original input formula ϕ and
the valuation σ = {y �→ a, z �→ a}, means that it was able to determine that all ground
instances of ϕ{z �→ a} = ( f (a) ≈ g(y,b)∨ h(y,a) ≈ b), not just the instance ϕσ, are
satisfied in M . Our model finder can then use this information to completely avoid
generating and checking those instances. �
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proc choose instances(Δ,ϕ,x) ≡
Ix := /0; tnext := vmin where vmin is the minimum of Vx
do

t := tnext

(v,{xi1 , . . . ,xim}) := eval(Δ,ϕ,{x �→ t})
if v = false then Ix := Ix∪{{x �→ t}}
tnext := nexti(t) where i is the minimum of {i1, . . . , im,n+1}

while tnext = t
return Ix

Fig. 2. The choose instances procedure. We assume that x = (x1, . . . ,xn).

Collecting Ground Instances. For any given quantified formula ψ, the eval procedure
allows us to identify a set of instances over V that can be represented by a single one,
as far as satisfiability in the candidate model M is concerned. The next question then
is how to generate a set I of instances that together represent all instances of ψ over V
that are falsified by M . This kind of exhaustiveness is crucial because it allows us to
conclude correctly that M |= ψ by just checking that I is empty.

We present a procedure that relies on eval for computing the set I above or, rather,
a set of valuations for generating the elements of I from ψ. The procedure is fairly
unsophisticated and quite conservative in its choice of representative instances, which
makes it very simple to implement and prove correct. Its main shortcoming is that it
does not take full advantage of the information provided by eval, and so may end up
producing more representative instances than needed in many cases. The development
of a more selective procedure is left to future work.

Let ψ = ∀xϕ ∈ Q with x = (x1, . . . ,xn). For i = 1, . . . ,n, let Si be the sort of xi and
let Vx = VS1×·· ·×VSn . For each S ∈ {S1, . . . ,Sn}, let <S be an arbitrary total ordering
over the values VS of sort S. Let < be the reversed lexicographic1 extension of these
orderings to the tuples in Vx and observe that Vx is totally ordered by <.

For every v = (v1, . . . ,vn) ∈ Vx let v[i] denote the ith element of v and let nexti(v)
denote the smallest tuple u wrt. < such that v[ j] <S j u[ j] for some j ≥ i, if such tuple
exists, and denote v itself otherwise (including when i > n). For instance, with n = 3,
S1 = S2 = S3 and VS1 = {a,b} with a <S1 b, we have that next2(a,a,a) = (a,b,a),
next2(a,b,a) = (a,a,b), next3(a,a,b) = (a,a,b), and next3(a,b,b) = (a,b,b). Note
that v≤ nexti(v) for all v.

The instantiation heuristic H used in the model finding procedure presented in Sec-
tion 2 is implemented by the procedure choose instances described in Figure 2, which
takes in a quantifier-free formula ϕ with variables x and returns a set Ix of valuations σ
for x such that M |= ϕσ. At each execution of its loop the procedure implicitly deter-
mines with eval a set of I of instances of ϕ that are equisatisfiable with ϕ{x �→ v} in M ,
where v is the tuple stored in the program variable t. The next value tnext for t is a greater
tuple chosen to maintain the invariant that all the tuples between t and tnext generate in-
stances of ϕ that are in I. To see that, it suffices to observe that these tuples differ from
t only in positions that correspond to non-critical variables of ϕ, namely those before

1 This is defined similarly to the standard lexicographic extension except that the last component
of a tuple is the most significant one, then the last but one, and so on.
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position i where xi is the first critical variable of ϕ in the enumeration x1, . . . ,xn. This
observation is the main argument in the proof of the following result.

Proposition 3. Let v0, . . . ,vm be all values successively taken by the variable t in the
loop of choose instances. Let vmax be the maximum element of Vx. Then for all i =
1, . . . ,m,

1. vi−1 < vi,
2. for all u with vi−1 ≤ u < vi, M |= ϕ{x �→ u} iff M |= ϕ{x �→ vi−1},
3. for all u with vm ≤ u≤ vmax, M |= ϕ{x �→ u} iff M |= ϕ{x �→ vm}.

For this proposition it follows immediately that M |= ∀xϕ if and only if the set Ix
returned by choose instances(Δ,ϕ,x) is empty.

We remark that, for our model finding purposes, there is no need for the procedure
choose instances to compute the full set Ix once it contains at least one valuation. Any
non-empty subset would suffice to trigger a (more incremental) revision of the current
candidate model M . That said, our current implementation does compute the whole set
and adds all the corresponding instances to Q before recomputing another model for it.
Our initial experiments show that computing and using one valuation at a time is worse
for overall performance than computing and using the full set Ix.

2.3 Enhancements Based on Heuristic Instantiation

Many SMT solvers rely on heuristic instantiation methods for finding unsatisfiable in-
stances for quantified formulas. These methods typically use E-matching techniques [3]
to generate heuristically relevant instances, which are based on matching distinguished
terms, called triggers, with ground terms in the problems. We found that E-matching
can be helpful in our model finder as well, even for satisfiable problems.

Enhanced Model Finding Procedure. Our original heuristic H from Section 2 for
quantifier instantiation can be enhanced with E-matching to a heuristic H ′ as follows:

1. choose a set of triggers Tψ for each ψ ∈ Q, and return valuations based on E-
matching for (Tψ,G)

2. if no such instances exist, apply the original H .

Applying E-matching helps the model finder detect the unsatisfiability of its input for-
mulas more promptly in cases where a conflict is easily identifiable. Furthermore, it
may also accelerate the discovery of a model for satisfiable input problems, since the
instances it generates can help rule out bad choices of candidate models more quickly.

Recall that in the basic model finding procedure, quantifier instantiation is applied
after finding a model of the ground formulas G of minimal size. By waiting to apply
quantifier instantiation until after model minimization, we also avoid pitfalls common
to E-matching-based procedures such as, for instance, matching loops where certain
terms get generated at every instantiation round. Since only a finite number of terms
exist for a given cardinality bound on a sort, our approach guarantees that E-matching
will eventually rule out the given bound, or terminate with no instances produced.
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Most E-matching techniques generate triggers automatically, but in fairly uninformed
ways, typically choosing every applicable term (or set of terms) in a quantified formula
ψ as a trigger. In our model finding method, the selection heuristic described in Sec-
tion 2.1 can be used as a criterion for trigger generation by using first as triggers the
terms that were selected for the construction of the current candidate mode. The in-
tuition is that if we are basing the satisfiability of ψ on the default values given for a
function symbol f , then we need only be concerned with possible exceptions to those
defaults. Our current implementation follows this criterion.

3 Experimental Results

The model finding method introduced in [13] is implemented within the CVC4 SMT
solver. For the present work, we implemented the naive and the model-based approach
for quantifier instantiation as alternative configurations of CVC4’s finite model finder.
We ran experimental comparisons for these approaches on three sets of benchmarks.

First we considered formulas derived from verification conditions generated by
DVF [9], a tool used at Intel for verifying properties of security protocols and design
architectures, among other applications, comparing configurations of the model finder
against CVC4 in native mode (i.e., not using the model finder) and Z3 version 4.1, which
we previously found to be the best SMT solver besides CVC4 on these benchmarks [13].
Second, we considered benchmarks from the latest version of the TPTP library (5.4.0),
comparing against various automated theorem provers and model finders for first order
logic, as well as the two SMT solvers above. Third, we considered a set of SMT bench-
marks translated from proof obligations generated by the Isabelle prover, comparing
again with CVC4 in native mode and Z3.2

In all experiments we used revision 4751 of CVC4 1.0, both in native mode (indi-
cated here as cvc4) and in finite model finding mode. The default configuration of the
latter (cvc4+f) applies naive quantifier instantiation as described in Section 2.2, and no
heuristic instantiation. The other model finding configurations use either model-based
quantifier instantiation as described in Section 2.2 (cvc4+fm), or just heuristic quantifier
instantiation as described in Section 2.3 (cvc4+fi), or both (cvc4+fmi).

The first set of experiments was run on a Linux machine with an 8-core 2.60GHz
Intel R© Xeon R© E5-2670 processor. The second and third on a cluster of 5 identical
Linux machines with a 2.4 GHz AMD Opteron 250s and 2 GB of available memory.

Intel Benchmarks. We considered 3 of the 5 classes of benchmarks from [13]; the
other two are uninteresting as their problems can be solved quickly by cvc4+f. The
agree class is from [14] while the apg and bmk classes are verification conditions in-
ternal to Intel. The benchmarks contain a variety of SMT theories, including arithmetic,
arrays, datatypes, free functions over free sorts and built-in sorts, but with quantifiers
limited to free sorts. Both unsatisfiable and satisfiable benchmarks were considered, the
latter produced by manually removing necessary assumptions from verification condi-
tions. The results are summarized in Figure 3 for various configurations of CVC4 and for

2 The finite model finder, detailed results, and the non-proprietary benchmarks discussed in this
section are available at http://cvc4.cs.nyu.edu/experiments/CADE24-2013/ .

http://cvc4.cs.nyu.edu/experiments/CADE24-2013/
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Sat Unsat
agree apg bmk agree apg bmk
(15) (17) (31) (139) (124) (83)

Solver solved time solved time solved time solved time solved time solved time
z3 0 0 0 0 0 0 139 3.5 124 9.0 83 2.5
cvc4 0 0 0 0 0 0 135 2.9 124 10.0 83 1.7
cvc4+f 15 13.7 16 199.4 30 1200.1 127 3772.4 118 2243.3 81 1496.5
cvc4+fi 15 12.3 17 492.2 30 829.5 139 185.8 122 338.8 83 656.7
cvc4+fm 15 21.3 17 209.9 31 374.2 122 5007.5 120 1114.9 81 827.3
cvc4+fmi 15 13.6 17 220.6 31 175.5 139 183.4 122 336.6 83 664.9

Fig. 3. Results for DVF benchmarks. All times are in seconds. Best performances are in bold font.

Z3. We show results for the 412 problems from the previous study that were non-trivial
for CVC4’s model finder.3 All configurations had a 600s timeout per problem.

For the satisfiable benchmarks, CVC4’s model finder is the only tool able to solve at
least one. Additionally, through use of model-based quantifier instantiation, it is now
able to solve all of them within the timeout. Moreover, the best configuration of the
model finder, cvc4+fmi, solves each benchmark within 60s.

For the unsatisfiable benchmarks, Z3 is the overall winner, solving all of them within
the timeout. Pairing heuristic quantifier instantiation with finite model finding (config-
urations with cvc4+*i*) is beneficial, as it even solves four problems that cvc4 can-
not solve. We found that each unsatisfiable problem can be solved by either cvc4 or
cvc4+fmi, and in less than 3s. Configuration cvc4+fmi solves all unsatisfiable bench-
marks within 900s, suggesting that CVC4’s model finder makes consistent progress to-
wards answering unsatisfiable on provable DVF verification conditions. Also, cvc4+fmi
is an order of magnitude faster than cvc4+f on unsatisfiable benchmarks solved by each
of them. From the perspective of verification tools, the results here seem promising. A
feasible strategy for discharging a verification condition would be to first use an SMT
solver hoping that it can quickly find it unsatisfiable with E-matching techniques; and
then resort to finite model finding if needed to either answer unsatisfiable, or produce a
model representing a concrete counterexample for the verification condition.

TPTP Benchmarks. For these benchmarks we also compared against Paradox [6] and
iProver [11]. Paradox is a MACE-style model finder that uses preprocessing optimiza-
tions such as sort inference and clause splitting, among others, and then encodes to
SAT the original problem together with increasingly looser constraints on the size of
the model. iProver is an automated theorem prover based in the Inst-Gen calculus that
can also run in finite model finding mode (iprover-fm). In that mode, it incrementally
bounds model sizes in a manner similar to MACE-style model finding. However, it en-
codes the whole problem into the EPR fragment, for which it is a decision procedure.
Since these two tools are limited to classical first-order logic with equality, we consid-
ered only the unsorted first-order benchmarks of TPTP.

The results for a 30s timeout per benchmark, are shown in Figure 4. CVC4’s model
finder with exhaustive instantiation (cvc4+f) can find 975 benchmarks to be satisfiable.
That number goes up to 1025 with model-based quantifier instantiation (cvc4+fm).
While better than Z3, which finds 888 satisfiable benchmarks, our model finder still
trails the overall performance of the other provers on these problems. Paradox, the best

3 The rest are solved in less than 0.5s by all configurations of the model finder.
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paradox iprover iprover-fm z3 cvc4 cvc4+f cvc4+fm cvc4+fmi
Sat 1344 995 1231 888 33 975 1025 955
Unsat 1272 5556 383 5934 5295 2633 2754 3028

Fig. 4. Results for 15561 benchmarks taken from the TPTP library, with a 30s timeout. Of these
benchmarks, 1995 are known to be satistiable, and 12586 are known to be unsatisfiable.

here, finds 1344 satisfiable benchmarks. We attribute this to the fact that we have im-
plemented none of the advanced preprocessing techniques, such as sort inference and
clause splitting, that have been shown to be critical for finding finite models of TPTP
benchmarks. Nevertheless, CVC4’s model finder is capable solving a handful of bench-
marks that neither Paradox nor iProver can solve. In particular, it solves two satisfiable
benchmarks with 1.0 difficulty rating, which means that no known ATP system had
solved these problems when version of 5.4.0 of the TPTP library was released.

Figure 4 shows also results for unsatisfiable problems. Although these results are
not comparable to those achieved by state-of-art theorem provers, such as Vampire and
E, we note that Z3 solves the most benchmarks, 5924. Interestingly, an additional 35
unsatisfiable problems with difficulty rating 1.0 were found in this study by Z3, cvc4,
iProver and cvc4+fmi, which respectively solve 21, 6, 4, and 1 of these uniquely.
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Fig. 5. Comparison of satisfiable problems
found with and without model-based quanti-
fier instantiation. A point (x,y) on this graph
says the configuration solves x benchmarks
each with a total of at most y ground prob-
lems of quantified formulas.

To further evaluate the impact of model-based quantifier instantiation on our model
finder, we recorded statistics on the domain size of quantified formulas in benchmarks
solved by its various configurations. We measured the total number of instances for
all quantified formulas occurring in a problem (a quantified formula over n variables
each with domain size k has nk instances). For a problem with d total instances, the
configuration cvc4+f must explicitly generate these d instances, while a model-based
configuration may avoid doing so. For these experiments, cvc4+f was only able to
solve 4 problems having more than 100k instances, the maximum having around 325k
instances. On the other hand, cvc4+fm was capable of solving 41 problems having
more than 100k instances, with the largest having more than 1.3 billion instances.
This information is plotted in Figure 5, showing how the model-based instantiation
approach improves the scalability of our model finder and allows it to solve bench-
marks where exhaustive instantiation is clearly infeasible. We stress that model finders
such as Paradox have other ways of handling the explosion in the number of instances,
namely by minimizing the number of variables per clause. We expect that coupling these



390 A. Reynolds et al.

Sat Arrow Order FFT FTA Hoare NS Shared QEpres StrongNorm TwoSquares TypeSafe TOTAL
z3 3 19 24 46 10 49 1 17 11 180
cvc4 0 9 0 0 0 0 0 8 0 17
cvc4+f 22 138 172 153 56 79 12 59 69 760
cvc4+fm 26 139 171 151 49 80 12 59 69 756
cvc4+fmi 26 151 174 159 60 81 12 60 78 801

Unsat Arrow Order FFT FTA Hoare NS Shared QEpres StrongNorm TwoSquares TypeSafe TOTAL
z3 261 224 765 497 135 236 240 451 325 3134
cvc4 199 217 682 456 97 244 231 486 239 2851
cvc4+f 120 99 298 214 36 105 84 316 132 1404
cvc4+fm 102 91 330 246 26 117 80 310 128 1430
cvc4+fmi 155 170 467 328 42 161 97 411 188 2019

Fig. 6. Results for Isabelle Benchmarks. Numbers of problems solved within 30s.

techniques with the model-based techniques used here will lead to additional improve-
ments in the scalability of our model finder.

Isabelle Benchmarks. Recent work has shown that SMT solvers, in particular Z3, are
effective at discharging Isabelle proof obligations whose encoding can be represented
with theories [5]. Model finding can be useful in Isabelle for debugging and for brute-
force proof minimization [4]. More generally, it is useful to interactive theorem provers
that are based on heuristically selecting a set of relevant background axioms which
might be sufficient to prove a conjecture. In this case, a model finder could be used to
quickly identify axiom sets that are not large enough for a given conjecture.

We considered a set of 13,041 benchmarks generated from Isabelle and kindly pro-
vided by Sascha Böhme. The benchmarks in this set correspond to both provable and
unprovable conjectures.4 Most of them contain quantifiers, and a significant portion
contain integer arithmetic. For many, quantifiers are limited to the free sorts, thus mak-
ing our finite model finding approach applicable. Since CVC4 does not yet have support
for non-linear arithmetic, we report results only for the 11,187 benchmarks that do
not contain non-linear arithmetic constraints. Additionally, CVC4 ignored various hints
(such as weight values) that were given to Z3 for quantifier instantiation.

The results are shown in Figure 6. In these experiments, using E-matching acceler-
ates the search for models, as cvc4+fmi finds more satisfiable problems (810) than both
cvc4+f (760) and cvc4+fm (756). All configurations of CVC4’s model finder find many
more satisfiable problems than Z3, which finds only 180 of them overall. For unsatis-
fiable problems, Z3 is the overall winner, solving 3,134 of them, followed by the cvc4
configuration with 2,851. Interestingly, while cvc4+fmi solves only 2,019 unsatisfiable
benchmarks, 244 of them are not solved by Z3, and 164 are not solved by cvc4.

4 Conclusion

We have introduced a few quantifier instantiation techniques for finite model finding in
SMT which drastically improve the scalability of our basic model finding procedure and
are useful in various applications. Our experiments show that our model-based quanti-
fier instantiation approach is useful for finding models where exhaustive instantiation
is infeasible, and can be improved further by integrating heuristic instantiation in it,
especially for unsatisfiable problems.

4 It is our understanding that these benchmarks are a superset of those discussed in [5].
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Future research includes improvements to the instance generation technique in Sec-
tion 2.2, and further generalizing the approach to the construction of models for built-in
theories. We are currently investigating ways to modify the selection heuristics of Sec-
tion 2.1 to generate candidate models (in some fragments) of the theory of arrays. We
plan to investigate further approaches for finding models of formulas with quantifiers
ranging over built-in domains such as the integers.

Acknowledgements. We would like thank Sascha Böhme for providing the Isabelle
benchmarks and François Bobot for his help in writing a TPTP front end for CVC4.
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Abstract. HipSpec is a system for automatically deriving and proving
properties about functional programs. It uses a novel approach, combin-
ing theory exploration, counterexample testing and inductive theorem
proving. HipSpec automatically generates a set of equational theorems
about the available recursive functions of a program. These equational
properties make up an algebraic specification for the program and can
in addition be used as a background theory for proving additional user-
stated properties. Experimental results are encouraging: HipSpec com-
pares favourably to other inductive theorem provers and theory explo-
ration systems.

1 Introduction

We are studying the problem of automatically proving algebraic properties of
programs. Our aim is to build a tool that programmers can use to support
software development. This paper describes current progress towards this goal,
in particular addressing the problem of automating inductive proofs.

We work in a subset of the strongly typed functional programming language
Haskell. Our subset consists of monomorphic, terminating programs without type
classes or primitive types (like Int). The only data types are algebraic data types,
functions and uninterpreted types. Removing these restrictions is ongoing work.

There are two key advantages of using Haskell as the input language. Firstly,
a pure functional programming language is semantically simpler and thus easier
to reason about than languages with side effects. Secondly, many Haskell pro-
grammers already use QuickCheck [5], a tool for property-based random testing,
which means that many Haskell program are already annotated with formal
properties (tested, but not proved).

The main obstacles one encounters when doing automated verification of func-
tional programs are (1) when and how to apply induction, and (2) how to discover
auxiliary lemmas or generalisations which may be required in inductive proofs.
Let us look at a simple example. Consider the following Haskell program imple-
menting the list reverse function in two different ways, rev and qrev. The latter
uses a helper function revacc with an accumulating parameter which leads to a
function with better time complexity. Their definitions are:

rev [] = []

rev (x:xs) = rev xs ++ [x]

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 392–406, 2013.
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revacc [] acc = acc

revacc (x:xs) acc = revacc xs (x:acc)

qrev xs = revacc xs []

A natural property one would like to verify is that the functions above pro-
duce the same result: ∀ xs. rev xs = qrev xs. Suppose we attempt to prove
this by structural induction on xs. This will fail as the inductive hypothesis
rev as = qrev as is too weak to prove rev (a:as) = qrev (a:as). What is
needed here is an additional lemma such as rev xs++ys = revacc xs ys, from
which the original conjecture follows as a special case when ys happens to be
the empty list. This is a typical example of the kind of generalisations which
are required in proofs about functions with accumulator variables. One of the
main challenges for inductive theorem provers is how to discover such lemmas
automatically.

Current inductive theorem provers such as IsaPlanner [8], Zeno [19] and ACL2
[13] support a simple lemmadiscovery technique called lemmacalculation, bywhich
a new lemma is suggested by replacing some common subterm in a stuck goal by a
variable. Although this technique works very well for many proofs, it is not enough
for the above example, which cannot be automatically proved by these systems.
The now defunctCLAM proof-planner had in addition a so-called proof-critic for
discovering more complex generalisations [9], such as the one required in the ex-
ample, but only if other basic lemmas were given by the user.

Our approach differs from the top-down manner in which the above systems
work. Instead of waiting for the proof to somehow get stuck, we use bottom-up
lemma discovery, or theory exploration. Our tool, called HipSpec, gets its name
from its two subsystems which we developed previously: the automated inductive
prover Hip [18], and the conjecture generation system QuickSpec [6]. Hip tries to
prove a conjecture by enumerating all possible ways of doing structural induction
over the free variables, and then calling an automated first-order prover to prove
them. QuickSpec creates thousands of terms involving the functions of a given
API, and computes equivalence classes over these terms by means of testing.
Each pair of terms t1, t2 in an equivalence class gives rise to a conjecture t1 = t2.

HipSpec reads in a program, but besides trying to tackle any of the user-given
properties, it asks QuickSpec to produce a list of conjectures about the program.
HipSpec then sends these conjectures to Hip and those that are proved can
be used as lemmas in subsequent proof-attempts. After this theory exploration
phase, the properties stated by the programmer are tried, using all the proved
lemmas as background theory.

There are several theory exploration systems which have been applied to dis-
cover theorems in inductive theories [12,15,16], but none have been fully inte-
grated with an automated theorem prover in order to supply the prover with
lemmas. Instead, these systems simply generate and prove a set of ‘interesting’
equations summarising the main properties about the program, which are then
presented to the user. In fact, HipSpec may also be used in this manner without
any user-stated properties.
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Let us return to the example property about rev. HipSpec calls QuickSpec,
which within a few seconds conjectures a set of equations about the functions
involved. HipSpec feeds these to Hip, which tries to prove them. Those that can
be proved without induction are redundant and can be discarded; the lemmas
needing induction are shown below1:

No Conjecture Proved using2

(1 ) xs++[] = xs xs

(2 ) (xs++ys)++zs = xs++(ys++zs) xs

(3 ) rev xs++rev ys = rev (ys++xs) ys, (1 ), (2 )
(4 ) revacc (revacc xs ys) [] = revacc ys xs xs

(5 ) revacc (revacc xs ys) zs = revacc ys (xs++zs) xs

(6 ) revacc xs ys++zs = revacc xs (ys++zs) zs, (1 ), (2 ), (5 )
(7 ) revacc xs (rev ys) = rev (ys++xs) xs, (1 ), (3 ), (6 )

The original property is now easily proved: it follows directly from (7 ), letting
ys = [], and the definition of qrev; induction is not even needed. Note that
lemma (4 ) is not needed for proving the original property. Discovering some
unnecessary lemmas is a (potentially disadvantageous) side-effect of the bottom-
up approach.

Contributions. We augment the automated induction landscape with a new
method which uses a bottom-up theory exploration approach to find auxiliary
lemmas. This approach combines our own earlier work on conjecture generation
based on testing (QuickSpec) and induction principle enumeration (Hip). By
adding proof capabilities on top of QuickSpec we also get a system which can
be used as a stand-alone theory exploration system.

Our hypothesis is that:

1. Algebraic equations constructed from terms up to a certain depth form a
rich enough background theory for proving many algebraic properties about
programs without specialised proof-critics.

2. A reasoning system for functional programs can be built on top of an auto-
matic first-order theorem prover.

3. A system combining (1) and (2) can be used both as a theorem prover
and as an efficient theory exploration system, producing background lemmas
comparable to those appearing in human-created libraries.

The experimental results in this paper have so far confirmed this.

2 Implementation

Below we describe in more detail how Hip and QuickSpec work, and how they
are combined in HipSpec.

1 The variables are implicitly universally quantified over total and finite values.
2 This column shows the induction variables and which lemmas were used.
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2.1 Hip

Hip [18] is an automatic tool for proving user-stated equality or implicational
properties about Haskell programs. Hip starts by compiling the definitions in the
program at hand to first-order logic. For each property stated in the program,
it systematically applies different induction rules, yielding first-order proof obli-
gations, which are tested for validity using off-the shelf automated first-order
theorem provers. If one proof obligation succeeds, the original conjecture was
valid. Thus, the first-order prover takes care of non-inductive reasoning, while
Hip adds inductive reasoning at the meta-level. In the context of HipSpec, Hip
is configured to apply structural induction up to a given depth on one or more
variables. Hip, however, also supports co-inductive proof techniques such as fixed
point induction. The focus of our work in HipSpec is currently not on proving
termination, so we restrict ourselves by allowing only well-founded definitions,
and put the responsibility on the end user to enforce this policy for now.

2.2 QuickSpec

QuickSpec [6] conjectures equations about a functional program by means of
testing. The user of QuickSpec provides a list of functions and their types, a
random test data generator for each of the types involved, a set of variables
(usually 2-3 per type), and a term depth limit (usually 3). QuickSpec starts by
creating a set of terms, called the universe, consisting of all well-typed terms built
from the functions and variables given, whose depth is within the given limit. It
then partitions this universe into equivalence classes by running a finite number
of random tests (usually 100); two terms will be in the same equivalence class if
and only if they were equal for all tests. This equivalence relation in turn gives
rise to a huge set of conjectured equations about the tested program (typically
thousands or tens of thousands). For the sake of human users, QuickSpec also
includes a final phase which prunes away equations that follow from simpler ones,
leaving only a small core of equations from which all original equations follow.
This core is usually presented to the user (usually 10-25 equations). However,
when HipSpec uses QuickSpec to generate lemmas, it does not use the pruning
phase, because valuable lemmas may be pruned away. For example, even when an
equation E1 implies a more complex equation E2, we can not necessarily discard
E2, because E2 may be provable by induction whereas E1 may not be. In fact,
E2 may very well be needed as a lemma to prove E1! So, HipSpec considers the
full set of equations produced by QuickSpec before pruning.

2.3 HipSpec

HipSpec’s operation is illustrated in Figure 1. We start by running QuickSpec
on the program source file, which generates a list of conjectures. We also translate
the program source code to a first-order theory using Hip.

HipSpec maintains three sets of equations: active conjectures, which we still
need to consider, failed conjectures, which we have already tried to prove but
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Fig. 1. An overview of HipSpec

failed, and lemmas, which we have managed to prove. The first-order theory in
Figure 1 consists of Hip’s translation of our program plus the current set of
lemmas. Initially the active conjectures consist of all equations that QuickSpec
found (even those that would have been removed by pruning), and the failed
conjecture set and lemma set are empty.

The main loop works as follows:

1. Pick a conjecture c from the active conjecture set (using a heuristic described
below).

2. Check if c follows from the lemmas found so far by equational reasoning only.
If so, discard c, and re-iterate.

3. Otherwise, ask Hip to prove the conjecture by induction, using definitions
and previously proved lemmas as background theory.

4. If Hip succeeds, move c to the lemma set, and move some failed conjectures
back to the active conjectures (based on a heuristic described below).

5. If Hip does not succeed within a set timeout, move c to the failed conjectures.

The loop ends when the active conjecture set is empty.

Picking the conjecture. The performance of HipSpec completely depends on one
heuristic: which active conjecture to try to prove next. Our current heuristics
are rather crude; more sophisticated techniques are further work.

Our basic strategy is to prove simpler equations before more complicated
ones. We define simplicity as follows. A smaller term is simpler than a bigger
term; if two terms have the same size, the term with more variables is simpler
(because it might be more general). For example, (x+y)+z=x+(y+z) is simpler
than (x+x)+y=x+(x+y). The simplicity of an equation t1 = t2 is determined by
whichever of t1 and t2 is the most complex.

We also take into account the call graph of the program. For example, if we
are proving properties about the natural numbers, we prove as much as possible
about + before starting on *, since * calls +. More precisely, when choosing which
conjecture to prove next, we pick the one whose call graph is the smallest; if two
conjectures have the same size call graph, we pick the simplest one.
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Discarding trivial consequences. It is quite expensive to send every conjecture
to Hip to be proved, when we may have thousands of them. Luckily, QuickSpec
has a lightweight theorem prover based on congruence closure. This prover can
efficiently answer questions of the form “given these lemmas, can I prove this
equation?”, replying either “yes” or “don’t know”.

Whenever we pick a conjecture, we check if this prover can prove it from the
current lemmas without induction. If so, we just discard it. This filters out most
trivial conjectures that are provable without induction.

Re-activating failed conjectures. When we prove a lemma, we sometimes move
some failed conjectures back to the active conjectures. HipSpec’s rule is to wait
until the set of active conjectures is empty and then move all failed conjectures
back to the active set, provided that at least one new lemma was proved since
last attempting the conjecture. This guarantees termination.

We have experimented with more elaborate heuristics in this step, eagerly
adding failed conjectures back. These heuristics can help in certain examples,
but so far none have been sufficiently general. Perhaps surprisingly, the sim-
ple method described above works well for all examples in this article. More
sophisticated heuristics are further work.

3 Examples

This section gives examples of successful proofs and their related theory explo-
rations, as well as an example showing some current limitations of our approach.

3.1 Rotating the Length a of List

This simple property of the rotate function is surprisingly difficult to prove3:

prop_rotate xs = rotate (length xs) xs =:= xs

The rotate function takes a natural number n and returns the list resulting from
removing the n first elements and appending them to the end. Rotating a list
by its length returns the original list. Although this property is very simple to
state it is surprisingly hard to prove by mathematical induction, as it requires a
generalised version to be proved, which implies prop_rotate. This generalisation
itself can be proved by induction.

Given the standard definitions of append, length and Peano numbers with
successor S and zero Z, and the below definition of rotate, HipSpec finds and
proves such a generalisation, and uses it to prove prop_rotate:

rotate Z xs = xs

rotate (S n) [] = []

rotate (S n) (x:xs) = rotate n (xs ++ [x])

3 Here, =:= is HipSpec’s notation for equality.
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The lemmas for which HipSpec needed induction are in Figure 2. Lemma (8 ) is
the required generalisation, from which it proves prop_rotate, which follows as
a special case when ys is the empty list. Notice that lemma (8 ) itself requires
lemmas (1 ) and (2 ). A number of additional lemmas are also discovered, which
are not of use in this particular proof, but could well be useful in other proofs.
The whole process of theory exploration and the proof of prop_rotate took 17
seconds, with less than a second spent in QuickSpec and the rest of the time
spent in various proofs of the generated equations.

No Conjecture Proved by

(1 ) xs++[] = xs xs

(2 ) (xs++ys)++zs = xs++(ys++zs) xs

(3 ) rotate n (rotate m xs) = rotate m (rotate n xs) n, m
(4 ) rotate (S n) (rotate m xs) = rotate (S m) (rotate n xs) xs, (3 )
(5 ) rotate n [x] = [x] n

(6 ) length (xs++ys) = length (ys++xs) xs, ys
(7 ) length (rotate n xs) = length xs n, (6 )
(8 ) rotate (length xs) (xs++ys) = ys++xs xs, (1 ), (2 )
(9 ) rotate (length xs) xs = xs (8 )

Fig. 2. Properties generated and proved about the theory of lists with ++, rotate, and
length. The third column shows which induction variables and lemmas were used.

As this proof requires both generalisation and lemma discovery it was iden-
tified in 2005 as an automated reasoning challenge beyond the capabilities of
state-of-the-art reasoning systems ([3], p. 77). We are not aware of any other
theorem provers which prove this theorem fully automatically, without the help
of user-supplied lemmas.

3.2 Nicomachus’ Theorem

Using Peano arithmetic, with standard definitions of addition and multiplication
recursively on the first argument, we will try to get HipSpec to prove Nicomachus’
Theorem. This states that the sum of the n first cubes is the nth triangle number

squared:
∑n

k=1 k
3 = (
∑n

k=1 k)
2
. We define two functions: tri calculates triangle

numbers and cubes n calculates the sum of the first n cubes.

tri Z = Z cubes Z = Z

tri (S n) = tri n + S n cubes (S n) = cubes n + (S n*S n*S n)

Using these definitions, Nicomachus’ theorem is stated as follows:

prop_Nicomachus x = cubes x =:= tri x * tri x

When HipSpec is given the definitions of plus, multiplication, tri and cubes, it
generates and proves (by induction) the properties listed in Figure 3 below, which
takes 10 seconds. The properties are listed in the order they were proved. In (8 )
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No Conjecture Lemmas used Induction on

(1 ) x+y = y+x x, y
(2 ) x+(y+z) = (y+x)+z (1 ) z

(3 ) x*y = y*x (2 ) x, y
(4 ) x*(y*z) = (y*x)*z (1 ), (2 ), (3 ) x, y
(5 ) x*(y+y) = y*(x+x) (1 ), (2 ), (3 ), (4 ) y

(6 ) (x*y)+(x*z) = x*(y+z) (1 ), (2 ), (3 ) z

(7 ) tri x*(y+y) = (x*y)*S x (1 ), (2 ), (3 ), (4 ), (6 ) x

(8 ) tri x+tri x = x+(x*x) (1 ), (2 ), (3 ) x

(9 ) tri x*tri x = cubes x (1 ), (2 ), (3 ), (6 ), (8 ) x

Fig. 3. Properties proved about the theory with natural number addition, multiplica-
tion, triangle numbers (tri) and sum of cubes (cubes)

the well-known identity
∑n

k=1 k = n(n+1)/2 is proved, using previously proved
lemmas. From this lemma HipSpec proves Nicomachus’ Theorem in (9 ). Due to
the order in which HipSpec ends up proving the conjectures in this example,
some unnecessary lemmas are included in figure 3, e.g. (5 ) and (7 ).

3.3 Insertion Sort Produces a Sorted List

Currently, QuickSpec can only generate equational lemmas. To prove that, for
example, insertion sort produces a sorted list requires conditional lemmas. We
state this property as prop_sorted xs = sorted (isort xs) =:= True.

In order to prove prop_sorted we need the conditional lemma
sorted xs ==> sorted (insert x xs), where insert is the sorted list inser-
tion function used by isort, but HipSpec only can only discover and prove the
somewhat peculiar equations (lemmas 1-4 ) in Figure 4. HipSpec also discovers,
but fails to prove, some additional properties (conjectures 5-9 ). For example,
property (5 ), which states that insert is commutative in its first argument.
These equations are not proved because they require conditional lemmas.

Although not proved, QuickSpec has tested these equations and not found
a counterexample. Hence, even a failed proof attempt may at least give some
insight into the properties of the program. The runtime for this example was 8
seconds.

No Conjecture Induction on

(1 ) x<=x = True x

(2 ) x<=S x = True x

(3 ) S x<=x = False x

(4 ) insert y (x:[]) = insert x (y:[]) x, y

(5 ) insert x (insert y xs) = insert y (insert x xs)

(6 ) sorted (insert x xs) = sorted xs

(7 ) isort (insert x xs) = isort (x:xs)

(8 ) sorted (isort xs) = True

(9 ) isort (isort xs) = isort xs

Fig. 4. Results for the theory of insertion sort. Properties 1-4 were proved, while
properties 5-9 were not, as they require conditional lemmas.
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4 Evaluation

HipSpec has two modes of use. Firstly, it can be used as an automated induc-
tion to prove user-given conjectures using theory exploration to find necessary
lemmas. In this case, the individual lemmas that are discovered in the back-
ground and used in the proofs are of less interest for the user, since the focus
is on proving the user supplied properties automatically. Theory exploration is
treated more like a black box.

Secondly, HipSpec can be used in a more speculative manner, as a standalone
theory exploration system. In this case, the user expects HipSpec to discover
and prove a set of basic equational properties about the given program. Here
it becomes important not to swamp the user with trivial or overly complicated
equations. Rather, we wish to present the user with a concise set of elegant
equations summarising the main properties, much like the libraries in proof as-
sistants such as Isabelle. The hope is that these may be useful in later interactive
reasoning or as an algebraic specification of the program.

The examples come from the theorem proving literature and assume termi-
nating functions over total values. We used Z3 [7] as a backend for HipSpec in
these experiments. As the program is translated to a first order theory, we did
not use any of Z3’s built-in theories or decision procedures, but we did exploit
its support for types and constructor functions. The source code for HipSpec
and all experimental results are available online [1,2].

4.1 HipSpec as a Theorem Prover

HipSpec was evaluated on two test suites from the inductive theorem proving
literature. The test suites consist of conjectures about natural numbers, lists and
binary trees. As they feature a large number of unrelated functions, HipSpec was
run separately for each property. This reduces the number of generated equations
because HipSpec will ignore any function that is not (directly or indirectly)
reachable from the property. It also means that HipSpec cannot use already-
proved properties from the test suite to prove later ones. Thus, the order of the
properties in the test suite does not matter: they are proved independently.

HipSpec was configured to give a timeout of 1 second for each individual proof
obligation sent to the prover, and to allow induction on up to two variables
simultaneously using one-step structural induction.

Test Suite A consists of 85 conjectures with both first- and higher-order
functions about lists, natural numbers and binary trees [10]. These were orig-
inally formalised for the IsaPlanner system in Isabelle’s HOL and have since
been translated into other formalisms to compare the Zeno and ACL2 Sedan
provers [19,4] and the Dafny system [14]. As these systems use different log-
ics we note that the functions are not defined in exactly the same way in the
different experiments. This test suite was originally designed for evaluating Is-
aPlanner’s rippling heuristic in the presence of if- and case-expressions, which
are expressed as higher-order functions in Isabelle, and cause trouble for Isa-
Planner’s syntax-based rippling heuristic. Hence, from a lemma discovery point
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of view, many proofs are rather easy: 67 theorems can be proved without extra
lemmas, and 12 do not require induction. The results for the different provers
on the 85 conjectures are summarised below:

HipSpec Zeno [19] ACL2s [4] IsaPlanner [10] Dafny [14]
80 82 74 47 45

HipSpec performs well, with the majority of failures being due to proofs requir-
ing conditional lemmas, as HipSpec only is able to generate equations. For one
property (number 81), we had to configure HipSpec to use induction on three vari-
ables; this is counted as a success in the table above. Zeno performs best, failing
only on three examples, two fewer than HipSpec. However, HipSpec can prove two
theorems that Zeno cannot: rev (drop i xs) = take (len xs-i) (rev xs) and
rev (take i xs) = drop (len xs-i) (rev xs).

Test Suite B consists of 50 theorems about lists and natural numbers and was
previously used to demonstrate proof-critics in the CLAM prover [9], which is
unfortunately no longer maintained. As opposed to Test Suite A, most theorems
here do require auxiliary lemmas, generalisations, case-splits or non-standard in-
ductions. CLAM proves 41 of the 50 theorems fully automatically. The remaining
9 theorems were proved interactively. They require generalisation (including the
rev example from §1 and the rotate example from §3.1), for which CLAM
needed the help of some user-supplied lemmas. Again, HipSpec was not given
any auxiliary lemmas. Fully automatically, it proved 44 theorems, including 6 of
the 9 theorems which CLAM proved with the help of user-supplied lemmas.

We managed to prove 3 further theorems (properties 33–35) by adjusting Hip-
Spec’s settings. These three properties concern accumulating versions of multi-
plication, factorial and exponentiation. Because we are using Peano arithmetic,
these functions return large results, and the testing phase used too much mem-
ory: we supplied a flag that causes QuickSpec to compare results up to some
size bound, so results that are too large will be considered equal. There were
also too many conjectures, so we added a flag to limit the size of the generated
terms. We did not have to give any lemmas by hand. In total, HipSpec proved
47 theorems, including the 9 for which CLAM needed user-supplied lemmas.

We also tested Zeno on these examples: it can prove 21, but not any of the
ones requiring complex generalisations.

Finally, we remark that the bottom-up approach taken by HipSpec is naturally
a bit slower than IsaPlanner and Zeno, which typically perform proofs in less than
a second. Most successful proof attempts are very fast, with the long runtimes
arising from cases with a lot of failed proof attempts.

For test suite A, all properties required less than a minute on a normal desktop
computer [1]. The vast majority required less than 15 seconds, and most 1–
2 seconds. For test suite B, the 44 successful properties required at most 15
seconds, most of them 1–2 seconds. The three properties for which we needed
to tweak the settings ranged from 30 seconds to 40 minutes. Of the three failed
properties, two took about five minutes before giving up, the third 8 seconds.

As mentioned, HipSpec may also discover some superfluous lemmas not strictly
required for the proof of the user-stated property. In these examples, there are
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very few such lemmas and the theorem prover’s performance was not notably
affected by these being added to the theory.

4.2 HipSpec as a Theory Exploration System

In these experiments HipSpec is given a program as an input, without any user-
properties stated. The aim is to present the user with a concise set of equa-
tional properties that have been discovered and proved. We exploit the pruning
algorithm already implemented in QuickSpec to achieve this. QuickSpec was
originally built as a standalone system for suggesting algebraic specifications of
programs using testing. When used on its own, it prunes the many equations it
generates by heuristically ordering them and removing those that trivially fol-
low from previous ones. We refer to [6] for a detailed description of this pruning
algorithm. When HipSpec is used in theory exploration mode, it first attempts
to prove as many conjectures as we can, just as in the theorem-proving mode.
Then it takes the set of the conjectures that it proved, or that trivially follow
from what it proved, and applies the pruning algorithm to this set. As a result,
HipSpec often produces a smaller and more concise set of lemmas than it does
when used in theorem-prover mode. The final list of equations does not depend
on what order we proved things in, or on what needed induction, only on what
the theory implies.

We have applied HipSpec to some simple theories from the theory exploration
literature [12,16], one about natural numbers, with + and *, and three small theo-
ries about lists: 1) append, reverse and length, 2) append, reverse and map and
3) append, foldl and foldr. The theorems produced are presented in Figure 5.
HipSpec generates these theorems much faster than IsaCoSy and IsaScheme: it
takes only between 6-12 seconds for each theory (full results available online [1]),
while IsaCoSy and IsaScheme may require hours. We expect this to be due to the
congruence closure reasoning of QuickSpec, which reduces the search space and
integrates counterexample checking in the term generation phase.

We also perform the same precision-recall analysis as in [12,16] to assess the
quality of the generated theories using Isabelle’s libraries4 as reference. This
experiment assumes that the Isabelle library is so well-designed that it contains
exactly all interesting properties and nothing more. The results are summarised
in Table 1, where recall measures how many of the theorems in the library were
also produced by HipSpec, and precision measures how many of the theorems
HipSpec produced were also in the library, i.e. how well it avoids producing
“superfluous” theorems.

HipSpec performs very well: for the lists, it generates all theorems in Isabelle’s
library, plus theorem L3 in Figure 5, which is the closest we can get to the
useful lemma length (xs ++ ys) = length xs + length ys since we did not
include the + operator in the program. For the natural numbers, HipSpec fails to
generate three of the library theorems: the standard formulations of associativity
are missing (instead HipSpec generates two variants in theorems N5 and N6 ) and

4 http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/

http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/
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Natural Numbers

N1. x+y = y+x N6.∗ x*(y*z) = y*(x*z)

N2. x*y = y*x N7. x+S y = S (x+y)

N3. x+Z = x N8. x*S y = x+(x*y)

N4. x*Z = Z N9.∗ x*(y+y) = y*(x+x)

N5.∗ x+(y+z) = y+(x+z) N10. (x*y)+(x*z) = x*(y+z)

Lists

L1. xs++[] = xs

L2. (xs++ys)++zs = xs++(ys++zs)

L3.∗ length (xs++ys) = length (ys++xs)

L4. length (rev xs) = length xs

L5. rev (rev xs) = xs

L6. rev xs++rev ys = rev (ys++xs)

L7. map f xs++map f ys = map f (xs++ys)

L8. map f (rev xs) = rev (map f xs)

L9. foldl f (foldl f x xs) ys = foldl f x (xs++ys)

L10. foldr f (foldr f x xs) ys = foldr f x (ys++xs)

Fig. 5. Theory exploration results: theorems generated by HipSpec. Theorems marked
by ∗ were not in Isabelle’s library.

the theorem S x + y = x + S y is excluded. However, all three can be trivially
derived by equational reasoning from the theorems HipSpec does produce.

Table 1. Theory Exploration results. Note that IsaScheme was evaluated on a natural
number theory also including exponentiation [16].

HipSpec IsaCoSy [12] IsaScheme [16] Isabelle
#Thms Naturals 10 16 16∗ 12

Precision 80% 63% 100%∗ -
Recall 73% 83% 46%∗ -

#Thms Lists 10 24 13 9

Precision 90% 38% 70% -
Recall 100% 100% 100% -

5 Related Work

Inductive theories do not allow cut-elimination and are thus undecidable. In prac-
tice, this means that auxiliary lemmas (themselves requiring an inductive proof)
may be required to complete a proof. Inductive theorem provers which support
some form of automated lemma discovery, such as ACL2’s induction tactic [4],
CLAM [9], IsaPlanner [8] and Zeno [19], use a top-down approach by which lem-
mas are discovered from failed proof-attempts. HipSpec differ from all of these
in its bottom-up theory exploration approach. HipSpec automatically tries to
discover a background theory for the relevant functions, building up something
like the human-created lemma libraries available for interactive provers such
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as Isabelle [17] or ACL2 [13]. Experimental evaluation shows that HipSpec’s
bottom-up approach compares well in terms of finding the right lemmas. Some
types of lemmas are difficult to discover in the top-down approach, for instance
the generalised version needed to prove the theorem rev xs = qrev xs [], and
many other similar theorems featuring accumulator variables. While the CLAM
system could discover the rev/qrev generalisation given some other basic lem-
mas, HipSpec discovers it all automatically. Zeno, IsaPlanner and ACL2 do not
support this type of lemma discovery at all, and thus fail on theorems of this
kind. In HipSpec, there is always a risk of discovering extra irrelevant lemmas
too. However, these may perhaps be useful in other proofs.

Both CLAM and IsaPlanner are based on the rippling heuristic for guiding
rewriting of the step-case towards the inductive hypothesis. The advantage of
rippling is that it guarantees termination of rewriting, and that rewrite rules may
be used both ways around if need be. Rippling is a syntax-based heuristic, which
may cause problems for instance on conjectures where a lot of case-analysis is
required, as highlighted by Test Suite A in §4 where HipSpec, Zeno and ACL2
performed better than the rippling-based IsaPlanner. HipSpec relies on an off-
the-shelf prover as backend which has no termination guarantee like rippling-
based provers. Instead termination is enforced by using a timeout, which means
that there is a risk of missing proofs which just take a little bit too long. When
special-purpose rippling-based provers fail, the user may inspect the final proof
state to see where the proof got stuck. HipSpec cannot currently.

While most other provers have some form of built-in rewriting tactics, HipSpec
and the program verifier Dafny [14] instead send proof obligations to external
automated provers. Like HipSpec, Dafny applies induction on the meta-level and
passes the resulting proof obligations to the theorem prover Z3, which was also
used as a backend for HipSpec in the experiments in this article. Dafny does
not, however, support automated lemma discovery, so auxiliary lemmas must
be supplied by the user. The obvious advantage is that off-the-shelf automated
provers are often very fast and powerful. However, as the provers are treated as
black boxes we do not get a readable proof, or any information if a proof fails.
IsaPlanner checks proof steps in Isabelle and can produce readable output of
complete or partial proofs. Zeno can output proofs in Isabelle format, which can
then be re-checked in the proof assistant, ensuring correctness. Readable and
checkable proofs are further work in HipSpec.

HipSpec is the only system which can be used both as an inductive theo-
rem prover and as a theory exploration system. The IsaCoSy and IsaScheme
theory explorers were developed for automating the creation of lemma libraries
for inductive theories in Isabelle [12,16]. Both systems use IsaPlanner to prove
conjectures that pass counterexample checking, but differ in the heuristics they
use to generate conjectures. Experiments in which the outputs of IsaCoSy were
manually fed back to IsaPlanner have been successfully performed [11]. However,
neither is fully integrated with the theorem prover: IsaPlanner cannot call either
of these automatically while proving user-given properties, In contrast, HipSpec
is fully automatic. Both IsaCoSy and IsaScheme are considerably slower than
HipSpec, although all three systems produce similar sets of lemmas.



Automating Inductive Proofs Using Theory Exploration 405

6 Conclusion and Further Work

HipSpec is an automated inductive theorem prover and a theory exploration
system. It takes a novel bottom-up approach to lemma discovery by using the-
ory exploration to first build a richer background theory in which user-given
properties are proved. In experimental evaluation, HipSpec performs very well
in comparison with other systems: in particular, it succeeds in proving theorems
about tail-recursive functions that require generalisations, which no other sys-
tem can prove fully automatically without user-supplied lemmas. HipSpec also
performs very well as a standalone theory exploration system, producing sets
of lemmas with high precision and recall when compared to Isabelle’s libraries.
Furthermore, it does so in seconds rather than hours like previous systems.

Ultimately, we would like to use HipSpec in a tool for automatically prov-
ing properties of Haskell programs, making it usable by “normal” program-
mers, much like the popular QuickCheck tool [5]. In order to extend HipSpec
to the full Haskell language we need to add support also for infinite and lazy
data-structures and non-terminating functions in QuickSpec and in HipSpec’s
property language. The Haskell-to-FOL translation system HALO [20] already
supports this, and Hip supports co-inductive reasoning and fixpoint induction.
The theory-exploration machinery does however need to be extended to record
which lemmas hold for all values of a type (including partial ones) and which
ones only hold for completely-defined total values.

Another area of further work is providing user feedback from failed proofs, and
producing checkable proofs. It could interesting to experiment with a different
prover backend, from which information about failed proof attempts can be
reclaimed, rather than treating the prover as a black box.
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Abstract. Picking the right search strategy is important for the success
of automatic theorem provers. E-MaLeS is a meta-system that uses ma-
chine learning and strategy scheduling to optimize the performance of
the first-order theorem prover E. E-MaLeS applies a kernel-based learn-
ing method to predict the run-time of a strategy on a given problem
and dynamically constructs a schedule of multiple promising strategies
that are tried in sequence on the problem. This approach has signifi-
cantly improved the performance of E 1.6, resulting in the second place
of E-MaLeS 1.1 in the FOF divisions of CASC-J6 and CASC@Turing.

1 Introduction

Automatic theorem provers (ATPs) for first-order logic search for proofs of a
conjecture in a potentially infinite space of derivations. Experience has shown
that no single search strategy can be expected to perform well over very diverse
proof problems. Thus, most theorem provers provide dozens or even hundreds of
parameters. For systems based on modern equational calculi, parameters include
clause selection schemes, term orderings, inference and reduction rules used, etc.

The theorem prover E [8] uses a language for describing useful combinations
of parameters as strategies. Such strategies can be automatically evaluated over
large problem sets and compiled directly into C source code. Over 200 strategies
have been named and evaluated for E 1.6, and the best of them are included in
the E source code.

This large number of strategies with associated performance data suggests
the use of data-driven methods to estimate how to solve new problems. E is one
of the the first ATPs that have applied machine learning to strategy selection.
Below, we first describe how the automatic mode of E is generated using sim-
ple analogy-based learning. We then introduce an alternative method based on
kernel-based learning that automatically determines a schedule of E strategies.
The resulting strategy-scheduling meta-system, E-MaLeS 1.1, outperforms the
E’s original single-strategy automated mode.

2 Learning of Strategy Selection

Characterizing ATP problems is a hard problem. An ambitious formulation could
be for example:
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Given a set of ATP strategies and a large class of ATP problems problems,
find a (typically finite) set of efficiently computable problem features that can
be used to efficiently partition the set of problems into subclasses that share a
common best strategy.

The set of features is in practice suggested by the intuition of the ATP imple-
menter or other domain expert (for example, a mathematician who might know
what features could be important for distinguishing different classes of problems
in his domain). Some of the features can correspond to precise knowledge about
logical calculi, for example, if the problem is Horn, or effectively propositional.
Others can express hunches, for example, if there are many or few clauses, sym-
bols, terms, etc. If the set of problems uses symbols consistently (this is the case
for recent large-theory corpora created from the Mizar and Isabelle libraries,
and for the SUMO and Cyc common-sense ontologies), then the (combinations
of) symbols (and derived structures, like terms) are often also relevant for proof
search.

This paper presents two learning methods that have been developed to es-
timate the best strategy for a new problem. Both are based on the results of
strategies run on the TPTP problems [12]. The traditional one by Stephan Schulz
is an instance of the case-based reasoning method. The newer alternative uses
kernel-based learning. Both methods rely on the TPTP being a sufficiently rep-
resentative set of ATP problems of different kinds, however the methods can be
applied for any sufficiently big corpus of problems (e.g. the MPTP [14]). Both
methods require a relevant feature characterization of problems and a record of
the performance of different strategies for training. Once trained, both provide
suggestions for strategies to use on new problems, either a single strategy for the
original method, or a schedule of strategies for the newer method.

2.1 E’s Feature Characterization

The set of features used in E for problem characterization is listed in Table 1.
All features apply to the clausal form of a problem. A clause is called negative if
it only has negative literals. It is called positive if it only has positive literals. A
ground clause is a clause that contains no variables. In this setting, we refer to
all negative clauses as “goals”, and to all other clauses as “axioms”. Clauses can
be unit (having only a single literal), Horn (having at most one positive literal),
or general (no constraints on the form). All unit clauses are Horn, and all Horn
clauses are general. Goals have no positive literals and are hence always at least
Horn.

2.2 E’s Automatic Mode

E supports an automatic mode that analyzes the problem and determines all
major search parameters (literal selection function, clause selection heuristics,
term ordering, and a number of mostly discrete options controlling optional
simplifications and preprocessing steps). It has been conservatively extended
from the very first implementation in E 0.3 Castleton, released in 1999.
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Table 1. Problem features used by strategy selection in E

Feature Description

axioms Most specific class (unit, Horn, general) describ-
ing all axioms

goals Most specific class (unit, Horn) describing all
goals

equality Problem has no equational literals, some equa-
tional literals, or only equational literals

non ground units Number of unit axioms that are not ground
ground goals Are all goals ground?
clauses Number of clauses
literals Number of literals
term cells Number of terms (including subterms)
ground positive axioms Number of positive axioms that are ground
max fun arity Maximal arity of a function or predicate symbol
avg fun arity Average arity of symbols in the problem
sum fun arity Sum of arities of symbols in the problem
clause max depth Maximal clause depth

The automatic mode is based on a static partitioning of the set of all CNF
problems into disjoint classes. It is generated in two steps. First, the set of all
training examples (typically the set of all current TPTP problems) is classified
into disjoint classes using the features listed in Table 1. For the numeric features,
threshold values have originally been selected to split the TPTP into 3 or 4 ap-
proximately equal subsets on each feature. Over time, these have been manually
adapted using trial and error.

Once the classification is fixed, a Python program reads the different classes
and a set of test protocols describing the performance of different strategies on
all problems from the test set. It assigns to each class one of the strategies that
solves the most examples in this class. For large classes (arbitrarily defined as
having more than 200 problems), it picks the strategy that also is fastest on that
class. For small classes, it picks the globally best strategy among those that solve
the maximum number of problems. A class with zero solutions by all strategies
is assigned the overall best strategy.

2.3 Strategy Scheduling

Strategy learning is currently being used by E’s automatic mode to predict the
best strategy for a problem. The predicted strategy is then run for the full time.

An alternative approach (known mainly from Gandalf [13], E-SETHEO [11],
and Vampire [7]) is strategy scheduling. The idea is to run different strategies for
fractions of the overall time. This can help when the strategies are sufficiently
orthogonal (solve different problems), and the problem classification is not good
enough to clearly point to one best strategy.
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In the simplest setting, the suitable set of strategies is considered independent
of the problem features. In that case, given a database of results of many strate-
gies on a large set of problems (TPTP, MPTP, etc.), the goal is to cover the set of
solvable problems by as few strategies as possible. This is an NP-complete prob-
lem, which however seems to be quite easy (for our instances) for systems like
MiniSat++ [10]. For example, for an experiment with covering randomly chosen
400 problems from the MPTP2078 benchmark by 280 E strategies, MiniSat++
can find the minimal cover (9 strategies) in 0.09 s.

We present a learning based method that depending on the problem features
predicts the time each strategy needs to solve the problem. The predictions are
used to schedule in which order and for how long the strategies should be run.

2.4 E-MaLeS 1.1

E-MaLeS (E Machine Learning of Strategies) uses the kernel-based MOR al-
gorithm, see [1] for details. E-MaLeS is freely available at http://cs.ru.nl/

~kuehlwein/. E-MaLeS learns a function that predicts the performance for
each strategy on each problem. Given the features of a problem defined in Ta-
ble 1, E-MaLeS predicts for each strategy s how long E running s will need to
solve the problem. A similar approach has successfully been used in the SAT
community [16].

The MOR algorithm is an instance of kernel-based learning. Kernel-based
learning is a machine learning approach that finds (typically non-linear in the
features) approximations of the training data by minimizing a loss function de-
scribing the difference between learned approximation and training data. By
mapping the data in a higher-dimensional vector space, kernel methods combine
the expressiveness of a high-dimensional function space with the simplicity of lin-
ear regression. Intuitively, kernels can be seen as a similarity measure between
different data points (in our case problems). Kernel-based methods are among
the most successful algorithms applied to various problems from bioinformatics
to information retrieval to computer vision [9].

E-MaLeS uses a Gaussian kernel. The similarity measure induced by this ker-
nel can be imagined as a Gaussian distribution around each data point with the
width σ of the distribution being an adjustable parameter. To ensure that the
learned functions generalize well, a regularization parameter λ is used. Regular-
ization adds an additional term based on the complexity of the learned function
to the loss function. The more complex a function, the bigger the penalty. The
intuition behind this is that complex function are more likely to overfit. The
value of λ determines the weight of the regularization term, with λ = 0 being
equivalent to no regularization.

The values for σ and λ are determined via a 10-fold cross-validation. First,
we define logarithmically scaled grids of potential values. The training dataset is
then shuffled and divided into two parts using a 70/30 split. For each parameter
pair the algorithm trains a function based on the data points in the larger part
and evaluates it (i.e. compares the predicted run times with the actual run times)
on the data points in the smaller part. This process is repeated 10 times. The

http://cs.ru.nl/
~kuehlwein/
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parameter pair with the best average performance (i.e. the minimum average
squared difference between the predicted run times and the actual run times) on
the smaller set is then used for the final learning. The goal of cross-validation is
to estimate the performance of the learned function on unseen data points.

During the learning phase, the input to E-MaLeS is a list of strategies and
a list of problems with their features, together with the performances of the
strategies on the problems within a fixed time limit (e.g. 300 seconds). The
features are first normalized to values between 0 and 1. Ideally, we would have
the exact time needed until a proof is found for each problem-strategy pair.
Unfortunately, real world limitations restrict us to finite run times – in our case
300 seconds. Problems that were not solved within this time limit are ignored.
Note that this leads to different training data for different strategies and a bias
towards lower times. Thus, the learned prediction functions are likely to predict a
time that is lower than the actual needed time. An alternative to simply ignoring
unsolved problems would be to use a large fixed time for each (e.g. 600 seconds).
However, in initial experiments this did not show any improvement.

When trying to solve a new problem, E-MaLeS employs a combination of
E’s automatic mode and strategy scheduling. First, the automatic mode is run
for 60 seconds.1 If the automatic mode fails to find a proof, the features of the
problem are computed and normalized.2 For each strategy the time needed to
solve the problem is predicted using the prediction function learned during the
setup. Since E’s timeout parameter expects seconds, the predicted times are
rounded up to next full second. The strategies are then run for their predicted
time, starting with the strategy with the smallest predicted time.3 If the sum of
the rounded predicted times is less than the total time given, the remaining free
time is spread equally over all strategies.

3 Results

Both E-MaLeS 1.1 and E 1.6 competed at CASC@Turing and CASC-J6. In both
competition, E-MaLeS 1.1 won the second place in the FOF division, solving
more problems than E 1.6. The results are shown in Tables 2 and 3

In the FOF division of CASC@Turing, E-MaLeS solved 4.6% more problems
than E. If we only compare the results of the new problems, E-MaLeS solved
14.5% more problems. The results for FOF division of CASC-J6 are similar, with
E-MaLeS solving 4% more problems than E. On the new problems, E-MaLeS
solved 13.2% more problems than E.

1 Running the auto mode first allows us to reduce the number of training examples
of the machine learning algorithm. We only learn from problems that cannot be
solved by the automatic mode within 60 seconds. The reason for this is that the
learning time of the algorithm is cubic in the number of training examples which
makes learning from all examples (the whole TPTP library) infeasible.

2 Since the normalization function is defined during setup, the normalized features of
new problems may fall out of the [0, 1] interval.

3 A possible improvement would be to take not only the predicted times, but also the
orthogonality (difference in problems solved between strategies) of strategies into
account. First experiments with this approach were promising.
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Table 2. Results for the CASC@Turing problems

System All Problems New Problems

E 1.6 378/500 73/97
E-MaLeS 1.1 401/500 87/97

Table 3. Results for the CASC-J6 problems

System All Problems New Problems

E 1.6 359/450 50/68
E-MaLeS 1.1 377/450 59/68

A possible explanation of the discrepancy between old and new problems
solved is that E 1.6 is overspecialized for the old problems. Cross-validation and
regularization helps E-MaLeS to combat such overfitting.

E-MaLeS also competed in the LTB (Large Theory Batch) division of CASC-
J6 and placed fourth with 83 problems solved after E 1.6 with 87 solved problems.
The LTB division contains problems from large theories, namely problems ex-
ported from Isabelle, Mizar and SUMO. Unlike in the FOF division, the ATPs
may use all cores of the machine. The LTB version of E-MaLeS uses the extra
time and all available cores to run more strategies but is in no other way op-
timized. E 1.6, on the other hand, makes use of the batch structure to avoid
repeated parsing of the large background theories, and also makes better use of
the various SInE strategies that heuristically select relevant premises from the
large theories.

4 Future Work

There are several ways to improve the current algorithm. Extracting features
based on the FOF instead of the CNF representation of a formula could lead to
better learning performance. Using different learning algorithms might allow us
to run E-MaLeS without relying on E’s automatic mode.

Strategies themselves are just combinations of many ATP parameters. An
interesting application of machine learning to ATP is to develop new strategies
by searching for such good parameter combinations systematically (by methods
like hill-climbing) on a large corpus of problems. A related task is to produce a set
of strategies that are highly orthogonal, i.e., that solve very different problems,
so that their collective coverage is high.

We could also learn strategies based on conjecture features (like symbols) in
consistently-named corpora like MPTP, instead of just using abstract features
like on the TPTP problems.

The methods that we develop can probably be used for any ATP, and it would
be interesting to see how such learning and optimization works for systems like
Vampire [7], Z3 [6], and iProver [5].Meta-systems like Isabelle/Sledgehammer [4,3]
andMaLARea [15] could thenuse this deeper knowledge aboutATPs to attack new
conjectures with the strongest possible combinations of systems and strategies.
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Abstract. The TPTP World is a well-established infrastructure for automatic
theorem provers. It defines several concrete syntaxes, notably an untyped first-
order form (FOF) and a typed first-order form (TFF0), that have become de facto
standards. This paper introduces the TFF1 format, an extension of TFF0 with
rank-1 polymorphism. The format is designed to be easy to process by existing
reasoning tools that support ML-style polymorphism. It opens the door to use-
ful middleware, such as monomorphizers and other translation tools that encode
polymorphism in FOF or TFF0. Ultimately, the hope is that TFF1 will be imple-
mented in popular automatic theorem provers.

1 Introduction

The TPTP World [15] is a well-established infrastructure for supporting research, devel-
opment, and deployment of automated reasoning tools. It owes its name to its vast prob-
lem library, the Thousands of Problems for Theorem Provers (TPTP) [14]. In addition,
it specifies concrete syntaxes for problems and solutions: Dozens of reasoning tools
implement the TPTP untyped clause normal form (CNF) and first-order form (FOF) for
classical first-order logic with equality.

It has often been argued that the gap between the features supported by provers and
those needed by applications is too wide, and that rich interchange formats are needed
to address this disconnect [10, 18]. A growing number of reasoners can process the
recently introduced TPTP “core” typed first-order form (TFF0) [17], with monomor-
phic types and interpreted arithmetic [9, 13], or the corresponding higher-order form
(THF0) [2]. A polymorphic version of THF0, the full THF, is in the works [16].

Despite the variety of this offering, there is a strong desire in part of the automated
reasoning community for a portable polymorphic first-order format. Many applications
require polymorphism, notably interactive theorem provers and program specification
languages; but lacking a suitable syntax, applications and provers must communicate
via monomorphic formats. To make matters worse, there is no entirely satisfactory way
to eliminate polymorphism: Monomorphization algorithms are necessarily incomplete,
and it is difficult to encode polymorphism in a complete yet also sound and efficient
manner, especially in the presence of interpreted types [3, 5, 11]. Tool authors are re-
duced to developing their own monomorphizers and type encodings, often using sub-
optimal schemes. Polymorphism arguably belongs in provers, where it can be imple-
mented simply and efficiently, as demonstrated by Alt-Ergo [4].

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 414–420, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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This paper describes the TFF1 format, an extension of TFF0 with rank-1 polymor-
phism. The extension was designed with the participation of members of the TPTP
community, reflecting its needs. Besides compatibility with TFF0 and conceptual in-
tegrity with the upcoming full THF, an important design goal was to ensure that the
format can easily be processed by existing reasoning tools that support ML-style poly-
morphism. TFF1 also opens the door to useful middleware, such as monomorphizers
and other translation tools. The complete specification is available online.1 The parts
that TFF1 inherits from TFF0 are described in the TFF0 specification [17].

2 Syntax

Briefly, the types, terms, and formulas of TFF1 are analogous to those of TFF0, ex-
cept that function and predicate symbols can be declared to be polymorphic, types can
contain type variables, and n-ary type constructors are allowed. Type variables in type
signatures and formulas are explicitly bound. Instances of polymorphic symbols are
specified by explicit type arguments, rather than inferred.

Types. The types of TFF1 are built from type variables and type constructors of fixed
arities. The usual conventions of TPTP apply: Type variables start with an uppercase
letter and type constructors with a lowercase letter. The types A, list(A), list(bird),
and map(nat, list(B)) are all examples of well-formed types.

As in TFF0, the type $i of individuals is predefined but has no fixed semantics,
whereas the arithmetic types $int, $rat, and $real are modeled by Z, Q, and R [17].
It is perfectly acceptable for a TFF implementation to restrict itself to “pure TFFk,”
without arithmetic. TFFk with arithmetic is sometimes labeled “TFAk.”

Type Signatures. Each function and predicate symbol occurring in a formula must be
associated with a type signature that specifies the types of the arguments and, for func-
tions, the result type. Type signatures can take any of the following forms:

(a) a type (predefined or user-defined);
(b) the Boolean pseudotype $o (the result “type” of predicate symbols);
(c) (τ1 * · · · * τn) > τ̃ for n > 0, where τ1, . . . , τn are types and τ̃ is a type or $o;
(d) !>[α1 : $tType, . . ., αn : $tType]: ς for n > 0, where α1, . . . ,αn are distinct type

variables and ς has one of the previous three forms.

In accordance with TFF0, the parentheses in form (c) are omitted if n = 1. The binder
!> in form (d) denotes universal quantification. If ς is of form (c), it must be enclosed
in parentheses. All type variables must be bound by a !>-binder.

Form (a) is used for monomorphic constants; form (b), for propositional constants,
including the predefined symbols $true and $false; form (c), for monomorphic func-
tions and predicates; and form (d), for polymorphic functions and predicates.

Type variables that are bound by !> without occurring in the type signature’s body
are called phantom type variables. These make it possible to specify operations and
relations directly on types and provide a convenient way to encode type classes.

1 http://www21.in.tum.de/~blanchet/tff1spec.pdf

http://www21.in.tum.de/~blanchet/tff1spec.pdf
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Type Declarations. Type constructors can optionally be declared. The following decla-
rations introduce a nullary type constructor bird, a unary type constructor list, and a
binary type constructor map:

tff(bird, type, bird: $tType).
tff(list, type, list: $tType > $tType).
tff(map, type, map: ($tType * $tType) > $tType).

If a type constructor is used before being declared, its arity is determined by the first
occurrence. Any later declaration must give it the same arity.

A declaration of a function or predicate symbol specifies its type signature. Every
type variable occurring in a type signature must be bound by a !>-binder. The following
declarations introduce a monomorphic constant pi, a polymorphic predicate is_empty,
and a pair of polymorphic functions cons and lookup:

tff(pi, type, pi: $real).
tff(is_empty, type, is_empty : !>[A : $tType]: (list(A) > $o)).
tff(cons, type, cons : !>[A : $tType]: ((A * list(A)) > list(A))).
tff(lookup, type,

lookup : !>[A : $tType, B : $tType]: ((map(A, B) * A) > B)).

If a function or predicate symbol is used before being declared, a default type signature
is assumed: ($i * · · · * $i) > $i for functions and ($i * · · · * $i) > $o for predicates. If
a symbol is declared after its first use, the declared signature must agree with the as-
sumed signature. If a type constructor, function symbol, or predicate symbol is declared
more than once, it must be given the same type signature up to renaming of bound type
variables. All symbols share the same namespace.

Function and Predicate Application. To keep the required type inference to a minimum,
every use of a polymorphic symbol must explicitly specify the type instance. A symbol
with a type signature !>[α1 : $tType, . . ., αm : $tType]: ((τ1 * · · · * τn) > τ̃) must
be applied to m type arguments and n term arguments. Given the above type signa-
tures for is_empty, cons, and lookup, the term lookup($int, list(A), M, 2) and
the atom is_empty($i, cons($i, X, nil($i))) are well-formed and contain free oc-
currences of the type variable A and the term variables M and X.

In keeping with TFF1’s rank-1 polymorphic nature, type variables can only be in-
stantiated with actual types. In particular, $o, $tType, and !>-binders cannot occur in
type arguments of polymorphic symbols.

For systems that implement type inference, the following extension of TFF1 might
be useful. When a type argument of a polymorphic symbol can be inferred automati-
cally, it may be replaced with the wildcard $_. For example: is_empty($_, cons($_,

X, nil($_))). The producer of a TFF1 problem must be aware of the type inference
algorithm implemented in the consumer to omit only redundant type arguments.

Type and Term Variables. Every variable in a TFF1 formula must be bound. The vari-
able’s type must be specified at binding time:

tff(bird_list_not_empty, axiom,

![B : bird, Bs : list(bird)]:

~ is_empty(bird, cons(bird, B, Bs))).
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If the type and the preceding colon (:) are omitted, the variable is given type $i. Every
type variable occurring in a TFF1 formula (whether in a type argument or in the type of
a bound variable) must also be bound, with the pseudotype $tType:

tff(lookup_update_same, axiom,

![A : $tType, B : $tType, M : map(A, B), K : A, V : B]:
lookup(A, B, update(A, B, M, K, V), K) = V).

A single quantifier cluster can bind both type and term variables. Universal and exis-
tential quantifiers over type variables are allowed under the propositional connectives,
including equivalence, as well as under other quantifiers over type variables, but not in
the scope of a quantifier over a term variable, to avoid dependent types.

Example. The following problem gives the general flavor of TFF1. It declares and
axiomatizes lookup and update operations on maps and conjectures that update is
idempotent for fixed keys and values.

tff(map, type, map : ($tType * $tType) > $tType).
tff(lookup, type,

lookup : !>[A : $tType, B : $tType]: ((map(A, B) * A) > B)).
tff(update, type,

update : !>[A : $tType, B : $tType]:

((map(A, B) * A * B) > map(A, B))).
tff(lookup_update_same, axiom,

![A : $tType, B : $tType, M : map(A, B), K : A, V : B]:
lookup(A, B, update(A, B, M, K, V), K) = V).

tff(lookup_update_diff, axiom,
![A : $tType, B : $tType, M : map(A, B), V : B, K : A, L : A]:

(K != L => lookup(A, B, update(A, B, M, K, V), L) =

lookup(A, B, M, L))).
tff(map_ext, axiom,

![A : $tType, B : $tType, M : map(A, B), N : map(A, B)]:
((![K : A]: lookup(A, B, M, K) = lookup(A, B, N, K)) =>

M = N)).
tff(update_idem, conjecture,

![A : $tType, B : $tType, M : map(A, B), K : A, V : B]:

update(A, B, update(A, B, M, K, V), K, V) =
update(A, B, M, K, V)).

3 Type Checking and Semantics

Notation. In this section, we use standard mathematical notation to write types, terms,
and formulas. We use the symbols×,→, and ∀ to write type signatures, and write o for
the Boolean pseudotype $o. It is convenient to treat ≈, ¬, ∧, and ∀ as logical symbols
and regard ⊥, �, ≈, ∨, →, ←, ←→, ←→, and ∃ as abbreviations. Equality could be seen
as a polymorphic predicate with the type signature ∀α. α×α→ o, but the type instance
is implicitly specified by the type of either argument, instead of explicitly via a type
argument; hence, it is preferable to treat it as a logical symbol.
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Type Checking. Let γ be a type context, a function that maps every variable to a type.
A type judgment γ 
 t : τ expresses that the term t is well-typed and has type τ in
context γ. A type judgment γ 
 ϕ : o expresses that the formula ϕ is well-typed in γ.
We write f : ∀α1 . . .αm. τ1×·· ·×τn → τ and p : ∀α1 . . .αm. τ1×·· ·×τn → o to specify
type signatures of function and predicate symbols, where m and n can be 0. The typing
rules of TFF1 are as follows (where ρ is a type substitution):

γ 
 u : γ(u)

f : ∀α1 . . .αm. τ1×·· ·× τn → τ γ 
 t1 : τ1 ρ · · · γ 
 tn : τn ρ

γ 
 f (α1 ρ, . . . , αm ρ, t1, . . . , tn) : τρ

p : ∀α1 . . .αm. τ1×·· ·× τn → o γ 
 t1 : τ1 ρ · · · γ 
 tn : τn ρ

γ 
 p(α1 ρ, . . . , αm ρ, t1, . . . , tn) : o

γ 
 s : τ γ 
 t : τ
γ 
 s≈ t : o

γ 
 ϕ : o γ 
 ψ : o
γ 
 ϕ ∧ ψ : o

γ 
 ϕ : o
γ 
 ¬ϕ : o

γ[u �→ τ] 
 ϕ : o
γ 
 ∀u :τ. ϕ : o

γ 
 ϕ[α′/α] : o
γ 
 ∀α. ϕ : o

In the last rule, α′ is an arbitrary type variable that occurs neither in ϕ nor in the values
of γ. The renaming is necessary to reject formulas such as ∀α.∀u : α.∀α.∀v : α. u ≈ v,
where the types of u and v are actually different. By assuming that no type variable can
be both free and bound in the same formula, we can avoid explicit renaming of type
variables, and the last typing rule’s premise becomes γ 
 ϕ : o.

Semantics. An interpretation I for a given set of type constructors, function symbols,
and predicate symbols is constructed as follows. First, we fix a nonempty collection D

of nonempty sets, the domains. The union of all domains is called the universe, U.
An n-ary type constructor κ is interpreted as a function κI : Dn → D. Let θ be a type

valuation, a function that maps every type variable to a domain. Types are evaluated
according to the equations �α�Iθ � θ(α) and �κ(τ1, . . . , τn)�Iθ � κI

(�τ1�Iθ , . . . , �τn�Iθ
)
.

Since type evaluation depends only on the values of θ on the type variables occurring
in a type, we write �τ�I to denote the domain of a ground type τ.

A predicate symbol p : ∀α1 . . .αm. τ1×·· ·×τn → o is interpreted as a relation pI ⊆
Dm×Un. A function symbol f : ∀α1 . . .αm. τ1×·· ·×τn → τ is interpreted as a function
fI on Dm ×Un that maps any m domains D1, . . . ,Dm and n universe elements to an
element of �τ�Iθ , where θ maps each αi to Di.

Let ξ be a variable valuation, a function that assigns to every variable an element of
U. TFF1 terms and formulas are evaluated according to the following equations:

�u�Iθ,ξ � ξ(u) �¬ϕ�Iθ,ξ � ¬�ϕ�Iθ,ξ
� f (σ̄, t̄ )�Iθ,ξ � fI

(�σ̄�Iθ ,�t̄ �Iθ,ξ
) �ϕ ∧ ψ�Iθ,ξ � �ϕ�Iθ,ξ ∧ �ψ�Iθ,ξ

�p(σ̄, t̄ )�Iθ,ξ � pI
(�σ̄�Iθ ,�t̄ �Iθ,ξ

) �∀u : τ. ϕ�Iθ,ξ � ∀a∈ �τ�Iθ . �ϕ�Iθ,ξ[u �→a]

�t1 ≈ t2�Iθ,ξ �
(�t1�Iθ,ξ = �t2�Iθ,ξ

) �∀α. ϕ�Iθ,ξ � ∀D ∈ D. �ϕ�Iθ[α �→D], ξ
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4 Applications

A number of applications already support TFF1. Geoff Sutcliffe has extended the TPTP
World infrastructure to process TFF1 problems and solutions. This involved adapting
the Backus–Naur form specification of the TPTP syntaxes, from which parsers are gen-
erated.2 Some TPTP tools still need to be ported to TFF1; this is ongoing work.

The Why3 [6] environment, which defines its own ML-like polymorphic specifica-
tion language, can parse pure TFF1. Why3 translates between TFF1 and a wide range
of formats, including FOF, SMT-LIB, and Alt-Ergo’s native syntax [5, 7]. In addition,
Why3’s TFF1 parser is being ported to Alt-Ergo [4].

HOL(y)Hammer [8] and Sledgehammer [12] integrate various automatic provers in
the proof assistants HOL Light and Isabelle/HOL. They have been extended to out-
put pure TFF1 problems for Alt-Ergo and Why3. Using Sledgehammer, we produced
987 problems to populate the TPTP library.3

5 Conclusion

The TPTP TFF1 format complements the existing TPTP offerings. For reasoning tools
that already support polymorphism, TFF1 is a portable alternative to the existing ad hoc
syntaxes. But more importantly, the format is a vehicle to foster native polymorphism
support in automatic reasoners. The time is ripe: After many years of untyped reasoning,
we have recently witnessed the rise of interpreted arithmetic embedded in monomorphic
logics. TFF1 lifts the most obvious restrictions of such systems.

The TPTP library already contains nearly a thousand TFF1 problems, and although
the format is in its infancy, it is supported by several applications, including the SMT
solver Alt-Ergo (via Why3). Work has commenced in Saarbrücken to add polymor-
phism to the superposition prover SPASS [19]. Given that many applications require
polymorphism, other reasoning tools are likely to follow suit. The annual CADE Auto-
mated System Competition (CASC) will surely have a role to play driving adoption of
the format. But regardless of progress in prover technology, equipped with a concrete
syntax and suitable middleware, users can already turn their favorite automatic theorem
prover into a fairly efficient polymorphic prover. Rank-1 polymorphism is, of course,
no panacea; higher ranks and dependent types could be part of a future TFF2.

For SMT (satisfiability modulo theories) solvers, the SMT-LIB 2 format [1] specifies
a classical many-sorted logic much in the style of TFF0 but with parametric symbol dec-
larations (overloading). Polymorphism would make sense there as well, as witnessed by
Alt-Ergo. However, the SMT community is still recovering from the upgrade to SMT-
LIB 2 and busy defining a standard proof format; implementers would not welcome
yet another feature at this point. Moreover, with its support for arithmetic, TFF1 is a
reasonable format to implement in an SMT solver if polymorphism is desired.
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Abstract. We present a new approach to reasoning in propositional
linear-time temporal logic (PLTL). The method is based on the simpli-
fied temporal resolution calculus. We prove that the search for premises
to apply the rules of simplified temporal resolution can be re-formulated
as a search for minimal unsatisfiable subsets (MUS) in a set of classi-
cal propositional clauses. This reformulation reduces a large proportion
of PLTL reasoning to classical propositional logic facilitating the use of
modern tools. We describe an implementation of the method using the
CAMUS system for MUS computation and present an in-depth com-
parison of the performance of the new solver against a clausal temporal
resolution prover.

1 Introduction

Propositional Linear-time Temporal Logic (PLTL) is an extension of classical
propositional logic with operators that deal with time. PLTL, and its extensions,
have been used in various areas of computer science, for example, for the specifi-
cation of distributed and concurrent systems and verification of their properties
through temporal reasoning [20], for synthesis of programs from temporal spec-
ifications [23], in temporal databases [27] and for knowledge representation and
reasoning [15]. PLTL is notable for its widespread use as a specification language
in software and hardware verification via model checking [6].

In recent years, we witness a renewed interest in PLTL theorem proving.
Among other reasons, it can be explained by the fact that PLTL specifications,
used in verification of software and hardware systems, often go far beyond simple
safety and liveness conditions. In fact, temporal specifications became so com-
plicated that a need arises for an automated check if they are (un)satisfiable.
Indeed, it does not make sense to check whether a PLTL formula is true in a
model if the formula is unsatisfiable or valid [12,25,24].

Satisfiability of PLTL formulae can be established with a number of techniques
including automata-based approaches [28], tableau methods [30] and clausal tem-
poral resolution [11]. Clausal temporal resolution has been successfully imple-
mented [18,17] and shown to perform well in practice [17,25].

Clausal temporal resolution is a machine-oriented calculus that operates on
temporal formulae in a clausal form called SNF and uses a small number of
resolution rules. In a nutshell, clausal temporal resolution propagates conflicts
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‘backward in time’ until a contradiction is derived in the initial state [11]. For
example, consider a conjunction of the following three temporal clauses

1: a⇒ �(x ∨ y) 2: b⇒ �¬x 3: c⇒ �¬y,
where � denotes ‘at the next moment of time’. Similar to classical resolution,
clausal temporal resolution derives a new clause 4: a ∧ b⇒ �y [from 1 and 2].
Then the derived clause 4 can be combined with clause 3 to derive 5: a∧ b∧ c⇒�false [from 4 and 3]. This latter clause can be rewritten as 6: ¬a ∨ ¬b ∨
¬c [from 5]. Indeed, if it is not the case that at least one of a, b or c is false, we
inevitably get a contradiction at the next moment of time.

Simplified temporal resolution introduced in [7] derives clause 6 in one go
by noticing that the (pure classical, that is, containing no temporal operators)
conjunction of the right-hand sides of the given clauses, (x ∨ y) ∧ ¬x ∧ ¬y is
unsatisfiable. Thus, an application of the temporal resolution rule can be char-
acterised in an abstract way as a multi-premise rule with a purely classical side
condition.

The biggest challenge in implementing the simplified calculus is that the ab-
stract characterisation of the inference rules gives no hint on which temporal
clauses need to be combined. A straightforward implementation of simplified
temporal resolution enumerates all combinations of temporal clauses in order to
find those satisfying the classical side conditions. The resulting procedure is best-
case exponential. In fact, simplified temporal resolution was never intended to be
implemented. The calculus has primarily been introduced to provide a cleaner
separation between temporal and classical reasoning, to simplify the proof of
completeness and to explore variations of the clausal normal form [7].

In this paper we present a new approach to PLTL reasoning based on sim-
plified temporal resolution, which tackles the challenge of determining which
clauses need to be combined by reducing it to the propositional Minimal Un-
satisfiable Subset (MUS) problem. A set of propositional clauses is an MUS if
it is both usatisfiable and any proper subset is satisfiable. We prove that when
searching for temporal clauses to combine for simplified temporal reasoning, it
suffices to consider those whose right-hand side (together with some universal
clauses) forms an MUS. This reduces a large proportion of PLTL reasoning to
classical propositional logic. We report on a rigorous experimental evaluation of
our prototype implementation of the calculus, which shows that this simple and
elegant idea works well in practice.

2 Preliminaries

The set of PLTL formulae is the smallest set containing the set of (atomic)
propositions Prop and such that if φ and ψ are in PLTL formulae, then so are
true, ¬φ, φ ∨ ψ, �φ (‘φ is true in the next moment’), and φ U ψ (‘φ is true
until ψ becomes true’). As usual, we introduce other Boolean and temporal
operators (� ‘always in the future’, � ‘sometime in the future’ and W ‘unless’)
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as abbreviations: false = ¬true, φ∧ψ = ¬(¬φ∨¬ψ), φ⇒ ψ = ¬φ∨ψ, φ⇔ ψ =
(φ⇒ ψ)∧ (ψ ⇒ φ), �φ = true U φ, �φ = ¬�¬φ and φ W ψ = (φ U ψ) ∨ (�φ).

A PLTL formula that does not contain any temporal operators is called a
(classical) propositional formula. A literal is a proposition or a negation of a
proposition. A clause is disjunction of literals. A propositional CNF formula is
a conjunction of clauses. We do not make a distinction between a propositional
CNF formula φ and the set of clauses S such that φ =

∧
C∈S C.

A model for a PLTL formula φ can be characterised as a sequence of states
of the form σ = s0, s1, s2, . . . , where each state si is a set of propositions that
are satisfied at the ith moment in time. We call every such sequence of states an
interpretation. We define the relation (σ, i) |= φ (at time instance i, interpreta-
tion σ satisfies PLTL formula φ) by induction on the structure of the formula as
follows:

(σ, i) |= p iff p ∈ si [for p ∈ Prop and σ = s0, s1, . . . ]
(σ, i) |= �ψ iff (σ, i + 1) |= ψ
(σ, i) |= φ U ψ iff iff ∃k ∈ N. k ≥ i and (σ, k) |= ψ and

∀j ∈ N, if i ≤ j < k then (σ, j) |= φ

We say that a formula φ is satisfiable if, and only if, there exists an interpretation
σ such that (σ, 0) |= φ. We also say that σ is a model of φ in this case. A formula
φ is valid if, and only if, it is satisfied in every possible interpretation, i.e. for
each σ, (σ, 0) |= φ. A formula φ is unsatisfiable if, and only if, it is not satisfiable.

Simplified temporal resolution introduced in [7] operates on temporal problems
in divided separated normal form (DSNF). A DSNF problem is a quadruple
〈I,U ,S, E〉, where

– I (the initial part) and U (the universal part) are sets of propositional
clauses;

– S (the step part) is a set of step clauses of the form

P ⇒ �Q,

where P is a conjunction of literals and Q is a disjunction of literals;
– and E (the eventuality part) is a set of eventualities of the form �l, where l

is a literal.

The intended meaning of a DSNF problem is given by

I ∧ �U ∧ �S ∧ �E .
When we talk about particular properties of temporal problems (e.g., satisfi-
ability, validity, logical consequences etc) we mean properties of the associated
formula. (As above, we do not make a distinction between a finite set of formulae
and a conjunction of formulae in this set.)

Arbitrary PLTL-formulae can be transformed into satisfiability equivalent
DSNF problems using a renaming technique replacing non-atomic subformu-
lae with new propositions and replacing all occurrences of the U (‘until’), �
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(‘always’) and W (‘unless’) operators with their fixpoint definitions. The size of
the resulting temporal problem in DSNF is at most linear in the size of the given
formula [11,7,8]. We illustrate DSNF transformation with an example.

Example 1. Consider temporal formula φ = ��a∧��¬a. First, we satisfiability
equivalently rewrite it as x1 ∧�(x1 ⇒ ��a)∧�(x1 ⇒ ��¬a), where x1 a fresh
proposition. Then we rename the occurrences of the always operator and then
‘unwind’ the always operator using its fixpoint definition to give

x1∧ �(x1 ⇒ �x2) ∧ �(x1 ⇒ �x3)∧�(x2 ⇒ �x2) ∧ �(x2 ⇒ a)∧�(x3 ⇒ �x3) ∧ �(x3 ⇒ ¬a),

where x2 and x3 are fresh propositions. Then we replace conditional eventualities�(x1 ⇒ �x2) and �(x1 ⇒ �x3) with unconditional ones. Formula �(x1 ⇒ �x2)
is satisfiability equivalent to �(x1 ⇒ (x2∨w1))∧�(w1 ⇒ �(w1∨x2))∧��¬w1,
where w1 is a fresh proposition, which, intuitively, is true ‘while we are waiting
for x2 to become true’; the other eventuality is treated similarly. All in all, φ is
satisfiability equivalent to the following temporal DSNF problem.

I = {i1:x1}; U =

⎧⎪⎪⎨
⎪⎪⎩

u1:¬x2 ∨ a,
u2:¬x3 ∨ ¬a,
u3:¬x1 ∨ x2 ∨ w1,
u4:¬x1 ∨ x3 ∨ w2

⎫⎪⎪⎬
⎪⎪⎭

S =

⎧⎪⎪⎨
⎪⎪⎩

s1:x2 ⇒ �x2,
s2:x3 ⇒ �x3,
s3:w1 ⇒ �(w1 ∨ x2),
s4:w2 ⇒ �(w2 ∨ x3)

⎫⎪⎪⎬
⎪⎪⎭ ; E = {e1:�¬w1, e2:�¬w2}.

The added labels i1, u1,. . . have no special meaning and are not part of DSNF;
we use them for reference when we return to this example. ��

Simplified temporal resolution consists of an (implicit) merging operation

P1 ⇒ �Q1, . . . , Pn ⇒ �Qn

n∧
j=1

Pi ⇒ � n∧
j=1

Qi

,

and resolution and termination rules defined below. To simplify the presentation,
we denote the result of merging of step clauses as A ⇒ �B (or Ai ⇒ �Bi if a
rule operates several merged step clauses). Thus, in what follows A, B, Ai and Bi

are conjunctions of propositional literals. As U contains no temporal operators,
all side conditions in the rules are purely propositional.

– Step resolution rule:
A ⇒ �B
¬A

,

where U ∪ {B} is unsatisfiable.
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function SRes(U , S)
New = ∅
for each mus ∈ AllMus ({B | A⇒ �B ∈ S} ∪ U) do
A =

∧
B∈mus, A⇒�B∈S A

New = New ∪ {¬A}
end for
return New

end function

Fig. 1. Step resolution

– Eventuality resolution rule:

A1 ⇒ �B1, . . . , An ⇒ �Bn �l

(
n∧

i=1

¬Ai)

,

where U ∪ {Bi, l} and U ∪ {Bi,
n∧

j=1

¬Aj}, for all i, are unsatisfiable.

– Termination rule: false is derived if U ∪I, or U∪{l} are unsatisfiable, where
l is an eventuality literal.

A derivation is a sequence of universal parts, U = U0 ⊂ U1 ⊂ U2 ⊂ . . . , extended
little by little by the conclusions of the inference rules. Notice that, as the left-hand
sides of (merged) step clauses are conjunctions of literals, the step resolution rule
generates clauses and the eventuality resolution rule generates sets of clauses. The
I, S and E parts of the temporal problem are not changed during a derivation. A
derivation terminates if, and only if, either false is derived, in which case we say
that the derivation successfully terminates, or if no new formulae can be derived
by further inference steps. A derivation U = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Un is called
fair if for any i ≥ 0 and formula φ derivable from 〈Ui, I,S, E〉 by the rules above,
there exists j ≥ i such that φ ∈ Uj .

Theorem 1 ([7]). If a DSNF problem 〈I,U ,S, E〉 is unsatisfiable then any fair
derivation by temporal resolution successfully terminates.

3 Temporal Reasoning with Reductions to MUS

As the side conditions of the inference rules are purely propositional problems,
they can be tested with an external SAT Solver. All that remains is to find the
appropriate merged step clause, or clauses, which satisfy the side conditions. This
straightforward approach has been implemented in [29]; however, in practice,
the necessity to try all possibilities to merge clauses led to inability to handle
problems with a sizeable step part. In this paper we investigate a possibility to
delegate the search for step clauses to merge to an MUS solver.

For an unsatisfiable set of propositional clauses S, its subset S′ ⊆ S is called
a minimal unsatisfiable subset (MUS) if S′ is unsatisfiable and every proper
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function ERes(U , S , �l)
H = SRes(U ∪ {l}, S)
repeat

H ′ = H ; H = SRes(U ∪ {(l ∨ ¬A′) | ¬A′ ∈ H ′}, S)
if H = ∅ then

return ∅
end if

until (
∧

¬A∈H ¬A ⇒
∧

¬A′∈H′ ¬A′) is valid
return H

end function

Fig. 2. Eventuality resolution

subset of S′ is satisfiable. The number of MUSes for a set of clauses S can
be exponential in the size of S. Propositional minimal unsatisfiability has been
extensively studied (often under different names) in the literature, and a number
of empirically efficient implementations of algorithms enumerating all MUSes for
a given set of propositional clauses is available (see the survey [21] and references
within).

The step resolution procedure is given in Figure 1. The AllMus procedure
called returns all MUSes for a set of propositional clauses. By definition, every
¬A ∈ SRes(S,U) is obtained from 〈I,U ,S, E〉 by an application of the step
resolution rule; conversely we have the following.

Lemma 1. For any DNSF problem P = 〈I,U ,S, E〉 such that U is satisfiable,
if ¬A can be obtained by an application of the step resolution rule from P, then
there exists ¬A′ ∈ SRes(S,U) such that (¬A′ ⇒ ¬A) is a valid formula.

Proof. Let B =
∧

i∈I Bi. As U is satisfiable and B ∧ U is not, there exists J ⊆ I
such that for some MUS mus we have Bj ∈ mus, for every j ∈ J , so ¬(

∧
j∈J Aj)

will be returned by SRes(U ,S). Clearly, (¬(
∧

j∈J Aj)⇒ ¬A) is valid. ��

It has been noticed already in [9] that the search for premises of the eventuality
resolution rule can be performed with the help of step resolution. Our algorithm
for eventuality resolution given in Figure 2 is based on the BFS algorithm as
described in [8]. Notice that every element of the set H in the ERes(U , S, �l)
procedure is of the form ¬A, where A is the left-hand side of some merged step
clause A ⇒ �B.

We demonstrate the working of the ERes procedure by proving its correct-
ness; the proof of completeness of simplified temporal resolution with the even-
tuality rule applications restricted to the outputs of ERes can be obtained by
adapting the proof of completeness in [8] using arguments similar to those used
in the proof of Lemma 1.

Lemma 2. For any DNSF problem P = 〈I,U ,S, E〉 let H be returned by
ERes(U ,S,�l). Then H can be obtained from 〈I,U ,S, E〉 by an application
of the eventuality resolution rule.
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function PLTL(I,U ,S ,E)
repeat

if (U = U ∪ SRes(U ,S) changes U) then
check for termination

else if (U = U ∪ ERes(U ,S ,�l), for some �l ∈ E , changes U) then
check for termination

end if
until There is no change in U
check for termination
return ‘satisfiable’

end function

Fig. 3. Reasoning procedure

Proof. Suppose that ERes(U ,S,�l) returns a non-empty set of clauses H and
let H ′ be from the last iteration of the loop. Let a set of indices I be such that
H = {¬Ai | i ∈ I} and let Bi be such that Ai ⇒ �Bi is a merged step clause,
for i ∈ I. Then, by properties of SRes(U ,S), for every i ∈ I the set {Bi} ∪
{(l ∨ ¬A′) | ¬A′ ∈ H ′} ∪ U is unsatisfiable. As (

∧
¬A∈H ¬A ⇒

∧
¬A′∈H′ ¬A′) is

valid, the set {Bi} ∪ {(l ∨¬A) | ¬A ∈ H} ∪ U is also unsatisfiable. Equivalently,
U ∪ {Bi, l} and U ∪ {Bi,

∧
j∈I ¬Aj}, for all i ∈ I, are unsatisfiable. But then H

can be obtained by an application of the eventuality resolution rule. ��

Finally, the overall proof procedure is given in Figure 3. Note in the procedure
check for termination stands for checking if U ∪ I or U ∪ {l} (for some �l ∈ E)
are unsatisfiable, in which case proof search terminates returning ’unsatisfiable’.
Combining Lemmata 1 and 2 with results from [8] we obtain the following result.

Theorem 2. PLTL(I,U ,S, E) always terminates. DSNF problem 〈I,U ,S, E〉
is satisfiable if, and only if, PLTL(I,U ,S, E) returns ‘satisfiable’.

Example 2 (Example 1 continued). We apply our algorithm to the DSNF prob-
lem from Example 1. To simplify the notation, we refer to clauses just by their
label. Additionally, we refer to the propositional clause in the right-hand side of
a step clause by adding the suffix ‘r’ to the label of the step clause. For example,
s3r denotes w1 ∨ x2, the right-hand side of step clause s3.

When the algorithms starts U = {u1, u2, u3, u4}. We apply PLTL step by step.

SRes(U , S). AllMus({u1, u2, u3, u4, s1r, s2r, s3r, s4r}), returns just one MUS
{u1, u2, s1r, s2r}. As {s1r, s2r} ∪ U is unsatisfiable, the step resolution rule
applies to the result of merging of s1 and s2 generating new universal clause:
u5: ¬x2 ∨ ¬x3, which is returned by the procedure and added to U . As U
is changed, the check for termination is employed, but it does not succeed.
Then SRes(U , S) is called again, but one can see that the second call leads
to no change in U .
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ERes(U ,S,�¬w1). In order to compute H , SRes(U ∪ {t1: ¬w1},S) is called,
where t1 is a label used to denoted the temporary universal clause.
AllMus({u1, u2, u3, u4, u5, t1, s1r, s2r, s3r, s4r}) returns a set containing 4
MUSes, {{s1r, s2r, u1, u2}, {s1r, s2r, u5}, {s2r, s3r, t1, u1, u2}, {s2r, s3r, t1, u5}}
however H only contains 2 clauses {¬x2 ∨ ¬x3,¬x3 ∨ ¬w1} as the
two first and the two last MUSes contain the same right-hand
sides of step clauses. We set H ′ = H and run the loop body.
The call of SRes(U ∪ {t2: ¬w1 ∨ ¬x2 ∨ ¬x3, t3:¬w1 ∨ ¬x3},S)
passes {u1, u2, u3, u4, u5, t2, t3, s1r, s2r, s3r, s4r} to AllMus which returns
{{s1r, s2r, u1, u2}, {s1r, s2r, u5}, {s2r, s3r, t3, u1, u2}, {s2r, s3r, t3, u5}}, so H =
{¬x2 ∨ ¬x3,¬x3 ∨ ¬w1}. As H = H ′, ERes terminates and returns two
universal clauses u6: ¬x2 ∨ ¬x3 and u7: ¬x3 ∨ ¬w1. Only u7 is new and is
added to U ; u6 is discarded as redundant. As U is changed, the check for
termination is employed, but it does not succeed.

ERes(U ,S,�¬w2). H is computed. SRes(U ∪ {t5: ¬w2},S) is
called and AllMus({u1, u2, u3, u4, u5, t5, s1r, s2r, s3r, s4r}) returns
{{s3r, s4r, u1, u2, u7, t5}, {s3r, s4r, u7, t5, u5}, {s2r, s3r, u1, u2, u7},
{s2r, s3r, u7, u5}, {s1r, s4r, u1, u2, t5}, {s1r, s4r, t5, u5}, {s1r, s2r, u1, u2},
{s1r, s2r, u5}} so H = {¬x2 ∨ ¬x3,¬x3 ∨ ¬w1,¬x2 ∨ ¬w2,¬w1 ∨ ¬w2}. The
run of the loop body is omitted to save space, however it computes H
being same as H ′, so ERes terminates and returns four universal clauses
{u8:¬x2 ∨ ¬x3, u9:¬x3 ∨ ¬w1, u10:¬x2 ∨ ¬w2, u11:¬w1 ∨ ¬w2}. Only u10
and u11 are new, which are added to U .
Finally as U ∪ I is unsatisfiable we can apply the termination rule and so
PLTL(I,U ,S, E) returns ‘unsatisfiable’. ��

Optimisations. As Example 2 demonstrates, different MUSes can contain the
same right-hand sides of step clauses, which is not optimal. The search for merged
clauses can be significantly sped up by grouping universal clauses together so that
instead of looking for all minimal unsatisfiable subsets of {B | A⇒ �B ∈ S}∪U ,
we look for all subsets S ⊆ {B | A⇒ �B ∈ S} such that (S ∪U) is unsatisfiable
and for every proper subset S′ of S, (S′ ∪ U) is satisfiable. In other words, all
universal clauses are considered as one item. Not only is the number of MUSes
with grouped universal clauses smaller than the number of all MUSes but also,
crucially, MUS enumeration tools can efficiently take grouping into account [19].

We further exploit the disparity between the treatment of right-hand sides
of step clauses and universal clauses by rewriting a given DNSF problem into
a satisfiability equivalent problem having a smaller number of step clauses. If
S contains two step clauses A ⇒ �B1 and A ⇒ �B2 with the same left-hand
side, we first equivalently rewrite them into A ⇒ �(B1 ∧ B2) and then rename
the conjunction B1 ∧B2, to preserve the clausal form, to give a new step clause
A ⇒ �X and two new universal clauses ¬X ∨ B1 and ¬X ∨ B2, where X is
a fresh proposition. Similarly, if S contains two step clauses A1 ⇒ �B and
A2 ⇒ �B with the same right-hand side, we equivalently rewrite them into
(A1 ∨ A2)⇒ �B and then rename the disjunction in the left-hand side.
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4 Experimental Evaluation

We have implemented the described approach in the STRP prover1, which uses
the CAMUS system [19] as the MUS enumeration tool. CAMUS works in two
stages, the first extracts all minimal correction subsets (MCSes) from the input
propositional clauses and the second extracts MUSes from the set of MCSes by
extracting all minimal hitting sets (also know as minimal hypergraph transver-
sals) from the set of all MCSes. Although both stages are not tractable [19], in
our preliminary experiments, the second stage of CAMUS took much more time
than the first stage. We put this down to the nature of our problems: SAT bench-
marks typically are larger problems with a smaller number of MUSes [1], whereas
our MUS problems are much smaller but typically contain a larger number of
MUSes. From a small, randomly selected, sample of the benchmarks used in this
work we have established a typical CNF problem size of 800–900 variables and
3500–4500 clauses (of which 120–130 were the right-hand sides of step clauses),
from which about 1400 MUSes are typically extracted. We therefore replaced the
second stage of CAMUS with other hypergraph transversal computation tools,
MTminer [16] and shd [22]. Both tools proved to be two orders of magnitude
faster on our problems; MTminer is slightly faster but it uses significantly more
memory than shd.

Our experimental evaluation is focused purely on a comparison of the clausal-
resolution based prover TRP++ [17], which has previously been shown to perform
well in a number of studies [17,25], and our new simplified resolution-based prover
STRP. While a more comprehensive comparison featuring other proof methods
similar to [25,24] would provide interesting results it is beyond the scope of this
current work. Notice however that we re-use some benchmark problems from
previous studies [17,25], which evaluated the performance of TRP++ against
other systems, thus the performance of STRP compared with other systems can
be derived from published results and our comparison. All experiments were
conducted on PC with an Intel Core i5-2500K 3.30GHz CPU, with 16GB of

1 Available at http://www.csc.liv.ac.uk/~rmw/STRP.html

http://www.csc.liv.ac.uk/~rmw/STRP.html
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RAM running Scientific Linux 6.3. As TRP++ and STRP both operate on inputs
in DSNF, time taken to translate input formulae to DSNF has not been taken
into account.

Random benchmarks. The first experiment involved two classes of semi-random
benchmark formulae, C1

ran and C2
ran introduced in [18]. In previous experi-

ments [17] TRP++ performed extremely fast (less than 0.1 on most problems), so
we increased the size of the problems using the following parameters for the ran-
dom formulae: n = 48, k = 6 and p = 0.5 where n is the number of propositional
variables and k determines the number of distinct random variables chosen, with
the polarity of each literal determined by the probability p. The results (Fig. 4)
show STRP performing very consistently on both sets of problems irrespective of
their size. A remarkable STRP performance on C1

ran can be explained by the fact
that all step clauses of C1

ran problems are of the form true⇒ �(L1 ∨ ... ∨ Lk),
which are then all rewritten as a single step clause by the optimisation described
above. In case of C2

ran, the number of step clauses in the random formulae of
different size remains fairly constant while the initial and eventuality parts in-
crease in size and complexity. These results demonstrate the usefulness of the
optimisations described above as well as suggest that the STRP performance
mainly depends on the size of the step part of the input formula rather than on
the size of other parts.

Another set of random benchmarks is sourced from [24]. This set of bench-
marks has been first used to compare model checking approaches in [24] and as
part of a more complete comparison of PLTL provers [25]. We used benchmarks
with the following parameters n = 5, p = 0.95 and l = 10a . . . 100, where n is the
number of variables, p is the probability of choosing temporal operator and l is
the length of the formula. The method used to generate the random formulae
does not allow one to directly link the length of the formula with the number of
step clauses. For example there are some problems of length n = 90 with well
over 200 step clauses whereas some problems of length n = 100 contain only 100
step clauses. This variation in the number of step clauses helps to account for
the variable performance, particularly for STRP, as shown in Fig. 5.
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The results also demonstrate that, while both system exhibit a similar dy-
namics with the growth of the formula size, on more complex problems (l = 60
and more), STRP is 5 to 10 times faster than TRP++. The lines converge due to
timeouts. The plot of percentage of tests completed within the 1800s time limit
(Fig. 5 right) shows that the number of tests TRP++ is able to complete within
the time limit starts to drop after l = 60 whereas STRP only shows a decline
only after l = 90.

Crafted benchmarks. Crafted benchmarks [25] are sets of PLTL formulae
that have specifically been designed to trigger an exponential behaviour of
PLTL solvers. Both TRP++ and STRP perform well on the O1 family and on
the ‘pattern’ formulae [25] with TRP++ spending 37 seconds on the hardest
Rformula1000, which contains 1998 sometime clauses and 3996 step clauses, and
STRP spending 128 seconds. Problems of such large size can only be solved due
the the fact that they are all trivially satisfiable or trivially unsatisfiable. For
example, none of the ‘pattern’ formulae contain occurrences of negated propo-
sitions. Thus, simplified temporal resolution does not generate anything new
from the input problem and clausal resolution generates very few (1002 in case
of Rformula1000) new clauses. The extra time taken by STRP is due to I/O
overhead passing information to and from the MUS extractor.

The families of O2 and phltl formulae are more challenging for both systems.
STRP solves two more O2 problems within the 1, 800 second time limit; both
systems show a consistent behaviour on phltl benchmarks as shown in Fig. 6.
Both systems timeout on problems of size larger than given in the graphs.

TLC Cache Coherence benchmarks. Temporal Logic with Cardinality Con-
straints (TLC) is an extension of PLTL with global constraints on temporal
interpretations, which has been introduced in [10] to capture real-world prob-
lems. An example of a TLC constraint is {p, q, r}=1, which requires that exactly
one proposition from the set of {p, q, r} is true at any moment of time. The
expressive power of TLC is the same as PLTL as the constraints can be captured
by temporal formulae. In our example, the constraint is captured by �(p∨q∨r),�(¬p∨¬q), �(¬p∨¬r), �(¬q∨¬r). It has been argued that specialised tools are
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needed for practical reasoning in presence of cardinality constraints since PLTL
formulae that capture them are too large and complex for existing provers [10].

PLTL representations of TLC formulae provide an interesting set of problems
for our comparison as, due to the global nature of constraints, temporal formu-
lae capturing such constraints contribute only the the universal part of DSNF.
We use two families of TLC formulae introduced in [10] capturing verification
conditions on a cache coherence protocol with n-processes, ‘m’: no two processes
can simultaneously be in state m; and ‘sm’: it is not possible for one process
to be in state s and another in state m. The problems feature an increasing
number of processes; the number of transitions between the states is small but
the set of constraints is large and complex. As a result, the PLTL representation
of the original problem has a comparatively small number of step clauses but a
very large number of universal clauses. As shown in Fig. 7, STRP outperforms
TRP++ completing several more problems within the 1800s time limit.

Verification benchmarks. The Anzu verification benchmarks used in [3,25] pro-
vide a good counter example to the Cache Coherence problems and are particu-
larly difficult for STRP. The smallest example from this dataset (genbuf/spec1)
takes STRP 416.266s whereas TRP++ only takes 0.236s. These problems feature
a moderate number of step clauses (the smallest containing 36 step clauses); how-
ever, we did find an interesting characteristic on the small number of problems
we were able to run. The benchmarks produce a very large number of MCSes
(43 738 on average) which are then reduced to a very small number of MUSes
(58 on average) this means both stages of the MUS enumeration process take
significantly longer than on other datasets explored in this work.

Performance Degradation. To evaluate how the performance of each solver
changes over time, we let both systems run for 60 000s on a difficult random
Rozier problem (P0.5N1L190). We captured for TRP++ the number of resolvents
and universal clauses generated (both total and non-redundant) and for STRP
the number of universal clauses generated (both total and non-redundant). For
TRP++ this data was captured at regular intervals and for STRP we recorded a
data point at each iteration of the main procedure.
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The results (Fig. 8) show that TRP++ generates far fewer non-redundant uni-
versal clauses (125973) within the first 5 seconds of computation than STRP
(1180608). Moreover, TRP++’s performance slows down noticeably at this point
whereas STRP continues generating new clauses before stabilising at well over 13
million universal clauses. These numbers are not directly comparable as the sys-
tems utilise different calculi. In particular, clause-level redundancy elimination
in TRP++ can be responsible for fewer non-redundant clauses being retained.
However, in both calculi only universal and initial clauses contribute to the refu-
tation of the given problem. STRP shows quite remarkable performance as it
generates significantly more non-redundant universal clauses in a much shorter
timeframe than TRP++.

Notice also that all formulae derived by STRP are added to the universal part,
thus the search space remains constant throughout the run, which is not the case
for TRP++.

5 Conclusions and Future Work

In this paper we have investigated a new approach to PLTL reasoning based
on reductions to MUS enumeration. Despite the simplicity of the approach, our
prototype implementation proved to perform very well on a significant number
of benchmarks. Our new system performed especially well on problems having
a relatively small number of step clauses but larger number of universal clauses.

Closest to our approach is bounded model checking [2], which can also estab-
lish satisfiability of PLTL formulae. However, in bounded model checking propo-
sitional formulae represent bounded-depth traces of a system and SAT solvers
are used to check their realisability, while in our approach MUSes are used
to facilitate resolutional proof search. Recent developments in bounded model
checking include incremental inductive reasoning [4] and counting [5], which both
can handle unbounded problems. The extraction of labelled superposition proofs
from bounded system traces is explored in [26]. Reasoning procedures for modal
logics with reductions to SAT have also been investigated in [13,14].
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There are a number of possible ways to improve the performance of STRP,
which constitute future work. At the moment, we use an MUS enumerating pro-
cedure as a black box. Consecutive calls of AllMus can return already known
MUSes, which are then discarded as redundant. One can reuse information from
the previous runs of AllMus to avoid generation of redundant MUSes. This
will require modifying the MUS extractor. On larger CNF instances the MUS
enumeration procedure can take a significant amount of time to return the com-
plete set of all MUSes. It may be possible to return MUSes as and when they
are derived. This facility may be useful in the SRes on unsatisfiable problems
as successful application of the termination rules may be possible without the
need to generate all MUSes. Finally, it would be interesting to more thoroughly
investigate the impact of optimisations reducing the size of the step part on the
performance of our system.
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Abstract. InKreSAT is a prover for the modal logics K, T, K4, and S4.
InKreSAT reduces a given modal satisfiability problem to a Boolean
satisfiability problem, which is then solved using a SAT solver. InKreSAT
improves on previous work by proceeding incrementally. It interleaves
translation steps with calls to the SAT solver and uses the feedback
provided by the SAT solver to guide the translation. This results in better
performance and allows to integrate blocking mechanisms known from
modal tableau provers. Blocking, in turn, further improves performance
and makes the approach applicable to the logics K4 and S4.

1 Introduction

InKreSAT is a prover for the modal logics K, T, K4, and S4 [3] that works by
encoding modal formulas into SAT. The idea of a modal prover based on SAT
encoding has previously been explored by Sebastiani and Vescovi [15]. While
building on the same basic idea, InKreSAT extends the approach in [15] in
several ways. Rather than encoding the entire modal formula in one go and
then running a SAT solver on the resulting set of clauses, InKreSAT interleaves
encoding phases with calls to an incremental SAT solver. If the SAT solver
returns unsatisfiable, the initial modal problem is unsatisfiable, so no further
encoding needs to be done. Otherwise, the SAT solver returns a propositional
model of a partial encoding of the modal formula, which is used by InKreSAT
to guide further encoding steps. While InKreSAT is the first system that decides
modal satisfiability by incremental encoding into SAT, similar ideas have been
explored for semi-decision procedures for first-order [7] and higher-order logic [4].

To deal with transitivity as it occurs in K4 and S4, and to further improve
the overall performance of InKreSAT, we extend our basic approach by blocking
(see, e.g., [11]).

We evaluate InKreSAT, confirming the effectiveness of our incremental ap-
proach compared to Sebastiani and Vescovi’s one-phase approach. InKreSAT
also proves competitive with state-of-the-art modal tableau provers.

InKreSAT is implemented in OCaml and employs the SAT solver MiniSat [5]
(v2.2.0). The source code of InKreSAT and the benchmark problems used in the
evaluation are available from www.ps.uni-saarland.de/∼kaminski/inkresat.

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 436–442, 2013.
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2 Reduction to SAT

We now present the SAT encoding that underlies InKreSAT. We restrict our-
selves to the case of multimodal K. An alternative, more detailed presentation
of (a variant of) the encoding can be found in [15].

We distinguish between propositional variables (denoted p, q) and relational
variables (denoted r). From these variables, the formulas of K can be obtained
by the following grammar: ϕ, ψ ::= p | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | 〈r〉ϕ | [r]ϕ.
We call formulas of the form 〈r〉ϕ diamonds and formulas of the form [r]ϕ boxes.

We assume a countably infinite set of prefixes (denoted σ, τ) and a strict total
order ≺ on prefixes. We call pairs σ : ϕ prefixed formulas. We assume an injective
function that maps every prefixed diamond σ : 〈r〉ϕ to a prefix τσ:〈r〉ϕ such that
σ ≺ τσ:〈r〉ϕ. The SAT encoding underlying InKreSAT is based on the following
tableau calculus for K (working on formulas in negation normal form).

(¬) σ : ϕ, σ : ∼ϕ
⊗ (∧i)

σ : ϕ1 ∧ ϕ2

σ : ϕi

i ∈ {1, 2} (∨) σ : ϕ1 ∨ ϕ2

σ : ϕ1 | σ : ϕ2

(♦)
σ : 〈r〉ϕ
τσ:〈r〉ϕ : ϕ

(�)
σ : [r]ϕ, σ : 〈r〉ψ

τσ:〈r〉ψ : ϕ

In the formulation of (¬), we write ∼ϕ for the negation normal form of ¬ϕ, while
the symbol ⊗ stands for the empty conclusion that closes a branch.

It can be shown that the tableau calculus is sound and complete with respect
to the relational semantics of K (in fact, the calculus yields a decision procedure
for K). In other words, a formula ϕ of K is satisfiable if and only if there is a
maximal tableau rooted at σ : ϕ (for an arbitrary prefix σ) that has an open
branch (we use the terms “tableau” and “(tableau) branch” as in [6]).

Literals (denoted l) are possibly negated propositional variables. We define
¬p := p and p := ¬p. We assume an injective function that maps every prefixed
formula σ : ϕ to a literal lσ:ϕ such that lσ:ϕ = l̄σ:∼ϕ. Note that all of the above
rules have the form σ:ϕ1,...,σ:ϕm

τ :ψ1|···|τ :ψn
where m ∈ {1, 2} and n ∈ {0, 1, 2}. Thus, we

can use the following mapping to assign a clause to every instance of a rule.

σ : ϕ1, . . . , σ : ϕm

τ : ψ1 | · · · | τ : ψn
 l̄σ:ϕ1 ∨ · · · ∨ l̄σ:ϕm ∨ lτ :ψ1 ∨ · · · ∨ lτ :ψn

The mapping can be lifted to tableaux as demonstrated by the following example:

σ : (p ∨ q) ∧ ¬p  lσ:(p∨q)∧¬p

σ : p ∨ q (∧1)  l̄σ:(p∨q)∧¬p ∨ lσ:p∨q

σ : ¬p (∧2)  l̄σ:(p∨q)∧¬p ∨ lσ:¬p

σ : p σ : q (∨)  l̄σ:p∨q ∨ lσ:p ∨ lσ:q

⊗ (¬)  l̄σ:p ∨ l̄σ:¬p (redundant)

Note that the prefixed formula σ : (p ∨ q) ∧ ¬p at the root of the tableau is
mapped to a unit clause since it is considered an assumption rather than a
consequence of a tableau rule application. The last clause, which corresponds
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Input: a formula ϕ0

Variables: Agenda := {σ0 :ϕ0} (for some arbitrary but fixed prefix σ0)

while Agenda �= ∅ do:
1. for all σ :ϕ ∈ Agenda do:

if ϕ is a diamond then add Cσϕ∪{Bσψϕ | σ :ψ processed, ψ box } to SAT solver
else if ϕ is a box then add {Bσϕψ | σ :ψ processed, ψ diamond } to SAT solver
else if ϕ is a conjunction then add C1

σϕ and C2
σϕ to SAT solver

else add Cσϕ to SAT solver
2. run SAT solver
3. if SAT solver returns unsat then return unsat

else Agenda := { σ :ϕ | σ :ϕ pending, lσ:ϕ true in model returned by SAT solver }
return sat

Fig. 1. InKreSAT: basic algorithm

to the application of (¬) to σ : p and σ :¬p, is redundant since our mapping of
prefixed formulas to literals already ensures that lσ:p and lσ:¬p are contradictory.

Thus, every tableau can be mapped to a set of Boolean clauses. It can be
shown that the set is satisfiable if and only if the tableau has an open branch (a
variant of the claim is shown in [15]). The encoding can be extended to T, K4,
and S4 by suitably extending the underlying tableau calculus (see [6]).

3 Basic Algorithm

The basic algorithm underlying InKreSAT interacts with an incremental SAT
solver by adding new clauses to the solver and periodically running the solver
on the clauses added so far. If the solver returns satisfiable, it also returns a
satisfying model that is used in selecting new clauses to be added.

The premise of a clause C, where C corresponds to an instance of a tableau
rule σ:ϕ1,...,σ:ϕm

τ :ψ1|···|τ :ψn
, consists of the literals lσ:ϕ1 , . . . , lσ:ϕm . We call a prefixed for-

mula σ :ϕ processed if lσ:ϕ occurs in the premise of a clause added to the SAT
solver. Otherwise, we call σ :ϕ pending, but only if (1) lσ:ϕ occurs in a clause
added to the SAT solver and (2) ϕ is not of the form p or ¬p. We exclude
formulas σ : p and σ :¬p because they require no further processing: since our
mapping of prefixed formulas to literals takes care of trivial inconsistencies, we
never generate clauses for the rule (¬).

Let ϕ be a disjunction or a diamond. We write Cσϕ for the clause correspond-
ing to the instance of (∨) or (♦), resp., that has σ :ϕ as its unique premise (e.g.,
Cσ(〈r〉p) = l̄σ:〈r〉p ∨ lτσ:〈r〉p:p). If ϕ is a conjunction, we write Ci

σϕ (i ∈ {1, 2})
for the clause corresponding to the instance of (∧i) that has σ :ϕ as its premise.
Finally, we write Bσϕψ, where ϕ is a box and ψ a diamond, for the clause
corresponding to the instance of (�) that has σ :ϕ and σ :ψ as its premises.

The basic algorithm (restricted to K) is shown in Fig. 1. It maintains an
agenda consisting of pending prefixed formulas that are true in the model re-
turned by a preceding invocation of the SAT solver (initially, the agenda contains
the input formula). Every formula σ :ϕ on the agenda is processed by adding
clauses with lσ:ϕ in their premise (after which σ :ϕ becomes processed).
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4 Blocking

Blocking is a technique commonly used with tableau calculi to achieve termi-
nation in the presence of transitive relations or background theories [11]. Even
when it is not required for termination, blocking can improve the performance of
tableau-based decision procedures [10]. Blocking typically restricts the applica-
bility of the rule (♦). An application of (♦) to a prefixed diamond on a branch is
blocked if one can determine that the successor prefix that would be introduced
by the application is subsumed by some prefix that is already on the branch.

Because of the close correspondence between the translational method under-
lying InKreSAT and modal tableau calculi, blocking is necessary to make our
translation terminating in the presence of transitive relations.

Extending the one-phase approach in [15] with blocking is problematic since
the approach has no explicit representation of tableau branches. Known blocking
techniques are all designed to work on a single tableau branch at a time. Blocking
across branches typically destroys the correctness of a tableau system.

In our case, however, the propositional model used to guide the translation
in step 3 of the main loop in Fig. 1 yields a suitable approximation of a tableau
branch—the formulas whose corresponding literals are true in the model. We can
show that blocking restricted to these formulas preserves the correctness of our
procedure. To explore the impact of blocking, we extend the basic algorithm by a
variant of anywhere blocking [1] (with ideas from pattern-based blocking [12]).

Unlike with tableau provers [10], blocking in InKreSAT can cause considerable
overhead. After every run of the SAT solver, the data structures needed for
blocking may have to be recomputed from scratch because models returned by
two successive runs of the solver may differ in an unpredictable way. To avoid the
recomputation, we must be able to guarantee that the model returned by the
solver is an extension of the previously computed model. This leads us to a final
refinement of our procedure, called model extension (MX). We make the SAT
solver always first search for extensions of the existing model by adding all literals
true in the model to the input of the solver (as unit clauses). If the solver finds an
extension of the model, we proceed without recomputing the data structures for
blocking. Otherwise, we run the solver once again, now without the additional
clauses, and recompute the data structures from scratch. The goal of MX is to
reduce the overhead of blocking, thus increasing its effectiveness. On the other
hand, MX can cause more calls to the solver, which may decrease performance.

5 Evaluation and Conclusions

We evaluate the effects of incremental translation to SAT and blocking by run-
ning InKreSAT in four different modes: a “one phase” mode, where, like in [15],
the encoding is generated in one go, a “no blocking” mode, where clause gener-
ation is performed incrementally, but blocking is switched off, a “no MX” mode,
where blocking is enabled, but MX is disabled, and the default mode, where both
blocking and MX are enabled. Besides, we include the results from four other
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Table 1. Results on the LWB benchmarks for K (left) and S4 (right)

Subclass In
K
re
S
A
T

(d
e
fa
u
lt
)

In
K
re
S
A
T

(n
o
M

X
)

In
K
re
S
A
T

(n
o
b
lo
ck

in
g
)

In
K
re
S
A
T

(o
n
e
p
h
a
se
)

S
p
a
rt
a
c
u
s

F
a
C
T
+
+

K
2
S
A
T

*
S
A
T

branch n 12 12 13 4 9 10 15 12
branch p 18 15 14 4 10 9 16 18

d4 n 21 21 7 6 21 21 6 21
d4 p 21 21 13 8 21 21 9 21
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dum p 21 21 21 16 21 21 18 21
lin n 21 21 21 21 21 21 21 13
path n 14 21 6 6 21 21 13 21
path p 12 21 8 7 21 21 14 21
ph n 21 21 21 21 21 12 21 11
ph p 9 9 9 9 8 7 9 8
t4p n 21 21 7 4 21 21 4 21
t4p p 21 21 13 8 21 21 8 21
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branch n 11 11 9 6
md n 8 9 21 10
md p 3 4 9 4
ipc n 9 11 21 10
ipc p 8 11 21 9
path n 4 9 16 21
path p 5 10 17 21
ph n 13 11 10 8
ph p 9 9 5 6
s5 n 14 20 16 19

provers. (1) K2SAT, Sebastiani and Vescovi’s [15] implementation of their one-
phase translational approach. We used K2SAT in conjunction with MiniSat 2.0,
which is directly integrated into the system (the integrated solution outper-
formed a setup using MiniSat 2.2.0, which is used by InKreSAT). We used the
options -j -u -v -w recommended by the authors. (2) *SAT [16] (v1.3), a rea-
soner for the description logic ALC. *SAT also integrates SAT technology, but
does so in a way that is different from our approach. It uses a SAT solver only
for propositional reasoning, while modal reasoning is handled by a conventional
tableau calculus. (3) FaCT++ [17] (v1.6.1), an established reasoner for the web
ontology language OWL 2 DL. (4) Spartacus [10] (v1.1.3), an efficient prover for
the hybrid logic H(E,@). K2SAT and *SAT are included because they imple-
ment related approaches while FaCT++ and Spartacus are supposed to indicate
the state of the art in automated reasoning for modal logic. Except for K2SAT,
all provers are compiled and run with the default settings (unlike in [8]).

We perform the tests on a Pentium 4 2.8 GHz, 1 GB RAM, with a 60s time
limit per formula (the same setup as in [10]).Table 1: The K and S4 problem sets
from the Logic Work Bench (LWB) benchmarks [2]. LWB is widely used for mea-
suring the performance of modal reasoners (e.g., in [8,10,15]). LWB is the only
suite available to us that includes S4 problems. For each subclass that was not
solved in its hardest instance (21) by every system, Table 1 displays the hardest
instance that could be solved (the best results set in bold). The evaluation on the
S4 problems is limited to systems and configurations of InKreSAT that can cope
with transitivity. Fig. 2, upper half: Randomly generated 3CNFK [8] formulas
of modal depth 2, 4, and 6 (45 problems each, 135 in total; see [10] for details).
The selection allows us to see how performance depends on modal depth. We
plot the number of instances that could be solved against time. The plot on the
left-hand side compares the four different modes of InKreSAT, while on the right
we compare InKreSAT to the other provers. Fig. 2, lower half: A subset of the
TANCS-2000 [14] Unbounded Modal QBF (MQBF) benchmarks for K comple-
mented by randomly generated modalized MQBF formulas [13] (800 problems
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Fig. 2. Results on 3CNFK (upper half) and MQBF formulas (lower half)

in total). In selecting the MQBF problems, we follow [9], but restrict ourselves
to the “easy/medium” and “medium” problem classes because of our time limit
of 60s. For the same reason, we leave out the harder subclasses of non-modalized
“medium” problems (keeping only the problems with V=4, see [9,13,14,10]).

We observe that incremental translation and blocking both lead to consid-
erable performance gains on all benchmarks. With MX, the results are mixed.
On LWB, InKreSAT generally performs better without MX. On MQBF, MX
makes little difference. On 3CNFK , however, it is MX that makes blocking effi-
cient and allows InKreSAT to solve more formulas of high modal depth (solving
45/13/10 formulas of depth 2/4/6, resp., compared to 45/9/1 without blocking).
Without MX, the overhead caused by blocking actually diminishes performance
(to 45/2/0). Compared to the other systems, InKreSAT proves competitive,
solving a number of problems that cannot be solved by others, and displaying
the arguably best results (without MX) on LWB-K. Note also that in the “one
phase” mode, the behavior of InKreSAT expectedly resembles that of K2SAT,
K2SAT being slightly faster because of additional optimizations that do not
work with incremental translation. A notable weakness of InKreSAT as com-
pared to tableau provers is a faster degradation of performance with increas-
ing modal depth (on LWB-S4 and especially on 3CNFK , where, e.g., Spartacus
solves 40/38/27 problems of depth 2/4/6). We attribute the faster degradation
to the higher overhead of blocking in the present setting and to a lack of a more
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efficient heuristic to guide clause generation. Solving these problems, as well as
extending the approach to more expressive logics (e.g., logics with nominals or
converse modalities), are interesting directions for future work.

Acknowledgments. This work was partially supported by the EPSRC project
Score!.
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bv2epr: A Tool for Polynomially Translating

Quantifier-Free Bit-Vector Formulas into EPRÆ
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Johannes Kepler University, Linz, Austria

Abstract. Bit-precise reasoning is essential in many applications of Sat-
isfiability Modulo Theories (SMT). In recent years, efficient approaches
for solving fixed-size bit-vector formulas have been developed. Most of
these approaches rely on bit-blasting. In [1], we argued that bit-blasting
is not polynomial in general, and then showed that solving quantifier-free
bit-vector formulas (QF BV) is NExpTime-complete. In this paper, we
present a tool based on a new polynomial translation from QF BV into
Effectively Propositional Logic (EPR). This allows us to solve QF BV
problems using EPR solvers and avoids the exponential growth that
comes with bit-blasting. Additionally, our tool allows us to easily gener-
ate new challenging benchmarks for EPR solvers.

1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical appli-
cations of Satisfiability Modulo Theories (SMT), particularly for hardware and
software verification. Examples of state-of-the-art SMT solvers with support for
fixed-sized bit-vector logics are Boolector, MathSAT, STP, Z3, and Yices. All
these solvers rely on bit-blasting in order to translate bit-vector formulas into
propositional logic (SAT). The result is then checked by a SAT solver.

In practice, e.g. in the SMT-LIB [2], the BTOR [3], and the Z3 format, the
bit-widths in bit-vector formulas are encoded as binary, decimal, or hexadecimal
numbers, i.e., a logarithmic encoding is used. In [1], we proved that the encoding
of bit-widths affects the complexity of the decision problem of bit-vector logics.
In particular, logarithmic encoding makes the quantifier-free fragment QF BV2
NExpTime-complete.1 Thus, bit-blasting is not polynomial in general. For a
polynomial reduction, the target logic has to be NExpTime-hard.

In this paper, we introduce our new tool bv2epr. bv2epr translates QF BV
formulas into Effectively Propositional Logic (EPR), which is NExpTime-
complete [4], by using a new (polynomial) reduction. This is in contrast to ex-
isting translations in [5,6], which produce exponential EPR formulas in general,
as we will point out in Sect. 2.1. We give some experimental results in Sect. 4
with the EPR solver iProver.
Æ Supported by FWF, NFN Grant S11408-N23 (RiSE).
1 In [1], we introduced the notation QF BV1 resp. QF BV2 for QF BV using a unary
resp. a logarithmic, actually without loss of generality, binary encoding.

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 443–449, 2013.
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2 Preliminaries

We assume the usual syntax for QF BV. A bit-vector term t of bit-width n
(n � N, n � 1) is denoted by t�n�. An atomic term can be either (a) a bit-
vector constant c�n�, where c � N, 0 � c � 2n; or (b) a bit-vector variable v�n�.
Compound terms and formulas can contain the usual bit-vector operators (c.f.
SMT-LIB [2]), like e.g. bitwise operators, shifts, arithmetic operators, relational
operators, etc. The decision problem for QF BV is NExpTime-complete [1].

EPR, known as the Bernays-Schönfinkel class, is a NExpTime-complete frag-
ment of first-order logic [4]. It corresponds to the set of first-order formulas that,
written in prenex form, contain (a) no function symbol of arity greater than 0;
and (b) no existential quantifier within the scope of a universal quantifier. After
Skolemization, existential variables turn into constants (i.e., function symbols of
arity 0), and quantifiers can be omitted. Consequently, an EPR atom can be
defined as an expression of the form p�t1, . . . , tn� where p is a predicate symbol
of arity n and each ti is either a (universal) variable or a constant.

2.1 Existing Translations

In [5], encodings of hardware verification problems with bit-vectors into first-
order logic are proposed. In particular, an encoding into EPR is given and called
the relational encoding [6], since bit-vectors are modeled as unary predicates.
These predicates are over bit-indices, represented by dedicated constants. For
instance, the ith bit of a bit-vector x�n�, 0 � i � n, is represented by the
atom px�bitIndi�, where bitIndi is a constant. Note that for QF BV2, such a
translation might introduce exponentially many constants, since bit-widths like n
are encoded logarithmically. The so-called range-aware relational encoding in [6],
furthermore, introduces exponentially many assertions into the EPR formula in
general, e.g., atoms lessk�bitIndi� for all 0 � i � k. Finally, not all the QF BV
bit-vector operators are addressed by the relational encoding, but only equality2.
All the arithmetic operators are assumed to be synthesized/bit-blasted in the
verification front-end [6], potentially leading to an exponential blowup already
before the actual encoding. In [5], an abstraction of shifts is proposed, which is,
however, basically the same as bit-blasting. Consequently, the relational encoding
is exponential in general, in constrast with our translation in Sect. 3.1.

3 The Tool

bv2epr takes a QF BV formula in SMT2 format as input, and outputs an EPR
clause set in TPTP format. The tool is implemented in C and available at [7].
The architecture of bv2epr can be seen in Fig. 1, consisting of the following
modules:

Parser. The Parser is Boolector’s SMT2 parser.

2 Bitwise operators could be handled in a similar way.
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SMT2
QF BV Parser Translator

Graph
Data Structure

Simplifier

Generator
TPTP
CNF

Fig. 1. The architecture of bv2epr

Translator. The Translator provides an interface accessed by the Parser, in
order to deal with the SMT2QF BV operators. This module builds a graph data
structure, in which each bit-vector operation is modeled by an EPR predicate.
Predicates are represented by shared nodes in the graph data structure. A node
for a predicate p stores, besides other data, the functional definition of p as an
EPR clause set. With each of these clauses, an argument list in�1, . . . , i0 for p is
stored, indicating that this clause is part of the functional definition of the EPR
atom p�in�1, . . . , i0�. Such a clause is realized as a list of EPR literals, each of
which contains a reference to a predicate p� and an argument list for p�.

Simplifier. The graph constructed by the Translator is a good basis for various
simplifications. Note that only polynomial simplification steps are acceptable.
Among others, we implemented two kinds of simplification, both proposed in [8]:
(a) unused definition elimination and (b) non-growing definition inlining.

Generator. Out of the (simplified) graph, this module generates a TPTP clause
set. Since the graph might contain cycles, the Generator detects and avoids them.
Due to the construction of the graph data structure, clauses can be extracted
directly, i.e., no additional approach for clause generation is needed.

3.1 The Translator

We briefly sketch the (polynomial) reduction of QF BV to EPR used by the
Translator, without striving for completeness. As it will turn out, the target logic
of this reduction is actually not general EPR, but rather its fragment which
uses only two constants, 0 and 1. We call this fragment EPR2.3 To each bit-
vector term of bit-width n, a dedicated �log2 n�-aryEPR2 predicate is introduced
and assigned. For example, a term x�32� is represented by a 5-ary predicate px.
Since px is an EPR2 predicate, each of its arguments can be either 0, 1, or
a universal variable. For instance, the atom px�1, 1, 0, 0, 1� represents the 25th
bit of x, since 2510 � 110012. Using universal variables as arguments makes it
possible to represent several bits by a single EPR2 formula; for instance, the
atom px�i4, i3, i2, i1, 0� represents all even bits of x.

Bitwise Operators. Translating bitwise operators is quite natural. We demon-
strate the translation for bitwise or (denoted by 	): Given a term
x�2n� 	 y�2

n�, where x and y are bit-vector terms, to which the predicates px
and py have already been assigned, respectively. We need to specify each bit of

3 The Herbrand universe of EPR2 can be considered as the Boolean domain.
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the resulting bit-vector as the disjunction of the corresponding bits of x and y.
We introduce a new predicate por, and give the following functional definition:

por�in�1, . . . , i0� 
 px�in�1, . . . , i0� � py�in�1, . . . , i0�

Addition. Given a term x�2n� � y�2
n�, let us first rewrite it to the following

bit-vector equations, where  denotes bitwise xor, & bitwise and, and � left
shift.

add�2
n� � x�2n�  y�2

n�  cin�2n� (1)

cin�2n� � cout�2
n� � 1 (2)

cout�2
n� � �x�2n� & y�2

n�� 	 �x�2n� & cin�2n�� 	 �y�2
n� & cin�2n�� (3)

Note that Eqn. (1) and (3) only contain bitwise operators (and equality). There-
fore, both can be translated into EPR2 as introduced previously. Only Eqn. (2),
which contains shift by 1, has to be handled differently.

We introduce a helper predicate succ which will represent the fact that a bit-
index j is the successor of a bit-index i, i.e., j � i� 1. Since i is represented by
an EPR2 argument list in�1, . . . , i0 and, similarly, j by jn�1, . . . , j0, the 2n-ary
predicate succ�in�1, . . . , i0, jn�1, . . . , j0� can be defined by n facts:

succ�in�1, . . . , i3, i2, i1, 0, in�1, . . . , i3, i2, i1, 1�
succ�in�1, . . . , i3, i2, 0, 1, in�1, . . . , i3, i2, 1, 0�
succ�in�1, . . . , i3, 0, 1, 1, in�1, . . . , i3, 1, 0, 0�

...
succ�0, 1, . . . , 1, 1, 0, . . . , 0�

Using this helper predicate, Eqn. (2) can be translated into EPR2 as follows:

�pcin�0, . . . , 0�
succ�in�1, . . . , i0, jn�1, . . . , j0� � �pcin�jn�1, . . . , j0� 
 pcout�in�1, . . . , i0��

This kind of adder can be adapted to represent other arithmetic operators like
unary minus and subtraction. In bv2epr, all the relational operators, like equal-
ity and unsigned less than, are also represented by such an adapted adder.

Shifts. Shifts are translated into EPR2 by applying barrel shift. For instance,
given a term x�2n� � y�2

n�, for all bit-indices i, 0 � i � n, the ith bit of y is
checked: if it is 1, then left shift by 2i has to be done.

�py�0, . . . , 0� �
�
p0shl�in�1, . . . , i0� � px�in�1, . . . , i0�

�
�

py�0, . . . , 0� �
succ�in�1, . . . , i0, jn�1, . . . , j0�

�
�

�
p0shl�jn�1, . . . , j0� � px�in�1, . . . , i0�

�

�py�0, . . . , 0, 1� �
�
p1shl�in�1, . . . , i0� � p0shl�in�1, . . . , i0�

�
�

py�0, . . . , 0, 1� �
succ�0, in�1, . . . , i1, 0, jn�1, . . . , j1�

�
�

�
p1shl�jn�1, . . . , j1, i0� � p0shl�in�1, . . . , i0�

�
...
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Multiplication. The Translator applies a shift-and-add approach for translat-
ing a term x�2n� �y�2

n�. We generate 2n subproducts of bit-width 2n, and represent
all of them by a single 2n-ary predicate pmul: the ith bit of the jth subproduct
is represented by the atom pmul�jn�1, . . . , j0, in�1, . . . , i0�.

First, the �2n�1�th subproduct is computed, by checking the most significant
bit of y: if it is 0, this subproduct is set to 0; otherwise, it is set equal to x.

�py�1, . . . , 1� � �pmul�1, . . . , 1, in�1, . . . , i0�

py�1, . . . , 1� � �pmul�1, . . . , 1, in�1, . . . , i0� 
 px�in�1, . . . , i0��

The jth subproduct, 0 � j � 2n � 1, is computed by checking the jth bit of y:
if it is 0, then the �j � 1�th subproduct has to be shifted left by 1 (represented
by the predicate pshl); otherwise, the shifted subproduct and x have to be added
(represented by padd).

�
�py�jn�1, . . . , j0� �

succ�jn�1, . . . , j0, j�n�1, . . . , j
�
0�

�
�

�
pmul�jn�1, . . . , j0, in�1, . . . , i0� 

pshl�j

�
n�1, . . . , j

�
0, in�1, . . . , i0�

�
�

py�jn�1, . . . , j0� �
succ�jn�1, . . . , j0, j�n�1, . . . , j

�
0�

�
�

�
pmul�jn�1, . . . , j0, in�1, . . . , i0� 

padd�j

�
n�1, . . . , j

�
0, in�1, . . . , i0�

�

The final product is given by pmul�0, . . . , 0, in�1, . . . , i0�.

Polynomiality and Correctness. All above translation steps are polynomial
in the input size since they are polynomial in the number of atoms and loga-
rithmic in their bit-width. Formally showing correctness exceeds the scope of
this paper and is part of future work. We also investigated correctness empiri-
cally by exhaustively testing consistency of the solving results by Boolector and
bv2epr+iProver, for each bit-vector operation, up to a certain bit-width.

4 Benchmarks and Experiments

Solving QF BV formulas in general is NExpTime-complete [1]. However, cer-
tain families of QF BV formulas are in NP, under certain restrictions on the
bit-widths. We called this kind of families bit-width bounded [1]. Since solv-
ing EPR formulas is NExpTime-complete, our translation fits well to families
which are not bit-width bounded. In [1], two examples of this kind were given:
(a) QF BV/brummayerbiere3/mulhsbw represents instances of computing the
high-order half of product problem, parameterized by the bit-width of multipli-
cands (bw); (b) QF BV/bruttomesso/lfsr/lfsrt bw n formalizes the behaviour
of a linear feedback shift register [9]. We further propose two new benchmark
families that are not bit-width bounded : (a) add2nbw describes how bit-vectors
of bit-width 2bw can be added by using two adders for bit-vectors of bit-width
bw. (b) addmulbw checks, whether the sum of two bit-vectors of bit-width bw
can differ from their product.

In order to demonstrate the exponential blow-up of bit-blasting, in contrast
to our translation into EPR, we used the bit-blaster Synthebtor, part of the



448 G. Kovásznai, A. Fröhlich, and A. Biere

Table 1. Evaluation for the original SMT2 file

bmark bw smt2 btor Boolector aig cnf Lingeling epr iProver
m
ul
hs

8� 947 1K 10.3s 3K 44K 9.0s 45K 1m 44s

16� 959 1K TO 12K 205K TO 55K TO

64� 982 2K TO 221K 4M TO 78K TO

lfs
r
2
bw

16 63� 6K 9K 0.2s 64K 258K 0.7s 56K 18.0s

127� 7K 9K 1.2s 139K 545K 1.3s 61K 1m 14s
1023 7K 11K 5.1s 1M 5M 4.7s 74K TO
8191 7K 18K 2m 37s 11M 43M 3m 10s 89K TO

ad
d2
n 25 452 455 0.0s 3K 25K 0.1s 12K 1m 21s

26 456 671 0.1s 7K 53K 0.7s 13K TO
212 484 8K 3m 5s 549K 4M 1m 28s 21K TO

ad
dm

ul 27 149 99 0.2s 174K 3M 2.4s 8K 0.1s
29 149 99 2.7s 3M 58M 3m 22s 11K 0.1s
211 151 103 TO 48M 1G TO 13K 0.1s

Table 2. Evaluation for the simplified SMT2 file

bmark bw smt2 btor Boolector aig cnf Lingeling epr iProver

m
ul
hs

8� 2K 804 9.8s 3K 42K 8.1s 63K 1m 48s

16� 2K 956 TO 11K 197K TO 77K TO

64� 2K 1K TO 215K 4M TO 110K TO

lfs
r
2
bw

16 63� 126K 59K 0.5s 81K 254K 0.9s 156K 3.0s

127� 126K 59K 0.6s 174K 540K 1.4s 158K 9.5s
1023 126K 60K 7.0s 1M 5M 5.1s 165K 9m 21s
8191 126K 67K 46.1s 13M 43M TO 173K TO

ad
d2
n 25 1K 575 0.0s 4K 25K 0.1s 17K 23.6s

26 1K 671 0.1s 9K 53K 0.7s 18K 5m 0s
212 2K 9K 2m 42s 711K 4M 1m 16s 32K TO

ad
dm

ul 27 239 75 0.2s 174K 3M 2.5s 8K 0.1s
29 239 75 2.8s 3M 58M 1m 40s 11K 0.1s
211 241 79 TO 48M 1G TO 13K 0.1s

Boolector distribution, to generate AIGER files and DIMACS (CNF) files out
of BTOR files. Tab. 1 summarizes these results, when word-level rewriting in
Boolector is switched off. We give the file sizes (in bytes) in all formats and
additionally provide the runtimes of Boolector (for SMT2), Lingeling (for CNF),
and iProver (for EPR), using a timeout of 10 minutes.

In order to test the effect of word-level rewriting, we added a module to
Boolector which reads an SMT2 file, performs rewriting, and outputs the sim-
plified SMT2 file. In Tab. 2, we give the results for the simplified SMT2 files.

� Official SMT-LIB benchmarks.
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5 Conclusion

We presented bv2epr, a tool for polynomially translating QF BV into EPR.
The motivation for our tool lies in previous work [1], where we have shown
QF BV to be NExpTime-complete. Thus, bit-blasting QF BV to SAT, as it is
usually done in current SMT solvers, results in exponentially larger formulas in
general. Previous translations from QF BV into EPR also apply bit-blasting on
certain operators and introduce exponentially many constants resp. constraints
in the general case [5,6]. In contrast to this, the Translator used in bv2epr
always produces EPR formulas of polynomial size.

After discussing bv2epr, we evaluated the size of the formulas produced by
our tool and compared it to other commonly used formats. Our results show that
the overhead in size is rather small when translatingQF BV into EPR, while all
other formats often suffer from exponential blow-up as soon as the bit-widths in
the input formula grow larger. However, our results also show that the runtime of
iProver on the generatedEPR formulas is usually worse compared to the runtime
of Boolector on the original QF BV formula or the one of Lingeling after bit-
blasting has been applied. Nevertheless, the evaluation also shows that there exist
benchmarks where iProver is faster. While it is probably still possible to improve
EPR solvers on this kind of instances, formulas generated by bv2epr can also
help providing challenging benchmarks for current state-of-the-art solvers. The
tool bv2epr is available at [7].
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The 481 Ways to Split a Clause and Deal
with Propositional Variables

Kryštof Hoder and Andrei Voronkov
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Abstract. It is often the case that first-order problems contain propositional vari-
ables and that proof-search generates many clauses that can be split into compo-
nents with disjoint sets of variables. This is especially true for problems coming
from some applications, where many ground literals occur in the problems and
even more are generated.

The problem of dealing with such clauses has so far been addressed using ei-
ther splitting with backtracking (as in Spass [14]) or splitting without backtrack-
ing (as in Vampire [7]). However, the only extensive experiments described in the
literature [6] show that on the average using splitting solves fewer problems, yet
there are some problems that can be solved only using splitting.

We tried to identify essential issues contributing to efficiency in dealing with
splitting in resolution theorem provers and enhanced the theorem prover Vampire
with new options, algorithms and datastructures dealing with splitting. This paper
describes these options, algorithms and datastructures and analyses their perfor-
mance in extensive experiments carried out over the TPTP library [12]. Another
contribution of this paper is a calculus RePro separating propositional reasoning
from first-order reasoning.

1 Introduction

In first-order theorem proving, theorem provers based on variants of resolution and
superposition calculi (in the sequel simply called resolution theorem provers) are pre-
dominant. This is confirmed by the results of the last CASC competitions.1 The top
three theorem provers Vampire [7], E-MaLeS and E [9] are resolution-based, while the
fourth one iProver [4] implements both an instance-based calculus and resolution with
superposition.

Resolution theorem provers use saturation algorithms. They deal with a search space
consisting of clauses. Inferences performed by saturation algoritms are of three different
kinds:

1. Generating inferences derive a new clause from clauses in the search space. This
new clause can then be immediately simplified and/or deleted by other kinds of
inference.

2. Simplifying inferences replace a clause by another clause that is simpler in some
strict sense.

3. Deletion inferences delete clauses from the search space.

1 http://www.cs.miami.edu/˜tptp/CASC/J6/

M.P. Bonacina (Ed.): CADE 2013, LNAI 7898, pp. 450–464, 2013.
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On hard problems the search space is often growing rapidly, and simplifications and
deletions consume considerable time. Performance of resolution theorem provers de-
grades especially fast when they generate many clauses having more than one literal
(multi-literal clauses for short) and heavy clauses (clauses of large sizes). There are
several reasons for this degradation of performance:

1. The complexity of algorithms implementing inference rules depends on the size of
clauses. The extreme case are algorithms for subsumption and subsumption resolu-
tions. These problems are known to be NP-complete and algorithms implementing
them are exponential in the number of literals in clauses.

2. Storing heavy clauses requires more memory. Moreover, every literal in a clause
(and sometimes every term occurring in such a literal) are normally added to one
or more indexes. Index maintenance requires considerable space and time and op-
erations on these indexes slow down significantly when the indexes become large.

3. Generating inferences applied to heavy clauses usually generate heavy clauses.
Generating inferences applied to clauses with many literals usually generate clauses
with many literals. For example, resolution applied to two clauses containing n1

and n2 literals normally gives a clause with n1 + n2 − 2 literals.

To deal with multi-literal and heavy clauses, one can simply start discarding them after
some time, thus losing completeness [8]. Alternatively, one can use splitting. There are
two kinds of splitting described in the literature: splitting with backtracking (as in Spass
[14]) or splitting without backtracking (as in Vampire [7]).

2 Propositional Variables in Resolution Provers

Both kinds of splitting are implemented using introduction of propositional variables
denoting components of split clauses. When many such variables are introduced, they
give rise to clauses with many propositional literals. Such clauses clog up search space
and slow down expensive operations, such as subsumption. Therefore, the problem of
dealing with propositional literals is closely related to splitting. Apart from variables
arising from splitting, propositional variables are common in many applications, for
example, program analysis. They may also be introduced during preprocessing when
naming is used to generate small clausal normal forms.

The resolution and superposition calculus is very efficient for proving theorems in
first-order logic. In propositional logic, it is not competitive to DPLL. Suppose that we
have a problem that uses both propositional and non-propositional atoms. Then treating
propositional atoms in the same way as non-propositional ones results in performance
problems. For example, if we use the code trees technique for implementing subsump-
tion [13] and make no special treatment for propositional variables, it will work in the
worst case in exponential time even for a pair of propositional clauses, while the best
algorithms for propositional subsumption are linear.

The Calculus RePro To address the problem of dealing with propositional variables,
in this section we will introduce a calculus RePro for dealing with clauses having
propositional literals, and will illustrate some options of Vampire using this calculus.
The calculus separates propositional reasoning from non-propositional.
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Let us call a pro-clause any expression of the form C | P , where C is a clause
containing no propositional variables and P is a propositional formula. Logically, this
pro-clause is equivalent to C ∨P , so the bar sign | can be seen as simply separating the
propositional and non-propositional parts of the pro-clause. We will consider a clause
containing no propositional variables as a special kind of pro-clause, in which P is a
false formula.

Note that a pro-clause C ∨ P is not necessarily a clause, since P can be an arbitrary
formula. Also, any propositional formula P can be considered a special case of a pro-
clause � | P , where � denotes, as usual, the empty clause. We will call any pro-clause
� | P propositional.

The calculus RePro is parametrised by an underlying resolution calculus. That is, for
every resolution calculus on clauses we will define an instance of the calculus RePro
based on this resolution calculus. However, since we are not varying the underlying
calculus in this paper, we will simply speak of RePro as a calculus.

Generating Inferences. For every generating inference

C1 · · · Cn

C
of the resolution calculus the following is an inference rule of RePro:

C1 | P1 · · · Cn | Pn

C | (P1 ∨ . . . ∨ Pn)
.

Simplifying Inferences. Let

C1 · · · Cn ��D
C (1)

be a simplifying inference of the resolution calculus. Speaking the theory of resolution,
this means that C is implied by C1, . . . , Cn, D and D is redundant with respect to
C1, . . . , Cn, C. If P1 ∨ . . .∨Pn → P is a tautology, then the following is a simplifying
inference rule of RePro:

C1 | P1 · · · Cn | Pn ���D | P
C | (P1 ∨ . . . ∨ Pn)

.
(2)

Deletion Inferences. Let

C1 · · · Cn ��D
be a deletion inference of the resolution calculus, that is, D is redundant with respect
to C1, . . . , Cn. If P1 ∨ . . . ∨ Pn → P is a tautology, then the following is a deletion
inference of RePro:

C1 | P1 · · · Cn | Pn ���D | P .

Completeness. It is not hard to derive soundness and completeness of RePro assum-
ing the same properties of the underlying resolution calculus, however completeness
here means something different from completeness in the theory of resolution. The rea-
son for this difference is that RePro contains essentially no rules for dealing with the
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propositional part of clauses. In the completeness theorem below, we assume knowl-
edge of the theory of resolution [1,5]. Also, we do not specify the underlying calculus,
for example, the calculus used in Vampire can be used.

Theorem 1 (Completeness). LetS0, S1, S2, . . . be a fair sequence of sets of pro-clauses
such that S0 is unsatisfiable. Then there exists i ≥ 0 such that the set of propositional
pro-clauses in Si is unsatisfiable too.

The proof is omitted here. Note that this theorem implies that the proof-search in RePro
can be carried out by using any standard fair saturation algorithm to perform RePro
inferences corresponding to the rules of the underlying calculus plus unsatisfiability
checking for the propositional part. This is how it is implemented in Vampire.

To implement such an algorithm for RePro on top of a standard implementation of
the resolution calculus one needs to address the following questions:

(q1) representation of the propositional part of pro-clauses;
(q2) representation of propositional pro-clauses (which can be different from the rep-

resentation of the propositional part of pro-clauses);
(q3) unsatisfiability checking for sets of propositional pro-clauses;
(q4) efficient simplification rules for pro-clauses.

There are some other implementation details to be addressed. For example, the in-
ference selection process in saturation algorithms usually depends on the weights of
clauses (which is usually their size measured in the number of symbols). One can use
different size measures for pro-clauses, especially when their propositional parts are not
necessarily clauses. This adds one more question:

(q5) pro-clause selection.

Before discussing possible answers we will introduce some other rules that can be used
in RePro.
Propositional tautology deletion is a deletion rule of RePro formulated as follows:

���D | P ,

where P is a tautology.
The merge rule of RePro is formulated as follows:

���C | P1 ���C | P2

C | (P1 ∧ P2)

Note that so far this is the only rule that introduces propositional formulas other than
clauses.
The merge subsumption rule of RePro is formulated as follows:

C | P1 ���D | P2

D | (P1 ∧ P2)
,

where C subsumes D. This rule can also introduce propositional formulas that are not
clauses.
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The Calculus ReProR One can also define simplifying rules on pro-clauses in an
alternative way. Namely, the modification is as follows. Consider a simplifying rule
(1) of the underlying resolution calculus. Then the following can be considered as a
simplifying inference rule:

C1 | P1 · · · Cn | Pn ���D | P
C | (P1 ∨ . . . ∨ Pn) D | (P1 ∨ . . . ∨ Pn → P )

.

One can see that the previously defined simplifying rule (2) is a special case of this
one, since, if P1 ∨ . . . ∨ Pn → P is a tautology, the second inferred clause can be
removed. One can also reformulate the deletion rules in the same way. We will denote
the resulting calculus ReProR (the refined RePro). Note that the simplification rules
of the refined calculus introduce non-clauses in the propositional part.

The advantage of the alternative formulation of simplification and deletion rules is
that one clause can be simplified away into a tautology using a sequence of simplify-
ing or deletion rules impossible in the standard formulation of RePro. For example,
a clause A ∨ B | (p ∧ q) is redundant in the presence of A | p and B | q using the
following sequence of subsumption deletion rules:

B | q
A | p �������

A ∨B | (p ∧ q)

����������
A ∨B | (p→ (p ∧ q))

A ∨B | (q → (p→ (p ∧ q)))

whose conclusion is a tautology.

3 Splitting

In very simple terms, splitting is based on the following idea. Suppose that S is a set of
clauses and C1 ∨ C2 a clause such that the variables of C1 and C2 are disjoint. Then
the set S ∪ {C1 ∨C2} is unsatisfiable if and only if both S ∪ {C1} and S ∪ {C2}
are unsatisfiable. There is more than one way to implement splitting. Before discussing
them let us introduce some definitions.

Recall that a clause is a disjunction L1 ∨ . . . ∨ Ln of literals, where a literal is an
atomic formula or a negation of an atomic formula. A literal or clause is ground if it
contains no occurrences of variables. In the context of splitting we consider a clause
as a set of its literals. In other words, we assume that clauses do not contain multi-
ple occurrences of the same literal and clauses equal up to permutation of literals are
considered equal. Let C1, . . . , Cn be clauses such that n ≥ 2 and all the Ci’s have

pairwise disjoint sets of variables. Then we say that the clause C
def
= C1 ∨ . . . ∨ Cn

is splittable into components C1, . . . , Cn. We will also say that the set C1, . . . , Cn is a
splitting of C. For example, every ground multi-literal clause is splittable. There may
be more than one way to split a clause, however there is always a unique splitting such
that each component Ci is non-splittable: we call this splitting maximal. It is easy to
see that a maximal splitting has the largest number of components and every splitting
with the largest number of components is the maximal one. There is a simple algorithm
for finding the maximal splitting of a clause [6], which is, essentially, the union-find
algorithm.



The 481 Ways to Split a Clause and Deal with Propositional Variables 455

Splittable clauses appear especially often when theorem provers are used for soft-
ware verification and static analysis. Problems used in these applications usually have
a large number of ground clauses (coming from program analysis) and a small number
of non-ground clauses (for example, an axiomatisation of memory or objects).

There are essentially two ways of using splitting in a first-order resolution theorem
prover. One is splitting with backtracking as implemented in Spass [14] and another
splitting without backtracking [6]. Each of them is described in the next subsections,
where we also point out potential efficiency problems associated with each kind of
splitting.

When we discuss the use of splitting in resolution theorem provers, it is very impor-
tant to understand how the use of splitting affects other components of such provers.
The efficiency and power of modern resolution theorem provers comes from two tech-
niques: redundancy elimination (see [1] for the theory and [8] for the implementation
aspects) and term indexing [10]. Another component important for understanding effi-
ciency is the saturation algorithm and especially the clause selection algorithm used to
implement this algorithm.

Redundancy Elimination. Unlike backtracking algorithms used in DPLL, saturation
algorithms are backtracking-free. When clauses are simplified or deleted, these sim-
plifications and deletions do not have to be undone. On the contrary, some forms of
splitting may require backtracking.

Term Indexing. Even when simplifications are used, the search space can quickly grow
to hundreds of thousands of clauses. To perform inferences on such a large search space
efficiently, theorem provers maintain several indexes storing information about terms
and clauses. These indexes make it easier to find candidates for inferences. In some
cases inferences can be performed only by using the relevant index, without retrieving
clauses used for these inferences. The number of different indexes in theorem provers
varies and can be as many as about 10. Frequent insertion and deletion in an index can
affect performance of a theorem prover. A typical example is when a theorem prover
generates an equality a = b between two constants and uses it to rewrite a into b.
For nearly all indexing techniques used in the resolution theorem provers, every term
and clause containing a must be removed from all indexes and a new term containing
b inserted in them again. Doing this single simplification step on an indexes set with
100,000 clauses can take a very long time.

Clause Selection. Selection of generating inferences in resolution theorem provers
is implemented using clause selection. For selection, clauses are put in one or more
priority queues and selected based on their priorities. Normally, the majority of selected
clauses are taken from the available clauses of the smallest weight.

The use of splitting may heavily affect all these parts of the saturation algorithm
implementation: redundancy elimination, term indexing and clause selection. Let us
discuss this in more detail in the rest of this section.

Splitting without Backtracking. Splitting without backtracking [6] can be imple-
mented using a naming technique. Suppose we have a splittable clause C1 ∨ . . . ∨ Cn

with components C1, . . . , Cn. We introduce new propositional variables p1, . . . , pn−1

to “name” the first n− 1 components. That is, we introduce them together with defini-
tions pi ↔ Ci. Then we use the rule
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�������
C1 ∨ . . . ∨ Cn

C1 ∨ ¬p1 . . . Cn−1 ∨ ¬pn−1 Cn ∨ p1 ∨ . . . pn−1

If the same components appear more than once in a splittable clause, their names can
be reused. In fact, they should be reused, as shown in [6].

The advantage of this approach is that we do not need to perform any backtracking,
which spares us the costs of inserting and deleting clauses from indexes. The only ad-
ditional cost to the implementation of saturation is an index of components required
to reuse names. Such an index is used for all kinds of splitting in Vampire. Checking
whether one component is a variant of another is equivalent to the graph isomorphism
problem, see [6], yet it practice maintaining and using this index requires the time neg-
ligible compared to the overall running time.

Splitting without backtracking is very efficient on some problems but may also be
very inefficient, since it can introduce thousands of propositional variables and long
clauses containing these variables.

Another drawback of this method is that simplifying inferences are not being per-
formed “across branches.” For example, when we split clause f(a) = a ∨ q(a), we
obtain f(a) = a ∨ p, so we cannot use the equality f(a) = a to simplify expressions
such as q(f(a)) by demodulation. In the case of splitting with backtracking, we would
obtain the unit clause f(a) = a, and all the demodulation simplifications would be
performed (though at the cost of having to backtrack them later).

Splitting with Backtracking. Splitting with backtracking is based on the idea of the
DPLL splitting. It uses the labelled clause calculus introduced in [3]. We will first de-
scribe the use of labels and then show how it can be captured by a variation of the
RePro calculus.

When we have a splittable clause C1 ∨ C, where C1 is a minimal component, it is
first replaced by C1, and when we derive a contradiction that follows from C1, we (well,
almost) backtrack to the point of the split and introduce the rest of the clause C. If C1

is ground (and therefore a literal), we may also add, in the spirit of DPLL, ¬C1 at this
point. (Whether we do so is controlled by a Vampire option.)

To implement this technique, we assign a label to every split that we perform, and
augment each clause C by a set of split labels on which it depends. Each newly derived
clause depends on a set of labels that is the union of the sets belonging to its parents.
When a clause is deleted, we need to examine the labels of the clauses which justified
the deletion. If the deletion was justified by some labels on which the deleted clause
itself does not depend, we do not delete the clause, but rather keep it aside to be restored
if we backtrack beyond the label that justified its deletion.

Our implementation of the backtracking splitting can be captured by the RePro cal-
culus, if we restrict the inferences that can be performed at any given point, and intro-
duce a different treatment for simplification inferences.

We do not use any of the RePro rules that would introduce non-clauses into the
propositional part. The propositional parts of pro-clauses are therefore clauses, and their
literals correspond to the labels that the clause has assigned in the labelled calculus.
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We are maintaining a partial model M which is initially empty and to which we add
propositional literals corresponding to active splits. At each point we restrict inferences
of the RePro calculus to the pro-clauses whose propositional part is not satisfied by the
model M .

The split labels are seen as fresh propositional variables and the label introduction
at splitting C1 ∨ C can be viewed as naming C1 with a propositional variable. More
precisely, when we split C1 ∨ C | P and use the name p1 for C1, we add pro-clauses
C1 | (¬p1 ∨ P ) and C | (p1 ∨ P ). We also make a note that p1 depends on every
propositional variable in P and add p1 into the partial model M .

At this point, having p1 in M keeps the clause C | (p1 ∨ P ) from participating in
any inferences for now. Also, the original clause C1 ∨C | P is subsumed by the newly
introduced C1 | (¬p1 ∨ P ) modulo the partial model M .

Clause simplification and restoring upon backtracking is the part that does not fit
well into the RePro calculus and for which we need to introduce a special treatment.
Among the pro-clauses with propositional parts not satisfied by the partial model M
we perform simplifications as we would have done it in the base calculus. Except that
there may come a point when we will restore the simplified clause back into the search
space: When a clause C | P is simplified with C1 | P1, . . ., Cn | Pn as premises,
the restoration of the simplified clause in the labelled calculus corresponds to the point
when the formula F ≡ (P1 ∨ . . . ∨ Pn) → P becomes no longer satisfied by the
partial model M . As a matter of fact, F is actually the propositional formula in one
of the conclusions of simplifying inferences in the ReProR calculus. One would be
therefore tempted to use the ReProR calculus to capture the splitting with backtracking.
However, the problem is that the formula F is not a clause, and the labelled calculus we
use to implement backtracking splitting does not easily capture general formulas using
the clause labels.

We therefore rather check with each change of the model M whether the condition
for restoring any of the simplified clauses does occur, and if so, we put the clause back
into the saturation algorithm.

When we derive a propositional pro-clause � | Q, we select an atom p in the clause
Q ≡ Q′ ∨ ¬p so that no atom in Q′ depends on it (if there is more than one such
atom, we choose arbitrarily). Let us remind that there is only one pro-clause with a
positive occurrence of p — the clause C | (p ∨ P ) which we introduced after splitting
C1 ∨ C | P . This clause became inactive as we added p into the partial model M , so it
could not spread the literal p any further. Now we resolve the pro-clauses C | (p ∨ P )
and � | Q′ ∨ ¬p on the atom p to obtain C | (Q′ ∨ P ), delete the clause C | (p ∨ P )
and replace p in M with ¬p.

Note that we have removed p from M which means that the originally split clause
C1 ∨ C | P is restored, even though just to become subsumed again by C | (Q′ ∨
P ). Now there are two possibilities. If Q′ is an empty clause, C1 ∨ C | P will never
be restored as it is subsumed by C | P which has the same propositional part. This
corresponds to the case when we have refuted the first branch of the split without any
additional assumptions. If Q′ is a non-empty clause, the original split clause may be
restored if some of the assumptions on which we refuted the split is backtracked.
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It should be noted that while we can change the polarity of a propositional variable
in the model M from positive to negative, we never change it from negative to positive.
Therefore, once we assign false to a propositional variable, all pro-clauses that contain
it in a negative literal may be deleted.

Drawbacks. The disadvantage of this kind of splitting is that, upon backtracking, we
sometimes have to delete and restore many clauses. This leads to costly index mainte-
nance operations, and also a lot of work can be wasted.

For example, suppose we split a clause a = b∨C where the symbol b is the smallest
in the simplification ordering and does not appear anywhere else in the problem, while
a has many occurrences. Splitting this clause will introduce a unit clause a = b and the
backward demodulation will replace every occurrence of a by b, resulting in massive
updates in all indexes. Since b does not appear anywhere else, the equality will not be
helpful in any way, but all the rewritten clauses will depend on this split. Once we reach
a refutation using the rewritten clauses, we will have to restore all the clases containing
a, once again resulting in massive updates in all indexes. Also note that we may end
up doing a lot of repeated work as the proof search on the branch using a = b will be
likely similar to the one on the a = b branch.

4 Implementation and Parameters

In this section we describe various parameters implemented in Vampire and related to
splitting and/or use of propositional variables. We also discuss these parameters in the
context of the questions (q1)–(q5). These parameters and their values are summarised
in Table 1.

Splitting. The main parameter controlling splitting is splitting. It has three values:
backtracking, nobacktracking and off. All other options have two values:
on and off.

Clauses may be split either eagerly, before they enter the passive clause container, or
the splitting can be postponed until a clause is selected for activation. This is controlled
by the option split at activation.

The set of split clauses can be restricted in several ways. Optionsplit goal only
restricts splitting only to goal clauses and clauses that are derived from them. Enabling
split input only excludes derived clauses from splitting, allowing splits only on
the clauses which were initially passed to the saturation algorithm.

A different kind of restriction is to add a requirement that both split components
contain fewer positive literals than the original clause. Such splitting will lead to clauses
that are closer to Horn form which allows at most one positive literal per clause. This
setting is enabled by the split positive option.

Splitting with Backtracking. The implementation is based on [14]. We extended it by
use of time stamps and reference counters on clauses. This allows us to implement the
structure for restoring clauses upon backtracking more efficiently — upon backtracking
we only traverse the list of clauses that is to be restored, and let the time-stamping ensure
that we never restore the same clause twice.

If split add ground negation is enabled, upon backtracking caused by split-
ting a ground literal L, we add its negation ¬L as a new clause. The option
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Table 1. Option names, short names and values

option short values

general
backtracking,

splitting spl nobacktracking,
off

split add ground negation sagn on, off
what and when to split

split goal only sgo on, off
split input only sio on, off
split positive spo on, off
split at activation sac on, off

propositional pro-clauses
propositional to bdd ptb on, off
sat solver for empty clause ssec on, off
sat solver with naming sswn on, off

simplifications
sat solver with subsumption resolution sswsr on, off
empty clause subsumption ecs on, off
bdd marking subsumption bms on, off

clause and literal selection
nonliterals in clause weight nicw on, off
splitting with blocking swb on, off

nonliterals in clause weight means that the weight of each clause will be
increased by the number of splits on which it depends.

Propositional Parts of Pro-Clauses. There are several possible implementations of
pro-clauses with a clausal propositional part. However, variants of RePro using non-
clausal propositional parts quickly lead to very complex formulas for which the only
suitable data structure we could think of was ordered binary decision diagrams [2], or
simply BDDs. Thus, we extended the clause objects in Vampire by a reference to the
BDD representing the propositional part of a pro-clause.

Since the refined calculus ReProR requires the use of arbitrary formulas, we also
used BDDs to implement this calculus. We hoped that it will be very efficient for some
problems since many more clauses would be simplified away. In reality ReProR turned
out to be almost dysfunctional. The refined simplification rules created ever more com-
plex propositional formulas with very large BDDs. In many cases these BDDs quickly
used all the available memory. It was also common that nearly all runtime of Vam-
pire was consumed by BDD operations. Therefore, we decided not to use ReProR and
report no results on it in this paper.

The option propositional to bdd (q1) chooses whether BDDs are used to
store propositional parts of pro-clauses. If BDDs are not in use, we treat propositional
literals in the same way as all other literals. It is a separate issue how to deal with
purely propositional clauses. One can also treat them as ordinary clauses. However,
one can choose to pass them to a SAT solver instead. Since every propositional clause
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can be considered as a pro-clause � | P with the empty non-propositional part, op-
tions for dealing with such clauses use empty clause in their names. In the option
sat solver for empty clause (q2,q3) is on, such clauses are passed to a SAT
solver.

When we use BDDs for pro-clauses but not for propositional clauses, whenever we
obtain a BDD for a propositional clause, we must convert this BDD to a set of clauses.
The number of propositional clauses obtained from a BDD can be exponential. To
cope with this problem, we added an option sat solver with naming (q2) that
would make conversion of BDDs to clauses almost linear time by introducing new
propositional variables. An alternative to sat solver with naming is the option
sat solver with subsumption resolutionwhich uses subsumption resolu-
tion to shorten the long clauses generated when converting BDDs to CNF without the
introduction of new propositional variables.

If we decide to represent the propositional pro-clauses as BDDs, the transition from a
first-order pro-clause into propositional is straightforward. We keep at most one propo-
sitional pro-clause by eagerly applying a propositional merging rule

���� | P ���� | P ′

� | (P ∧ P ′)

whenever obtain a new propositional pro-clause � | P ′. This way we know that if the
set of propositional clauses becomes unsatisfiable, we will derive a propositional clause
with associated ⊥ BDD node.

For first-order pro-clauses we may decide to reflect the complexity of the propo-
sitional part in the clause selection process. To this end, enabling the option
nonliterals in clause weight in presence of BDDs increases the size of
clauses by the depths of the BDD of their propositional parts.2

When we derive a propositional pro-clause � | P , clauses C | P ′ such that P → P ′

become redundant. This follows from the RePro version of the subsumption rule as an
empty clause subsumes any other clause:

� | P ���C | P ′ if P → P ′

It would not be feasible to make an implication check between P and the propositional
part of every pro-clause present in the saturation algorithm. We have implemented two
incomplete checks for subsumption by propositional pro-clauses.

The first one focuses on the premises of the derived propositional pro-clause, as there
is a good chance that some of the ancestors will also have P as its propositional part. If
we succeed with some of the premises, we carry on the check with their premises and
further on in the derivation graph, as long as we are succeeding. This check is controlled
by the option empty clause subsumption.

2 The dag size of BDDs would probably better reflect the complexity of propositional formulas,
but computing this measure is not a “local” operation on BDDs — one would need to traverse
the whole BDD subgraph to count the distinct nodes. The depth of a BDD can, however, be
computed by using just the depths of immediate successors. The tree size of a BDD can be
computed locally as well, however it can grow exponentially with the size of the BDD.
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The second of the checks uses the shared structure of the BDDs. When we derive
a propositional pro-clause � | P , we set a subsumed flag in the BDD node corre-
sponding to P . Whenever we see a first-order pro-clause to have a BDD node with
the subsumed flag, we know it is redundant and can be deleted. Moreover, our BDD
implementation is aware of this flag and attempts to “spread” the mark while perform-
ing other BDD operations. For example, when performing a disjunction operation, if
one of the operands has the flag set, it will be set also for the node representing the
disjunction of the operands. This subsumption algorithm is controlled by the option
bdd marking subsumption.

5 Evaluation

There are all together 481 different combinations of values for the Vampire parameters
related to splitting and propositional variables, so analysing the results was far from
trivial. For simplicity, we will call them splitting parameters, though this name is a
bit misleading since some of them are actually related to dealing with propositional
variables.

For benchmarking we used unsatisfiable TPTP problems having non-unit clauses
and rating greater than 0.2 and less than 1. Essentially, the rating is the percentage of
existing provers that cannot solve a problem. For example, rating greater than 0.2 means
that less than 80% of existing theorem provers can solve the problem. Likewise, rating
1 means that the problem cannot solved by the existing provers. However, the rating
evaluation uses a single mode of every prover, so it is possible that the same prover
can solve a problem of rating 1 using a different mode. For this reason, we also added
problems of rating 1 and solvable by Vampire.3 We excluded very large problems since
for them it was preprocessing, but not other options, that affect results the most. This
resulted in 4,869 TPTP problems.

To conduct the experiments, we took a Vampire strategy that is believed to be nearly
the best in the overall number of solved problems, and generated the 481 variations of
this strategy obtained by setting the splitting parameters to all possible values. For each
of these variations, we ran it on the selected problems with a 30 seconds time limit.
This resulted in 2,341,989 runs, which roughly correspond to 1.5 years of run time on
a single core.

We evaluated the experiments in two different ways. First, we looked at the best over-
all strategies for the backtracking and non-backtracking splitting, and how many prob-
lems they solve. However, the number of solved problems for a single (even the best)
setting of parameters is not the main criterion of importance for splitting
parameters.

The reason for this is that it is known that problems are normally best solved by at-
tempting them with a cocktail of strategies. The CASC [11] version of Vampire uses a
sequence of strategies to solve a problem, and using such a sequence is also a recom-
mended mode for the users. Therefore in the second part of evaluation we looked at the
numbers of problems solvable only by particular settings of the splitting parameters.

3 Solvable by Vampire means solvable with at least one of the 481 different strategies.
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Table 2. Problems solved by each setting of the splitting strategy

splitting strategies worst average best
off 25 2708 2720 2737
backtracking 64 1825 2710 3143
non-backtracking 416 1756 2608 2929

Table 3. Best and worst strategies

worst best
splitting nobacktracking backtracking
propositional to bdd on
split at activation off on
split goal only off off
split input only off off
split positive off off
nonliterals in clause weight off off
bdd marking subsumption off
empty clause subsumption on
sat solver for empty clause off
split add ground negation on

The Best and the Worst Strategies. Only 3,598 (about 74% of all problems) were
solved by at least one splitting strategy. The top-level results are summarised in Ta-
ble 2. The best and the worst strategies are shown in Table 3. Some of the option values
in the table are left out because not all combinations of parameters make sense. For
example, for backtracking splitting we use labeled clauses, not BDDs, so all BDD re-
lated options are left out. As one can see, without splitting all strategies behave very
similar, which is expected, since problems normally contain few propositional sym-
bols. However, the use of splitting makes a very substantial difference, especially for
the best strategies. For example, the best strategy using splitting solved 3143 problems
versus 2737 problems solved without splitting. Another interesting point is a huge gap
between the performance of the worst and the best strategies using the same kind of
splitting. However, the biggest surprise for us was the fact that the best strategies used
splitting with backtracking.

Importance of Particular Parameters. To determine the importance of various split-
ting options, we put the numbers of problems that can be solved only with a particular
value of an option into Table 4. Under (a) we show the number of problems that can be
solved either only by backtracking or non-backtracking splitting. The number of prob-
lems solvable only without any splitting at all is zero. This perhaps surprising result is
due to the fact that splitting can be restricted using the options split input only,
split goal only and split positive to the extent that almost no splits are
actually performed.

The cases (b)–(m) show the numbers of problems requiring a particular value of an
option for some of the following cases: off,backtracking,nobacktracking or
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Table 4. Problems solved only by a single value of an option

a) splitting

off 0
noback 128
back 198

b) split at activation
on off

back 147 73
noback 91 93
all 145 113

c) split goal only
on off

back 31 155
noback 21 207
all 17 159

d) split input only
on off

back 43 414
noback 67 302
all 33 384

e) split positive
on off

back 37 262
noback 28 146
all 35 181

f) propositional to bdd
on off

off 62 45
noback 227 107
all 226 106

g) nonliterals in
clause weight

on off
off 17 11
back 55 45
noback 23 62
all 33 91

h) splitting with
blocking

on off
noback 20 290

i) sat solver for
empty clause

on off
off 8 5
noback 34 21
all 34 21

j) sat solver
with naming

on off
off 2 0
noback 22 0
all 22 0

k) sat solver with
subsumption
resolution

on off
off 2 1
noback 1 2
all 2 2

l) bdd marking
subsumption

on off
off 62 45
noback 227 107
all 226 106

m) empty clause
subsumption

on off
off 5 7
noback 18 46
all 18 46

n) split add
ground negation

on off
back 191 6

all. In the first three cases, the numbers for columns off and on stand for the number
of problems which could be solved for the specified value of splitting only with the option
enabled or disabled. More precisely, e.g. for the column off of option A we give the
number of problems for which there existed values of other options so that problem was
solved with option A disabled, but for all the combinations of parameters the problem
was not solved when the optionA was enabled. The rowall gives numbers of problems
where particular option value was required across all relevant splitting modes.

From the Table 4 (j) it can be seen that the use of naming in clausification of BDDs is
always a good thing to do, as none of the problems required to have this option disabled.
From case (n) it can be seen that it is very rarely the case that adding ground negations
after refuting a splitting branch will harm, as only 6 problems are lost by enabling this
setting, however 191 problems required to have this setting enabled. On the other hand,
for many other options, having the possibility to enable or disable them is important, as
either setting can solve problems which cannot be solved by the other.
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6 Conclusion

We implemented two variants of clause splitting and many ways of implementing them
in a first-order theorem prover, and through extensive experiments we have shown that
the backtracking splitting in our setup gives the best performance. More importantly,
we have also shown the importance of keeping a large portfolio of strategies, because a
large group of problems can be solved only by a variety of different approaches, not by
having only one strategy, even though performing well on average.

Aside of the extensive experimental evaluation, we also presented new families of
calculi RePro and ReProR which separate propositional from first-order reasoning.

All the described parameters are supported by the current version of the Vampire
theorem prover which is available for download at http://www.vprover.org.
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