
Chapter 5
Practical Experiences

This chapter describes several practical experiences we have made over the last
10 years with different parts of the product quality control approach described in
this book. The first three experience reports concentrate on building quality models
and using them for quality requirements and evaluating quality: the Quamoco base
model, the maintainability model for MAN Truck and Bus, the security model for
Capgemini TS and an activity-based quality model for a telecommunications com-
pany. Next, we describe the application of quality prediction models, in particular
reliability growth models, at Siemens COM. Finally, in the last experience report,
we focus on applying analysis techniques: We apply static analysis, architecture
conformance analysis and clone detection at SMEs.

5.1 Quamoco Base Model

The Quamoco base model is the largest and most comprehensive application of the
Quamoco approach today. Therefore, we start with the experiences we have made
in building it and applying it to several open source and industrial systems.

5.1.1 Context

Quamoco was a German research project sponsored by the German Federal Ministry
of Education and Research1 from 2009 to 2013. You can find all information on
the project also on its website http://www.quamoco.de. The project was conducted
by a consortium of industry and academia, all with prior experiences with quality
models and quality evaluation. The industrial partners were Capgemini, itestra,

1Under grant number 01IS08023

S. Wagner, Software Product Quality Control, DOI 10.1007/978-3-642-38571-1 5,
© Springer-Verlag Berlin Heidelberg 2013

153

http://www.quamoco.de


154 5 Practical Experiences

SAP and Siemens. The academic partners were Fraunhofer IESE and Technische
Universität München. JKU Linz participated as subcontractor for Siemens.

As this was a large project with many partners, there were different motivations
and goals in joining the consortium. Therefore, we created various different
contributions in the project. The main aim of all members of the consortium,
however, was to build a generally applicable model that covers (a large share of) the
main quality factors for software. Over time, we decided to call this the base model,
because in parallel we were working on several specific quality models targeted at
the domains of the industrial partners. For example, Siemens built a quality model
for software in embedded systems [146].

What is also remarkable about Quamoco is the strong commitment to tool
development. We built a quality model editor that supports in building such compre-
hensive quality models including all additional descriptions and quality evaluation
specifications. It allows different views on the model to aid understanding, and it
even has a one-click solution to perform the evaluation of a software system for the
base model. This is connected to the integration with ConQAT (see Sect. 4.1) which
executes all analysis tools, collects the results for the analyses and calculates the
evaluations using the evaluation specifications from the model. Although the user-
friendliness of the tool chain could be improved, the overall integration of model
building and quality evaluation is probably unique.

5.1.2 Building the Model

The base model should be a widely applicable and general quality model. Therefore,
we could not directly follow the model building approach of Sect. 3.1. The approach
is more suitable for building specific quality models. Nevertheless, the main steps
are still there but with rather broad results. The relevant stakeholders of the base
model are all common stakeholders in software engineering: users, customers,
operators, developers and testers.

Hence, the general goal is to build high-quality software. We referred to ISO/IEC
25010 (Sect. 2.3) as relevant document to elicit our quality goals which were the
quality characteristics of the standard quality model. They formed our quality aspect
hierarchy in the Quamoco base model. We chose these characteristics despite the
problems we discussed, such as overlap, because we assume that using the standard
will result in a broad acceptance.

We experimented with various artefacts created in software development but
decided to concentrate on the main artefact developers work with and which has
a strong effect on the user: the source code. Hence, the base model is source-
code-focused. To be able to finish the model in the project duration, we decided,
driven by the industry partners, to concentrate on Java and C# for modelling the
measurements. With more time, however, we would have liked to include other
artefacts to better reflect their influence on the quality aspects as well as other
programming languages to make the base model more widely usable. With the



5.1 Quamoco Base Model 155

Source Code
Product Part

Variable

Literal Iterator InterfaceAnnotation
Method

Innvocation

TypeSubroutine

Loop

Statement

Method
Parameter

Source Code
Comment

Method
Interface

Source Code
Identifier

Fig. 5.1 An excerpt of the entity tree of the Quamoco base model

decision for source code, the resulting entities are almost all source code parts. An
exception is, for example, the entity identifier which is also possible in other kinds
of artefacts. We created a hierarchy for the source code parts which was partly built
bottom-up while adding product factors and measures and partly structured top-
down to keep an understandable entity tree. Figure 5.1 shows the layer of entities
below the source code part which contains most entities. There would be some
refactorings possible, for example, to organise the method-related entities in a part-
of hierarchy, but we found that this does not improve readability.

To come up with appropriate product factors, we drew mainly from the descrip-
tions of analysis rules of static analysis tools we employed, the experiences we have
made in other contexts and our own expert opinion. This resulted in a wide range
of product factors including [Class Name j CONFORMITY TO NAMING CONVENTIONS],
[Duplication j SOURCE CODE PART] and [Class j SYNCHRONIZATION OVERHEAD].

The project had the length of 3 years, and we decided early on to work in three
iterations. Hence, we rebuilt and fundamentally restructured the whole model two
times. We worked on specific aspects in a large number of workshop sessions with
a varying number of participants from most of the consortium’s members. We had
many and long heated discussions about identifying and naming product factors as
well as the influences of them onto quality aspects. We believe these long discussion
resulted in a highly readable and understandable model.

As the base model is a general model, we could not formulate concrete
quality requirements but had to model what is “normal” and generally applicable.
Therefore, we searched for ways to accomplish that. For the weights of the quality
aspects, which usually are specific for a product, we chose to use the results of a
survey we have also done in the context of Quamoco [213]. It represents the average
opinion of over hundred experts. Therefore, we modelled the weights corresponding
to the importance of the quality aspects given by the survey respondents.

Finally, to determine the evaluation specifications for the product factors, we
used a calibration approach based on open source systems. The assumption was
that by using a large number of existing systems, we will cover many different
contexts and, on average, get a widely applicable evaluation. We chose for the
C# part 23 systems and selected over hundred systems with varying sizes from an
open source collection of Java systems. We needed to determine the min and max
for the evaluation specifications (Sect. 4.2) which we chose as the 25 % and 75 %
percentiles of all the results we got from measuring the open source systems.



156 5 Practical Experiences

5.1.3 Quality Evaluation and Measurement

It was important for the Quamoco consortium not only to build abstract quality
aspects and some corresponding product factors but to have it completely oper-
ationalised. To make this possible, we had to concentrate on two programming
languages: Java and C#. For these two languages, there are measures for all product
factors and corresponding evaluation specifications up to the quality aspects.

The process of measurement and quality evaluation is well supported by the
Quamoco tool chain consisting of the quality model editor and an integration with
the dashboard tool ConQAT. We can add evaluation specifications to any product
factor and quality aspect and define how it is evaluated depending on measurement
results or influencing product factors. For that, we can define a maximum number
of points a product factor can get, distribute the points among the related measures
to express weights and finally define linear increasing or linear decreasing functions
with two thresholds. The actual number of points, which is then normalised to a
value between 0 and 1, is determined by running the evaluation specifications in
ConQAT. The model editor allows to export a corresponding specification for it.

Let us look at the example of cloning (Sect. 4.4.2) and how it is represented in
the base model. We chose to call the corresponding product factor [Source Code
Part j DUPLICATION]. It is not directly language-specific but could be valid for any
kind of system or programming language. The model defines it as “Source code is
duplicated if it is syntactically or semantically identical with the source code already
existing elsewhere”. We cannot measure the semantic identity directly. It might be
possible to find semantic clones in reviews, but it is not very reliable. Instead, we
focus on the syntactic redundancy.

Figure 5.2 shows the screen from the quality model editor in which we specify
the evaluation of the product factor. We have two measures available in the model:
clone coverage and cloning overhead. As their meaning is similar, we chose only to
include clone coverage to measure duplication. Therefore, the maximum defined
number of points (here: 100) goes to clone coverage (CP in the table). Clone
coverage was the probability to find a duplicate for any randomly chosen statement.
Hence, the larger the clone coverage, the higher the degree of duplication. Therefore,
we chose a linear increasing function.

This leaves us with deciding for the min and max thresholds. In this case, below
the min threshold, the product factor receives 0 points, and above the max threshold,
it receives 100 points. Based on the calibration for Java, we found that most systems
have a clone coverage between 0.0405 and 0.5338. This was consistent also with our
observations. Hence, we used them as thresholds for the linear increasing function.

Let us look at a concrete example of applying the evaluation to a real system. The
Java open source library log4j2 is often used to implement logging. We analysed
version 1.2.15 using our base model. ConQAT gave us a clone coverage result

2http://logging.apache.org

http://logging.apache.org


5.1 Quamoco Base Model 157

Fig. 5.2 The evaluation specification for [Source Code Part j DUPLICATION] in the quality model
editor

of 0.086 which is comparably small but above the threshold. Putting this clone
coverage in the linear increasing evaluation function resulted in 9.2 points or,
normalised between 0 and 1, an evaluation of the product factor of 0.092. This is
very low and has a positive impact on analysability and modifiability.

Analysability, for example, is influenced by more than 80 product factors. They
are weighted based on an expert-based ranking which results in a weight of only
1.06 of 100 for our product factor. For the example of log4j, although the result
for the duplication was very good, the other product factors brought it down to an
evaluation of 0.93 which we normalise and transform into a school grade of 4.3
(where 1 is best and 6 is worst).

As we use ConQAT for evaluating based on the base model, we directly get
a dashboard created. Figure 5.3 shows an example output of the dashboard. It
recreates the hierarchies of quality aspects and product factors and allows to drill
down to each individual measure. In addition, it shows configuration and execution
time information of the evaluation.

5.1.4 Applications and Effects

Inside the Quamoco project, we applied the Quamoco quality evaluation based on
the base model to several open source and industrial systems to investigate the



158 5 Practical Experiences

Fig. 5.3 Dashboard for the quality evaluation

Table 5.1 Comparison of the evaluations using the base model and the expert
evaluations for five open source products [211]

Product LOC Quamoco grade Quamoco rank Expert rank

Checkstyle 57,213 1 1 1
log4j 30,676 3 2 2
RSSOwl 82,258 3 2 3
TV-Browser 125,874 4 4 4
JabRef 96,749 5 5 5

validity of the evaluations as well as how well practitioners understand the quality
model and the evaluation results.

To be able to investigate the validity of the quality evaluation, we need software
systems with an existing, independent evaluation. Our first application was to
the five open source Java products Checkstyle, RSSOwl, log4j, TV-Browser and
JabRef. For these products, there have been an event where experts evaluated
their quality [79]. We then applied our Java base model to the same versions
and compared the resulting quality ranking from our Quamoco evaluation and the
evaluation from experts. You can find the comparison in Table 5.1. The Quamoco
evaluation produced almost exactly the same ranking as the experts did. We were
only not able to distinguish between RSSOwl and log4j.



5.1 Quamoco Base Model 159

Table 5.2 Comparison of the evaluations using the base model and expert evaluations for five
subsystems of an industrial product [211]

Quamoco rank Expert rank Quamoco rank Expert rank
Subsystem Quality Quality Maintainability Maintainability

Subsystem D 1 1 1 1
Subsystem C 2 4 3 4
Subsystem B 3 2 5 3
Subsystem E 4 4 4 3
Subsystem A 5 2 2 2

Table 5.3 Quamoco evaluation results for consecutive
versions with explicit quality improvements [211]

Version Quamoco grade

2.0.1 3.63
2.0.2 3.42
2.1.0 3.27
2.2.1 3.17

Next, we looked at an industrial software and an expert ranking for its five
subsystems. We used that again to compare it to the corresponding Quamoco
evaluation results. You can see the comparison for quality overall as well as
maintainability, which is the strongest part of the base model, in Table 5.2. The
agreement in the rankings is not as clear as above, but the general trends are similar.
There is an agreement in the best ranked subsystem D. Subsystem A, however, came
out last in overall quality, while the expert saw it much better. One explanation could
be that the expert put more emphasis on the maintainability of the product in which
the Quamoco evaluation also judged subsystem A as better. Overall, this application
also supported our choice of contents and calibration of the base model.

A third application of the base model was to another industrial system that
underwent quality improvements specifically in some releases. We were interested
in the question whether the Quamoco evaluation results would be able to show
a quality improvement. Table 5.3 shows the small but gradual improvement as
evaluated by the Quamoco base model. Hence, at least for this case, the base model
is well enough calibrated to support project managers in quantitatively controlling
quality improvements.

Our final application was to eight industrial systems in which we evaluated the
systems and afterwards interviewed experts on the systems. You can find details on
the questionnaire and results in [210], but we will only highlight some of the results.
The experts judged our base model to be a more transparent definition of quality
than only ISO/IEC 25010, and it also could be more easily adopted and applied in
practice. They also found the relationships in the quality model acceptable and the
calculations in the evaluation transparent. It was seen as problematic to understand
the rankings we used for determining weights in the evaluation specifications and the



160 5 Practical Experiences

calibration thresholds. It was seen positively that the evaluation used school grades
and that it clarifies metrics as well as the abstract quality characteristics of ISO/IEC
25010. Overall, we received very positive feedback which supports our confidence
that the Quamoco base model is ready to be applied in practice.

5.1.5 Lessons Learned

There were several problems in building and applying the Quamoco base model.
First, we learned that building a fully operationalised quality model means that we
had to build a really large model. As any other artefact, the quality model then
becomes hard to maintain, for example, when we wanted to add new tools and
measures which then had the effect that we needed to restructure the product factors.
With the help of the quality model editor and some practice, this was manageable,
but it should not be underestimated.

Second, it was hard to build such a detailed model in consensus with a group of
different people from different domains. We spent many hours discussing various
aspects of the meta-model, the structuring of the quality model, the impacts and
even names of entities, product factors and measures. In the end, however, I believe
that this has led to the good feedback we received from practitioners that they were
able to understand the chosen relationships and that it helped in clarifying ISO/IEC
25010. It seems like it is a necessary process.

Third, the large amount of work we spent in building the operationalised quality
model also payed back in the sense that we actually have now an almost fully
automatic way to evaluate software quality for Java and C#. The model is not
well equipped for quality factors that have a strong dynamic side, like performance
efficiency or reliability, but even for those, we could reach reasonable results. In
addition, we have a set of manual measures that need to be collected in reviews. It
seems these manual measures are important for a good evaluation, but this is subject
to further research.

5.2 MAN Truck and Bus

MAN Truck and Bus was one of the first applications of the activity-based quality
model approach. Because of continuing development, the model we built there
had been the most refined quality models before the start of Quamoco. The model
concentrates on describing maintainability with a focus on embedded, automotive
systems modelled in Matlab Simulink and Stateflow that have the aim to generate
code directly from the functional models. The original description of this model can
be found in [51].



5.2 MAN Truck and Bus 161

5.2.1 Context

MAN Truck and Bus is a German-based international supplier of commercial
vehicles and transport systems, mainly trucks and busses. It has over 30,000
employees worldwide of which 150 work on electronics and software development.

The organisation brought its development process to a high level of maturity
by investing enough effort to redesign it according to best practices and safety-
critical system standards. The driving force behind this redesign was constantly
focusing on how each activity contributes to global reliability and effectiveness.
Most parts of the process are supported by an integrated data backbone developed
on the eASEE framework from Vector Consulting GmbH. On top of this backbone,
they have established a complete model-based development approach using the tool
chain of Matlab/Simulink and Stateflow as modelling and simulation environment
and TargetLink of dSpace as C-code generator.

Matlab/Simulink is a model-based development suite aiming at the embedded
systems domain. It is commonly used in the automotive area. The original Simulink
has its focus on continuous control engineering. Its counterpart Stateflow is a dialect
of statecharts that is used to model the event-driven parts of a system. The Simulink
environment already allows to simulate the model to validate it.

In conjunction with code generators such as Embedded Coder from MathWorks
or TargetLink by dSpace, it enables the complete and automatic transformation
of models to executable code. This is a slightly different flavour of model-based
development than the MDA approach proposed by the OMG.3 There is no explicit
need to have different types of models on different levels, and the modelling
language is not UML. Nevertheless, many characteristics are similar and quality-
related results could easily be transferred to an MDA setting.

5.2.2 Building the Model

Here we follow the approach for model building introduced in Sect. 3.1.

Define General Goals

MAN Truck and Bus, especially the stakeholder management, has the general goal
of a global development with high reliability and effectiveness. The other relevant
stakeholders in this case are the developers and testers. Both are interested in an
efficient and effective development and test of their systems.

3http://www.omg.org/mda/

http://www.omg.org/mda/


162 5 Practical Experiences

Analyse Documents Relevant for General Goals

To further understand and refine these general goals, we analysed the existing
development process definition, guidelines and checklists, as well as slide decks
describing the strategy. In addition to the document analysis, the major source of
input was in-depth interviews with several of the stakeholders. The major refinement
of the goals was the commitment to a completely model-based development
with Simulink/TargetLink and the central management of all development-related
artefacts and data in the data backbone eASEE. In addition, the interviews showed
that the main interest at present was the analysis and assurance of the maintainability
of the built models.

Define Activities and Tasks

As we refined the general goals to the maintainability of the models, we consider
maintenance the top level activity we are interested in. For that, we use a
standard decomposition of maintenance activities from IEEE Standard 1219 [88].
Furthermore, we extended the activity tree to match the MAN development process
by adding two activities (Model Reading and Code Generation) that are specific for
the model-based development approach.

Define Quality Goals

As we already narrowed the general goals to the analysis and assurance of main-
tainability, our main quality goal is to support the maintenance activity. The most
important activity is code generation, because if we cannot generate meaningful
source code, the model is useless. Then we are highly interested to be able to quickly
read and understand the models. Finally, also the easy test of the models and the
resulting code is of high importance.

Identify Affected Technologies and Artefacts

From the general and quality goals, we derive that the main artefacts that are affected
are the Simulink/TargetLink models of the automotive functions. In addition, as we
are interested also in testing the system, the resulting source code could be important
as well. Furthermore, as MAN uses the data backbone, the additional data in the
backbone can influence our quality goals.



5.2 MAN Truck and Bus 163

Analyse Relevant Materials

The material we analysed for building the quality model consists of three types:

1. Existing guidelines for Simulink/Stateflow
2. Scientific studies about model-based development
3. Expert know-how of MAN’s engineers

Specifically, our focus lies on the consolidation of four guidelines available for
using Simulink and Stateflow in the development of embedded systems: the Math-
Works documentation [144], the MAN-internal guideline, the guideline provided
by dSpace [55], the developers of the TargetLink code-generator and the guidelines
published by the MathWorks Automotive Advisory Board (MAAB) [145]. There is
now also a MISRA guideline for Simulink [152] and TargetLink [153] which were
not available when we built the model.

Define Product Factors

Because of confidentiality reasons, we are not able to fully describe the MAN-
specific model here. However, we present a number of examples that illustrate parts
of the model. Overall, we modelled 87 product factors (64 new entities) that describe
properties of entities not found in classical code-based development. Examples
are states, signals, ports and entities that describe the graphical representation of
models, e.g. colours.

We started with a simple translation of the existing MAN guidelines for Stateflow
models into the maintainability model. For example, the MAN guideline requires
the current state of a Stateflow chart to be available as a measurable output. This
simplifies testing of the model and improves the debugging process. In terms of

the model, this is expressed as [Stateflow Chart j ACCESSIBILITY]
C�! [Debugging] and

[Stateflow Chart j ACCESSIBILITY]
C�! [Test].

We describe the ability to determine the current state with the property ACCES-

SIBILITY of the entity Stateflow Chart. The Stateflow chart contains all information
about the actual statechart model. Note that we carefully distinguish between the
chart and the diagram that describes the graphical representation. In the model the
facts and impacts have additional fields that describe the relationship in more detail.
This descriptions are included in generated guideline documents.

Specify Quality Requirements

Finally, we classified most of the product properties in properties that must not or
should not hold. This classification is sufficient for generating review guidelines and
using the results for a manual maintainability analysis.



164 5 Practical Experiences

5.2.3 Effects

Consolidation of the Terminology

At MAN, we found that building a comprehensive quality model has the beneficial
side effect of creating a consistent terminology. By consolidating the various
sources of guidelines, we discovered a very inconsistent terminology that hampers
a quick understanding of the guidelines. Moreover, we found that even at MAN the
terminology has not been completely fixed. Fortunately, building a quality model
automatically forces the modeller to give all entities explicit and consistent names.
The entities of the facts tree of our maintainability model automatically define a
consistent terminology and thereby provide a glossary.

One of many examples is the term subsystem that is used in the Simulink
documentation to describe Simulink’s central means of decomposition. The dSpace
guideline, however, uses the same term to refer to a TargetLink subsystem that is
similar to a Simulink subsystem but has a number of additional constraints and
properties defined by the C-code generator. MAN engineers, on the other hand,
usually refer to a TargetLink subsystem as TargetLink function or simply function.
While building the maintainability model, this discrepancy was made explicit and
could be resolved.

Resolution of Inconsistencies

Furthermore, we are able to identify inconsistencies not only in the terminology but
also in contents. For the entity Implicit Event, we found completely contradictory
statements in the MathWorks documentation and the dSpace guidelines.

• MathWorks [144] “Implicit event broadcasts [. . . ] and implicit conditions [. . . ]
make the diagram easy to read and the generated code more efficient”.

• dSpace [55] “The usage of implicit events is therefore intransparent concerning
potential side effects of variable assignments or the entering/exiting of states”.

Hence, MathWorks sees implicit events as improving the readability, while dSpace
calls them intransparent. This is a clear inconsistency. After discussing with the
MAN engineers, we adopted the dSpace view.

Revelation of Omissions

An important feature of the quality meta-model is that it supports inheritance. This
became obvious in the case study after modelling the MAN guidelines for Simulink
variables and Stateflow variables. We model them with the common parent entity
Variable that has the attribute LOCALITY that expresses that variables must have the
smallest possible scope. As this attribute is inherited by both types of variables,



5.2 MAN Truck and Bus 165

we found that this important property is not expressed in the original guideline.
Moreover, we see by modelling that there was an imbalance between the Simulink
and Stateflow variables. Most of the guidelines related only to Simulink variables.
Hence, we transferred them to Stateflow as well.

Integration of Empirical Research Results

Finally, we give an example of how a scientific result can be incorporated into the
model to make use of new empirical research. The use of Simulink and Stateflow has
not been intensively investigated in terms of maintainability. However, especially
the close relationship between Stateflow and the UML statecharts allows to reuse
results. A study on hierarchical states in UML statecharts [44] showed that the use of
hierarchies improves the efficiency of understanding the model in case the reader has
a certain amount of experience. This is expressed in the model as follows: [Stateflow

Diagram j STRUCTUREDNESS]
C�! [Model reading].

5.2.4 Usage of the Model

At MAN, we concentrated on checklist generation and preliminary automatic
analyses. We chose them, because they promised the highest immediate pay-off.
The Quamoco tool chain did not yet exist.

Checklist Generation

We see quality models as central knowledge bases for quality issues in a project,
company or domain. This knowledge can and must be used to guide development
activities as well as reviews. The model in its totality, however, is too complex to
be comprehended entirely. Hence, it cannot be used as a quick reference. Therefore,
we exploit the tool support for the quality model to select subsets of the model and
generate concise guidelines and checklists for specific purposes.

The MAN engineers perceived the automatic generation of guideline documents
to be highly valuable as we could structure the documents to be read conve-
niently by novices as well as experts. Therefore, the documents feature a very
compact checklist-style section with essential information only. This representation
is favoured by experts who want to ensure that they comply to the guideline but
do not need any further explanation. For novices the remainder of the document
contains a hyperlinked section providing additional detail. Automatic generation
enables us to conveniently change the structure of all generated documents. More
importantly, it ensures consistency within the document which would be defect
prone in handwritten documents.



166 5 Practical Experiences

Automatic Analyses

As the model is aimed at breaking down product factors to a level where they can
be evaluated and they are annotated with the degree of possible automation, it is
straightforward to implement automatic analyses. For the product properties that
can be automatically evaluated, we were able to show that we can check them in
Simulink and Stateflow models.

For this, we wrote a parser for the proprietary text format used by Matlab to store
the models. Using this parser we are able to determine basic size and complexity
metrics of model elements like states or blocks, for example. Moreover, we can use
the parser to automatically identify model elements that are not satisfactorily sup-
ported by the C-code generator. We also implemented clone detection specifically
for Simulink and Stateflow models and included it into the quality assessment from
the model.

By integrating these analyses in our quality controlling toolkit ConQAT [50], we
are able to create aggregated quality profiles and visualisations of quality data. We
have not yet used the integrated quality evaluation approach described in Sect. 4.2.
This would be the next logical step.

5.2.5 Lessons Learned

Overall, the MAN engineers found the approach of building the model for maintain-
ability useful. Especially the model’s explicit illustration of impacts on activities was
seen as beneficial as it provides a sound justification for the quality rules expressed
by the model. Moreover, the general method of modelling – that inherently
includes structuring – improved the guidelines: Although the initial MAN guideline
included many important aspects, we still were able to reveal several omissions and
inconsistencies. Building the model, similar to other model building activities in
software engineering [180], revealed these problems and allowed to solve them.

Another important result is that the maintainability model contains a consolidated
terminology. By combining several available guidelines, we could incorporate the
quality knowledge contained in them and form a single terminology. We found
terms used consistently as well as inconsistent terminology. This terminology and
combined knowledge base were conceived useful by the MAN engineers.

Although the theoretical idea of using an explicit quality meta-model for
centrally defining quality requirements is interesting for MAN, the main interest
is in the practical use of the model. For this, the generation of purpose-specific
guidelines was convincing. We not only built a model to structure the quality
knowledge, but we are able to communicate that knowledge in a concise way
to developers, reviewers and testers. Finally, the improved efficiency gained by
automating specific assessments was seen as important. The basis and justification
for these checks are given by the model.



5.3 Capgemini TS 167

Table 5.4 Sample projects
[138]

Project Description

A Public sector, desktop application
B Private partner, desktop application
C Private partner, web application
D Private partner, software component
E Private partner, web application
F Public sector, software component

5.3 Capgemini TS

Based on the experiences with modelling maintainability at MAN Truck and Bus,
we stepped onto new terrain with modelling security at Capgemini TS [138] who
has its main focus on the individual development of business information systems.

5.3.1 Context

Capgemini TS is the technology service entity of Capgemini. Their main focus is
on custom business information systems and therefore the systems are very different
from what we encountered at MAN Truck and Bus.

As at Capgemini TS there are numerous projects, we cannot immediately build a
quality model valid for all those projects. We therefore decided to restrict ourselves
to a small initial sample for the model building. We interviewed contact persons
from 20 projects. From this analysis, we found six projects (A–F) that were suitable
for building the quality model since they were able to offer sufficient data. The
sizes of the selected projects range from one person month to 333 person years; the
average size was 163 person years (Table 5.4).

5.3.2 Building the Model

Define General Goals

Similarly to the huge number of projects and their diversity at Capgemini TS,
there are various general goals by the existing stakeholders. In this particular case,
we restricted ourselves to the business goal to ensure customer satisfaction by
protecting their valuable assets. The business information systems of Capgemini TS
often include large amounts of partly very sensitive information of their customers
as well as perform vital services which are often exposed to the Internet. The
protection of this data and services is essential to keep the customer satisfied.



168 5 Practical Experiences

Analyse Documents Relevant for General Goals

The aim of this step is to refine the general goals to derive relevant activities and
tasks. The protection of valuable assets is what we usually describe by security.
Therefore, the main document we use as basis for the quality model is the
security model from Sect. 2.6.2. It defines as activity hierarchy a classification of
attacks on software systems which we can reuse for the Capgemini quality model.
In addition, we compare the attacks from the security model with the existing
requirements specifications of the analysed projects to remove irrelevant attacks
or detect omissions in the activities. Capgemini TS especially uses the German
IT-Grundschutz manual [29] of the BSI as a basis for security requirements.

Define Activities and Tasks

The basic activity hierarchy is the same as in the model in Sect. 2.6.2. In particular,
we extended it by the activities that we found in the IT-Grundschutz manual.
It defines threats, such as the abuse of user rights, which we incorporated into the
activity hierarchy.

Define Quality Goals

We restricted ourselves in the Capgemini quality model early on to security-related
activities. We have the quality goal that all attack activities in our activity hierarchy
that are relevant for a particular software system are hard to perform. For example,
the abuse of user rights needs to be difficult.

Identify Affected Technologies and Artefacts

We then analysed what technologies and artefacts we need to describe by product
properties to reach these goals. In the context of Capgemini TS, we needed to
look at the programming and markup languages Java, JSP, ASP.NET, JavaScript,
HTML and CSS. All artefacts created in these languages can be subject to attacks.
Furthermore, the user and rights management is a key artefact in a software system
for ensuring its robustness against attacks. Finally, although it might not be directly
a part of the analysed software system, there is a network and operating system that
influence attacks. Finally, there can be additional security systems such as firewalls.

Analyse Relevant Material

To find relevant product factors for the technologies and artefacts, we go back
to the material we have already analysed for activities. The security model from



5.3 Capgemini TS 169

Sect. 2.6.2 contains product factors and impacts to attacks from existing collections.
The IT-Grundschutz manual describes safeguards, which are product properties to
prevent threats: our attack activities. Finally, Capgemini TS has many experiences
with building security-critical software systems. This expert knowledge from
practical experience is also a valuable source for product factors. We, therefore,
also analyse the existing requirements specifications of our sample projects.

Define Product Factors

Corresponding to the threats, which we modelled as activities, the manual describes
so-called safeguards, which are counter measures to these threats. We modelled the
safeguards as product factors.

Overall, we defined several hundred product factors for the identified technolo-
gies and artefacts. It starts with general product factors that hamper attacks. For
example, that passwords should never be saved or shown as clear text:
[Password j CONCEALMENT]

��! [Attack]
Then we described product factors for specific technologies. For example, in

most Capgemini TS systems, there are database systems. We defined that instead of
dynamically built SQL, a developer should use:

• An OR mapper
• Prepared statements
• Static SQL statements

[Database Access j APPROPRIATENESS]
��! [SQL injection]

Another example is the session handling in web applications. We defined that
URLs do not contain session IDs and that each session has a time-out. Both have a
negative impact on hijacking the sessions:
[URL j APPROPRIATENESS]

��! [Session Hi-Jacking]
[Session Length j LIMITEDNESS]

��! [Session Hi-Jacking]
As final example, we defined product factors that relate to the network connec-

tions of the software system. For valuable assets, such as sensitive user data, it works
against many attacks to encrypt the transfer of these assets over networks:
[Asset Transfer j GUARDEDNESS]

��! [Attack]

Specify Quality Requirements

As last step, some of the product factors need to be refined to concrete quality
requirements. For example, [Session Length j LIMITEDNESS]

��! [Session Hi-Jacking]
is not complete as it only prescribes that there needs to be some limit of the session
length. In a quality requirement for a concrete system, we gave a session limit
of 5 min. Other product factors, such as the concealment of passwords, could be
directly used as quality requirements.



170 5 Practical Experiences

Table 5.5 Reuse potential
[138]

Project # Sec. Reqs. Reuse ratio

A 127 –
B 23 0.87
C 48 0.27
D 5 0.60
E 29 0.52
F 408 0.18

Mean 106.67 0.47

5.3.3 Effects

Comprehensive and Concise Specification

We could improve the specification documents since the structure of the model
prescribes a uniform way to document each requirement with two major effects:

1. Avoidance of redundancy
2. Explicit rationales

The clear structure prevents redundant or similar parts in general.

Reuse

Another important effect is that the quality model can act as a repository for
security or other quality requirements. This central repository ensures requirements
specifications with a high quality that can be reused and thereby reduce the
possibility of defects in the requirements. We deliberately built the quality model
from analysing one project after another. This way, we could analyse the overlap
between the security requirements of the projects. This overlap is the potential
reuse that can be realised by exploiting the quality model. Table 5.5 shows the
results for our sample projects. The column # Sec. Reqs gives the number of security
requirements in the quality model, and Reuse Ratio shows the share that could have
been reused. The range of the size of the requirements is high which stems from the
diversity of the analysed systems and their specifications. On average more than 100
security requirements were specified per project.

We found that on average 47 % of the security requirements could have been
reused using the quality model. The range goes from 0.18 up to 0.87. The ratio,
however, depends strongly on the size of the specification. In smaller specifications,
it is by far easier to come to a high reuse ratio. With an average reuse ratio of 47 %,
almost every second specified requirement could have been reused employing the
quality model. Still, as we have no baseline of reuse that would be possible without
the model approach, we cannot give an improvement caused by the approach
but only show its potential. Among other factors, the size of the specification



5.4 Telecommunications Company 171

has a large effect on the reuse ratio. The model repository can only deliver as
many requirements as are contained in it. Hence, the reuse potential for a large
specification seems to be lower. Another effect, especially found in project F, is that
larger specifications tend to have more redundancies. Because of the fixed structure
of requirements in the model, this redundancies can largely be reduced.

Beyond these findings, we found further aspects to be discussed. First, in
several cases we could reveal omissions in the specified security requirements. We
derived additional requirements that were not contained in the original requirements
specifications. Finally, we observed during the case study that the efforts of applying
the model approach decreased while including the requirements of more and more
projects into the repository. A major cause was easy access to quality requirements
via goals. On the long run, such a central quality model can contribute to an efficient
quality knowledge transfer to companies.

5.3.4 Usage of the Model

Capgemini TS uses the quality model very differently from MAN. While MAN
focuses on the evaluation of their Simulink/TargetLink models using the quality
model, Capgemini aimed at using the quality model to elicit and specify quality
requirements. Both activities are closely related but can have positive effects
independently.

5.3.5 Lessons Learned

Overall, also the engineers at Capgemini TS found the quality model approach
useful to structure and reuse their quality requirements. Even though the quality
evaluation possibilities are not exploited, the quality model is already useful as a
means for structuring quality requirements. It ensures

1. the completeness of the quality requirements by employing existing experiences
and

2. the existence of rationales for each requirements in the form of the activities, or
attacks, it influences.

5.4 Telecommunications Company

A further practical experience, I want to report on, is about introducing a quality
model and especially a dashboard at a company. This was part of an investigation of
introducing quality control at a telecommunications company [67].



172 5 Practical Experiences

5.4.1 Context

The company we worked with in this case was a German telecommunications
company which provides Internet, phone and TV services to end users. We had a
small collaboration on improving and introducing quality management and control
techniques in their software development process. Their software systems mainly
consist of internal billing systems as well as web applications for the customers.

The idea of the collaboration was, among others, to understand the current
state of software development in that company, find problems related to quality
control, derive a suitable quality model and implement it using corresponding
quality assurance techniques and measures. This collaboration took place before
the Quamoco project and, hence, we were not able to use the fully fleshed-out
Quamoco approach and tool chain. Instead, we concentrated on building an activity-
based quality model to understand what data should be collected and implementing
corresponding analyses. The results were supposed to be applicable in principle to
all software systems of the company, but we concentrated on a specific larger system
as an example.

5.4.2 Building the Model

As this collaboration had been before the Quamoco approach and the actual
scope was a bit bigger, we did not follow the model building approach from
Sect. 3.1 directly. Instead, we started with an interview to investigate the state of
the software development at the company and learn about current quality problems.
We interviewed 12 people from development, project management, requirements
engineering, quality assurance and operation.

We found that the company successfully works with a mostly waterfall-like
process with specification, design, implementation and testing sequentially. In this
waterfall, there is an established procedure for quality gates after each phase. Only
risk management is missing from the process description. In the testing phase, they
start with unit tests which are done by the developers. Later integration and system
tests are done by the quality assurance team. During development, they already
used code reviews and coding guidelines as well as, in some projects, test-driven
development. Especially the use of automated unit tests varied strongly over the
different projects. If automated, tests are highly used for regression testing which
is seen as very beneficial because problems are detected early. The test progress is
controlled by the number of succeeded and failed test cases as well as by tracking
assigned, resolved and closed change requests.

We discussed and proposed several measures and asked for the interviewees’
opinions. The measures considered very important were test coverage, degree
of dependency between modules, structuredness of the code, loading time of
the program, code clones and execution time. Only of medium importance were



5.4 Telecommunications Company 173

+ + + + + +

- -

-

Activity

Use
Maintenance

Implementation
Testing

Analysis

Co
de

St
at

ic

Consistency

Suitability

Co
m

m
en

t
Id

en
tifi

er
Un

us
ed

Co
de

Cy
cl

om
.

Co
m

pl
ex

.

Dy
na

m
ic

Cl
on

ed
Co

de
Au

to
m

.
Te

st
 C

as
e

Ca
p.

/R
ep

.
Te

st
 C

as
e

M
an

ua
l

Te
st

 C
as

e

Existence

Extent

Existence

Existence

Coverage

Existence

Existence

Change Refac.
Interface

Remov.
Defect Impact

Analysis
Fault Learn
Local.

Func.
Impl. Use

Normal
Testing
Regr. Testing

new Func.

+ + + + + +

---

-----

+
+

+ + +
+

+ + +

+ + ++

Fig. 5.4 The derived activity-based quality model for the telecommunication company

considered the comment ratio (code comments to code), dead code (because it is not
important at run time) and number of classes or interfaces. Also size measures in
general were not considered important at all apart from giving a general impression
of the size of the system. Finally, we also let them classify quality factors to derive a
corresponding quality model. They judged functional suitability, security, reliability,
usability and modifiability as most important.

We used the information from the interviews to derive an activity-based quality
model and corresponding measures to evaluate the product factors in the model. As
shown in Fig. 5.4, we modelled if a product factor (left-hand side) has a positive
(C) or negative (�) impact on the activities (top). We did not implement a complete
evaluation aggregation along these pluses and minuses. Instead, we defined mea-
sures for the product factors and informally assumed that good measurement values
for the product factors mean a good or bad impact on the activities.

As you can also see in Fig. 5.4, we concentrated on code as the root entity and
structured it into dynamic aspects of the code and static aspects. In the static aspects,
we included the entities Cloned Code, Cyclomatic Complexity, Unused Code, Comment
and Identifier. For the dynamic aspects, we included Manual Test Case, Capture/Replay
Test Case and Automated Test Case. In the Quamoco approach, we would probably
model the entities differently, for example, using Method and COMPLEXITY as its
property to form a product factor. This quality model shows, however, that it is not



174 5 Practical Experiences

necessarily important to follow the modelling principles of Quamoco closely and
still derive benefit from building an explicit quality model.

As the entities were already rather specific, most of their properties are only EXIS-

TENCE, but we also used CONSISTENCY, SUITABILITY, EXTENT and COVERAGE. Following
from the important quality characteristics, we included the activities Maintenance,
Use and Testing in the quality model. Each of these activities were broken down
in several sub-activities to make the impacts from product factors more clear. For
example, the [Cyclomatic Complexity j EXTENT] has a negative influence on Refactoring
and Defect Removal but not the Functionality Implementation of new features.

Finally, we had to define measures for each of the product factors together with
thresholds for what is considered good or bad. In the Quamoco approach, we would
map this to a linear increasing or decreasing function to fully operationalise the
quality evaluation. Here, we just implemented the analysis in ConQAT and showed
red, yellow or green traffic lights for each measure. For example, for the comment
ratio, we considered a ratio between 0 % and 15 % as well as between 85 % and
100 % as red, between 15 % and 30 % as well as 70 % and 85 % as yellow and
between 30 % and 70 % as green. Similarly, we defined thresholds for measures
such as clone coverage, architecture conformance, cyclomatic complexity and test
coverage.

5.4.3 Effects

After the introduction of the measures and analyses, we conducted a survey among
the previously interviewed engineers and beyond to judge the benefit generated.
They saw very high benefit in better architecture specifications, triggered by the
architecture conformance analysis, and additional dynamic tests, triggered by the
monitoring of tests. Similarly, the engineers judged the consequent definition,
conformance and updating of architecture specifications, test-driven development
and overall the new static analysis as highly beneficial. They realised high benefits
from analysing code clones, unit test results and test coverage. Only medium benefit
brought the analysis of unused code and cyclomatic complexity which seemed to not
add so much more additional information. Overall, most of the engineers answered
that they check the analyses in the ConQAT dashboard every day; only some check
them only every week.

5.4.4 Lessons Learned

We found that the developers were overall happy about the additional information
about the quality of their systems that we derived using the activity-based quality
model. Especially architecture specification and analysis was underdeveloped and,
therefore, a welcome addition. The explicit modelling of relationships in the



5.5 Siemens COM 175

activity-based quality model helped to make the quality goals transparent. Today,
we would use the Quamoco evaluation approach and toolset to support a complete
operationalisation of the model. Nevertheless, even this rather pragmatic model
helped in structuring the quality evaluation.

5.5 Siemens COM

We worked with the network communication division of Siemens on a very specific
quality model and quality evaluation. The aim was to analyse and predict failures in
the first year in the field. The quality control loop concentrated on the last phases,
especially system test and field test. It shows the use of testing as data source for
quality evaluation. We reported these experiences initially in [207].

5.5.1 Context

Siemens Enterprise Communications is now a joint venture of the The Gores Group
and Siemens AG, but it was still part of Siemens AG at the time of our collaboration.
The company has a strong history in voice communication systems and expanded
into other areas of communication and collaboration solutions. They have offices
worldwide and employ about 14,000 people.

We worked with the quality assurance department which is responsible for
system and field testing. The aim was to analyse and optimise system tests and
field tests by predicting the number of field failures in the first year of a new product
release.

5.5.2 Quality Model

As we had a very concrete and focused goal, we did not build a broad Quamoco
quality model to capture all potentially interesting product factors, but we identified
the essential activities and properties. The overall goal was to minimise the
disruptions of the users of the Siemens systems by software failures. Hence, in an
activity-based quality model, our quality goal was to maximise the effectiveness of
the interaction of the users with the system. In a product quality view from ISO/IEC
25010, we wanted to maximise reliability.

Similar to the experiences at MAN and Capgemini, we could have built a quality
model that describes all product factors that influence the effectiveness of the
interaction of the user, use that to specify detailed quality requirements and analyse
the artefacts of the system. In this case, however, we had a very focused prediction
aim, the number of field failures in the first year. To come to valid predictions,



176 5 Practical Experiences

we decided to concentrate on a single product factor: faultiness. Faults in the product
cause the failures we are interested in to predict. Therefore, we needed to estimate
the number of faults and their failure rate to predict reliability. This gives us the
measures we need. For a concrete prediction of the effectiveness of interaction
or reliability, we needed a stochastic model that captures the relationship between
faults and failures.

5.5.3 Stochastic Model

The description of the software failure process using stochastic models is a well-
established part of software reliability engineering. We call those models commonly
software reliability growth models, because we assume that over time software
reliability grows as faults are removed by fixes. All kinds of stochastic means
have been tried for describing the software failure process and for predicting
reliability. You can find more details on any aspects of these models in a variety
of books [139, 158].

For Siemens, we looked at four stochastic models that had shown to be good
predictors in other contexts as well as a new stochastic model, which we developed
specifically for Siemens based on the kind of relationship between faults and failures
we found in their data.

Musa Basic

The Musa basic execution time model is one of the most simple and therefore easy to
understand reliability growth models, because it assumes that all faults are equally
likely to occur and are independent of each other and there is a fixed number of
faults. Hence, it abstracts from introducing new faults, for example, by bug fixes.
The intensity with which failures occur is then proportional to the number of faults
remaining in the program and the fault correction rate is proportional to the failure
occurrence rate.

Musa–Okumoto

The Musa–Okomoto model, also called logarithmic Poisson execution time model,
was first described in [160]. It also assumes that all faults are equally likely to occur
and are independent of each other. Here, the number of faults, however, is not fixed.
The expected number of faults is a logarithmic function of time in this model, and
the failure intensity decreases exponentially with the expected failures experienced.
Hence, the software will experience an infinite number of failures in infinite time.



5.5 Siemens COM 177

NHPP

There are various models based on a non-homogeneous Poisson process [172].
They all are all Poisson process which means that they assume that failure occurs
independently. We do not model faults but the number of failure up to a specific
point in time. These models are called non-homogeneous, because the intensity of
the failure occurrence is changing over time.

Littlewood–Verall Bayesian

This model was proposed for the first time in [136]. It also does not take faults
explicitly into account. Its assumptions are that successive times between failures
are independent random variables each having an exponential distribution and each
failure is then following a gamma distribution.

Fischer–Wagner

We developed the last model specifically for the context of Siemens and their
communication systems. They had observed a geometric sequence (or progression)
between failure rates of faults. NASA and IBM had already documented similar
observations [1, 164, 165]. We used this relationship to develop a fifth stochastic
model that included an estimation of faults. There are more details on this model
available in [206, 207].

5.5.4 Time Component

A critical part of predicting reliability is to analyse time correctly. We are interested
in the occurrence of failures in a certain time interval. For software, however,
calendar time is usually meaningless, because there is no wear and tear. The
preferable way is to use execution time directly. This, however, is often not possible.
Subsequently, a suitable substitute must be found. With respect to testing this could
be the number of test cases or for the field use the number of clients. Figure 5.5
shows the relationships between different possible time types.

The first possibility is to use in-service time as a substitute. This requires
knowledge of the number of users and the average usage time per user. Then
the question arises how this relates to the test cases in system testing. A first
approximation is the average duration of a test case.

In the context of the Siemens communication systems, the most meaningful time
are incidents, each representing a usage of the system. In the end, however, we want
a prediction of failures over 1 year. To convert these incidents into calendar time



178 5 Practical Experiences

How many users?
Incidents/day and
user?

Usage time/user?
How many users?

Test cases
per day?

Average
duration of
incident?

Duration of
test case?

Fig. 5.5 The possible relationships between different types of time [207]

it is necessary to introduce an explicit time component. It contains explicit means to
convert from one time format into another.

The number of incidents is, opposed to the in-service time, a more task-oriented
way to measure time. The main advantage of using incidents, apart from the fact that
they are already in use at Siemens, is that in this way, we can obtain very intuitive
metrics, e.g. the average number of failures per incident. There are usually some
estimations of the number of incidents per client and data about the number of sold
client licences.

5.5.5 Parameter Estimation

The stochastic models describe the relationship of faults in the product to failures
in the field. They rely, however, on parameters such as the number of faults to make
a prediction of the reliability of the system. We need to estimate these parameters
accurately to get a valid prediction.

There are two techniques for parameter determination currently in use. The first
is prediction based on data from similar projects. This is useful for planing purposes
before failure data is available. The second is for prediction during test, field trial,
and operation based on the sample data available so far. This is the technique most
reliability models use and it is also statistically most advisable since the sample
data comes from the population we actually want to analyse. Techniques such as
Maximum Likelihood estimation or Least Squares estimation are used to fit the
model to the actual data.

For the application at Siemens we chose the Least Squares method for estimating
the parameters of the models. In that method an estimate of the failure intensity
is used and the relative error to the estimated failure intensity from the model is
minimised. For our Fischer–Wagner model, we implemented it separately. The other
models are implemented in the tool SMERFS [60] that we used to calculate the
necessary predictions.



5.5 Siemens COM 179

Fig. 5.6 Relative error curves for the models based on the Siemens 1 data set [207]

5.5.6 Suitability Analysis

There is no one-size-fits-all reliability growth model. We always need to run
different models to find the most suitable one for any given context. For this
we relied on original data from Siemens from the field trial of two products. To
anonymise the projects we call them Siemens 1 and Siemens 2.

We followed [159] and used the number of failures approach to analyse the
validity of the models for the available failure data. We assume that there have been
q failures observed at the end of test time (or field trial time) tq . We use the failure
data up to some point in time during testing te.� tq/ to estimate the parameters of
the mean number of failures �.t/. The substitution of the estimates of the parameters
yields the estimate of the number of failures O�.tq/. The estimate is compared with
the actual number at q. This procedure is repeated with several tes.

For the comparison we plot the relative error . O�.tq/�q/=q against the normalised
test time te=tq (see Figs. 5.6 and 5.7). The error will approach 0 as te approaches tq .
If the relative error is positive, the model tends to overestimate, and vice versa.
Numbers closer to 0 imply a more accurate prediction and hence a better model.

5.5.7 Results

We give for each analysed project a brief description and show a plot of the relative
errors of the different models.



180 5 Practical Experiences

Fig. 5.7 Relative error curves for the models based on the Siemens 2 data set [207]

5.5.7.1 Siemens 1

This data comes from a large Siemens project that we call Siemens 1 in the
following. The software is used in a telecommunication equipment.

We only look at the field trial because this gives us a rather accurate approxi-
mation of the execution time which is the actually interesting measure regarding
software. It is a good substitute because the usage is nearly constant during field
trial. Based on the detailed dates of failure occurrence, we cumulated the data
and converted it to time-between-failure (TBF) data. This was then used with the
Fischer–Wagner, Musa-basic, Musa–Okumoto and NHPP models. The results can
be seen in Fig. 5.6. In this case we omit the Littlewood–Verall which made absurd
predictions of over a thousand future failures.

The Musa-basic and the NHPP models yield similar results all the time.
They overestimate in the beginning and slightly underestimate in the end. The
Musa–Okumoto model overestimates all the time; the Fischer–Wagner model
underestimates. All four models make principally usable predictions close to the
real value from about half the analysed calendar time. The Fischer–Wagner model
has a relative error below 0.2 from 45 % on, the Musa basic and the NHPP models
even from 40 % on.

5.5.7.2 Siemens 2

Siemens 2 is a web application for which we only have a small number of field
failures. This makes predictions more complicated as the sample size is smaller.



5.5 Siemens COM 181

It is interesting to analyse, however, how the different models are able to cope with
this. For this, we have plotted the results in Fig. 5.7.

Again not all models were applicable to this data set. The NHPP model only
made predictions for a small number of data points; the Musa basic and the Musa–
Okumoto models were usable mainly in the middle of the execution time. All
models made comparably bad predictions as we expected because of the small
sample size. Surprisingly, the Fischer–Wagner model did well in the beginning but
worsened in the middle until its prediction became accurate in the end again. Despite
this bad performance in the middle of the execution time, it is still the model with
the best predictive validity in this case. Only the Littlewood–Verall model comes
close to these results. This might be an indication that the Fischer–Wagner model is
well suited for smaller sample sizes.

5.5.8 Lessons Learned

The experience in quality control with Siemens was special as we did not aim to
install a broad quality model in a quality control loop but to analyse a very focused
area. The aim was to optimise and control system and field testing. For this, we
installed only a very focused subset of an Quamoco quality model: product faults
and failures which are a reduction of the interaction between the user and the system.
Furthermore, we had the clear goal to have a concrete quantification of a prediction
of these failures.

We employed the existing work on software reliability growth models to select
and build stochastic models that can quantify the relationship between faults and
failures. Based on data from system and field testing, we were able to predict the
future distribution of failures. We compared several stochastic models to get the best
predictive validity.

The predictive validity we observed for two Siemens systems was not extremely
high with only the data from initial testing. Most models, however, showed that they
can predict reasonably accurately with enough data. Especially the context-specific
model performed well.

Overall, such a concrete quantification of quality goals needs investment in data
collection and stochastic analysis. For reliability, there are existing models and tools
which make their application easier. For other quality goals, this is probably more
difficult. But even for reliability, a basic understanding of statistics and these models
is necessary to successfully apply them. Especially, a suitable time component that
allows an intuitive notion of time for the system under analysis is essential. If
these problems are handled, however, this approach provides good predictions for
planning and optimisation.



182 5 Practical Experiences

5.6 Five SMEs

Small- and medium-sized enterprises (SMEs) are important in the global software
industry. They usually have not the same level of resources available for quality
control. Hence, it is especially important to support them with (semi-)automatic
techniques. We introduced and evaluated a set of static analysis tools in five SMEs.
The following is based on our existing report [75] where you can also find more
details.

5.6.1 Context

Experiences from technology transfer are only useful with information about the
corresponding contexts. Therefore, we illustrate the SMEs which took part in
the technology transfer, the employed static analysis techniques and the software
systems we used as example applications for the transfer.

Before the technology transfer project, we had been in discussions with various
SMEs about software quality control in general and newer analyses techniques such
as clone detection. We realised that there is a need as well as an opportunity for
SMEs and quality control because of its high potential for automation. Therefore,
after discussions and workshops with several SMEs, we started a collaboration
with five SMEs from the Munich area. Our goal was to transfer the static analysis
techniques bug pattern detection, clone detection and architecture conformance to
the SMEs and document our experiences.

Following the definition of the European Commission [58], one of the partici-
pating SMEs is micro-sized, two are small and two are medium-sized considering
their number of employees and annual turnover. The SMEs cover various business
and technology domains including corporate and local government controlling, form
letter processing as well as diagnosis and maintenance of embedded systems. Four
of them are involved in commercial software development, one in software quality
assurance and consulting only. Hence, the latter could not provide an own software
project.

Following the suggestion of the partner without a software project, we instead
chose the humanitarian open source system OpenMRS,4 a development of the
equally named multi-institution, non-profit collaborative. This allowed us to analyse
the five software systems briefly described in Table 5.6 in the technology transfer
project. For some information, we had to contact the core developers of Open MRS
directly who were responsive to our requests thankfully.

The analysed software systems contain between 100 and 600 kLOC. The
developments of the systems 1–4 were done by the SMEs themselves and had

4http://www.openmrs.org

http://www.openmrs.org


5.6 Five SMEs 183

Table 5.6 Analysed systems [75]

System Platform Sources Size [kLOC] Business domain

1 C#.NET Closed, commercial �100 Corporate controlling
2 C#.NET Closed, commercial �200 Embedded device maintenance
3 Java Open, non-profit �200 Health information management
4 Java Closed, commercial �100 local government controlling
5 Java Closed, commercial �560 Document processing

started at most 7 years earlier. The project teams contained less than ten persons.
The development of the systems 1 and 2 had already been finished before our project
started.

5.6.2 Introduction of Static Analysis

We used a carefully developed procedure to introduce the static analysis techniques
and gather corresponding experiences in the SME context.

First, we conducted a series of workshops and interviews to convince industrial
partners to participate in our project and to understand their context and their needs.
In an early information event, we explained the general theme of transferring QA
techniques and proposed first directions. With the companies that agreed to join
the project, we conducted a kick-off meeting and a workshop to create a common
understanding, discuss organisational issues and plan the complete schedule. In
addition, the partners each presented a software system that we could analyse as
well as their needs concerning software quality. To intensify our knowledge of
these systems and problems, for each partner we performed an interview with two
interviewers and a varying number of interviewees. We then compared all interview
results to find commonalities and differences. Finally, we had two consolidation
workshops to discuss our results and plan further steps.

Second, we retrieved the source code for at least three versions of the systems, in
particular major releases chosen by the companies, for applying our static analysis
techniques. For bug pattern detection and architecture conformance analyses, we
retrieved or built executables packed with debug symbols for each of these config-
urations. For architecture conformance we also needed an appropriate architecture
documentation. To accomplish all that, the SMEs had to provide project data as far
as possible including source code, build environment and/or debug builds as well as
documentation of source code, architecture and project management activities.

Third, we applied each technique on the systems by running the tools and
inspecting the results, i.e. findings and statistics. To accomplish this step, the
partners had to provide support for technical questions by a responsible contact or
by personal attendance at the meetings.



184 5 Practical Experiences

Fourth, we conducted a short survey using a prepared questionnaire to better
gather the experiences and impressions of our collaboration partners at the SMEs.
These helped us to further judge our experience and to set them into context.

Bug Pattern Detection

By now, bug pattern detection is a rather conventional static analysis technique,
although it is still not as widely used as we would expect considering its low effort
needed and its long history. Therefore, we chose proven and available bug pattern
detection tools in our technology transfer project. For Java-based systems, we used
FindBugs 1.3.9 and PMD5 4.2.5. For the C#.NET systems, we used Gendarme6

2.6.0 and FxCop 10.0. We determined the tool settings during preliminary analysis
test runs and experimented with different rule sets. Categories and rules which we
considered as not important – based on discussion with the partners as well as
requirements non-critical to the systems’ application domains – were ignored during
rule selection.

We chose to use a very simple classification of the rules to simplify classifying
the found defects. We only distinguish between rules for faults (potentially causing
failures), smells (simple to very complex heuristics for latent defects) and minor
(less critical issues with focus on coding style).

For additional and language independent metrics (lines of code without com-
ments, code-comment ratio, number of classes, methods and statements, depth of
inheritance and nested blocks, comment quality) as well as for preparing results and
visualising, we applied ConQAT.

We analysed the finding reports from the tool runs. This step involved the filtering
of findings as well as the inspection of source code analysing the severity and our
confidence of the findings and determining how to correct the found problems. To
get feedback and to confirm our conclusions from the findings, we discussed them
with our partners during a workshop.

Code Clone Detection

We used the clone detection feature of ConQAT 2.7 for all systems. In case of
conventional clone detection, the configuration consists of two parameters: the
minimal clone length and the source code path. In case of gapped clone detection
(see Sect. 4.4.2), additional gap-specific parameters such as maximal allowed
number of gaps per clone and maximal relative size of a gap are required. Based on
our earlier experiences and initial experimentation, we set the minimal clone length
to ten lines of code, the maximal allowed number of gaps per clone to 1 and the

5http://pmd.sourceforge.net
6http://www.mono-project.com/Gendarme

http://pmd.sourceforge.net
http://www.mono-project.com/Gendarme


5.6 Five SMEs 185

maximal relative size of a gap in our analysis to 30 %. After providing the needed
parameters, we ran the analysis.

To inspect the analysis metrics and particular clones, we used ConQAT. It pro-
vided a list of clones, lists of instances of a clone, a view to compare files containing
clone instances and a list of discrepancies for gapped clone analysis. We employed
this data to recommend corrective actions. Also in a series of runs of clone detection
over different versions of respective systems, we monitored how several parameters
evolve over time.

Architecture Conformance Analysis

We also used ConQAT for this technique. For each system, we first configured the
architecture conformance part of ConQAT with the path to the source code and
corresponding executables of the system. Then, we created the architecture models
based on the architectural information given by the enterprises. In our case, ConQAT
is only able to analyse static call relationships between components out of the box.
Next, we ran the ConQAT architecture conformance analysis which compares the
relationships given in the architecture model with the actual relationships in the
code. At last, we analysed the found architecture violations and discussed them
with our partners.

We used an architecture model consisting of hierarchical components and
allowed and disallowed call relationships between these components. The modelled
components needed to be mapped to code parts (e.g. packages, namespaces or
classes) as basis for the automated analysis. We excluded code parts from the
analysis that did not belong directly to the system (e.g. external libraries). ConQAT
is then able to analyse the conformance of the system to the architecture model.
Every existing relationship that is not allowed by the architectural rules represents a
defect. The tool visualises defects both on the level of components and on the level
of classes which allows a detailed and a more coarse-grained analysis. To eliminate
tolerated architecture violations and to validate the created architecture models, we
discussed every found defect with our partners at the SMEs. This allowed us to
group similar defects and to provide a general understanding.

5.6.3 Experiences with Bug Pattern Detection

We made the experience that bug patterns are a powerful technique to gather a vast
variety of information about potentially defective code. We also found, however, that
it is necessary to carefully configure it specific for a project to avoid false positives
and get the most out of it.

First, we had difficulties in determining the impact of findings on quality factors
of interest and their consequences for the project (e.g. corrective actions, avoidance



186 5 Practical Experiences

or tolerance). The rule categories, severity and confidence information by the tools
helped but also were confusing sometimes.

Second, some rules exhibited many false positives either because their technical
way of detection is fuzzy or because a precise finding is considered irrelevant in a
project-specific context. The latter case requires an in-depth understanding of each
of the rules, the impacts of findings and, subsequently, a proper classification of
rules as minor or irrelevant. We neither measured the rates of false positives nor
investigated costs and benefits thereof as our focus lay on the identification of the
most important findings only.

Third, despite our workshops and discussions with our collaboration partners at
the SMEs, we only had a limited view on the systems, their contexts and evolution.
This, together with the limited support in the tools for selecting and filtering the
applied rules, hampered our efforts in configuring the analyses appropriately.

We addressed the first two issues by discussing with our partners and selecting
and filtering rules as far as possible so that they do not show irrelevant findings
for the systems under analysis. To compensate the third issue, we had to put in
manual effort for selecting the right rules. As most finding reports were technically
well accessible, we utilised ConQAT to gain statistical information for higher-level
quality metrics.

We achieved the initial setup of a single bug pattern tool in less than an hour.
This step required knowledge about the internal structure of the system such as its
directory structure and third party code. We used ConQAT to flexibly run the tools
in a specific setting and for further processing of the finding reports. Having good
knowledge of ConQAT, we completed the analysis setup for a system (selection of
rules, adjustment of bug pattern parameters and framework setup) in about half a
day.

The runs took between a minute and an hour depending on code size, rule selec-
tion and other parameters. Hence, bug pattern detection is definitely suitable to be
included into automated build tasks. Part of the rules are computationally complex
and some tools frequently required more than a gigabyte of memory, however. The
manual effort after the runs can be split into review and reconfiguration. The review
of a report took us from a few minutes up to half an hour. An overview of the effort
can be found in Table 5.7.

As a result of the review of the analysis findings, we were able to identify a
variety of defects of all categories and severities. We will not go into details about
then numbers of findings, but we summarise the most important findings grouped
by programming language [75]:

C# Among the rules with highest numbers of findings, FxCop and Gendarme
reported empty exception handlers, visible constants and poorly structured code.
There was only one consensually critical kind of finding related to correctness in
system 2: unacceptable loss of precision through wrong cast during an integer
division used for accounting calculations.

Java Among the rules with the highest numbers of findings, FindBugs and PMD
reported unused local variables, missing validation of return values, wrong use



5.6 Five SMEs 187

Table 5.7 Effort spent per system for applying each of the techniques [75]

Clone Bug pattern Architecture
Phase Work step detection detection conformance

Introduction
(configuration)
and calibration

Analysis tools � 0:5 h � 1 h � 0:5 h

Aggregation via
ConQAT

n/a � 0:5 rmd � 0:5 h

Recalibration,
x-times

n/a � x � 0:5 h n/a

Application
(analysis)

Run analysis � 5 min 1 min � � �
1 h

� 10 s

Inspection of
results

� 1 h, more for
gapped CD

5min � � �
0:5 h

5 min � � �
0:5 h

of serialisable and extensive cyclomatic complexity, class/method size, nested
block depth and parameter list. There have only been two consensually critical
findings, both in system 5, related to correctness: foreseeable access of a null
pointer and an integer shift beyond 32 bits in a basic date/time component.

Independent of the programming language and concerning security and stability, we
frequently detected the pattern constructor calls an overwritable method in four of
the five systems and found a number of defects related to error-prone handling of
pointers. Concerning maintainability, the systems contained missing or unspecific
handling of exceptions, manifold violation of code complexity metrics and various
forms of unused code.

In addition, we learned from the survey at that end of the project that all of the
partners considered our bug pattern findings to be relevant for their projects. The
sample findings we presented during our final workshop were perceived as being
non-critical for the success of the systems but would have been treated if they had
been found by such tools during the development of these software systems. The
low number of consensually critical findings correlated well with the fact that the
technique was known to all partners, that most of them had good knowledge thereof
and regularly used such tools in their projects, i.e. at least monthly, at milestone or
release dates. Nevertheless, three of them could gain additional insights into this
technique. Overall, all of the enterprises decided to use bug patterns as an important
QA technique in their future projects.

5.6.4 Experiences with Code Clone Detection

Code clone detection turned out to be the most straightforward and least complicated
of the three techniques. It has some technical limitations, however, that could hinder
its application in certain software projects. A major issue was the analysis of projects
containing both markup and procedural code like JSP or ASP.NET. Since ConQAT



188 5 Practical Experiences

supports either a programming language or a markup language during a single
analysis, it is required to aggregate the results for both languages. To avoid this
complication and to concentrate on the code implementing the application logic,
we took into consideration only the code written in the programming language and
ignored the markup code. Nevertheless, it is still possible to combine the results of
clone detection of the code written in both languages to get more precise results.

Another technical obstacle was filtering out generated code from the analysed
code basis. In one system, large parts of the code were generated by the parser
generator ANTLR. We excluded this code from our analysis using ConQAT’s
feature to ignore code files specified by regular expressions.

The effort required to introduce clone detection is small compared to bug pattern
detection and architecture conformance analysis. Introducing clone detection is easy
because configuring it is simple. In the simplest case, it only needs the path to the
source code and the minimal length of a clone.

For all systems, it took less than an hour to configure the clone detection, to
get the first results and to investigate the longest and the most frequent clones.
Running the analysis process itself took less than 5 min. In case of gapped clone
detection, it could take a considerable amount of time to analyse if a discrepancy
is intended or if it is a defect. To speed up the process, ConQAT supports that the
intended discrepancies can be fingerprinted and excluded from further analysis runs.
An overview of the efforts is shown in Table 5.7.

The results of conventional clone detection can be interpreted as an indicator of
bad design or of bad software maintainability, but they do not point at actual defects.
Nevertheless, these results give first hints which code parts must be improved. The
following three design flaws were detected in all analysed systems to a certain
extent: cloning of exception handling code, cloning of logging code and cloning
of interface implementation by different classes.

Table 5.8 shows the clone detection results for three versions of each study object
(SO), sorted by version. In the analysed systems, clone coverage (Sect. 4.4.2) varied
between 14 % and 79 %. Koschke [128] reports on several case studies with clone
coverage values between 7 % and 23 %. He also mentions one case study with a
value of 59 %, which he defines as extreme. Therefore, the SOs 1, 3 and 5 contain
normal clone rates according to Koschke. The clone rate in SO 2 is higher than
the rates reported by Koschke, and for SO 4 it is extreme. Regarding maintenance
the calculated blow-up for each system is an interesting value. It shows by how
much the system is larger than it needs to be if the cloning would be removed. For
example, version III of SO 4 is more than three times bigger as its equivalent system
containing no clones. SO 4 shows that cloning can be an increasing factor over time,
while SO 3 reveals that it is possible to reduce the amount of clones existing in the
system code.

Interesting values are also the longest clones and the clones with the most
instances. The longest clones show if only smaller code chunks are copied or
whole parts of the system. Those largest clones are also interesting candidates for
refactorings because they allow to reduce the most redundancy with only tackling
a small number of clones. They are usually measured in units which are essentially



5.6 Five SMEs 189

Table 5.8 Results of code clone detection [75]

SO Version Blow-up [%] Clone coverage [%] Longest clone [units] Most clone instances

1 I 119.5 22.2 112 39
II 118.9 23.0 117 39
III 119.2 24.0 117 39

2 I 143.1 40.5 63 64
II 150.2 45.4 132 47
III 137.4 36.7 89 44

3 I 114.5 18.2 79 21
II 111.2 15.1 52 20
III 110.0 13.7 52 19

4 I 238.8 68.0 217 22
II 309.6 77.6 438 61
III 336.0 79.4 957 183

5 I 122.3 24.8 141 72
II 122.7 25.3 158 72
III 122.8 25.5 156 72

statements in the code. Also interesting to investigate are the clones with the
most instances. That means which piece of code has the most copies. Those clones
are often the most dangerous because it is very easy to forget to make changes to all
copies. Therefore, they are also interesting candidates for the first refactorings.

Cloning is especially considered harmful, because it increases the chance of
unintentional, inconsistent changes which can lead to faults in a system [113]. These
changes can be detected when applying gapped clone detection. We found a number
of such changes in the cloned code fragments, but we could not finally classify them
as defects, because we lacked the knowledge needed about the software systems.
Also the project partners could not easily classify these discrepancies as defects
which confirms that gapped clone detection is a more resource demanding type of
analysis. Nevertheless, in some clone instances, we identified additional instructions
or deviating conditional statements compared to other instances of the same clone
class. Gapped clone detection does not go beyond method boundaries, since
experiments showed that inconsistent clones that cross method boundaries in many
cases did not capture semantically meaningful concepts [113]. This explains why
metrics such as clone coverage may differ from values observed with conventional
clone detection. Table 5.9 shows our results of gapped clone detection.

Following the feedback obtained from the questionnaire, two enterprises had
limited prior experience with clone detection; the others did not know about it at
all. Three enterprises estimated the relevance of clone detection to their projects
as very high; the others estimated it as medium relevant. One company stated that
“clones are necessary within short periods of development”. Finally, all enterprises
evaluated the importance of using clone detection in their projects as medium to
high and plan to introduce this technique in the future.



190 5 Practical Experiences

Table 5.9 Results of gapped code clone detection [75]

SO Version Blow-up [%] Clone coverage [%] Longest clone [units] Most clone instances

1 I 119.9 22.3 34 39
II 117.9 21.5 37 52
III 117.4 22.1 52 52

2 I 116.3 19.0 156 37
II 123.2 25.0 156 37
III 123.7 25.3 156 37

3 I 124.4 18.2 73 123
II 120.0 15.1 55 67
III 118.6 20.5 55 64

4 I 192.1 58.6 42 34
II 206.2 59.8 51 70
III 211.1 59.5 80 183

5 I 117.4 20.7 66 68
II 118.0 21.3 85 78
III 118.2 21.5 85 70

5.6.5 Experiences with Architecture Conformance Analysis

We observe two kinds of general problems that prevent or complicate each
architectural analysis: the absence of an architecture documentation and the usage
of dynamic patterns.

For two of the systems there was no documented architecture available. In one
case the information was missing, because the project was taken over from a dif-
ferent organisation that was not documenting the architecture at all. They reasoned
that any later documentation of the system architecture would be too expensive.
In another case, the organisation was aware that their system was severely lacking
any architectural documentation. Nevertheless, they feared that the time involved
and the sheer volume of code to be covered exceeds the benefits. The organisation
additionally argued that they are afraid of having to update the documentation within
several months as soon as the next release is coming out.

In system 2, a dynamic architectural pattern is applied, where nearly no
static dependencies could be found between defined components. All components
belonging to the system are connected at run time. Thus, our static analysis approach
could not be applied.

Architecture conformance analysis needs two ingredients apart from the archi-
tecture documentation: the source code and the executables of a system. This could
be a problem because the source has to be compilable to analyse it. Another
technical problem occurred when using ConQAT. Dependencies to components
solely existing as executables were not recognised by the tool. For that reason
all rules belonging to compiled components could not be analysed. Beside these



5.6 Five SMEs 191

Table 5.10 Architectural characteristics of the study objects [75]

SO Architecture Version Violating component relationships Violating class relationships

1 12 Components I 1 5
20 Rules II 3 9

III 2 8

2 Dynamic n/a n/a n/a

3 Undocumented n/a n/a n/a

4 14 Components I 0 0
9 Rules II 1 1

III 2 4

5 Undocumented n/a n/a n/a

problems, we could apply our static analysis approach to two systems without any
technical problems. An overview of all systems with respect to their architectural
properties can be found in Table 5.10.

For each system, the initial configuration of ConQAT and the creation of the
architecture model in ConQAT could be done in less than 1 h. Table 5.10 shows
the number of modelled components and the rules that were needed to describe
their allowed connections. The analysis process itself finished in less than 10 s. The
time needed for the interpretation of the analysis results is dependent on the amount
of defects found. For each defect, we were able to find the causal code parts within
1 min. We expect that the effort needed for bigger systems will only increase linearly
but stay small in comparison to the benefit that can be achieved using architecture
conformance analysis. An overview of the efforts can be found in Table 5.7.

As shown in Table 5.10, we observed several discrepancies in the analysed
systems over nearly all version. Only one version did not contain architectural
violations. Overall, we found three types of defects in the analysed systems.
Each defect represents a code location showing a discrepancy to the documented
architecture. The two analysable systems had architectural defects which could be
avoided if this technique had been applied. In the following we explain the types of
defects we classified together with the responsible enterprises. The companies rated
all findings as critical.

• Circumvention of abstraction layers: Abstraction layers (e.g. a presentation
layer) provide a common way to structure a system into logical parts. The defined
layers are hierarchically dependent on each other, reducing the complexity in
each layer and allowing to benefit from structural properties like exchangeability
or flexible deployment of each layer. These benefits vanish when the layer
concept is harmed by dependencies between layers that are not connected to each
other. In our case the usage of the data layer from the presentation layer was a
typical defect we found in the analysed systems.



192 5 Practical Experiences

• Circular dependencies: We found undocumented circular dependencies between
two components. We consider these dependencies – whether documented or not
– as defects themselves, because they affect the general principle of component
design. Two components that are dependent on each other can only be used
together and can thus be considered as one component, which contradicts the
goal of a well-designed architecture. The reuse of these components is strongly
restricted. They are harder to understand and to maintain.

• Undocumented use of common functionality: Every system has a set of common
functionality (e.g. date manipulation) which is often grouped into components
and used across the whole system. Consequently, it is important to know where
this functionality is actually used inside a system. Our observation showed that
there were such dependencies that were not covered by the architecture.

As a result from the final survey, we observed that four of the five participating
enterprises did not know about the possibility of automated architecture confor-
mance analysis. Only one of them already checked the architecture of their systems,
however in a manual way and infrequently. Confronted with the results of the
analysis, all enterprises rated the relevance of the presented technique relevant. One
of them stated that as a new project member, it is easier to become acquainted with
a software system if its architecture conforms to its documented specification. All
enterprises agreed on the usefulness of this technique and plan its future application
in their projects.

5.6.6 Lessons Learned

First, we observed that code clone detection and architecture conformance analysis
have been quite new to our partners as opposed to bug pattern detection which
was well known. This may result from the fact that style checking and simple bug
pattern detection are standard features of modern development environments. We
consider it as important, however, to know that code clone detection can indicate
critical and complex relationships residing in the code at minimum effort. We also
made our partners aware of the usefulness of architecture conformance analysis,
both in the case of an available architecture specification and to reconstruct such a
documentation.

Second, we conclude that all of the three techniques can be introduced and
applied with resources affordable for small enterprises. We assume that, except
for calibration phases at project initiation or after substantial product changes, the
effort of readjusting the settings for the techniques stays very low. This effort is
compensated by the time earned through narrowing results to successively more
relevant findings. Moreover, our partners perceived all of the discussed techniques
as useful for their future projects.



5.6 Five SMEs 193

Third, we came across interesting findings from the analysed systems. We found
large clone classes, a significant number of pattern-based bugs aside from smells
and pedantry as well as unacceptable architecture violations.

In summary, in our opinion static analysis tools can efficiently improve quality
assurance in SMEs, if they are continuously used throughout the development
process and are technically well integrated into the tool landscape.


	Chapter
5 Practical Experiences
	5.1 Quamoco Base Model
	5.1.1 Context
	5.1.2 Building the Model
	5.1.3 Quality Evaluation and Measurement
	5.1.4 Applications and Effects
	5.1.5 Lessons Learned

	5.2 MAN Truck and Bus
	5.2.1 Context
	5.2.2 Building the Model
	5.2.3 Effects
	5.2.4 Usage of the Model
	5.2.5 Lessons Learned

	5.3 Capgemini TS
	5.3.1 Context
	5.3.2 Building the Model
	5.3.3 Effects
	5.3.4 Usage of the Model
	5.3.5 Lessons Learned

	5.4 Telecommunications Company
	5.4.1 Context
	5.4.2 Building the Model
	5.4.3 Effects
	5.4.4 Lessons Learned

	5.5 Siemens COM
	5.5.1 Context
	5.5.2 Quality Model
	5.5.3 Stochastic Model
	5.5.4 Time Component
	5.5.5 Parameter Estimation
	5.5.6 Suitability Analysis
	5.5.7 Results
	5.5.7.1 Siemens 1
	5.5.7.2 Siemens 2

	5.5.8 Lessons Learned

	5.6 Five SMEs
	5.6.1 Context
	5.6.2 Introduction of Static Analysis
	5.6.3 Experiences with Bug Pattern Detection
	5.6.4 Experiences with Code Clone Detection
	5.6.5 Experiences with Architecture Conformance Analysis
	5.6.6 Lessons Learned



