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Abstract. This paper proposes a fully automatic real-time robust image-
guided endoscopy method that uses a new discriminative structural simi-
larity measure for pre- and intra-operative registration. Current
approaches are limited to clinical applications due to two major bottle-
necks: (1) weak continuity, i.e., endoscopic guidance may be blocked since
a similarity measure might incorrectly characterize video images and vir-
tual renderings generated from pre-operative volume data, resulting in
a registration failure; (2) slow computation, since volume rendering is a
time-consuming step in the registration. To address the first drawback,
we introduce a robust similarity measure, which uses the degradation of
structural information and considers image correlation or structure, lu-
minance, and contrast to characterize images. Moreover, we utilize graph-
ics processing unit techniques to accelerate the volume rendering step.
We evaluated our method on patient datasets. The experimental results
demonstrated that we provide a promising method, which is possibly ap-
plied in the operating room, to accurately and robustly guide endoscopy
in real time, particularly the average accuracy of position and orientation
was improved from (14.6, 51.2) to (4.45 mm, 12.3◦) and the runtime was
about 32 frames per second compared to current image-guided methods.

Keywords: Image-Guidance Endoscopy, Endoscope Tracking and Navi-
gation, Video-Volume Registration, Discriminative Structural Similarity.

1 Endoscopic Interventions

Endoscopic interventions are widely performed for cancer diagnosis, e.g., bron-
choscopy and endoscopic sinus surgery. Such interventions use endoscopes to in-
sert into the body through natural orifices and observe suspicious regions where
biopsies may be performed. However, these interventions in the hands of dif-
ferent skilled endoscopists are the most sensitive procedure for locating tumors
since endoscopic video cameras only provide two-dimensional (2-D) image infor-
mation, which is not enough to determine six-degree-of-freedom (6DoF) position
and orientation of an endoscope in a three-dimensional (3-D) space. Moreover,
timing of endoscopy depends on physicians’ skills; the more time of endoscopy
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being operated, the more high risk the patients have. An image-guided endoscopy
is promising to address the problems of location and timing of endoscopy.

Image-guided endoscopy registers 2-D video images to 3-D pre-operative data,
e.g., computed tomography (CT) or magnetic resonance (MR) images that are
usually acquired before interventions, to navigate or locate the endoscope in a
reference coordinate system in real time. It usually defines a similarity mea-
sure to compute image intensity difference between video and virtual rendering
images and runs an optimizer to find the optimal corresponding virtual im-
age [1,2,3]. Compared to commercially available electromagnetically navigated
endoscopy [4,5], it has several interesting advantages including cost-efficient,
without additional setups, little influence from respiratory motion, and without
inherent system or dynamic errors. Unfortunately, two main weaknesses limit
image-guided endoscopy to apply in operation rooms: (1) guidance discontinu-
ity and (2) large amount of calculation. The former is caused by problematic
endoscopic images (e.g., local luminance and contrast changes) that may eas-
ily collapse the registration since the similarity measure may not adapt itself
to these changes. The latter results from volume rendering to generate virtual
images, blocking a real-time guidance procedure where at lest 30 frames are
processed in a second. Even though many papers have been published in the
literature [1,3], more accurate and effective methods to tackle these weaknesses
are still expected for the robust real-time image-guided endoscopy.

This work realized a robust real-time image-guided endoscopy. To accurately
register 2-D video images and 3-D CT volume, we proposed a new discriminative
structural similarity (DSSIM) measure. The similarity function is a key element
that is expected to precisely characterize intensity difference under a dynamic
environment. DSSIM can adapt itself successfully to image changes due to non-
linear illumination, specular- or inter-reflection, or collision with the organ walls
in endoscopy. Moreover, since generating 2-D virtual images is time-consuming,
we use graphics processing unit (GPU) techniques to accelerate our method up
to 32 frames per second (fps), which meets the real-time requirement (≥ 30 fps).

Several highlights of this work are summarized as follows. First, we modified a
measure of structural similarity (SSIM) to DSSIM that is robust and accurate for
a video-volume registration. We extended a new application of SSIM in computer
assisted interventions. Furthermore, to best of our knowledge, no methods were
published as real-time image-guided endoscopy using image registration methods
before. We reported a fully automatic image-guided endoscopy in real time.
Additionally, our method is suitable to other endoscopies (e.g., conchoscope).

2 Proposed Approaches

Our proposed approach to guide endoscopic interventions and determine en-
doscope 6DoF location information comprises of several main steps: (1) auto-
matically initializing the guided procedure, (2) formulating the discriminative
structural similarity measure, and (3) performing video-volume registration for
continuous endoscope guidance. Fig. 1 shows the flowchart of our proposed
method.
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Fig. 1. The processing flowchart of our proposed method for endoscope guidance

2.1 Automatic Initialization

Endoscopic guidance must be initialized before continuous navigation. It is hard
to perform a manual initialization that takes much time during examination. It
is also somewhat difficult to use fiducials to align from patient to CT spaces. For
surgical requirements, we here introduce a fully automatic initialization method
on the basis of airway tree structures and manifold learning.

First, we segment CT images to obtain the centerlines of the trachea, the
left main bronchus, and the right main bronchus with their start and end posi-
tions, (st, et), (sl, el), and (sr, er), before an endoscopic intervention. The carina
position should be either et or sl or sr.

Next, we generate a set of virtual images by updating position pi and orien-
tation oi(o

x
i ,o

y
i ,o

z
i ) of a virtual camera in the CT space (α ∈ [0.5 0.9]):

pi = st +
α(et − st)

‖et − st‖ , oz
i =

(et − st)

‖et − st‖ , o
y
i =

(el − sl)

‖el − sl‖ × (er − sr)

‖er − sr‖ , (1)

where, ox
i = oz

i × oy
i ,o

y
i , and oz

i are the direction vectors of the virtual camera.
Finally, we use a manifold learning method to construct the subspace for those

generated virtual images with different camera poses (position and orientation
parameters) [6]. During the intervention, the physician can initially locate the
endoscope around the carina of the airways and embedded the current video
image to the subspace and find the optimal initialization to start a navigation.

2.2 Discriminative Structural Similarity

The similarity measure is a core of image registration. It is supposed to accu-
rately and robustly represent image changes (distortion), e.g., illumination and
motion blurring. We propose a discriminative structural similarity measure that
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(a) (b) (c) (d)

Fig. 2. Discriminative region extraction (a yellow square indicates one patch and a
green point is one patch center): (a) all separated patches from an input image, (b)
removed patches without structural information, (c) remained patches with structural
information, (d) finally used patches during similarity computation.

takes incomplete correlation, luminance and contrast distortion into considera-
tion to model image changes. Discriminative here means specific structures such
as bifurcations and folds inside the airways. Since the structural information is
very useful for the similarity calculation, we first extract discriminative regions.

Discriminative Region Extraction. For an image with W × H pixels, we
divide it into U ×V patches. One patch Pu,v with W

U × H
V pixels is presented by:

Pu,v = {(cx, cy), u ∈ U, v ∈ V }, (2)

where cx and cy are the patch center coordinates. We define two variables: in-
tensity variance σu,v and contrast ωu,v that indicates the tone of the highlights
and lighter areas, to check whether Pu,v includes the structural information:

σ2
u,v =

1

|Pu,v|
∑
Pu,v

(
Pu,v(x, y)− P̄u,v

)2
, ωu,v =

1

|Pu,v|
∑
Pu,v

Ψ (Pu,v(x, y)) , (3)

where (x, y), |Pu,v|, and P̄u,v denote one pixel coordinates, the pixel number,
and the average intensity in patch Pu,v, respectively. Function Ψ (Pu,v(x, y)),
which depends on the pixel color information of saturation S(x, y) and lightness
L(x, y) in the hue-saturation-lightness (HSL) color model, is defined to evaluate
whether pixel (x, y) belongs to the highlights and lighter areas or not:

Ψ (Pu,v(x, y)) =

{
1 S(x, y) ≤ βS and L(x, y) ≥ δL
0 otherwise

, (4)

where βS and δL are two pre-determined thresholds. We remove the white
patches without structural information by ωu,v ≥ εω (a fixed constant), descend-
ingly sort the remained patches in terms of σu,v, and choose λ ·U ·V patches for
the similarity calculation. Fig. 2 shows the discriminative patch detection.

Structural Similarity Function. A similarity function seeks to correctly de-
pict pixel difference between distorted and reference images in the registration.
Image distortion usually results from structure (correlation), luminance, and
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contrast changes. Based on the work of SSIM [7], we introduce the similarity
function M into the volume-video registration for guided interventions as:

M =
σd,r + C1

σdσr + C1︸ ︷︷ ︸
Structure

· 2ξdξr + C2

ξ2d + ξ2r + C2︸ ︷︷ ︸
Luminance

· 2σdσr + C3

σ2
d + σ2

r + C3︸ ︷︷ ︸
Contrast

, (5)

where σd,r is the correlation between distorted and reference images; ξd and
ξr are the intensity mean; σd and σr are the intensity variance, respectively
(constants: C1, C2, and C3). Three elements in Eq. 5 were demonstrated to
successfully characterize image changes [7]. By C3 = 2C1, we rewrote Eq. 5 as:

M =
(2σd,r + C1) (2ξdξr + C2)

(σ2
d + σ2

r + C1) (ξ2d + ξ2r + C2)
. (6)

After choosing λ · U · V discriminative regions, similarity DSSIM(Ik, ICT ) be-
tween k-th video sequence Ik and CT-based virtual image ICT is computed by:

DSSIM(Ik, ICT ) =
1

λ · U · V
∑

Pu,v∈λ·U·V

1

|Pu,v|
∑
Pu,v

M̂u,v, (7)

M̂u,v =

(
2σu,v

k,CT + C1

)
(2ξu,vk ξu,vCT + C2)

((σu,v
k )2 + (σu,v

CT )
2 + C1) ((ξ

u,v
k )2 + (ξu,vCT )

2 + C2)
. (8)

The DSSIM measure will be demonstrated to very robust and accurate for reg-
istering video and CT-based virtual images from our experimental results.

Remarks on the DSSIM Measure. Image structural or discriminative infor-
mation is very useful for the similarity calculation since it describes the pixel
dependency that involves significant information about visual structures. Hence,
a robust similarity measure should be able to characterize visual structural infor-
mation in images. Moreover, image similarity should be computed locally but not
globally, i.e., an image should be divided into many patches and the similarity
of each patch is calculated and added up to the finial similarity. The similarity’s
locality is better than its globality since it yields several practical situations,
e.g., dynamic of image statistical features, image distortion being independent
or dependent of local characteristics, the human vision system being sensitive
to local structures, and a variable image quality map related to local quality
measurement. Additionally, a good measure should be insensitive to luminance
and contrast changes. DSSIM can meet three requirements of a good similarity
measure: (1) usage of structural information (2) locality, and (3) adaptation of
luminance or contrast distortion. We extract discriminative structures (bifurca-
tions or folds) in local regions and compute the local similarity of the patches
whose luminance or contrast distortion was modeled.

2.3 Video-Volume Registration

For a continuous endoscopic navigation, we must perform the video-volume reg-
istration (V2R) to determine the spatial transformation between the video and
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CT volume coordinate systems during the image-guided endoscopic intervention.
Such a spatial transformation involves with the 6DoF parameters of position and
orientation of the endoscope located somewhere in the airways.

Suppose that CTTk
V with position CT tV and rotation matrix CTRV is the

transformation matrix from video to volume at frame k. To estimate CTTk+1
V ,

we formulate V2R as an optimization process on the basis of the proposed DSSIM
measure and determine the changeable transformation parameter ΔCTTk+1

V by:

ΔCTTk+1
V = argmaxΔCT Tk+1

V
DSSIM

(
Ik, ICT (

CTTk
V ·ΔCTTk+1

V )
)
, (9)

where virtual image ICT (·) is generated on the basis of virtual camera parame-
ters CTTk

V ·ΔCTTk+1
V . By running an optimizer, we find optimal ΔCT T̆k+1

V to

maximize the similarity between images Ik+1 and ICT (
CTTk

V ·ΔCT T̆k+1
V ).

Note that the initialization of ΔCTTk+1
V is important to the optimizer, as

discussed in [3]. It can be initialized as an identity matrix. Such an initialization
will lose the temporal coherence between two consecutive video frames, possibly
resulting in a guidance failure. Video image textures or features can be used
to compensate such losing. However, such a compensation takes much time. In
this work, we determine the initialization empirically. We clarify that typical
translating and rotating speeds of an endoscope is 10.0 mm and 20 degrees per
second. An endoscopic camera is usually at frame rate of 30 fps. Therefore,
interframe speeds τ and φ of translation and rotation are about 0.33 mm and
0.66 degrees per frame (τ = 0.33 mm and φ = 0.66 degrees). Hence, we can
initialize ΔCTTk+1

V by the following equations:

ΔCTTk+1
V =

(
ΔCTRk+1

V ΔCT tk+1
V

0T 1

)
4×4

, (10)

ΔCT tk+1
V = [τ τ τ ]T , ΔCTRk+1

V =

⎛
⎝ b2 a2b− ab ab2 + a2

ab a3 + b2 a2b− ab
−a ab b2

⎞
⎠

3×3

, (11)

where the variables of matrix ΔCTRk+1
V are defined as: a = sinφ and b = cosφ.

3 Experimental Settings

We validated our proposed method on six cases of patient datasets: (1) endo-
scopic video images, whose sizes were 360 × 370 and 256 × 263 pixels, were
recorded at a frame rate of 30 fps, and (2) CT volumes were acquired by space
parameters of 512 × 512 pixels, 72-351 slices, 2.0-5.0-mm slice thickness.

We implemented our method on a Dell Precision Workstation that was
equipped with Intel (R) Xeon(R) CPU X5355 2.66 GHz × 8, NVIDIA GeForce
8800 GTX, and 16.0 GB memory and installed with the Windows 7 64-bit operat-
ing system and the NVIDIA CUDA 4.2 toolkit. We investigate two image-based
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Table 1. Quantitative results of the guidance accuracy of the two methods in terms
of position and orientation errors between the estimates and ground truth

Patient data Comparison of (position, orientation) of the two methods
(Frames) MoMSE DSSIM

Case A (379) (31.2±25.8 mm, 38.8±29.3◦) (9.08±6.88 mm, 12.4±8.00◦)
Case B (1000) (12.4±7.84 mm, 72.8±52.3◦) (2.88±1.62 mm, 10.8±6.53◦)
Case C (449) (4.75±2.99 mm, 10.0±5.80◦) (4.35±2.77 mm, 9.29±4.50◦)
Case D (2650) (10.4±5.70 mm, 66.6±35.4◦) (2.32±1.81 mm, 8.67±7.21◦)
Case E (450) (13.8±11.7 mm, 23.9±18.6◦) (4.64±2.75 mm, 17.7±14.7◦)
Case F (2000) (15.3±14.3 mm, 45.6±28.5◦) (3.42±3.07 mm, 14.2±12.3◦)

Average (14.6±11.4 mm, 51.2±28.3◦) (4.45±3.15 mm, 12.3±8.88◦)

(a) Position error (b) Orientation error

Fig. 3. Navigation position and orientation errors of the two methods on Case B was
plotted against ground truth by every 20 frames

methods: (1) MoMSE: a method using a modified mean square error similarity
measure [1], (2) DSSIM: our method, as discussed in Section 2. To evaluate the
guidance accuracy, we generate ground truth data by manually adjusting the
position and orientation of the virtual camera to qualitatively align video and
CT-driven virtual images. Additionally, we set parameters: U = V = 30, λ = 0.3,
βS = 0.6, δL = 0.7, and εω = 0.9 during discriminative region extraction.

4 Results

Table 1 lists the guidance accuracy by computing the position and orientation er-
rors between ground truth and the estimates. The mean position and orientation
errors of our approach were 4.45 mm and 12.3◦, which are significantly better
than 14.6 mm and 51.2◦ of the MoMSE-based method. Fig. 3 plots the guidance
accuracy of the MoMSE- and DSSIM-based methods on Case B. Fig. 5 shows
some video images of Case D and their corresponding virtual images generated
from the estimated results. Fig. 4 compares the similarity between video and vir-
tual images, demonstrating that the visualization quality of the DSSIM-based
method is absolutely better than the MoMSE-based method (Fig. 5).



98 X. Luo et al.

(a) Case C (b) Case E

Fig. 4. Comparison of the similarity value of the two methods.

Table 2. Comparison of iterations and computation time of volume rendering, simi-
larity, and one frame with and without CUDA speed-up (ms: milliseconds)

Computation Without CUDA With CUDA
comparison MoMSE DSSIM MoMSE DSSIM

Iterations 77 52 67 49

Rendering 138 ms 104 ms 22 ms 15 ms

Similarity 38 ms 68 ms 6 ms 10 ms

One frame 246 ms 219 ms 38 ms 31 ms

4351 4576 4801 5026 05251 5476 5701 5926 6151 6376 6601 6825

Fig. 5. Visual comparison of guidance results of Case D. Top row shows uniformly
selected frame numbers, and second row shows their corresponding video images. Third
row gives the results of discriminative region extraction. Fourth and fifth rows display
virtual images based on the estimates from the MoMSE- and DSSIM-based methods,
respectively. Our method shows better performance.

More interestingly, our approach can be implemented in real time using GPU
techniques. After accelerating by GPU, the DSSIM-based approach needs about
31 milliseconds per frame (mpf), i.e., processing about 32 fps, which exceeds the
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(a) Iterations per frame (b) Volume rendering per frame

(c) Similarity computation per frame (d) Runtime per frame

Fig. 6. Comparison of the computational times of the two methods on Case F

clinical requirement of 30 fps. The MoMSE-based method can process about 26
fps (38 mpf), slightly being lower than the real-time need (Table 2 and Fig. 6).

5 Discussion and Conclusion

We realized a real-time endoscope guidance with a more robust and accurate
navigation. We believe that the effectiveness lies in the DSSIM’s robustness.
Sine the visualization quality of guidance results (i.e., virtual images generated
from endoscope location parameters) depends on the human visual system (HVS)
that is very sensitive to structural information in images, a good similarity mea-
sure should approximate structural information changes as accurate as possible.
MoMSE computes pixel difference to approximate image distortion but hardly
fits to HVS. DSSIM, which use structural information changes to characterize im-
age distortion, follows HVS well. Moreover, DSSIM can adapt itself to luminance
and contrast dynamics, as proved in our experimental results. Additionally, the
runtime, which was improved to the real-time level, is mainly attributed to GPU
techniques. We believe that the similarity measure that makes convergence fast
can also reduce the runtime (Fig. 6). Even though DSSIM is computed by more
time than MoMSE, its robustness makes iterations reduced in optimization.
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Our method has one main potential limitation that is difficult to tackle prob-
lematic video images (e.g., bubbles), which possibly fail a continuous endoscope
guidance. Future work includes recovering the continuous guidance by removing
these ambiguous images. We also plan to revoke a re-initialization mechanism
to tackle failure since an endoscope is usually operated back to where it has
flied through. Additionally, since we current used a relatively simple processing
method in discriminative region detection, we seek to use more robust functions
to perform the patching and calculate the inter-pixel similarity among images.

To summarize our work, this article proposes a framework of a fully automatic,
robust, and real-time image-guided endoscopy by a video-volume registration on
the basis of a discriminative structural similarity measure and GPU acceleration
techniques, without additional positional sensors (e.g., electromagnetic sensors).
Current guidance accuracy and processing time were significantly improved up
to position error 4.45 mm, orientation error 12.3◦, and 32 fps.
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