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Preface

Minimally invasive surgical interventions are one of the key drivers of the search
for ways to use computer-based information technology to link preoperative plan-
ning with decisions and actions in the operating room. Computers, used in con-
junction with advanced surgical assist devices, are influencing how procedures
are currently performed. Computer-assisted intervention (CAI) systems make
it possible to carry out interventions that are more precise and less invasive
than conventional procedures, while recording all relevant data. This data log-
ging, coupled with appropriate tracking of patient outcomes, is a key enabler
for a new level of quantitative patient outcome assessment and treatment im-
provement. The goals of CAI systems are to enhance clinicians’ dexterity, visual
feedback, and information integration. While medical equipment is currently
available to assist surgeons in specific tasks, it is the synergy between these
capabilities that gives rise to new paradigms.

The Information Processing and Computer-Assisted Intervention (IPCAI)
Conference was created as a forum for presenting the latest developments in
CAI. The main technological focus is on patient-specific modeling and its use in
interventions, image-guided and robotic surgery, real-time tracking and imag-
ing. IPCAI seeks papers that are particularly relevant to CAI, works that
present novel technical concepts, clinical needs and applications, as well as hard-
ware, software, and systems and their validation.

The annual IPCAI conference series began in Geneva, Switzerland in 2010,
followed by Berlin, Germany, in 2011, and Pisa, Italy, in 2012. This volume
contains the proceedings of the 4th IPCAI Conference that took place on June
26, 2013, in Heidelberg, Germany. This year, we received 20 full-paper sub-
missions from seven different countries. These submissions were reviewed by a
total of 30 external reviewers, coordinated by the Program Committee members.
A “primary” and a “secondary” Program Committee member were assigned to
each paper, and each paper received at least three external reviews. Finally,
an independent body of six Program Board members: Hawkes, Mori, Salcud-
ean, Szekely, Taylor, Yang discussed all papers and a final decision was made,
after which 11 high-quality papers were accepted. The final submissions were
re-reviewed by the Program Committee members to ensure that all reviewers’
comments were addressed.

We would like to take this opportunity to thank our Program Committee
members: Ichiro Sakuma, University of Tokyo, Japan; Philippe Poignet, LIRMM,
France, Thomas Lango, SINTEF, Norway; Stéphane Nicolau, IRCAD, France;
Ziv Yaniv, Children’s National Medical Center, USA, and Purang Abolmae-
sumi, University of British Columbia, Canada; and Program Board Members:
David Hawkes, University College London, UK; Kensaku Mori, Nagoya, Japan;
Tim Salcudean, University of British Columbia, Canada; Gabor Szekely, ETH
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Zurich, Switzerland; Russell Taylor, The Johns Hopkins University, USA, and
Guang-Zhong Yang, Imperial College London, UK. We would also like to thank
all the authors who submitted their papers to IPCAI and acknowledge all the re-
viewers for their involvement and timely feedback: Louis Collins, Aron Fen-
ster, Ren Hui Gong, Mingxing Hu, Leo Joskowicz, Peter Kazanzides, Alexan-
dre Krupa, Andras Lasso, Hongen Liao, Marius George Linguraru, Cristian
Linte, Ken Masamune, Daniel Mirota, Terry Peters, Ingerid Reinertsen, Maryam
Rettman, Rogerio Richa, Robert Rohling, Tim Salcudean, Amber Simpson,
Danail Stoyanov, Takashi Suzuki, Jocelyne Troccaz, Tamas Ungi, Theo van Wal-
sum, Kirby Vosburgh, Lejing Wang, Aaron Ward, Andrew Wiles, and Guoyan
Zheng.

Dean Barratt
Stéphane Cotin

Gabor Fichtinger
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Development and Procedural Evaluation of Immersive 
Medical Simulation Environments 

Patrick Wucherer1,*, Philipp Stefan1,*, Simon Weidert1, Pascal Fallavollita2,  
and Nassir Navab2 

1 Chirurgischen Klinik und Poliklinik - Innenstadt, LMU München, Germany 
{patrick.wucherer,philipp.stefan, 
simon.weidert}@med.uni-muenchen.de 

2 Technische Universität München, Germany 
fallavol@in.tum.de, nassir.navab@tum.de 

Abstract. We present a method in designing a medical simulation environment 
based on task and crisis analysis of the surgical workflow. The environment 
consists of real surgical tools and instruments that are augmented with realistic 
haptic feedback and VR capabilities. Inherently, we also addressed a broad 
spectrum of human sensory channels such as tactile, auditory and visual in real-
time. Lastly, the proposed approach provides a simulation environment facilitat-
ing deliberate exposure to adverse events enabling mediation of error recovery 
strategies. To validate the face validity of our simulator design we chose a spin-
al procedure, the vertebroplasty, in which four expert surgeons were immersed 
in our medical simulation environment. Based on a Likert-scale questionnaire, 
the face validity of our simulation environment was assessed by investigating 
surgeon behavior and workflow response. The result of the conducted user-
study corroborates our unique medical simulation concept of combining VR 
and human multisensory responses into surgical workflow. 

1 Introduction 

Medical education is still based on the Halstedian approach of see one, do one, teach 
one [1] or learning by doing [2]. This leads to the inevitable exposure of patients to 
inexperienced practitioners which does not correspond to one of the principal beliefs 
of the Hippocratic Oath: Primum non nocere – first, do no harm. Thus, novel 
approaches in medical education have to be formulated. One of them can undoubtedly 
be medical simulation-based learning. Medical simulation learning with computer-
controlled equipment provides an environment for acquiring knowledge, skills and 
attitudes without putting patients’ health at risks [3]. It offers a highly standardized 
environment for objective performance assessment [4]. The possibility to repeatedly 
practice procedures enables mediation of error recovery strategies, skill amelioration 
and clinical outcome optimization [5]. Further, medical experience can be gained 
conducting difficult procedures or even inducing complications affecting the 
workflow of the procedure. 

                                                           
* Equal first author contribution. 
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1.1 State-of-the-Art 

Simulation-based learning in health care is commonly divided into three broad areas 
[6]. First, standardized patients have been used to teach clinical skills. Pioneered by 
David Gaba, computerized mannequin simulators have been developed for training 
and performance assessment of anesthetists [7] and have been in use for more than 
two decades. Today, mannequin simulators can be connected to medical ventilators 
and monitoring devices, physiologically respond to drug administration, and show 
pathologic conditions [8].  

Second, procedural simulation for surgical skill training can take a variety of 
forms: ranging from animal or cadaver tissue models to synthetic or virtual reality 
(VR) simulators [4]. In particular, the widespread adoption of minimally invasive 
surgery, which is synonymous to notably long learning curves, led to the development 
of VR simulators for arthroscopic surgery [9], endoscopy, vascular interventions, 
orthopedics, ophthalmology [10], and most recently neurosurgery [11]. However, 
surgical training still only concentrates upon the acquisition of technical skills [6]. 

Third, simulation has been used for team-based training in emergency medicine 
and anesthesia simulation to teach teams in efficient personnel management, decision 
making, and effective communication for crisis resource management (CRM) in  
complex scenarios [8]. 

1.2 Three Conditions for an Effective Medical Simulation Learning Environment 

Many authors agree that the combination of mannequin technology and VR procedur-
al simulators would facilitate the integration of non-technical skills into the surgical 
curriculum and might even achieve the largest potential of medical simulation: team 
assessment and training for all varieties of medical teams and in particular surgeons 
and anesthetists [4], [12]. To date there still exist only a few examples of cross fertili-
zation of the above areas in team training and notably none uses a high fidelity man-
nequin simulator in combination with a VR simulator. Condition 1: few, if any of the 
virtual reality simulations, have the capacity for the trainer to control the introduc-
tion of an adverse event to the training scenario, although this is a common occur-
rence in anesthesia training [4]. 

Second, many failed surgeries are directly linked to the surgeon’s performance. The 
errors made can be distinguished into: (i) latent conditions‒ which are inherent within 
the health care system e.g. time pressure, fatigue or unworkable procedures, and (ii) 
active failures‒ which are of different type e.g. procedural violation, slips, and lapses. 
Thus, both surgeon and operating team should have situation awareness and experience 
with handling critical events which can endanger the patient. Condition 2: The introduc-
tion of critical events into medical simulation learning environments helps to diminish 
the impact of disruptive unexpected events on the trainees’ procedural skills. This 
enables the trainees to handle unfamiliar and unpredictable events [12]. 

Third, there is ongoing discussion about the realism of simulators. For effective 
medical training the immersion into the environment is required [13]. For the setup of 
medical learning environments the utilization of real medical equipment is necessary. 
Condition 3: The learning environment should address a broad spectrum of human 
sensory channels such as tactile, auditory and visual channels in real-time. 
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1.3 Contributions 

This paper shares our experiences in designing a complete simulator prototype and 
provides the technological basis to determine whether an immersive medical training 
environment is successful. The three conditions outlined in Section 1.2 are accounted 
for through the following key research contributions: 

1. The combination of VR surgical procedural simulator and computerized man-
nequin in designing novel training setups for medical education.  

2. Based on user-study, the quantitative evaluation through surgical workflow 
and crisis simulation for proving face validity of immersive medical training 
environments. 

2 The Key Aspects behind Our VR Surgical Procedural 
Simulator 

2.1 Choice of a Suitable Procedure 

We concentrate on vertebroplasty (Figure 1), a percutaneous image-guided minimally 
invasive surgery performed within orthopedic, trauma and radiology surgery rooms 
worldwide. Every year about 1.4 million new vertebral compression fractures due to 
osteoporosis occur worldwide. Today percutaneous vertebroplasty is an assorted me-
thod that treats all types of vertebral fractures [14]. The objective of vertebroplasty is 
to inject polymethylmethacrylate (PMMA) bone cement, under radiological image-
guidance, into the collapsed vertebral body to stabilize it. However, the complication 
rate is markedly high and clinical adverse effects can be devastating if not treated 
immediately [15]. Intensive and accurate communication especially between surgeon 
and anesthetist is very important during the procedure to avoid such problems [16]. 

 

Fig. 1. Vertebrae compression requiring cement injection for stability under CT control. Images 
from www.healthgrades.com. 

2.2 Adverse Events and Crisis Simulation 

The occurrence of adverse event(s) is crucial since understanding the impact of risk or 
danger on clinical judgement and skill is a vital element in becoming experienced [2]. 
During percutaneous vertebroplasty the most common complication is cement extra-
vasation, i.e. cement leakage. When a leakage is not recognized during the procedure, 
a pulmonary embolism may develop as more PMMA is injected and increasingly 
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migrates into the venous system. A reason for a surgeon’s failure to recognize cement 
leakage is the lack of monitoring cement flow in caudal and cranial directions during 
(CT) guidance. As a result, an anesthesiologist aware of the procedure-related risks is 
present during surgery and can interpret clinical signs of a pulmonary embolism (i.e. 
sudden oxygen desaturation) and communicate it to the surgeon [16]. 

3 The VR Surgical Procedural Simulator for Vertebroplasty 

Our setup consists of a haptic device for instrument interaction (Figure 2-1), a pad into 
which the instruments can be inserted (Figure 2-2), a CT scanner mock-up including a 
positioning laser (Figure 2-3), a foot switch triggering CT image acquisition (Figure 2-
4) and a monitor showing acquired CT images (Figure 2-7). A computerized mannequin 
simulator is placed onto the operating room (OR) table (Figure 2-5), the pad is fixed on 
the mannequin using a tension belt and the haptic device is attached to the table using a 
standard clamp. The computerized mannequin simulator is connected to the diagnostic 
devices (Figure 2-8) and finally draped. Real surgical instruments (Figure 2-9) can be 
attached to and detached from the haptic device using a clipping mechanism (Figure 2-
6). CT imaging data is used to generate haptic feedback delivered to the instrument and 
visualize the patient’s anatomy in combination with the simulated instrument on the CT 
monitor. The pad, essentially a box covered with synthetic skin, acts as housing for the 
instruments to avoid damage to the mannequin. 

 

Fig. 2. VR surgical procedural simulator for vertebroplasty 

3.1 Surgical Workflow Steps and Crisis Simulation 

The procedural steps were extracted from live surgery video recordings and literature [17] 
in conjunction with the feedback from expert surgeons. Through these surgical workflow 
steps the aim of our simulator is to realistically represent all sub-tasks of vertebroplasty up 
to cement injection and successful vertebral stabilization. Table 1 describes the tasks, 
instruments and learning objectives within three surgical workflow steps. 

Through a skin incision, the surgeon introduces a trocar into the virtual patient’s 
body and advances it further through the pedicle into the vertebral body using CT  
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guidance. Feedback generated by the haptic device gives the surgeon tactile information 
on the anatomy in contact with the instrument. Bone structures are discernible and clear-
ly distinguishable from soft-tissue. When the desired position is obtained with the trocar 
inside the vertebral body, the surgeon injects bone cement using a syringe. A cement 
model is used to discern the amount injected and it is consequently augmented on the 
CT slice images. Crisis simulation: an “unexpected event” is induced in terms of a ce-
ment extravasation into a perivertebral vein causing a lung embolism. The aim here is to 
provoke communication between anesthesiologist and surgeon to relay proper response 
for this adverse event. For example, the surgeon is supposed to learn to better discern 
cement leakage in the CT image, before the pulmonary embolism occurs. 

Table 1. Surgical workflow steps with corresponding instrumentation 

 

3.2 Technical Details on Instrumentation, Haptic Feedback and CT Simulation 

Instrumentation: The instrument interface consists of a haptic device with a custom-
made instrument connector and a pad, representing the patient's body, into which the 
instruments are inserted. The haptic device used is a Novint Falcon (Novint Technolo-
gies Inc., Albuquerque, NM, USA). It is a translation-only 3DOF variant of the  
delta-robot design which has the advantage of increased actuation stiffness [18]. The 
implications on the haptic feedback and the force reversal due to the fulcrum at the entry 
point are discussed in [22]. The end-effector of the Novint Falcon is detachable and can 
be replaced with custom attachments. Using rapid prototyping technology, we have 
developed an end-effector to which surgical instruments can be attached. The instru-
ments are equipped with a plastic ball which is clipped to the end-effector socket in a 
ball-joint manner. To determine the amount of cement injected, we have developed a 
level-gauge model consisting of a level gauge with a USB interface installed in a sy-
ringe barrel (Figure 4-left). The cement injection syringe, filled with white colored wa-
ter, is connected to it via a T-connector and standard syringe tubing. This T-connector 
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makes it possible to attach the syringe to the trocar, creating the impression of injecting 
the cement into it, while in fact the liquid is channeled away into the measuring device. 

Haptic Simulation: We use an approach similar to [21] to generate haptic feedback from 
CT imaging data. Specifically, two haptic primitives [23] described there, are used to 
generate the haptic feedback. The trocar path is modeled by a line primitive restraining 
the trocar from deviating. Trocar progression is controlled using a plane primitive exert-
ing resistance as the trocar is advanced through the tissue. Instead of defining the 
strength of the line primitive as a function of depth, we use the radio-opacity of the pe-
netrated tissue as an influencing factor. It is defined by accumulating samples along the 
instrument path, from the entry point to the tip of the instrument, that are interpreted 
using a transfer function (Figure 4, τα). A second transfer function (Figure 4, τβ) is used 
to map strength to a maximum penetration speed which is enforced by the plane primi-
tive as described in [21].The transfer functions were experimentally defined with expert 
surgeons. During this process, it became apparent that the bone corticalis could not be 
clearly perceived by the user. Therefore, we added a proxy-based surface haptics ren-
dering method [19] reflecting the distinct shape of the cortical bone using a surface 
mesh derived from a segmentation of the vertebrae. This has a high simulated stiffness 
and we simulate bone penetration by dropping the resistance if a particular force thre-
shold is exceeded. * The resistance also drops in reality as the bone corticalis is  
penetrated and the trocar advances into the brittle trabecular bone structures. 

 

Fig. 3. (Left) A close-up of the operating site. (Right) The CT monitor shows the corresponding 
CT scans for (a) trocar insertion and (b) gradual cement injection. 

CT Simulation: From Figure 3-right, CT imaging is used in our setup to mimic the sit-
uation in the real OR which supports the surgeon in instrument navigation, verification 
of access paths, and injection and control of the distribution of the bone cement. A 
mockup consisting of printed Styrofoam plates mounted on an aluminum frame 
represents the CT scanner. A line-laser fixed to the frame marks the image acquisition 
plane on the patient and the instrument. It can be used to define an entry point and to 
check whether the instrument is in-plane. Using a footswitch, the operating surgeon 
acquires CT images, which are displayed on a monitor placed on the opposite side of the 
patient. The monitor shows three CT slice images with the central image's acquisition 
plane denoted by the laser line and the left and right images cranial and caudal respec-
tively to the central image. The CT data used in this visualization originates from an 
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anonymized dataset acquired in an actual vertebroplasty procedure. The instrument 
visualization is achieved by rendering 3D models of the instruments in a clipping plane 
capping approach developed in [20]. This process is repeated with different anteroposte-
rior offsets for the clipping plane, blending the resulting images to simulate a slice 
thickness matching that of the original CT slices. The bone cement is modeled as a 
jagged sphere rendered using the same approach. The final images displayed on the 
monitor consist of the CT slice image superimposed with the instrument slice rendering. 

4 Results and Discussion 

Four surgeons participated in a user-study involving the completion of the surgical 
workflow steps described in the previous section. The participants had varied expe-
rience: two senior experts (>150 executed vertebroplasties) and two junior experts 
(<150 executed vertebroplasties). Each participant was immersed individually in our 
VR surgical simulator in combination with a mannequin connected to the monitoring 
device. An independent person with knowledge of physiological responses and monitor-
ing acted as the anesthesiologist. The surgeons were asked to give feedback using the 
Likert scale‒ a type of psychometric response and the most widely used scale in survey 
research. The subjects specified their level of agreement to a statement in our question-
naire. The 5-pt Likert scale format was: (1) Strongly disagree, (2) Disagree, (3) Neither 
agree nor disagree, (4) Agree, (5) Strongly agree. We assessed the face validity of the 
medical simulation environment, which is a subjective validation and usually used dur-
ing the initial phase of test construction [4]. However the intent of the evaluation goes 
even beyond, trying to get answers related to obstacles hindering immersion into the 
simulation scenario and to disseminate these to the research community. 

 
Fig. 4. (Left) Cement model and Level gauge with USB connector. (Right) Transfer functions  
τα and τβ. 

The Immersion Process: The surgeon entered the simulated operating theatre and was 
requested to put on medical gloves for single use. A short briefing about the patient was 
given: the patient’s name: ‘Mr. Huber’, age: ‘79’, bone structure: ‘osteoporotic bone’, 
the current level: ‘oxygen saturation 98%’, and that a local anesthesia was conducted, 
thus the ‘patient is currently awake’. Then they were informed about the scenario and 
made familiar with the theatre environment. Afterwards, the independent anesthetist 
assumed his position on the other side of the CT scanner. The CT scanner and the pa-
tient monitor sound were turned on. The three surgical workflow steps were performed 
with real medical instruments and with the aid of VR, haptic, and multisensory feedback 
at specific instants of the procedure. During surgical workflow step 3, the simulation 
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instructor introduced a visualization depicting cement extravasation into a perivertebral 
vein. Furthermore, the physiology of the computerized mannequin was influenced by 
the instructor simulating a lung embolism by gradually lowering the oxygen saturation 
from 98% to 80% beginning at a standardized point during the procedure. The simula-
tion was stopped after the communication between the surgeon and the anesthetist oc-
curred which determined their acknowledgment that an adverse event occurred. 

Survey Results: Table 2 provides details on the average scores for the survey. The 
scores were categorized as: workflow steps face validity, crisis simulation, face va-
lidity and simulation environment. There were consistently high levels of agreement 
for all the questions. The group of surgeons thought that the modeling of workflow 
step 1 is realistic. The majority found that the realism is high during workflow step 2. 
They considered the simulation of workflow step 3 and 4 realistic as well. The ques-
tions pertaining to the face validity of the simulation setup were answered with an 
overall Likert score of 4.5‒ signifying that the simulation is realistic. 

Table 2. The mean values of the statements scored on 5-Point Likert Scale (variance in 
parentheses) 

 

Limitations: The lowest score was assigned during workflow step 3 related to the usage 
of the syringe and visualization of the cement in CT. Here, surgeons differed in re-
sponse claiming that the manual pressure they had to apply on pushing the stamp of the 
syringe was either too low or too high. A major complaint of the surgeons was that the 
movement of the trocar used in workflow step 2 was not sufficiently limited by the bone 
tissue. After the surgeons placed the trocar inside the vertebra they could still move it 
laterally. This aspect does not reflect the surgeons experience with this instrument beha-
vior during real surgeries and therefore it decreased the level of realism. 

Overall Assessment: The complete simulation environment was ranked with an av-
erage Likert score greater than 4.5 when assessing all aspects of the realism of the 
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simulation environment, specifically on whether it is suitable for the training of  
technical skills team training. 

Synopsis: The goal for the modern learner is to arrive at the bedside of a real patient 
with proficiency already demonstrated in the requisite skills. In this process, the most 
expensive and scarce resource is the experienced clinical instructor. In this area, the 
synergy between computer-assistance and real medical instrumentation can make 
invaluable contributions by enabling focused and deliberate practice to further moti-
vate the trainee. Thus, clinical education specialists need a customizable medical si-
mulation environment to experiment with new learning models and training regimens. 

In this paper, we outlined some key aspects that we believe should characterize a 
customizable simulation environment. We have designed a procedural VR simulator, 
in combination with mannequin technology, into an OR training and assessment envi-
ronment. The simulator is capable of representing the entire surgical workflow includ-
ing a medical imaging device simulation with the capacity to use patient-specific data, 
thus allowing the representation of a broad range of anatomical and pathological va-
riety. Real surgical tools and instruments are augmented with realistic haptic feed-
back. Inherently, we also addressed a broad spectrum of human sensory channels such 
as tactile, auditory and visual channels in real time. 

To our knowledge this is the first VR simulator with the capacity to control the in-
troduction of adverse events or complication yielding a wide spectrum of highly ad-
justable crisis simulation scenarios. Moreover, this is the first study that combines a 
VR simulator with a computerized mannequin simulator in an OR crisis simulation 
scenario. Future work will involve the improvement of: (i) haptics feedback, in par-
ticular limiting the lateral movement of the trocar inside bone tissue and (ii) CT scan-
ner being substituted with intraoperative C-arm fluoroscopy. NOTE: we will add (the 
possibility to use) fluoroscopy as a second imaging modality for guidance. 

5 Conclusions 

This study has demonstrated the face validity or realism of our medical training envi-
ronment. Our conclusions validate the importance of incorporating surgical workflow 
analysis together with VR, human multisensory responses, and the inclusion of real 
surgical instruments when considering the design of a simulation environment for 
medical education. The proposed training environment for individuals can be certain-
ly extended to training medical teams. 
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Abstract. Off-pump beating heart surgery requires a guidance system
that would show both pertinent cardiac anatomy and dynamic motion
both peri- and intra-operatively. Optimally, the guidance system should
show high quality images and models in a cost-effective way and can be
easily integrated into standard clinical workflow. However, such a goal
is difficult to accomplish by a single image modality. In this paper we
introduce a method of generating a synthetic 4D cardiac CT dataset
using a single (static) CT, along with 4D ultrasound images. These syn-
thetic images can be combined with intra-operative ultrasound during
the surgery to provide an intuitive and effective augmented virtuality
guidance system. The generation method obtains patient specific car-
diac motion information by performing non-rigid registrations between
pre-operative 4D ultrasound images and applies the deformation to a
static CT image to deform it into a series of dynamic CT images. Val-
idations was performed by comparing the synthetic CT images to real
dynamic CT images.

Keywords: image guided intervention, augmented virtuality, beating-
heart surgery, synthetic CT, non-rigid registration.

1 Introduction

Compared to conventional cardiac surgery procedures, minimally invasive beat-
ing heart interventions limit the need for thoracic trauma and remove the need to
arrest the heart. [1,2] While these approaches have grown in popularity recently,
they are often limited by the lack of a direct view of surgical targets and/or tools,
a challenge that is compounded by potential movements of the target during the
cardiac cycle. For this reason, sophisticated image-guided navigation systems are
required to assist in procedural efficiency and therapeutic success.

For minimally invasive beating heart surgical procedures, the optimal naviga-
tion system would show both the pertinent cardiac anatomy and the dynamic
motion of the surgical targets throughout the cardiac cycle. It should also be cost
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efficient and be easily integrated into standard workflow within the operating
room. Such a goal is however difficult to accomplish successfully using a sin-
gle imaging modality. For example, fluoroscopy can only provide 2D projection
images and barely shows the anatomical structures. Intra-operative MRI has
the capability of displaying cardiac anatomy and motion dynamically during
interventions [3], but is very expensive, requires developments of novel, non-
ferromagnetic tools and devices, and is unavailable in most institutions. On the
other hand, intra-operative trans-esophageal ultrasound is more accessible and
clinically feasible, but its field of view remains relatively restricted. Further-
more, artifacts, such as acoustic shadowing, can limit the capacity to accurately
develop volumetric models. Another cardiac imaging technique, retrospectively
gated CT, can provide dynamic volumetric imaging, but the temporal resolu-
tion is limited by the gantry rotation speed and radiation dose exposure can be
many times that of a static scan [7]. Accordingly, no single imaging modality
appears to be ideal for the provision of 4D cardiac modeling to plan and guide
cardiovascular procedures.

Some previous work has suggested the use pre-operative high spatial resolu-
tion CT and intra-operative 4D ultrasound images within a navigation system
[4,5], both of which are commonly used during the standard clinical workflow
for cardiac interventions. However, prior work [8] has shown that registering a
4D ultrasound sequence to a single, static CT image will result in high target
registration errors (TRE) at cardiac phases other than that represented by the
initial CT scan, because of intra-cycle cardiac morphology changes. To overcome
this problem without introducing extra radiation dose to the patient, we pro-
pose a solution that would allow a high-resolution 4D synthetic CT dataset be
derived from a single 3D CT being iteratively deformed to create a dynamic
4D sequence using 4D ultrasound data as a target. These pre-operatively gener-
ated images would be employed to provide a high quality 4D anatomical context
through visualization of some or all structural components spatially co-registered
(and ECG-synchronized) to the patient using standard intra-operative imag-
ing, such as 2D/3D ultrasound. With these real-time registration techniques, an
augmented reality framework can be developed and integrated into navigation
platforms to provide critical information to surgeons at the time of intervention.

Muchworkhasbeenperformed towards estimating cardiacmotion inultrasound
and MRI images by using non-rigid registration [9-12], with most of the reports
suggesting that the estimatedmotion canbe used for the assessment of both cardiac
motion and mechanics. In this paper, we introduce a new concept that attempts
to combine the motion estimation obtained from dynamic ultrasound images with
a static CT image, to generate a synthetic dynamic CT dataset. These synthetic
CT images can take advantage of the higher temporal resolution of the ultrasound
images upon which they are modeled. By introducing these synthetic CT images
into anavigation system,weanticipate improvedmodel-to-patient registrationand
more intuitive visualization of therapeutic targets for beating heart surgeries.

Validation was performed by comparing the synthetic CT images to ground
truth dynamic CT images. Quantitiative metrics were obtained by computing
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the Dice Similarity Coeffcients (DSC) and Root Mean Square (RMS) errors for
the entire left ventricle.

2 Methods

2.1 Overall Workflow

The suggested workflow for generating synthetic CT images and integrating the
images into clinical workflow is described below (Fig. 1). In the pre-operative
stage, a 4D synthetic CT dataset is generated based on a static CT and 4D
ultrasound images from the patient and then brought into the OR. An initial
registration is performed between a peri-operative ultrasound volume and a syn-
thetic CT image with the same or closest cardiac phase using feature based
registration. The resulting registration transform is then used as an initializa-
tion for the intra-operative CT to ultrasound registration, and refined by image
based registration. Surgeons can choose different visualization modes, such as
direct overlay, visualization of the ultrasound image with a “window” in the CT
volume, or simply extracting critical features from the CT of US volumes and
displaying them within the ultrasound or CT volume, to provide visual linkage
between the ultrasound images, CT images, and models of instruments that may
also be needed within the scene.This paper focuses on the pre-operative stage
part.

2.2 Non-local Means Filtering for Ultrasound Images

In an effort to improve the smoothness of the deformation fields obtained from
non-rigid registrations between ultrasound images, a restoration step is first ap-
plied on the ultrasound images. However, restoration of ultrasound images is
known to be very challenging, because speckle, as an inherent charactoristic of
ultrasound images, is tissue-dependent and cannot be easily modeled. In 2009,
Coupé et al. proposed a nonlocal means based speckle filter to perform speckle
reduction and reported competitive results on both synthetic and patient data
[18]. In this paper, we used this method to smooth the ultrasound images before
the non-rigid registration.

The original patch-based nonlocal recovery paradigm was proposed by Buades
et al. [19] The general assumption behind it is that for those points in an image
representing the same feature, similarity should not only be observed in intensi-
ties of the pixels, but also in the patterns surrounding them. Since the nonlocal
means methods compare patches around pixels instead of pixels themselves, the
computational complexity become a common drawback of those methods. To
perform such a method on a n3 volume with a search volume size m3 and a
patch size p3, the computational complexity can be O(n3m3p3). However, since
the method described in [18] treats each voxel independently, we were able to
parallelize the method with a GPU implementation and greatly reduced the
computation time from hours to about three minutes per volume. One example
of ultrasound image, filtered using nonlocal means with search volume size 93

and patch size 73 , is shown in Fig.2
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Fig. 1. Overall workflow showing how synthetic dynamic CT images are generated and
integrated into a navigation system

2.3 Generating Synthetic CT Images

The methodology employed to generate the synthetic dynamic CT images is
to perform non-rigid registrations between ultrasound images within a single
cardiac cycle to obtain patient specific heart motion maps, in the form of defor-
mation fields, and to apply these vector maps to CT images to provide synthetic
animation.(Fig. 3) In this approach, at least one sequence of 3D TEE images,
representing at least one complete cardiac cycle, and one single frame cardiac
CT images must be acquired.

The procedure begins with selecting one ultrasound image, acquired at a car-
diac phase close to the static CT image, as a reference. A rigid registration [8]
is then performed between this image and the static CT image. This step be-
gins with semi-automatically segmenting the inner wall of the left ventricle [20]
from both the static CT image and the reference ultrasound image, and using
the iterative closest point (ICP) method to align the surfaces. The alignment is
then refined by a mutual information based registration [16] resulting in an op-
timized transform. All the other ultrasound images in the 4D sequence are then
rigidly registered to the reference image as initialization for the later non-rigid
transform.

After the initial rigid registration step, non-rigid registrations are performed
among the 3D ultrasound images in the 4D sequence and the resulting deforma-
tion fields are recorded. This can be achieved either by registering the reference
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Fig. 2. An example of ultrasound images smoothed by nonlocal means based filtering.
First row: original TEE image. Second row: nonlocal means smooth image. Speckle is
greatly reduced, while anatomical features are mainly retained in the smoothed images.

image directly to every image in the sequence, or by performing a registration
between adjacent frames. The deformation fields obtained from the non-rigid
registration are used as cardiac motion maps and applied to the static CT im-
age to generate a synthetic dynamic CT sequence. By performing the approach
for each frame, we generate an entire sequence of synthetic dynamic CT im-
ages with the same temporal resolution as the dynamic ultrasound images. For
this operation we employed the mult-resolution fast free-from (F3D) deforma-
tion registration method of Modat et al.[13] because of its capability of handling
the morphological deformation due to cardiac motion and providing relatively
smooth deformation fields.

3 Experiments and Results

Images employed in this study were acquired under a protocol approved by the
institutional office of research ethics. In our validation studies, we used dynamic
CT images obtained from retrospectively gated CT scans and reconstructed as
ten frames per cardiac cycle as the gold standard. The first frame in the se-
quence is at mid-diastole. We also obtained patient-specific pre-operative trans-
esophageal echocardiogram (TEE) images. All the data were collected retrospec-
tively and anonymized. The voxel spacing of the dynamic CT and ultrasound
images are about 0.4× 0.4× 1.3(mm) and 0.8× 0.8× 0.7(mm) respectively. CT
images were acquired on a GE Lightspeed 7-VCT scanner and the ultrasound
images on a Philips iE33 X7-2t TEE probe.

The first CT frame was chosen as the reference image from which the synthetic
dynamic image set was constructed. Fig. 4 shows two slices, one at end diastole
and the other at end-systole, from the synthetic CT dataset. After computing
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Fig. 3. Flowchart depicting the generation of synthetic CT images

Table 1. DSC between synthetic and original CT images

# of frames 2 3 4 5 6 7 8 9 10 mean

Patient 1 0.85 0.84 0.76 0.80 0.84 0.86 0.86 0.87 0.89 0.84
Patient 2 0.82 0.79 0.74 0.76 0.77 0.86 0.90 0.89 0.90 0.83
Patient 3 0.88 0.83 0.83 0.78 0.78 0.77 0.82 0.87 0.85 0.82
Patient 4 0.91 0.83 0.83 0.84 0.82 0.88 0.86 0.85 0.88 0.86
Patient 5 0.85 0.78 0.69 0.68 0.79 0.79 0.74 0.78 0.83 0.77

the synthetic CT dataset, we compared the corresponding frames to the original
dynamic CT volumes. Since synthetic and original CT images have different
frame rates, for each original CT image, we manually select the synthetic CT
images with the closest cardiac phase to the original CT for comparison. The left
ventricules were segmented from both the synthetic and original images. Fig. 5
shows an example of the segmented left ventricles from original and synthetic
CT images.

Dice similarity coefficients (DSC) were computed to exam the overlap between
the synthetic and original left ventricles, while mean RMSE of the ventricle sur-
faces were computed to exam the physical distances between them. The results
are listed in Table 1 and Table 2.

We also computed short-axis slicewise DSC from basal to apical to obtain an
error map along the longitudinal axis. The best and worst cases, i.e. patient 4
and patient 5, from the current validation are shown in Fig. 6, in which we ob-
serve that, for most of the frames, the slicewise DSC slightly changed along the
longitudinal axis. However, we also noticed that for patient 5, the slicewise DSC
for two systolic frames decreased significantly when approaching the apex. By
visualizing and comparing the boundaries of the left ventricles from two slices,
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Fig. 4. An example of synthetic CT images. Left: a slice from an end-diastole frame.
Right: the corresponding slice from an end-systole frame.

Fig. 5. An example of surfaces of the manually segmented left ventricles from original
and synthetic CT images, showing the contraction and dilation within one cardiac
cycle. First row: surfaces from original dynamic CTimages. Second row: surfaces from
synthetic CT images.

Table 2. RMSE between synthetic and original CT images (mm)

# of frames 2 3 4 5 6 7 8 9 10 mean

Patient 1 3.06 3.10 4.61 3.69 2.95 2.72 2.79 2.74 2.75 3.16
Patient 2 3.20 3.81 4.80 4.42 4.20 2.48 2.10 2.27 2.29 3.29
Patient 3 2.55 3.11 2.72 3.91 4.09 4.36 3.42 2.64 2.71 3.28
Patient 4 1.77 3.20 2.80 2.64 3.04 2.20 2.77 2.85 2.31 2.62
Patient 5 1.83 2.35 3.44 3.50 2.13 1.96 2.47 2.44 2.04 2.46

one close to mitral valve plane, the other close to apex, from patient 5 (Fig. 7), we
can see that the boundaries aligned very well in the basal slice, while the bound-
ary of the original CT was completely contained by the one of synthetic CT in
the apical slice. This implied that the synthetic CT under-estimate the ventricle
contraction for this patient. The reason of this is discussed in the next section.
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Fig. 6. Slice-by-slice dice metrics along the longitudinal axis (Each colored line repre-
sents a different cardiac frame)

Fig. 7. Comparison of LV boundaries of synthetic and original CT image from two
slices. The boundary from the synthetic CT is shown as a red curve, while the one
from the original CT is shown in blue. (a) A basal slice, in which the boundaries align
with each other quite well. (b) An apical slice, in which the boundary from the synthetic
is much larger and contained the one from the original CT completely.

4 Discussion

The validation based on DSC and RMSE showed good results for most of the
frames in a single cardiac phase, while there were some issues with two systole
frames of patient 5. In the slice-by-slice DSC diagram (Fig. 7), we can see that
the DSC remained high at the upper half of the ventricle for all the frames.
However, two systolic frames presented low DSC at the lower half of the ventricle.
Looking at these data more carefully, it became evident that the surfaces from
the synthetic CT images were completely contained by the surfaces from the
original CT images.

Temporal registration issues can be one of the reasons causing this inconsis-
tency. The ultrasound images of patient 5 have very low frame rate, i.e. 7 frames
per cardiac cycle, which is much lower the frame rate of the other dataset,
i.e. 25 frames per second. The low frame rate makes it difficult to align the
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ultrasound and CT images temporally and a small misalignment may lead to
large difference in the shape of left ventricle because of the fast myocardial mo-
tion at systole. Another reason could be the difference in cardiac motion during
the CT and ultrasound scans. In the CT scans, β-blockers are commonly used to
reduce the patients’ heart rate, while this does not apply for ultrasound scans.
Also, patients are usually under general anaesthetic during the TEE scans , while
they are awake during the CT scans. However, this may promote the motivation
to employ synthetic CT images, because the motion represented in the synthetic
images is derived from pre-operative ultrasound, which should represent heart
motion that is similar to the intra-operative ultrasound images.

Since the static CT images is deformed according to the deformation fields
derived from the ultrasounds images, the field of view (FOV) of the ultrasound
images can be a limitation of this method. Only those features that are presented
in the ultrasound images will be deformed in the synthetic CT images. Clinicians
can decide what features should be deformed and visualized for guidance purpose
and perform the ultrasound scan accordingly. If the FOV of the ultrasound scan
cannot cover all the required features, combining several ultrasound volumes
covering different areas with some image stitching alogrithms may be a solution
to overcome this limitation.

5 Conclusion and Future Work

This paper introduced a novel methodology that attempts to exploit the high
temporal resolution of ultrasound imaging and high spatial resolution of CT
imaging to generate a novel, high spatio-temporal resolution synthetic CT
dataset. Our initial results lays the foundation for future work, validating its
accuracy for modeling anatomic cardiac motion in different disease states, and
validating the implementation of cardiac model development for the guidance of
minimally invasive procedures within augmented reality environments.

References

[1] Dotty, D.B., Flores, J.H., Doty, J.R.: Cardiac valve operations using a partial
sternotomy technique. J. Card. Surg. 15, 35–42 (2000)

[2] Vassiliades, T.A., Block, P.C., Cohn, L.H.: The clinical development of percuta-
neous heart valve technology. J. Thorac. Cardiovasc. Surg. 129, 970–976 (2005)

[3] McVeigh, E.R., Guttman, M.A., Kellman, P., Raval, A.A., Lederman, R.J.: Real-
time interactive MRI for cardiovascular interventions. Acad. Radiol. 12, 1221–1227
(2005)

[4] Linte, C.A., Moore, J., Wedlake, C., Bainbridge, D., Guiraudon, G.M., Jones, D.L.,
Peters, T.M.: Inside the beating heart: An in vivo feasibility study on fusing pre-
and intra-operative imaging for minimally invasive therapy. Journal of Computer
Assisted Radiology and Surgery 4(2), 113–123 (2009)

[5] Linte, C.A., Moore, J., Wiles, A.D., Wedlake, C., Peters, T.M.: Virtual reality-
enhanced ultrasound guidance: A novel technique for intracardiac interventions.
Comput Aided Surg. 13(2), 82–94 (2008)



20 F.P. Li et al.

[6] Huang, X., Hill, N.A., Ren, J., Guiraudon, G.M., Boughner, D.R., Peters, T.M.:
Dynamic 3D ultrasound and MR image registration of the beating heart. In: Dun-
can, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 171–178. Springer,
Heidelberg (2005)

[7] Shuman, W.P., Branch, K.R., May, J.M., Mitsumori, L.M., Lockhart, D.W., Du-
binsky, T.J., Warren, B.H., Caldwell, J.H.: Prospective versus retrospective ECG
gating for 64-detector CT of the coronary arteries: comparison of image quality
and patient radiation dose. Radiology 248(2), 431–437 (2008)

[8] Li, F., Lang, P., Rajchl, M., Chen, E.C.S., Guiraudon, G., Peters, T.M.: Towards
real-time 3D US-CT registration on the beating heart for guidance of minimally
invasive cardiac interventions. In: Proc. SPIE, vol. 8316, p. 831615 (2012)

[9] Ledesma-Carbayo, M.J., Kybic, J., Desco, M., Santos, A., Suhling, M., Hunziker,
P., Unser, M.: Spatio-temporal nonrigid registration for ultrasound cardiac motion
estimation. IEEE Trans. Med. Imaging 24(9), 1113–1126 (2005)

[10] Shi, W., Zhuang, X., Wang, H., Duckett, S., Luong, D.V., Tobon-Gomez, C.,
Tung, K., Edwards, P.J., Rhode, K.S., Razavi, R.S., Ourselin, S., Rueckert, D.:
A Comprehensive Cardiac Motion Estimation Framework Using Both Untagged
and 3-D Tagged MR Images Based on Nonrigid Registration. IEEE Trans. Med.
Imaging 31(6), 1263–1275 (2012)

[11] Wierzbicki, M., Drangova, M., Guiraudon, G.M., Peters, T.M.: Validation of dy-
namic heart models obtained using non-linear registration for virtual reality train-
ing, planning, and guidance of minimally invasive cardiac surgeries. Medical Image
Analysis 8(3), 387–401 (2004)

[12] Sundara, H., Littb, H., Shen, D.: Estimating myocardial motion by 4D image
warping. Journal Pattern Recognition 42(11), 2514–2526 (2009)

[13] Modat, M., Taylor, Z.A., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.:
Fast free-form deformation using graphics processing units. Comput. Meth. Prog.
Bio. 98(3), 278–284 (2010)

[14] Peyrat, J.M., Delingette, H., Sermesant, M., Pennec, X., Xu, C., Ayache, N.:
Registration of 4D time-series of cardiac images with multichannel Diffeomorphic
Demons. Med. Image. Comput. Comput. Assist. Interv. 11(Pt. 2), 972–979 (2008)

[15] Vemuri, B.C., Ye, J., Chen, Y., Leonard, C.M.: Image registration via level-set
motion: applications to atlas-based segmentation. Medical Image Analysis 7, 1–20
(2003)

[16] Pluim, J.P.W., Antoine Maintz, J.B., Viergever, M.A.: Mutual information based
registration of medical images: a survey. IEEE Trans. Med. Imaging 22(8), 986–
1004 (2003)

[17] Rogalla, P., Kloeters, C., Hein, P.A.: CT technology overview: 64-slice and beyond.
Radiol. Clin. North Am. 47(1), 1–11 (2009)
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Abstract. The current state of the art for identification of motor related neural 
activity during deep brain stimulation (DBS) surgery utilizes manual 
movements of the patient's joints while observing the recorded raw data of a 
single electrode. Here we describe an intra-operative method for detection of 
the motor territory of the subthalamic nucleus (STN) during DBS surgery. The 
method incorporates eight goniometers that continuously monitor and measure 
the angles of the wrist, elbow, knee and ankle, bilaterally. The joint movement 
data and microelectrode recordings from the STN are synchronized thus 
enabling objective intra-operative assessment of movement-related STN 
activity. This method is now used routinely in DBS surgery at our institute. 
Advantages include objective identification of motor areas, simultaneous 
detection of movement for all joints, detection of movement at a joint that is not 
under examination, shorter surgery time, and continuous monitoring of STN 
activity for patients with tremor. 

1 Introduction 

Deep brain stimulation (DBS) surgery of the subthalamic nucleus (STN) is an 
effective treatment for the motor symptoms of advanced Parkinson's disease (PD). 
Accurate localization of the STN is essential for optimal outcome of DBS treatment. 
Therefore, microelectrode recording (MER) is often utilized for target validation and 
refinement [1–8]. Typically, MER signals are observed both visually and with audio 
during passive movement of the patient's joints by the physician to identify motor 
related areas within the STN. MER has been shown to facilitate the accurate detection 
of the anatomical and motor-function boundaries of the STN [1–3, 9, 10]. 
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Fig. 1. Illustration of the goniometer setup during deep brain stimulation surgery. Eight 
goniometers are attached to the right and left wrist, elbow, knee and ankle of the patient and 
enable online synchronization of joint motion information with multiple (2-5) microelectrodes 
recordings. 

However, passive movement is not always optimal and has some potential 
disadvantages. Firstly, the decision as to whether a MER response represents motor 
activity is entirely subjective. For example, it is not unusual that the physician is 
unsure whether there was an MER response to the passive movement or not; 
Secondly, several (2-5) parallel electrodes are usually used during surgery and it is 
necessary to repeat the passive movement test for each electrode separately. Finally, 
tremor (involuntary repetitive movement) is a common symptom of PD that provides 
a continuous motor activity that is not well exploited.  

2 Methods 

We have developed a method that aims at overcoming these limitations. The 
technique comprises eight goniometers that continuously measure the real time angles 
of the right and left wrist, elbow, knee and ankle, synchronized with STN MER of 
several (2-5) electrodes (Fig. 1 and Fig. 2). Custom software allows the physician to 
select the STN location for which a passive movement test was performed or tremor 
was observed during the MER (Fig. 3). The software automatically detects significant 
movements and allows the manual revision of the automatic selection with a user 
interface.  Optionally, the motion can be classified into flexion/extension and average 
STN activity and average of movements can be plotted (Fig. 4). Finally, correlation 
coefficients can be computed, color coded and mapped within the STN MER 
trajectories (Fig. 5) to quantify the relations between the MER and joints movements. 
The system described has been validated and is now routinely used in DBS surgeries 
at our institute to assist the surgical team to identify the STN motor zones. Described 
in detail below are the DBS surgery, microelectrode and goniometer recordings, and 
our custom software. 
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(a)  passive movement                               (b) tremor movement 

Fig. 2. Examples of microelecrode recordings (above) and goniometers (below) during passive 
movement (a) and a tremor episode (b). Different time scales are used to illustrate specific 
properties. (a) An increase in STN activity is observed with the onset of passive movement test. 
(b) The STN activity was similar in frequency and timing to that of the joint movement during 
tremor. Note the small angle change of tremor compared to the larger change associated with 
passive movement. Subjective estimation of the relation between the small and fast movements 
that characterize tremor is often impossible, but it can be observed with the synchronization of 
goniometers (b). 

2.1 DBS Surgery, Goniometer and Microelectrode Recordings 

Surgeries were performed using the CRW stereotactic frame (Radionics, Burlington, 
MA, USA). The STN target coordinates were chosen as a composite of indirect 
anterior commissure—posterior commissure atlas based location and direct 3T T2 
magnetic resonance imaging (MRI), using Framelink 5 software (Medtronic, 
Minneapolis, USA). All recordings used in this study were made while the patients 
were awake and not under sedation. The patient’s level of awareness was 
continuously assessed clinically, and if drowsy the patient was stimulated and awoken 
through conversation by a member of the surgical team. The side (right/left) of the 
first trajectory was chosen according to the severity of the Parkinsonian symptoms. 
Data were obtained off dopaminergic medications (>12 h since last medication).  

MER data was acquired with the MicroGuide system (AlphaOmega Engineering, 
Nazareth, Israel). Neurophysiological activity was recorded via polyamide coated 
tungsten microelectrodes (Alpha Omega) with impedance mean±SD: 0.59±0.13 MΩ 
(measured at 1 kHz at the beginning of each trajectory). The signal was amplified by 
10,000, band-passed from 250 to 6000 Hz, using a hardware four-pole Butterworth 
filter, and sampled at 48 kHz by a 12-bit A/D converter (using ±5 V input range). 
Local field potentials were not recorded due to constraints of electrical noise in the 
operating room. For both the left and right hemispheres, a microelectrode recording 
trajectory using two parallel microelectrodes was made, starting at 10mm above the 
calculated target (center of the STN as per imaging). A ‘central’ electrode was 
directed at the center of the dorsolateral STN target, and an ‘anterior’ electrode was  
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                       (a) Passive movement                                    (b) Tremor 

Fig. 3. Comparison of the joint motion (black) and STN MER activity (red) in a unified scale 
axes after Z-score transformation. Different time scales are used to present similar number of 
movement periods. 

advanced in parallel, 2mm anterior (ventral) to the central electrode (in the 
parasagittal plane). A typical trajectory was ~60° from the axial anterior commissure–
posterior commissure plane and ~15° from the mid-sagittal plane. Final trajectory 
plans were slightly modified to avoid the cortical sulci, the ventricles and major blood 
vessels. The electrodes were advanced in small discrete steps of ~0.1mm within the 
STN along the planned trajectory. One axis of movement (flexion and extension) was 
recorded for each joint with a goniometer (Biometrics Ltd., Newport, UK; SG series, 
twin axis goniometers). The goniometer signals were amplified, sampled at 3KHz and 
fed into the MicroGuide acquisition system. Hence the goniometer and 
microelectrode recordings were synchronized (~0.02 ms accuracy) with each other 
(Fig. 2). Locations for which a tremor was observed during recording were marked. 

Passive movement tests were performed every ~1.5mm following STN entry. A 
typical passive movement test included 5-10 repetitive large movements of the contra-
lateral wrist, elbow, knee and ankle in frequency range of 1-2Hz. The STN entry and 
exit were discerned visually by the neurophysiologist as a sharp increase and decrease 
in the background activity, respectively. STN boundaries are confirmed and the 
dorsolateral oscillatory region that is associated with motor function can be 
automatically detected using a custom method [5]. Analysis of joint movement 
relative to MER can then be performed at selected STN locations and quantitative 
information can be analyzed. Finally, DBS was activated in the operating room for 
several minutes to evaluate treatment efficacy and possible adverse effects prior to 
implantation of the permanent stimulating macroelectrode.  

2.2 Software 

The raw MER signals were rectified by the ‘absolute’ operator to detect burst 
frequencies below the range of the operating room 250–6000Hz band-pass filter [11]. 
The rectified MER and goniometer signals were smoothed with a digital eight-order 
low-pass Chebyshev Type I filter and down-sampled at 200Hz. Then, the MER and 
goniometers signals Z-score are computed to indicate how many standard deviations 
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(a)  extension                              (b) flexion 

Fig. 4. Peristimulus time histograms of average responsive MER activity (red) and average 
joint movement (black) during passive movements extension (a; n=12) and flexion (b; n=4). 
The shadows around the solid lines represent the standard error of the mean.  

the MER energy and joints angle change below or above the mean activity level and 
to compare the physical motion with STN activity in a unified scale (Fig. 3). Pearson's 
correlation coefficients are then computed on these signals. The angular velocity is 
estimated with a numerical derivative of the goniometer signal and segments for 
which the angular velocity was low for more than two seconds are excluded from the 
MER and goniometer signals. 

Time points at which velocity is locally maximal are computed and the direction 
(sign) of the velocity used to segment extension (positive sign) and flexion (negative 
sign) movements. Each segment is assigned with a unique time axis and its origin 
defined at the local maximal velocity point. The average MER activity and joint angle 
is then computed for flexion and extension with respect to the segments new time 
axes (Fig. 4). For an intuitive comparison of the relation of MERs to motor activity at 
various STN locations, the correlation values are color coded and generate a map that 
summarizes this information (Fig. 5). The map presents the correlation of each of the 
eight goniometers at all MER locations along the trajectory in the STN.  

3 Results 

The described method was tested on 17 PD patients. It is now routinely used in DBS 
surgeries at our institution and assists in validation of the STN motor zone. In 
addition, several interesting results have been observed using this technique. The first 
is that responses to passive movement are observed for multiple joints on both sides 
of the body (Fig. 5). This is somewhat surprising as according to the classical model 
of the STN, the motor output projects only to the contra-lateral hemibody. Mechanical 
coupling between joints was tested and we observed no physical coupling between 
joints of different limbs. Evidence for loss of specificity in the STN has previously 
been reported and supports these findings [12–16]. Furthermore, this may explain 
studies reporting bilateral improvement after unilateral STN DBS [17–19]. PD is 
occasionally asymmetrical, such that unilateral DBS may suffice in some cases. In 
addition to the reduction of surgical risk, unilateral DBS may be associated with less  
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                                  STN IN                               estimated distance from target (mm)                        STN OUT 

Fig. 5. Correlation map of MER activity and joint angles of one trajectory in the left 
STN. The x-axis is the estimated distance from target defined on the MRI image  
(in mm). The vertical black lines indicate the STN entry and exit points. The red 
codes for high correlation values and blue for low ones. The plus sign at the first row 
indicates locations where passive movement test was performed. The continuous red 
line above indicates that this region of the STN was oscillatory in the beta frequency 
(12-30Hz) and thus expected to be associated with motor functions. 

motor, cognitive and psychiatric adverse effects in comparison to bilateral treatment 
[20]. The second observation is that targeting the STN based on preoperative images 
alone without intra-operative feedback may result in suboptimal electrode location. In 
the case presented in Fig. 5, for example, the MER at the target of the MRI (x = 0mm) 
is not highly correlated with the joint movements. In this case, selecting a target 3-
4mm dorsal to the one defined on the MRI may result in a better efficacy. To this end, 
the distribution of the motor area within the STN on 55 microelectrode trajectories of 
17 PD patients was analyzed (Fig. 6). More significant correlations (p<0.05, r>0.08) 
are observed in the dorso-lateral region of the STN (56%; dark grey area) in 
comparison to the ventro-medial non-oscillatory region (42%; light grey area). 

This data may be considered in the target selection of the following surgeries. For 
example, a consistent shift from the STN center can be computed and incorporated in 
the planning stage. 

4 Discussion 

The described method enables the surgical team to inspect the STN activity with 
respect to the actual movements of eight bilateral joints. In addition to the 
presentation of the raw data (Fig. 1), the data is smoothed, transformed into a unified 
scale (Fig. 2), and averaged (Fig. 3) for an intuitive inspection of the relation between 
the STN activity and a joint movement. A color coded correlation map enables the 
intuitive comparison of the relation of different STN locations to motor activity  
(Fig. 5). Since the goniometers and electrodes data are recorded simultaneously, there 
is no need to repeat the passive movement test for each electrode separately. Thus, a 
reduced surgery time is expected. Moreover, concurrent movements of various joints 
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can be detected for better screening of STN activity. For example, it is possible to 
detect a voluntary or tremor movement of joints during a passive movement test of 
another joint. The method allows monitoring of STN activity during tremor 
movements, even though these are usually of small magnitude, fast, and may occur at 
several joints simultaneously. In addition, continuous monitoring affords assessment 
of tremor episodes that may appear frequently during the DBS surgery. 

Beyond the immediate contribution to intraoperative practice, this technique may 
open further horizons for the treatment and understanding of Parkinson's disease. For 
example, a STN somatotopic map may be generated from multiple correlation maps 
(Fig. 5). This information may play a key role in the definition of more focal 
individualized target location. Furthermore, synthesized data may assist in analyzing 
the cause and effect between the STN activity and joints movement. This information 
may be useful in development of a closed loop stimulation approach [21]. 

 
                             STN IN                                                                                                 STN OUT 

Fig. 6. The correlation of passive joint movements and STN activity along 55 trajectories 
within the STN. The dark area represents the dorso-lateral oscillatory region and the light grey 
area represents the ventro-medial non-oscillatory region. A colored pixel represents a location 
where a passive movement test was performed. The red codes for high correlation values and 
blue for low values. 

5 Conclusions 

We have developed an intra-operative method for detection of the motor zone in the 
STN during DBS surgery utilizing appendicular goniometers. This method is now 
routinely used in DBS surgeries at our institution and enables objective identification 
of motor areas, simultaneous detection of movement for all joints, detection of 
movement of a joint during passive movement of another joint, shorter surgery time, 
and continuous monitoring of STN activity for patients with tremor. Beside the 
immediate contribution to intraoperative practice, this method may allow a better 
understanding of the motor symptoms and their underlying pathology in PD. 
Currently we are analyzing the cause and effect in the STN-movement relationship 
and mapping the human STN homunculus. In addition, new methods to map not only 
the motor areas of the STN, but also the limbic and cognitive zones are under 
development. 



28 R.R. Shamir et al. 

Acknowledgements. This research was supported in part by the Post-doctoral 
fellowships (to RS and AZ) of the Edmond and Lily Safra Center for Brain Sciences 
(ELSC), the Vorst family grant (to HB) for research on Parkinson's disease, the PATH 
fund for research on Parkinson’s disease (to ZI), and the Joint Research Grant from 
Hebrew University Hadassah Medical School and the Hadassah Medical Organization 
(to RE, ZI and HB). 

References 

1. Priori, A., Egidi, M., Pesenti, A., Rohr, M., Rampini, P., Locatelli, M., Tamma, F., Caputo, 
E., Chiesa, V., Barbieri, S.: Do intraoperative microrecordings improve subthalamic 
nucleus targeting in stereotactic neurosurgery for Parkinson’s disease? Journal of 
Neurosurgical Sciences 47, 56–60 (2003) 

2. Benazzouz, A., Breit, S., Koudsie, A., Pollak, P., Krack, P., Benabid, A.-L.: Intraoperative 
microrecordings of the subthalamic nucleus in Parkinson’s disease. Movement 
Disorders 17(suppl. 3), S145–S149 (2002) 

3. Israel, Z., Burchiel, K.J. (eds.): Microelectrode Recording in Movement Disorder Surgery. 
Thieme (2004) 

4. Shamir, R.R., Zaidel, A., Joskowicz, L., Bergman, H., Israel, Z.: Microelectrode recording 
duration and spatial density constraints for automatic targeting of the subthalamic nucleus 
90, 325–334 (2012) 

5. Zaidel, A., Spivak, A., Shpigelman, L., Bergman, H., Israel, Z.: Delimiting subterritories 
of the human subthalamic nucleus by means of microelectrode recordings and a Hidden 
Markov Model. Movement Disorders 24, 1785–1793 (2009) 

6. Amirnovin, R., Williams, Z.M., Cosgrove, G.R., Eskandar, E.N.: Experience with 
microelectrode guided subthalamic nucleus deep brain stimulation. Neurosurgery 58, 
ONS96–ONS102 (2006) 

7. Sterio, D., Zonenshayn, M., Mogilner, A.Y., Rezai, A.R., Kiprovski, K., Kelly, P.J., Beric, 
A.: Neurophysiological refinement of subthalamic nucleus targeting. Neurosurgery 50,  
58–67 (2002) 

8. Montgomery, E.B.: Microelectrode targeting of the subthalamic nucleus for deep brain 
stimulation surgery. Movement Disorders 27, 1387–1391 (2012) 

9. Temel, Y., Wilbrink, P., Duits, A., Boon, P., Tromp, S., Ackermans, L., Van Kranen-
Mastenbroek, V., Weber, W., Visser-Vandewalle, V.: Single electrode and multiple 
electrode guided electrical stimulation of the subthalamic nucleus in advanced Parkinson’s 
disease. Neurosurgery 61, 346–355 (2007) 

10. Kim, M.S., Jung, Y.T., Sim, J.H., Kim, S.J., Kim, J.W., Burchiel, K.J.: Microelectrode 
recording: lead point in STN-DBS surgery. Acta Neurochirurgica 99, 37–42 (2006) 

11. Moran, A., Bar-Gad, I., Bergman, H., Israel, Z.: Real-time refinement of subthalamic 
nucleus targeting using Bayesian decision-making on the root mean square measure. 
Movement Disorders 21, 1425–1431 (2006) 

12. Theodosopoulos, P.V., Marks, W.J., Christine, C., Starr, P.A.: Locations of movement-
related cells in the human subthalamic nucleus in Parkinson’s disease. Movement 
Disorders 18, 791–798 (2003) 

13. Abosch, A., Hutchison, W.D., Saint-Cyr, J.A., Dostrovsky, J.O., Lozano, A.M.: 
Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease. 
Journal of Neurosurgery 97, 1167–1172 (2002) 



Intra-operative Identification of the Subthalamic Nucleus Motor Zone Using Goniometers 29 

14. Eusebio, A., Brown, P.: Synchronisation in the beta frequency-band–the bad boy of 
parkinsonism or an innocent bystander? Experimental Neurology 217, 1–3 (2009) 

15. Bronfeld, M., Bar-Gad, I.: Loss of specificity in Basal Ganglia related movement 
disorders. Frontiers in Systems Neuroscience 5, 38 (2011) 

16. Romanelli, P., Heit, G., Hill, B.C., Kraus, A., Hastie, T., Brontë-Stewart, H.M.: 
Microelectrode recording revealing a somatotopic body map in the subthalamic nucleus in 
humans with Parkinson disease. Journal of Neurosurgery 100, 611–618 (2004) 

17. Slowinski, J.L., Putzke, J.D., Uitti, R.J., Lucas, J.A., Turk, M.F., Kall, B.A., Wharen, R.E.: 
Unilateral deep brain stimulation of the subthalamic nucleus for Parkinson disease. Journal 
of Neurosurgery 106, 626–632 (2007) 

18. Walker, H.C., Watts, R.L., Guthrie, S., Wang, D., Guthrie, B.L.: Bilateral effects of 
unilateral subthalamic deep brain stimulation on Parkinson’s disease at 1 year. 
Neurosurgery 65, 302–309 (2009) 

19. Chung, S.J., Jeon, S.R., Kim, S.R., Sung, Y.H., Lee, M.C.: Bilateral effects of unilateral 
subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. European 
Neurology 56, 127–132 (2006) 

20. Hwynn, N., Ul Haq, I., Malaty, I.A., Resnick, A.S., Dai, Y., Foote, K.D., Fernandez, H.H., 
Wu, S.S., Oyama, G., Jacobson, C.E., Kim, S.K., Okun, M.S.: Effect of Deep Brain 
Stimulation on Parkinson’s Nonmotor Symptoms following Unilateral DBS: A Pilot 
Study. Parkinson’s Disease, 507416 (2011) 

21. Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S.N., Israel, Z., Vaadia, E., 
Bergman, H.: Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. 
Neuron 72, 370–384 (2011) 



Model-Guided Placement of Cerebral

Ventricular Catheters

Ingerid Reinertsen1,2,4, Asgeir Jakola2,3,4, Ole Solheim2,3,4,
Frank Lindseth1,2,4, and Geirmund Unsg̊ard2,3,4

1 SINTEF Dept. Medical Technology, Trondheim, Norway
2 Norwegian University of Science and Technology (NTNU), Trondheim, Norway
3 Department of Neurosurgery, St. Olav University Hospital, Trondheim, Norway

4 National Competence Services for Ultrasound and Image Guided Therapy,
St. Olav University Hospital, Trondheim, Norway

Ingerid.Reinertsen@sintef.no

Abstract. Purpose: Freehand placement of external ventricular
drainage is not sufficiently accurate and precise. In the absence of high
quality pre-operative 3D images, we propose the use of an average model
for guidance of ventricular catheters. Methods: The model was seg-
mented to extract the ventricles and registered to five normal volunteers
using a combination of landmark based and surface based registration.
The proposed method was validated by comparing the use of the average
model to the use of volunteer-specific images. Results: The position and
orientation of the ventricles were compared and the distances between
the target points at the left and right foramen of Monroe were computed
(Mean±std: 5.65±1.60mm and 6.05±1.34mm for the left and right side
respectively). Conclusions: Although an average model for guidance of
a surgical procedure has a number of limitations, our initial experiments
show that the use of a model might provide sufficient guidance for de-
termination of the angle of insertion. Future work will include further
clinical testing and possible refinement of the model.

1 Introduction

Placement of ventricular catheters is one of the most common neurosurgical
procedures both in the adult and in the pediatric population. By neurosurgeons it
is considered a fast and uncomplicated routine procedure that is often performed
in the operating room under emergency conditions or in the intensive care unit
without rigid head fixation or neuronavigation systems. The standard surgical
technique is a freehand pass with the catheter through a burr hole in the skull.
The point of entry (Kocher’s point) is located approximately 2,5 cm from the
midline and 1 cm anterior to the coronal suture. The choice of trajectory to reach
the lateral ventricle is based on external landmarks such as the medial canthus
of the eye and the external auditory meatus. As these external landmarks are
covered with surgical drapes during catheter insertion, successful placement of
the catheter relies heavily on the surgeon’s sense of spatial orientation. Free flow
of cerebrospinal fluid (CSF) from the distal end of the catheter is considered an
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indication of satisfactory placement. Unfortunately, occlusion of the ventricular
catheter due to sub-optimal placement is a major cause of re-operations and
complications related to the surgical procedure. Toma et al. [1] reported that
only 39.9% of the 183 ventricular catheters in their retrospective study were
correctly placed within the frontal horn of the lateral ventricle. Other groups
have presented similar results. Huyette et al. [2] retrospectively evaluated post-
operative CT scans from 97 patients and found that only 56.1% of the catheters
were in the ipsi-lateral ventricle. They also found that 22.4% of the catheters were
placed in non-ventricular spaces. Even the successfully placed catheters were on
average 16 mm from the target within the lateral ventricle at the foramen of
Monroe. On average, two passes were needed for successful placement.

In order to reduce the high fraction of catheters incorrectly or sub-optimally
placed, different image guidance techniques have been developed. Hayhust et
al. [3,4] developed and evaluated a system based on an electromagnetic posi-
tioning system. They concluded that image guidance reduced poor placement
of the catheter and resulted in a significant decrease in the early shunt revision
rate. Levitt et al. [5] also found that the accuracy of catheter placement was
significantly improved with image guidance in a retrospective study of 102 shunt
surgeries in 89 patients.

Even though image guidance seems to improve the accuracy of the catheter
placement, the need for additional imaging and rigid head fixation makes the
solution unattractive or even unfeasible in many cases, as pointed out by Kestle
[6]. In general, only a few 2D CT images of the patient are available before
surgery. In this paper, we therefore investigate the use of a pre-defined model to
guide the placement of ventricular catheters in the absence of patient-specific 3D
images suited for traditional image guidance. The model is an adapted version
of the ICBM152 non-linear symmetric average model [8,7], and can be loaded
into a standard neuronavigation system. The ventricular catheter itself can be
tracked either using electromagnetic tracking as suggested by Hayhurst et al. [3]
or by optical tracking as suggested by Reinertsen et al. [9]. The model is then
registered to the patient using a set of anatomical landmarks in addition to a
a surface trajectory acquired with a tracked pointer on the patient’s head. The
registered model can then be used to plan the entry point and more importantly,
the trajectory toward the ipsi-lateral ventrice and the foramen of Monroe.

Because there is no gold standard for the position and orientation of the
ventricles, we have validated this approach on five normal volunteers. We have
obtained MR images of the volunteers and compare the model to volunteer-
specific data, both registered to the volunteer. The adaption of the average
model and the validation experiments are detailed in the following sections.

2 Methods

2.1 Segmentation

The ICBM-152 average average brain model was segmented using the
Freesurfer package, which is documented and freely available for download
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Fig. 1. Sagittal slice of the segmented model (left) and the skin surface with the
segmented ventricles(right)

online (http://surfer.nmr.mgh.harvard.edu/). The automatic segmentation
of brain structures is described in Fischl et al. [14,15]. Following the full brain
segmentation, we extracted the labels corresponding to the left and right lateral
ventricles and the third ventricle. The third ventricle is important in order to
clearly see the foramen of Monroe which is the target point for the placement of
ventricular catheters. We then segmented the skin surface from the model using
the foreground filter that is part of 3DSlicer [16] (http://www.slicer.org/).
This method uses the Otsu threshold algorithm [17] and morphological operators
to achieve segmentation. The segmented model and the skin surface are shown
in Figure 1.

For validation purposes, we obtained T1-weighted MR images of the five nor-
mal volunteers that participated in the study. The MR images of the volunteers
were also segmented using the Freesurfer package. The ventricles were extracted
from the label dataset and the skin surfaces were segmented using the foreground
filter in 3DSlicer. We also manually identified seven anatomical landmarks (lat-
eral and medial cathus of both eyes, the nasion and tragus on each side) in each
image volume.

2.2 Identification of Skin Landmarks in the Average Model

The use of anatomical landmarks for model-to-patient registration requires iden-
tification of anatomical skin landmarks in the average model. When the model
was generated [8,7], the optimization of the registration parameters was per-
formed only on the brain. The skin, skull, eyes, muscles etc. were excluded from
the registration algorithm using a brain mask. Consequently, the skin surface in
the average model is blurry and reliable identification of anatomical skin land-
marks in this volume is associated with considerable uncertainty. We therefore
identified the seven anatomical landmarks in the MR images of the five vol-
unteers. The MR images of the volunteers were then registered to the average

http://surfer.nmr.mgh.harvard.edu/
http://www.slicer.org/
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model using the elastix software [18] built on top the InsightToolkit (ITK) [19].
In a first step, we performed a rigid body registration and then in a second
step a full 12 parameters affine registration. In both steps we used the mutual
information similarity measure [23] and a standard gradient descent optimiza-
tion technique. The resulting transforms were then applied to the anatomical
landmarks identified for the five volunteers bringing the landmarks into model
space. The landmarks corresponding to each anatomical location from the five
volunteers were then averaged to generate seven landmarks in stereotactic space.
The fact that the skin surface in the average model is blurry obviously represents
a source of uncertainty in in the segmentation of the skin surface. Therefore, we
optimized the parameters of the skin surface segmentation in order to minimize
the distance between the segmented surface and the anatomical landmarks. The
mean distance between the points and the surface is 1.14 ± 0.53 mm.

2.3 Patient Registration

Following skin surface segmentation and identification of anatomical landmarks,
registration of the model to the volunteer could be performed. In a first step,
we used an optically tracked pointer (Northern Digital Inc., Waterloo, ON) to
identify seven anatomical points on the volunteer. We then continuously sampled
points with the tracked pointer by moving the pointer tip over the available skin
surface (face and scalp). Our approach for image-to-patient registration was then
to perform a landmark based registration in a first step, and a surface based
registration in a second step. The landmark based registration thus provides a
starting position for the surface based registration. In situations where surface
points do not sufficiently cover the facial region and/or the sagittal and coronal
directions, the surface based registration might not be sufficiently restrained
particularly when it comes to the rotation around the axial direction. This may
cause the surface based registration to converge to a local minimum instead of
the correct solution. For surface based registration, we use a modified version
of the ICP algorithm [20], and in order to make the algorithm more robust, the
landmark based registration is included in the iteration loop. For each iteration,
the landmark based transform and the surface based transform are computed
separately and the final transform for a given iteration is computed using the
following equation:

T = 1
nTlandmark + (1− 1

n )Tsurface

where n is the current iteration number. The final transform T in each itera-
tion is thus a weighted combination of (1) a rigid body transform between the
automatically generated points in the image and the corresponding anatomical
landmarks identified on the patient and (2) a modified version of the iterative
closest point (ICP) algorithm [20] using the points sampled on the patients head
and the segmented skin surface. The resulting transformation T is then applied
to both the anatomical landmarks and the surface points. The use of the weight-
ing factor 1/n means that the first iteration (n=1) gives a pure landmark based
transform, which gives a reasonable starting position for the following iterations
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where the weight of the landmark based transform will be gradually reduced
and the surface based registration will be more important. The original ICP al-
gorithm estimates a least squares fit between the source and target point sets.
The least squares solution is known to be extremely sensitive to outliers and
missing data. For our application, outliers and missing data may occur if the
pointer position is sampled when the pointer is not in contact with the patients
skin or when the pointer is not seen by the tracking camera. To make the sur-
face registration more robust, we incorporated the least trimmed squares (LTS)
estimator [21] to reduce the influence of possible outliers. As in the original ICP
algorithm, all the source points are matched to the closest target point, but a user
defined percentage (LTS ratio) of the point pairs with the largest corresponding
distances are excluded from the least squares computation.

3 Experiments

3.1 Data

We validated the method on five normal volunteers. The volunteers were placed
in a supine position. The head was immobilized using a vacuum pillow routinely
used for shunt patients. Using our in-house navigation system with a computer
tracked pointer, we acquired the position of seven anatomical landmarks: lateral
and medial canthus of both eyes, the nasion and tragus on each side. We finally
acquired a set of surface points by continuously sampling a trajectory on the
skin surface.

3.2 Registration

Using the image-to-patient registration method described in section 2.3, we ret-
rospectively registered the average model to the volunteer. We used a seven
parameters linear transformation (3 translations, 3 rotations and isotropic scal-
ing) and a LTS ratio of 20%. The landmarks corresponding to the volunteer in
question were excluded from the average point set in model space in order to
avoid any bias. The resulting transformation was also applied to the segmented
ventricles. In order to validate the position and orientation of the resulting ven-
tricles, we used the T1-weighted MR image of the volunteer. We registered the
volunteer-specific dataset to the volunteer in a similar manner. For this regis-
tration, we used a rigid body transformation (3 translations, 3 rotations) and
a LTS ratio of 20%. An example of anatomical landmarks and surface points
registered to the model and to volunteer-specific data is shown in Figure 2. The
resulting transformation was finally applied to the segmented volunteer-specific
ventricles. We then compared the ventricles obtained using the average model
and those obtained using volunteer-specific data. The comparison between the
model ventricles and the volunteer specific ventricles is shown in Figure 3. Color
coded maps showing the distance between the two surfaces for each dataset are
shown in Figure 4. We also identified the target points for a ventricular catheter
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Fig. 2. Anatomical landmarks and surface trajectory registered to the model (left) and
to the volunteer-specific data (right)

in each lateral ventricle immediately above the foramen of Monroe and computed
the distances between the target points in the average model and the volunteer-
specific datasets. The distances are presented in Table 1.

4 Results

We measured the distance between the target points in the average model and
in the volunteer-specific dataset. We also investigated if the model-based targets
fall inside the volunteer-specific ventricles.The results are presented in Table 1.
The overlap between the ventricles segmented from the model and the ventricles
segmented from the volunteer specific datasets is shown in Figure 3, and color
coded maps showing the distance between the two surfaces are shown in Figure 4.

Table 1. Distances between the target points (left and right foramen of Monroe) in
the average model and the volunteer-specific datasets. ”Yes” or ”no” indicates if the
model target point in question falls inside the voluntee-specific ventricle.

Volunteer Distance left in mm. (Inside) Distance right in mm. (Inside)

1 4.66 (yes) 5.15 (no)
2 7.11 (yes) 6.88 (yes)
3 5.92 (no) 6.61 (yes)
4 3.42 (no) 4.19 (yes)
5 7.12 (yes) 7.42(yes)

Mean±std (mm) 5.65±1.60 6.05±1.34
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Fig. 3. Model ventricles (dark blue) compared to volunteer-specific ventricles (colors)
in the frame of reference of the volunteer for the different five volunteers (rows). Each
color represent one person. Sagittal view (left) and coronal view (right).
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Fig. 4. The distance in mm between the model and the volunteer-specific ventricles
mapped onto the model for each dataset. Negative values indicate that the model
surface is inside the volunteer-specific surface, and positive values indicate that the
model-surface is outside the volunteer-specific surface. All distances in mm



38 I. Reinertsen et al.

5 Discussion and Conclusion

We have presented preliminary results related to the use of an average model
for guidance of ventricular catheters in the absence of pre-operative 3D images
suited for navigation. The model has shown to be reasonably accurate when
compared to volunteer-specific data. As shown in Table 1 three target points fall
outside the volunteer-specific ventricles. These target points are in all cases about
one voxel away from the ventricular wall and located medially to the foramen of
Monroe. Consequently, the trajectory of a catheter aimed at these target points
points will pass trough the frontal horn of the lateral ventricle. The distance
maps shown in Figure 4 show that the distance between the surfaces close to
the foramen of Monroe is less than 2 mm in all five cases, while the distances in
some cases increase close to the frontal and posterior horns. Ventricular drains
are often used to treat patients with enlarged ventricles, and in these cases the
model will probably be located almost completely inside the patient ventricles.
The more challenging case will be patients with small or even slit ventricles.
A scaling factor derived from 2D measurements on the pre-op CT images and
applied to the model might be able to account for some of the size variations.
Common displacements or midline-shifts of the ventricles can probably also be
estimated from a few simple measurements on the 2D CT images, but real patient
data are required in order to validate such methods.

In this paper, volunteer-specific data do not represent the ground truth, but
rather the use of a conventional neuro-navigation system. The registration of
pre-operative images to the patient on the operating table using anatomical
landmarks, surface registration or even fiducial markers can be associated with
significant errors.

Compared to the freehand method, almost any means of image guidance will
improve the accuracy and precision of the procedure. The challenge will be to
keep the solution simple and fast in order to avoid the introduction of perceived
obstacles in an otherwise quick and simple procedure. The use of conventional
neuro-navigation systems for the placement of ventricular catheters is in general
not possible due to the lack of pre-operative 3D images.

Obviously, the use of an average model present a number of limitations, but
in the absence of 3D pre-operative images, a model might be at least as accurate
as the use of external landmarks for planning the trajectory of the catheter.
Further development of the model in order to take into account the size of the
ventricles and possible shifts in the midline will probably increase the accuracy
of the proposed solution. The inclusion of the scalp and skin in the generation of
the average model could also have an impact on the accurate segmentation of the
skin surface and thus the surface registration results. An additional possibility
is to combine the use of an average model with intra-operative ultrasound as
suggested in [9] in order to have additional patient specific information about
the size, shape, position and orientation of the ventricles.
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Abstract. This paper describes the initial clinical evaluation of a real-
time ultrasound-based guidance system for robot-assisted laparoscopic
radical prostatectomy (RALRP). The surgical procedure was performed
on a live anaesthetized canine with a da Vinci SI robot. Intraoperative
imaging was performed using a robotic transrectal ultrasound (TRUS)
manipulator and a bi-plane TRUS transducer. Two registration methods
were implemented and tested: (i)using specialized fiducials placed at the
air-tissue boundary, 3D TRUS data were registered to the da Vinci stereo
endoscope with an average TRE of 2.37 ± 1.06 mm, (ii)using localiza-
tions of the da Vinci manipulator tips in 3D TRUS images, 3D TRUS
data were registered to the kinematic frame of the da Vinci manipulators
with average TRE of 1.88 ± 0.88 mm using manual tool tip localization,
and average TRE of 2.68 ± 0.98 mm using an automatic tool tip local-
ization algorithm. Registration time was consistently less than 2 minutes
when performed by two experienced surgeons after limited learning. The
location of the TRUS probe was remotely controlled through part of the
procedure by a da Vinci tool, with the corresponding ultrasound images
being displayed on the surgeon console using TilePro. Automatic tool
tracking was achieved with angular accuracy of 1.65 ± 1.24 deg. This
work demonstrates, for the first time, the in-vivo use of a robotically
controlled TRUS probe calibrated to the da Vinci robot, and will allow
the da Vinci tools to be tracked for safety and to be used as pointers for
regions of interest to be imaged by ultrasound.
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1 Introduction

Robot-assisted laparoscopic radical prostatectomy (RALRP) using the da Vinci
system (Intuitive Surgical Inc., Sunnyvale, CA) has become widely accepted and
is now used to perform up to 80% of radical prostatectomy (RP) procedures in
the United States [1]. While robot assistance has enhanced the visualization of
the surgical site and has improved dexterity over standard laparoscopic instru-
ments, achievement of the three main RP outcomes - cancer control, urinary
control and sexual function - is still highly dependent on the expert understand-
ing of the prostate and periprostatic anatomy [10]. It can be challenging to
localize critical structures such as the bladder neck, the neuro-vascular bundles
(NVB), the urethral sphincter muscle, and to define accurate dissection planes
solely using visual cues [9]. Intraoperative imaging may aid the surgeons in lo-
calizing these structures. Trans-rectal ultrasound (TRUS) is the most commonly
applied modality for imaging the prostate and the only approach implementable
in a standard operating room (OR). To be useful, the TRUS transducer must be
positioned and controlled by the surgeon in an intuitive way. Furthermore, the
TRUS images should be displayed at a correct location relative to the da Vinci
vision system and the da Vinci instruments.

Recently, robotic TRUS manipulators have been used for real-time guidance
during RALRP procedures [10,9,8]. Hung et al. used a robotic TRUS manip-
ulator (ViKY system, EndoControl medical, Grenoble, France) for real-time
monitoring of the prostate and periprostatic anatomy. They showed that us-
ing robotic TRUS is feasible and safe, and it provided the surgeon with valuable
anatomic information [9]. Long et al. used the same TRUS robot to visualize
real-time bladder neck dissection, NVB release and apical dissection [10]. They
showed that using robotic TRUS resulted in no positive surgical margins in five
patients. Han et al. used their custom-made robotic TRUS manipulator for im-
proved visualization of the NVB. This study demonstrated that the prostate can
be safely scanned using the TRUS robot, to reconstruct the 3D images of the
prostate gland and adjacent NVB, and the intra-abdominal da Vinci instruments
can be clearly visualized in the TRUS images [8].

In previous in-vivo studies, the TRUS manipulators have not been registered
to the da Vinci robot or camera, and therefore the ultrasound image could not
be presented at the correct location in space relative to the console view or the
da Vinci instruments. The control of the TRUS image location from within the
da Vinci console has also not been demonstrated before in in-vivo studies. The
work presented in this paper describes the evaluation of a robotic TRUS guidance
system, performed in-vivo on a canine model. The contributions of this study
include showing that registered robotic TRUS imaging can be deployed and used
easily during surgery with high accuracy in a short time, and that TRUS imaging
can be controlled in the registered coordinate system directly from within the
surgeon console. We used a live anaesthetized animal before engaging in human
studies in order to verify the feasibility and the safety of our approach, which
requires some additional steps to conventional RALRP. The canine model is the
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most often used for various urologic procedures in the kidney, urethra, bladder,
prostate and bowel [5].

Similarly to [2], the robotic system used in this work for real-time TRUS
imaging has two degrees of freedom (translation along the TRUS axis and ro-
tation about the TRUS axis) and is mounted on a brachytherapy stabilizer. In
order to determine the location of the TRUS probe with respect to the da Vinci
coordinate system, we follow the approach from [11] to localize the da Vinci
instruments tips in the TRUS volume at multiple locations. After registration,
the TRUS imaging plane can track the da Vinci tool tips in order to display
their location relative to the internal structures seen in ultrasound. The method
for direct registration of 3D TRUS to da Vinci stereo-camera system [3] was also
implemented in order to overlay TRUS images to the surgeon’s camera view at
the correct spatial location for improved guidance.

2 Material and Methods

Experimental Setup and Clinical Setting: A 10-month-old male hound
weighing 27 kg was used in this IACUC-approved study (Institutional Animal
Care and Use Committee). Following a lower bowel prep, the anaesthetized an-
imal was placed on the OR table in a 40-degree Trendelenburg position. Before
docking the da Vinci surgical robot, the TRUS robot was attached to the OR
table using the MicroTouch Brachytherapy stabilizer passive arm (CIVCO Medi-
cal Solutions, Kalona, IA), which was adjusted for the TRUS to provide optimal
transversal and sagittal images of the animal’s prostate as done in standard
brachytherapy procedures (Figure 1). A Sonix TABLET ultrasound machine

(a)

(b) (c)

Fig. 1. The clinical setup and TRUS images of the canine’s prostate: (a)TRUS robot
attached to the OR table in Trendelenburg position with the da Vinci robot docked to
the table and da Vinci ports are placed as in RALRP. (b)Sagittal plane TRUS image
of the prostate at elevational depth of 4 cm. (c)Transverse plane TRUS image.
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(Ultrasonix Medical Corp., Richmond, BC) with a bi-plane TRUS transducer
was used for imaging. All TRUS volumes were captured using the 128-element
55 mm long linear BPL9-5/55 array with transmit frequency of 6.6 MHz and
imaging depth of 4.0 cm. They were acquired using an 80-degree rotary sweep
about the probe axis, and contained 220 images at increments of 0.36 degrees.
Image capture time was 8.8 seconds per volume. The surgeons placed the da
Vinci ports in the recommended pattern for RALRP, taking into consideration
the smaller size of the canine model. Three arms were used for the procedure,
with a Large Needle Driver, Prograsp and Maryland Bi-polar forceps in the
right, left and third arm respectively. A 12 mm 0-degree stereo endoscope (3.8
mm disparity) was used throughout the procedure. TilePro was used in order for
the surgeon to see the ultrasound image in the da Vinci console while performing
the surgery. The surgeon continued with the RALRP procedure, with the TRUS
transducer in position, until the anterior surface of the prostate was visible in
the stereo camera.

3D TRUS to da Vinci Stereo-Camera Registration: Because the air-
tissue boundary is the only region that can be visualized in both the camera
and ultrasound image, a direct registration method as described in [3] was per-
formed using a drop-in registration tool consisting of a machined stainless steel
plate, with angled handles designed for easy grasping by the da Vinci needle
driver instruments. The tool has three camera markers on one face, and three
ball-bearing ball fiducials on the other face (Figure 2). The registration tool
was inserted in the abdominal cavity through one of the ports, and placed on
the prostate surface, where all three camera markers and the ultrasound fidu-
cials were visible in the camera and US images, respectively. The coordinates
of the three camera markers in the camera frame were detected by the stereo
triangulation. The spherical fiducial corresponding to each marker was localized
manually in the TRUS volumes by clicking on the appropriate B-Mode images.
A homogeneous transformation between the two frames was found using least
squares [3]. In order to accurately localize the markers on the registration tool,
a standard camera calibration [4] was completed before capturing the camera
images. The registration tool was repositioned four times in order to acquire
12 paired ultrasound fiducial and camera marker locations. In order to validate

(a) (b)

Fig. 2. (a)US image of the registration tool pressed on the anterior surface of the
prostate, where the figucial in the US image is circled. (b)Camera image of the surgical
site through the da Vinci console.
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the registration method and to determine its accuracy, three pairs (representing
one registration tool position) or six pairs (representing two registration tool
positions) of ultrasound fiducials and camera markers were used to find the ho-
mogeneous transformation. The remaining points were used as target points to
calculate the target registration error (TRE), defined as the distance between
the point in camera space and the ultrasound fiducial point transformed into
camera space. Registration accuracy results are listed in Table 1.

TRUS to da Vinci Instrument Registration: The surgeon was asked to
press the tool tip of a da Vinci instrument against the prostate surface while a
full TRUS volume was being acquired. The tool tip is visible as a hyperechoic
focal point in the B-Mode image. To manually find the tool tip, first the an-
gle of the TRUS imaging plane is selected. Then the tool tip axial and lateral
coordinates are selected in this plane. The tip location relative to the TRUS
coordinate system is obtained by transforming these cylindrical coordinates to
Cartesian ones. The tool tip location relative to the robot coordinate system is
also known from the Research API provided by Intuitive Surgical [6], providing
three constraint equations for the homogeneous transformation relating the da
Vinci coordinate system to that of the TRUS. Multiple constraints are obtained
by repeating the process. N = 12 different target locations and corresponding
volumes were acquired. For n = 100 iterations, Nf = 4 point pairs were picked
at random and a least squares problem was solved to find the registration ho-
mogeneous transformation. The remaining Nt = N − Nf = 8 target locations
were used to calculate the TRE, defined as the error between the location of the
tool tips and the transformed points from the ultrasound volumes. To determine
the inter-subject variation (ISV) in fiducial localization and analyze its effect
on TRE, four different ultrasound users were asked to localize the tool tip in
each of the N = 12 B-mode TRUS volumes we acquired. The TRE and Fiducial
Registration Errors (FRE) in all three anatomical directions and RMS values
for each user, as well as the mean over all users, are reported in Table 2.

3D TRUS to da Vinci Instrument Registration Using Automatic Tool
Localization: In addition to the manual localization, the 3D automatic tool
tip localization algorithm developed in [11], was also used on these N = 12
volumes. In this method the tool tip is found by looking for the tool tip signature
on the surface (Figure 3) in the volume. The automatic detection results were
compared to those obtained manually by four observers. The results can be found
in Table 3.

Registration Timing: To determine the ease with which the above registra-
tions can be performed, we asked the surgeon to perform four timed registrations
using four registration points each. For each registration point, the tool tip lo-
cation was found manually in the ultrasound volume. Often the surgeon would
gently move the tool tip to confirm the correct tool tip location. After each reg-
istration, the automatic tracking was activated and the surgeon was asked to
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(a) (b)

(c)

Fig. 3. (a) Camera image of the surgical site through the da Vinci console and spatial
locations of the instrument tips scattered on the surface of the prostate. (b) The da
Vinci intrument tip locations were spread on the surface of the prostate to achieve an
accurate registration across the entire prostate gland. (c) US images of the da Vinci
instrument tip pressed on the anterior prostate surface at different points.

move the tool tip to an additional 10 points on the surface of the prostate. For
each location, the corresponding TRUS angle was recorded, then the tracking
was temporarily deactivated and the points were located manually by adjusting
the TRUS angle. The error in this measurement is shown in Table 4.

3 Results

3D TRUS to da Vinci Stereo-Camera Registration: Table 1 lists mean
TRE and FRE when one or two registration tool positions are used for reg-
istering the TRUS to the camera. Since 12 point-pairs in the camera and US
frames were collected and could be used for registration; the results are aver-
aged over all combinations of 3 fiducials out of 12 points (one tool position), and
all combinations of 6 out of 12 points (two tool positions).

Table 1. 3D TRUS to da Vinci stereo-camera registration accuracy

Number Number
Tool positions of fiducials (Nf ) of targets (Nt) Mean FRE (mm) Mean TRE (mm)

1 3 9 0.68 ± 0.42 3.91 ± 1.23
2 6 6 0.95 ± 0.38 2.73 ± 1.06
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Table 2. 3D TRUS to da Vinci surgical tool registration accuracy (Manual tool tip
localization in 3D TRUS). TRE and FRE are calculated for (n = 100) iterations,
(Nf = 4) tool tip points and (Nt = 8) target points with 4 manual tool tip localization
trials perfomed by 4 different users.

TREAP (mm) TRESI(mm) TREML(mm)
Mean TRE
(mm)

Mean FRE
(mm)

Subject 1 1.96 ± 1.04 1.66 ± 0.54 1.78 ± 0.85 1.86 ± 0.80 0.86 ± 0.44
Subject 2 1.93 ± 0.52 1.62 ± 0.58 1.72 ± 0.70 1.76 ± 0.61 0.97 ± 0.97
Subject 3 1.94 ± 1.09 1.67 ± 0.99 1.80 ± 0.92 1.81 ± 0.99 0.91 ± 0.35
Subject 4 2.19 ± 1.31 2.07 ± 1.17 2.07 ± 0.97 2.11 ± 1.15 1.02 ± 0.38

Average 2.01 ± 0.99 1.75 ± 0.82 1.84 ± 0.86 1.88 ± 0.88 0.94 ± 0.54

Nf=3 Nf=4 Nf=5 Nf=6 Nf=7 Nf=8
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of tool tip points used for registration

E
rr

o
r 

(m
m

)

TRE and FRE values for different number of instument tip points for registration

FRE
TRE

Fig. 4. TRE and FRE values for different number of tool tip points used for registra-
tion. As the number of fiducials increase, TRE decreases. We suggest using 6 fiducials
in clinical applications.

TRUS to da Vinci Instrument Registration with Manual Fiducial
Localization: Table 2 lists the mean values for TRE and FRE during TRUS
robot to da Vinci instrument registration. A total of 12 TRUS volumes and da
Vinci API point-pairs were collected. Errors are represented in the anatomical
frame of the patient (Anterior-Posterior (AP), Superior-Inferior (SI), Medial-
Lateral (ML)). Mean values of FRE and TRE and their standard deviations
were calculated for each combination of (Nt,Nf ) for 100 iterations and the re-
sults are plotted in Figure 4. As can be seen from this figure, as Nf increases,
both the mean and the standard deviation of the TRE decreases. Based on this
analysis, the number of fiducials suggested for this registration is Nf = 6.

Table 3. 3D TRUS to da Vinci surgical tool registration accuracy (Automatic tool
tip localization in 3D TRUS). Mean TRE and FRE for (n = 100) iterations, with
(Nf = 4) tool tip points and (Nt = 8) target points, FLE in (x, y) and (θ) and inter-
subject variations calculated for 4 users.

FRE (mm) TRE (mm) FLE(x,y) (mm) FLEθ (deg) ISV(x,y) (mm) ISVθ (deg)

1.56 ± 0.57 2.68 ± 0.98 2.91 ± 0.90 1.48 ± 0.70 3.55 ± 0.34 1.62 ± 0.39
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Table 4. Automatic da Vinic tool tip tracking accuracy

Tracking error (deg) Mean TRE (mm) Time

Registration Trial 1 1.47 ± 0.83 1.78 ± 0.65 120s
Registration Trial 2 1.63 ± 1.22 2.00 ± 1.04 90s
Registration Trial 3 1.95 ± 1.28 2.11 ± 1.17 111s
Registration Trial 4 1.58 ± 1.63 1.83 ± 0.76 64s

Average 1.65 ± 1.24 1.93 ± 0.90 96s

TRUS to da Vinci Instrument Registration Using Automatic Tool
Localization: The TRE and FRE obtained with automatic fiducial localiza-
tion technique compared to manual localization are listed in Table 3. The table
includes the TRUS imaging plane angle (θ) localization error, and the localiza-
tion error ((x, y)(θ)=lateral, axial) in the plane at θ. The fiducial localization
error of the algorithm and the inter-subject variations (ISV) seen during manual
localization are also reported.

Registration Timing: The tracking accuracy for the four timed registration
trials are reported in Table 4. TRE values were also calculated for each regis-
tration. All registrations were completed in under 2 minutes with an average
registration time of 96 seconds. Throughout the registration experiments and
the surgery, TRUS images were streamed into the da Vinci console for real-time
guidance. Figure 5 shows the TilePro and camera images inside the da Vinci
console, when the automatic tool tracking is activated and the TRUS image
follows the da Vinci tool tip.

4 Discussion

In this set of experiments, we tested and validated the intraoperative use of a
robotic TRUS manipulator for RALRP procedures. The TRUS robot is based on
a small modification to a standard brachytherapy stabilizer which is available in
almost any hospital where brachytherapy is performed. Hospital staff are familiar

(a) (b) (c)

Fig. 5. TilePro images inside the surgeon console while the automatic tool tracking is
activated. The da Vinci instrument tip is visible in both camera and ultrasound images.
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with the set-up and positioning of the transducer on the stabilizer with respect
to the patient.

Registration of the TRUS robot to the da Vinci camera showed a mean TRE
of 2.73 mm when using two tool positions. This is about 1mm larger than the
error reported using the system in phantoms [3]. Unlike [3], which used a cross-
wire phantom to compute TRE, the current approach uses point-pairs of camera
markers/ultrasound fiducials at different locations of the registration tool. This
approach is more clinically practical but may lead to higher registration errors.
The tight space within the pelvic cavity limited the registration tool placements
that we could use. To avoid this problem, a more compact registration tool
should be designed in the future.

During the TRUS to da Vinci tool registration, a TRE of 1.88 ± 0.88 mm was
achieved. This is on par with the results from [3] when using a PVC prostate
phantom. It is pointed out by Ukimura et al. [13] that the mean distance be-
tween the NVB and the lateral edge of the prostate ranged from 1.9 ± 0.8 mm
at the prostate apex, to 2.5 ± 0.8 mm at the base. This is suggestive of the
required accuracy of a guidance system since one major aspect of the system
is to accurately localize the NVB. Currently the error in our TRUS to camera
registration is slightly larger, but the error between the da Vinci tools and the
TRUS is within the range reported in [13].

We believe that a large part of the error in the camera to TRUS registra-
tion was due to the difficulty of accurate camera calibration, which presently
requires that the camera be taken off the robot. The da Vinci stereo camera has
a disparity of 3.8 mm, meaning that the depth measurement calculated from
the differences between the left and right images is very sensitive to calibration.
For both registration approaches (to camera and to tool), some of the registra-
tion error may also be due to the limited localization accuracy of the fiducials
within the US images. While subjects were instructed on the best way of picking
the fiducial edges as described in [7], they had higher variance in localizing the
fiducials than the automatic method. The use of an automated algorithm would
also mean that no additional personnel would be needed in the OR in order for
the tracking to be activated. For the TRUS to da Vinci tool registration error,
another contributing factor is the tool tip localization error from the da Vinci
API, which has been reported to be within 2mm. Another source of error is
instrument shaft deflection, as pointed out in [12].

Timing results have shown that the da Vinci instrument to TRUS registra-
tion could be completed very quickly and would be valid throughout the surgery
since neither the TRUS nor the da Vinci coordinate systems will be moving. We
determined that using six tool tip positions gives the best TRE with minimal
added benefit derived from further measurements. This would increase regis-
tration time by approximately 20 seconds. Camera to TRUS registration tools
should be similar, not counting the time required for camera calibration.

Although the canine model was chosen, there are key differences from hu-
mans which actually made the study somewhat more difficult. Positioning with
a human patient does not usually put extensive pressure on the distal end of
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the transducer, but in the canine case, there was a larger amount of force on
the transducer which could cause errors in TRUS rotation during TRUS volume
acquisition and also in fiducial lozalization in TRUS images.

5 Conclusions

We have presented the validation of two intraoperative registration methods that
can be used during RALRP for image guidance and surgical navigation. Both
methods use the air-tissue boundary as a common interface for the da Vinci
robot and the ultrasound images. The da Vinci camera to TRUS registration is
the first step in creating an augmented reality navigation system for da Vinci
surgery (3D image overlays in the surgeon’s console). Using the kinematics of
the robot, we were able to register the da Vinci coordinate system with that
of the TRUS robot. This was achieved quickly and efficiently with surgeons
new to this concept. All registration errors were within the scope of the clinical
setting and the constraints of the ultrasound imaging system. Surgeons even
suggested approaches on how to distribute the registration points (2 points at
the prostate base, 2 points at mid-gland and 2 points at the apex) to make the
process more efficient and maintain registration accuracy across the prostate.
We have demonstrated that these registration methods work effectively in an
in-vivo environment. The camera registration tool would need to be modified
specifically for a clinical environment, while the da Vinci kinematic registration
is ready for clinical testing. We have submitted our application to human ethics
and we plan to begin patient studies soon.
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Abstract. The blind placement of an epidural needle is among the most
difficult regional anesthetic techniques. The challenge is to insert the nee-
dle in the mid-sagittal plane and to avoid overshooting the needle into
the spinal cord. Prepuncture 2D ultrasound scanning has been intro-
duced as a reliable tool to localize the target and facilitate epidural nee-
dle placement. Ideally, real-time ultrasound should be used during needle
insertion. However, several issues inhibit the use of standard 2D ultra-
sound, including the obstruction of the puncture site by the ultrasound
probe, low visibility of the target in ultrasound images, and increased
pain due to longer needle trajectory. An alternative is to use 3D ultra-
sound imaging, where the needle and target could be visible within the
same reslice of a 3D volume; however, novice ultrasound users (i.e., many
anesthesiologists) still have difficulty interpreting ultrasound images of
the spine and identifying the target epidural space. In this paper, we pro-
pose to augment 3D ultrasound images by registering a multi-vertebrae
statistical shape+pose model. We use such augmentation for enhanced
interpretation of the ultrasound and identification of the mid-sagittal
plane for the needle insertion. Validation is performed on synthetic data
derived from the CT images, and 64 in vivo ultrasound volumes.

Keywords: multi-vertebrae shape+pose model, 3D ultrasound, Gaus-
sian mixture model-based registration.

1 Introduction

Epidurals are a form of regional anesthesia commonly used in obstetrics during
labour and delivery, and they are effective alternatives to general anesthesia
for cesarean delivery. Epidurals involve the insertion of a needle between the
vertebrae into a space called the epidural space (see Fig. 1a). The use of epidurals
has increased over the past few decades but conventional epidural techniques
continue to have a failure rate in the range of 6-20% [4], meaning the patient
has inadequate or no pain relief.

Before the procedure, no detailed knowledge about the individual patient’s
spinal anatomy is available to guide the anesthesiologist. Therefor, epidurals are
traditionally guided by palpation of surface landmarks to identify an appropri-
ate intervertebral space and to select a skin puncture site along the midline of
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(a) (b) (c)

Fig. 1. a) Midline sagittal insertion of the needle. The horizontal arrow shows the
epidural width and the vertical arrow shows the epidural depth. b) 3D motorized
ultrasound probe equipped with a needle guide. c) The relative positions of the 3D
ultrasound probe, needle and vertebra in superior-inferior view. The arrow shows the
sweep direction. The probe should be placed to align the needle path (dashed blue
line) with the mid-sagittal plane. The red line shows the visible part of the vertebrae
in ultrasound images. No echoes appear on the gray area since the spinous process
surface is not orthogonal to the transducer.

the spine. The loss-of-resistance technique is normally used to confirm that the
needle tip has reached the epidural space. This technique involves attaching a
saline-filled syringe to the needle and applying pressure during needle insertion
and then feeling the loss-of-resistance to saline injection when the needle tip
enters the epidural space. The most common complication (0.5% to 2.5% [16])
arises from overshoot and accidental puncture of the dura mater surrounding
the spinal cord and leakage of cerebral spinal fluid, which leads to side effects
for patients, such as post dural puncture headache.

To reduce complications, ultrasound imaging has been proposed since it poses
no known risk to the patient, making it the only modality that is feasible for
obstetric anesthesiology. 2D ultrasound imaging has been demonstrated as a
pre-puncture tool for measuring the distance from the skin to the epidural space
(referred to as the epidural depth) and to help decide the puncture site [8].

Ideally, ultrasound would also be used during needle insertion to visually con-
firm the needle progressing toward and then entering the epidural space correctly.
Unfortunately, real-time guidance of a midline needle insertion is hindered by the
fact that a standard 2D ultrasound transducer obscures the puncture site, and
moving the transducer to the side makes it impossible to view both the needle tip
and the target together. The usual image-guidance solutions based on tracking
of both the needle and the ultrasound transducer do not work in this application.
The tracking sensor would need to be either mounted on the base of the needle,
which reduces the accuracy due to needle bending, or placed inside the needle
close to its tip, which prohibits the standard procedure of loss-of-resistance since
the sensor does not allow passage of the saline.
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Fig. 2. Three parallel slices extracted from the 3D ultrasound image. Arrow shows the
sweep direction. Planes are spaced 10 mm from each other. Ideally, the anesthesiologist
should perform the needle injection in the third plane which does not include strong
features. The first plane shows the facet joints whereas the second plane shows the
laminae. The planes are also hard for novice users to distinguish the anatomy in the
ultrasound, making needle guidance difficult.

A solution to these problems has been developed using a 3D motorized ultra-
sound transducer equipped with a needle guide (see Figure 1b and 1c) [13]. 3D
ultrasound is widely used in obstetrics and has several advantages such as easier
diagnosis of cleft palate [17]. 3D ultrasound also has the potential to improve
epidural catheterization and operation orientation of the vertebral column [1]. In
our solution, a virtual anterior-posterior plane (hereafter referred to as a reslice
plane) containing the needle path is extracted from volumes captured in real
time by the transducer. Placing the transducer in a paramedian plane and con-
sequently placing the needle in midline, the reslice plane depicts both the needle
and the epidural space. Initial experiments on animals have shown the feasibility
of this approach [13], but there are still limitations of this technique. First, the
ultrasound images are hard to interpret and require extensive training. Second,
detection of the mid-sagittal plane is not trivial due to a lack of significant image
features in this plane (see Fig. 2).

In the absence of pre-operative CT image for the majority of obstetric cases,
augmentation of 3D ultrasound has been explored previously by registering a
statistical shape model of a single vertebra [15]. In that study, the ultrasound
volumes were acquired with the probe centered on the midline and bony features
from both side of the vertebrae were visible. In this paper we modify that ap-
proach and make two main contributions. First, we demonstrate construction of
the multi-vertebrae shape+pose statistical model and its registration to ultra-
sound volumes of the spine. Second, we perform the registration to single-sided
paramedian ultrasound volumes. Registration is challenging due to the lack of
echoes on the contra-lateral side, and thus a lack of information on the symmetric
shape of the vertebrae.

In summary, the model is registered to the ultrasound images based on echoes
that are typically visible in such ultrasound images, i.e. laminae, articular pro-
cesses, and transverse processes of one side of the vertebrae. We use the registered
model to interpret the echoes in the ultrasound images and to predict the mid-
sagittal plane. We validate our registration technique on synthetic data and 64
in vivo ultrasound volumes.
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2 Methods

2.1 Construction of the Multi-vertebrae Model

Several techniques have been proposed for construction of multi-object statis-
tical models [2,9,5,10,12]. In some of these techniques, the pose statistics are
neglected by implicitly representing them in the shape statistics. This repre-
sentation leads to two major issues: first, the pose statistics are not necessarily
correlated with the shape statistics, since they depend on external factors such
as the position and orientation of the patient during data acquisition. Second,
the shape deformations are assumed to lie on a Euclidean space. On the other
hand, the poses are represented by similarity transformations, i.e. rigid+scale
transformations. These transformations form a Lie group, which is a Rieman-
nian manifold where analysis performed in Euclidean space is not applicable [6].
To address this problem, we adapt a technique proposed by Bossa and Olmos [2]
to generate a statistical multi-vertebrae shape+pose model.

A Lie group G is a group and a differentiable manifold where multiplication
and inversion are smooth. The tangent space at the identity element is called Lie
algebra, g. The exponential mapping, g : exp(x) → G, and its inverse, logarithm
mapping G : log(x) → g, are used to map elements in the tangent space into G
and vice versa.

Analogous to principal components in the Euclidean space, Principal Geodesics
(PG), are defined for Lie groups. The approximation as suggested By Fletcher et
al. [6] is as follows: for a set of elements, x1, . . . , xn, the mean, μ, is found using an
iterative approach. Principal Component Analysis (PCA) is then applied to the
residuals in the Lie algebra, log(μ−1xi). The results are orthonormal principal
components, vl, which give the PGs by exponential mapping, μ exp(vl).

Assume that the training set contains N instances of an ensemble of L
anatomies (in this case L vertebrae), each represented by a point set as its bound-
ary. Initially, a group-wise Gaussian mixture model (GMM)-based registration
technique [14] is used to establish dense correspondences across the training set.
Generalized Procrustes analysis is then used to generate the mean shape for all
the anatomies, and their transformation, Tn,l, to each instance. The transfor-
mation, Tn,l, is the similarity transformation from the lth anatomy of the mean
shape to the corresponding anatomy of the nth instance. The transformation for
all anatomies are concatenated and PGs are then extracted. The results are prin-
cipal geodesics, which can separately be written for each anatomy: μp

l exp(v
p
k,l).

Shapes also form a Lie group [2] and similarly shapes’ PGs can be represented by
μs
l exp(v

s
k,l). Note that we use superscript “s” and “p” to differentiate between

shape and pose related variables, respectively.

2.2 Enhancement of the Ultrasound Images

A preprocessing step is performed on the ultrasound images to extract the bone
surface probability using high intensity and shadow information. To extract the
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bone surface probability, we use an adaptation of a technique proposed by For-
oughi et al. [7]. Initially, the image is filtered by Laplace of Gaussian (LoG)
kernel to extract the high intensity pixels which typically have larger probabil-
ity to be on the bone surface. The result is added to the blurred image. Next,
the blurred image is convoluted by a profile highlighting the shadow beneath a
pixel. The shadow image is combined with the blurred image to generate the
bone probability map.

2.3 Registration of the Model to the Ultrasound Images

The multi-object statistical model can be instantiated by applying different
weights to the PGs and combining them. Assuming that ws

k is the weight applied
to the kth shape PG and wp

k is applied to the kth pose PG, the lth object of the
model can be instantiated as follows:

sl = Φ(ws,wp) = Φp
l

(
Φs
l (w

s);wp
)
, (1)

where Φp
l (.;w

p) and Φs
l (.) denote a similarity transformation and a shape, re-

spectively, which are built by a combination of the pose and shape PGs with
corresponding weights:

Φp(.;wp) = μp
l

K∏
k=1

exp(wp
kv

p
k,l) and Φs

l (w
s) = expμs

l
(

K∑
k=1

ws
kv

s
k,l). (2)

The registration is performed using a GMM-based technique proposed earlier [14].
In this iterative technique, soft-correspondences are established between surface
of the model and the target that is represented by a point set. Assume that
the correspondance function, P (xl

n,ym), is defined for the nth point of the lth
anatomy on the model, xl

n, and the mth point of the target, ym, and has a value
between 0 and 1. The point set Y constitutes a partial surface of the vertebrae
and is extracted from the ultrasound images as explained in the previous section.
Additionally, the bone surface probability extracted from the ultrasound images
is already integrated into the correspondence function.

The model is then instantiated and rigidly transformed to minimize the
following objective function:

Q =

L∑
l=1

M,N∑
m,n=1

P (xl
n|ym)‖ym − (

RΦ(xl
n;w

s,wp) + t
)‖2 + γsΓsws + γpΓpwp,

(3)

where the two latter terms are the regularization over the PGs weights, and
matrices Γs and Γp are diagonal with elements 1/λs and 1/λp, the corresponding
eigenvalues of the shape and the pose PGs, respectively. The matrices R and
t are the rotation and translation of the rigid transformation, respectively. The
optimization is performed using the Quasi-Newton method.
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Note that the objective function is minimized with respect to the points of
the model that are visible in ultrasound volumes, i.e. laminae, articular processes
and transverse processes of one side only (see Fig. 1b).

This is the key challenge. Once registered, the model is used later to estimate
the location of the mid-sagittal plane. This is performed by fitting a plane to
the tip of the spinous processes and most anterior point of the vertebral body.

3 Experiments and Results

3.1 Multi-vertebrae Shape+Pose Model

Training data for construction of the multi-vertebrae model consisted of lumbar
(L1-L5) vertebrae of 32 patients, some with mild scolisis. Written informed con-
sent was obtained from all patients. Manual CT segmentations were performed
semi-automatically using ITK-SNAP. For each subject, three independent seg-
mentations (performed by three different users) were averaged using majority
voting to form the final segmentation, then triangulated using the marching
cubes algorithm.

The statistical shape+pose model was reconstructed using the technique pre-
sented in the previous section. The first 10 modes capture 97% of pose variations
and 70% of shape variations. The model is capable of reconstructing an unseen
observation with distance error below 1.5 mm by using the first 10 modes of the
variation.

3.2 Synthetic Data

To assess the performance of the registration of one side of the model to the
corresponding ultrasound images in an ideal scenario, we constructed a synthetic
data set using 32 CT scans and performed leave-one-out experiments. For each
CT scan, the model is constructed using all other CT images and is registered
to a surface extracted from one side of L1-L4 vertebrae of the target, including
the laminae, articular processes and transverse processes. The surface error is
then computed for the entire vertebrae and results in an RMS distance error of
2.2±0.6 mm. Fig. 3 shows the distance error overlaid on the model. As expected,
the registration error is smallest near the anatomy involved in the registration
and increases further away. The registration error is largest around the spinous
process since its shape is not correlated with laminae and transverse processes.
This error is however not critical since the epidural space is not close to the
spinous process and does not affect needle insertion. Interestingly, the error is
equally distributed in the other regions, i.e. laminae and articular processes on
the opposite side and vertebral body.

The registered model is then used to estimate the mid-sagittal plane and is
compared against the mid-sagittal plane extracted from manual segmentation.
The normals of the two planes differ by 4.4±2.6 degrees, and the location of
the epidural space in the registered model differs from the mid-sagittal plane of
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(a) (b) (c)

Fig. 3. Distance error overlaid on the model in the a) anterior-posterior and b) left-
to-right view. The arrow points to the side used in the registration.

Table 1. The registration error of the model to the paramedian volume. Values are
given as mean±std (mm).

L1-L2 L2-L3 L3-L4 L4-L5 All

Registration side
RMS 2.0±0.3 3.0±1.7 2.5±0.9 3.0±1.1 2.6±1.2
Haussdorf 3.7±1.0 6.8±4.3 4.6±2.7 5.1±2.8 5.0±3.1

Contra-lateral side
RMS 4.4±2.0 4.0±2.0 3.9±1.4 3.5±1.1 3.9±1.7
Haussdorf 7.1±3.2 7.4±3.0 6.7±2.7 6.1±3.0 6.8±3.0

the manual segmentation by 1.3±1.2 mm. As we will mention in the Discussion,
these errors effectively convey the ability to register the model using only a few
features on only one side of the vertebral anatomy.

3.3 In Vivo Data

3D ultrasound volumes were captured by an expert sonographer using a Sonix
Touch ultrasound machine (Ultrasonix, Medical Corp, Richmond, BC) with a
curvilinear 3D transducer, operating at 3.3 MHz with depth of 7.0 cm. 80 frames
were captured for each volume to have a 60 degree field of view. The 3D probe
was tracked using an EM tracker (pciBird, Ascension Technology Corp., Burling-
ton, VT, USA) and was calibrated using double N-wire phantom with an RMS
error of 1.7 mm [3]. The purpose of tracking is only for validation of the model
registration to the volumes on the contra-lateral side and for measurement of
the true mid-sagittal plane.

Written consent was obtained from eight volunteers. Ultrasound volumes were
acquired in the prone position. For each subject, the intervertebral levels were
found using 2D ultrasound and were marked on the skin. A magnetic sensor
(referred to as the reference) was attached on the skin above the T12 vertebra
to track the patient’s movement. We assumed that the spine curvature does
not change during the entire scan. Four intervertebral levels (L1-L2, L2-L3, L3-
L4, and L4-5) were scanned. Three volumes were acquired from each level (see
Fig. 4), one paramedian volume from each side and one centered on the mid-
sagittal plane (referred to as the centered volume). Note that bony features are
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(a) (b) (c)

Fig. 4. Three volumes are acquired from each intervertebral level. Arrows show the
plane visualized in each case. a) The model is registered to this paramedian volume
(volume A). The red dashed line shows the sagittal slice of this volume shown together
with the registered model. b) A transverse view of the centered volume (volume B)
augmented with the registered model. c) A sagittal view of the contra-lateral volume
(volume C) augmented with the registered model.

Table 2. Error between the two mid-sagittal planes, one estimated from the registered
model, and one extracted from the centered 3D US volume. Distance is defined as the
distance between two planes at the epidural depth.

L1-L2 L2-L3 L3-L4 L4-L5 All

Normal (degree) 6.4±2.4 13.0±7.5 10.0±8.0 14.2±8.6 10.8±7.5
Distance (mm) 4.0±2.9 5.6±4.6 4.5±3.1 6.1±4.9 5.0±3.9

most visible in the paramedian volumes whereas the mid-sagittal plane is best
detected in the centered volume. The ultrasound volumes were then transformed
to the reference coordinate system using the position tracker measurements and
calibration of the 3D ultrasound probe.

Registration Accuracy. The bone surfaces were manually extracted for each
paramedian volume. The model was registered to one of the paramedian ultra-
sound volumes (e.g. volume A in Fig. 4). Examples of the registrations are shown
in Fig. 5. The RMS and maximum (referred to as Haussdorf) distance between
the manual segmentation of the ultrasound volume and the registered model are
calculated and reported. We also reported the error between the same registered
model and the paramedian ultrasound volumes acquired from the contra-lateral
side (e.g. volume C in Fig. 4). Fig. 4a and 4c show an example of the registration.
Results are given in Table 1. As expected the error is larger on the contra-lateral
side, but remains below 4.4 mm.
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Fig. 5. Examples of the registration. The multi-vertebrae model is capable of capturing
different sizes, shapes and poses of vertebrae.

Detection of the Mid-Sagittal Plane. The mid-sagittal plane is detected
by fitting a plane to the points acquired by marking the symmetric features
of vertebral anatomy (i.e. laminae and transverse processes) and taking their
average. The manually extracted plane is compared against the mid-sagittal
plane extracted from the registered model. Similar to synthetic data, the angle
between these two planes and their separation at the depth of the epidural
space is reported. Results are given in Table 2. Fig. 4b shows an example of the
registered model together with the centered volume.

4 Discussion and Conclusion

It is expected that the multi-vertebrae model will be used to augment the ultra-
sound image interpretation and to predict the mid-sagittal plane of the spine,
but not replace the standard technique for epidural needle placement such as
loss-of-resistance. In this pilot study, we have demonstrated that the errors for
registering the model to single-sided ultrasound volumes of the human spine
have an average of 2.6 mm on the registration side and 3.9 mm on average on
the contra-lateral side.

The width of the ligamentum flavum covering the epidural space is reported
to be 6.8±1.9 [11]. The epidural depth varies between patients, and increases
with obesity. In our experiments, the maximum epidural depth was 47 mm.
Given these numbers and referring to Fig. 1a, the safe needle insertion zone
(represented by the gray area) confine the proper needle insertion to an angle of
less than 8 degrees and 6.8 mm distance to the mid-sagittal plane. This suggests
that the proposed method for mid-sagittal plane estimation has the potential
for successful midline epidural injection. The results can be further improved by
better edge enhancement in the ultrasound images and also using larger training
set used for the construction of the model.

The current unoptimized MATLAB code requires 53 seconds to register the
multi-vertebrae shape+pose model to 3D ultrasound images. Since the ultimate
goal of this work is to visualize the ultrasound reslice augmented with the model
in real-time, our future work involve optimizing the code in C++ to achieve
clinically acceptable speeds.
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3D Segmentation of Curved Needles

Using Doppler Ultrasound and Vibration

Troy K. Adebar and Allison M. Okamura

Stanford University, Stanford, CA

Abstract. A method for segmenting the 3D shape of curved needles in
solid tissue is described. An actuator attached to the needle outside the
tissue vibrates at frequencies between 600 Hz and 6500 Hz, while 3D
power Doppler ultrasound imaging is applied to detect the resulting mo-
tion of the needle shaft and surrounding tissue. The cross section of the
vibrating needle is detected across the series of 2D images produced by
a mechanical 3D ultrasound transducer, and the needle shape is recon-
structed by fitting a 3D curve to the resulting points. The sensitivity of
segmentation accuracy to tissue composition, vibration frequency, and
Doppler pulse repetition frequency (PRF) was examined. Comparison
with manual segmentation demonstrates that this method results in an
average error of 1.09 mm in ex vivo tissue. This segmentation method
may be useful in the future for providing feedback on curved needle shape
for control of robotic needle steering systems.

Keywords: Robotic system and software, ultrasound, segmentation.

1 Introduction

Percutaneous interventions using needles allow clinicians to access anatomical
targets, even those deep inside the body, with minimal trauma to the patient.
This hyper-minimally invasive approach is applied to biopsy, drug delivery,
brachytherapy, ablation, and many other procedures. While such percutaneous
procedures are common, in some cases interference from sensitive structures or
obstacles can prevent straight needles from reaching the desired target. For exam-
ple, in prostate brachytherapy, pubic arch interference can restrict the placement
of seeds in certain patients.

Several research groups have described methods for needle steering, in which
needles are inserted through tissue along controlled curved paths (see a review
in [21]). In our preferred implementation, this is achieved using a robotic system
to manipulate a highly flexible needle with an asymmetric bevel tip or pre-bent
distal section. As such a needle is inserted into tissue, the lateral force acting
on its tip causes the needle to follow a curved path. Through a combination of
needle insertion and tip rotation, the needle can be steered along a variety of
paths in three-dimensional (3D) space. Path planning and image-guided control
for such a needle can be performed with a robotic needle steering system.

D. Barratt et al. (Eds.): IPCAI 2013, LNCS 7915, pp. 61–70, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



62 T.K. Adebar and A.M. Okamura

In current practice, needle insertions are often performed using ultrasound,
CT, MR, or fluoroscopic imaging for guidance. Like human clinicians, robotic
needle insertion systems require medical image feedback to achieve a satisfactory
level of repeatability and accuracy. However, integration of real-time medical
imaging in robotic needle steering represents a significant engineering challenge.
Previous approaches have thus far avoided this by using systems that restrict the
steered needle to a mostly two-dimensional (2D) path, and testing in translucent
artificial tissues that allow the needle’s silhouette to be imaged with optical
cameras. While this approach has been useful in the development of controllers,
path planning algorithms and models, methods for real-time image guidance and
steering in 3D are required before needle steering can progress to in vivo testing
and patient trials.

Because of its low cost, wide-spread availability, and real-time imaging rate,
we have elected to focus on ultrasound imaging. Intraoperative ultrasound can
potentially be used to provide feedback to a robotic needle steering system in
several ways. First, it can be used to track the needle tip relative to an anatomical
target, in order to control the needle exactly to a desired final position. Second,
ultrasound can be used to monitor the curved shape of the needle shaft during
insertion. This could be used, for example, to detect undesired buckling of the
needle, or gather information about the interaction of the needle with tissue in
order to update the mechanical models used in planning and control. In this
paper we focus on segmenting the curved shape of a steerable needle from 3D
ultrasound data.

1.1 Prior Work

A number of previous studies have described methods for segmenting needles
from B-mode ultrasound data. Many of these methods have used some variant of
the Hough or Radon transform to segment straight needles [6,7,8,17,19,27]. Other
methods for straight needle segmentation include the parallel integral projection
transform [4], graph cuts [3], and difference images [25]. Similar methods have
also been described for segmenting curved needles. The Hough and Radon trans-
forms, for example, can be adapted to include a parametrization of needle bend-
ing [16,18]. A projection-based algorithm for segmenting curved needles has also
been proposed [1], as well as a model-based approach using RANSAC [23]. Most
of the previously described methods are computationally intensive, likely requir-
ing specialized computing hardware for real-time performance. These methods
have primarily applied B-mode ultrasound, which is known to produce images
with poor needle visibility, particularly when imaging at an angle [5]. Many
of the methods for segmenting curved needles are appropriate for only slight
curvature, whereas robotically steered needles can follow paths with radius of
curvature as low as 3.4 cm in tissue [14]. Also, duty-cycle control schemes for
needle steering [26] can result in paths with sections of arbitrary length having
variable radii of curvature, which would make parametrization for a Hough or
Radon transform difficult.
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As an alternative to segmentation using B-mode data alone, we propose to
apply external vibration to the needle, and use ultrasound Doppler imaging
to localize the vibration. Vibrating solid objects have previously been shown
to produce recognizable Doppler signals [13]. This concept has been applied
to localize straight needles [2,9,12] and needle tips [11] in 2D ultrasound, as
well as interventional instruments for cardiac interventions [10,20] and other
applications [15,22]. (To our knowledge, this concept has not previously been
applied to segment curved needles in 3DUS.) This approach is particularly well
suited to robotic needle steering since the needle is already held by a robotic
system, and actuators that vibrate the needle can be integrated easily.

In the study described in this paper, we used piezoelectric actuators to vi-
brate a steerable needle at frequencies between 600 Hz and 6500 Hz, and applied
3D power Doppler ultrasound to image the resulting motion. We applied this
method to reconstruct the shape of curved needles in artificial and ex vivo tissues,
and validated the method by comparison with manual segmentation. We exam-
ined the influence of tissue simulant, vibration frequency, and Doppler PRF. To
our knowledge, this work is the first to use external vibration and 3D Doppler
imaging to reconstruct the complete shape of a curved needle in tissue.

2 Methods

2.1 Segmentation Concept

Figure 1 shows a conceptual overview of our segmentation method. We assume
that the general needle orientation is known. A mechanical 3D ultrasound trans-
ducer is oriented so that the needle is roughly orthogonal to the image plane as
it sweeps. A piezoelectric actuator (buzzer) is used to vibrate the needle, and
the resulting motion of needle and surrounding tissue produces a Doppler signal.

We segment the needle by processing the series of 2D power Doppler images
generated by the 3D transducer. Two preprocessing operations are performed
to remove Doppler noise: pixels with less than 10% of the maximum Doppler
value are removed, and patches with less than 200 pixels of connected area are
removed. (For comparison, the Doppler box was typically 160 by 130 pixels).
These threshold values were determined based on comparison with manual seg-
mentation during initial testing. After preprocessing, the image coordinates of
the needle cross section are estimated based on the remaining Doppler response.
We have found that the Doppler response tends to be centered on the needle
cross section in the transverse direction. The transverse image coordinate of the
needle is thus estimated as the centroid of the Doppler response in the trans-
verse direction. In the axial direction, the Doppler response tends to be centered
somewhat below the needle as a result of a color comet tail artifact. The axial
image coordinate of the needle is thus estimated as the point that separates one
quarter of the sum of the Doppler response above, and three quarters below. To
define the 3D needle shape, third-order polynomial curves are fit through the
cross section points to define the axial and lateral coordinates as functions of
the elevational coordinate.
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Fig. 1. Needle segmentation concept: A piezoelectric actuator attached to the needle
generates vibration, resulting in a Doppler response around the needle cross section
in a 2DUS image. The needle is segmented by localizing the Doppler response across
the sweep of a mechanical 3DUS transducer, and fitting a curve through the resulting
points.

2.2 Apparatus

Figure 2 shows our experimental apparatus.

Ultrasound Imaging. A SonixMDP ultrasound console (Ultrasonix Medical
Corp., Richmond, Canada) with a convex mechanical 3D transducer (4DC7-
3/40) was used for imaging. Custom software based on the Ultrasonix SDK
package was used to control imaging parameters and capture images. Power
Doppler imaging mode was selected over color Doppler imaging because of the
lack of aliasing and reduced sensitivity to imaging angle. Pulse repetition fre-
quency (PRF) was varied as described below in Section 2.3. The wall motion
filter (WF) was set to maximum in order to minimize Doppler artifacts resulting
from the motion of the imaging plane. Each sweep consisted of 61 scan-converted
2D images, captured at angular increments of approximately 0.7 degrees.

Needles. Solid stainless steel wires 0.635 mm (0.025 inches) in diameter were
used as needles, with beveled tips and prebent distal sections approximately
5 mm long angled 20 degrees off axis. Piezoelectric diaphragms with four different
resonant frequencies (600 Hz, CEB-20D64; 2.6 kHz, CEB-27D44; 4.6 kHz, CEB-
35D26; 6.5 kHz, CEB-44D06; CUI Inc., Tualatin, OR) were soldered to the
needles, and driven at their resonant frequencies by 20 V square waves created
using a power supply, signal generator and simple MOSFET switching circuit.
The needles were inserted into either artificial or ex vivo tissue, and held by a
needle steering robot.

2.3 Validation Procedure

We validated our method by comparison with manual segmentation of the needle
from B-mode data. To create this reference data, the center of the needle was
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Fig. 2. Overview of experimental setup showing the 3D ultrasound transducer, an ex
vivo bovine liver tissue sample, the piezo buzzer attached to the needle, and the needle
steering robot

manually selected in all 2D B-mode images where it was visible. (The needle
cross section could generally only be identified when the imaging plane was
close to orthogonal to the needle, approximately 25% to 50% of the images
from most sweeps.) To determine segmentation error, we measured the distance
between each manually-segmented point and the reconstructed 3D needle curve
within an axial-transverse plane. In order to estimate the precision of the manual
segmentation, it was repeated for several test volumes, and the variation between
trials was measured.

We tested the sensitivity of segmentation error to three tissue simulants, four
vibration frequencies, and five Doppler PRF settings. First, the twelve possible
combinations of tissue simulant and vibration frequency were tested, with needles
inserted and scanned along three random curved paths for each combination. The
tissue simulants were two cylindrical polyvinyl chloride (PVC) rubber phantoms
and an sample of bovine liver tissue, obtained fresh from a local butcher. The
formulations of the PVC were 4:1 and 1:1 Plastisol to softener, resulting in
approximate elastic moduli of 33 kPa and 8.6 kPa [24]. Glass microbeads were
added at a ratio of 0.025 percent by mass to create speckle. Four vibration
frequencies were tested: 600 Hz, 2600 Hz, 4600 Hz, and 6500 Hz. A single PRF
of 1666 Hz was used for this round of testing, with WF set to the maximum
800 Hz.

The effect of PRF was measured in a separate test using a single tissue simu-
lant (PVC rubber with E = 8.6 kPa) and a single vibration frequency (2600 Hz).
Five PRF settings were tested: 1428 Hz, 1666 Hz, 2000 Hz, 3333 Hz, and 6666
Hz. WF was set to maximum in each case. Again, three scans were performed
for each PRF setting, with the needle inserted along a random curved path for
each.
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Fig. 3. Processed ultrasound images of vibrating needle in (a) stiff PVC rubber with
E = 33 kPa (b) soft PVC rubber with E = 8.6 kPa (c) ex vivo bovine liver sample, and
(d) segmented needle shape from an insertion into stiff PVC with vibration at 2.6 kHz.
The blue crosses indicate the needle cross sections detected using Doppler, the red line
is the polynomial curve fit to the points.

3 Results

For the repeated manual test segmentations, the standard distance deviation,
SXY was calculated as

SXY =

√√√√ N∑
i=1

(di,MC)2

N − 2
, (1)

where di,MC is the distance in the image plane between one manually selected
needle point and the corresponding mean center, and N is the number of points.
The standard distance deviation was 0.68 mm in the stiff PVC rubber, 0.79 mm
in the soft PVC rubber, and 0.58 mm in the ex vivo liver tissue.

Figure 3 shows example power Doppler images of the vibrating needle in the
three tissue simulants, as well as an example segmentation. The stiff PVC rubber
in general showed a more concentrated Doppler response, presumably because
there was less movement of the surrounding tissue. The soft PVC rubber showed
a larger Doppler response than the other two tissue simulants.
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Fig. 4. Segmentation error by tissue simulant. Each tissue was tested with four different
vibration frequencies, with PRF at 1666 Hz in each case. For each group, red line
indicates median error, blue box indicates 25th and 75th percentile errors, whiskers
indicate minimum and maximum errors.
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Fig. 5. Segmentation error by vibration frequency. Each vibration frequency was tested
with three different tissue simulants, with PRF at 1666 Hz in each case. For each group,
red line indicates median error, blue box indicates 25th and 75th percentile errors,
whiskers indicate minimum and maximum errors.
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Fig. 6. Segmentation error by Doppler PRF. All tests were performed in PVC rubber
with E = 8.6 kPa, with vibration at 2600 Hz. For each group, red line indicates median
error, blue box indicates 25th and 75th percentile errors, whiskers indicate minimum
and maximum errors.

Figure 4 shows a comparison of localization error based on tissue simulant.
The soft PVC rubber had the highest average and maximum errors, which follows
from the typical Doppler responses seen in Figure 3. The average localization
errors were 1.03 mm in stiff PVC rubber, 1.24 mm in soft PVC rubber, and
1.09 mm in ex vivo liver.
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Figure 5 shows a comparison of localization error based on vibration frequency.
The average localization errors were 0.99 mm for 600 Hz vibration, 1.05 mm for
2600 Hz vibration, 1.25 mm for 4600 Hz vibration, and 1.03 mm for 6500 Hz
vibration.

Figure 6 shows a comparison of localization error based on PRF. The average
localization errors were 3.00 mm for 1428 Hz PRF, 1.94 mm for 1666 Hz PRF,
2.04 mm for 2000 Hz PRF, 4.75 mm for 3333 Hz PRF, and 4.50 mm for 6666
Hz PRF.

4 Discussion

The results presented in the previous section suggest that our method is not
strongly sensitive to vibration frequency or tissue stiffness. Variations in both
the vibration frequency and the tissue simulant did not affect the average seg-
mentation error by more than 0.25 mm. On the other hand, the segmentation
error was sensitive to the PRF setting. Setting PRF either too low or too high
resulted in increased average error and greatly increased maximum error. Low
PRF, equivalent to less motion sensitivity, resulted in smaller Doppler responses
which were often not centered at the needle cross section. High PRF, equivalent
to greater motion sensitivity, resulted in too much Doppler noise, which made it
difficult to identify the needle cross section using our simple analysis technique.
We hypothesize that it will be possible to optimally select the PRF setting for
a specific combination of needle, tissue and vibration frequency, although the
presence of blood vessels may complicate this in some clinical applications.

Without identifying a specific clinical application, it is difficult to usefully
evaluate the accuracy of our segmentation method. The average segmentation
error was 1.09 mm in ex vivo liver, which we consider to be the most realistic
tissue simulant. Given that this average error is quite close to the variability in
our reference data, and is only twice the diameter of the needle itself, this result
appears quite promising.

It should be noted that we have considered only a subset of the parameters
that might affect the segmentation accuracy. Other possibly significant param-
eters include depth of the needle relative to the transducer, angle between the
imaging plane and the needle, needle diameter or material, and vibration ampli-
tude.

Compared to previously described segmentation methods, our approach has
the advantage that it is computationally simple. On average, the software took
32 ms to process each image when running in Matlab on a typical PC. With
implementation in C++, our algorithm should easily be able to localize the
needle in each 2D image during the latent time between frame captures. Typical
image capture rate in our experiment was 13 frames per second, although this
depends on imaging depth and size of Doppler box.

Although the piezoelectric buzzers produced sufficient motion of the needle
to yield a Doppler response, the amplitude of vibration was on the order of a
needle diameter in free space (approximately 0.5 mm), and likely much smaller
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in tissue. As a result, we believe the vibration presents a minimal safety risk to
the patient; however, further investigation of this issue is needed.

One disadvantage of our method is the audible tones generated by the piezo-
electric buzzers. All the vibration frequencies in this initial study were within the
human audible range, and were generally loud enough to be unpleasant but not
loud enough to necessitate hearing protection.We do not believe this is critical, as
it should be possible to use shielding to greatly reduce the volume of noise heard
by clinical staff. It might be possible to vibrate the needle just above the human
audible range using a piezoelectric transducer. We are also currently exploring
other actuators, such as voice coils, that should produce less audible noise.

5 Conclusion

We have described a method for using high-frequency vibration and 3D ultra-
sound Doppler imaging to segment curved needles in tissue. We have demon-
strated that this method results in an average error of approximately 1 to 2 mm
across a range of tissue properties and vibration frequencies. In future work, we
will implement this method in real-time software, and integrate it with a robotic
platform in order to validate its usefulness in needle steering tasks.
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Abstract. Needle insertions are an elementary tool for diagnostic and
therapeutic purposes. Critical success factors are: Precise needle place-
ment, avoidance of critical structures and short intervention time. Nav-
igation solutions for ultrasound-based needle insertions have been pre-
sented but did not find widespread clinical application. This can be at-
tributed to the complexity and higher costs introduced by additional
tracking related equipment. Using a new compact electromagnetic (EM)
field generator (FG), we present the first navigated intervention method
that combines field generator and ultrasound (US) probe into a single
mobile imaging modality that enables tracking of needle and patient. In
a phantom study, we applied the system for navigated needle insertion
and achieving a hit rate of 92% and a mean accuracy of 3.1mm (n=24).
These results demonstrate the potential of the new combined modality
in facilitating US-guided needle insertion.

Keywords: Electromagnetic Tracking, Computer-assisted Interventions,
Needle Insertion, Ultrasound, Liver, Biopsy, Mobile Field Generator.

1 Introduction

Needle insertions in the liver today are usually conducted under either ultra-
sound (US) or computed tomography (CT) guidance. In contrast to CT, US
features low costs and high availability, is easy and quick to apply, acquires
images in real-time and does not expose the patient to radiation. [1] However,
image quality suffers if adverse factors are present. Adiposity for example reduces
image contrast in the target region significantly and impedes reliable structure
identification. Furthermore, conventional needle insertions are usually performed
in-plane with a special needle guide attached to the probe that leads the needle
exactly along the ultrasound plane. This way, it is assured that the needle is is
always visible in the US image. Linking needle and probe leads to a decreased
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flexibility, as the probe can hardly be moved during the needle insertion. Never-
theless, it is often necessary to use a needle guide as the cross section of a needle
is very small and hard to discern in an ultrasound image. This in turn makes
it hard to determine the trajectory of the needle correctly when working extra-
plane. If critical structures are situated along the needle insertion trajectory, the
procedure is complicated further. In case the physician decides that the needle
insertion is too risky or complicated under ultrasound guidance, it will usually
be performed under CT guidance[2], incurring additional costs and exposition
to radiation through several CT scans.

The majority of needle insertions in the liver are performed under US-guid-
ance. [3] Especially when needle insertion trajectories are short and already
traverse in a safe distance to critical structures the needle insertion can easily
be performed under US guidance and neither CT-based approaches nor naviga-
tion support would be beneficial in these cases. However, in more complicated
cases, where even CT-guided needle insertions are challenging, a navigated US-
guidance would improve the procedure, providing both real-time imaging and
tracking of the instrument. Accordingly, the goal of a navigated US-guided nee-
dle insertion system should be to assist the physician in complex situations and
thus enable him to perform needle insertions under US-guidance, where he would
have resorted to CT-guidance before.

To allow US-guided insertions in complex situations, navigation solutions have
been proposed by various authors and companies like Ultrasonix and General
Electrics.[4][5][6][7] However, they usually require preoperative data or the usage
of additional modalities. This complicates the technically uncomplex workflow
of an US-guided needle insertion and impedes adoption into the clinical work-
flow. As a result, these systems have not found widespread clinical application.
Most navigation solutions use tracking technology to localize instruments and
patients. This is typically achieved with optical or electromagnetic (EM) track-
ing systems. EM tracking systems offer the advantage of not requiring a line
of sight to the tracked objects. Thus, they are able to directly track the needle
tip, which avoids tracking errors trough needle bending and allows the usage
of thinner needles, thereby reducing invasivity. As stated by Maier-Hein et al.,
two of the main challenges associated with EM tracking are the compensation of
systematic distance errors arising from the influence of metal near the field gen-
erator (FG) and the optimized setup of the FG to maximize tracking accuracy
in the area of interest. [8] To address these issues, a new mobile and compact
FG (NDI Aurora R© Compact FG 7-10, see Fig.1b) has recently been presented
by NDI (NorthernDigital Inc.,Waterloo, Canada). Studies have shown that the
new FG is less susceptible to interference than former models. [8] Furthermore,
interference caused by connecting US probes to it is negligible. [9] Moving the
FG together with the probe implies high precision and accuracy, since the area of
interest automatically and continuously is situated near the center of the track-
ing volume. At the same time, it keeps the FG away from typical sources of
interference like metallic patient stretchers.
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(a) (b)

Fig. 1. (a) The setup of the navigation solution. (b) Compact field generator and US
probe combined into a prototype modality. The large curved array type US probe
did not fit trough the central hole and was mounted on the side. The complete setup
weighed 200g of which the FG contributed 100g.

We use the compact FG attached to an US-Probe as a mobile imaging modal-
ity that allows to locate EM-tracked instruments directly (See Fig.1b). In this
study, we present a new navigation solution in which we apply this combined
modality in a navigation solution and evaluate it in a phantom study.

2 Material and Methods

The Field Generator was combined into a single modality with the US probe as
shown in Fig.1b. The FG has a central opening that would theoretically make
it possible to mount a US probe in it. However, needle insertions into the liver
usually are performed using relatively large curved array probes that do not fit
trough the opening. The far cable end sockets are too large as well, requiring us
to use the shown side mount for our experimental prototype. Nevertheless, the
usage of the central mount has been evaluated experimentally. [9] Combining
FG and US Probe has the implication of permanently placing the US image
plane in the tracking volume as both move in unison. The complete setup is
shown in Fig.1a. Additionally, as a means of tracking the patient, a skin marker
is attached close to the lesion thus allowing the tracking of critical structures
in 3D.

Calibration: To calibrate the probe against the FG we performed a simple point
based calibration following Muratore and Galloway[10], which did not require ad-
ditional hardware and can quickly be performed by a single person in a couple of
minutes. 22 needle insertions were performed in a gelatin phantom and the tip,
once visible in the US image, was marked manually. The pattern encompassed
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the whole US image plane. 13 Points where used for calibration, the remaining 9
points were used to evaluate the Target Registration Error (TRE). The accuracy
of this method was evaluated in 10 separate and independent experiments to
assure that the method provided us with a sufficiently accurate calibration. We
achieved a mean RMS TRE of 1.3 ± 0.3mm averaged over ten trials. For the
phantom study, the same calibration protocol was applied, and care was taken
to only allow calibrations with a TRE smaller or equal to this value to ensure a
basic quality of registration.

Planning: The purpose of this phase is to find a needle path to the target
zone that is as short as possible, but still keeps a sufficient distance to critical
structures. Initially, the physician examines the perimeter of the target structure
with only the modality in hand, leaving one hand free to operate a computer
mouse. If he encounters a critical structure, he can the freeze the image and
mark the structure on it. A sphere around the structure appears, marking the
area as a critical zone. These critical zone includes the critical structure (e.g. the
vena portae) that must not be harmed and a safety margin around it, the size of
which is at the physician’s discretion. Although shapes other than spheres can
be placed, we consciously limited ourselves to spheres for this evaluation, as they
are easy to handle for the user and other structures can quickly be approximated
by placing a series of spheres. To tell different zones apart, they can be assigned
colors and labels. The pose of the zones during the intervention is continuously
tracked relatively to the skin marker under a rigid body assumption. Accordingly,
assessment of both the needle’s and the US image’s pose in relation to the target
structure and critical zones is possible at any time. When the physician is content
with the zone placement, he positions the needle’s tip on the skin and starts the
navigation.

Navigation: The system helps the physician guide the needle to the target zone
using the guidance view shown in Fig.2. It projects the path of the needle onto
the image plane, which has been shown to be a helpful feature.[7] Additionally a
3D scene is shown, in which the US image, the needle and the critical structures
are rendered. The 3D scene can be switched between a view from the tip of
the needle along the needle axis and a free fly view. The former allows for exact
navigation past critical zones, the latter gives a clear overview of the intervention
area. For each zone, a bar is shown that visualizes the distance to the zone,
providing visual feedback if the needle tip approaches a zone and turning red
if the distance falls below a definable value. These auxiliary means enable the
physician to assess the state of the intervention at any time.

2.1 Evaluation

To prototype the navigation solution, we used the Medical Imaging and Interac-
tion Toolkit (MITK, www.mitk.org) [11] since it offers image manipulation tools
and supports tracking via the Image Guided Therapy (IGT) Module [12].
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(a) (b)

Fig. 2. (a) Screenshot of the navigation view with critical structures inside as well as
in front of and behind the image plane. (b) Corresponding illustration.

To evaluate our navigational approach, nine identical phantoms representing
high critical situations were manufactured using ballistic gelatin (GELITA AG,
Eberbach, Germany)(See Fig.3b). The gelatin used mimics the properties of
human tissue. The target structure was situated to be hard to reach without
violating a critical structure (see Fig.3a). The target was placed between two
tubular critical structures, with several spherical critical structures spread out
above it. One structure in particular was always present directly above the target.
The upper layer of critical structures lay between 6 to 7 cm deep, with the target
lying at a depth of 9 to 10 cm. Finally, a layer of gelatin containing black color
was applied on top of the phantom to prevent direct sight onto the insertion
area. A physician and a technician performed 14 needle insertions each, the first
two of which were not evaluated and regarded as practice runs.

3 Results

Table 1 shows the results of the phantom study. Two critical structures were
violated, which in both cases had not been marked. Physician and technician
achieved an accuracy of 2.8mm and 3.4mm respectively and both missed the
target one time resulting in a hit rate of 92%. The physician later stated that
his miss of the target structure was a result of him trying to manually correct the
needle’s position, which resulted in the miss. In this case, the software showed
that the structure was missed.
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(a) (b)

Fig. 3. (a) Blueprint of the gelatin phantoms. The target structure is situated between
two tubular critical structures. Above it, several spherical critical structures are scat-
tered. (b) The finished phantom where tubular and spherical critical structures are
clearly visible.

4 Discussion

Solutions for navigated US-guided needle insertions have yet been unable to
achieve widespread clinical application. An important factor for this seems to
be the added complexity that negates one of biggest advantages of US: Its quick
and relatively simple application. To our knowledge, this is the first approach to
combine an ultrasound probe with a compact field generator and integrate this
new modality into a navigation solution. The results are promising. The mean
accuracy of 3.1±1.2mm is in the same range as previous approaches. Comparable
experiments in CT-guided marker-based approaches achieved mean accuracies
of 2.7 ± 0.7mm using EM Tracking in gelatin phantoms [13] and 3.7 ± 2.3mm
using optical tracking in an in-vivo porcine liver. [2] We decided against a direct
comparison of conventional in-plane versus our navigation approach as we do not
intend to replace the conventional approach. When the situation allows it due to
low complexity, a physician will mostly prefer the unnavigated approach over a
more complex navigated one. However, we intend to make needle insertions under
US guidance possible where before a CT-guided approach was required. Our
solution enables the physician to keep his workflow while giving him a range of
options and aids if necessary. By establishing and tracking critical zones, lesions
that are difficult to access can be reached more safely. Since the FG is linked with
the probe, the tracking volume is relatively far away from metallic components
compared to classical EM FGs. This makes the system robust against interference
from metallic or ferromagnetic objects such as a patient stretcher. [8]

Calibration of US images with tracking systems is a much discussed subject.
Several calibration solutions have been presented in literature. Besides point
based approaches, Cross-Wire and N-Wire phantom techniques are widespread
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Table 1. Results of the phantom study. Measured parameters were the percentage of
insertions that hit the target (Hit Rate), the distance between needle tip and target
center (Accuracy), the number of violated critical structures (Violations), the minimal
distance between needle and the nearest critical structures surface (Margin), the num-
ber of partial or total needle retractions (Retractions) and the length of the procedure
from the time the needle first penetrated the phantom’s surface to the time the physi-
cian declared the target hit (Duration). The latter three parameters were acquired by
performing a control CT scan of each phantom after the needle insertion.

Physician Technician Total

n 12 12 24
Hit Rate 92% 92% 92%
Accuracy 2.8± 1.1mm 3.4± 1.2mm 3.1± 1.2mm
Violations 2 0 2
Margin 4.6± 3.3mm 9.0± 4.5mm 4.6± 3.9mm
Retractions 0.8± 0.6 0.9± 0.8 0.9± 0.7
Duration 82± 39s 42± 21s 62± 30s

means of calibration. [14] We favored a simple approach[10], but still achieved a
surprisingly good TRE of 1.3mm. A possible explanation could be the beneficial
effects of having a fixed transformation between image plane and tracking vol-
ume, further research could provide insight in this matter. An additional effect
of this setup is that the needle automatically is placed near the center of the
field into the area of highest accuracy. In traditional setups, constant field shifts
are eliminated by subtracting the reported coordinates of the transducer from
those of the needle. This applies to our risk structure tracking as well, as they
are being localized by using the attached sensor. However, our results do not in-
dicate significant errors. This can be explained by the fact that the instruments
are so close to the FG that the first order shifts are relatively small and the fact
that we only need one transformation and accordingly only have one dynamic
source of error for the needle to image transformation.

It was originally planned to perform 15 needle insertions plus two practice in-
sertions by each a physician with ultrasound guided needle insertion experience
and by a technician without such experience. However, the targets randomly
drew air after needle insertion, impeding visibility in the US image and render-
ing some of them unusable for further experiments. As a result, only 14 needle
insertions including the two test runs could be performed. For future experi-
ments, we suggest to use multiple targets if more than one needle insertion is
planned.

The results show that critical structure can safely be avoided when they are
correctly marked. Both of the violated structures were hit because they have
not been marked. The hit rate can be regarded as good, with one miss each. In
one case, the system predicted the miss correctly. This is comparable to previous
experiments by Sindram et al. with an US guided navigation system using optical
tracking, where a total hit rate of 88% was achieved. [7] During the experiments
the 21G needles bent significantly in the ballistic gelatin (see Fig.4). This made
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Fig. 4. Navigated US-guided needle insertion into a gel phantom. Note the needle and
the field generator directly above its entry point.

corrections of the trajectory necessary several times. Still, both physician and
technician retracted the needle less than once per needle insertion on average.
For this study, we decided to not mark the target structure but instead use the
ultrasound probe to follow it. This seems preferable: Since the US-image is always
current, breathing motions can be observed in real time. Critical areas should
however always be marked and are usually placed with a considerable security
margin. This makes them less susceptible to errors in motion compensation, as
the physicians goal is to stay clear of them by a wide margin.

The technician showed a shorter mean time for insertion duration, which seems
surprising. This can be explained with the technician trusting the system blindly
while the physician, using his experience, took care to evaluate the US image.
The technician put the needle on the phantoms surface, used the projection to
gauge the trajectory and then quickly moved the needle forward, correcting the
needle’s path based on the projection. The physician on the other hand carefully
advanced the needle and used the US probe to validate the trajectory.

Regarding the handling of the modality, it would be beneficial to be able to
use the central mounting hole. Mounting the field generator on the side of the
probe extends the available tracking volume in one direction, which increases
the available space for needle handling. On the other hand, the modality be-
comes more unwieldy, restricting probe pitch and requiring the physician to use
a relatively steep angle for the probe pose. This problem is solvable when pro-
ducing probes that have an internal field generator. The setup adds a weight
of approximately 200g to the probe and increases it’s size by 7.5 cm in depth
and brings the complete modality to 11.5 cm in width. The added width seems
negligible as probes are wide by nature, however the added depth requires the
physician to adjust his grip a little to the rear end of the probe, where he can
then hold it naturally. Finding a more ergonomic form and optimizing weight is
another problem that can be solved with direct integration and the authors be-
lieve that handling a combined modality is a matter of habit. It has been shown
that normal probes do not interfere with the EM field in a significant manner[9],
however this has not been verified for motorized US probes. Nevertheless, these
transducers play a relatively minor role in abdominal needle insertions.
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Future work comprises e.g. semiautomatic segmentation methods, which could
speed up planning and provide a more direct visual feedback on the zones nature.
Motion compensation is another interesting topic which could improve critical
structure avoidance. [15] Path planning approaches could help in highly difficult
situations where only narrow safe canals lead to the target. [16] We evaluated
our navigation system in a rigid phantom study. US-guided needle insertions are
usually performed under respiratory pause (”holding breath”). Still, the system
should be evaluated in a more realistic setting under respiratory motion. The
study has not been executed in an operating room. However, US guided needle
insertions do not require specific rooms as for example a CT guided approach
does, where the metallic patient stretcher poses significant problems. [2] Further-
more, a careful evaluation regarding commercial systems would be of benefit.

In conclusion our results show that our approach is accurate with a mean
targeting error of 3.1mm. Combining the field generator with the ultrasound
probe solves a number of problems like the positioning of the generator and
interference elegantly while allowing the physician to keep his workflow. These
results clearly show the potential of the new FG as a replacement for current
field generators and the authors believe that a combined modality will help US
navigation approaches to transition into clinical workflows on a larger scale.
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Abstract. Functional imaging systems for intra-operative use, like free-
hand SPECT, have been successfully demonstrated in the past, with re-
markable results. These results, even though very positive in some cases,
tend to suffer from high variability depending on the expertise of the
operator. A well trained operator can produce datasets that will lead to
a reconstruction that can rival a conventional SPECT machine, while
an untrained one will not be able to achieve such results. In this pa-
per we present a flexible robotic functional nuclear imaging setup for
intra-operative use, replacing the operator in the scanning process with
a robotic arm. The robot can assure good coverage of the area of in-
terest, thus producing a consistent scanning pattern that can be repro-
duced with high accuracy, and provides the option to compensate for
radioactive decay. We show first results on phantoms demonstrating the
feasibility of the setup to perform 3D nuclear imaging suitable for the
operating room.

1 Introduction

Functional nuclear imaging modalities like PET or SPECT have traditionally
been used for cancer diagnosis [1]. By injecting a radioactive tracer and acquiring
data of the patient inside the imaging device, a 3D image of the distribution of
radioactivity inside the body is reconstructed. The achievable resolution of 4–
8 mm makes it a suitable for diagnosis. Moving to the operating room however,
the size and weight of the devices are prohibitive, a large part of which is due
to the detectors and collimators.

To acquire functional information intra-operatively, a common solution is thus
to use hand-held single pixel gamma detectors. They work like a Geiger counter,
emitting a sound which changes according to the radiation detected. Those are
directionally collimated, so the surgeon is able to narrow down from where the
radiation is coming. For 3D intra-operative imaging, a method called Freehand
SPECT was proposed [2], combining a gamma detector with an optical tracking
system to enable tomographic reconstruction of a SPECT-like image by manually
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scanning around the area of interest. It has been shown [3] that the main defining
factor of the method’s image quality is the quality of the scanning trajectory,
which leads to experienced users performing systematically better than novice
ones. Due to the freehand nature of the scan it is also impossible to exactly
reproduce a scan. These two issues limit the practical usefulness of the Freehand
SPECT method in clinical practice.

To address these issues, the scanning trajectory has to be optimized and to
be of a guaranteed sufficient quality. While training the surgeons and providing
visual guidance to the surgeons significantly improves quality [4], reproducibility
remains an issue. This is our motivation for suggesting to support the surgeon
with a robotic arm that is capable of scanning in a fully- or semi-automated
fashion. This will provide results that are fully operator independent, but will
also allow custom-optimized trajectories with sufficient coverage of the region
of interest, while guaranteeing highly reproducible scans, for example before,
during, and after surgery. Additionally, the ability to control the scanning speed
enables compensation for radioactive decay, to ensure reproducible detection
statistics.

While this will mark, to our knowledge, the first fully flexible intra-operative
functional imaging setup, other robotic systems have already been presented for
intra-operative imaging. One major example is for regular [5] and transrectal
ultrasound imaging [6]. While these systems aim at 3D imaging, no tomographic
reconstruction is needed, and thus the trajectories are far less complex than for
nuclear tomographic imaging, and the reconstructed image is not as operator-
dependent. Another example is the case of robotic measurement of oxygen ten-
sion in mice [7], where the robot is used to position the oxygen probes, and the
challenge is to keep the probes in the correct area. Similarly, the “Artis zeego” X-
ray C-arm (Siemens Healthcare, Erlangen, Germany) employs a flexible robotic
arm, but still follows a standard C-arm imaging protocol with 180 degrees (or
more) angular coverage.

In the following we will present a fully flexible robotic system for intra-
operative nuclear imaging. We will demonstrate through phantom experiments
that it can match human scanning trajectories, guarantee reproducibility, and
can compensate for radioactive decay.

2 Setup and Methods

Our setup consists of a six-axis robot arm (UR-6-85-5-A, Universal Robots,
Odense, Denmark) holding a gamma detector (HiSens, Crystal Photonics, Berlin,
Germany) with their 60ocollimator for radioactivity measurements. In order to
determine the position of the gamma detector relative to the region of interest, an
optical tracking system (Polaris Vicra, Northern Digital, Waterloo, ON, Canada)
is used with tracking targets mounted on the phantom and the gamma detector.
The setup is shown in Fig. 1.

Calibration. The spatial relation between the gamma detector tip and the track-
ing target was determined using a custom-made cylindrical calibrator tightly
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Fig. 1. Experimental setup showing the (1) robotic arm, (2) gamma detector, (3)
optical tracking system and (4) phantom

Fig. 2. Coordinate systems: (1) robot base, (2) robot hand, (3) detector target, (4) de-
tector tip, (5) phantom target and (6) optical tracking system. All transformations can
either be pre-calibrated (detector calibration, hand-eye calibration), measured intra-
operatively (robot, optical tracking system), or computed from others.

fitting around the detector, while the location of the detector crystal within the
detector is known by construction. The relation between tracking target and
robot hand was determined fully automatically using hand-eye calibration [8].
Thus, the relation between the detection crystal and the robot hand can be
computed. Fig. 2 shows the different coordinate systems involved.

Data Acquisition. During the scan, time stamps, gamma detector measurements,
and detector tip position and orientation were recorded. For positioning, mea-
surements were used either from the optical tracking system (for scans done by
humans), or from the robot (for robotic scans due to the higher precision). The



84 J. Gardiazabal et al.

sampling rate was 60 Hz for the robot, 60 Hz for the gamma detector, and 20 Hz
for the optical tracking system.

Robot Trajectories. Two phantoms were scanned during the experiments, an
ex-vivo meat phantom and a plastic phantom, see Fig. 3. In order to gener-
ate scanning trajectories for the ex-vivo meat phantom, it was first scanned by
human operators. These scans were then used to generate two types of robot
trajectories:

Fig. 3. Setup with ex-vivo meat phantom (left), and plastic phantom (right). In both
cases the optical tracking target is identical to the one used for clinical patients. The
hole raster of the plastic phantom enables reproducible placement of radioactive seeds.

For the first type of scan, called Path Follow, the positions recorded during
the human scan were down-sampled to 5 Hz, and then replayed by the robot at
constant speed. This will generate a trajectory which is approximately the same
as the human one, with a modified movement speed.

For the second type of scan, called Area Cover, the convex hull of the human
path was computed and a raster scan was generated within these bounds, which
was then executed by the robot at constant speed. The different trajectories can
be seen in Fig. 4.

To scan the plastic phantom, since the geometry is known and regular, the
scanning pattern was a basic raster scan with constant speed over three orthog-
onal faces of the phantom.

Decay Compensation. As radioactivity decays over time, the exposure time for
each measurement has to be prolonged in order to achieve constant photon de-
tection statistics and thus comparable image quality. This becomes particularly
relevant once a half-life of the radioactive tracer (or more) has passed, which in
the clinical case for the commonly used Technetium-99m (99mTc) is 6.01 hours.
In this case, adjusting the acquisition speed of the robot accordingly compensates
for the decay.

Reconstruction. After acquisition, the 3D activity distribution in the volume
of interest was reconstructed from the recorded data, using an iterative recon-
struction technique (MLEM, [4]) and custom detection models for the gamma
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Fig. 4. Area cover scan (black crosses, view direction in red) synthesised from human
input (green circles, view direction in blue). Please note that the area of interest and
surface curvature only need to be roughly outlined in the human input.

detector [9]. The voxel size was 2.5 mm for the ex-vivo meat phantom and 1.5 mm
for the plastic phantom. The reconstruction volumes were 17.5×17.5×12.5 cm3

and 13.5×11.25×4.5 cm3 respectively. The position of the probe was computed
using the phantom’s tracking target as reference.

3 Experiments and Results

We conducted two sets of experiments, the first set to show that robotic acquisi-
tions can perform consistent and reproducible scans, while the second set shows
the usefulness of decay compensation.

For the first set of experiments, an ex-vivo meat phantom was used, containing
three radioactive seeds (1.5 mL with a solution of 1.5 MBq of 99mTc each). The
phantom was scanned by three human operators, one expert and two novices,
two times each. The best scan of each operator was selected, and then used to
generate a path follow scan as well as an area cover scan. The path follow scan
was performed by the robot three times, and the area cover scan was performed
once.

Since the radioactive seeds were located at different depths, the plane contain-
ing all three hotspots was extracted from the 3D reconstruction using Principal
Component Analysis (PCA) for visualisation purposes, see Fig. 5.

Fig. 6 shows an intensity profile across two hotspots for the human expert
scan and for the robotic scans.

As a measure of reproducibility, the normalised cross correlation (NCC) was
computed between the reconstructed volumes (summed up along the z-axis to
yield a single slice) from the two repeated human and the three repeated robotic
scans with the path follow trajectory, see Table 1.
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Fig. 5. Slices through reconstructed images from human operator, robot following hu-
man path (three scans), and robot following synthetic path covering area of interest

Table 1. Normalized cross correlation between two operator scans, versus the robotic
scan pairs 1-2, 1-3 and 2-3 from the path follow trajectory. Reproducibility is consis-
tently higher for reconstructions from robotic scans than for human scans.

NCC Human 1-2 Robot 1-2 Robot 2-3 Robot 1-3
Expert 0.942 0.990 0.979 0.989
Novice 0.709 0.980 0.971 0.980
Novice 0.896 0.966 0.973 0.965

Fig. 6. Normalized intensity profiles across the rightmost two hotspots in Fig.5, for
expert and robotic scans. Distance (X-axis) in mm.
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Fig. 7. Decay compensation experiment. In each column, both images were acquired
at approximately the same time t + x. Images in upper row were acquired without
decay compensation, images in lower row were acquired with decay compensation (i.e.
suitably adjusted slower scanning speeds). NCC values with the image at time t are
shown below each image at t+ x. Please note the image degradation, especially in the
uncompensated image at t+ 18h.

For the second set of experiments, a plastic phantom containing three spherical
seeds (250 μL with a solution of 500 kBq of 99mTc each) was used.

A raster scan over three orthogonal sides of the phantom was performed,
and used as reference (time t). At t + 2 hours, t + 6 hours and t + 18 hours,
the same scan was repeated two times each, once using the original acquisition
speed, and once with reduced speed to compensate for radioactive decay. In
order to evaluate the compensation, again the NCC was computed between the
reconstructions at time t+x and the original reconstruction at time t, see Fig. 7.
The volumes were again summed up along the z-axis to yield single slices for the
NCC computation.

4 Discussion

The procedure to generate SPECT images from freehand acquisitions is very
challenging. Since the acquisition time is shorter and the detector area is con-
siderably smaller, the total number of photons is considerably less than in a
conventional SPECT machine. Their uses, on the other hand are very different.
The SPECT machine is used for the diagnostics, and it requires a reasonably
high image quality. The freehand acquisition, on the other hand are performed
for guidance purposes, so the exact amplitude of the hot spots are less relevant,
assuming that is possible to detect and separate them.

Fig. 5 and Fig. 6 show that robotic scans can provide image quality and
hotspot separability close to a human expert operator. Furthermore, all robotic
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scans were highly reproducible with an NCC of over 95%, see Table 1. The dis-
tances between the hotspots shown in Fig. 6 appear fairly constant, an indication
of the reproducibility of the scans. It is important to note that the path-follow
scans are an approximation of the real human scan, which for simplicity and
hardware limitations were not performed at the same human speed, and small
angle variations during the scan were simply not reproduced my the robotic
arm. Those limitations can explain the differences between the human scans and
the robotic ones, but what is important to notice here is the reproducibility of
the results obtained by the robot arm, as shown before, something not really
possible for human operators.

In the decay compensation experiment, after 18 hours, the non-compensated
scan does not yield a meaningful image, whereas the compensated scan is still
comparable to the original acquisition. It is important to notice, however, that
the scan time increased 8-fold in order to have comparable statistics, i.e. from
5 to 40 minutes. This is particularly important because a 40 minute scan is not
feasible with human operators, but easily doable with the robotic arm. Estima-
tion of the count rate and extrapolation is very challenging, the peak count on
the first scan is 600 cps, versus 40 cps after 18 hours. This experiment is par-
ticularly relevant to the clinical workflow of our medical partners. The common
procedure in sentinel lymph node biopsy for breast cancer is to inject 99mTc to
the patient during noon, acquire a scintigraphy image for lymphatic mapping,
and in the next morning the patient undergoes surgery. Such a decay compensa-
tion with robotic imaging can provide more reliable images for incision planning
compared to the ones achieved by much shorter freehand scans.

5 Future Research

Our method for synthesizing the scan patterns is a first approach towards less
dependency on a human operator, but obviously still depends on the original
human scan quality. Instead, the convex hull area of the area cover scan could also
be obtained from a CT image of the patient, for higher operator independence.
Another option is to have the surgeon use a tracked pointer to delineate the
scanning area, incorporating his expert knowledge of the area of interest.

The characteristics of a “good” scan pattern for “freehand” acquisitions are
still subject of intense research [10,11]. However, complex scan patterns can
hardly be communicated to humans, in particular when accurate orientation is
involved, so up to now such patterns could only be evaluated in simulations.
Our system now enables evaluation of such optimized scan trajectories with
actual acquisition systems [11], so we expect significant mutual benefit in the
future. Possible feedback loops during acquisition could also include refinement
of known hotspots, or the inclusion of preliminary reconstruction results or other
prior data. In the simplest case, the speed of the robot could be reduced in regions
where higher activity is detected (or expected), with a quick overview scan in
the beginning.

For intra-operative nuclear imaging the connection to surgical robotics is ob-
vious: If intra-operative images are acquired in the same coordinate frame as the



First Flexible Robotic Intra-operative Nuclear Imaging 89

surgery will be performed in later, no erroneous and error-prone co-registration
of images and work-spaces is needed. Intra-operatively, robots may even be used
for monitoring changes and progress [12]. For this purpose, even a gamma cam-
era may be used instead of a single-pixel detector [13], which is heavier (about
1 kilogram, versus 200 gram single detector) and thus not amenable for long-term
human free-hand operation, but still feasible for a robot.

The robot used in our set-up has redundant safety features generating a pro-
tective stop if the force exceeds 150 Newtons. While this is sufficient for research
and development and no additional safety guards are needed between robot and
operator, for use on patients further safety measures will need to be introduced
[14]. Since in our application we do not need to touch the patient, an additional
distance measurement sensor could be mounted next to the gamma detector,
ensuring a safe distance from the patient even in the case of errors in tracking
or registration.

As with freehand SPECT, the position of the probe was always computed
relative to the reference tracking target placed on the patient, e.g. on the ster-
num for breast cancer patients. This is the standard procedure with freehand
SPECT, so the respiratory movements such as breathing are partially compen-
sated. However, the main challenge here is that the actual acquisition and the
interpretation of the images happen in different phases of the surgery, so defor-
mations due to patient movement and anatomy changes still remain as an issue.
This can be solved in the future by using additional acquisition sensors such as
gamma cameras, which would allow even much faster acquisitions resulting in
multiple reconstructions within the procedure.

6 Conclusion

In this work we presented the first setup for flexible robot-controlled intra-
operative functional imaging with a first evaluation of its performance. This
combination enables patient-specific, flexible imaging in the operating room,
which easily integrates with the current surgical workflow and generates high-
quality functional imaging for the guidance of surgeons. Our results are very
promising in terms of accuracy, repeatability, operator-independence and medi-
cal impact, so we believe that the proposed method will lead to new applications
and insights in intra-operative functional imaging.

Acknowledgments. This work was partially funded by DFG SFB824, the Eu-
ropean Union FP7 under grant No256984, and the TUM Graduate School of
Information Science in Health (GSISH).
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Abstract. This paper proposes a fully automatic real-time robust image-
guided endoscopy method that uses a new discriminative structural simi-
larity measure for pre- and intra-operative registration. Current
approaches are limited to clinical applications due to two major bottle-
necks: (1) weak continuity, i.e., endoscopic guidance may be blocked since
a similarity measure might incorrectly characterize video images and vir-
tual renderings generated from pre-operative volume data, resulting in
a registration failure; (2) slow computation, since volume rendering is a
time-consuming step in the registration. To address the first drawback,
we introduce a robust similarity measure, which uses the degradation of
structural information and considers image correlation or structure, lu-
minance, and contrast to characterize images. Moreover, we utilize graph-
ics processing unit techniques to accelerate the volume rendering step.
We evaluated our method on patient datasets. The experimental results
demonstrated that we provide a promising method, which is possibly ap-
plied in the operating room, to accurately and robustly guide endoscopy
in real time, particularly the average accuracy of position and orientation
was improved from (14.6, 51.2) to (4.45 mm, 12.3◦) and the runtime was
about 32 frames per second compared to current image-guided methods.

Keywords: Image-Guidance Endoscopy, Endoscope Tracking and Navi-
gation, Video-Volume Registration, Discriminative Structural Similarity.

1 Endoscopic Interventions

Endoscopic interventions are widely performed for cancer diagnosis, e.g., bron-
choscopy and endoscopic sinus surgery. Such interventions use endoscopes to in-
sert into the body through natural orifices and observe suspicious regions where
biopsies may be performed. However, these interventions in the hands of dif-
ferent skilled endoscopists are the most sensitive procedure for locating tumors
since endoscopic video cameras only provide two-dimensional (2-D) image infor-
mation, which is not enough to determine six-degree-of-freedom (6DoF) position
and orientation of an endoscope in a three-dimensional (3-D) space. Moreover,
timing of endoscopy depends on physicians’ skills; the more time of endoscopy
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being operated, the more high risk the patients have. An image-guided endoscopy
is promising to address the problems of location and timing of endoscopy.

Image-guided endoscopy registers 2-D video images to 3-D pre-operative data,
e.g., computed tomography (CT) or magnetic resonance (MR) images that are
usually acquired before interventions, to navigate or locate the endoscope in a
reference coordinate system in real time. It usually defines a similarity mea-
sure to compute image intensity difference between video and virtual rendering
images and runs an optimizer to find the optimal corresponding virtual im-
age [1,2,3]. Compared to commercially available electromagnetically navigated
endoscopy [4,5], it has several interesting advantages including cost-efficient,
without additional setups, little influence from respiratory motion, and without
inherent system or dynamic errors. Unfortunately, two main weaknesses limit
image-guided endoscopy to apply in operation rooms: (1) guidance discontinu-
ity and (2) large amount of calculation. The former is caused by problematic
endoscopic images (e.g., local luminance and contrast changes) that may eas-
ily collapse the registration since the similarity measure may not adapt itself
to these changes. The latter results from volume rendering to generate virtual
images, blocking a real-time guidance procedure where at lest 30 frames are
processed in a second. Even though many papers have been published in the
literature [1,3], more accurate and effective methods to tackle these weaknesses
are still expected for the robust real-time image-guided endoscopy.

This work realized a robust real-time image-guided endoscopy. To accurately
register 2-D video images and 3-D CT volume, we proposed a new discriminative
structural similarity (DSSIM) measure. The similarity function is a key element
that is expected to precisely characterize intensity difference under a dynamic
environment. DSSIM can adapt itself successfully to image changes due to non-
linear illumination, specular- or inter-reflection, or collision with the organ walls
in endoscopy. Moreover, since generating 2-D virtual images is time-consuming,
we use graphics processing unit (GPU) techniques to accelerate our method up
to 32 frames per second (fps), which meets the real-time requirement (≥ 30 fps).

Several highlights of this work are summarized as follows. First, we modified a
measure of structural similarity (SSIM) to DSSIM that is robust and accurate for
a video-volume registration. We extended a new application of SSIM in computer
assisted interventions. Furthermore, to best of our knowledge, no methods were
published as real-time image-guided endoscopy using image registration methods
before. We reported a fully automatic image-guided endoscopy in real time.
Additionally, our method is suitable to other endoscopies (e.g., conchoscope).

2 Proposed Approaches

Our proposed approach to guide endoscopic interventions and determine en-
doscope 6DoF location information comprises of several main steps: (1) auto-
matically initializing the guided procedure, (2) formulating the discriminative
structural similarity measure, and (3) performing video-volume registration for
continuous endoscope guidance. Fig. 1 shows the flowchart of our proposed
method.
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Fig. 1. The processing flowchart of our proposed method for endoscope guidance

2.1 Automatic Initialization

Endoscopic guidance must be initialized before continuous navigation. It is hard
to perform a manual initialization that takes much time during examination. It
is also somewhat difficult to use fiducials to align from patient to CT spaces. For
surgical requirements, we here introduce a fully automatic initialization method
on the basis of airway tree structures and manifold learning.

First, we segment CT images to obtain the centerlines of the trachea, the
left main bronchus, and the right main bronchus with their start and end posi-
tions, (st, et), (sl, el), and (sr, er), before an endoscopic intervention. The carina
position should be either et or sl or sr.

Next, we generate a set of virtual images by updating position pi and orien-
tation oi(o

x
i ,o

y
i ,o

z
i ) of a virtual camera in the CT space (α ∈ [0.5 0.9]):

pi = st +
α(et − st)

‖et − st‖ , oz
i =

(et − st)

‖et − st‖ , o
y
i =

(el − sl)

‖el − sl‖ × (er − sr)

‖er − sr‖ , (1)

where, ox
i = oz

i × oy
i ,o

y
i , and oz

i are the direction vectors of the virtual camera.
Finally, we use a manifold learning method to construct the subspace for those

generated virtual images with different camera poses (position and orientation
parameters) [6]. During the intervention, the physician can initially locate the
endoscope around the carina of the airways and embedded the current video
image to the subspace and find the optimal initialization to start a navigation.

2.2 Discriminative Structural Similarity

The similarity measure is a core of image registration. It is supposed to accu-
rately and robustly represent image changes (distortion), e.g., illumination and
motion blurring. We propose a discriminative structural similarity measure that
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(a) (b) (c) (d)

Fig. 2. Discriminative region extraction (a yellow square indicates one patch and a
green point is one patch center): (a) all separated patches from an input image, (b)
removed patches without structural information, (c) remained patches with structural
information, (d) finally used patches during similarity computation.

takes incomplete correlation, luminance and contrast distortion into considera-
tion to model image changes. Discriminative here means specific structures such
as bifurcations and folds inside the airways. Since the structural information is
very useful for the similarity calculation, we first extract discriminative regions.

Discriminative Region Extraction. For an image with W × H pixels, we
divide it into U ×V patches. One patch Pu,v with W

U × H
V pixels is presented by:

Pu,v = {(cx, cy), u ∈ U, v ∈ V }, (2)

where cx and cy are the patch center coordinates. We define two variables: in-
tensity variance σu,v and contrast ωu,v that indicates the tone of the highlights
and lighter areas, to check whether Pu,v includes the structural information:

σ2
u,v =

1

|Pu,v|
∑
Pu,v

(
Pu,v(x, y)− P̄u,v

)2
, ωu,v =

1

|Pu,v|
∑
Pu,v

Ψ (Pu,v(x, y)) , (3)

where (x, y), |Pu,v|, and P̄u,v denote one pixel coordinates, the pixel number,
and the average intensity in patch Pu,v, respectively. Function Ψ (Pu,v(x, y)),
which depends on the pixel color information of saturation S(x, y) and lightness
L(x, y) in the hue-saturation-lightness (HSL) color model, is defined to evaluate
whether pixel (x, y) belongs to the highlights and lighter areas or not:

Ψ (Pu,v(x, y)) =

{
1 S(x, y) ≤ βS and L(x, y) ≥ δL
0 otherwise

, (4)

where βS and δL are two pre-determined thresholds. We remove the white
patches without structural information by ωu,v ≥ εω (a fixed constant), descend-
ingly sort the remained patches in terms of σu,v, and choose λ ·U ·V patches for
the similarity calculation. Fig. 2 shows the discriminative patch detection.

Structural Similarity Function. A similarity function seeks to correctly de-
pict pixel difference between distorted and reference images in the registration.
Image distortion usually results from structure (correlation), luminance, and
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contrast changes. Based on the work of SSIM [7], we introduce the similarity
function M into the volume-video registration for guided interventions as:

M =
σd,r + C1

σdσr + C1︸ ︷︷ ︸
Structure

· 2ξdξr + C2

ξ2d + ξ2r + C2︸ ︷︷ ︸
Luminance

· 2σdσr + C3

σ2
d + σ2

r + C3︸ ︷︷ ︸
Contrast

, (5)

where σd,r is the correlation between distorted and reference images; ξd and
ξr are the intensity mean; σd and σr are the intensity variance, respectively
(constants: C1, C2, and C3). Three elements in Eq. 5 were demonstrated to
successfully characterize image changes [7]. By C3 = 2C1, we rewrote Eq. 5 as:

M =
(2σd,r + C1) (2ξdξr + C2)

(σ2
d + σ2

r + C1) (ξ2d + ξ2r + C2)
. (6)

After choosing λ · U · V discriminative regions, similarity DSSIM(Ik, ICT ) be-
tween k-th video sequence Ik and CT-based virtual image ICT is computed by:

DSSIM(Ik, ICT ) =
1

λ · U · V
∑

Pu,v∈λ·U·V

1

|Pu,v|
∑
Pu,v

M̂u,v, (7)

M̂u,v =

(
2σu,v

k,CT + C1

)
(2ξu,vk ξu,vCT + C2)

((σu,v
k )2 + (σu,v

CT )
2 + C1) ((ξ

u,v
k )2 + (ξu,vCT )

2 + C2)
. (8)

The DSSIM measure will be demonstrated to very robust and accurate for reg-
istering video and CT-based virtual images from our experimental results.

Remarks on the DSSIM Measure. Image structural or discriminative infor-
mation is very useful for the similarity calculation since it describes the pixel
dependency that involves significant information about visual structures. Hence,
a robust similarity measure should be able to characterize visual structural infor-
mation in images. Moreover, image similarity should be computed locally but not
globally, i.e., an image should be divided into many patches and the similarity
of each patch is calculated and added up to the finial similarity. The similarity’s
locality is better than its globality since it yields several practical situations,
e.g., dynamic of image statistical features, image distortion being independent
or dependent of local characteristics, the human vision system being sensitive
to local structures, and a variable image quality map related to local quality
measurement. Additionally, a good measure should be insensitive to luminance
and contrast changes. DSSIM can meet three requirements of a good similarity
measure: (1) usage of structural information (2) locality, and (3) adaptation of
luminance or contrast distortion. We extract discriminative structures (bifurca-
tions or folds) in local regions and compute the local similarity of the patches
whose luminance or contrast distortion was modeled.

2.3 Video-Volume Registration

For a continuous endoscopic navigation, we must perform the video-volume reg-
istration (V2R) to determine the spatial transformation between the video and
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CT volume coordinate systems during the image-guided endoscopic intervention.
Such a spatial transformation involves with the 6DoF parameters of position and
orientation of the endoscope located somewhere in the airways.

Suppose that CTTk
V with position CT tV and rotation matrix CTRV is the

transformation matrix from video to volume at frame k. To estimate CTTk+1
V ,

we formulate V2R as an optimization process on the basis of the proposed DSSIM
measure and determine the changeable transformation parameter ΔCTTk+1

V by:

ΔCTTk+1
V = argmaxΔCT Tk+1

V
DSSIM

(
Ik, ICT (

CTTk
V ·ΔCTTk+1

V )
)
, (9)

where virtual image ICT (·) is generated on the basis of virtual camera parame-
ters CTTk

V ·ΔCTTk+1
V . By running an optimizer, we find optimal ΔCT T̆k+1

V to

maximize the similarity between images Ik+1 and ICT (
CTTk

V ·ΔCT T̆k+1
V ).

Note that the initialization of ΔCTTk+1
V is important to the optimizer, as

discussed in [3]. It can be initialized as an identity matrix. Such an initialization
will lose the temporal coherence between two consecutive video frames, possibly
resulting in a guidance failure. Video image textures or features can be used
to compensate such losing. However, such a compensation takes much time. In
this work, we determine the initialization empirically. We clarify that typical
translating and rotating speeds of an endoscope is 10.0 mm and 20 degrees per
second. An endoscopic camera is usually at frame rate of 30 fps. Therefore,
interframe speeds τ and φ of translation and rotation are about 0.33 mm and
0.66 degrees per frame (τ = 0.33 mm and φ = 0.66 degrees). Hence, we can
initialize ΔCTTk+1

V by the following equations:

ΔCTTk+1
V =

(
ΔCTRk+1

V ΔCT tk+1
V

0T 1

)
4×4

, (10)

ΔCT tk+1
V = [τ τ τ ]T , ΔCTRk+1

V =

⎛
⎝ b2 a2b− ab ab2 + a2

ab a3 + b2 a2b− ab
−a ab b2

⎞
⎠

3×3

, (11)

where the variables of matrix ΔCTRk+1
V are defined as: a = sinφ and b = cosφ.

3 Experimental Settings

We validated our proposed method on six cases of patient datasets: (1) endo-
scopic video images, whose sizes were 360 × 370 and 256 × 263 pixels, were
recorded at a frame rate of 30 fps, and (2) CT volumes were acquired by space
parameters of 512 × 512 pixels, 72-351 slices, 2.0-5.0-mm slice thickness.

We implemented our method on a Dell Precision Workstation that was
equipped with Intel (R) Xeon(R) CPU X5355 2.66 GHz × 8, NVIDIA GeForce
8800 GTX, and 16.0 GB memory and installed with the Windows 7 64-bit operat-
ing system and the NVIDIA CUDA 4.2 toolkit. We investigate two image-based
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Table 1. Quantitative results of the guidance accuracy of the two methods in terms
of position and orientation errors between the estimates and ground truth

Patient data Comparison of (position, orientation) of the two methods
(Frames) MoMSE DSSIM

Case A (379) (31.2±25.8 mm, 38.8±29.3◦) (9.08±6.88 mm, 12.4±8.00◦)
Case B (1000) (12.4±7.84 mm, 72.8±52.3◦) (2.88±1.62 mm, 10.8±6.53◦)
Case C (449) (4.75±2.99 mm, 10.0±5.80◦) (4.35±2.77 mm, 9.29±4.50◦)
Case D (2650) (10.4±5.70 mm, 66.6±35.4◦) (2.32±1.81 mm, 8.67±7.21◦)
Case E (450) (13.8±11.7 mm, 23.9±18.6◦) (4.64±2.75 mm, 17.7±14.7◦)
Case F (2000) (15.3±14.3 mm, 45.6±28.5◦) (3.42±3.07 mm, 14.2±12.3◦)

Average (14.6±11.4 mm, 51.2±28.3◦) (4.45±3.15 mm, 12.3±8.88◦)

(a) Position error (b) Orientation error

Fig. 3. Navigation position and orientation errors of the two methods on Case B was
plotted against ground truth by every 20 frames

methods: (1) MoMSE: a method using a modified mean square error similarity
measure [1], (2) DSSIM: our method, as discussed in Section 2. To evaluate the
guidance accuracy, we generate ground truth data by manually adjusting the
position and orientation of the virtual camera to qualitatively align video and
CT-driven virtual images. Additionally, we set parameters: U = V = 30, λ = 0.3,
βS = 0.6, δL = 0.7, and εω = 0.9 during discriminative region extraction.

4 Results

Table 1 lists the guidance accuracy by computing the position and orientation er-
rors between ground truth and the estimates. The mean position and orientation
errors of our approach were 4.45 mm and 12.3◦, which are significantly better
than 14.6 mm and 51.2◦ of the MoMSE-based method. Fig. 3 plots the guidance
accuracy of the MoMSE- and DSSIM-based methods on Case B. Fig. 5 shows
some video images of Case D and their corresponding virtual images generated
from the estimated results. Fig. 4 compares the similarity between video and vir-
tual images, demonstrating that the visualization quality of the DSSIM-based
method is absolutely better than the MoMSE-based method (Fig. 5).
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(a) Case C (b) Case E

Fig. 4. Comparison of the similarity value of the two methods.

Table 2. Comparison of iterations and computation time of volume rendering, simi-
larity, and one frame with and without CUDA speed-up (ms: milliseconds)

Computation Without CUDA With CUDA
comparison MoMSE DSSIM MoMSE DSSIM

Iterations 77 52 67 49

Rendering 138 ms 104 ms 22 ms 15 ms

Similarity 38 ms 68 ms 6 ms 10 ms

One frame 246 ms 219 ms 38 ms 31 ms

4351 4576 4801 5026 05251 5476 5701 5926 6151 6376 6601 6825

Fig. 5. Visual comparison of guidance results of Case D. Top row shows uniformly
selected frame numbers, and second row shows their corresponding video images. Third
row gives the results of discriminative region extraction. Fourth and fifth rows display
virtual images based on the estimates from the MoMSE- and DSSIM-based methods,
respectively. Our method shows better performance.

More interestingly, our approach can be implemented in real time using GPU
techniques. After accelerating by GPU, the DSSIM-based approach needs about
31 milliseconds per frame (mpf), i.e., processing about 32 fps, which exceeds the
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(a) Iterations per frame (b) Volume rendering per frame

(c) Similarity computation per frame (d) Runtime per frame

Fig. 6. Comparison of the computational times of the two methods on Case F

clinical requirement of 30 fps. The MoMSE-based method can process about 26
fps (38 mpf), slightly being lower than the real-time need (Table 2 and Fig. 6).

5 Discussion and Conclusion

We realized a real-time endoscope guidance with a more robust and accurate
navigation. We believe that the effectiveness lies in the DSSIM’s robustness.
Sine the visualization quality of guidance results (i.e., virtual images generated
from endoscope location parameters) depends on the human visual system (HVS)
that is very sensitive to structural information in images, a good similarity mea-
sure should approximate structural information changes as accurate as possible.
MoMSE computes pixel difference to approximate image distortion but hardly
fits to HVS. DSSIM, which use structural information changes to characterize im-
age distortion, follows HVS well. Moreover, DSSIM can adapt itself to luminance
and contrast dynamics, as proved in our experimental results. Additionally, the
runtime, which was improved to the real-time level, is mainly attributed to GPU
techniques. We believe that the similarity measure that makes convergence fast
can also reduce the runtime (Fig. 6). Even though DSSIM is computed by more
time than MoMSE, its robustness makes iterations reduced in optimization.
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Our method has one main potential limitation that is difficult to tackle prob-
lematic video images (e.g., bubbles), which possibly fail a continuous endoscope
guidance. Future work includes recovering the continuous guidance by removing
these ambiguous images. We also plan to revoke a re-initialization mechanism
to tackle failure since an endoscope is usually operated back to where it has
flied through. Additionally, since we current used a relatively simple processing
method in discriminative region detection, we seek to use more robust functions
to perform the patching and calculate the inter-pixel similarity among images.

To summarize our work, this article proposes a framework of a fully automatic,
robust, and real-time image-guided endoscopy by a video-volume registration on
the basis of a discriminative structural similarity measure and GPU acceleration
techniques, without additional positional sensors (e.g., electromagnetic sensors).
Current guidance accuracy and processing time were significantly improved up
to position error 4.45 mm, orientation error 12.3◦, and 32 fps.
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Abstract. Dynamic dosimetry is becoming the standard to evaluate the quality 
of radioactive implants during brachytherapy. It is essential to obtain a 3D visu-
alization of the implanted seeds and their relative position to the prostate. For 
this, a robust and precise segmentation of the seeds in 2D X-ray is required. 
First, implanted seeds are segmented using a region-based implicit active con-
tour approach. Then, n-seed clusters are resolved using an efficient template 
based approach. A collection of 55 C-arm images from 10 patients are used to 
validate the proposed algorithm. Compared to manual ground-truth segmenta-
tion of 6002 seeds, 98.7% of seeds were automatically detected and declustered 
showing a false-positive rate of only 1.7%. Results indicate the proposed me-
thod is able to perform the identification and annotation processes of seeds on 
par with a human expert, constituting a viable alternative to the traditional  
manual segmentation approach. 

1 Introduction 

With an estimated 240,890 new cases in 2011, prostate cancer is the most common 
cancer among men in the United States, accounting for 29% of their cancers [1]. Bra-
chytherapy, a definitive treatment for early stage prostate cancer, demonstrates excel-
lent long-term disease-free survival and is chosen by over 60, 000 men annually. The 
brachytherapy procedure entails permanent implantation of small radioactive seeds, 
such as 125I, 103Pd, or 137Cs, into the prostate to eliminate the cancer via radiation. 
Before the operation, the seed positions are planned using a transrectal ultrasound 
(TRUS) volume. The goal of the planning is to cover the target gland with a pre-
scribed dose of radiation, while sparing the healthy surrounding tissue such as urethra 
and rectum. In current brachytherapy interventions, seed placement is performed un-
der visual guidance from TRUS and further assessed with the acquisitions of multiple 
C-arm fluoroscopy images. Intraoperative dynamic dosimetry, the fusion of both 
TRUS and fluoroscopy data, would enable physicians to account for deviations from 
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the initial seeds placement plan and tailor the remaining dose so as to eradicate the 
cancer while minimizing harm to the surrounding healthy tissues [2].  

1.1 Intra-operative Dynamic Dosimetry Workflow 

The following workflow closely reflects intraoperative dosimetry analysis and opti-
mization (see Figure 1). The oncologist will acquire a number of transrectal ultra-
sound images until they feel it is time to verify implant position and dosimetric  
values. At that point, the acquired slices are compounded into a 3D volume. A C-arm 
fluoroscopy device is moved near the patient table and several X-ray images are ac-
quired showing implant position. The C-arm images are pre-processed and the precise 
seed segmentations can be calculated using segmentation techniques. Next, seed cor-
respondence between the acquired C-arm images is performed and subsequent 3D 
reconstruction of the seeds is realized as in [11]. The 3D ultrasound volume is then 
registered to the 3D seed reconstruction using a state-of-the art method as in [12, 13]. 
The oncologist can visually assess the multimodal fused data and determine whether 
there are under-dosed regions (cold spots) or regions with high risk of over-radiation. 
Lastly, dynamic dosimetry is inherently executed since the oncologist could change 
the planned position of the remaining seeds and add new seeds if required. To achieve 
suitable dynamic dosimetry intraoperatively precise seed segmentation must be 
achieved. Unfortunately, modern C-arm images are still afflicted with low signal-to-
noise ratios and are characterized by illumination inhomogeneity [3]. Using  
thresholding algorithms would yield poor results [4]. Lastly, since many implants 
overlap— as many as five seed clusters in some scenarios— techniques to resolve 
these clusters into their constituent components need further investigation. 

 

Fig. 1. Dynamic dosimetry outline. (a): Several ultrasound images of the prostate. (b): 3D ultra-
sound volume. (c): C-arm images showing seeds. (d): Seeds reconstructed in 3D. (e): Regis-
tered seeds overlaid on the US volume. Seeds are shown as red capsules Image taken from the 
authors in [12]. 
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1.2 Existing Segmentation Algorithms of Implants 

Brachytherapy seed segmentation in C-arm fluoroscopy images is a well-known topic 
in research practice [3-6]. For brevity, we summarize some of the key contributors in 
this topic. In Lam et al. [3], it is possible to observe the usage of a spoke transform to 
facilitate seed segmentation. In Tubic et al. [4], the morphological top-hat transform 
was used to normalize image illumination, in order to prepare the image for threshold-
ing which was achieved through the bidimensional entropy method. Grouped pixels, 
thus potential seeds clusters, were identified using area, width, and length statistics of 
the clusters and subsequently declustered using a simulated annealing type algorithm. 
In Kuo et al. [5], a top-hat by reconstruction algorithm followed by thresholding via 
Otsu's method was employed. Overlapping seeds were identified- but not separated- 
by calculating the sum of the intensities of each pixel group and comparing it to the 
median sum. In the most recent state-of-the-art method, Moult et al. [6] used top-hat, 
Gaussian and Kirsch filters in combination. Afterwards, they used an implicit active 
contour algorithm to produce an image showing only the seeds. Finally, a declustering 
algorithm to decompose only two-seed clusters was introduced via a template-based 
scheme. All of the above works suffer from distinct limitations: (i) in [5] the authors 
consider only palladium seed segmentation, (ii) in all algorithmic steps require ma-
nual intervention for image cropping and definition of algorithm parameter thresholds 
and (iii) only n=2 seed clusters were accounted for which significantly reduces accu-
racy of seed reconstruction.  

1.3 Contributions 

According to Radiotherapy in Practice Brachytherapy: “[t]he most frequently used 
isotope for permanent seed implantation in brachytherapy is iodine-125 [10].” Differ-
ent implants require different segmentation schemes due to their shape and size— 
thus 103Pd, or 137Cs segmentation algorithms cannot be applied to iodine seeds which 
are longer in size. Consequently, the existing two-cluster solutions cannot be reduced 
for general clinical practice. It is clinically unacceptable to perform manual segmenta-
tion on the seeds, intra-operatively during the procedure, for every C-arm image of an 
implant (i.e. almost 5 seeds/C-arm image in [6]). This results in long procedure times 
and invites human operator errors. Clinical experience proves that n-cluster seed seg-
mentation is required for a viable clinical implementation of intra-operative implant 
reconstruction and dosimetry. In this paper, a template matching technique that allows 
for fast and accurate n-seed cluster decomposition is proposed.  

2 Implicit Active Contours and Initial Preprocessing 

To segment the iodine brachytherapy implants, a region-based implicit active contour 
model by Li et al. [7] is used. Generally medical images have intensity inhomogenei-
ty; hence the model proposed by Li et al. is suitable as it accounts for variances in 
image illumination and additionally eliminates the re-initialization process making 
this algorithm automatic. The initial segmentation can be summarized by the  
following four steps: 



104 C.A. di San Filippo et al. 

STEP 1: the X-ray image is filtered producing a processed image on which the active 
contour will be evolved. In this step, a morphological top-hat filter with rectangular 
structuring element is applied. The structuring element has dimension 12×2 pixels 
with longer y-axis length. We made the fitting assumption that implanted seeds in  
X-ray are rectangular in shape and closer to an upright orientation. It is impossible to 
insert and deposit a seed horizontally when guiding needle insertion using the needle 
template during brachytherapy. 
 
STEP 2: the image that is used to initialize the active contour is generated here there-
by eliminating the need for a manually defined ROI. This initialization image is 
formed using a top-hat filter, blurring the original X-ray with a Gaussian filter and 
employing a Kirsch edge filter [8]. For all trials the Kirsch filter threshold was t0 = 5. 
Once the binarized edge image is formed, black-white (BW), the initial level set  
function φ 0 is defined as: 
 





 =−

=
elsewherec
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j)(i,

0

0
0φ      (1) 

  
where c0 = 2 as indicated in [7]. 
  
STEP 3: evolves the level set function for 70 iterations, after which a resulting binary 
image is obtained containing the seeds and possibly some lingering noise. For all 
trials, the energy functional parameters were set as those defined by the author in [7].  
 
STEP 4: eliminates any remaining noise in the image. Connected regions < 20 pixels 
are discarded since their areas are below the assumed area of an implanted seed. Also, 
if the region width is larger than the region length, we discard as well, since implants 
are always closer to an upright position. Mean statistics are subsequently calculated 
similar to the state-of-the art method of [6].  Mean pixel area is determined by the 
number of pixels contained in all clusters. This value is divided by the number of 
connected components in the X-ray image. Lastly, regions of the image that deviate 
significantly from the mean statistics are removed. The statistics were formulated by 
analyzing the mean pixel area (MPA) of seed groups within X-ray images. The pixel 
groupings in this paper were set to [0.5, 5] times MPA. A value of five suggests at 
most 5 seed clusters whereas a value of ½ suggests the lower limit possibility of a 
region being a seed. This resulting image is used when applying the declustering  
algorithm described in the following section.  

3 Declustering n-Connected Components 

In the image, it is expected to find certain pixels that define two or more seed clusters. 
This fact motivates the introduction of seed declustering techniques to resolve such 
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Processing: The algorithm was prototyped in a MATLAB/C++ environment having a 
runtime of 50 seconds per C-arm image using an Intel®CoreTM i7 computer. 

Results: In total, 5918 seeds were automatically segmented using our method which 
results in a 98.7% detection rate. Our calculations using a 95% confidence interval, 
with p<0.05, returns 0.448. Thus, the high and low intervals around our mean detec-
tion rate are [98.14, 99.04]. The proposed n-seed declustering algorithm found 554 
two-seed clusters, 68 three-seed clusters, 2 four-seed clusters and 1 five-seed cluster. 
These results were compared to the ground truth clusters, that were respectively 511 
two-seed clusters, 56 three-seed clusters, 3 four-seed clusters and 0 five-seed cluster, 
confirming that the presented method responds quite well for overlapping iodine 
seeds. In order to evaluate the precision of our algorithm the mean centroid error was 
calculated. The overall mean centroid error between ground-truth manual and auto-
matic segmentations was 1.2 pixels, or 0.24mm when considering our pixel spacing of 
0.2013mm. Due to the GUI used for the seed centroid extraction, manually segmented 
seeds could only be placed at the centers of the image pixels. Since the distance from 
the center of a pixel to one of its corner is equal to sqrt (0.5), we define this value as 
the pixel uncertainty associated with the manual segmentations. However, these  
results re-affirm the efficacy of the proposed algorithm.  

 

Fig. 5. Clinical example showing successful declustering in two- and three-seed clusters. (Left) 
the input X-ray image on the left is displayed, in red the three seed cluster is highlighted, in 
green the two-seed cluster. (Right) the detection of the seeds belonging to the three- and  
two- seed clusters respectively. 

Clinical Implications: In reference to the D90 values—the minimum dose received 
by 90% of the prostate volume—Su et al. [9] state “[t]he 95% confidence interval 
(CI) of estimated D90 values differ by less than 5% from the actual value when 95% 
or more seeds are detected, or approximately a 7 Gy difference in the D90 value for a 
prescription dose of 144 Gy.” They concluded that accurate dose estimation can be 
achieved if 95% or more seeds are detected. Thus, our mean automatic detection rate 
of 98.7% surpasses clinical standards. Regarding segmentation, 84 seeds were not 
detected by our algorithm yielding an average of only 1.5 missed seeds per  
patient-image. Our results demonstrate a viable solution in the workflow of dynamic  
dosimetry (Figure 1) that ensures subsequent seed reconstruction in 3D and  
registration to TRUS data.  
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Fig. 6. Clinical examples depicting successful declustering of four-seed cluster on the left im-
age and a false clustering of five-seeds in the right image  

Drawbacks: 103 seeds were erroneously segmented, leading to a 1.7% false positive 
rate. This signifies that these were recognized by our algorithm as seeds; however 
they had no associated manual segmentation ground-truth. Here, it is observed that 
some identified clusters are not true clusters but a result from errors in the level set 
evolution (Figure 6-right), there is in fact two distinct clusters and not a five-seed 
cluster‒ a two- and three seed group).   

Future Work: We aim at investigating filtering techniques, such as the homomorphic 
filter, that improves the original contrast of a newly acquired C-arm image during 
brachytherapy. We want to provide an initial image that optimizes the chances of the 
level set algorithm to lock onto seeds instead of noisy pixels. A natural extension of 
our algorithm is regarding the segmentation of other implants, such as 103Pd or 137Cs, 
which are used in prostate brachytherapy procedures. Also, color-coding the grayscale 
C-arm image which depicts individual or clustered seeds may facilitate seed  
correspondence between images for subsequent 3D reconstruction (Figure 7).  

 

Fig. 7. C-arm imaged of the same patient showing clusters and individual seeds. A side benefit 
from colored segmentations: simplified seed correspondence. 
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5 Conclusions 

In this work we have presented a practical technique to robustly segment prostate 
brachytherapy iodine implants thereby making an important contribution to both re- 
search and clinical practice. We have improved current state-of-art algorithms by 
proposing an n-seed declustering scheme for iodine seeds and positively validated the 
technique on patient datasets.  
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