
Fuzzy Keyword Search over Encrypted Data

in the Public Key Setting

Qiuxiang Dong1,2,3, Zhi Guan1,2,3,�, Liang Wu4, and Zhong Chen1,2,3

1 Institute of Software, School of EECS, Peking University, China
2 MoE Key Lab of High Confidence Software Technologies (PKU)

3 MoE Key Lab of Network and Software Security Assurance (PKU)
4 Computer Network Information Center, Chinese Academy of Sciences

{dongqx,guanzhi,chen}@infosec.pku.edu.cn, wuliang@cnic.cn

Abstract. Searchable encryption is used to support searches over en-
crypted data stored on cloud servers. Traditional searchable encryption
only supports exact keyword search instead of more flexible fuzzy key-
word search. To solve this problem, a recent emerging paradigm, named
fuzzy keyword searchable encryption, has been proposed. There have
been some proposals designed for fuzzy keyword search in the symmetric
key setting, but none efficient schemes in the public key setting. In this
paper, we propose a new primitive of interactive public key encryption
with fuzzy keyword search (IPEFKS), which supports efficient fuzzy key-
word search over encrypted data in the public key setting. We construct
and implement a homomorphic encryption based IPEFKS scheme. To
compare this scheme with the existing ones, we implement LWW-FKS,
which, to the best of our knowledge, is the most efficient among the
existing schemes. The experimental results show that IPEFKS is much
more efficient than LWW-FKS.

Keywords: FuzzyKeywordSearch,Public keyEncryptionwithKeywords
Search, Cloud Computing.

1 Introduction

1.1 Background

In recent years, due to the appealing features of cloud computing, more and
more data have been centralized into cloud. To protect clients’ privacy, data
with sensitive information are usually stored in the encrypted form. However,
encrypted storage makes it hard to perform searches over the data. To cope
with this problem, various techniques for searching over encrypted data, namely
searchable encryption, have been proposed in the literature [1–4].

Searchable encryption schemes can be divided into two categories [14], the
symmetric key searchable encryption (SSE) [3, 4] and the public key searchable
encryption (PSE) [1,2]. In SSE, the data sender and data receiver are the same

� Corresponding author.

J. Wang et al. (Eds.): WAIM 2013, LNCS 7923, pp. 729–740, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

730 Q. Dong et al.

entity or different entities sharing the same secret key. While in PSE, they are
different entities and may not share a secret key. By comparison, SSE is more
efficient than PSE, while PSE can be deployed in scenarios where it is infeasible
to share a common secret key between different entities.

One of the drawbacks of traditional searchable encryption schemes, both SSE
and PSE, is that they only support exact keyword search. This will affect system
usability, since typos and format inconsistencies often occur when users input
keywords. To enhance system usability, searchable encryption schemes with fuzzy
keyword search capability [9] are necessary.

In the symmetric key setting, some efficient proposals have been designed for
fuzzy keyword search over encrypted data [12,13,15,16]. However, in the public
key setting, to the best of our knowledge, there have been only two researches
on achieving this functionality [5,9]. In addition, we find that both schemes are
not efficient for real applications. In this work, we construct and implement a
homomorphic encryption based IPEFKS scheme, which achieves much higher
efficiency compared with these two schemes.

1.2 Contributions

Our contributions in this paper are threefold.

1. We propose the primitive of IPEFKS that supports fuzzy keyword search
over encrypted data and define its security requirement. We give a construc-
tion based on homomorphic encryption and prove that it is secure under the
assumption that there exists an IND-CPA secure homomorphic encryption
scheme.

2. We leverage a nice property of bilinear pairings in such a way that the cloud
server can build an inverted index over encrypted data without knowing the
encrypted keywords. Since an inverted index supports much more efficient
search than a forward index when the number of documents is large, we may
find uses for this approach in other applications.

3. We evaluate the efficiency of the homomorphic encryption based IPEFKS
scheme by implementing the FV.SH homomorphic encryption scheme [8]. To
show the efficiency advantage of IPEFKS over the other existing schemes,
we implement the scheme proposed by Li et al. [9], which, to the best of our
knowledge is the most efficient scheme among the existing ones. We name
this scheme LWW-FKS for simplicity. The experimental results demonstrate
that IPEFKS is much more efficient than it.

1.3 Organization

The rest of this paper is organized as follows. In section 2, we present the related
work on fuzzy keyword searchable encryption. In section 3, we give the defini-
tion of IPEFKS and a concrete construction of it. In section 4, we show how
to allow the cloud server to build an inverted index over encrypted data in a
secure way. In section 5, we compare the efficiency of IPEFKS with LWW-FKS.

Fuzzy Keyword Search over Encrypted Data in the Public Key Setting 731

In section 6 we show security advantage of IPEFKS over LWW-FKS. Section 7
concludes this paper.

2 Related Work

Our work is built on fuzzy keyword searchable encryption. The most important
related researches in this field are discussed below.

Fuzzy keyword search (FKS) over encrypted data in the public key setting
is firstly proposed by Li et al. in [9]. Given a keyword q, FKS intends to find
the encrypted documents containing keywords that are within a certain edit
distance from q. The edit distance between two words w1 and w2 is the number of
operations, including substitution, deletion and insertion, required to transform
one of them into the other. Given a keyword, the basic idea of [9] is to enumerate
all wildcard-based keywords that are within a predefined edit distance to it.
Therefore, this scheme transforms a single fuzzy keyword search operation into
several exact keyword search operations. The succeeding work done by Wang et
al. [15] focuses on efficiency. They present a symmetric fuzzy keyword searchable
encryption scheme with trie-traverse searching index in order to achieve high
efficiency.

As discussed in [13], both schemes cited above can not use any other wildcard
patterns than the ones prepared by the sender because the wildcard is realized by
exact keyword search. The authors of [13] split a keyword into several characters
and can achieve more splendid keyword matching patterns, e.g., wildcard search,
partial matching. However, as for FKS, they give the same wildcard-based ap-
proach as [9]. Another recent work on symmetric FKS has been presented in [12].
The authors construct a symmetric similarity keyword search scheme using a
fuzzy extractor and a protocol for computing Hamming distance. Actually, all
above mentioned schemes do not support fuzzy keyword search in the real sense.
The key issue to design FKS schemes is computing the edit distance between
two encrypted keywords. To solve this problem, the authors of [16] and [5] share
the common idea of translating metric space. Concretely, they translate edit
distance into a new metric space with locality sensitive function family.

Except for LWW-FKS, the scheme proposed in [5] is the other FKS scheme
in the public key setting among all others mentioned above. It is based on the
embedding algorithm in [10] and the similarity search scheme in [6]. It uses
PIS (Private Information Storage) [11] and PIR (Private Information Retrieval)
[7], both of which are interactive cryptographic protocol with low efficiency,
especially when used to store and retrieve documents consisting of a large number
of bits. This makes this scheme inefficient for encrypted document retrieval.

Note that another research [18] sharing a similar name with ours solves the
problem of keyword guessing attack but not the problem of fuzzy keyword search,
which is the focus of this paper. In conclusion, the only somewhat practical FKS
scheme in the public key setting is LWW-FKS. In this paper, we present a much
more efficient FKS scheme than it.

732 Q. Dong et al.

3 IPEFKS

3.1 Preliminary

We denote vectors by lower-case bold italic letters, say x, y, z, etc. We assume
all keywords are strings of the same length, if this is not the case, we append
some wildcard symbols (e.g., ∗) to the shorter ones.

The authors of [10] show that there exist 0 < α < β < c2 and an embedding Ψ
from {0, 1}N with edit distance ed to {0, 1}c2(log2(1/δ)) with Hamming distance
HD such that:

– If ed(x,y) ≤ t, then HD(Ψ(x), Ψ(y)) ≤ αlog2(1/δ).

– If ed(x,y) ≥ 2c1(
√
log2Nlog2log2N)t, then HD(Ψ(x), Ψ(y)) ≥ βlog2(1/δ).

The above fact indicates that we can use Hamming distance to represent edit
distance. Therefore, we focus on searchable encryption with Hamming distance
as the distance measurement.

Fig. 1. Work flow of the IPEFKS scheme in the public key setting

3.2 Definition of IPEFKS

Definition 1. The IPEFKS scheme consists of the following five polynomial
time algorithms, i.e., KeyGen, IPEFKS, TokenGen, Search and Retrieve,
defined as follows:

– KeyGen(1λ): Takes a security parameter λ as input, and generates a pub-
lic/private key pair pk, sk.

– IPEFKS(pk, w): Takes a public key pk and a keyword w as inputs, and
produces a searchable encryption of w.

– TokenGen(pk, v): Given a public key pk and a query keyword v, this
algorithm produces a token Tv.

– Search(Tv, Sw): With a token Tv = TokenGen(pk,v) and a keyword ci-
phertext Sw = IPEFKS(pk,w), outputs an encrypted result ERw.

– Retrieve(sk, ERw, th): Given a private key sk, the encrypted result ERw

of the keyword w, and a Hamming distance threshold th, outputs YES if
HD(v,w) < th, otherwise, outputs NO.

Fuzzy Keyword Search over Encrypted Data in the Public Key Setting 733

The work flow of the IPEFKS scheme is illustrated inFigure.1. The receiver Tom
runs the KeyGen algorithm to generate his public/private key pair pk, sk and
announcespkpublicly.Whena senderwants to sendadocument toTom.She/he ex-
tracts the keywords of the document. Then the sender runs the IPEFKS
algorithm to encrypt every keyword under Tom’s public key, and these encrypted
keywords form the encrypted index of the document. The index and the encrypted
documents are then sent to the cloud server. When Tom wants to retrieve doc-
uments containing keywords within a certain Hamming distance threshold com-
pared with his interested keyword “Finace” (i.e., Tom omits an ‘n’ of the keyword
“Finance”), he runs the TokenGen algorithm to generate a token and sends it
to the cloud server. Upon receiving this query request, the cloud server runs the
Search algorithm and sends the encrypted results back to Tom, who then runs the
Retrieve algorithm and returns the retrieval request back to the server. Finally,
the encrypted documents are returned back to Tom. Tom uses his private key to
decrypt the encrypted documents. Note that we do not specify how the documents
are encrypted because it is unrelated with the search functionality.

We treat the cloud server as an honest-but-curious attacker in the security
model and give a rigorous security definition as follows:

Definition 2. An IPEFKS scheme is semantically secure against an adaptive
chosen keyword attack if every PPT (Probabilistic Polynomial Time) attacker
has a negligible advantage in the following attack game.

1. Setup. The challenger runs the KeyGen algorithm and obtains a key pair
(pk, sk) and sends pk to the attacker.

2. Phase 1. The attacker can ask for arbitrarily many keyword ciphertexts and
query tokens from the challenger(the attacker does not know the associated
keywords). In addition, the attacker can choose a query token and ask the
challenger for the search results of the chosen query.

3. Challenge. At some point, the attacker sends the challenger two equal-
length keywords w0, w1, on which it wants to be challenged. The challenger
picks a random bit b ∈ {0, 1} and gives the attacker the keyword ciphertext
C = IPEFKS(pk,wb) and the token T = TokenGen(pk,wb).

4. Phase 2. The attacker can continue to ask for more keyword ciphertexts,
query tokens and search results as in Phase 1.

5. Guess. The attacker outputs a guess bit b′ for b. The advantage of an ad-
versary A is defined to be AdvA = |Pr[b = b′]− 1/2|.

3.3 Construction

In this section, we give a construction of the IPEFKS scheme based on a ho-
momorphic encryption scheme, named FV.SH encryption scheme [8]. Before
presenting the concrete construction, we give some intuitions. The Hamming
distance of two binary strings x = x1 · · ·xm and y = y1 · · ·ym is

∑m
i=1(xi⊕yi).

734 Q. Dong et al.

Our construction leverages a nice property of the FV.SH encryption scheme,
that is when the plaintexts are polynomials with coefficients in Z2, the addition
operation is equal to the XOR operation.

The FV.SH encryption scheme used in the following construction consists of
four polynomial time algorithms, the key generation algorithm KeyGen, the
encryption algorithm Enc, the decryption algorithm Dec and the ciphertext
addition algorithm Add. Detailed description of these algorithms are given in
section 5.1. We don’t care about the ciphertext Multiplication algorithm, since
it is unrelated with our work. The detailed construction is shown below.

– KeyGen(1λ): Given a security parameter λ, generates a public/private key
pair, pk and sk, of the FV.SH encryption scheme.

– IPEFKS(pk, w): Given an m-bit keyword w = w1w2 · · ·wm, encodes the
keyword w as a polynomial w (we reuse the notation for simplicity) in
Z2[x]/x

d + 1, where d is a parameter in the FV.SH encryption scheme, and
computes Sw = Encpk(w).

– TokenGen(pk, v): Given an m-bit keyword v = v1v2 · · · vm, encodes the
keyword v as a polynomial v in Z2[x]/x

d +1 and computes Tv = Encpk(v).
– Search(Tv, Sw): Computes the encrypted result ERw by adding Tv and Sw

by running the Add algorithm of the FV.SH encryption scheme.
– Retrieve(sk, ERw, th): Decrypts ERw by running Decsk(ERw), adds the
coefficients of Decsk(ERw), and sets the result to HD(w,v). If HD(w,v) <
th, outputs YES, otherwise outputs NO.

In the IPEFKS and TokenGen algorithm, we encode the keyword by taking
each bit of the keyword as the coefficient of an (m− 1)-degree polynomial.

3.4 Correctness and Security

Lemma 1. Given two binary vectors w = w1 · · ·wm and v = v1 · · · vm, the
Hamming distance of w and v equals

∑m
i=1 wi ⊕ vi, where the notation ⊕ de-

notes the XOR operation.

Correctness is guaranteed by the property of the FV.SH encryption scheme, i.e.,
when the keywords are encoded as polynomials in Z2[x]/x

d + 1, the addition
operation is equal to the XOR operation.

Theorem 1. The IPEFKS scheme is semantically secure against a chosen key-
word attack (CKA) if the FV.SH homomorphic encryption scheme is IND-CPA
secure.

Proof: Suppose there exists an adversary A that has a non-negligible advantage
ε in breaking the IPEFKS. We show that there is an adversary B that can
achieve the same advantage in winning a chosen plaintext attack (CPA) game
for attacking the IND-CPA secure FV.SH encryption scheme. Therefore, we have
a contradiction. We can conclude that A cannot exist and thus that IPEFKS is
semantically secure against a chosen keyword attack (CKA).

Fuzzy Keyword Search over Encrypted Data in the Public Key Setting 735

In the chosen plaintext attack, where C is the challenger, the adversary B
is supposed to give two messages m0,m1 to C. It then receives an encryption
CIND−CPA = Encpk(mb) from C, where b is a random bit chosen by C. B outputs
a guess bit b′ and wins if b′ = b.

In the chosen keyword attack, B works as a simulator who acts as the chal-
lenger. The adversary A outputs two messages m0 and m1 (m0 �= m1). B sends
m0 and m1 to C, who then returns a challenge CIND−CPA = Encpk(mb); B
passes this challenge to A. Finally A gives a guess b′ for b, B outputs b′ as its
guess bit for the CPA game described above.

As for queries from A in Phase 1 and Phase 2, B maintains two lists, L1, L2,
which are initially empty. The two lists consist of tuples < wi,Encpk(wi) >.
When A asks for a keyword ciphertext, B responds by sending Encpk(w) for a
randomly chosen keyword w and appends the tuple < w,Encpk(w) > to the list
L1. When A asks for a token, B responds by sending Encpk(w) for a randomly
chosen keywordw and appends the tuple < w,Encpk(w) > to the list L2. When
A sends back a token and asks for the search results, B searches for the token
Encpk(w) and the corresponding keyword w in the list L2 and then computes
the Hamming distance between w and the keywords in the list L1 and returns
back IPEFKS(pk,wi) satisfying HD(w,wi) ≤ th, where th is chosen by B. If
the token sent by A is not in the list L2, then B returns ⊥, and the CKA game
exits.

The attackerA cannot distinguish whether it is interacting with a real searcher
or the simulator B since the message distribution are the same. The advantage B
gains in the CPA game is the same as that of A in the CKA game. Since FV.SH
is IND-CPA secure, which indicates that the advantage gained by B must be
negligible, we get a secure IPEFKS scheme.

4 Building an Inverted Index over Encrypted Data

In the construction described in section 3.3, we do not specify the index structure
of the encrypted documents. When there are a large number of documents,
inverted index structure is preferable to forward index structure [19]. In this
section, we show how to enable the cloud server to build an inverted index over
encrypted data in a secure way.

4.1 Preliminary

Bilinear pairings: Let G1 and G2 be two cyclic multiplicative group of prime
order p, g be a generator of the group G1 and e : G1×G1 −→ G2 be a bilinear
map between them. The map satisfies the following properties:

1.Computable: given u, v ∈ G1 there is a polynomial time algorithm to com-
pute e(u, v) ∈ G2.

2.Bilinear: for any integers x, y ∈ [1, p] we have e(gx, gy) = e(g, g)xy.
3.Non-degenerate: e(g, g) is a generator of G2.

736 Q. Dong et al.

4.2 Construction

The cloud server publishes the bilinear pairing parameters (p,G1,G2, e, g). The
cloud server and senders process as follows:
Sender: To send a document with identifier ID and keywords set u(ID) =
{w1, w2, · · · , wn}, the sender processes as follows:

1. Gets the public parameters, including the public key pk of the receiver, the
bilinear pairing parameters (p,G1,G2, e, g) of the cloud server;

2. Generates a random number r ∈ Z∗
p and evaluates (CAi, CBi) = (gr, wr

i),

where CAi and CBi is the corresponding term for the ith keyword in the cipher-
text, which will be used by the cloud server to build an inverted index without
disclosing the keywords privacy.

3. Runs the keyword encryption algorithm IPEFKS to encrypt every keyword
in the set u(ID);

4. Sends CAi = gr, CBi = wr
i , ID, and the searchable encrypted keywords

IPEFKS(pk, wi) (for i = 1, 2, · · · , n) together with the encrypted document to
the cloud server.

Cloud Server: Assume that there exist m terms in the inverted index. The
jth term is

(
SAj = grj , SBj = w

rj
j , IPEFKS(pk, wj), Dj

)
, where Dj is the

set of document identifiers such that every d ∈ Dj contains the keyword wj .
Upon receiving a sending request from the sender, the cloud server processes as
follows:

1. Decides whether wi is equal to one of the m keywords by checking whether
the equation e(CAi, SBj) = e(SAj , CBi) is right for a certain j, where j ∈
{1, · · · , m};

2. Adds the document identifier ID to the setDj if the equation e(CAi, SBj) =
e(SAj , CBi) holds for a certain j, otherwise establishes a new quadruple, i.e,
(SAm+1 = CAi, SBm+1 = CBi, IPEFKS(pk, wi), Dm+1) for the new keyword
wi, where Dm+1 = {ID}.

Correctness of this construction is based on the bilinear property of bilinear
pairings and security relies on the fact that Diffie-Hellman problem on the G2

group is hard. Because of the constrained space, we do not give a rigorous security
proof here.

5 Performance Analysis

In this section, we evaluate the efficiency of the IPEFKS scheme by implementing
the recently proposed FV.SH encryption scheme and comparing with LWW-
FKS. We use the notations illustrated in Table 1 in the remaining part of this
paper.

Fuzzy Keyword Search over Encrypted Data in the Public Key Setting 737

Table 1. Notation Table

Notation Description Notation Description

d
d = 2k for some k, and is the largest
bit-length of the embedded keywords
output by the embedding algorithm Ψ

q the fixed modulo

χ = DZd,σ

denotes the discrete Gaussian distribution
with standard deviation σ over R

t the fixed modulo

R
R = Z/f(x), Z is the set of integers and

f(x) = xd + 1, R is the set of polynomials
whose degree is not larger than d

�x� rounding down

Rq
the set of polynomials in R
with coefficients in (−q/2, q/2]

�x� rounding to the
nearest integer

Rt
the set of polynomials in R
with coefficients in (−t/2, t/2]

Δ Δ = �q/t�

5.1 Implementation of the FV.SH Encryption Scheme

In the FV.SH encryption scheme, ciphertexts consist of polynomials in the ring
Rq. Plaintexts are polynomials in the ring Rt. d, q, t and σ are system parameters
chosen in such a way that correctness and security are guaranteed. The FV.SH
encryption scheme consists of the following algorithms:

– FV.SH.KeyGen(1λ): Samples secret key sk
R←− R2 uniformly. Samples

p1
R←− Rq uniformly and an error e

R←− χ. Computes the public key pk =
(p0 = [−(p1s+ e)]q, p1)

– FV.SH.Enc(pk, m): Samples u
R←− R2, e1, e2

R←− χ uniformly and returns
ct = (ct[0] = [p0u+ e1 +Δ ·m]q, ct[1] = [p1u+ e2]q)

– FV.SH.Add(ct1, ct2): Returns ([ct1[0] + ct2[0]]q, [ct1[1] + ct2[1]]q)

– FV.SH.Dec(ct): Computes
[⌊

[ct[0]+sk·ct[1]]q
Δ

⌉]

t

We set two tuples of parameters for the FV.SH encryption scheme. Both tuples
provide 128 bits of security with distinguishing advantage 2−64. In addition, some
optimizations (e.g., using the bounded discrete Gaussian distribution to replace
the real discrete Gaussian distribution) are taken. For interested readers, please
refer to [8] for details. We implement the scheme in C using FLINT, namely Fast
Library for Number Theory [21]. We test the code on an Intel(R) Core(TM) i7-
2600 CPU @ 3.40GHz running Linux 3.2.0-34-generic x86 64. The efficiency of
the FV.SH encryption scheme is shown in Table 2.

5.2 Efficiency Comparison

As we have shown in section 2, the proposal shown in [5] is not practical for
encrypted document retrieval. As a result, in this section, we only need to com-
pare IPEFKS with LWW-FKS. To cope with the scenario where there are a large
number of documents, we use an inverted index here. The process of building an

738 Q. Dong et al.

Table 2. Timing in ms for FV.SH operations key generation, encryption, decryption
and homomorphic addition in C. Parameters (P1) and (P2) have 128 bits of security
with distinguishing advantage 2−64.

Parameters FV.SH.KeyGen FV.SH.Enc FV.SH.Dec FV.SH.Add

(P1) d = 4096
σ = 16, q = 2128

80 33 7 3

(P2) d = 8192
σ = 8, q = 2128

153 60 15 6

inverted index over encrypted data is shown in section 4. Without loss of gener-
ality, we assume the average keyword length to be 10 and the number of typos
in the searcher’s inputs is smaller than 4, which we think is reasonable when
the keyword length is 10. The exact keyword searchable encryption scheme used
in LWW-FKS is PEKS [1], which takes the type A parameter in the PBC li-
brary [20]. In LWW-FKS, the computation cost of the search algorithm, keyword
encryption algorithm and token/trapdoor generation algorithm is proportional
to O(10tkn), while the computation cost in IPEFKS is only linear in kn, where
kn denotes the keyword number and t denotes the edit distance threshold.

Fig. 2. Search time comparison between IPEFKS and LWW-FKS

Figure.2 shows the experimental results of the search time spent by the cloud
server in processing a keyword search request. It can be seen that when the edit
distance gets larger, the search time of LWW-FKS increases greatly, while the
search time of IPEFKS is only related with the keyword number but not the
edit distance.

Figure.3 and Figure.4 present the keyword encryption time and token(for
IPEFKS)/trapdoor(for LWW-FKS) generation time respectively. When the edit
distance gets larger, in LWW-FKS, more keyword encryptions are performed
and more trapdoors are generated, thus leading to increasing time consumption.
While, in IPEFKS, the edit distance does not affect these two processes, therefore
only constant time is needed. The above experimental results demonstrate that
IPEFKS is much more efficient than LWW-FKS.

Fuzzy Keyword Search over Encrypted Data in the Public Key Setting 739

Fig. 3. Keyword encryption time and token/trapdoor generation time comparison

6 Security Analysis

IPEFKS is resistant against keyword guessing attack [17], which poses a great
threat to clients’ data privacy. While LWW-FKS suffers from this attack, because
in LWW-FKS, cloud server has the capability of deciding whether a keyword is
associated with the trapdoor received from the searcher independently. Specifi-
cally, given a token associated with a keyword W , the cloud server can encrypt
a guessed keyword q and then runs the test algorithm of LWW-FKS to check
whether W = q. When the cardinality of the keyword set is only polynomial in
the security parameter, which is indeed the case in real applications, the cloud
server can implement this attack successfully. In IPEFKS, the cloud server can-
not test whether a keyword is associated with the trapdoor received from a
searcher all by itself, because the Retrieval algorithm takes the secret key as
an input, which is only known by the clients themselves.

7 Conclusion

In this paper, we present a new primitive, named IPEFKS, to solve the problem
of fuzzy keyword search over encrypted data. By comparison, IPEFKS is not
only more efficient but also more secure than all existing schemes. Moreover,
to enable the cloud server to build an inverted index over encrypted data, we
propose an approach, which leverages a nice property of bilinear pairings. To
the best of our knowledge, we are the first to implement the FV.SH encryption
scheme in C, which we think may be of independent interest for other works.
Future work includes enhancing the efficiency of the FV.SH encryption scheme by
using SIMD operations and other optimizations and giving experimental results
on the real datasets by implementing the prototype of the system.

Acknowledgment. This work is partially supported by the HGJ National Sig-
nificant Science and Technology Projects under Grant No. 2012ZX01039-004-
009, Key Lab of Information Network Security, Ministry of Public Security under
Grant No.C11606.

740 Q. Dong et al.

References

1. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable
Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

3. Goh, E.J.: Secure indexes. IACR Cryptology ePrint Archive 2003, 216 (2003)
4. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searcheson encrypted

data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)
5. Bringer, J., Chabanne, H.: Embedding edit distance to enable private keyword

search. Human-centric Computing and Information Science 2(2) (2012)
6. Bringer, J., Chabanne, H., Kindarji, B.: Error-tolerant searchable encryption. In:

Proceedings of the 2009 IEEE International Conference on Communications (2009)
7. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.

J. ACM 45(6), 965–981 (1998)
8. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR

Cryptology ePrint Archive 2012, 144 informal publication (2012)
9. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over

encrypted data in cloud computing. In: INFOCOM 2010, pp. 441–445 (2010)
10. Ostrovsky, R., Rabani, Y.: Low distortion embeddings for edit distance. J. ACM

54(5) (October 2007)
11. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: Pro-

ceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,
STOC 1997, pp. 294–303. ACM, New York (1997)

12. Pang, X., Yang, B., Huang, Q.: Privacy-preserving noisy keyword search in cloud
computing. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618, pp.
154–166. Springer, Heidelberg (2012)

13. Suga, T., Nishide, T., Sakurai, K.: Secure keyword search using bloom filter with
specified character positions. In: Takagi, T., Wang, G., Qin, Z., Jiang, S., Yu, Y.
(eds.) ProvSec 2012. LNCS, vol. 7496, pp. 235–252. Springer, Heidelberg (2012)

14. Tang, Q.: Search in encrypted data: Theoretical models and practical applications.
IACR Cryptology ePrint Archive 2012, 648 (2012)

15. Wang, C., Ren, K., Yu, S., Urs, K.M.R.: Achieving usable and privacy-assured
similarity search over outsourced cloud data. In: INFOCOM, pp. 451–459 (2012)

16. Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted
data. In: Proceedings of the 2012 IEEE 28th International Conference on Data
Engineering, ICDE 2012. IEEE Computer Society, Washington, DC (2012)

17. Yau, W.-C., Heng, S.-H., Goi, B.-M.: Off-line keyword guessing attacks on recent
public key encryption with keyword search schemes. In: Rong, C., Jaatun, M.G.,
Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 100–105.
Springer, Heidelberg (2008)

18. Xu, P., Jin, H., Wu, Q., Wang, W.: Public-key encryption with fuzzy keyword
search: A provably secure scheme under keyword guessing attack. IEEE Transac-
tions on Computers 99(PrePrints), 1 (2012)

19. Information Retrieval: Implementing and Evaluating Search Engines. MIT Press,
Cambridge (2010) ISBN 978-0-262-02651-2

20. Lynn, B.: Pairing-Based Cryptography Library,
http://crypto.stanford.edu/pbc/

21. Hart, W.: FLINT: Fast Library for Number Theory, http://www.flintlib.org

http://crypto.stanford.edu/pbc/
http://www.flintlib.org

	Fuzzy Keyword Search over Encrypted Datain the Public Key Setting
	1 Introduction
	1.1 Background
	1.2 Contributions
	1.3 Organization

	2 Related Work
	3 IPEFKS
	3.1 Preliminary
	3.2 Definition of IPEFKS
	3.3 Construction
	3.4 Correctness and Security

	4 Building an Inverted Index over Encrypted Data
	4.1 Preliminary
	4.2 Construction

	5 Performance Analysis
	5.1 Implementation of the FV.SH Encryption Scheme
	5.2 Efficiency Comparison

	6 Security Analysis
	7 Conclusion
	References

