
Ontology-Based Semantic Search

for Large-Scale RDF Data

Xiaolong Tang1,2, Xin Wang1,2,�, Zhiyong Feng1,2, and Longxiang Jiang1,2

1 School of Computer Science and Technology, Tianjin University, Tianjin, China
2 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China

{txl1290,lxjiang2012}@gmail.com, {wangx,zyfeng}@tju.edu.cn

Abstract. In recent years, the Web of Data has emerged with the re-
lease of growing amount of Linked Data. Since traditional Information
Retrieval (IR) technologies are no longer suit for the retrieval on Linked
Data, it becomes difficult for ordinary users to retrieve the data efficiently
and accurately. This paper presents a method of doing keyword search
on Web of Data. We propose two distributed inverted index schemes, one
of which is built from Linked Data and the other from the ontology. And
as a necessary part of the ontology index, an ontology encoding scheme is
also proposed. Based on the index schemes, we design an improved rank-
ing algorithm named OntRank by introducing a semantic factor into
the BM25F ranking model. The experimental evaluation illustrates the
efficiency of constructing indexes and the precision of retrieval results.

Keywords: Linked Data, keyword search, distributed inverted index.

1 Introduction

The Resource Description Framework (RDF)[1] is a standard data model for
describing the Semantic Web whose goal is making the information machine-
readable. Linked Data[3] refers to graph-structured data that encoded in RDF
and accessible via Hypertext Transfer Protocol (HTTP). In recent years, with
the development of Linked Data, the researchers focus on constructing semantic
search engines to access more accurate knowledge by taking advantage of the
graph structure of Linked Data. However, the realization of the semantic search
engine implies two major challenges: the system must scale to large amount of
data and the search on Linked Data must be efficient and accurate.

A number of semantic search engines have been developed in past few years.
But our survey on these semantic search engines reveals that although they im-
prove the traditional IR technologies, a lot of vulnerabilities lie in these systems.
For example, some of them[2,4,5] are not suitable for naive users who are not
necessarily proficient in the semantic data and the structured query language.
The others[9,13,14,8,10] have considered the importance of user-friendly, but the
accuracy of their query results is at a low-level.

� Corresponding author.

J. Wang et al. (Eds.): WAIM 2013, LNCS 7923, pp. 570–582, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Ontology-Based Semantic Search for Large-Scale RDF Data 571

In order to address aforementioned issues, we present a distributed semantic
keyword search approach, which can provide an efficient and accurate search on
LinkedData. Our work can be regarded as an extension to the traditional IR prob-
abilistic retrieval model. More specifically, the main contributions of this paper
include:

– A distributed inverted index scheme is proposed for Linked Data. And based
on an ontology encoding scheme that we present in this paper, we design a
specialized inverted index scheme for the ontology.

– We devise a new ranking algorithm, called OntRank, which is designed to im-
prove the traditional IR ranking algorithm by introducing a semantic factor
into the ranking function.

– We perform comprehensive experiments to demonstrate the performances of
our index schemes and the accuracy of the OntRank algorithm.

The rest of the paper is organized as follows: Section 2 reviews related work.
Section 3 describes the distributed inverted index schemes which are built from
the RDF data and the ontology. The OntRank algorithm, which contains the
semantic factor, will be proposed in Section 4. Section 5 reports the experimental
results. In Section 6, we conclude and outlook the future work.

2 Related Work

Since Semantic Web develops rapidly in recent years, users look forward to mak-
ing full use of the large amount of RDF data. For this purpose, lots of semantic
search engines have been developed. Most of them are constructed based on the
RDF query language, such as[2,4]. The characteristic of these search engines is
that they provide a very complex structured query language, such as SPARQL[6]
and SeRQL[11], to support RDF data accessing. However, they do not support
keyword search on RDF data, so in order to access RDF data with these search
engines, end users have to be quite familiar with the structure of RDF data and
the syntax of structured query language.

To satisfy the requirements of ordinary end users, some keyword-based seman-
tic search engines have been built. Currently, there are two main approaches on
doing keyword search on RDF data: one of which uses the traditional IR tech-
nologies, the other one converts the keyword query into the structured query lan-
guage. In the first approach, Semplore[8], K-Search[9] and Swoogle[10] combine
the keyword retrieval with graph-structured RDF data, then compute a ranked
list for the semantic documents. SWSE[13] is also a semantic keyword search
engine. The main difference between SWSE and the aforementioned search en-
gines is that, it provides an entity-centric search on RDF data. But all of them
only adopt the traditional IR technologies to build the inverted index from RDF
data, and they do not consider the semantic that exists in the keyword queries.
SemSearch[14] is an example of the second approach, it transforms a keyword
search into a structured SeRQL[11] query based on finding the matches of the two
parts of the keyword search. However, this method may lose a lot of necessary
matches when the length of the keywords is more than two.

572 X. Tang et al.

Our work is developed based on Jingwei system[15] and it is quite different
from the aforementioned search engines. First, our inverted indexes are built
both from RDF data and the ontology. Second, our method can recognize the
semantics in the queries. In our system, the keyword query contains two parts,
the main keywords and the auxiliary keywords, such as red apple@banana. We
get the semantics by checking the relations between the two kinds of keywords.
Third, our approach can get more accurate results for the keyword queries ac-
cording to the semantics.

3 Distributed Index Scheme

In this section, we will introduce two distributed inverted index schemes in our
system, one of which is built from Linked Data, the other one is from the on-
tology. And we refer to the inverted index constructed on the assertional part
of Linked Data as A-index, and the inverted index on the terminological part as
T-index.

3.1 Distributed A-Index

Unlike traditional unstructured data, RDF data has no clear boundaries on
documents. However, documents are the essential elements for inverted indexes,
so we first give the definition of RDF documents.

Definition 1. Assume that there are two disjoint infinite sets U and L, where
U is the set of RDF URIs and L is the set of RDF literals. An RDF triple is a
tuple of the form

(s,p,o) ∈ U × U × U ∪ L

In this tuple, s is called the subject, p the predicate, and o the object.

Definition 2. An RDF graph is a finite set of RDF triples. Let G be an RDF
graph. 1) A subgraph of G is a subset of G. 2) subj(G) denotes the set of all
subjects in G.

Definition 3. Given an RDF graph G and a subject s∈subj(G), an RDF docu-
ment for s is a subgraph Ds of G where subj(Ds)={s}.
In Definition 3, we define the RDF documents as the collection of triples with
the same subject, and the documents ID is s. From the traditional IR viewpoint,
the documents have several fields, such as title, abstract and text, and each of
them has different weights. Similarly, RDF documents also have the concept of
fields, which is divided based on the meaning of p. Since BM25F[16], the variant
of BM25, has considered the influence of fields in the ranking algorithm, we
decide to devise our A-index on top of BM25F. To satisfy the BM25F ranking
algorithm, we have divided RDF data into 4 fields, i.e. label, comment, type and
others, and the information of the fields will be stored in A-index. Figure 1 shows

Ontology-Based Semantic Search for Large-Scale RDF Data 573

Algorithm 1. Construction of A-index

Input: RDF Data
Output: A-index
1: map((s,p,o)):
2: f = {label, comment, type, others}
3: if o ∈ L then
4: if filed(p) == f then
5: for each term ∈ o do
6: EMIT((term,s),(f,1))
7: end for
8: end if
9: end if
10: reduce((term,s),iterator values):
11: for value in values do
12: field = value.getLeft()
13: frequency = field.getSum()
14: hashtable.put(field,frequency)
15: end for
16: set A-index { RK ← term, CN ← s, CV ← hashtable }

the structure of A-index, which is a 3-layer key-value structure, and the name
of them are the row key (RK), the column name (CN), the column value (CV).
In the design of A-index, we consider both efficiency and scalability, thus the
MapReduce framework is adopted to build the index on top of Cassandra that
is a distributed key-value NoSQL database. The constructing process of A-index
is shown in Algorithm 1.

Fig. 1. The structure of A-index

In the map phase, we only process the triple (s,p,o) whose o is in L. In lines
3-9, we get the field ID and the document ID, for each term, and then emit them
to the reduce function. And in the reduce phase, we first receive the term and
document ID from map. Then in lines 11-15, we use a hash table to collect the
detailed term frequency information, the key of the hash table is the field ID
and the value is the corresponding term frequency. Line 16 inserts the term, the
document ID and the hash table into the A-index.

574 X. Tang et al.

3.2 Distributed T-Index

Although the A-index can accomplish the mission of doing keyword search on
RDF data, the semantics in RDF data is not exploited. Thus, we build the T-
index as a supplement of the A-index by indexing the ontology. And in order
to use the ontology conveniently, an ontology encoding scheme is also proposed.
This section will introduce the expression of the ontology and the construction
of the T-index in detail.

3.2.1 Ontology Encoding
As we know, the ontology contains abundant semantics, which can be applied
to express relations of entities. However, recognizing relations of entities is quite
difficult if we directly store and use the ontology. In addition, the ontology is
usually updated to enrich its semantics, so the management of the ontology
will have a high cost. ORDPATH[7] is a hierarchical coding scheme whose ben-
efits are two-fold. The first one is that the ORDPATH scheme allows insert-
ing new nodes at arbitrary positions in the tree structure without relabeling
any old nodes, so the update costs of ORDPATH will be at a low-level. The
other one is that the code of ORDPATH can be compressed into a binary form
which is easy for comparing ORDPATH values. In this way, we can recognize
whether two nodes are child-parent nodes or sibling nodes by only compar-
ing their binary code length. Obviously, ORDPATH is appropriate to ontology
encoding, and the application of ORDPATH can represent the subsumption re-
lationship appropriately. Thus, we adopt ORDPATH as the ontology encoding
scheme.

Example 1. In Fig. 2, G is a part of the tree structure of entity classes which
encoded with ORDPATHs. We can see that there are five layers from the root
node owl:Thing to the leaf node Pine and the corresponding ORDPATHs code is
under them. It is easy to identify the subsumption relationship of entity classes
based on the comparison of ORDPATH. The code of Plant is 1.25.3, and we
can infer that its ancient nodes is encoded with 1, 1.25, its sibling node is 1.25.5

Fig. 2. The inheritance relationship of entity classes encoded by ORDPATHs

Ontology-Based Semantic Search for Large-Scale RDF Data 575

and one of its children nodes is 1.25.3.75, the corresponding entity classes are
owl:Thing, Creature, Animal and Tree. According to the insertion strategy of
ORDPATH, we can insert new nodes 1.25.1 to the left of Plant and 1.25.7 to the
right of Animal. In addition, we can also insert the nodes at arbitrary positions,
such as the position between Plant and Animal, with an even integer. 1.25.4.1 is
an example of sibling nodes between Plant and Animal, and we can see that the
even integers do not count for ancestry: 1.25.4.1 is a child of 1.25. This property
shows that ORDPATHs is scalable and the old nodes need not to be relabeled
when we update ORDPATHs, so it has a high update performance.

3.2.2 T-index Architecture

Definition 4. Given a set of all terms T, an RDF document D and an entity
class C. t is an element of T, if the entity class of subj(D) is C and t is in
D, then we call that t relates to the entity class C, which is expressed as t∼C,
and we use class(t) to express the set of entity classes that relate to t. For Ti

that is a subset of T, if t∼C and t ∈ Ti, we call Ti∼C. We define CLASS(Ti)
as the set of all the entity classes that relate to ti in Ti, and CLASS(Ti) =⋃

ti∈Ti

class(ti).

Since each s has at least one entity class and the relation between the entity
classes can describe the relation between the corresponding subjects, we con-
sider that a similar correlation exists between the terms of RDF documents and
entity classes. Thus, we decide to construct the T-index according to the rela-
tion between terms and entity classes, which is defined in Definition 4. The index
structure and the method for creating the T-index are like what we discussed in
section 3.1. But a little difference between them is that the construction of the
T-index has two mappers and two reducers. Algorithm 2 is the pseudo-code of
building the T-index. The inputs are two files in DBpedia, where the o in the
instance type is the type of the s and the o in the short abstract is the abstract
of the s.

In the map phase of the first MapReduce, lines 2-7 identify which file the triple
(s,p,o) belongs to, and then emit the s, o and an identifier to the reducer. Then
in the corresponding reduce phase, lines 10-13 get the most accurate ORDPATH
of the entity classes of the s, when o is the type of s. After that, we emit the
ORDPATHs and the abstracts of the same s as an intermediate file, which is
the input of the second MapReduce job. And in the second MapReduce job,
we first emit each term in the abstracts and the corresponding ORDPATHs in
lines 20-22. Then lines 24-26 make a statistic on class(t) for each term t, which
contains the ORDPATHs and the corresponding weights. Finally, we insert the
terms, the ORDPATHs and the weights into the T-index.

576 X. Tang et al.

Algorithm 2. Construction of T-index

Input: instance type, short abstract
Output: T-index
1: first map((s,p,o)):
2: if (s,p,o)∈ instance type then
3: EMIT(s,(o,type))
4: end if
5: if (s,p,o)∈ short abstract then
6: EMIT(s,(o,term))
7: end if
8: first reduce(s,iterator values):
9: for value in values do
10: if value.getRight() == type then
11: subj type = value.getLeft()
12: ordpaths = subj type.getOrdpaths()
13: end if
14: if value.getRight() == term then
15: text == value.getLeft()
16: end if
17: end for
18: EMIT(ordpaths,text)
19: second map(ordpaths,text):
20: for each term ∈ text do
21: EMIT(term,(ordpaths,1))
22: end for
23: second reduce(term,iterator values):
24: for value in values do
25: ordpaths = value.getLeft()
26: calculate weight w of ordpaths
27: set T-index { RK ← term, CN ← ordpaths, CV ← w }
28: end for

4 Semantic Ranking Algorithm

Based on the indexes built in section 3, we propose an improved ranking algo-
rithm, called OntRank, which take advantage of the relation between the data
to improve the effectiveness of document ranking.

4.1 RO Calculation

Definition 5. Given a set of entity classes C, the entity classes C0, C1 and
C2 ∈ C, and C0 is the minimum common parent class of C1 and C2. If the
main keywords T1∼C1 and the auxiliary keywords T2∼C2, the distance between
C1 and C2 through C0 is called RO(Rank Order), which reveal the relevance of
T1 and T2, and expressed as RO(C1, C2). RO(T1, T2) is a set of RO(Ci, Cj)
that Ci ∈ CLASS(T1) and Cj ∈ CLASS(T2).

Ontology-Based Semantic Search for Large-Scale RDF Data 577

Algorithm 3. Calculating RO(T1, T2)

Input: the main keywords T1, the auxiliary keywords T2

Output: rank order RO(T1, T2)
1: setofOrdpathA = T1.getOrdpaths();
2: setofOrdpathB = T2.getTopKOrdpaths();
3: for each ordpathsA in setofOrdpathA do
4: for each ordpathsB in setofOrdpathB do
5: ordpathsC = getMiniCommonOrdpaths(ordpathsA, ordpathsB);
6: RO(A,B) = |ordpaths A - ordpaths C | + |ordpahts B - ordpahts C |;
7: if RO(A,*) not in RO(T1, T2) then
8: add RO(A,B) to RO(T1, T2)
9: end if
10: if RO(A,*) in RO(T1, T2), but RO(A,B) < RO(A,*) then
11: modify RO(A,*) to RO(A,B)
12: end if
13: end for
14: end for
15: return RO(T1, T2)

In Definition 5, the main keywords and the auxiliary keywords are the two parts
of our keyword query introduced in section 2, and both of them are sets of terms,
so they have the characteristics of Definition 4. Since the semantics in the queries
is essential to our ranking algorithm, we define RO as the semantic factor which
is calculated by the correlation of entity classes related to the keywords. The
corresponding pseudo-code of calculating RO(T1, T2) is shown in Algorithm 3.

In Algorithm 3, we obtain the correspondingORDPATHs ofCLASS (T1) in line
1. To avoid too many classes related to the auxiliary keywords that may influence
the query accuracy, line 2 gets the top-k correlative ORDPATHs based on the
weights of ORDPATHs. Lines 3-14 calculate RO. Line 5 gets the minimum parent
class of the chosen classes, such as A and B. Then in line 6, we calculate the min-
imum path length between A and B. In case 1, the hash table RO(T1, T2) do not
have the element of RO(A,*), where * can be any ORDPATHs of setofOrdpathB,
then we add RO(A,B) into the hash table as RO(A,*). In lines 10-12, although
RO(T1, T2) have the element of RO(A,*), the minimum path length between A
and B is less than RO(A,*), we update RO(A,*) with RO(A,B).

Obviously, the time complexity of Algorithm 3 is O(|M |×|N |), that |M | is the
number of CLASS (T1) and |N | is the number of top-k CLASS (T2). The main
space cost is the storage of entity classes which related to keywords. Hence, the
overall space complexity is O(|M |+ |N |).
Example 2. G(Fig.2) in section 3.2.1 is an example of entity classes which
encoded with ORDPATHs. We suppose that CLASS (T1) is {Poplar,Grass}
and CLASS (T2) is {Pine}. First, we get the shortest path between Poplar and
Pine, which is Poplar-Tree-Pine, so RO(Poplar,Pine) = 2, then we add it to
RO(T1,T2). Similarly, we can also conclude RO(Grass,Pine) = 3 when T1∼Grass
and T2∼Pine. In this condition, RO(T1,T2) = {(1.25.3.75.9, 2), (1.25.3.73, 3)}.

578 X. Tang et al.

4.2 OntRank Algorithm

Algorithm OntRank uses RO as the semantic factor to improve the effectiveness
of the BM25F ranking function. In this section, a detailed description will be
presented, which is about calculating the score of documents.

First of all, the BM25F ranking function should set several boost factors before
calculating the score of documents. In our system, the boost factors are: label =
30.0, comment = 5.0, type = 10.0, others = 1.0. Moreover, BM25F also requires
additional parameters, whose value is K1 = 4.9, blabel = 0.6, bcomment = 0.5,
btype = 0.5 and bothers = 0.4. And in this paper, we use scoreBM25F (Q,D) to
express the score of the query which based on the BM25F ranking algorithm. So
the score of the OntRank ranking algorithm is calculated by

scoreOntRank(Q,D) = scoreBM25F (Q,D)× (1 + 1
RO+1)

where RO is the concept defined in section 4.1.
In our method, RO is a list of non-negative integers, and with the value of

RO decreasing, the correlation between the main keywords and the auxiliary
keywords becomes higher. Here, we use RO + 1 to avoid the condition that
RO = 0. Moreover, it can be seen that

{
1, 12 ,

1
3 ,

1
4 · · ·

}
are the values of different

1
RO+1 , the differences between neighboring values are

{
1
2 ,

1
6 ,

1
12 · · ·

}
. It is obvious

that the value of RO improves more significantly when the relationship between
the two kinds of keywords is getting closer. Meanwhile, the class of a returned
document must be one of the classes related to the main keywords. It means
that RO is also the relationship between returned documents and the auxiliary
keywords. Thus, the score of documents can be distinguished clearly according
to the different relevance levels of the documents and the auxiliary keywords.

5 Evaluation

In this section, we describe our evaluation method on the proposed indexes and
algorithms, and show the experimental results. Since the solutions mentioned in
the INEX 2009 is designed for semi-structured data and up to now we have not
found a open source semantic search engine for RDF data, we only compare our
method with the BM25F model.

5.1 Setting

All experiments are carried out by using a 4-nodes cluster as the underlying stor-
age system. Each node has Intel Q8400 CPU and 8 GB memory. The operating
system is Ubuntu 10.04. The database is Cassandra 0.8.1, and the Cassandra
heap was set to 4GB. We use Apache Tomcat 7.0 as the Web server.

5.2 Dataset and Queries

For the evaluation we use the DBpedia 3.7 dataset excluding pagelinks; each
characteristic of the DBpedia dataset is listed in Table 1. Although we only use

Ontology-Based Semantic Search for Large-Scale RDF Data 579

the DBpedia, our method is not optimized for the dataset. In other words, our
method is general enough to be used for other datasets.

Table 1. Dataset characteristics

name value

distinct triples 43,853,549

distinct subjects 8,870,118

distinct predicates 1,299

distinct objects 18,286,543

For the reasons that a) we adopt the INEX evaluation framework to provide a
mean for evaluating the semantic keyword search approach b) Wikipedia is the
source of the INEX collection. We have to preprocess the dataset that is build
from the intersection of DBpedia and the INEX-Wikipedia collection[12]. The
result is listed in Table 2.

Table 2. Dataset preprocessing result

dataset name entity number

DBpedia 364,5384

Wikipedia 266,6190

Intersection(DBpedia, Wikipedia) 244,9229

The query set in our evaluation framework is taken from the INEX 2009 con-
test. INEX2009 offers the judgments of 68 queries. Each query consists of three
parts with the same topic: title, description and narrative. In our experiments
we adjust the titles by adding the semantics of descriptions and narratives into
them. In this way the query will be more expressive and fit better to the seman-
tic search. The average length of the queries is around 4 words. However, not all
the semantics of queries suit for the OntRank algorithm, we take 50 of them as
the final query set.

We take the IR metrics as the evaluation criterion. These metrics are gener-
ally oriented in two main directions: the ability to retrieve relevant documents
and the ability to rank them properly. In our experiment, we use part of them:
Mean Average Precision (MAP), which provides a single-figure measure of qual-
ity across recall levels; Geometric Mean Average Precision (GMAP) that is a
variant of MAP by using a geometric mean; Precision after K documents (P@K)
which measures the precision after K documents have been retrieved; and R-
Precision that measures the precision after R documents have been retrieved,
where R is the total number of relevant documents for a query.

5.3 Results: Indexing Cost

We performed an experiment on measuring the indexing cost with the increase
of the number of nodes. The results are shown in Figure 3. Note that the index-
ing cost of T-index is the total executing time of two MapReduce jobs. From

580 X. Tang et al.

the results, we observe that the time of constructing index will decrease by in-
creasing the number of nodes. However, because of the information exchange
between nodes, the downward trend of executing time are not linear. In addi-
tion, the scalability of our system is also reflected in the results, the problem of
the explosive growth of Linked Data can be resolved merely by increasing the
computer numbers.

5.4 Results: Query Accuracy

The query accuracy is measured by using a tool named trec eval[17]. This tool is
implemented for producing the IR metrics. Figure 4 shows the evaluation results
obtained by two different methods, one is with OntRank and the other is only
use the BM25F ranking function.

Fig. 3. System indexing cost Fig. 4. IR metrics of BM25F and OntRank

The results draw from the experiments show that the OntRank ranking al-
gorithm is better than BM25F in every single measure, especially P@K. This is
not surprising since we add the semantics into the queries, so the search system
can return more relevant documents after K documents have been retrieved. We
can see that OntRank obtains the best performance, although some of the IR
criteria do not improve significantly, such as MAP, GMAP and R-Prec. We have
analyzed the reason for it, and find that there are many factors restricting the
improvement of the results:

1. The relevant documents of some queries is about concepts, such as theories
or algorithms, and their entity class is owl:Thing, so we can not get the cor-
responding auxiliary keywords, and the OntRank ranking algorithm remains
ineffective.

2. Some entities do not have abstract, so some relevant documents may not be
found, the OntRank ranking algorithm has no effect on them.

3. There are some mistakes in the classification of DBpedia, for example, the en-
tity of Pavarotti belongs to dbpedia:Person in DBpedia, but its proper class
is dbpedia:Musicalartist. And what is worse, this phenomenon is prevalent in
the querying process. Hence, these mistakes will have a significant influence
on the RO value which is the main impact factor of the IR metrics.

Ontology-Based Semantic Search for Large-Scale RDF Data 581

Fortunately, all of them are due to the quality of the dataset. So we can
believe that with the improvement of the quality of the dataset, the IR evaluation
criterion will improve more significantly.

6 Conclusion and Future Work

In this paper, we study the problem of doing keyword search on large-scale RDF
data, and propose an effective approach to get more accurate query results. To
support keyword search, we use MapReduce to build the inverted indexes both
from Linked Data and the ontology. And in order to build the T-index, we design
an ontology encoding scheme. Based on the indexes, we present a new ranking
algorithm by adding the semantic factor, which is calculated by the relation
between the main keywords and the auxiliary keywords, into the BM25F ranking
function. And through the experimental results, we confirm the efficiency and the
accuracy of our approach. In the future, we will keep on optimizing the OntRank
algorithm. Moreover, we will seek a more granular knowledge base, which has a
more accurate classification on entities, to compensate for the deficiencies of the
existing DBpedia ontology data.

Acknowledgements. This work was supported by the National Natural Sci-
ence Foundation of China (Grant No. 61100049, 61070202) and the National
High-tech R&D Program of China (863 Program) (Grant No. 2013AA013204).

References

1. Klyne, G., Carroll, J., McBride, B.: Resource Description Framework (RDF): Con-
cepts and Abstract Syntax, W3C Recommendation. W3C (2004)

2. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.: Querying the Semantic Web with
Corese Search Engine. In: Proceedings of 15th ECAI/PAIS, Valencia, ES (2004)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

4. Shadbolt, N., Gibbins, N., Glaser, H., et al.: Cs Aktive Space or how we learned to
stop worrying and love the Semantic Web. IEEE Intelligent Systems, 41–47 (2004)

5. Zhang, L., Yu, Y., Zhou, J., Lin, C., Yang, Y.: An Enhanced Model for Searching
in Semantic Portals. In: WWW (2005)

6. SPARQL 1.1, http://www.w3.org/TR/2012/PR-sparql11-overview-20121108/
7. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:

Insert-Friendly XML Node Labels. In: Proceedings of ACM Conference on Man-
agement of Data (SIGMOD), pp. 903–908 (2004)

8. Wang, H., Liu, Q., Penin, T., Fu, L., Zhang, L., Tran, T., Yu, Y., Pan, Y.: Semplore:
A Scalable IR Approach to Search the Web of Data. Web Semantics: Science,
Services and Agents on the World Wide Web 7(3), 177–188 (2009)

9. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid
Search: Eectively Combining Keywords and Semantic Searches. In: Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021,
pp. 554–568. Springer, Heidelberg (2008)

http://www.w3.org/TR/2012/PR-sparql11-overview-20121108/

582 X. Tang et al.

10. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: A Search and Metadata Engine for the Semantic Web. In:
Proc. of the 13th ACM CIKM Conf. ACM Press, New York (2004)

11. SeRQL, http://www.w3.org/2001/sw/wiki/SeRQL
12. Perez-Aguera, J.R., Arroyo, J., Greenberg, J., et al.: INEX+DBpedia: A Corpus

for Semantic Search Evaluation. In: WWW, pp. 1161–1162 (2010)
13. Hogan, A., Harth, A., Umbrich, J., et al.: Searching and Browsing Linked Data

with SWSE: The Semantic Web Search Engine. Web Semantics: Science, Services
and Agents on the World Wide Web, 365–401 (2011)

14. Lei, Y., Uren, V., Motta, E.: SemSearch: A Search Engine for the Semantic Web.
In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 238–245.
Springer, Heidelberg (2006)

15. Wang, X., Jiang, L.: Jingwei+ A Distributed Large-scale RDF Data Server. In:
Proceedings of Asia-Pacific Web Conference (2011)

16. Stephen, R., Hugo, Z.: The Probabilistic Relevance Framework: BM25 and Beyond.
Foundations and Trends in Information Retrieval, 333–389 (2009)

17. Trec eval, http://trec.nist.gov/treceval/

http://www.w3.org/2001/sw/wiki/SeRQL
http://trec.nist.gov/treceval/

	Ontology-Based Semantic Searchfor Large-Scale RDF Data
	1 Introduction
	2 Related Work
	3 Distributed Index Scheme
	3.1 Distributed A-Index
	3.2 Distributed T-Index

	4 Semantic Ranking Algorithm
	4.1 RO Calculation
	4.2 OntRank Algorithm

	5 Evaluation
	5.1 Setting
	5.2 Dataset and Queries
	5.3 Results: Indexing Cost
	5.4 Results: Query Accuracy

	6 Conclusion and Future Work
	References

