
Probabilistic Graph Summarization

Nasrin Hassanlou, Maryam Shoaran, and Alex Thomo

University of Victoria, Victoria, Canada
{hassanlou,maryam,thomo}@cs.uvic.ca

Abstract. We study group-summarization of probabilistic graphs that
naturally arise in social networks, semistructured data, and other ap-
plications. Our proposed framework groups the nodes and edges of the
graph based on a user selected set of node attributes. We present meth-
ods to compute useful graph aggregates without the need to create all of
the possible graph-instances of the original probabilistic graph. Also, we
present an algorithm for graph summarization based on pure relational
(SQL) technology. We analyze our algorithm and practically evaluate
its scalability using an extended Epinions dataset as well as synthetic
datasets. The experimental results show that our algorithm produces
compressed summary graphs in reasonable time.

1 Introduction

Graphs are very popular in modeling social networks, protein interactions, web
and communication networks, and semistructured data. Nodes in such graphs
represent objects or users and edges depict relationships between them. Also,
there is often a set of characterizing attributes assigned to each node, such as
age, location, function, etc.

As graphs of millions of nodes and their relationships are ubiquitous now, e.g.
Facebook, Twitter, Weibo, or DBpedia, there is a pressing need to summarize
graphs in order to have a representation that can be consumed by human ana-
lysts. In this paper, we consider a graph summarization notion in which nodes
are grouped based on node attributes and groups are connected by edges repre-
senting inter-group connectedness.

Being able to group graph nodes and edges is only the first step in understand-
ing real graphs. Another challenge is the uncertainty or impreciseness of edges,
which represent the connectedness or influence of nodes to each other. Proba-
bilistic graphs are commonly used to model networks with uncertainties on the
relationships between nodes. An important application of probabilistic graphs is
in social networks, where the users’ influence is modeled as probabilities on the
edges [4,5]. Uncertainty can also be a result of data collection processes, machine-
learning methods employed in preprocessing, and privacy-preserving processes.
Our focus in this work is on graphs where edges (relationships) have existence
or influence probabilities as in [4,5], and we address the problem of summarizing
such probabilistic graphs.

Based on the notion of “possible worlds” for probabilistic databases [1–3, 6],
a probabilistic graph G defines a set of regular graphs called possible instances.

J. Wang et al. (Eds.): WAIM 2013, LNCS 7923, pp. 545–556, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

546 N. Hassanlou, M. Shoaran, and A. Thomo

Assigned to each possible instance there is an existence probability. While the
theoretical framework of possible worlds is useful to define what we want, e.g. the
mean group connectedness over the possible instances, the number of possible in-
stances is exponential in the size of the original graph, thus rendering approaches
that materialize the possible instances very infeasible in practice. Therefore, we
present a method that, while based on the possible worlds semantics, does not
create any possible instance at all of the original graph. More specifically, we
give characterization theorems to compute expected values of the aggregations
included in the summary graph using the edge probabilities only.

The massive size of graph data, such as social networks, requires devising
effective management methods that employ disk operations and do not neces-
sarily need to load the entire graph in the memory. We present a summarization
algorithm that is SQL-based and employs relational operations to create the
summary graph. Notably, using relational technology for solving graph prob-
lems has been shown to satisfactorily support other graph problems as well
(cf. [8, 11, 13]). Experimentally we evaluate our algorithm by implementing it
on an Epinions dataset and show that our presented approach is scalable and
efficiently computes aggregates on large datasets. In summary, our contributions
are:

1. We present a framework for group-based summarization of probabilistic
graphs. Our summarization produces useful expected values for the strength
of inter-group connectedness.

2. We give characterization theorems for the aggregates of our graph summa-
rization. Some of our results involve sophisticated probabilistic reasoning.

3. We present an algorithm to compute the aggregates of our graph summa-
rization that can be implemented completely using relational operators in an
RDBMS. This is a desirable advantage as relational databases are a sound
and mature technology that has been proven to scale for very large data.

4. We conduct an experimental evaluation on a real life dataset and synthetic
datasets. Our experiments show the scalability of our algorithm in producing
summary graphs in reasonable time.

Organization. We review related work in Section 2. In Section 3 we define our
method for summarizing regular graphs. In Sections 4 and 5 we define proba-
bilistic graphs and introduce our probabilistic graph summarization method. The
theorems and proofs for our probabilistic method are also presented in Section 5.
In Section 6 we propose an algorithm to implement our method. In Section 7 we
explain the implementation of our algorithm on an Epinions dataset and analyze
the efficiency and scalability of our method. Section 8 concludes the paper.

2 Related Work

Summarization of regular (non-probabilistic) graphs has been studied with re-
spect to different aspects (cf. [14–16]). Various problems have been studied on

Probabilistic Graph Summarization 547

probabilistic graphs (cf. [7, 9, 10, 12, 17]). However, to the best of our knowl-
edge we are the first to address the problem of summarization of uncertain data
graphs.

Grouping the nodes of a graph based on a set of attributes is one of the
most common techniques to summarize graphs. Tian et al. [14, 15] introduce a
framework to interactively produce such summary graphs. In [16], Zhao et al.
introduce graph cubes which are graph summaries created using node grouping
operations based on selected attributes.

3 Graph Summarization

We denote a graph database as G = (V,E), where V is the set of nodes, and
E ⊆ V × V is the set of edges connecting the nodes.

Furthermore, there is a set of attributes A1, A2, · · · , Ad associated with the
nodes. Attributes can be nominal or numerical. Numerical attributes can be
discretized as in [15].

We represent the attribute values for a node v ∈ V as a d-tuple (a1, a2, · · · , ad),
where ai, for i ∈ [1, d], is the value of Ai for v.

Let A be a subset of node attributes. Using A we group the nodes of G in the
usual GROUP BY way and obtain a set VA of node groups. Now we have

Definition 1. The A-grouping graph is GA = (VA, EA) where

EA = {(g′, g′′) : g′, g′′ ∈ VA and ∃v′ ∈ g′ and ∃v′′ ∈ g′′ such that (v′, v′′) ∈ E}.

Definition 2. The A-graph summarization (A-GS) is a node-edge weighting
pair of functions (w1, w2), where

w1 : VA −→ N

w2 : EA −→ N× N× N

w1(g) = |g|
w2(g

′, g′′) = (x, y, z), where

x = |{v′ ∈ g′ : ∃v′′ ∈ g′′, s.t. (v′, v′′) ∈ E}|
z = |{v′′ ∈ g′′ : ∃v′ ∈ g′, s.t. (v′, v′′) ∈ E}|
y = |{(v′, v′′) : v′ ∈ g′, v′′ ∈ g′′, (v′, v′′) ∈ E}|.

Fig. 1.(a) shows a graph containing seven nodes. Consider the color of the nodes
to be the grouping attribute. Fig. 1.(b) shows the A-graph summarization of the
graph in Fig. 1.(a) with the corresponding values of the w1 and w2 measures.

4 Probabilistic Graphs

A probabilistic graph is G = (V,E) (as above), however, associated with each
edge e there is a probability p(e) expressing the confidence on the existence of

548 N. Hassanlou, M. Shoaran, and A. Thomo

��
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

���
��
�
�
�
�
�
�
��
��
�
�

�
�
�

�
�
�

��
��
��

��� ���

�
�
��

�
�
��

�
�
��

�
�
�
�
�
�

��
��
��

�
�
�

�
�
�

�
�
�

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�������	

�
�
�������	

�
�
�������	

�
�
�������	

�
�
�������	

�
�
�������	

�
�
�������	

Fig. 1. (a) A Graph G. (b) The summary graph of G.

e. A probabilistic graph defines a set of possible instances (PIs). We denote the
set of all possible instances of a probabilistic graph G as PI(G) or PI if G is
clear from the context.

A possible instance (PI) of G is denoted as PIi(G) or simply PIi. Each PI
is a regular graph derived from the probabilistic graph where each edge either
exists or does not. The existence probability of each PI is computed as

p(PI) =
∏

e∈E(PI)

p(e) ·
∏

e/∈E(PI)

(1 − p(e)) (1)

where E(PI) is the set of the edges existent in the possible instance PI. Each
edge e in the probabilistic graph G appears in a subset of the PIs. For a given
edge e the probabilities of PIs containing e sum up to the confidence value (prob-
ability) of e, which is denoted as p(e). That is, we have p(e) =

∑
E(PI)�e p(PI).

If e has confidence 1, then it appears in all of the PIs.
Since the number of PIs doubles with each additional probabilistic edge in

the input graph, the result of queries on these graphs is exponential in the size
of the input graph.

5 Probabilistic Graph Summarization

We define summarization of probabilistic graphs in a similar way as in Defini-
tion 2. However, having probabilistic edges between nodes in a graph results
in probabilistic edges between groups in the summary graph. Thus, instead of
the exact value of w2 the expected value should be computed for each of its el-
ements x, y, and z. Note that, the exact value of w1 is computable as in the
non-probabilistic case.

Let g and g′ be two groups of nodes in the summary graph GA. In each PI
the set of edges that connect the nodes of these two groups can be different,
and hence, the exact values of x, y, and z can differ in the summary graph,
corresponding to each PI. The expected values for x, y, and z in GA can be

Probabilistic Graph Summarization 549

computed using the basic formula for the expected value of random variables.
For example, for the expected value of x we have E[X] =

∑
PI xi · p(PIi),

where X is the random variable representing the x measure. Note that, using
this formula directly requires building all the possible instances of the original
graph.

In the following we present (and prove) equations that compute E[X], E[Y],
and E[Z] by using only the probability of edges in G with no need to create all
PIs.

Proposition 1. For any subgraph G′ of a probabilistic graph G we have∑
PI∈PI(G′) p(PI) = 1.

Theorem 1. Let g and g′ be two groups in a probabilistic summary graph G,
and let Evj = {e1, . . . , enj} be the set of edges connecting a node vj in g to the
nodes of g′. We have that

E[X(g, g′)] = E[X] =
∑

vj∈g

⎛

⎝1−
∏

e∈Evj

(1− p(e))

⎞

⎠ .

Proof. Let W = {v1, . . . , v|W |} be the set of nodes in group g which are connected
to the nodes of group g′ in G, and let WPI ⊆ W be the set of nodes in group g
which are connected to the nodes of group g′ in the possible instance PI of G.
Also, let m = |PI(G)|. We have that

E[X] =
∑

PIi∈PI(G)

xi · p(PIi) = p(PI1) + . . .+ p(PI1)︸ ︷︷ ︸
x1 times

+ . . .

+ p(PIm) + . . .+ p(PIm)︸ ︷︷ ︸
xm times

where xi is the number of nodes in g that are connected to some nodes of g′ in
the instance PIi. That is, xi = |WPIi |.

We can organize this equation in a different way. Note that for each node
vj , the term p(PIi) appears once in the right hand summation if vj ∈ WPIi

.
Therefore, we can rewrite the equation as

E[X] =
∑

WPI�v1

p(PI) + · · ·+
∑

WPI�v|W |

p(PI). (2)

Now we compute the value of each term above. From equality
∑

PI∈PI p(PI) = 1
we have that

∑

WPI�vj

p(PI) +
∑

WPI ��vj

p(PI) = 1. (3)

As defined, Evj = {e1, . . . , enj} is the set of edges incident to vj which connect
vj to some nodes in g′. The first sum in (3) includes possible instances where at

550 N. Hassanlou, M. Shoaran, and A. Thomo

least one of the edges in Evj exists. The second sum includes possible instances
where none of the edges in Evj exists.

Now, suppose G′ is a probabilistic graph constructed from G by removing all
the edges in Evj . That is, the probability of existence of those edges is zero in
G′. Since each possible instance of G can be constructed from G′ and based on
(1), we can rewrite Equation (3) as

∑

PI∈PI(G′)

p(PI(G′)) ·
∑

S∈2
Evj ,S �=∅

(
∏

e∈S

p(e) ·
∏

e∈Sc

(1 − p(e))

)
+

∑

PI∈PI(G′)

p(PI(G′)) ·
∏

e∈Evj

(1 − p(e)) = 1

where PI(G′) is the set of all possible instances of graph G′, and S is a set in
the power set of Evj . Since

∑
PI∈PI(G′) p(PI) = 1 (Proposition 1), we have that

∑

WPI�vj

p(PI(G)) =
∑

PI∈PI(G′)

p(PI(G′)) ·
∑

S∈2
Evj ,S �=∅

(
∏

e∈S

p(e) ·
∏

e∈Sc

(1− p(e))

)

= 1−
∏

e∈Evj

(1− p(e))

(4)

and using Equations (2) and (4) we have

E[X] =
∑

WPI�v1

p(PI) + · · ·+
∑

WPI�v|W |

p(PI) =
∑

vj∈W

⎛

⎝1−
∏

e∈Evj

(1− p(e))

⎞

⎠ .

This proves the theorem. ��
For the expected value of y we present the following theorem.

Theorem 2. In the summary graph, the expected value for y, E[Y], is the sum
of the probabilities of the edges going from one group to the other.

Proof. Let m = |PI(G)| and let S = {e1, . . . , e|S|} be the set of all probabilistic
edges (with non-zero probability) that connect the nodes of two given groups
in a probabilistic summary graph. Let also E(PIi) be the set of edges in an
instance PIi. We have that

E[Y] =
∑

PIi∈PI(G)
yi · p(PIi) = p(PI1) + . . .+ p(PI1)︸ ︷︷ ︸

y1 times

+ . . .

+ p(PIm) + . . .+ p(PIm)︸ ︷︷ ︸
ym times

Probabilistic Graph Summarization 551

where yi is the number of edges in S that exist in PIi. Now, we can organize
this equation in a different way. Note that for each edge ej ∈ S, if ej ∈ E(PIi),
the term p(PIi) appears once in the right hand summation. Therefore, we can
rewrite the equation as

E[Y] =
∑

E(PIi)�e1

p(PIi) + · · ·+
∑

E(PIi)�e|S|

p(PIi).

On the other hand, for each edge e we have that p(e) =
∑

E(PIi)�e p(PIi). Thus,

E[Y] = p(e1) + · · ·+ p(e|S|) =
∑

e∈S p(e), and this proves the theorem. ��

6 Algorithm

In this section we present our algorithm to build the summary graph of a prob-
abilistic graph. We assume that the probabilistic graph is stored in database
tables. The first primary table is the Nodes table which consists of all the nodes
in the graph and their attribute values. The second is the Edges table which
stores all the node connections (edges) in the graph. We assume that each edge
has an existence probability which is stored in the same table as a separate
column.

The algorithm starts by grouping the nodes based on the desired attributes.
Grouping can start by sorting nodes according to their values on the selected
attributes. Then, computing the E[X], E[Y], and E[Z] elements of the w2 mea-
sure for group pairs can be done by using the theorems and formulas provided
in Section 5.

nId A1 ... Ad

1 a11 ... a1d

2 a21 ... a2d

...

n an1 ... and

nId1 nId2 prob

1 2 p12
2 1 p21
...

i j pij

gId1 gId2 E[X] E[Y] E[Z]

g1 g2 x12 y12 z12
g2 g1 x21 y21 z21
...

gi gj xij yij zij

Fig. 2. Table Nodes (left), Table Edges (middle), Table Summary(right)

The following algorithm uses the Nodes and Edges tables illustrated in Fig. 2
(two left tables) and returns the w2 measure in the Summary table depicted in
Fig 2(right table). All the steps of our algorithm can be expressed in SQL. Due
to space constraint we only give the plain language description of the steps here
and refer the reader to the full version1 of the paper for the SQL statements.

1 http://webhome.cs.uvic.ca/∼maryam/probgraphsum.pdf

552 N. Hassanlou, M. Shoaran, and A. Thomo

Algorithm 1

Input:
1. Table Nodes containing the nodes and their attribute values.
2. Table Edges containing the edges with their existence probabilities.
3. Grouping attribute set A, which is a subset of node attributes.

Output: Table Summary consisting of all possible pairs of groups and their
expected measures E[X], E[Y], and E[Z].

Method:
1. Assign a group identifier, gId, to each node in the Nodes table based on

the user selected attributes.
2. Update table Edges and add two new columns called gId1 and gId2.

Then, for each record insert the corresponding group Ids of node 1 (nId1)
and node 2 (nId2) into gId1 and gId2, respectively.

3. Group records in Edges based on nId1, gId1, and gId2 using the product
of (1 − prob) as the aggregation function, then, insert the result into a
temporary table called K1 with the aggregate field as product.

4. Group records in Edges based on nId2, gId1, and gID2 using the product
of (1 − prob) as the aggregation function, then, insert the result into a
temporary table called K2 with the aggregate field as product.

5. To compute element E[X] in the w2 measure, group records in K1 based
on gId1 and gId2 using sum of (1− product) as the aggregation function
and store the result in table Summary.

6. To compute element E[Z] in the w2 measure, group records in K2 based
on gId1 and gId2 and sum of (1 − product) as the aggregation function
and update table Summary.

7. To compute element E[Y] in the w2 measure, sum up prob values from
table Edges by grouping records based on gId1 and gId2 and update table
Summary.

8. Return the Summary table.

7 Evaluation

In this section we describe the implementation of our algorithm on a real dataset
and evaluate its efficiency. We then analyze the scalability of our algorithm by
implementing it on synthetic data.

7.1 Dataset

The real dataset we use for the evaluation is a trust network dataset from Epin-
ions2. Epinions is a website in which users write reviews for different products
of different categories or subjects and express trust to each other.

Two different versions of the Epinions dataset are available in the Trustlet
website (www.trustlet.org). In this paper we use the Extended Epinions dataset.

2 http://www.trustlet.org/wiki/Epinions.

Probabilistic Graph Summarization 553

The ratings in this dataset are about reviews, also called articles. That is, the
ratings represent how much a user rates a given article written by another user.
This dataset contains about:

– 132,000 users,
– 841,000 statements (trusts and distrusts),
– 85,000 users received at least one statement,
– 1,500,000 articles.

In this dataset, we are interested in finding the strength of the connections between
users grouped by the subject of the articles they have written. Using the users
information and the statements we created tables Nodes and Edges, respectively.
In order to have edge existence probabilities, we added the field prob in the Edges
table and filled it with random numbers between 0 and 1 for each record.

7.2 Implementation of Algorithm 1

Since the Nodes table created from the Epinions dataset contains only one at-
tribute, SubjectId, we use it as the grouping attribute and group Id will be the
SubjectId (see Step 1 of Algorithm 1).

To assign the subjectIds to the nodes in the Edges table (Step 2 of Algo-
rithm 1), we join tables Nodes and Edges twice, once on userId1 and the second
time on userId2. The result table called Joint represents all the valid edges in
the trust graph. After these joins we end up with much more records in the Joint
table than table Edges. The reason is that in the Epinions dataset a user/author
may have articles in different subjects. Before joining the tables, we can follow
two different strategies.

1. We can consider each distinct userId-subjectId pair in Nodes table as a node
in the graph. In such a graph, we also need to consider the trust between the
nodes having identical userIds. With the assumption that each user trusts
completely on his/herself, we connect all the nodes having the same userId
to each other with the probability of 1 and add the corresponding records
in the Edges table. The result graph is very large with billions of nodes
and edges. Fig. 3 depicts this strategy to build the desired graph from the
available dataset.

2. We can consider just one subject for each user and remove the other records
for that user from the Nodes table. In this approach, there will be one node
for each user in the graph. Applying this strategy we built a graph consisting
of 130,068 nodes each corresponding to a record in Nodes table, and 785,286
edges corresponding to the records in the Joint table. The number of distinct
subjects (groups) was 11,224. This graph is large enough and can be useful
for evaluating our algorithm as well.

We have followed both strategies for our evaluation. We performed all the ex-
periments on a machine with Linux server, 12 GB memory, and 3.4 GHz CPU.
All steps have been implemented as SQL queries. We executed our queries on
MySQL version 5.5.24. In the following section we analyze the results of our
experiments on graphs with different sizes.

554 N. Hassanlou, M. Shoaran, and A. Thomo

�������	
��

�����
��

��������

�	���

�	������ �����
��

�������

�������

�� ��

����������	
 ��������

�������������������������

�����������

���

���

���

���
��

�

� ���

���

Fig. 3. Graph generation strategy

7.3 Analysis

In this section we analyze the complexity , the efficiency, and the scalability of
our algorithm based on the experimental results obtained in the previous section.

7.4 Complexity of the Algorithm

In the first step, a sorting or hashing can be performed to group by the nodes
based on their attribute values (the value of subjectId). The rest of the algorithm
can be completed by scanning the edges in two passes to compute the E[X], E[Y]
and E[Z] values.

Considering the memory space, our algorithm can keep the statistics variables
for all the groups in the memory. If there is not enough memory, only the infor-
mation about the groups for which the expected values are requested are kept in
the memory. The algorithm can even run in a memory of size equal to the space
needed to store statistics variables for only a pair of groups. This is because the
algorithm can work with just two groups at a time and compute the expected
values of the statistics. However, in this case we would need one pass for each
pair of groups.

7.5 Efficiency of the Algorithm

We ran the algorithm on two graphs with different sizes created from the Epin-
ions dataset. The first graph had 840,971 nodes and 103,419,023 edges resulting
from restricting the number of subjects to 85, which is almost 0.1% of the whole
number of different subjects. This is a reasonable number of groups for a human
analyst to easily use in order to understand the interconnectedness of his/her
subjects of interest in terms of user trust relationships. The execution time was
only 113 seconds, and the produced summary graph contained 85 different groups
and 1,691 edges. The second graph was generated using the second strategy il-
lustrated in Section 7.2, which resulted in a graph containing 11,224 different
subjects in total. The execution time was only 3.86 seconds, and the produced
summary graph contained 11,224 different groups and 35,259 edges.

Probabilistic Graph Summarization 555

�������	�
��������� �����	���	�
���������

����

�����

����

�����

����

�������

����

������

����

������

�����

���������

���
	�������

���	��

����������� 	����
� 	� ����� 	� ���	� �����

	���	� ������	 ������ ������ ������ �	� �����

�������	�
��������� �����	���	�
���������

����

�����

����

�����

����

�������

����

������

����

������

�����

���������

���
	�������

���	��

����������� 	����
� 	� ����� 	� ���	� �����

	���	� ������	 ������ ������ ������ �	� �����

Fig. 4. The experimental results on the Epinions dataset

7.6 Scalability Experiments

In order to analyze the scalability of the algorithm we took advantage of syn-
thetic graphs created based on the trust network structure of the Epinions data.
We generated random graphs of different sizes and different number of groups.
Each time we simply assigned random group identifiers to each node of the orig-
inal graph. The experimental results on the datasets having different number of
subjects or different graph sizes are shown in Fig. 5.

The left figure in Fig. 5 illustrates the execution time of the summarization
algorithm (in seconds) as a function of the number of different groups (subjects)
in a graph having 10,000,000 edges. The figure shows that when the graph size is
constant, depending on how we group the nodes and how many different groups
we get, the execution time can change. The result shows that as the number of
different groups increases, the execution time would increase as well in an almost
linear manner. Therefore, we can handle the summarization of graphs with large
number of groups in reasonable time.

The right figure in Fig. 5 shows the execution time of the algorithm on some
graphs of different sizes. In this experiment we group the nodes into exactly
300 different categories each time. The result shows that in the case of constant
number of groups, the execution time increases almost linearly based on the
graph size. This result shows the scalability of our algorithm.

 10

 12

 14

 16

 18

 20

 22

100 200 300 400 500 600

T
im

e
(S

ec
on

ds
)

Number of Subjecs

 1

 1.5

 2

 2.5

 3

1 2 3 4 5 6 7 8

T
im

e
(S

ec
on

ds
)

Number of Edges (×105)

Fig. 5. Left: Execution time vs. number of subjects, Right: Execution time vs. graph
size (number of edges)

556 N. Hassanlou, M. Shoaran, and A. Thomo

8 Conclusions

This paper addressed the problem of summarizing probabilistic graphs using
a relational database approach. We focused on a useful summarization method
which groups the nodes based on a subset of attributes. In the summary graph we
considered aggregates which reveal significant information about the groups and
the connections between them. We gave theorems to compute these aggregates
without the need to compute all possible data graphs from the original prob-
abilistic graph. We also presented an algorithm, which uses pure SQL queries
to build the summary graph. We evaluated the proposed algorithm on Epinions
data and some synthetic datasets. The evaluation shows that our algorithm is
practically scalable to large graphs.

References

1. Abiteboul, S., Grahne, G.: Update semantics for incomplete databases. In: VLDB,
pp. 1–12 (1985)

2. Abiteboul, S., Kanellakis, P.C., Grahne, G.: On the representation and querying
of sets of possible worlds. Theor. Comput. Sci. 78(1), 158–187 (1991)

3. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: Uldbs: Databases with
uncertainty and lineage. In: VLDB, pp. 953–964 (2006)

4. Budak, C., Agrawal, D., Abbadi, A.E.: Limiting the spread of misinformation in
social networks. In: WWW, pp. 665–674 (2011)

5. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: KDD, pp. 199–208 (2009)

6. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB
J. 16(4), 523–544 (2007)

7. Frank, E.H.: Shortest paths in probabilistic graphs 17, 583–599 (1969)
8. Gao, J., Jin, R., Zhou, J., Yu, J.X., Jiang, X., Wang, T.: Relational approach for

shortest path discovery over large graphs. CoRR, abs/1201.0232 (2012)
9. Pfeiffer III, J.J., Neville, J.: Methods to determine node centrality and clustering

in graphs with uncertain structure. In: ICWSM (2011)
10. Kollios, G., Potamias, M., Terzi, E.: Clustering large probabilistic graphs. In: IEEE

TKDE (2010)
11. Mayfield, C., Neville, J., Prabhakar, S.: Eracer: a database approach for statistical

inference and data cleaning. In: SIGMOD Conference, pp. 75–86 (2010)
12. Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: k-nearest neighbors in uncertain

graphs. PVLDB 3(1), 997–1008 (2010)
13. Srihari, S., Chandrashekar, S., Parthasarathy, S.: A framework for SQL-based min-

ing of large graphs on relational databases. In: Zaki, M.J., Yu, J.X., Ravindran,
B., Pudi, V. (eds.) PAKDD 2010, Part II. LNCS, vol. 6119, pp. 160–167. Springer,
Heidelberg (2010)

14. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summariza-
tion. In: SIGMOD Conference, pp. 567–580 (2008)

15. Zhang, N., Tian, Y., Patel, J.M.: Discovery-driven graph summarization. In: ICDE,
pp. 880–891 (2010)

16. Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and olap multidi-
mensional networks. In: SIGMOD Conference, pp. 853–864 (2011)

17. Zou, Z., Gao, H., Li, J.: Discovering frequent subgraphs over uncertain graph
databases under probabilistic semantics. In: KDD, pp. 633–642 (2010)

	Probabilistic Graph Summarization
	1 Introduction
	2 Related Work
	3 Graph Summarization
	4 Probabilistic Graphs
	5 Probabilistic Graph Summarization
	6 Algorithm
	7 Evaluation
	7.1 Dataset
	7.2 Implementation of Algorithm 1
	7.3 Analysis
	7.4 Complexity of the Algorithm
	7.5 Efficiency of the Algorithm
	7.6 Scalability Experiments

	8 Conclusions
	References

