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Abstract. In this paper, we address the problem of image annotation
when the given labels of training image are incomplete, inaccurate, and
unevenly distributed, in the form of weak labels, which is frequently
encountered when dealing with large scale web image training set. We
introduce a progressive semantic neighborhood learning approach that
explicitly addresses the challenge of learning from weakly labeled image
by searching image’s semantic consistent neighborhood. Neighbors in
image’s semantic consistent neighborhood have global similarity, partial
correlation, conceptual similarity along with semantic balance. We also
present an efficient label inference algorithm to handle noise by minimiz-
ing the neighborhood reconstruction error. Experiments with different
data sets show that the proposed framework is more effective than the
state-of-the-art algorithms in dealing with weakly labeled datasets.
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1 Introduction

Traditional image annotation studies, a basic assumption is that all the proper
labels of every training image are given and correct. In real environment, this
assumption hardly holds since getting all the proper labels is usually expensive,
time consuming and people usually add a few labels, rather than an exhaus-
tive list of relevant terms. Moreover, not all of the labels are relevant to the
image content ,for example, images labeled with ”car” might be taken from a
car, rather than depicting one. It is evident that this scenario is quite differ-
ent from the classic image annotation setting where all proper labels for train-
ing data are assumed to be given. Images in benchmark set are also usually
weakly labeled(showed in Table 1). Meanwhile, large variations in the frequency
of different labels can reduce the performance of the labeling method on the
low-frequency labels. E.g., in an experiment on the Corel5K dataset, we found
that for the 20% least frequent labels, JEC [1] achieves an F-score of 19.7%,
whereas it gives reasonably good performance for the 20% most frequent labels
with F-score being 50.6%. In this work, the meaning of the terminology ”weak
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Table 1. Weak label image (the missing labels are highlighted by bold font, the content
unrelated labels are italicized)

field horses mare
foals
tree

fence mountain
range sky
airplane

travel vacation
Nile sky
sailboat sea

bear river
reflection water
black

czech bridge
charles lights
night

labels” is threefold: (1) the given labels may be incomplete, namely only a subset
of labels are attached to images according to the ground truth; (2)even for the
labels provided, there may be noisy labels; (3) there is large variations in the
frequency of different labels(semantic imbalance). Image annotation from weakly
labeled dataset is important since weakly-labeled problems are prevalent in the
popular datasets as well as real-world environment. In[2], the authors showed
performance improvement where for each training instance, only one of its class
assignments is correct. In[3], a hybrid model framework for utilizing partially
labeled data that integrates a generative topic model for image appearance with
discriminative label prediction is explored. In [4], the author focuses on remov-
ing false class assignments for training set. In [5], the author proposed ranking
based multi-label learning to learn from incompletely data. Our work is more
comprehensive and address a more realistic and challenging scenario where the
datasets seriously suffer from weakly labeled issues.

2 Our Approach

Based on the idea that negative impact of the weak label can be reduced under
the guidance of neighbors, the training image’s labels are replenished by minimiz-
ing the label’s weighted error function, then ”semantic balanced neighborhood”
is set up based on the replenishing labels to address the large differences in
these label’s frequency. Linear metric embedded in multiple label information
is learned to obtain the consistency of distance measure and image semantic.
Then the images’ partial correlation is obtained by image’s nonnegative sparse
linear combination between neighbors. The neighbors in the final neighborhood
have higher global similarity, partial correlation and conceptual similarity along
with semantic balance. Label prediction is performed in the neighborhood by
minimizing label’s reconstruction error loss, and noise labels are handled by two
regulation terms.

2.1 Semantic Balanced Neighborhood

By semantic balanced neighborhood (short for BN), we mean, for a given image,
there should not have large differences in the frequency of different labels in
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it’s neighborhood. Considering labels for training image may be incomplete,
we replenish missing labels firstly. Denote vocabulary as C = {c1, c2, ..., cq}
and training set L = {(x1, y1), ..., (xl, yl)} , m represents the dimensionality of
features, yi = (yi1, ..., yiq ∈ {0, 1}q is the corresponding label vector, yij = 1 if
the i-th image has the j-th label and yij = 0 otherwise. Y = [y1, ..., yl]

T be the
corresponding label indicator matrix. We want to learn a replenished function
f : L → Rq where fi = [fi1, fi2, ..., fiq]

T , fij denotes the value of function output
of i-th image, and we use matrix F = [f1, f2, ..., fl] to present the replenished
label matrix. The error function is E(f) = E1(f) + λE2(f) ,where λ ≥ 0 is a
controlling parameter. Thus, the optimization problem is:

min
f
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E1(f) represents the weighted error function,uij represents the weight between
sample xi and j-th label, uij = 1 if yij = 1, and τ otherwise (0 ≤ τ ≤ 1).
Minimizing E1(f) is equivalent to requiring the output of f is similar to the
original labels and can replenish the missing labels. Minimizing the second term
is equivalent to requiring the smoothness output of f on each sample’s neighbor
according to their similarity.The approximate optimal solution can be derived
by least squares. Based on the replenished labels, image’s BN is constructed
as follows. Let Li ⊆ L (∀i ∈ {1, 2, ..., q}) be the subset of training data that
contains all the images annotated with the label ci,we consider it as a semantic
group. Given an image x, from each semantic group we pick k2 images that
are most similar to x and form corresponding sets Lx,i ⊆ Li. Thus, each Lx,i

contains images that are most informative in predicting the probability of the
label ci for x. We merge them all to form the semantic balanced neighborhood
as BN(x) = {Lx,1 ∪ ...∪Lx,q}. It can be easily noted that in BN(x), each label
appears (at least) k2 times, thus addressing the semantic imbalance issue.

2.2 Semantic Consistent Neighborhood

By semantic consistent neighborhood(short for CN), we mean, the neighbors
should have both the global similarity and partial correlation along with con-
ceptual similarity. We select the partial correlated neighbors in target image’s
BN by sparse representation. Note that, from signal reconstruction point of view,
when target signal is reconstructed from signals in different subspace(semantic
subspace), the reconstruction coefficients have lost their physical meaning. It
is obvious that we cannot guarantee that sample’s in BN are all semantically
similar, since image pair’s semantic similarity depends on the corresponding
label set instead of single label. As shown in figure1(a), xp’s semantically simi-
lar neighbors (denoted by circle) and neighbors that are semantically dissimilar
neighbors(denoted by square) are all in xp’s BN. If semantically dissimilar neigh-
bors lie outside smaller radius with a margin of at least one unit distance, as
shown in figure2(b), then we can reconstruct xp by neighborhood (b). Let a and
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Fig. 1. Schematic illustration of one input’s neighborhood

b be two training images, and each represented by n features{f1
A, ..., f

n
A} and

{f1
B, ..., f

n
B} , where

∑
mi = m.

d̃(a, b) =
n∑

i=1

w(i)

mi∑

j=1

ui(j) · distiAB(j) (1)

ui and w are usually taken as a non-negative normalized unit vector, ui can
be assigned appropriate weights to individual dimensions of a feature vector in
the feature space, w is to optimally combine multiple feature distances. Given
an image xp, along with its label vector yp, we want to learn weights such that
its target neighbor xq from the semantic groups {Lxp,r}r are pulled closer, xr

from the remaining semantic groups are pushed far.That is, minimize the error
function:

argmin
w,u

∑
pq

ηpqλpq d̃(xp, xq)+

μ
∑
pqr

ηpq(1 − λpr)[1 + d̃(xp, xq)− d̃(xp, xr)]+

Here, μ is the controlling parameters, [z]+ = max(0, z) is the hinge loss, λpq and
λpr scale the error loss depending on the overlap between the label sets of images.
We solve it by alternatively using stochastic sub-gradient descent and projection
steps (similar to Pegasos [6]) to obtain an approximate optimal solution of w
and ui. Then, given image xi, we find it’s k nearest neighbor by Equation (1) to
construct xi’s local overcomplete dictionary, where ip ∈ {1, ..., l}, p ∈ {1, ..., k}.
is the reconstruction coefficients vector for xi. Note that negative coefficient has
not explicit meaning to describe semantic, so we reformulate the reconstruction

relationship as xi = Biαi + ζ, where αi(p) ≥ 0 and
k∑

p=1
αi(p) = 1. Let non-

negative term ζ+, noise term ζ = ζ+ − ζ−, |ζ| = ζ+ + ζ−. Then we can solve

min
αi

λ‖αi‖1 + 1
2 ‖xi −Biαi‖22 s.t. αi ≥ 0 where xi = [xi 1 ]T , αi = [αi ζ

+ ζ− ]

Bi =

[
Bi Im −Im

E1×k 01×m 01×m

]
, the controlling term λ = 2‖Bixi‖∞, the problem can

be solved efficiently using L1 optimization toolbox like YALL. Then, xi is repre-
sented by a sparse linear combination of it’s neighbors, and it’s semantic consis-
tent neighborhood(CN) is composed by the neighbors xip where ai(p) > 0. Let
C = [cij ] denotes neighborhood weight matrix, where cij = αi(p).
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2.3 Label Inference in CN

Let f = [fL fU ]T be label matrix of all samples, where fL represents the training
set’s label matrix, fU represents the unlabeled ones’ label matrix(initialized by
zero). Assuming that each image’s label vector can be reconstructed by it’s
neighbors in it’s CN, while the reconstruction coefficients are the same as their
visual reconstruction coefficient. Thus we can predict the labels of the unlabeled
samples by the weight in neighborhood matrix C. This prediction is based on the
assumption that the weight cij reflects the likelihood for sample xi to have the
same label as sample xj . So the labels of the unlabeled samples can be inferred
by minimizing label reconstruction error as follows:

E(f) =
n∑

i=1

||fi −
∑

j �=i

cijfj ||2, s.t.fi = yi (2)

where y
i
is the replenished label vector of xi. We use generalized minimum

residual method (GMRES [7]) to obtain an approximated solution. As aforemen-
tioned, the associated labels are often incomplete and imprecise, so the training
labels cannot be fixed during the inference process as in Equation (2) should
be refined. However, the training labels should be consistent with the original
labels to a certain extent. So the optimization target should be

min
f

{
||f − Cf ||2 + λ1||fL −

∧
fL ||2 + λ2||

∧
fL−Y ||1

}

where fL is the training images labels that are propagated, and
∧
fL denotes the

ideal label vector of the training images. The first term of this formula is the
same as in Equation (2). The second term enforces the ideal labels of the training
images to be consistent with the labels propagated. The third term constrains
that only a limited number of labels are noisy or imprecise.

3 Experiments

We validate the effectiveness of our proposed approach on IAPR-
TC12,ESPGAME and FLICKR2.5M datasets. Each image is annotated with

Table 2. Experimental results on four dataset

IAPR ESP FLI

Method P R F1 N+ P R F1 N+ P R F1 N+
SML[8] 0.21 0.23 0.220 201 0.16 0.17 0.165 195 0.15 0.16 0.155 278
JEC [1] 0.28 0.29 0.285 250 0.22 0.25 0.234 224 0.20 0.21 0.205 355
Tagprop(ml) [9] 0.48 0.25 0.329 227 0.49 0.20 0.284 213 0.43 0.17 0.244 363
Tagprop(ml+s)[9] 0.46 0.35 0.398 266 0.39 0.27 0.319 239 0.34 0.25 0.288 403
GS [10] 0.32 0.29 0.304 252 0.36 0.24 0.288 226 0.29 0.22 0.250 375
SNLWL 0.52 0.37 0.432 276 0.51 0.30 0.378 249 0.48 0.29 0.362 427
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5 most relevant keywords. Results are summarized in Table 2. From the results
we find that our method significantly improve over the current state-of-the-art.
On ESP-GAME image dataset, we achieve 30.8% and 11.1% performance im-
provement in terms of precision and recall. On FLICKR, we achieve 41.2% and
24% performance improvement in terms of precision and recall.

4 Conclusion

Image annotation with weakly labeled images is important since weakly-labeled
problems are prevalent in the popular web datasets as well as real-world envi-
ronment. Experiments show that the proposed framework is more effective than
state-of-the-art over web image dataset.
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