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Abstract. This paper studies the problem of top-k distance-based out-
lier detection on uncertain data. In this work, an uncertain object is
modelled by a probability density function of a Gaussian distribution.
We start with the Naive approach. We then introduce a populated-cell
list (PC-list), a sorted list of non-empty cells of a grid (grid is used to in-
dex our data). Using PC-list, our top-k outlier detection algorithm needs
to consider only a fraction of dataset objects and hence quickly identifies
candidate objects for top-k outliers. An approximate top-k outlier detec-
tion algorithm is also presented to further increase the efficiency of our
outlier detection algorithm. An extensive empirical study on synthetic
and real datasets shows that our proposed approaches are efficient and
scalable.

Keywords: Top-k Distance-based Outlier Detection, Uncertain Data,
Gaussian Distribution, PC-list based Approach.

1 Introduction

Outlier detection is one of the most important data mining techniques with vital
importance in many application domains including credit card fraud detection,
network intrusion detection, environment monitoring, etc. Hawkins [4] defines
an outlier as an observation that deviates so much from other observations as to
arouse suspicion that it was generated by a different mechanism.

Most of the earliest outlier detection techniques were given by statistics [6].
However, most statistical techniques are univariate, and in the majority of tech-
niques, the parameter of distribution is difficult to determine. In order to over-
come these problems several distance-based approaches for outlier detection have
been proposed in data mining [5], [11], [14].

Due to the increasing usage of sensors, RFIDs and similar devices for data
collection these days, data contains certain degree of inherent uncertainty. The
causes of uncertainty may include limitation of equipments, absence of data and
delay or loss of data in transfer. In order to get reliable results from such data,
uncertainty needs to be considered in calculation. In this work we study the
problem of top-k distance-based outlier detection on uncertain data following
the Gaussian distribution.
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In the following, uncertainty of data is modelled by the most commonly used
PDF, i.e., the Gaussian distribution. Since the distance between uncertain data
objects is very costly to compute, we introduce a populated-cell list (PC-list)
based top-k outlier detection technique. PC-list is a sorted list of non-empty
cells of a d-dimensional grid, where grid is used to index our data. Using PC-
list, our top-k outlier detection algorithm needs to consider only a fraction of the
dataset objects and hence quickly identifies candidate objects for top-k outliers.
Furthermore an approximate top-k outlier detection algorithm is also presented
to increase the efficiency of our outlier detection algorithm.

The rest of the paper is organized as follows. Sec. 2 surveys the related work.
Sec. 3 formally defines the top-k distance-based outlier detection on uncertain
datasets. The PC-list, the top-k algorithm and the approximate top-k algorithm
are presented in Sec. 4. Sec. 5 contains an extensive experimental evaluation
that demonstrates the efficiency and scalability of proposed techniques. Sec. 6
concludes our paper.

2 Related Work

Distance-based outliers detection approach was introduced by Knorr, et al. in
[5]. They defined a point p to be an outlier if at most M points are within D-
distance of p. They also presented a cell-based approach to efficiently compute
the distance-based outliers. [9] formulated distance-based outliers as the top-t
data points whose distance to their κth nearest neighbour is largest. Angiulli et
al. in [10] gave a slightly different definition of outliers than [9] by considering
the average distance to their k nearest neighbours. Besides, there are some works
on the detection of distance-based outliers over stream data including [13], [14]
and [15]. These works are based on the Knorr, et al. definition of distance-
based outliers. Furthermore, [13] gave an approximate algorithm to reduce the
memory space required by its exact counterpart. Later on [14] extended [13]
work by adding the concepts of multi-query and micro-cluster based distance-
based outlier detection. A geometric approach of outlier detection has also been
proposed in [2]. The proposed solution is only suitable for identifying abnormal
nodes from the cluster of nodes placed nearby and not valid for the problem when
the measurements of a single node is classified as outliers, based on the nodes
past measurements. However all these approaches were given for deterministic
data and could not handle uncertain data.

Recently a lot of research has focused on managing, querying and mining of un-
certain datasets [12], [7]. The problem of outlier detection on uncertain datasets
was first studied by Aggarwal, et al. in [12]. They represented an uncertain object
by a PDF. They defined an uncertain object o to be a density-based (δ, η) outlier,
if the probability of o existing in some subspace of a region with density at least
η is less than δ. However, their work focuses on detecting outliers in subspaces. In
practise, an outlier in subspace is not necessarily an outlier in full space as argued
in [11]. [7] also proposed a distance-based outlier detection algorithm on uncertain
datasets, which was later extended in [8] for probabilistic data streams. However
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in their works, an object’s existential uncertainty is considered rather than repre-
senting an object by a PDF as in our work.

In [1], we proposed a cell-based approach of distance-based outlier detection
on uncertain data. According to [1], an uncertain object o is a distance-based
outlier if the expected number of objects lying within itsD-distance is not greater
thanM = N(1−p), where N is the number of objects in the dataset and p is the
fraction of objects that lies farther than D-distance of o. In practise parameter
p is difficult to determine and is dependent on N . An arbitrary value of p may
results in a very few or a lot of outliers for different N . Moreover from [1], we
cannot obtain the outlier’s ranking. Therefore in this work, we propose PC-list
based approach of the top-k distance-based outlier detection, which can always
obtain k strongest outliers along with their ranking, provided k ≤ N .

3 Distance-Based Outliers in Uncertain Data

The very first definition of distance-based outlier detection on deterministic data
was given by Knorr, et al. in [5]. They defined distance-based outliers as follows.

Definition 1. An object o in a dataset DB is a distance-based outlier, if at least
fraction p of the objects in DB lies greater than distance D from o.

In this work, our focus is the detection of the top-k outliers on a dataset whose
objects’ attribute values are uncertain. This paper assumes that the uncertainty
is given by the Gaussian distribution. The Gaussian distribution is chosen for
representing uncertainty, because in statistics the Gaussian distribution (or the
normal distribution) is the most important and the most commonly used.

In this paper, k-dimensional uncertain objects oi are considered, with at-

tribute
−→Ai = (xi,1, ..., xi,k)

T following the Gaussian PDF with mean −→μi =
(μi,1, ..., μi,k)

T and co-variance matrix Σi = diag(σ2
i,1, ..., σ

2
i,k), respectively.

Namely, the vector
−→Ai is a random variable that follows the Gaussian distribu-

tion
−→Ai ∼ N (−→μi , Σi). Note that −→μi denotes the observed coordinates (attribute

values) of object oi. The complete database consists of a set of such objects,
GDB = {o1, ..., oN}, where N = |GDB| is the number of uncertain objects in
GDB.

3.1 Top-k Distance-Based Outliers in Uncertain Data

We naturally extend Definition 1 for the top-k distance-based outliers on uncer-
tain datasets as follows.

Definition 2. The top-k distance-based outliers are the k uncertain objects in
the dataset GDB for which the expected number of objects lying within D-distance
is smallest.

The objects that lie within D-distance of an object o are calledD-neighbours of o
and the set of D-neighbours of o is denoted by DN(o). In order to find the top-k
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distance-based outliers in GDB, the distance between uncertain objects needs to
be calculated, which is given by another distribution known as the Gaussian dif-

ference distribution [3]. Let
−→Ai and

−→Aj be two independent d-dimensional normal
random vectors with means −→μi = (μi,1, ..., μi,d)

T and−→μj = (μj,1, ..., μj,d)
T and di-

agonal covariance matrices Σi = diag(σ2
i,1, ..., σ

2
i,d) and Σj = diag(σ2

j,1,..., σ
2
j,d),

respectively. Then,
−→Ai−−→Aj = N (−→μi −−→μj , Σi+Σj) [3]. Let Pr(oi, oj , D) denotes

the probability that oj ∈ DN(oi). Then,

Pr(oi, oj , D) =

∫

R

N (−→μi −−→μj , Σi +Σj)d
−→A , (1)

where R is a sphere with centre (−→μi −−→μj) and radius D. For the expression and
derivation of Pr(oi, oj , D), please refer our previous work [1]. Furthermore, we
will use Pr(α,D) to denote Pr(oi, oj , D) when there is no confusion, where α is
an ordinary Euclidean distance between the means of oi ∈ GDB and oj ∈ GDB.
Computing this probability is usually very costly, and we have to avoid this
computation as much as possible.

The Naive approach of the top-k outlier detection given in Alg. 1 uses Nested-
loop. In order to find whether an object oi ∈ GDB is a top-k outlier, we need
to compute its expected D-neighbours (EN(oi)). Computation of EN(oi) for
an object oi ∈ GDB requires evaluation of N expensive distance functions.
During the computation of EN(oi), if expected D-neighbours become greater
than threshold θ, oi is an inlier and the computation of EN(oi) is stopped. On
the other hand, if EN(oi) is less than or equal to θ, oi is added to candidate list
of outliers Cobj , along with its expected D-neighbours. The Cobj is kept sorted
in ascending order of D-neighbours’ column and the top-k objects in it are
selected as outliers. In the worst case, this approach requires O(N2) evaluations
of distance function, which is very expensive.

4 The Populated-Cells List (PC-list)

The Naive approach requires a lot of computation time to detect top-k outliers
even from a small dataset due to the costly distance calculation. To overcome this
problem we propose a PC-list-based approach of the top-k outlier detection. PC-
list is an array of non-empty cells of a d-dimensional grid containing uncertain
data objects o ∈ GDB. The PC-list helps in detection of the top-k distance-based
outliers by identifying the cells containing candidate outliers.

Lemma 1. Let oi, oj ∈ GDB be two d-dimensional uncertain objects following
the Gaussian distribution and α denotes an ordinary Euclidean distance between
the means of oi and oj. Then for t ∈ R, denoting the number of standard de-
viations required to enclose a large probability (say > 99%) of a d-dimensional
Gaussian difference distribution, following statements hold.

(a) If α ≤ D − tσ′, P r(oi, oj , D) ≈ 1.
(b) If α ≥ D + tσ′, P r(oi, oj , D) ≈ 0.
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Algorithm 1. The top-k Naive Approach

Input: GDB, D, k
Output: Top-k Distance-based Outliers
1: N ← |GDB|, θ ←∞, Cobj ← φ (Candidate top-k outliers list);
2: for each oi in GDB do
3: EN(oi)← 0; (expected number of D-neighbours of o)
4: for each oj in GDB do
5: EN(oi)+ = Pr(oi, oj , D);
6: if EN(oi) > θ then GOTO next oi;
7: end for
8: Insert oi and EN(oi) into Cobj (Keep Cobj sorted w.r.t. EN(o));
9: if |Cobj | > k then
10: Set θ = EN(o′), where o′ is the kth object in Cobj ;
11: Remove all o′′ ∈ Cobj , such that EN(o′′) > θ;
12: end if
13: end for
14: return Cobj ;

where σ′ is the standard deviation of the Gaussian difference distribution in
any one dimension (assuming that the standard deviation is uniform in all the
dimensions).

Proof. The number of standard deviations s needed to enclose a given probabil-
ity for a d-dimensional random variable X following the Gaussian distribution
can be obtained using the expression Pr{dM (X,μ) ≤ s} = Gd(s

2) [19], where

dM (X,μ) =

√
(X − μ)T

∑−1(X − μ) is the Mahalanobis distance and Gd(s
2)

is the CDF of the chi-squared distribution with d-degrees of freedom.
Here we are interested in computing the distance between two uncertain objects
oi and oj following the Gaussian distribution. This distance is given by another
Gaussian distribution known as the Gaussian difference distribution [3]. Hence
if t denotes the value of s, such that Pr{dM (X,μ) ≤ t} covers a large area of
the Gaussian distribution (say > 99%), then for α ≤ D − tσ′, P r(oi, oj , D) ≈ 1
and for α ≥ D + tσ′, P r(oi, oj , D) ≈ 0 �

4.1 Structure

In order to find the top-k distance-based outliers from an uncertain dataset using
the PC-list, we first quantize each object in GDB, to a d-dimensional space that
is partitioned into cells of length l (The cell length is discussed in Sec. 4.3). Let
Cψ1,...,ψd

be any cell in grid G, where positive integers ψ1, ..., ψd denote the cell
indices. The layers (L1, ..., Ln) of Cψ1,...,ψd

∈ G are the neighbouring cells of
Cψ1,...,ψd

, as shown in Fig. 1 and are derived as follows.
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L1(Cψ1,...,ψd
)={Cx1,...,xd

|x1=ψ1 ± 1, ..., xd=ψd ± 1, Cx1,...,xd
�= Cψ1,...,ψd

}.
L2(Cψ1,...,ψd

)={Cx1,...,xd
|x1=ψ1 ± 2, ..., xd=ψd ± 2,

Cx1,...,xd
/∈ L1(Cψ1,...,ψd

), Cx1,...,xd
�= Cψ1,...,ψd

}.
L3(Cψ1,...,ψd

), ..., Ln(Cψ1,...,ψd
) are derived in a similar way. We will use C to

denote Cψ1,...,ψd
when there is no confusion.

 
 

 

 

 

M
in

 d
ist

an
ce

  
be

tw
ee

n 
 a

nd
 

 

 

 

Fig. 1. Cell Layers and Bounds
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Fig. 2. PC-list building

Let RD−tσ(C) denotes a region formed by
⌊
D−tσ
l
√
d

− 1
⌋
neighbouring layers of

C ∈ G. The region RD−tσ(C) is chosen in such a way that for each oi ∈ C and
oj ∈ RD−tσ(C), Pr(oi, oj , D) ≈ 1. let C(C) is the count of objects in C, and
CD−tσ(C) is the count of objects within cells in region RD−tσ(C) (including C
itself). Then the PC-list (PC) is a sorted list containing C(C) and CD−tσ(C)
for each non-empty cell C ∈ G as shown in Fig.2. The tuples in the PC-list are
sorted in an ascending order of CD−tσ(C) column. The idea behind sorting is
that outliers tend to exist in sparse regions. Sorting tuples in the PC-list, lets
us identify cells in sparse regions.

4.2 Cell Bounds

In order to identify cells C ∈ PC, containing only inliers or candidate top-k
outliers, their bounds on the expected D-neighbours are used. A cell C can be
pruned as an inlier cell if the minimum expected D-neighbours for any object
in C is greater than threshold θ (θ is discussed shortly). Similarly a cell can be
identified as containing top-k outliers if the maximum expected D-neighbours
for any object in C is less than θ. Since the Gaussian distribution is unbounded,
Pr(oi, oj , D) is always greater than zero for oi, oj ∈ G. Therefore all the cells in
the PC-list need to be considered for the computation of bounds of C ∈ PC.
To compute cell bounds, the minimum and the maximum ordinary Euclidean
distances between cells are required. Beside distance between cells, object count
of each C ∈ PC and precomputed Pr(α,D) values for α ranging from the
minimum to the maximum ordinary Euclidean distances between cells in G are
also required for the computation of C ∈ PC bounds. The precomputed values
are stored in a look-up table to be used by the top-k outlier detection algorithm.
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Distance between Cells: Let Cp and Cq are two cells in PC with indices
ψp1, ..., ψpd and ψq1, ..., ψqd respectively. Let Δmin(Cp, Cq) and Δmax(Cp, Cq)
denote the minimum and the maximum ordinary Euclidean distances between
Cp and Cq respectively. Distance between Cp and Cq depends on their positions
in the grid G and can be derived as follows.

Δmin(Cp, Cq) = l.(

d∑
s=1

δ2min,s)
1/2 where δmin,s =

⎧⎪⎨
⎪⎩
ψps − (ψqs + 1) ψps > ψqs

(ψps + 1)− ψqs ψps < ψqs

ψps − ψqs ψps = ψqs

Δmax(Cp, Cq) = l.(

d∑
s=1

δ2max,s)
1/2 where δmax,s =

{
(ψps + 1)− ψqs ψps ≥ ψqs

ψps − (ψqs + 1) ψps < ψqs

Now we can obtain bounds for cells in the PC-list using pre-computed Pr(α,D)
values and the information available in the PC-list. Let LB(Pr(Cp, Cq)) and
UB(Pr(Cp, Cq)) denote Pr(α,D) values at minimum α ≥ Δmax(Cp, Cq) and
maximum α ≤ Δmin(Cp, Cq) respectively. Then for a C ∈ PC, LB(C) =
(
∑

C′∈PC LB(Pr(C,C′))∗C(C′) and UB(C) = (
∑

C′∈PC UB(Pr(C,C′))∗C(C′)).
Let RD+tσ(C) denotes the region formed by

⌈
D+tσ
l

⌉
neighbouring layers of

cell C ∈ G as shown in Fig. 1. Region RD+tσ(C) is chosen in such a way that for
each oi ∈ C and oj /∈ RD+tσ(C), Pr(oi, oj , D) approaches zero. Since the major
contribution in the bounds for C ∈ G is done by the cells in region RD+tσ(C),
we redefine the bounds for C ∈ PC, to reduce the number of pre-computations
and bounds computation time, as follows.

LB(C) = (
∑

C′∈{PC∩RD+tσ(C)}
LB(Pr(C,C′)) ∗ C(C′).

UB(C) = (
∑

C′∈{PC∩RD+tσ(C)}
UB(Pr(C,C′)) ∗ C(C′)+

Pr(l
√
d(�D + tσ

l
�+ 1), D) ∗ (N −

∑
C′∈{PC∩RD+tσ(C)}

C(C′)).

Number of Pre-computations: Since the bounds are pre-computed for the
cells in region RD+tσ(C), Pr(α,D) values are computed only for the neighbour-
ing layers within D + tσ distance of a cell. For

⌈
D+tσ
l

⌉
neighbouring layers, we

require 2�D+tσ
l � pre-computations. Two more pre-computations are required for

the cell C itself and the objects that lie greater than D + tσ distance of a cell.
Hence the total number of pre-computations required are only 2�D+tσ

l �+ 2.

4.3 Candidate Outlier Cells

Let Ccell is a list containing candidate outlier cells from PC, sorted in as-
cending order of UB(C). Let Ck ∈ Ccell is a cell with the minimum upper
bound containing the kth object. A C ∈ PC is a candidate outlier cell whenever∑

C′∈Ccell
C(C′) < k or LB(C) ≤ θ, where θ = UB(Ck) denotes the threshold.
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Cell Pruning and θ Updation: For a C ∈ PC, if LB(C) > θ, C cannot
contain any of the top-k outliers and can be pruned. On the other hand, if
LB(C) ≤ θ, C may contain the top-k outlier. C is added to Ccell, such that
Ccell remain sorted of its UB(C) attribute. Set θ = UB(Ck) and remove C′

from Ccell, such that LB(C′) > θ, as they cannot contain the top-k outliers.

Stopping Condition: The PC-list is scanned from top to bottom for candidate
outlier cells. During the scanning, if a C′ ∈ PC is found such that Pr(D−tσ,D)∗
CD−tσ(C′) > θ, neither C′ nor any cell after it in PC-list can contain outliers.
Hence the PC-list scanning can be stopped at this point.

Cell Length l: Due to the complexity of our distance function, it is not possible
to derive a single cell length l suitable for all the combinations ofD and variances.
Very small cell length increases the number of cells in the Grid exponentially
and the time required to construct the PC-list. A good starting point of the cell
length that we found through experiments is the standard deviation, i.e., l = σ.

Algorithm 2. The Top-k Distance-based Outliers

Input: GDB, D, l, k
Output: Top-k Distance-based Outliers
1: N ← |GDB|, θ ←∞;
2: Ccell ← φ, Cobj ← φ; (Candidate outlier cells and top-k outliers list respectively)
3: Create cell grid G depending upon dataset values and cell length l;
4: Map each o ∈ GDB to an appropriate cell C ∈ G;
5: Create PC-list PC, using non-empty cells of G;
6: Sort PC w.r.t. CD−tσ(C) column;

/*Searching candidate outlier cells*/
7: for each C in |PC| do
8: if CD−tσ(C) ∗ Pr(D − tσ,D) then Exit for loop. /*Stopping condition*/
9: Compute LB(C) and UB(C);
10: if LB(C) ≤ θ then
11: Add C to Ccell (keep Ccell sorted of UB(C) attribute);
12: if Ccell contains ≥ k objects then
13: Set θ = UB(Ck), such that Ck contain the kth object;
14: Remove all C from Ccell, such that LB(C) > θ;
15: end if
16: end if
17: end for

/*Calculating EN(o) of candidate top-k outliers*/
The computation of EN(o) is similar to that of the Naive approach. The only
difference is that in this algorithm we compute EN(o) for the candidate objects in
Ccell only.

4.4 Outlier Detection Algorithms

In this section, we present two algorithms to detect top-k distance-based out-
liers from uncertain datasets. The first algorithm computes accurate expected
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D-neighbours for all the un-pruned objects, however the second algorithm ap-
proximates the expected D-neighbours to reduce the algorithm computation
cost.

Top-k Algorithm: The algorithm 2 first maps dataset objects to appropriate
grid cells and creates the PC-list in lines 4 and 5 respectively. Since the PC-list
is sorted in the ascending order of its CD−tσ(C) column, it guarantees that cells
in the sparse regions of the grid G are at the top of the PC-list. Hence the can-
didate outlier cells are expected to be at the top of the list. We scan the PC-list
and add the candidate outlier cells in Ccell until the stopping condition on line 8
becomes true. The number of objects in CCell may be greater than k, hence we
calculate expected D-neighbours EN(o) of candidate objects to find the top-k
outliers and their ranking. The o is then added to the Cobj (set of candidate
outlier objects) along with its EN(o). The objects in Cobj are sorted in ascend-
ing order of EN(o) column. As the kth object’s EN(o) is found, threshold θ
is set (refer line 10 of Alg.1). During the calculation of EN(o), if for some o′,
EN(o′) becomes greater than θ, then o′ can not be among the top-k outliers and
is removed from further consideration.

Approximate Top-k Algorithm: In the top-k algorithm, the minimum num-
ber of distance function computations required for the evaluation of k EN(o)
is kN , however the candidate outlier objects which require the evaluation of
EN(o), may be greater that k. When the distance function is expensive to com-
pute (as in our case), computation of even k EN(o) is very expensive. According
to our distance function, the major contribution in the evaluation of EN(o) is
done by the nearer objects. Hence EN(o) for each un-pruned o can be approx-
imated with high accuracy by considering objects only within D + tσ distance
of o according to Lemma 1, rather than considering all the objects in dataset.
Rest of the algorithm is same as that of Alg.2.

Maximum Approximation Error: For any o ∈ GDB, maximum approxima-
tion error (εmax) happens if all the o

′ ∈ GDB\o are at a distance slightly greater
than D+ tσ from o. Hence εmax = (N − 1) ∗Pr(D+ tσ+ β,D), where β ∈ R is
a very small real value to make distance greater than D + tσ.

For example for t = 9, d = 2 andN = 105 objects, εmax ≈ 10−5. εmax depends
mainly on t. In practice t ≥ 6 gives sufficiently accurate EN(o) for d = 2 and 3.
For higher d values, we need to increase t value according to Lemma 1.

5 Experiments

We conducted extensive experiments on synthetic and real data to evaluate the
effectiveness and scalability of our proposed algorithms. All algorithms were
implemented in C++, GNU compiler. All experiments were performed on a
system with an Intel Core 2 Duo CPU E8400 3.00GHz CPU and 2GB main
memory running Ubuntu 12.04 OS. All programs run in main memory and no
I/O cost is considered.
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Fig. 3. Effectiveness of the PC-list based approach

We use two synthetic datasets and two real datasets for our experiments.
Synthetic datasets, unimodal Gaussian (UG) and trimodal Gaussian (TG) are
2-dimensional and are generated using BoxMuller method [16]. A 3-dimensional
unimodal Gaussian (UG3D) dataset is also generated for the evaluation of our
proposed approaches on 3-dimensional data. A shorthand notation
“DatasetName+DatasetSize′′ (e.g. UG5k to denote 5,000 tuples of unimodal
Gaussian dataset) is used in figures. As for real-world data, we use two datasets:
ADAPTE and SDSS. ADAPTE is obtained from CISL Research data archive
[17] and SDSS is obtained from Sloan Digital Sky Survey [18]. ADAPTE consists
of about 1,851 maximum and minimum temperature values collected from the
National Polytechnic Institute of Mexico and National Meteorological System.
SDSS dataset contains 10,136 Right Ascension (or ”RA”) and Declination (or
”Dec”) coordinates of stars and galaxies.

All the datasets are normalized to have a domain of [0,1000] on every di-
mension. For each point z in a dataset, we create an uncertain object o, whose
uncertainty is given by Gaussian distribution with mean z and standard devi-
ation σ in all the dimensions. Unless specified, following parameter values are
used: D = 100, σ = 10, l = 10 and k = 0.1% of the respective dataset size.
For approximate top-k algorithm, we considered objects only within D+6σ dis-
tance of each un-pruned object o. Pre-computation time is not included in the
measurements. We first conduct experiments to evaluate the efficiency of our
proposed algorithms presented in Sec.4.4. Fig. 3a compares the execution times
of Naive and proposed algorithms on UG dataset. Our proposed algorithms are
several times faster than its Naive counterpart due to their strong pruning ca-
pability as can be observed from Fig.3b. Stopping condition discussed in Sec.4.3
helps identify candidate outlier cells very quickly. Fig.3c shows the percentage of
cells considered in the PC-list to identify candidate outlier cells. The percentage
is comparatively higher for trimodal Gaussian dataset because the dataset is
relatively sparse and hence results in larger number of candidate outlier cells.
Moreover the approximate top-k algorithm is thousands of times faster than the
ordinary top-k algorithm, due to the reason discussed in Sec.4.4. From theoret-
ical analysis in Sec. 4.4 and experiments we found that the approximate top-k
algorithm gives an accuracy of up to several decimal digits in the evaluation
of EN(o) and hence the outliers obtained from both the algorithms are same.
Therefore in the rest of this section, we will evaluate only approximate top-k
algorithm.
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Fig. 4. Varying parameters l, σ, D and k for 2D datasets

Graphs in Fig.4 show the effect of varying different parameters on the execu-
tion times. It is obvious from the graphs in Figs. 4a, 4b and 4c that smaller cell
lengths require lower execution times. However very small cell length increases
the number of cells exponentially and therefore the execution time of the al-
gorithm. Therefore we recommend the use of cell length equal to the standard
deviation as discussed in Sec. 4.3. In Fig. 4c, k is very small due to the small size
of ADAPTE dataset and therefore pruning time dominates the algorithm exe-
cution time. Consequently as the number of cells decreases due to the increase
in cell length, algorithm execution time decreases. Next we perform experiments
by varying the parameter σ. As σ increases, the uncertainty of the object also in-
creases. This increase in uncertainty results in smaller Pr(oi, oj , D) values even if
oi and oj are located nearby. Hence the number of distance function evaluations
required increases for un-pruned objects, which results in higher execution times
as can be observed from Figs. 4d, 4e and 4f. Figs. 4g, 4h and 4i show the effect
of varying parameter D. For each un-pruned o from the PC-list-based pruning,
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increase in D results in an increase in the D-neighbours which need to be consid-
ered for the approximation of EN(o). Therefore it increases the execution time
of the overall algorithm for larger values of D. From Figs. 4j, 4k and 4l, increase
in k results in an increase in execution time of algorithm, which is quite obvious
behaviour of our algorithm. Figure 5 shows similar effects of varying different
parameters on three dimensional dataset.
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Fig. 5. Varying parameters l, σ, D and k for 3D dataset

6 Conclusion

In this work, the top-k distance-based outlier detection approach on uncertain
datasets of the Gaussian distribution based on the PC-list is proposed. PC-list
helps identify candidate outlier objects very quickly without considering all the
objects in dataset. Moreover an approximate top-k outlier detection approach
is presented to further reduce the algorithm computation cost. An extensive
empirical study on real and synthetic datasets demonstrate the effectiveness and
scalability of our proposed approaches.
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