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Abstract. This paper outlines a method for the detection and tracking
of people in depth images, acquired with a low-resolution Time-of-Flight
(ToF) camera. This depth sensor is placed perpendicular to the ground
in order to provide distance information from a top-view position.

With usage of intrinsic and extrinsic camera parameters a ground
plane is estimated and compared to the measured distances of the ToF
sensor in every pixel. Differences to the expected ground plane define
foreground information, which is used as regions of interest (ROIs). These
regions are analyzed to distinguish persons from other objects by using a
matched filter on the height-segmented depth measurements of each ROI.
The proposed method separates crowds into individuals and facilitates a
multi-object tracking system based on a Kalman filter.

Experiments have proven the applicability of the system for differ-
ent crowding scenarios but also revealed inaccuracies of the detection of
people in special cases.

Keywords: people detection, top-view, people tracking, time-of-flight,
matched filter.

1 Introduction

Surveillance camera systems in public areas become more and more important
in order to increase people safety and security.

Particularly, observation of dense crowds got in the focus of research. Every
year, crowd disaster occur many times in different areas of the world [10]. Dis-
asters as the Love Parade catastrophe in Duisburg, Germany, 2010, where 21
people died and more than 500 got injured, show the importance of surveillance
systems that help to indicate and avoid potentially dangerous situations. Crowd
panics often arise in areas where many people accumulate and form a dense
crowd [16]. These areas must be analyzed for risks.

Expert reports regarding the Love Parade disaster outline the importance of
crowd monitoring systems [10,16] in order to gain knowledge about the people
and analyze the crowding situation. Therefore information about the number of
people in an area, flow rates or densities of people within a crowd are useful.
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The proposed system in this paper describes a method for the detection of
individuals within a dense crowd, which enables the analysis of every person’s
movement in contrast to the movement within the entire group. With knowledge
about individuals, the crowding situation can be characterized.

A ToF camera, which provides depth and gray-scale images of a scene, is
mounted perpendicular to the ground for the detection of people. This enables
an easier separation and tracking of people, because people do not overlap much
in the dimension normal to the ground [9].

Instead of calculating a plan-view projection of the scene from an eye-level
or high-angle positioned camera, the sensor is applied directly to the so called
“top-view” position. This saves computational costs and reduces loss of depth
information for occluded persons from different camera angles.

The used ToF camera is specified in [12]. In this paper, image processing is
restricted to the detection and tracking of human persons merely using depth
images. Comparable systems also use Kalman filters for people tracking, but
the detection of people in plan-view images varies. Idealized shapes for people
detection [17] are as well used as Gaussian blobs [2,3] and adaptive templates
with a support vector machine to identify people in depth images [8].

The proposed system in this paper is based on usage of a scaled matched filter
in combination with height-segmented foreground information. The advantage of
this method is the ability to distinguish individual persons from a dense crowd,
in contrast to systems where people need to enter the scene separately [2,17].

Thus method enables a multi-object tracking of persons and their differenti-
ated movement analysis in contrast to the behavior of the crowd.

This paper is organized as follows. Section 2 outlines the basic Time-of-Flight
principle. In Section 3 the algorithm is described, partitioned in preprocessing,
people detection, and people tracking. Section 4 is used to show and discuss
experimental results. Finally, Section 5 draws conclusions.

2 Time-of-Flight Camera Principle

Camera-based Time-of-Flight sensors are relatively new camera systems, which
provide depth images of a scene at a high frame-rate. Distance information are
captured and provided as optical signals, where each pixel on the CMOS im-
ager describes the distance from the camera to the corresponding point in the
real world.

As it is outlined in [14], ToF cameras are based on the principle of pulse
modulation. Distances are calculated from a light reflecting object to the sensor
by measuring the phase delay between the incoming infrared light and a reference
signal directly in each pixel. Therefore, most cameras are equipped with active
illumination units. The phase of an incoming signal is calculated by

Φ = arctan

(
A1 −A3

A2 −A4

)
. (1)
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Here, A1, A2, A3, A4 are four samples of the signal, each shifted by 90◦. The
distance d is proportional to phase Φ and calculated by using signal frequency
fmod and speed of light c by

d =
cΦ

4πfmod
. (2)

By measuring d in every pixel of the sensor, a depth signal is generated.
This measurement principle is of importance due to the fact that it defines the

maximum distance to be measured without phase ambiguity [7]. This constraint
in the maximum distance is depending on modulation frequency fmod and cal-
culated by dmax = c

2fmod
. ToF cameras assume a maximum Φ = 2π that limits

every modulation frequency to a dmax. For real distances in the scene farther
away than dmax, this results in a wrong measured distance d. For the proposed
system ,the camera was placed below dmax in order to avoid phase ambiguity.

Due to the method of illuminating the entire scene with modulated infrared
light and measuring the phase delay in every pixel of the PMD sensor individ-
ually, rather than using a single scanning laser beam to estimate distances, a
much higher frame-rate of gathering depth maps can be accomplished [13]. In
contrast to common gray-scale cameras, camera-based ToF sensors measure not
only the distances from the camera to an object in the scene, but can also provide
gray-scale values of every pixel in an intensity image. In the following sections,

(a) Depth image (b) Intensity image

Fig. 1. Images provided by ToF camera

f(n) = f(nt, nx, ny) (3)

with n = (nt, nx, ny)
′ denotes a distance value in pixel (nx, ny) at a particular

time nt. f(n) can be interpreted as one depth image from a sequence of depth
images, defined by measurements of the ToF camera for n ∈ D with
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D =
{
n ∈ Z

3|0 ≤ n ≤ N
}
, (4)

where N = (Nt, Nx, Ny)
′. N describes the number of points in each dimension.

An arbitrarily shaped subset R ⊆ I of an image, with

I =

{(
mx

my

)
= m ∈ Z

2

∣∣∣∣ 0 ≤ mx ≤ Nx, 0 ≤ my ≤ Ny

}
(5)

is denoted as region of interest (ROI) within I. In this paper, the signal f(n)
describes an Nx ×Ny image containing depth information in Nt frames.

Figure 1 shows the difference between depth and intensity images. Depth
images provide range information from camera to real world. Bright pixel in-
dicate reflecting objects located nearer to the camera than dark pixel. Inten-
sity images correspond to f(n) but provide gray-scale information of the scene
in each pixel. The corresponding intensity image is of the same size as the
depth image.

3 Algorithm

The people detection algorithm is divided into several components regarding
preprocessing, people detection and assignment of measurements to tracks as
described in the following subsections.

3.1 Preprocessing

Preprocessing of depth data is necessary in order to reduce noise from consider-
ably noisy pixel, estimate regions of interest and segment measured depths into
height segments.

Depth measurement errors arise from different sources [4] and affect the poste-
rior height segmentation process. The proposed method uses a straightforward
spatial neighborhood filter, sufficient for the system to decrease depth mea-
surement errors. A static ground plane g(nx, ny) is defined as described in [5],
based on extrinsic camera parameters. Hence, expected distances from camera
to ground are specified when no obstacles reflect the camera beam.

The next preprocessing step reduces measured depths f(n) to an image F (n)
containing only foreground information, by

F (nt, nx, ny) = f(nt, nx, ny)− g(nx, ny), (6)

where nt denotes the ntth image. In other words, measured depths from an
empty room lead to an F (n) = 0.

When objects are present, F (n) contains depth values that define the fore-
ground. If one object exists, one associated local region is estimated that defines
the ROI of the depth image. In cases of more objects present in F (n), the num-
ber of ROIs can alter between one and the number of objects. In cases where



People Detection and Tracking from a Top-View Position 217

several objects are closely spaced and an erosion process fails to differ these, one
ROI can contain more than one object.

The depths values of ROIs Ri of one or more (if overlapping or nearby) objects
are sliced into height segments, where Ri ⊆ I and Ri ∩ Rj = ∅, for i �= j.
Individual segmentation of depths in each region Ri reassigns the measured
depth values to segmentation levels Si,l, where l denotes the level number and i
the index of the belonging region. By using

Si,step =
F (nt,mmax)− F (nt,mmin)

c
, (7)

Si,l =

⌊
d− F (nt,mmin)

Si,step

⌋
+ 1, (8)

F (nt,mmax) = max(F (nt,m))∀m ∈ Ri, (9)
F (nt,mmin) = min(F (nt,m))∀m ∈ Ri, (10)

increment Si,step and segmentation levels Si,l are determined. d denotes the
measured depth of the processed pixel, F (nt,mmax) and F (nt,mmin) denote
the extremes. The proposed system clusters depths of every region in a static
number c of steps. Depth data is segemented to an image F̂ (n) with

(a) 3D-view of Mexican hat filter (b) 3D-view of segmented depth image
̂F (n)

Fig. 2. Matched filter and segmented depth image

F̂ (nt, nx, ny) =

{
Si,l , if R ∈ Ri

0 , else (11)

for every ntth image.
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Fig. 3. Object on estimated ground plane

Figure 3 shows the result of the preprocessing steps. Within the depth image,
the static ground plane is projected to the image. Green marked pixel indicate ar-
eas where the expected distance matches the measured distance from the TOF
camera. This concludes to no objects being present at these particular pixel.
As the Figure shows, areas where the expected does not match the measured
distance, an object occupies the camera beam. Associated regions are here iden-
tified as non-ground plane areas and marked as regions of interest Ri and used
for detection of people. Each Ri is shaped according to the object occupying the
camera beam. Image areas, marked as ground plane, therefore cannot contain
persons and are disregarded for the matched filter-based people detection.

3.2 Matched Filter-Based People Detection

The proposed algorithm uses a scaled Mexican hat wavelet Ψ(r), which is equal
to the second derivative of a Gaussian [11]. It is used as a matched filter to
distinguish people from different objects in F̂ (n). The normalized Mexican hat
wavelet, given by

Ψ(r) =
2√

3σπ1/4

(
1− r2

σ2

)
exp

(
− r2

2σ2

)
(12)

with r = (x, y)′. Ψ(r) is scaled according to the expected size of silhouettes of
persons, that depends on the positioned height of the camera above ground level.
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If the camera is positioned lower above ground level, people appear larger within
the image. A high positioned camera results in a larger field of view that results
in people appearing smaller.

The Mexican hat wavelet is used as impulse response Ψ(r). Due to its re-
semblance with upright standing people, it is used here as a generalized depth
silhouette for people. This silhouette approaches the depth information of up-
right standing persons in a way where the orientation of the person in the field
of view is of no importance.

(a) Gray-scale image (b) Segmented depth image (c) Correlation Matrix

(d) Gray-scale image (e) Segmented depth image (f) Correlation Matrix

Fig. 4. Correlation procedure visualized by gray-scale image, segmented depth image
̂F (n) and resulting correlation matrix C with a marker defining the position z of de-
tected persons for different crowding scenarios

Figure 2(a) shows the 3D-view of a Mexican hat filter used as a generalized
depth silhouette for people detection, 2(b) the segemented depth image cal-
culated from Figure 1(a). In a preprocessed image F̂ (n), a detected ROI Ri,
containing the foreground object, is segmented in c ascending depth levels. The
ground level equals S1,0.

The 2D cross correlation, with respect to variables nx and ny at time nt, is
calculated by C(nt, nx, ny) = F̂ (nt, nx, ny) ∗ Ψ(r) of preprocessed depth images
F̂ (n) with matched filter Ψ(r). In image processing,
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C(nt, nx, ny) =
1

NxNy

Nx−1∑
kx=0

Ny−1∑
ky=0

F̂ (nt, kx, ky)Ψ(nx + kx, ny + ky) (13)

calculates the correlation signal C [6].
High values in C denote similarity with matched filter Ψ(r) in a ROI Ri of

image F̂ (n), that may indicate a person. In other words, positions of peaks in C
define the location in F̂ (n) where the matched filter is alike to the silhouette of
a human person. Also objects similar Ψ(r) result in high values in C.

The correlation results are independent from the absolute height of a person
due to the prior height segmentation.

Taking into consideration that a region Ri contains more than one person,
several peaks in regions are feasible. The combination of a peak finding algorithm
using the extended h-maxima transform and a thresholding procedure for a
further analyzis of peaks is then used to distinguish people in region Ri from
different objects. Extended h-maxima transform suppresses regional maxima,
whose peak is less than a given threshold [15].

Remaining peaks after the thresholding process indicate an upright standing
person. Their location is used for the Kalman-filter based tracking procedure.
Figure 4 outlines the people detection algorithm for different crowding scenarios.
Images 4(a)-4(c) show the detection process for a moderate crowding scene where
three persons are present. Images 4(d)-4(f) contain five persons. Depth image
4(b) is partitioned into two regions Ri, one in the upper part containing two
persons, the other one in the lower part of the image.

These regions are segmented in height into segmentation levels to normalize
the measured depths and achieve independence from the measured height of a
person. This is needed for a reliable detection of children or small people.

3.3 Track Assignment

The assignment of measurements z(nt) to tracks is based on the people detection
algorithm that provides zi = [xi, yi, di]

′. The coordinates (xi, yi) of measured
depth di describe object i. Each image F̂ (n) contains i = 0, . . . , O detected
objects identified as a person, where O defines the number of detections in
frame nt.

A new track is initialized if zi cannot be assigned to an existing track. The
state of a track is defined as state vector xi(nt) = [xi, yi, ẋi, ẏi, d]

′, where (ẋi, ẏi)
is the velocity and used to improve the definition of the state of a person.

Time update and measurement update are defined analogously to [1] as

x(nt + 1) = Ax(nt) + v(nt) (14)
z̄(nt + 1) = H(nt + 1)x(nt + 1) +w(nt + 1), (15)

where z̄ is the measurement prediction error and v(nt) is a sequence of zero-mean
white Gaussian process noise with covariance E[v(nt)v(nt)

′] = Q(nt). Sequence
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w(nt) is also of zero-mean white Gaussian measurement noise with covariance
E[w(nt)w(nt)

′] = R(nt). System matrix A with assumption of constant velocity
is used as

A =

⎡
⎢⎢⎣
1 0 Δnt 0 0
0 1 0 Δnt 0
0 0 1 0 0
0 0 0 0 0,

⎤
⎥⎥⎦ (16)

where Δnt denotes the time difference between two frames.
Assignment of measurements to tracks is performed by usage of a gating

process, using the well-known Mahalanobis distance. Tracks taken into account
by the previous step selected. This gaiting process is followed by an association
process that finally assigns measurements to known or new tracks by applying
a nearest-neighbor procedure.

4 System Setup and Experiments

Our test environment is a hallway equipped with a ToF camera, positioned in a
hallway normal to entrance of a room at a height of 2.8 meters

The used ToF camera provides a resolution of 200×200 pixel with a frame-rate
up to 40 fps, a field of view of 40◦×40◦ and a standard measurement range up
to 7 meter. Figure 5 shows images of detected and tracked persons. Red crosses
define the positions of measurements from each frame, combined to a tracking
path showing the movement of each person. The connectivity of measured posi-
tions identifies the successful tracking of a person. Numbers beside the tracking
path define the tracking identification number that increases by one for each
new track.

1

(a) Tracking of one person

1

2

3

(b) Tracking of multiple
persons

2

3

4
6

(c) Tracking of a crowd

Fig. 5. Tracking of people in different crowding scenarios

The proposed algorithm is fully implemented in MATLAB and has been tested
for different crowding scenarios. The sequences used for experiments are up to
thousand frames in length and consist of up to eight persons simultaneously.
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Experiments for different crowding scenarios on real data have demonstrated
the applicability of the system as shown in Figure 5.

Problems with people detection occur in cases where a person is not fully
present in the camera’s field of view, but at the edge. This is called “body in
the pyramid effect” [17] that describes the body shape which comes closest to
the shape from top-view position. In this case, a person is not fully visible but
partially by crossing the camera’s beam. A person not fully visible, but detected
as a person is shown in Figure 4 in track 3.

If a person walks at the edge of the sensor’s beam and alters between providing
sufficient and insufficient shape and height information, this person may not be
detected certainly while residing in the field of view. As a consequence, the person
can be considered a new track multiple times. As long as a person provides
sufficient shape and height information it maintains its logical identity in the
scene.

As a result of a generalized depth silhouette, experiments have shown that
the orientation of a captured person within the image is of no importance. This
means, walking direction and angle to the camera do not affect the detection
result of a person. Based on the usage of one matched filter, the detection algo-
rithm is adapted to upright standing or walking persons. Currently, the system’s
reaction for people in wheelchairs, wearing hats or walking ducked has not been
tested.

Experiments were conducted offline and show the applicability of the system
to detect and track persons from the described top-view position, even in cases
with many people forming a dense crowd.

5 Conclusions

This paper has presented a novel approach for the detection and tracking of peo-
ple from a top-view position using a ToF depth sensor. The presented system con-
tains procedures to determine foreground information based on measured depths,
estimated ground-plane and the detection and tracking of multiple-objects rec-
ognized as people. A matched filter is applied to the segmented foreground in-
formation of measured depth images, scaled as a generalized depth model for
the detection of persons. Detected persons are tracked by using a Kalman-filter.

Experiments have shown the applicability of the system for different crowding
scenarios of people in real sequences. It has become obvious that the proposed
system works reliable in all tested scenarios, which comprise the detection and
tracking of one person up to a dense crowd. The system is erroneous when
obstacles, e.g. a held-up hand, occupy the camera beam or when people walk at
the edge of the sensor’s field of view.

We believe that such erroneous people detections can be improved by the
fusion with a classifier trained on gray-scale images from this top-view position.
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