
Chapter 16
Human Movement Analysis with Inertial
Sensors

Stefan Lambrecht and Antonio J. del-Ama

Abstract Present-day systems for human movement analysis are not portable,
have a limited capture volume and require a trained technician to analyze the data.
To extend the use and benefits to non-laboratory settings the acquisition should be
robust, reliable and easy to perform. Ideally, data collection and analysis would be
automated to the point where no trained technicians are required. Over the last
decade several inertial sensor approaches have been put forward that address most
of the aforementioned limitations. Advancements in micro-electro-mechanical
sensors (MEMS) and orientation estimation algorithms are boosting the use of
inertial sensors in motion capture applications. These sensors currently are the
most promising opportunity for non-restricted human motion analysis. In this
chapter we will describe the types of sensors used, followed by an overview of
their use in the biomechanics community (Sect. 16.1); provide the necessary
background of basic mathematics for those that want to refresh the basics of
kinematics (case studies and appendix). The limitations of traditional systems can
be dealt with due to the redundant information available to obtain orientation
estimates. There are several different methods to derive orientation from sensor
information; we will highlight the main groups of algorithms and the various ways
in which they use the available data (Sect. 16.3). The chapter furthermore contains
two hands-on examples to derive orientation (case study 1) and extract joint angles
(case study 2, Sect. 16.4).).
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16.1 Introduction

Human movement analysis can be defined as the interdisciplinary field that
describes, analyzes, and assesses human movement. Movement analysis has
become a valuable tool in clinical practice, e.g. instrumental gait analysis for
children with cerebral palsy (see also Chap. 2). The data obtained from measuring
and analyzing limb movement enables clinicians to assess the impaired function
and prescribe surgical or rehabilitation interventions. Despite the recognized
potential of human movement analysis for diagnosis of neurological movement
disorders, rehabilitation from trauma, and performance enhancement its use is
restricted to limited specialized medical or rehabilitation centers. The lack of
existing applications is mainly due to limitations associated with current motion
capture equipment.

The currently available motion capture systems can be divided into vision based
and sensor based systems (Zhou and Hu 2007). The vision based systems can be
further divided into marker based systems and markerless systems. The former are
considered as the gold standard, providing with the most accurate measurements.
However, these systems present additional limitations on top of the high financial
investment required. Present-day marker based systems are not portable, have a
limited capture volume and require a trained technician to analyze the data. The
latter is due to a need for a pre-calibration procedure to convert the marker data to
a model representing the subject.

Markerless vision based systems, such as the Kinect are not as costly but still
suffer from occlusion and illumination problems and a limited capture volume.
Furthermore, the repeatability of their measurements is often limited. Traditional
sensor based systems (e.g. acoustic or magnetic motion capture systems) also have
a restricted capture volume and are sensitive to environmental conditions such as
illumination and air flow (depending on the type of sensor used).

To extend the use and benefits of human motion analysis to non-laboratory
settings the acquisition should be robust, reliable and easy to perform. Cluttered
scenes, changing environmental conditions and non-limited capture volumes are
common outside of the laboratory. Ideally, data collection and analysis would be
automated to the point where no trained technicians are required. Over the last
decade several inertial sensor approaches have been put forward that address most
of the aforementioned limitations. Advancements in micro-electro-mechanical
sensors (MEMS) and orientation estimation algorithms are boosting the use of
inertial sensors in motion capture applications.

Use of magnetic and inertial measurement units (MIMU) is growing in
ambulatory human movement analysis. A MIMU consists of a variety of sensors;
generally these are three accelerometers, three gyroscopes and three magnetom-
eters. Data fusion of these sensors provides orientation of the MIMU and therefore
can provide orientation of the segments to which they are attached. The popularity
of MIMU stems from their low cost, light weight and sourceless orientation.
MIMU obtain a reference orientation by using the earth gravitational force and the
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geomagnetic north. Therefore, MIMU do not need a fixed spatial reference in the
lab (usually defined at a forceplate center/corner). MIMU are starting to demon-
strate their potential in motion analysis applications in robotics, rehabilitation and
clinical settings. In addition to being less obtrusive and relatively inexpensive, the
main advantage of MIMU is that they are not restricted to a defined capture
volume and relatively easy to use.

The objective of this chapter is to provide an outline on the potential of MIMU
in human movement analysis (see Fig. 16.1). To accomplish this objective, the
chapter is organized in four main sections. Section 16.1 provides a short overview
of inertial sensing approaches used to obtain orientation. This overview is by no
means a complete review of the literature on orientation estimation using inertial
sensors, but rather an overview of sensor alternatives that preceded the current
popular approach. In Sect. 16.2 you can refresh your knowledge on 3D kinematics
and mathematics. The reader is considered to have prior knowledge in this area.
References are provided for those in search of a more complete introduction to 3D
kinematics. In Sect. 16.3 an introduction to orientation estimation algorithms is
provided, including a first case study. The case study addresses extracting orien-
tation from inertial and magnetic sensor data. Section 16.4 is dedicated to a case
study on human movement analysis with MIMU. A theoretical basis for human
movement analysis with MIMU is provided, followed by a practical example:
estimation of 3D knee joint angles during overground walking. This last case study

Fig. 16.1 Flow diagram of human motion analysis with inertial sensors. When the patient enters
the lab he/she is equipped with inertial sensors (one on each body segment adjacent to a joint
subjected to investigation). A two-phased calibration procedure (static and dynamic) precedes the
actual data collection and analysis. The last step is to interpret the data
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contains all the information provided earlier in this chapter and can be used as a
guide to perform human movement analysis outside of a specialized laboratory.

16.2 Inertial Sensing Approaches

Currently three different sensors are often combined to obtain more accurate and
robust orientation estimates. The strengths of accelerometers, gyroscopes, and
magnetometers are combined in an attempt to address their individual weaknesses.
In this section the type of sensors are described, followed by an overview of their
use in the biomechanics community. A case study estimating orientation from
accelerometer and magnetometer data concludes this section.

16.2.1 Type of Sensors

Accelerometers measure linear accelerations, originating either from the earth
gravitational field or inertial movement. Time mathematical integration of the
acceleration signal yields the momentary velocity of the point to which the device
is attached, and a second integration yields a spatial displacement of that point,
potentially providing an alternative measurement to that generated by a more
expensive position measurement system. Under static and quasi-static conditions
the accelerometer can be used as an inclinometer. However, under more dynamic
conditions it becomes very hard to impossible to accurately decompose the signal
into inertial and gravitational components.

Gyroscopes measure angular velocity. Integrating the angular velocity provides
us with the angular change over time. A tri-axial gyroscope setup can, given initial
conditions, thus track changes in orientation. However, gyroscopes are prone to
unbiased drift after integration, limiting their use in time. This error occurs upon
integration of the gyroscope signal with the inherent small temperature related
spikes. Over time, the integration of these spikes causes the gyroscope signal to
drift further and further away from the actual tilt angle. This drift error is strongly
affected by temperature, and much less by velocity or acceleration; gyroscopes can
thus be applied in highly dynamic conditions, but only for short periods of time.

Magnetometers measure the geomagnetic field, and as such indicate the earth
north direction in the absence of other ferromagnetic sources. Magnetometers are
often combined with accelerometers, where the former provide the heading of the
coordinate system.

A summary in layman terms is provided in text boxes before each technical
section in an attempt to improve readability for those lacking a strong
mathematical background.
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16.2.2 Historical Overview

Inertial technology was introduced in biomechanics for impact analysis in the
60–70s. The first studies were done with uni-axial accelerometers, but quickly
configurations with three, six, and nine accelerometers were considered (Morris
1973). The initial results indicated that there were severe restrictions in time
duration. Giansanti et al. more recently investigated the feasibility to reconstruct
position and orientation (pose) data based on configurations containing respec-
tively six and nine accelerometers. They concluded that neither of these config-
urations was suitable for body segment pose estimation (Giansanti et al. 2003).

In the following decade inertial sensors made their way into motion analysis, in
particular in the clinical assessment of gait. Accelerometers were still the preferred
sensor type. Willemsen et al. (1991) performed an error and sensitivity analysis to
examine the applicability of accelerometers to gait analysis. They concluded that
the model assumptions and the limitations due to sensor to body attachment were
the main sources of error. The model used was a planar (sagittal plane) lower
extremity model consisting of rigid links coupled by perfect mechanical joints (i.e.
hinge joint representing the knee). Willemsen et al. (1990) used this two-dimen-
sional model to avoid integrating and thus avoid the troublesome integration drift.
They placed four uni-axial accelerometers organized in two pairs on each segment.
This method was deemed acceptable for slow movements but considerable errors
were reported for higher frequencies (faster movements). Still without additional
sensors, Luinge and Veltink applied a Kalman filter (more information on Kalman
filters is provided later) to the accelerometer data to improve the orientation
estimate (Luinge and Veltink 2004). Luinge and Veltink estimated the contribution
to acceleration due to gravity and due to inertial acceleration and used these
estimates in their subsequent calculations to derive orientation. Previously low
pass filters (only letting that part of the signal through that has low frequency, in
this case gravity) were used to eliminate as much as possible the unwanted inertial
acceleration signal from the accelerometer data. The filter designed by Luinge and
Veltink outperformed these low-pass filters, especially under more dynamic con-
ditions, and might be one of the bases of the popularity of Kalman filters in current
orientation estimation algorithms.

By the start of this century, both the cost and size of micro-electro-mechanical
sensors (MEMS) had dropped severely. This led to an influx of their application in
biomechanics and research in general, and allowed for novel methods in orien-
tation estimation. In particular, it allowed researchers to combine various sensors
and thus exploit their individual strengths. Initially accelerometers and gyroscopes
were combined (Williamson and Andrews 2001), and later magnetometers were
added (Bachmann 2004). Currently the most popular fusion method is based on a
Kalman Filter where the information from all three sensors is taken into account.
Accelerometers and magnetometers combined act as an electronic 3D compass.
This information can be used to provide the initial condition and correct the drift
error present in the gyroscope estimation. The gyroscopes in turn are used to
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smooth the previous estimate, which is especially valuable under dynamic con-
ditions. More information on fusion algorithms is provided in Sect. 16.3. Despite
the improvements realized by sensor fusion, there is still room and need for
improvement. Additional sensors [GPS, Kinect, magnetic sources and sensors] and
anatomical constraints (Luinge et al. 2007) are some of the approaches that have
been put forward as potential solutions. Most efforts however are directed to
improve the fusion and filtering algorithms.

16.2.3 Case Study: Electronic Compass by Fusion
of Accelerometer and Magnetometer Data

Kinematic technology allows measuring spatial segment movement. The type and
format of data obtained depends on both the movement under investigation as well
as on the technology used to record this movement. The type of sensors used and
the way in which the information from these sensors is exploited determines the
accuracy, reliability, and potential field of application.

In the absence of motion it is assumed that the only acceleration measured by
the accelerometers is gravity. Accelerometer data can thus be used to obtain a
reference (~Y) of the global vertical axis, the gravity vector (Kemp et al. 1998). In
the absence of ferromagnetic perturbations we can use a similar construct to obtain
a horizontal vector based on the magnetometer data (~H). Since both gravity and the
geomagnetic field are earth bound, it should be clear that we are obtaining sensor
orientation with respect to the global or earth reference frame. Data from the
accelerometers and magnetometers has to be normalized in order to obtain unit

Prior to start to work with the MIMU, an introduction to human movement
analysis related algebra is given in the appendix. Readers that are already
familiarized with this knowledge can go to the first practical example at the
end of this section. For those in need for more basic or in depth information,
we refer to the following publications (Winter 2004; Vaughan et al. 1999).

This case study exists in determining three unit vectors (a vector is a repre-
sentation of direction and magnitude of the quantity represented by its data
(e.g. Gravity, voltage…); a unit vector is a vector that has a magnitude of
1, and can be obtained by normalizing or taking out the effect of magnitude by
dividing a vector by its absolute value) that are perpendicular to each other
(for three vectors A, B, C: A to B, A to C, and B to C). These three unit vectors
together form a coordinate system from which we can extract orientation. We
will make use of sensor data to provide us with two of the three desired
vectors, and use a mathematical trick to obtain the third (cross product).
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vectors. Taking the cross product of the unit vectors ~H and ~Y gives us a third unit

vector (~Z), normal to both ~H and Y
!

. Consecutive cross products ensure that the
obtained system is orthogonal. We can thus obtain ~X by taking the cross product of
~Z and ~Y . The obtained vectors can be organized in matrix format to obtain the
rotation matrix (see appendix for more information on matrix and vectors). From
this matrix we can then extract the Euler angles using the X–Y0–Z00 rotation
sequence (see appendix: How to extract rotation angles using Euler convention). A
pseudo-code version and numerical example are provided to further clarify this
process. A pseudo-code is an easy way to give a steps sequence to achieve a given
goal. The name pseudo-code comes from computer programming science, where
‘‘pseudo’’ is given since the code is not written in any computer language but in a
sequence of steps.

Solving this for a numerical example gives us:

Get raw data
Sensor data of the individual sensors the TechMCS (Technaid, S.L.) consists of:
accelerometer data is displayed in m/s2, gyroscope data in rad/s, magnetometer
data in uT, and temperature in degrees Celsius.

AcceX AcceY AcceZ Temp
9.66E ? 00 1.67E ? 00 3.48E – 01 3.40E ? 01
GyroX GyroY GyroZ
-1.10E - 02 6.73E - 03 1.55E - 03
MagnX MagnY MagnZ
-3.18E ? 01 -7.91E ? 00 -1.83E ? 01

Get unit vectors
~Y ¼ ½9:85E� 01 1:70E� 01 3:55E� 02�

~H ¼ ½�8:47E� 01 �2:10E� 01 �4:88E� 01�

Get sensor orientation

X0
!
¼ crossð~Y ; ~HÞ ¼ ½�7:57E� 02 4:50E� 01 �6:28E� 02�

~X ¼ norm X0
!� �
¼ ½�1:64E� 01 9:77E� 01 �1:36E� 01�

~Z ¼ cross ~X;~Y
� �

¼ ½5:79E� 02 �1:28E� 01 �9:90E� 01�

The obtained vectors can be organized in matrix format; from this rotation
matrix we can then extract the Euler angles (see Sect. 16.2).

Get rotation matrix
GRs ¼ GXs

GYs
GZs½ �3�3

GRs ¼
X � x Y � x Z � x
X � y Y � y Z � y
X � z Y � z Z � z

¼
�1:64E� 01 9:85E� 01 5:79E� 02
9:77E� 01 1:70E� 01 �1:28E� 01
�1:36E� 01 3:55E� 02 �9:90E� 01
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Get Euler angles
h1 ¼ 177:947�

h2 ¼ �7:830�

h3 ¼ 99:538�

As mentioned earlier, the method explained above is only valid in static or
quasi-static situations. In motion trials, such as gait analysis, we can no longer
assume that the acceleration due to movement is insignificantly small compared to
gravity. Therefore, the accelerometer can no longer be used as a standalone
inclinometer (providing with an attitude reference) and a more elaborate method
should be used to obtain orientation with respect to the global reference system.

16.3 Orientation Estimation Algorithms

If, as is the case with the MIMU used in our case studies (Technaid 2013), sensor
production is not fully automatic then axis misalignment and cross axis sensitivity
have to be accounted for, on top of the sensor noise. One of the types of noise that
is to be expected is drift error in the gyroscope signal. This error occurs upon
integration of the gyroscope signal with the inherent small temperature related
spikes. Over time the integration of these spikes causes the gyroscope signal to
drift further and further away from the actual tilt angle.

Sensor fusion can be defined as ‘‘the conjoint use of various sensors to improve
the accuracy of the measurements under situations where one or more sensors of
the network are not behaving properly’’ (Olivares et al. 2011).

The listed difficulties can be dealt with due to the redundant information
available to obtain orientation estimates. Orientation can either be obtained by
integrating the gyroscope data or by combining the accelerometer and magne-
tometer data into an electronic compass.

The deterministic approach is based on vector matching. To derive orientation
three independent parameters are needed. Two, non-parallel, vector measurements
are sufficient to generate these three parameters. This approach has been demon-
strated earlier when we derived orientation from magnetometer (local magnetic
field vector) and accelerometer (gravity vector) data. The example given closely

There are several different methods to derive orientation from sensor
information; in the following we briefly highlight the main groups of algo-
rithms and the various ways in which they use the available data. A survey of
all published methods would be too technical and lengthy to strive for in this
section. We will therefore highlight the two main approaches and briefly
explain (one of) the most popular solutions within each approach.
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corresponds to the TRIAD (tri-axial attitude determination) method. Other least-
squares approaches are the QUEST (Quaternion estimation) methods, factorized
quaternion methods and the q-method (Cheng and Shuster 2005; Shuster 2006).
All aforementioned methods are single-frame methods, i.e. they rely on the data
from the current frame to derive orientation in that same time frame. The TRIAD
method has several limitations: it only allows 2 input vectors and is sensitive to the
order in which they are presented; using only data from one time frame it is more
sensitive to random error.

Sequential approaches, the most well-known being the Kalman filters, are able
to attain better results by taking advantage of more data and thus reducing the
sensitivity to random error. The Kalman filter is a recursive filter, meaning that it
reuses data to improve the estimate of the state of the system and to moderate the
noise present in the measurement data. It is since long the most commonly used
orientation estimation algorithm (Yun and Bachmann 2006; Sabatini 2006;
Roetenberg 2006; Park 2009). The most used version is the extended Kalman filter
(EKF). The extended KF accounts for a certain degree of non-linearity by line-
arizing about the current best estimate. If the non-linearity is high then a different
filter type, better fit to cope with non-linearity (e.g. Particle filter methods), should
be chosen instead. The EKF is also the filter type used to obtain the orientation
data in the second case study.

The equations behind the EKF can be separated into two groups: time update or
predictor equations and measurement update or corrector equations (see Fig. 16.2).
To be able to remove the drift error present after integrating the gyroscope data we
have to estimate it. Upon removal of this drift the gyroscope signal will be closer
to the actual rotations and changes in orientation. We furthermore need a reference
to help us identify the drift in the gyroscope signal. We are using orientation data
as input into our EKF, thus the reference will be provided by combining the data
from the accelerometers and magnetometers (see case study 1). The filter
parameters are altered depending on the movement or activity under investigation.
The gains of each parameter are calculated continuously to indicate the importance
(level of trust to be given to) of each input for the estimation. The initial tuning of
the parameters has a strong impact on the performance of the filter. It is hard to
impossible to find a configuration that is suitable for both static or slow movements
and highly dynamic activities.

The EKF thus balances the strengths and weaknesses of the various sensors to
achieve a compromise of orientation estimation with higher accuracy and reli-
ability. The most important limitation of the EKF is that, being an adaptive filter,
its behavior depends on the tuning of the parameters and the motion being ana-
lyzed. The data provided and analyzed in this chapter was obtained using the on-
board algorithm from the TechMCS MIMU (Technaid, S.L.).
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16.4 Human Movement Analysis with MIMUs

16.4.1 Sensor-to-Body Calibration

To obtain anatomical segment orientation a sensor-to-body calibration is required
(see Fig. 16.3). The purpose of the calibration is to identify, for each sensor
attached to a segment, a constant rotation matrix relating the sensor frame to the
anatomical frame of the segment to which it is attached. The ISB

Initial estimates

Measurement 

update 

“Correct”

Time update

“Predict ”

Fig. 16.2 Scheme of a Kalman filtering algorithm. Stochastic filters such as the EKF use a model
of the sensor measurements (measurement model) to produce an estimate of the system state.
Stochastic filtering thus exist of two stages in a loop, a prediction stage of the new state (time
update) and an update stage where this prediction is verified by the new measurements
(measurement update)

In this section we will start from both raw and orientation data provided by
the TechMCS sensors, but you can apply the following to any sensor or
system providing this data. The orientation estimation was obtained using the
on-board algorithm from the TechMCS MIMU (Technaid, S.L.). The raw
sensor data will be used in the sensor-to-body calibration. We will use the
sensor orientation data to derive anatomical joint angles. In particular we will
look at the right knee joint during normal over-ground walking. Two sensors
are placed in an elastic strap and tightened with velcro on the lateral side of
the right leg; one on the thigh (1/3 up from the knee joint) and the other on
the shank (1/3 down from the knee joint) (see Fig. 16.3). It is important to
create a significant, but not uncomfortable, pre-load while attaching the
straps to avoid excessive motion artifacts during data collection. The same
principles hold for other joints in the human body, as well as other move-
ments. Starting from sensor orientation, we have to obtain anatomical seg-
ment orientation. Once we have the orientation of all of the segments
involved we can calculate the rotation matrix between two adjacent segments
and extract the relevant joint angles.
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recommendations (see appendix) to quantify joint motion are based on systems
providing position data (Grood and Suntay 1983; Wu et al. 2002). However,
current IMUs and MIMU are unable to provide position data. When only orien-
tations of body segments are available, positions have to be determined by linking
segments to each other, using a linked-segment model based on segment orien-
tation and fixed segment lengths (Faber et al. 2010; Van den Noort et al. 2012).
Therefore, several calibration methods have been proposed that do not rely on or
require position data of bony anatomical landmarks (Favre et al. 2009; O’Donovan

Fig. 16.3 Two-step
calibration procedure to
calibrate the MIMU to their
respective body segments of
the lower limb. The first step
(A) consists of maintaining an
upright posture with the leg
fully extended. In this posture
the segment length is aligned
with the earth gravity vector
(vertical axis, in red). The
second step (B) determines
the second vector (green). We
have opted for a planar
movement around the hip
joint (hip flexion–extension)
with a straight leg. During the
movement, both shank and
thigh move in the same plane
with a common flexion–
extension axis (dotted green
line at the hip). The third
calibration axis (black) is
then obtained by taking the
cross product from the
vectors measured in A and B.
To correct for any
misalignments due to
measurement error (e.g. poor
execution of the flexion–
extension movement), one of
the measurement axis is
subsequently corrected by
taking the cross-product
between the third axis and the
other measurement axis
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et al. 2007; Picerno et al. 2008). Three main groups can be distinguished: reference
posture or static methods, functional methods, and those requiring additional
equipment. The static methods rely on one or several predefined postures and
predominantly use accelerometer and magnetometer data. Functional uni-articular
joint movements are added in the functional methods. The functional joint axis of
rotation is derived from the gyroscope data (Luinge et al. 2007; Jovanov et al.
2005). The calibration method used here belongs to the latter category and can be
divided into two parts, the first being static. The participant, equipped with a
sensor on the thigh and shank, is required to stand still with both legs parallel and
knees extended. It is assumed that the longitudinal axis of the segment (~Y) coin-
cides with the gravity vector. To obtain this unit vector, the accelerometer data
during a specific frame is extracted. It is recommended to verify the absence of
motion artifact of amplitude spikes during the chosen frame, or alternatively
average the accelerometer data over a short interval. After doing so, we have
obtained the first axis of the anatomical coordinate system (ACS).

Get raw data

raw Accel
���!� �

¼ rawðXYZ accelerometer signalÞ

norm Accel
���!� �

¼ raw Accel
���!� �

=jraw Accel
���!� �

j

Get unit vector
~Y ¼ norm Accel

���!� �

For the data provided in the previous section this gives us:

Y thigh
�����!¼ 0:99580:0821 �0:0416½ �

Y shank
�����! ¼ 0:98740:0877 �0:1317½ �

Subsequently a functional motion is executed; we have opted for a pure hip
flexion without bending the knee (see Fig. 16.3). During this movement, thigh and
shank are assumed to move strictly in the sagittal plane, perpendicular to the
direction of rotation. Assuming a pure hip flexion–extension motion, for which the
flexion–extension axis would be in the same plane as the knee flexion–extension
axis. Other movements can also be executed, such as knee flexion–extension or leg
adduction-abduction. Here, the mean value is taken over a single hip flexion
motion.

Get raw data

mean Gyro
��!� �

¼ mean XYZ gyroscope signalð Þ

norm Gyro
��!� �

¼ mean Gyro
��!� �

=jmean Gyro
��!� �

j
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Get unit vector

~H ¼ norm Gyro
��!� �

Applied to the dataset provided,1 the vectors derived from the dynamic cali-
bration trials are:

Hthigh
���! ¼ 0:1750 � 0:1676 0:9702½ �

H shank
�����! ¼ 0:5033 0:0398 0:8632½ �

The two obtained vectors, ~Y and H
!

, both originate from measurements and can
thus be non-perpendicular due to measurement error. In patient populations per-
forming a pure motion can be a demanding task, therefore the longitudinal vector
(derived from the static trial) is chosen as the base of our calculations. Taking the
cross product between (~Y) and (~H), we obtain a third vector (~X) that is orthogonal
to the two original vectors. To ensure an orthogonal coordinate system we then
compute the cross product between (~Y) and (~X), and obtain (~Z). (~H) is thus a
temporary vector that is later corrected, resulting in (~Z) (see Fig. 16.4).

Get unit vectors

Y segment
�������! ¼ norm Accel

���!� �

H segment
�������! ¼ norm Gyro

��!� �

Get sensor orientation

Z segment
�������! ¼ crossðY segment

�������!
;H segment
�������!Þ

X segment
�������! ¼ crossðZ segment

�������!
; Y segment
�������!Þ

Fig. 16.4 Double cross-
product to ensure mutually
perpendicular vectors

1 The flexion cycle we have identified resides in the interval between frames 431 and 450 in the
datasheet provided.
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Get calibration matrix
GRs segment ¼ GXs

GYs
GZs

� �
3�3

GRs segment ¼ X segment
�������!

Y segment
�������!

Z segment
�������!h i

3�3

In the numerical example we obtain the following matrices for the thigh and
shank:

GRs thigh ¼
0:0732 �0:9805 �0:1826
0:9958 0:0821 �0:0416
0:0558 �0:1787 0:9823

GRs shank ¼
0:0878 �0:9961 �0:0053
0:9874 0:0877 �0:1317
0:1317 0:0063 0:9913

The matrix GRsegment allows us to represent the sensor orientation data provided
by the TechMCS in the local coordinate system of the segment to which it is
attached. This is done by multiplying the constant calibration matrix GRs_segment by
the inverse of the sensor data matrix Rs_segment at each frame. The CS in which the
sensor data is obtained, is not conform the ISB guidelines. The output of the
TechMCS is a measure of its orientation with respect to a reference frame fixed to
the earth; we therefore need to multiply the data by an ISB_conversion matrix to
comply with the ISB recommendations (Grood and Suntay 1983; Wu et al. 2002).
It was deemed easier to correct this mathematically post-data collection, and
prioritize optimal IMU to segment attachment during trials.

Get data

GRS segment ¼ calibration matrix to transfer from sensor to anatomical frame constantð Þ
RS segment ¼ sensor orientation data; updated each frame

Get ISB conversion

RISB ¼
0 �1 0
1 0 0
0 0 1

Get segment orientation
GRthigh ¼ GRS thigh � inverse RS thigh�RISB

� �
GRshank ¼ GRS shank � inverse RS shank�RISBð Þ

Get joint orientation
GRknee ¼ GRthigh � transpose GRshankð Þ
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Get Euler angles
ðShorthand notation: c1 ¼ cosh1; s2 ¼ sinh2Þ

ISB recommended Euler sequence: X � Y 0 � Z 00ð Þ

GRs ¼
c2c3 s3c1þ s1s2c3 s1s3� c1s2c3
�c2c3 c1c3� s1s2s3 s1c3þ c1s2s3

s2 �s1c2 c1c2

h2 ¼ asin GRs 3; 1ð Þð Þ
h1 ¼ acos ðGRs 3; 3ð Þ=cosðh2ÞÞ
h3 ¼ acos ðGRs 1; 1ð Þ=cosðh2ÞÞ

Applying this to the full data-set gives us the following knee joint angles (see
Fig. 16.5)

16.5 Conclusion

Inertial/magnetic sensors are relatively robust to environmental factors, which is
one of the drawbacks of traditional technologies for movement analysis. Fusion
algorithms allow perform 3D movement analysis, but two main concerns must be

Fig. 16.5 Three dimensional knee joint angles during an unrestricted walking trial performed at
self-selected speed by a healthy subject. Data representing right knee movement
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taken into account. First, sensor performance and data reliability depends on the
appropriate selection of filter parameters, depending on the nature of the move-
ment under analysis. Second, the compatibility with position-based systems
through ISB standards is not guaranteed yet, although novel methods for ana-
tomical calibration are being proposed.

MIMU thus offer valuable opportunities to almost restriction-less motion cap-
ture and monitoring of health state and activities of daily living, for example in a
telemedicine application (Jovanov et al. 2005).

Appendix: Theoretical Basis for Human Movement Analysis
with Inertial Sensors

Kinematics is the branch of mechanics that describes the motion of points, bodies
(objects) and systems of bodies (groups of objects) without consideration of the
causes of motion. Therefore, kinematics is not concerned with the forces, either
external or internal, that cause the movement. It includes the description of linear
and angular displacements and its time-derivatives: velocities and accelerations.
A complete and accurate quantitative description of the simplest movement
requires a huge volume of data and a large number of calculations, resulting in an
enormous number of graphic plots. Therefore, it should be kept in mind that any
given analysis may use only a small fraction of the available kinematic variables.

Cartesian Reference Systems

A reference system is an adequate and arbitrary system where the position of any
point (or solid) is referenced. A Cartesian reference system is formed by three
perpendicular axes, which origin is located at the common intersection of the axes,
determining the 3 dimensions of the space. Any point in the space is therefore
located with respect to this reference system by three coordinates, one by each
axis: x; y; zð Þ (Fig. 16.6).

Two types of reference systems are commonly defined for human movement
analysis:

• Fixed reference system, also called absolute or inertial, which is a Cartesian
reference frame fixed to the world, coincident with the view of the external
observer. In this reference system magnitudes related with global body move-
ments are defined, as the movement of the body center of mass or trunk bending
and rotations.

• Relative reference system, also called segment reference system, is a Cartesian
reference frame fixed to the moving segment. A common variable measured on
this reference system is joint movement.
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The relative system commonly defined for human movement analysis has its
origin coincident with the body center of mass, whose directions axis ðX � Y � ZÞ
are coincident with the main body axis as follows: X is the anterior axis (also called
direction), pointing forward, Y is the vertical axis (also called direction), pointing
upwards, and Z is the medial–lateral axis (also called direction), pointing right.

This body-centered reference system also contains the main body planes:

• Sagittal plane: divides any part of the body into right and left portions. It is
perpendicular to z (medial–lateral) axis. Flexion and extension takes place in the
sagittal plane.

• Frontal plane: divides any part of the body into front and back portions. It is
perpendicular to x (anterior) axis. Abduction and adduction take place in the
frontal plane.

• Transverse plane divides any part of the body into upper and lower portions. It is
perpendicular to y (vertical) axis. Internal and external rotation takes place in
the transverse plane. Also called medial and lateral rotation.

Three-Dimensional Kinematics

Matrix Notation for Reference Systems

The human musculoskeletal system is composed of a series of jointed links, which
are commonly approximated as rigid bodies. Six independent parameters, the
degrees of freedom, DOF, are needed to describe the location (ðx; y; zÞ coordinates

Fig. 16.6 Cartesian
reference system
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with respect to reference system axes) and orientation (ða; b; cÞ angles with respect
to reference system planes) of a segment in space. Those six coordinates
ðx; y; z; a; b; cÞconstitute the degrees of freedom of a segment, and therefore
uniquely define its spatial location and orientation at any time instant.

Most of the mechanical quantities one has to deal with in motion analysis, such
as linear and angular position, velocity and acceleration of the markers and seg-
ments, are vectors. Because a vector has both magnitude and direction, one can
describe the same vector in several different perspectives, depending on the
intention or objective of the analysis. Describing a vector in a particular per-
spective is in essence equivalent to computing its components based on the
coordinate system of the particular perspective.

Matrices are a form of mathematical notation suitable for operations among
coordinate systems and vectors. A reference system can be defined using three
vectors that represent each system’s axes, whose length is the unity. Therefore, the
unit vector of the axes reference system, hence unit coordinate vectors (Fig. 16.7
right), can be expressed follows, where i; j; k are the unit vectors of the X � Y � Z
respectively: i ¼ ½1; 0; 0�; j ¼ ½0; 1; 0�; k ¼ ½0; 0; 1�. Using this notation, the global
coordinate system can be expressed by sorting i; j; k vectors into a matrix as follows:

i; j; k½ � ¼
1 0 0
0 1 0
0 0 1

2
4

3
5

Rotation Matrix

As shown in Fig. 16.7 left, a vector can be expressed as the sum of the component
vectors projected over the i; j; k vectors:

Vx ¼ vx � i; Vy ¼ vy � j; Vz ¼ vz � k;

Fig. 16.7 Vector coordinates (left). Unitary vectors that define a reference system (right)
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V ¼ vx; vy; vz

� �
¼ i � vx þ j � vy þ k � vz

In other words, one can not only describe the same vector in several different
perspectives, but also change the perspective from one to another depending on the
situation and needs. This changing perspective of describing a vector is called
vector transformation or axis transformation, and it is done through rotation
matrices. A rotation matrix is the mathematical form for expressing in a compact
way the orientation of a reference system, usually a mobile one, with respect to
another, usually fixed reference system.

To transform a vector from one reference frame to another is equivalent to
changing the perspective of describing the vector from one to another. A trans-
formation alters not the vector, but the components as follows:

v0x ¼ v � i0 ¼ vx � iþ vy � jþ vz � k
� �

� i0 ¼ vx � i � i0 þ vy � j � i0 þ vz � k � i0

v0y ¼ v � j0 ¼ vx � iþ vy � jþ vz � k
� �

� j ¼ vx � i � j0 þ vy � j � jþ vz � k � j0

v0z ¼ v � k0 ¼ vx � iþ vy � jþ vz � k
� �

� k0 ¼ vx � i � k0 þ vy � j � k0 þ vz � k � k0

v0x
v0y
v0z

2
4

3
5 ¼

i � i0 j � i0 k � i0
i � j0 j � j0 k � j0
i � k0 j � k0 k � k0

2
4

3
5 �

vx

vy

vz

2
4

3
5

In those transformations, i; j; k are the unit vectors of the X � Y � Z system, and
i0; j0; k0 are the unit vectors of the X � Y � Z system. Therefore, the transformation
matrix from the global reference frame (frame G) to a particular local reference
frame (frame L) can be written as:

v0x
v0y
v0z

2
4

3
5 ¼ LTG �

vx

vy

vz

2
4

3
5

LTG ¼
i � i0 j � i0 k � i0
i � j0 j � j0 k � j0
i � k0 j � k0 k � k0

2
4

3
5

Obviously, in human movement analysis the local reference frame is typically
fixed to a segment or a body part, whereas the global reference system is reference
system fixed to the laboratory, the global reference system.

Similarly, GTL is the inverse rotation matrix of LTG which can also be derived
as:

GTL ¼
i0 � i j0 � i k0 � i
i0 � j j0 � j k0 � j
i0 � k j0 � k k0 � k

2
4

3
5
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However, a special feature of the rotation matrices is that they are orthonormal,
that is, the vectors i; j; k are orthogonal and unitary. Therefore, the inverse of those
matrices are in fact their transpose, so the change is straightforward:

GTL ¼ LTG

� ��1¼ LTG

� �T

A series of transformations can be performed through successive multiplication
of the transformation matrices from the right to the left. Once the transformation
matrices from the global reference frame to the local reference frames are known,
computation of the transformation matrices among the local reference frames is
simply a matter of transposition and multiplication of the transformation matrices.
Hence the transformation matrix from one local reference frame (A) to another (B)
can be easily obtained through cascading of the transformation matrices:

BTA ¼ BTG � GTA ¼ BTG � ATG

� ��1¼ BTG � ATG

� �T

How to Extract Rotation Angles Using Euler Convention

As shown above, the components of a free vector change as the reference frame
changes. Figure 16.8 shows two different reference frames: the X � Y system and
the X

0 � Y 0 system. Vector v can be expressed as vðx; yÞ in the X � Y system,
vðx0; y0Þ in the X0 � Y 0 system. The relationships between X � Y and X0 � Y 0 can be
obtained from the geometric relationships:

x0 ¼ x � cos Uð Þ þ y � sin Uð Þ

y0 ¼ y � cos Uð Þ � x � sin Uð Þ

In matrix form:

x0

y0

	 

¼ cos Uð Þ sin Uð Þ
�sin Uð Þ cos Uð Þ

	 

� x

y

	 


It is straightforward to expand these manipulations between axes to the three-
dimensional space:

x0 ¼ x � cos Uð Þ þ y � sin Uð Þ

y0 ¼ y � cos Uð Þ � x � sin Uð Þ

z0 ¼ z
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In matrix form:

x0

y0

z0

2
4

3
5 ¼

cos Uð Þ sin Uð Þ 0
�sin Uð Þ cos Uð Þ 0

0 0 1

2
4

3
5 �

x
y
z

2
4
3
5

Therefore, the rotation around the z axis from X � Y � Z reference system to
X
0 � Y

0 � Z 0 is expressed as follows:

Rz Uð Þ ¼
cos Uð Þ sin Uð Þ 0
�sin Uð Þ cos Uð Þ 0

0 0 1

2
4

3
5

Rotation around the X and Y axis can be obtained in a similar procedure:

Rx Uð Þ ¼
1 0 0
0 cos Uð Þ sin Uð Þ
0 �sin Uð Þ cos Uð Þ

2
4

3
5

Ry Uð Þ ¼
cos Uð Þ 0 �sin Uð Þ

0 1 0
�sin Uð Þ 0 cos Uð Þ

2
4

3
5

Once rotation around each of the three reference system axis is defined, an
arbitrary rotation, which is usually composed by rotations around all three axes,
can be seen as a composition of three sequential rotations, which is actually what
the Euler theorem states.

Using Euler theorem, any arbitrary rotation can be de-composed into three
sequential rotations. For example, consider the sequence X � Y 0 � Z 00. This means

Fig. 16.8 Two-dimensional
vector transformation
between two coincident
reference frames
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that we rotate about X axis first, h1 degrees. As result we get the new orientation,
given by X0 � Y 0 � Z 0. Then a rotation around the new Y 0 axis h2 degrees is made,
resulting in the new orientation X00 � Y 00 � Z 00. A final rotation around the new Z 00

axis h3 degrees is made, resulting in the resulting final orientation X000 � Y 000 � Z 000.
Taking each rotation matrix, any point p x; y; zð Þexpressed in the X � Y � Z

reference system (local) can be transformed (expressed) in the global reference
system X00

0 � Y 00
0 � Z 000 as follows:

px000

py000

pz000

2
4

3
5 ¼ Rz h3ð Þ½ � � Ry h2ð Þ

� �
� Rx h1ð Þ½ � �

px

py

pz

2
4

3
5 ¼ LRG

Expanding the former, and using shorthand notation where c1 ¼ cos h1ð Þ and
s2 ¼ sin h2ð Þ

px000

py000

pz000

2
4

3
5 ¼

c2 � c3 s3 � c1þ s1 � s2 � c3 s1 � s2� c1 � s2 � c3
�c2 � c3 c1 � c3� s1 � s2 � s3 s1c3 + c1s2 � s3

s2 �s2 � c2 c1 � c2

2
4

3
5 �

px

py

pz

2
4

3
5

From the above matrix, h1, h2 and h3 angles can be obtained as follows:

h2 ¼ arcsin LRG 3; 1ð Þ
� �

h1 ¼ arcos
LRG 3; 3ð Þ
cos h2ð Þ

� �

h3 ¼ arcos
LRG 1; 1ð Þ
cos h2ð Þ

� �

This example corresponds to a rotation sequence around X � Y 0 � Z 0 axes.
However, any other rotating sequence can be used. In theory, there are 12 possible
correct rotation sequences, by the combination of the X � Y � Z rotations.

International Society of Biomechanics Standards

One of the characteristics of Euler theorem, is that the value of h1, h2 and h3 angles
depend on the rotation sequence assumed, this makes the comparison of data
among various studies difficult, if not impossible. On the other hand, some rotation
sequences are closer to representing joint rotations in clinically relevant terms,
which makes the application and interpretation of biomechanical findings easier
and more welcoming to clinicians.

The international society of biomechanics has made recommendations for the
definitions of segment coordinate systems as well as for rotation sequences for
reporting joint movement (Grood and Suntay 1983; Wu et al. 2002). The purpose
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was to present these definitions to the biomechanics community so as to encourage
the use of these recommendations, to provide first hand feedback, and to facilitate
the revisions. It was hoped that this process will help the biomechanics community
to move towards the development and use of a set of widely acceptable standards
for better communication among various research groups, and among biomecha-
nists, physicians, physical therapists, and other related interest groups. Those
recommendations include the definitions for major human joints as ankle, hip,
spine, shoulder, elbow, wrist and hand.
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