
Attacking AES Using Bernstein’s Attack

on Modern Processors

Hassan Aly� and Mohammed ElGayyar

Department of Mathematics, Faculty of Science,
Cairo University, Giza 12613, Egypt

{hassan.aly,melgayar}@sci.cu.edu.eg

Abstract. The Advanced Encryption Standard (AES) was selected by
NIST due to its heavy resistance against classical cryptanalysis like dif-
ferential and linear cryptanalysis. Even after the appearance of the mod-
ern side-channel attacks like timing and power consumption side-channel
attacks, NIST claimed that AES is not vulnerable to timing attacks.
In 2005, Bernstein [6] has successfully attacked the OpenSSL AES im-
plementation on a Pentium III processor and completely retrieved the
full AES key using his cache timing side-channel attack. This paper
reproduces Bernstein’s attack on Pentium Dual-Core and Core 2 Duo
processors. We have successfully attacked the AES implemented in the
latest OpenSSL release 1.0.1c using the most recent GCC compiler 4.7.0
running on both Windows and Linux in some seconds by sending 222

plaintexts at most. We improved Bernstein’s first round attack by using
2 way measurements. Instead of using only the above average timing
information, we added the above minimum timing information which
significantly improved the results.

Keywords: AES, timing attack, Bernstein’s attack, cache memory
attack, side-channel attack, cryptanalysis.

1 Introduction

For a long time, attacking cryptographic systems was relying only on its
mathematical basis like the case in differential and linear cryptanalysis. To con-
duct such attacks you have to know either a number of ciphertexts or pairs of
ciphertexts and plaintexts. Nowadays, several attacks are based on the infor-
mation revealed from the encryption devices. Since this information is not the
ciphertext or the plaintext, so it is often called side-channel information [5].
This information may be revealed by measuring the power consumption, heat
consumption, cache access or time elapsed during processing.

The timing attacks can be considered as the most popular attacks that have
greatly developed during the last ten years. Measuring the time taken to access
cache memory helps identifying cache hits and misses which in turn is considered

� Current address: Department of Computer Science and Information, College of Sci-
ence, Majmaah University, AzZulfi 11932, P.O. Box 1712, Kingdom of Saudi Arabia.

A. Youssef, A. Nitaj, A.E. Hassanien (Eds.): AFRICACRYPT 2013, LNCS 7918, pp. 127–139, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



128 H. Aly and M. ElGayyar

a dangerous information to be revealed. NIST has stated in [20] (section 3.6.2)
that ”Table lookup: not vulnerable to timing attacks; relatively easy to effect
a defense against power attacks by software balancing of the lookup address.”.
However, the most powerful timing attacks on AES depend on measuring table
lookup access times, which reveals most of the AES key bits.

2 AES Implementation Background

AES is the most widely used secret key block cipher. It is a substitution-
permutation network (SPN), it has an iterative structure that works in rounds.
That is, both encryption and decryption consists of number of iterations, called
rounds, each round consists of a fixed set of operations, namely (SubBytes,
ShiftRows, MixColumns, and AddRoundKey). The operations are applied to
the input plaintext block, called state. After iterating a predefined number of
rounds, (10, 12, and 14 rounds for 128-bit, 192-bit, and 256-bit keys, respec-
tively), the final state is the ciphertext block.

Although the optimized ANSI C code submitted with Rijndael proposal uses
5 T-tables [31], high performance implementations like OpenSSL [25], uses only
four 256-entry 32-bit T-tables T0, T1, T2 and T3 during encryption. This imple-
mentation precomputes original S-boxes and stores every lookup vector in a dif-

ferent T-table each of 1024-byte size. Each round state word (x
(r)
4i , x

(r)
4i+1, x

(r)
4i+2,

x
(r)
4i+3), i = 0, 1, 2, 3, is generated as:

(x
(r)
0 , x

(r)
1 , x

(r)
2 , x

(r)
3 ) = T0[x

(r−1)
0 ]⊕ T1[x

(r−1)
5 ]⊕ T2[x

(r−1)
10 ]⊕ T3[x

(r−1)
15 ]⊕ (k

(r−1)
0 , k

(r−1)
1 , k

(r−1)
2 , k

(r−1)
3 )

(x
(r)
4 , x

(r)
5 , x

(r)
6 , x

(r)
7 ) = T0[x

(r−1)
4 ]⊕ T1[x

(r−1)
9 ]⊕ T2[x

(r−1)
14 ]⊕ T3[x

(r−1)
3 ]⊕ (k

(r−1)
4 , k

(r−1)
5 , k

(r−1)
6 , k

(r−1)
7 )

(x
(r)
8 , x

(r)
9 , x

(r)
10 , x

(r)
11 ) = T0[x

(r−1)
8 ]⊕ T1[x

(r−1)
13 ]⊕ T2[x

(r−1)
2 ]⊕ T3[x

(r−1)
7 ]⊕ (k

(r−1)
8 , k

(r−1)
9 , k

(r−1)
10 , k

(r−1)
11 )

(x
(r)
12 , x

(r)
13 , x

(r)
14 , x

(r)
15 ) = T0[x

(r−1)
12 ]⊕ T1[x

(r−1)
1 ]⊕ T2[x

(r−1)
6 ]⊕ T3[x

(r−1)
11 ]⊕ (k

(r−1)
12 , k

(r−1)
13 , k

(r−1)
14 , k

(r−1)
15 )

Here, T0, T1, T2, T3 are four lookup tables with 1 byte input and 4 bytes output

and (k
(r)
4i , k

(r)
4i+1, k

(r)
4i+2, k

(r)
4i+3), i = 0, 1, 2, 3 is the i-th word of the r-th round key.

3 Cache Based Side Channel Attacks Background

Cache based side channel attacks, cache attacks, can be classified into three
major types of attacks: time-driven, access-driven, and trace-driven.

In a trace-driven attack, the attacker should be able to monitor and collect the
cache activity including every memory access during an encryption. This data
collection process is meant to create a profile (trace) of cache hits and misses for
a single encryption. The quality of the attack depends on how many traces are
needed to begin the analysis phase, a better attack requires less traces.

In a time-driven attack, the attacker do not need to have the ability of collect-
ing data of every memory access. Instead, the attack relies on a value that can
be used to describe or approximate the total number of cache hits and misses. In
most of time-driven attacks, the attacker collects only the total execution time of



Attacking AES Using Bernstein’s Attack on Modern Processors 129

an encryption as many times as needed, then use mathematical tools to analyze
the collected data. The quality of the attack depends on how many encryptions
are needed to begin the analysis phase, a better attack requires less encryptions.

In an access-driven attack, the attacker can detect which cache sets were
modified by the encryption process, which leads the attacker to know which
lookup table entries are accessed during the encryption. Then, uses elimination
and non-elimination techniques to detect the right key candidates. For more
information about microarchitectural attacks, consult [2].

4 Related Work

In this section, we introduce the history of cache based side channel attacks and
timing attacks related to Bernstein’s attack.

In 1996, Kocher [16] first introduced timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. In 1998, Kelsey et al. [15] men-
tioned the “attacks based on cache hit ratio in large S-box ciphers” prospect. In
2002, Page [27] expanded the idea proposed by Kelsey et al., of cache memory
being used as a side-channel which leaks information during the run of DES. As
well as describing and simulating the theoretical attack. He discussed how hard-
ware and algorithmic alterations can be used to defend against such techniques
in [28] in 2003. Later on, Tsunoo et al. [34,35] implemented the first practical
cache timing cryptanalysis of DES, 3DES, MISTY1, Camellia and AES.

In 2003, Brumley and Boneh [10] devised and implemented a remote timing
attack against unprotected OpenSSL implementation of RSA over a local area
network.

In 2005, Acıiçmez et al. [4] improved the efficiency of Brumley and Boneh
timing attack on unprotected SSL implementations of RSA-CRT by a factor of
more than 10. Earlier in the same year, Bertoni et al. [7] introduced the first
trace-driven attack on AES based on induced cache misses. Also they proposed
a simple countermeasure against the attack.

Bernstein [6] derived an attack on AES which depends only on calculating
the encryption time information caused by cache memory hits and misses then
comparing timing data using statistical methods. Bernstein’s attack is a time-
driven cache attack. It is performed as a template attack where at first a profile
under a known key is generated with the same platform as the later attacked one.
The real attack is performed in a second phase where a profile of an unknown
key is generated. Those two profiles are then correlated and the key space for
the unknown key is reduced. In a last phase for full key recovery, a brute-force
of the remaining key space is performed. This attack is not affected by cache
architecture or active manipulation, it only depends on the similarity between
reference and target machines. Later, Percival [29] was the first to use access-
driven attack against RSA, and demonstrated that the shared access to cache
memory provides an easily used covert channel between threads, allowing in
many cases for theft of cryptographic keys.

Osvik et al. [26,33] led the work on attacking AES using access-driven cache
memory attacks, and described several software side-channel attacks based on



130 H. Aly and M. ElGayyar

inter-process leakage through the state of the CPU’s cache memory. The au-
thors discussed an attack called synchronous attack, which requires knowledge
of either the plaintext or the ciphertext. The synchronous attacker can oper-
ate synchronously with the encryption on the same processor. Moreover, they
demonstrated an extremely strong type of attack called asynchronous attack,
which does not require any knowledge of plaintexts or ciphertexts. The asyn-
chronous attacker will execute his own program on the same processor as the en-
cryption program without any explicit interaction, depending on the knowledge
of the non-uniform distribution of the plaintexts or ciphertexts. They also ex-
perimentally demonstrated their applicability to real systems, such as OpenSSL
and presented a variety of countermeasures which can be used to mitigate such
attacks. However, they did not give a description of how to perform a full asyn-
chronous attack. Lauradoux [17] proposed some countermeasures against these
attacks, and Canteaut et al. [11] followed him in 2006.

In 2006 also, Neve et al. [23,22] presented a thorough analysis of Bernstein’s
attack, reproducing the attack and demonstrating results of important experi-
ments practically. They answered a lot of open questions about the attack like,
what if there is no learning phase? Can this attack be a real remote threat or
not? and more. Then they extended the attack with a second round attack to
reveal other key bits that could not be revealed by Bernstein’s first round attack.

In the same year, Neve et al. [21] introduced an access-driven attack on AES,
by demonstrating how a spy process running on the same single threaded CPU
can measure the number of accessed cache lines by another process running on
the same CPU.

Another cache memory attack was introduced in 2006 by Bonneau et al. [9],
in this cache collision attack, they aimed to predict cache collisions timing varia-
tion using a simplified cache model. Their most powerful attack recovered a full
128-bit AES key with an improvement of almost four orders of magnitude over
Bernstein’s attack.

A cache based remote timing attack followed by Acıiçmez et al. [3], they
described an expanded second round attack that can be used to obtain secret
keys of remote cryptosystems. Their attack requires hyper threading enabled
system with a large enough workload. In 2006, Acıiçmez et al. [1] presented a
trace-driven attack on AES. They described a first two rounds attack and a
last round attack as well. At the end of their work, they show the trade-off
between the online and offline cost of the attack in details. Later in the same
year, Bonneau [8] described a final round trace-driven attack on AES, building
off of previous work by Acıiçmez and Koç [1]. Bonneau introduced an algorithm
that reduces the problem of attacking AES given a small set of cache traces, to
a simple constraint satisfaction problem.

In 2007, Tiri et al. [32] have proposed an analytical model for time-driven
cache attacks. They presented a tool to help us evaluate the security of symmetric
key ciphers against against such attacks.

In 2008, Zhao et al. [37] introduced a first two rounds access-driven at-
tack on AES. Introducing the elimination technique in guessing the key bytes.



Attacking AES Using Bernstein’s Attack on Modern Processors 131

They succeeded in recovering the full 128-bit AES key through the first round
attack using about 350 samples, and two rounds attack using about 80 samples
in a few seconds.

In 2010, Rebeiro et al. [30] justified that cache timing attacks on AES are
unable to force hits in the third round and concluded that a similar third round
cache timing attack does not work. Hence, protecting only the first two AES
rounds prohibits cache based timing attacks. Zhao and Wang [36] presented an
improved trace-driven attack on AES and CLEFIA by considering S-box mis-
alignment, and due to this feature, about 200 samples are enough to obtain full
128-bit AES key within seconds. Bogdanov et al. introduced a novel differential
collision attack based on the MDS properties of AES on embedded CPUs. Their
experiments show that efficient attacks on embedded systems implementing AES
are not theoretical any more.

In 2011, Gallais et al. [12] introduced an improved adaptive plaintext, and
presented a new known plaintext trace-driven cache-collision attacks against em-
bedded AES implementations. Their experiments show that with approximately
30 known plaintexts, the key space of AES 128-bit is reduced to 230. Gullasch et
al. [13] improved over prior work [26,21,33] by providing a first practical access-
driven cache attack on AES in the asynchronous model. They introduced a novel
approach by using neural networks to handle noise surrounding key candidates.
Their experiments shows that performing only 100 encryptions is enough to find
the key in average of 3 minutes including key search phase. They mentioned a
way to transfer the offline phase to another machine by downloading 62.5 KB
only per attack.

In 2012, Mowery et al. [19] proved that any cache timing attack against x86
processors that does not somehow subvert the prefetcher, physical indexing, and
massive memory requirements of modern programs is doomed to fail.

5 Bernstein’s Attack on AES

Bernstein’s attack is a first round cache timing attack, it consists of two online
phases, namely profiling and attacking phases, and two offline phases, namely
correlation and key search phase. During profiling and attacking phases, it mea-
sures and collects total execution time of a single encryption, thousands or mil-
lions of times. Then a mathematical correlation phase matches between results
of the earlier online stages and generates a list of possible key candidates. The
last phase is the key search phase, it is a brute force attack, searching for the
unknown key in the reduced key space generated by the correlation phase.

The biggest advantage of this attack, it is a generic attack and it can be
performed mostly without any knowledge about many processor details.

Bernstein succeeded to attack an OpenSSL implementation of AES, which
makes use of four T-tables only, and utilizes a total of four kilobytes (4096
bytes) of memory. The idea is that for the first round, the table lookup indices

x
(0)
i are each related to only one key byte k

(0)
i and one plaintext byte pi:

x
(0)
i = pi ⊕ k

(0)
i , i = 0, 1, 2, ..., 15.



132 H. Aly and M. ElGayyar

So, at the profiling phase we know the i-th key byte k
(0)
i and the i-th plaintext

byte pi, which leads directly to the table lookup index x
(0)
i . On the other hand,

at the attacking phase we know both pi and x
(0)
i , which reveals the unknown

i-th key byte k̂
(0)
i :

k̂
(0)
i = pi ⊕ x

(0)
i , i = 0, 1, 2, ..., 15.

Osvik et al. [26,33] mentioned a lot of important shortcomings about Bern-
stein’s attack:

– it requires reference measurements of encryption under known key in an
identical configuration, and these are often not readily available (e.g., a user
may be able to write data to an encrypted file system, but creating a reference
file system with a known key is a privileged operation).

– it relies on timing the encryption and thus, it seems impractical on many
real systems due to excessively low signal-to-noise ratio.

– even when this attack works, it requires high number of analyzed encryptions.

To work around these shortcomings, Neve et al. [23,22] suggested that instead
of using another reference machine, attacking two different keys on the same
machine might recover some bits by comparing similar byte signatures. Also, we
tried to compare between two different attacking stages for the same key, but
we failed to get any good results.

However, in some cases like a shared computer with different users accounts,
the attacker has access to his own account on the machine in which he can collect
required information about his own known key.

6 Our Work

Bernstein in [6] presented his attack against the OpenSSL 0.9.7a of AES
implementation on an 850MHz Pentium III desktop computer running FreeBSD
4.8. O’Hanlon and Tonge [24] failed to collect any useful data about the key by
attacking a Pentium IV running GCC 4.0.0 and OpenSSL 0.9.7f. They succeeded
with a Pentium III running GCC 2.95.3 against the MIRACL [18] implementa-
tion of AES. Followed by Canteaut et al., they attacked a Pentium IV processor
[11] trying to modify the cache state before the attack by removing system calls.
Also recently, Jayasinghe et al. [14] succeeded to implement Bernstein’s attack
on the original configuration used by Bernstein at 2005. Table 1 outlines all these
implementation of the attack.

While through our experiments we tested over 100 random keys, we decided
to attack a fixed key k = {2b, a8, 62, a3, 4d, 42, e2, 44, 27, 89, a4, 4a, c6, 7e, cd, eb},
through the rest of this paper.

After testing the attack on Ubuntu 9.10, OpenSSL version 0.9.8g and GCC
4.4.1 on a Pentium Dual-Core processor as shown in Table (2), we noticed that
smaller packet sizes are giving better results. Our best results were achieved by
sending 227 plaintexts of size 100 bytes.

1 This attack was performed on a 32-bit Windows7 Ultimate sp1.
2 This attack was performed on a 64-bit Windows7 Home Premium sp1.



Attacking AES Using Bernstein’s Attack on Modern Processors 133

Table 1. This table shows attackers hardware and software configurations

Attacker CPU model GCC AES software #Packets

Bernstein[6] Pentium III 2.95.4 OpenSSL 0.9.7a 227

O’Hanlon et al.[24] Pentium III 2.95.3 MIRACL 230/3
Canteaut et al.[11] Pentium III 3.2.2 Original [31] 230

Pentium IV 3.2.2 Original [31] 226

Jayasinghe et al.[14] Pentium III 2.95.4 OpenSSL 0.9.7a 227

Our attack Pentium Dual-Core 4.4.1 OpenSSL 0.9.8g 226

Pentium Dual-Core1 4.7.0 OpenSSL 1.0.1c 220

Pentium Core 2 Duo2 4.7.0 OpenSSL 1.0.1c 220

Table 2. This table shows the attacked processor model and cache size

CPU model Level Cache line size Cache sets Associativity Total size

Pentium Dual-Core T2060 L1 64 B 2×64 8 2×32 KB
L2 64 B 4096 4 1 MB

Pentium Core 2 Duo P7550 L1 64 B 2×64 8 2×32 KB
L2 64 B 4096 12 3 MB

After testing the attack on a similar configuration to Bernstein’s, we started
porting the attack to test on Windows7 32-bit and 64-bit operating systems. We
chose to port the attack to MinGW, not Cygwin, so the attack is not restricted
to machines running Cygwin only. Porting the attack to MinGW was a hard job,
due to the differences between sockets implemented in Linux and Windows.

Performing the first attack on Windows 32-bit, OpenSSL version 0.9.8g and
GCC 4.7.0 on a Pentium Dual-Core processor as shown in Table (2) was suc-
cessful, and some key candidates appeared after sending 226 samples of size 100.
After this we followed Neve et al. [22] by removing the network delay from the at-
tack, since the execution time is measured on the server. We merged the original
study and server programs to create the new ServerNoNetwork program which
runs locally. Also, we fixed the samples length to 16 as Neve et al. advised, since
only the first 16 bytes are encrypted even if the packet size is 1000.

Performing the attack again with the new attack program on our testing
platforms lead to better results in less time. Our best results began to appear
at 225 samples. This attack took less than 30 minutes and the results included 4
accurate peaks for k1, k5, k9, k13. By repeating the attack several times with the
same configuration, the same 4 peaks kept appearing and no other candidates
were observed.

Since the main concept used by Bernstein depends on touching the cache
memory before and after AES encryption, we restored back the ability to send
different sizes of samples again. At the first glance, we tried to speedup the attack
by removing unused code like calling rand() function, which fills the whole packet
array while we need only the first 16 entries to be randomized, also we added a
command line argument for the limit to stop whenever it reaches that limit.



134 H. Aly and M. ElGayyar

Fig. 1. Single peaks for group g1 = {a8, 42, 89, 7e} are marked with red. x-axis repre-
sents byte values in hexadecimal and y-axis represents the 16 key bytes

By repeating the attack ten times, we discovered that results are mostly ap-
pearing as single peaks on this configuration see Fig. 1. Another interesting be-
havior is the relation between results of the same attack, it appears that results
are grouped in 4 groups, g0, g1, g2, and g3, each group contains 4 key candidates:
gi = {ki, ki+4, ki+8, ki+12}, i = 0, 1, 2, 3.. The first group appeared while sending
samples of size 16 was g1, other groups appeared later with larger samples.

After improving and optimizing the speed of the merged program, a successful
attack on Windows7, GCC 4.71, and OpenSSL 1.0.1c, required sending only 1M
of samples with different sizes, and we recovered the full key without a brute
force attack in less than 20 seconds. We didn’t need to use the brute force attack,
since all key candidates were found as single peaks.

The reason behind this grouping is how OpenSSL implemented AES and how
the MinGW GCC compiler assembles the implementation on Windows. Every
group corresponds to a set of certain table lookup indices, i.e g0 corresponds to
T0 lookup indices and so on, recalling that:

(
x
(r)
4i , x

(r)
4i+1, x

(r)
4i+2, x

(r)
4i+3

)
= T0

[
x
(r−1)
4i

]
⊕ T1

[
x
(r−1)
4i+5

]
⊕ T2

[
x
(r−1)
4i+10

]
⊕ T3

[
x
(r−1)
4i+15

]
⊕
(
k
(r−1)
4i , k

(r−1)
4i+1 , k

(r−1)
4i+2 , k

(r−1)
4i+3

)

where i = 0, 1, 2, 3 and all sum operations are done modulo 16.
While analyzing the results in Table 3, we found that peaks are changing

approximately every extra 300-350 bytes to the sample. It appears that the
attacked operating system and/or MinGW GCC compiler are partitioning the
T-tables into 256 byte chunks (4 cache lines per table), and due to misalignment
of the tables in cache, an extra cache line is used which means 256 + 64 = 320
bytes in cache.

Following this theory, we found that 320, 640, 960, and 1280 bytes are very
special sample sizes that reveals more than 8 key candidates at once in some



Attacking AES Using Bernstein’s Attack on Modern Processors 135

Table 3. This table shows the relation between revealed groups and sample size by
sending only 220 samples

Sample Size in Bytes Recovered Key Indices Group Time in Seconds Improved Time

16 1, 5, 9, 13 g1 1.6 0.9
100-300 5, 9, 13 g1 2-10 1.1-1.5
350 0, 4, 8, 12 g0 12 1.6
400-600 0, 4, 8 g0 13-19 1.7-2.0
650 3, 7, 11, 15 g3 21 2.1
700-950 7, 11, 15 g3 22.5-30 2.2-2.7
1000 2, 6, 10, 14 g2 32.5 2.8

cases. Figure 2 shows the evolution of the correct key candidate against the
number of samples, the figure shows the results of measuring 1M samples of size
320 Byte, as you can notice, the correct key candidates were very clear at the
level of 256K and in some cases at 64K samples only.

Fig. 2. Single peaks for group g0 = {2b, 4d, 27, c6} are marked with red. In this grouped
correlation graph, the x-axis represents the byte value and the y-axis represents number
of samples.

The last part of our work is the most exciting part. We tried to modify the
core of the attack by replacing the main measurement criteria by another one.
The core measurement criteria in the attack is u[j][b]− taverage where

taverage :=

total#packets∑
i=0

timingi

total#packets



136 H. Aly and M. ElGayyar

is the total overall average time and

u[j][b] :=

tnum[j][b]∑
i=0

timing[j][b]i

tnum[j][b]
,

tnum[j][b] is the total number of samples for the j-th key candidate and the
plaintext byte b. We aimed to replace this complicated formula with a simpler
one to help gain more speed and accuracy in our attack program, our formula is
umin[j][b]− tmin where

tmin := mini(timingi)

is the overall minimum timing and

umin[j][b] := mini(timing[j][b]i)

is the local minimum for the j-th key candidate and the plaintext byte b.
We were not surprised when this new measure succeeded to recover the same

groups as the original measure with the same configurations, since the minimum
is used in access-driven attacks to eliminate wrong key candidates. Calculating
minimum timing information for each candidate eliminates all low value candi-
dates easily because candidates with cache hits have a lower timing information
than candidates with cache misses. Calculating the minimum also eliminates the
noise; if a particular candidate is affected by noise and hence had a high timing
value, using minimum means that at the first instant of noise absence, the real
timing information is recorded and will never be raised again even if the noise
is back.

Figure 3 shows the results of the first group with the new measurement, which
looks more clear than the original measure.

Our experiments show that the reasons behind our success in recovering the
full 128-bit key so fast is a combination of the simple structure of GCC 4.7.0
for MinGW, optimizing the attack program, removing all redundant code, and
using two measurement criterions instead of only one.

After succeeding with the new measure, we kept both measurements, so the
attacker can choose which measure to use. At the correlation stage, both mea-
surements data are kept together in the file for double checking.

At this point, using the merged program ServerNoNetwork, with the original
and new measurements, we succeeded to recover the full AES key, without a
brute force search in less than 20 seconds, using less than 1M random plaintexts.

7 Future Work

After attacking OpenSSL successfully we plan to attack other cryptographic
libraries. Our first trial was to attack MIRACL version 5.5.4 [18] which imple-
ments AES in a small slow implementation and another high performance one,
using 5 lookup T-tables: 4 for all rounds and one for the final round. Attacking
this implementation failed to extract more than 2 or 3 key bytes for the small
implementation, while we succeeded to get a better chance with the fast one.



Attacking AES Using Bernstein’s Attack on Modern Processors 137

1

00 20 40 60 80 a0 c0 e0 ff
16k

64k

256k

1M

4M

5

00 20 40 60 80 a0 c0 e0 ff
16k

64k

256k

1M

4M

9

00 20 40 60 80 a0 c0 e0 ff
16k

64k

256k

1M

4M

13

00 20 40 60 80 a0 c0 e0 ff
16k

64k

256k

1M

4M

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Fig. 3. Single peaks for group g1 = {a8, 42, 89, 7e} are marked with red. In this grouped
correlation graph, the x-axis represents the byte value and the y-axis represents number
of samples.

8 Conclusion

We succeeded to attack the latest OpenSSL implementation of AES using Bern-
stein’s cache timing attack on a different testing environment from those used
earlier. We replaced the original ”above average” measure with a simple ”above
minimum” one. Our experiments shows that GCC 4.7.0 for MinGW might be
the reason behind recovering the 128-bit key in seconds using either the original
or new measurements.

References

1. Acıiçmez, O., Koç, Ç.: Trace-driven cache attacks on AES (short paper). Informa-
tion and Communications Security, 112–121 (2006)

2. Acıiçmez, O., Koç, K.: Microarchitectural attacks and countermeasures. Crypto-
graphic Engineering, 475–504 (2009)

3. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attack on the
AES. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer,
Heidelberg (2006)

4. Acıiçmez, O., Schindler, W., Koç, Ç.: Improving Brumley and Boneh timing attack
on unprotected SSL implementations. In: Proceedings of the 12th ACM Conference
on Computer and Communications Security, pp. 139–146. ACM (2005)

5. Bar-El, H.: Introduction to side channel attacks, vol. 43. Discretix Technologies
Ltd. (2003)

6. Bernstein, D.: Cache-timing attacks on AES (2005),
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf


138 H. Aly and M. ElGayyar

7. Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: AES power
attack based on induced cache miss and countermeasure. In: International Con-
ference on Information Technology: Coding and Computing, ITCC 2005, vol. 1,
pp. 586–591. IEEE (2005)

8. Bonneau, J.: Robust final-round cache-trace attacks against AES. Tech. rep.,
Citeseer (2006)

9. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer,
Heidelberg (2006)

10. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of
the 12th Conference on USENIX Security Symposium, vol. 12, p. 1. USENIX
Association (2003)

11. Canteaut, A., Lauradoux, C., Seznec, A.: Understanding cache attacks (2006)
12. Gallais, J., Kizhvatov, I., Tunstall, M.: Improved trace-driven cache-collision at-

tacks against embedded AES implementations. Information Security Applications,
243–257 (2011)

13. Gullasch, D., Bangerter, E., Krenn, S.: Cache games–bringing access-based cache
attacks on AES to practice. In: 2011 IEEE Symposium on Security and Privacy
(SP), pp. 490–505. IEEE (2011)

14. Jayasinghe, D., Fernando, J., Herath, R., Ragel, R.: Remote cache timing attack
on Advanced Encryption Standard and countermeasures. In: 2010 5th Interna-
tional Conference on Information and Automation for Sustainability (ICIAFs),
pp. 177–182. IEEE (2010)

15. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.)
ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998)

16. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

17. Lauradoux, C.: Collision attacks on processors with cache and countermeasures.
In: Western European Workshop on Research in Cryptology WEWoRC, vol. 5, pp.
76–85 (2005)

18. MIRACL: Multiprecision Integer and Rational Arithmetic C/C++ Library.
Shamus Software Ltd., Dublin, http://www.shamus.ie

19. Mowery, K., Keelveedhi, S., Shacham, H.: Are AES x86 cache timing attacks still
feasible? In: Proceedings of the 2012 ACM Workshop on Cloud Computing Security
Workshop, pp. 19–24. ACM (2012)

20. Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, J., Roback, E.:
Report on the development of the Advanced Encryption Standard (AES). Journal
of Research of the National Institute of Standards and Technology 106(3) (2001),
http://archive.org/details/jresv106n3p511

21. Neve, M., Seifert, J.-P.: Advances on access-driven cache attacks on AES. In:
Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer,
Heidelberg (2007)

22. Neve, M., Seifert, J., Wang, Z.: Cache time-behavior analysis on AES. In: Selected
Area of Cryptology (2006)

23. Neve, M., Seifert, J., Wang, Z.: A refined look at Bernstein’s AES side-channel
analysis. In: Proceedings of the 2006 ACM Symposium on Information, Computer
and Communications security. pp. 369–369. ACM (2006)

24. O’Hanlon, M., Tonge, A.: Investigation of cache timing attacks on AES. School of
Computing, Dublin City University (2005)

http://www.shamus.ie
http://archive.org/details/jresv106n3p511


Attacking AES Using Bernstein’s Attack on Modern Processors 139

25. OpenSSL: The open source toolkit for SSL/TLS, http://www.openssl.org
26. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The

case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

27. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Tech.
rep., Citeseer (2002)

28. Page, D.: Defending against cache-based side-channel attacks. Information Security
Technical Report 8(1), 30–44 (2003)

29. Percival, C.: Cache missing for fun and profit. In: BSDCan 2005 (2005)
30. Rebeiro, C., Mondal, M., Mukhopadhyay, D.: Pinpointing cache timing attacks on

AES. In: 23rd International Conference on VLSI Design, VLSID 2010, pp. 306–311.
IEEE (2010)

31. Rijmen, V., Bosselaers, A., Barreto, P.: Optimised ANSI C code for the Rijndael
cipher (now AES). Public domain software (2000),
http://fastcrypto.org/front/misc/rijndael-alg-fst.c

32. Tiri, K., Acıiçmez, O., Neve, M., Andersen, F.: An analytical model for time-driven
cache attacks. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 399–413.
Springer, Heidelberg (2007)

33. Tromer, E., Osvik, D., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. Journal of Cryptology 23(1), 37–71 (2009)

34. Tsunoo, Y.: Cryptanalysis of block ciphers implemented on computers with cache.
In: Preproceedings of ISITA 2002 (2002)

35. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
implemented on computers with cache. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003)

36. Zhao, X., Wang, T.: Improved cache trace attack on AES and CLEFIA by consid-
ering cache miss and S-box misalignment. Tech. rep., Cryptology ePrint Archive,
Report 2010/056 (2010)

37. Zhao, X., Wang, T., Dong, M., Yuanyuan, Z., Zhaoyang, L.: Robust first two rounds
access driven cache timing attack on AES. In: 2008 International Conference on
Computer Science and Software Engineering, vol. 3, pp. 785–788. IEEE (2008)

http://www.openssl.org
http://fastcrypto.org/front/misc/rijndael-alg-fst.c

	Attacking AES Using Bernstein’s Attack on Modern Processors
	1 Introduction
	2 AES Implementation Background
	3 Cache Based Side Channel Attacks Background
	4 Related Work
	5 Bernstein’s Attack on AES
	6 OurWork
	7 Future Work
	8 Conclusion
	References




