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Abstract. We propose HELEN, a code-based public-key cryptosystem
whose security is based on the hardness of the Learning from Parity with
Noise problem (LPN) and the decisional minimum distance problem.
We show that the resulting cryptosystem achieves indistinguishability
under chosen plaintext attacks (IND-CPA security). Using the Fujisaki-
Okamoto generic construction, HELEN achieves IND-CCA security in
the random oracle model. Our cryptosystem looks like the Alekhnovich
cryptosystem. However, we carefully study its complexity and we further
propose concrete optimized parameters.
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1 Introduction

Every public-key cryptosystem relies on problems that are believed computa-
tionally hard. The two mostly used problems are the integer factorization prob-
lem [54,52] and the discrete logarithm problem [22]. However, these two problems
can be solved in polynomial time on a quantum computer. It is thus important
to develop new cryptosystem that are secure even on quantum computers and
to correctly propose some parameters depending on the required security.

In this paper, we present HELEN, a public-key cryptosystem, the security
of which relies on the hardness of the Learning from Parity with Noise prob-
lem (LPN) and the minimum distance problem which are both NP-hard.1 The
former consists in recovering an unknown vector while given access to noisy
versions of its scalar product with random vectors. There is also no known
polynomial-time algorithm on quantum computers. In short, the keys in HE-
LEN consists in a low-weight parity check equation h (the private key) which is
hidden in a random matrix G (the public key) such that it is indistinguishable
from a totally random matrix. The matrix G spans a linear code. Our cryptosys-
tem looks like the Alekhnovich cryptosystem [1]. However, we carefully study its
� This paper is an extended version of [19].
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complexity, we further propose concrete and optimized parameters, and we make
incorrectness small.

We encrypt a duplicated bit by hiding it using a random linear codeword
as well as a random biased noise vector. For decryption, the random linear
codeword is removed by multiplying the ciphertext with h. The noise is removed
by majority logic decoding. With a proper parameter choice, the probability of
decrypting erroneously the message is small. We show in a further section how
to reduce this probability of error as well as how to encrypt multiple bits at the
same time using HELEN.

Related Work. The LPN problem is well studied in the cryptographic commu-
nity. There is an authentication protocol based on the LPN problem named
HB by Hopper and Blum [34]. This protocol was later improved into the HB+

protocol by Juels and Weis [36]. However, HB+ was shown vulnerable to man-
in-the-middle attacks [28]. Several variants were proposed [12,21,47] but all of
them suffer from the same vulnerability [29]. A new variant HB# was proposed
by Gilbert, Robshaw and Seurin [30] to improve the transmission cost of the
protocol and its securtiy against man-in-the-middle attacks but an attack was
also found in this variant [49]. Two more recent versions were introduced based
on the hardness of some variant of the LPN problem, namely Ring-LPN [32] and
subspace LPN [38].

Among other work based on the LPN problem, a PRNG is presented by Blum
et al. in [10] along with a one-way function and a private-key encryption scheme
based on some hard learning problems. A private-key encryption scheme named
LPN-C was proposed by Gilbert, Robshaw and Seurin [31]. LPN-C was shown
IND-CPA secure.

The construction of HELEN [19] presents some similarities with the trapdoor
cipher TCHo [20,3,24] by Aumasson et al. which similarly encrypts a message
by adding some random biased noise and some contribution from a linear code.
In TCHo, this noise is introduced using an LFSR whose feedback polynomial
has a multiple of low weight.

A class of lattice-based cryptosystems introduced by Regev is based on the
worst-case complexity of the learning with errors (LWE) problem [53,50,43,57],
which is a generalisation of the LPN problem on fields Fq with q > 2. The last
two introduce the ring-LWE problem, an algebraic variant of the LWE problem.
According to the authors, it is the first truly practical lattice-based cryptosystem
based on the LWE problem.

Other well-known post-quantum cryptosystems include the McEliece cryp-
tosystem [46] and its dual the Niederreiter cryptosystem [48], which are code-
based making use of Goppa codes. In lattice-based cryptosystem, one has to
mention NTRU [33] based on the hardness of the shortest vector problem in
a particular class of lattices. We refer the reader to [7] for a more exhaustive
survey on post-quantum cryptosystems.

More closely related cryptosystems were proposed. Gentry et al. proposed
an LWE-based cryptosystem [27] in which users share a common random ma-
trix and whose private key (resp. public key) consists in a random error vector
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(resp. its syndrome). Extensions to p = 2 have been open so far. Our procedure
is different from theirs in the sense that we hide a low-parity check equation in
a matrix so that this matrix looks random, whereas they pick a totally random
matrix. Similarly, Alekhnovich proposed a scheme based on problem to distin-
guish (A, Ax + e) with x following uniform distribution and e either in

(
n
nδ

)
or(

n
nδ+1

)
with δ < 1/2 which he conjectures to be hard [1]. Our scheme differs

with the scheme proposed in [1] in the following ways. First, we encode the bit
so that decryption is correct with constant probability φ and which is indepen-
dent from the encrypted bit b (in [1], this probability is just known to be close
to one for b = 0 and 1/2 for b = 1). Finally, we propose concrete parameters and
asymptotic parameters for our scheme. Applebaum et al. proposed a scheme,
which is very similar to ours but which uses sparse matrices instead of random
ones. Thus, the security reduces to the less-studied 3LIN problem instead of
LPN. This problem is similar to the LPN problem except that queries are done
with vectors of weight 3 instead of random vectors. Also, the authors do not
provide any concrete parameters [2]. n Asiacrypt 2012, Döttling et al. presented
an IND-CCA secure cryptosystem based on Alekhnovich’s scheme, but again,
no concrete parameters are given [18]. IND-CCA security is obtained using a
technique by Dolev et al. [17] based on one-time signatures and a tool by Rosen
and Segev [55]. So, to the best of our knowledge, we propose for the first time a
concrete PKC whose security is based on LPN.

2 Preliminaries

We denote by log the logarithm in base two. The concatenation of two bitstrings
x and y is written x‖y. We consider vectors as row vectors. The transpose of
a vector v is denoted by vt. We denote the Hamming weight of a bitstring x

by wt(x). We write x
U←− D if an element x is drawn uniformly at random in

a domain D. A function f(λ) is negligible if for all d ∈ R we have f(λ) =
O

(
λ−d

)
. We denote the Bernoulli distribution with parameter p by Ber(p), i.e.,

if x ← Ber(p), we have Pr[x = 1] = p and Pr[x = 0] = 1 − p. We write Sn
p

to denote the sequence of n independent Bernoulli trials with parameter p. We
write Sn

p (r) when we need to specify the seed r used to generate this sequence.
Given a permutation σ in Sn, the group of all permutations over n elements,
and given h ∈ {0, 1}n, we write σ � h when we apply σ on the bits of h. That is,
(σ � h)i = hσ−1(i). Given a k × n matrix G, we write σ � G when we apply σ on
the columns of G, i.e., (σ � G)i,j = Gi,σ−1(j).

Notation. Given some initial parameters Π and a predicate P , we write

Pr

⎡

⎢
⎢
⎣P (v1, . . . , vm; rp) :

v1 ← f1(Π ; r1)
...
vm ← fm(Π, v1, . . . , vm−1; rm)

⎤

⎥
⎥
⎦

to denote the probability (over the randomnesses r1, . . . , rm, rp) that there exist
v1 ← f1(Π ; r1), . . . , vm ← fm(Π, v1, . . . , vm; rm) such that P (v1, . . . , vm; rp).
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2.1 Security Notions

Definition 1 (Public-key Encryption Scheme). Given a function ϕ(λ), a
ϕ(λ)-cryptosystem over a given message space M and random coin space R
consists of three polynomial-time algorithms:

– a probabilistic key-generation algorithm Gen(1λ; ρg) taking as input some
security parameter 1λ in unary representation and some random coins ρg,
and producing a secret key Ks and a public key Kp;

– a probabilistic encryption algorithm Enc(Kp, m; r) taking as input a public
key Kp and a message m ∈M with some random coins r ∈ R, and producing
a ciphertext y in the ciphertext space C;

– a deterministic decryption algorithm Dec(Ks, c) taking as input a secret key
Ks and a ciphertext c ∈ C, and producing a message or an error.

The cryptosystem must satisfy the following correctness property:

max
m∈M

Pr
[
Dec(Ks, Enc(Kp, m; ρ)) �= m : (Ks, Kp)← Gen(1λ; ρg)

] ≤ ϕ(λ) .

We will also use the following security notions and acronyms. Adaptive
Chosen Ciphertext Attack is denoted CCA, Chosen Plaintext Attack CPA,
Indistinguishability IND and one-wayness OW.

Definition 2 (IND-CPA-security). A cryptosystem is said (t, ε)-IND-CPA-
secure or (t, ε)-semantically secure against chosen plaintext attacks if no adver-
sary A = (A1,A2) with running time bounded by t can distinguish the encryption
of two different plaintexts m0 and m1 with a probability higher than ε.2 More
formally, for all A bounded by t,

Pr

⎡

⎢
⎢
⎢
⎢
⎣
A2(Kp, c; ρ) = b :

(Ks, Kp)← Gen(1λ; ρg)
m0, m1 ← A1(Kp; ρ) (�)

r
U←− R; b

U←− {0, 1}
c← Enc(Kp, mb; r)

⎤

⎥
⎥
⎥
⎥
⎦
≤ 1

2
+ ε . (1)

Asymptotically, a cryptosystem is IND-CPA-secure if for any polynomial t(λ)
there exists a negligible function ε(λ) such that it is (t(λ), ε(λ))-IND-CPA-secure.

IND-CPA-security can also be represented in the simple real-or-random game
model [6,5].3

Definition 3 (Simple real-or-random IND-CPA game security). A cryp-
tosystem is (t, ε)-real-or-random-IND-CPA-secure if in Definition 2, line (�) in (1)
is replaced by m0 ← A1(Kp; ρ); m1

U←−M
2 We include in the running time the size of the code of A in a fixed RAM model of

computation to avoid trivial adversaries.
3 In our definition of real-or-random game model, we consider only simple adversaries,

i.e., adversaries who can query the oracle once. This definition is enough to prove
the IND-CPA-security of our scheme.
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A (t, ε)-real-or-random-IND-CPA-secure system is (t, 2ε)-IND-CPA-secure [5]. Con-
versely, a (t, ε)-IND-CPA-secure system is (t, ε)-real-or-random-IND-CPA-secure.
Asymptotically, both models are equivalent.

Definition 4 (IND-CCA-security). A cryptosystem is said (t, ε)-IND-CCA-
secure or (t, ε)-secure against adaptive chosen ciphertext attacks if no adversary
A = (A1,A2), with access to a decryption oracle OKs and with running time
bounded by t can distinguish the encryption of two different plaintexts m0 and
m1 with a probability higher than ε. More formally, for all A bounded by t,

Pr

⎡

⎢
⎢
⎢⎢
⎣
AOKs

2 (Kp, c; ρ) = b :

(Ks, Kp)← Gen(1λ; ρg)

m0, m1 ← AOKs

1 (Kp; ρ)

r
U←− R; b

U←− {0, 1}
c← Enc(Kp, mb; r)

⎤

⎥
⎥
⎥⎥
⎦
≤ 1

2
+ ε ,

where OKs,c(y) = Dec(Ks, y) for y �= c and OKs,c(c) = ⊥. Asymptotically, a
cryptosystem is IND-CCA-secure if for any polynomial t(λ) there exists a negli-
gible function ε(λ) such that it is (t(λ), ε(λ))-IND-CCA-secure.

Definition 5 (Statistical distance). Given two discrete distributions D0 and
D1 over a set Z, we define the statistical distance between D0 and D1 by

d(D0,D1) :=
1
2

∑

z∈Z
|D1(z)−D0(z)| .

Definition 6. Given two distributions D0 and D1, a distinguisher between them
is an algorithm A that takes as input one sample x from either D0 or D1 and
has to decide which distribution was used. Its advantage is

AdvA(D0,D1) = Pr [A(x) = 1: x← D1]− Pr [A(x) = 1: x← D0] .

We know that for all A, AdvA(D0,D1) ≤ d(D0,D1). Equality is reached for A
defined by A(x) = 1 iff D1(x) ≥ D0(x).

We say that D0 and D1 are ε-statistically indistinguishable if d(D0,D1) ≤ ε.
We say that the two distributions are (t, ε)-computationally indistinguishable

if for any distinguisher A with running time bounded by t,

|AdvA(D0,D1)| ≤ ε .

Asymptotically, two distributions depending on a parameter λ are computation-
ally indistinguishable if for any polynomial t(λ) there exists a negligible function
ε(λ) such that, they are (t(λ), ε(λ))-computationally indistinguishable.

2.2 The Learning from Parity with Noise Problem

The Learning from Parity with Noise (LPN) problem has been well studied both
in learning theory and in cryptography. The goal of this problem is to find out
an unknown vector u, given some noisy versions of its scalar product with some
known random vector. More formally
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Definition 7 (LPN Oracle). An LPN oracle Πu,p for a hidden vector u ∈
{0, 1}k and 0 < p < 1

2 is an oracle returning vectors of the form

〈a U←− {0, 1}k , a · u⊕ ν〉 ,
where, ν ← Ber(p). Note that the output is a k + 1-bit vector.

Problem 8 (Learning from Parity with Noise Problem). The (k, p)-Learning from
Parity with Noise Problem ((k, p)-LPN) consists, given an LPN Oracle Πu,p, to
recover the hidden vector u.

We say that an algorithm A (t, n, δ)-solves the (k, p)-LPN problem if A runs
in time at most t, makes at most n oracle queries and

Pr
[
u

U←− {0, 1}k : AΠu,p(1k) = u
]
≥ δ .

The Decisional LPN Problem. The LPN problem has also a decisional form.
The problem is the following: let Uk+1 be an oracle returning random k + 1-bit
vectors. Then, an algorithm A (t, n, δ)-solves the (k, p)-decisional LPN prob-
lem (D-LPN) if A runs in time at most t, makes at most n oracle queries and

∣
∣
∣Pr

[
u

U←− {0, 1}k : AΠu,p(1k) = 1
]
− Pr

[AUk+1(1k) = 1
]∣∣
∣ ≥ δ .

It is shown [37,53] that if there exists an algorithm A that (t, n, δ)-solves the
(k, p)-D-LPN problem, then there is an algorithm A′ that (t′, n′, δ/4)-solves the
(k, p)-LPN problem, with t′ := O

(
t · kδ−2 log k

)
and n′ := O

(
n · δ−2 log k

)
.

Thus, the hardness of the LPN problem implies that the output of the LPN
vector oracle is indistinguishable from a random source.

We say that the (k, p)-D-LPN problem is (t, ε)-hard, if there is no algorithm
solving it with running time bounded by t and advantage higher than ε.

Algorithms that Solve the LPN Problem. The first subexponential al-
gorithm to solve the LPN problem was given by Blum, Kalai, and Wasserman
in [11] and they estimated its complexity to 2O(k/ log k). We denote this algorithm
by BKW algorithm.

The idea of the BKW algorithm is to first query the LPN oracle to obtain a
large amount of LPN vectors. It searches then for basis vectors ej by finding a
low amount of vectors that xor to ej. If the number of vectors that xor to ej is
small, the noise for this vector will be small as well. Using different independent
instances that xor to the same ej, one can recover the jth bit of u with good
probability. All this procedure can be done using a large amount of queries.

The BKW algorithm was analyzed in details and improved in [40,25]. We
give here the complexity of the improvement given in [40] that we will use as a
security bound in our cryptosystem.

Theorem 9 ([40], Theorem 2). For b ≥ 1, let a := k/b and q := (8b + 200)×
(1 − 2p)−2a

+ (a− 1)× 2b. There exists an algorithm that (kaq, q, 1
2 )-solves the

(k, p)-LPN problem.
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Some parameters along with their security are given in [40, Section 5.2]. This
algorithm requires a subexponential (in k) number of samples. When the number
of samples is polynomial (as it is in our case), Lyubashevsky showed that one
can scramble randomly the samples to get more of them with a higher noise
level [42]. Then, the problem is solvable in 2O(k/ log log k). More precisely, one can
transform the (k, p)-LPN problem with k1+ε samples in the (k, p′)-LPN problem
with enough samples to use the BKW algorithm and with

p′ =
1
2
− 1

2

(
1
4
− p

2

) 2k
ε log k

. (2)

Combining this idea with Theorem 9, we get the following time complexity
(TLPN) for solving LPN and we will use it as a security bound.

Theorem 10 (LPN with limited number of queries). For b ≥ 1, let q :=
k1+ε, and let

TLPN := min
0<a≤k

(
k × a×

((
8k

a
+ 200

)
× (1− 2p′)−2a

+ (a− 1)× 2
k
a

))
, (3)

where p′ is given in Equation (2). There exists an algorithm that (TLPN, q, 1
2 )-

solves the (k, p)-LPN problem.

2.3 Finding a Low-weight Codeword in a Random Linear Code

In our security proof, we will also need to bound the complexity of finding a
low-weight parity-check equation in a random linear code which is the same
as finding a low-weight codeword in the dual code. This problem of finding a
low-weight codeword is also called the minimum distance problem.

Problem 11 (Minimum Distance Problem (MDP)). The (n, k, w)-decisional min-
imum distance problem is the following. Given an (n− k)× n matrix H drawn
uniformly and given w ∈ N, w ≥ 0, is there a non-zero x ∈ F

n
2 with wt(x) ≤ w

such that xHt = 0?
The computation counterpart of this problem consists in finding such an x.

Its hardness remained open for a long time. It was even set the “open problem
of the month” in [35]. It was finally shown to be NP-hard by Vardy [59] using
a reduction from the decisional syndrome decoding problem. Many algorithms
solving this problem were developed (e.g. [39,58,13,14,15,23].)

Finally, a general lower-bound on the complexity of the information set decod-
ing algorithm was derived by Finiasz and Sendrier [23] using idealized algorithms.
However, it was shown in [9,45] and very recently in [4] that it is possible to do
better than this bound.

A new lower-bound for information set decoding is proposed in [9]. This bound
is much simpler and we give it in Assumption 12.
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Assumption 12 ([9]). Let r := n − k. Given an [n, k]-code and given a weight
w, if

(
n
w

) ≤ 2r, the cost of finding a parity-check equation of weight w is
lower-bounded by

TMDP(w, n, k) := min
i

(
n
w

)

2
(

k
w−i

)√(
r
i

) , (4)

bit operations, with r = n− k.

We will assume this lower-bound for our cryptosystem. Note that a similar
analysis for linear codes over a general field Fq is presented in [51].

3 The Cryptosystem

We will first consider how to encrypt one single bit b. Hence, our message space
is M = {0, 1}. We denote the cryptosystem by HELEN. We generalize the
encryption to multiple bits in Section 6.

HELEN uses the following parameters which are described below: n, k, p, w, c,
and H. We encode first our message bit b with a binary [n, 1]-error-correcting
code C1, for n ∈ N. The goal of this code is to be able to recover b when errors
occur. Let c ∈ {0, 1}n be the generating matrix of this code (in fact, it is a
vector). We encode b as b · c. This message is hidden by a random codeword
from a random binary linear [n, k]-code C2 which has a low-weight parity-check
equation h ∈ {0, 1}n and a generator matrix G ∈ {0, 1}k×n. The parameter
k ∈ N determines the dimension of the codeword space in C2 and needs to be
tuned so that the system has the required security. The parity-check equation h
will be the private key of our system while G will be the public key. Since h is a
parity check equation of the code generated by G, we have h ·Gt = 0. We denote
the weight of h by w and the set of all possible h by H. We require H to verify
the following property: there should exist a subgroup P of Sn such that for any
σ ∈ P and any h ∈ H, σ � h ∈ H. The group P defines a group action on the
set H. We require P to be a transitive group action, i.e, for any two h, h′ ∈ H,
there exists a σ ∈ P such that σ � h = h′. In the following, H will be the set
of all vectors of weight w and dimension n but we keep this more general H for
further improvements. We also hide then the message further by adding some
low weight random noise vector ν ∈ {0, 1}n produced by a source Sp.

For correct decryption, we require also that h · ct = 1 for all h ∈ H. When H
contains all the vectors of weight w, this condition implies c = (1, . . . , 1) (see (5)
below).

In the following, we describe more precisely the cryptosystem. All algorithms
are summarized in Algorithm 1.

3.1 Encryption

A bit b ∈ M is encrypted as BEnc(G, b; r1‖r2) = b · c ⊕ r1G ⊕ ν, where c is the
generator vector for C1, G is the generator matrix for C2, r1 ∈ {0, 1}k is random
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and ν := Sn
p (r2), i.e., it is the n first bits generated by the source Sp with random

seed r2. The ciphertext space is, thus, C = {0, 1}n. The complexity of encryption
is O (kn).

3.2 Decryption

We define b′ := BDec(h, y) = h·yt. Given a ciphertext y ∈ {0, 1}n, we recover the
original message by first removing the noise due to C2. This is done by applying
h on y since h ·Gt = 0. Hence, we get b′ := BDec(h, y) = h · yt = (h · ct · bt)⊕ ν′,
for ν′ := h · ν a noise with

Pr[ν′ = 1] =
1− (1 − 2p)w

2
by Lemma 14. Note that it is necessary that

h · ct = 1 (5)

for all vector h ∈ H if one wants to be able to recover b. When H includes
all vectors of weight w, this condition is equivalent to setting c to the all-one
vector and w to an odd number. The resulting bit b′ is then different from b with
probability ϕ, which is given in the following theorem.

Theorem 13. HELEN is a ϕ-cryptosystem, where ϕ := (1− (1− 2p)w)/2.

Note that the complexity of decryption is O (n).

Lemma 14. Let X be a random variable defined as the sum modulo 2 of w iid
Bernoulli random variables equals to 1 with probability p and to 0 else. Then

Pr[X = 1] =
1− (1− 2p)w

2
.

Proof. We have 1− 2 Pr[X = 1] = E

[
(−1)X

]
= (1− 2p)w. �


3.3 Key Generation

We need now to generate a code that is indistinguishable from a random code
but that contains a known secret parity-check equation h of low weight. Let w
be the required weight of h and let H be the set of all possible private keys. The
key generation algorithm is given in Algorithm 1.

The resulting public key size is k×n bits, since we have to store the matrix G.
The private key is w log n bits long. The key generation complexity is O (k × n).
Note that we have hGt = 0.

4 Security Analysis

We will reduce the security of our scheme to the LPN problem presented in
Section 2.2. To do this, we will proceed in two steps. First, we show that the
code we construct for C2 is computationally indistinguishable from a random
matrix.
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Algorithm 1. Algorithm to generate keys, to encrypt, and to decrypt.
Key Generation:
Input: Lengths k, n and a set H.
Output: A private key h and a public key G.
1: Draw a random vector h of length n in the set H.
2: Let 0 < u ≤ n be any index of h such that hi = 1 , e.g., max {i : hi = 1}.
3: Let gij ← Ber( 1

2
), for 1 ≤ i ≤ k and 1 ≤ j ≤ n, j �= u.

4: Let
giu =

∑

1≤j≤n
j �=u

gijhj

for 1 ≤ i ≤ k, where the sum is taken over F2.
5: return the matrix G := [gij ]1≤i≤k

1≤j≤n
and the vector h.

Encryption:
Input: A bit b to encrypt, a public key G, two random seeds r1 and r2, a length n,

an n-bit vector c, and a noise parameter p.
Output: A ciphertext y encrypted under the public key G.
1: Let ν := Sn

p (r2).
2: return y ← b · c⊕ r1G⊕ ν.

Decryption:
Input: A ciphertext y and a private key h.
Output: The original plaintext b with probability ϕ defined in Theorem 13.
1: return b′ ← h · yt.

4.1 Link to Random Codes

We will compare the distributions of the output of different generators and show
that their statistical distance is negligible using various lemmas. We conclude in
Theorem 15. The first generator is our key generation algorithm.

Generator A: Run the key generation algorithm to obtain G and h and return
A := G.

Generator G1: Run generator A until the resulting matrix G has only one parity
check equation in H and return G1 := G.

Generator G2: Draw a random k×n matrix G2 until it has a single parity check
equation in H and return G2.

Generator G3: Draw a random k × n matrix G3 until it has at least one parity
check equation in H and return G3.

Generator B: Return a random k × n matrix B.

In the following, we show that the statistical distance between A and G3 is
negligible for suitable parameters.
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Theorem 15. Assume that there exists a subgroup P of Sn that acts transitively
on H. Then,

d(A, G3) ≤ (#H− 1)(#H+ 2)
2k+1

=: DA,G3 . (6)

Proof. We do the proof in three steps.

– We have d(G1, G2) = 0.
Recall that there exists a subgroup P of Sn that acts transitively on H.
Clearly, G2 generates a uniform distribution among all G’s which have a
unique parity check equation in H. So, we just have to prove that G1 has
the same distribution. Clearly, hGt = 0 if and only if (σ � h)× (σ � G)t = 0.
Also, A generates uniformly a pair (h, G) with h ∈ H and G such that
hGt = 0. Let Gh be the set of all G’s for which h is the only element of H
satisfying hGt = 0. For any h ∈ H and any G ∈ Gh, we have

Pr[G1 → G] =
1

#H×#Gh

Due to the above property on the action �, any σ induces a permutation
from Gh to Gσ�h. Since the action is further transitive, all Gh’s have same
cardinality. Hence, G1 generates a uniform distribution among all the G’s
which have a unique parity check equation in H.

– We have d(G2, G3) ≤ (#H−1)#H
2k+1 .

Let p1(G3) denote the probability that generator G3 has exactly one parity-
check equation in H. The best distinguisher between G2 and G3 outputs 1
if and only if the generated matrix has two or more parity-check equations
in H. So, d(G2, G3) = 1− p1(G3).
Let a (resp. b) be the probability that a random matrix verifies at least one
(resp. two) parity-check equations in H. Then a ≥ 2−k, since any parity-
check equation is verified with probability exactly 2−k. Similarly,

b ≤ (#H)(#H− 1)
2

× 2−2k

Thus,

d(G2, G3) = 1− p1(G3) =
b

a
≤ (#H− 1)#H

2
× 2−k .

– We have d(A, G1) ≤ #H−1
2k .

Let p1(A) denote the probability that the output of generator A has ex-
actly one parity-check equation in H. The best distinguisher between A and
G1 checks if the generated matrix has only one parity-check equation. So,
d(A, G1) = 1−p1(A) ≤ #H−1

2k since we are looking for a second parity-check
equation in a random matrix which has already one of them.

Using triangular inequality, we get the wanted result. �
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We want now to link this distribution with the distribution of an uniformly
distributed k × n matrix, i.e., a matrix produced by generator B. We will need
suitable parameters such that G3 is computationally indistinguishable from B.

The best distinguisher between G3 and B consists in deciding whether the
output of the unknown generator has a parity-check equation in H or not.
As discussed, the decisional problem is believed as hard as the computational
problem. Hence, we extend Assumption 12 to the following one.

Assumption 16. For any distinguisher between G3 and B, the complexity over
advantage ratio is lower bounded by TMDP(w, n, k), which is defined in (4).

So, by selecting parameters such that the right-hand side of (6) is negligible
and such that TMDP(w, n, k) ≥ 2λ, for a security parameter λ, any game involving
our cryptosystem produces a computationally indistinguishable outcome when
the key generator is replaced by B.

4.2 Semantic Security

Now that we have B computationally indistinguishable from A, we can link our
cryptosystem with the LPN problem.

Theorem 17. Let ε0 := d(A, G3) as defined in Theorem 15. If the (n, k, w)-
decisional minimum distance problem is (t1, ε1)-computationally unsolvable, and
if the (k, p)-decisional LPN problem is (t2, ε2)-hard, then there exists a constant
τ such that our cryptosystem is

(min{t1, t2 − τkn}, 2(ε0 + ε1 + ε2)) -IND-CPA-secure .

Proof. We introduce the following three games Γ0, Γ1 and Γ2. Γ0 is the IND-
CPA game for our cryptosystem in the simple real-or-random model. Γ1 is the
IND-CPA game in the same model but using generator B instead of A. Γ2 is the
(k, p)-D-LPN game.

By the assumptions, we know that the best advantage between Γ0 and Γ1 is
ε1 + ε2.

For the best advantage between Γ1 and Γ2, we do the following. Recall that
in the simple real-and-random game this model, the adversary submits first a
chosen plaintext b using an algorithm Aror

1 (G). Then, given a n-bit word u, has
to decide using an algorithm Aror

2 (G, u), whether u is the encryption of b or is
a random bitstring. Let (Aror

1 (G),Aror
2 (G, u)) be an IND-CPA adversary for our

cryptosystem when G is generated using generator B.
We show that using this adversary, we can solve the D-LPN problem. We

query first the unknown oracle of the D-LPN problem n times to obtain n-
vectors α1, . . . , αn. Note that each of these αi has exactly k + 1 bits. We create
now the k × n matrix G̃ using the first k bits of αi as column i, for 1 ≤ i ≤ n.
Using Aror

1 (G̃), we recover a plaintext b. Let z := b · c ⊕ (α1|k+1‖ . . . ‖αn|k+1),
where αi|k+1 denotes the k+1-th bit of αi. If the unknown oracle returns random



HELEN: A Public-Key Cryptosystem Based on the LPN 119

bitstrings, then z will be random as well. However, if it is an LPN oracle, then
z is a valid ciphertext of b using the public key G̃. Note also that the matrix G̃
follows the same distribution as the output of generator B.

Hence, using Aror
2 (G̃, z), we can decide whether z is a ciphertext corresponding

to b or not. The complexity of this simulation is τkn for a constant τ > 0 large
enough. Thus, the advantage between game Γ1 and Γ2 is zero.

Since the D-LPN problem is supposed (t2, ε2)-hard, we get that our cryp-
tosystem when we use generator B is (t2 − τkn, ε2)-IND-CPA-secure in the sim-
ple real-or-random model. Similarly, we get that the original cryptosystem is
(min{t1, t2 − τkn}, ε0 + ε1 + ε2)-IND-CPA-secure in the simple real-or-random
model. Thus, our cryptosystem is (min{t1, t2 − τkn}, 2(ε0 + ε1 + ε2))-IND-CPA-
secure in the standard model [6]. �

Hence, we reduced the semantic security of our cryptosystem to the hardness of
the decisional LPN problem with n queries and noise parameter p.

Note that since we encrypt one single bit, an IND-CPA adversary has to dis-
tinguish BEnc(G, 0) from BEnc(G, 1) which is equivalent to OW-CPA security.

5 Selection of Parameters

To summarize, we need to tune the following security parameters for HELEN:

– The dimension k of the code C2 generated by G,
– The ciphertext length n (also the length of the codewords in C2),
– The weight w of the secret key, and
– The noise probability p.

For our cryptosystem to be semantically secure, we need the parameters to
verify Theorem 17. In particular, this implies that the D-LPN problem should
be hard, that finding a low-weight parity-check equation in the code is hard as
well, i.e., that TMDP(w, n, k) ≥ 2λ and that the statistical distance DA,G3 defined
in Theorem 15 is lower than 2−λ. We need also w to be odd. For the LPN
problem, we want TLPN ≥ 2λ, where TLPN is given in Equation (3).

Recall that the probability of decrypting incorrectly a bit is

Perror :=
1− (1− 2p)w

2
. (7)

Hence, to compare different parameters, we will normalize them with the ca-
pacity of a binary symmetric channel (BSC) with parameter Perror. Recall that
the capacity of the BSC is C := 1 − H2(Perror) with H2(p) := −p log(p) − (1 −
p) log(1 − p). We normalize by this factor, since we know that such a rate is
achievable by the channel coding theorem. This gives us a good way of compar-
ing the parameters.

We propose two sets of parameters. Some (I) which minimizes the n/C ratio
to minimize the number of transmitted bits and some (II) with a smaller kn/C
ratio to minimize the encryption/decryption complexity. We give in Table 1
concrete parameters for different security parameters λ.
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Table 1. Parameters for our cryptosystem

λ k n w p kn n/C kn/C TMDP DA,G3 TLPN C

I 64 4 500 18 000 33 0.01 226.3 216.4 228.6 265.3 2−3813 ≥ 2k 0.20
II 64 2 200 16 000 23 0.02 225.0 217.1 228.2 264.7 2−1707 ≥ 2k 0.11

I 80 5 600 28 000 35 0.01 227.2 217.2 229.7 280.5 2−4832 ≥ 2k 0.18

II 80 2 800 27 000 25 0.02 226.2 218.1 229.6 280.4 2−2232 ≥ 2k 0.10

In Table 2, we compare for concrete parameters HELEN with the code-based
McEliece cryptosystem [46] and with an LWE-based cryptosystem [41]. Note
that for encryption and decryption time, we neglect the cost of encoding and
decoding.

We propose the following asymptotic parameters for our system:

k = Θ
(
λ2

)
n = Θ

(
λ2

)
w = Θ (λ) p = Θ (1/λ) .

Indeed, we obtain TMDP and TLPN ≥ 2λ, DA,G3 ≤ 2−λ, Perror = 1
2 − 1

eO(1) , and
C > 0. In Table 3, we compare the asymptotic parameters.

Table 2. Comparison with other cryptosystems

Name λ Message
expansion

Pub key size Encryption time Decryption time

HELEN I 80 217.2 227.2 O
(
229.7

)
O

(
217.2

)

McEliece [8] 80 1.29 218.8 O
(
221.0

)
O

(
221.3

)

LWE [41] 128 22 217.5 O
(
224

)
O

(
218.5

)

Ring-LWE [41] 128 22 ≈ 210 O
(
224

)
O

(
218.5

)

Table 3. Asymptotic comparison with other cryptosystems. The Θ (.)’s have been
omitted.

Name Message
expansion

Public key
size

Private key
size

Key generation Encryption Decryption

HELEN λ2 λ4 λ log λ λ4 λ4 λ2

TCHo λ2 λ2 λ log λ λ6 log λ log log λ λ5 λ4

McEliece 1 λ2 λ2 λ3 λ2 λ2 log λ
RSA 1 λ3 λ3 λ12 λ6 λ9

NTRU 1 λ λ λ3 λ2 λ2
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6 Encrypting More than One Bit

In this section, we show how to encrypt more than one bit using HELEN.
Taking advantage of an efficient coding scheme, we can also improve the prob-
ability of decrypting correctly the message. In addition to the previous param-
eters n, k, p, w and H we add a [μ, κ]-error-correcting code. Let Encode be this
[μ, κ]-error-correcting code. Let also Decode be an efficient decoding algorithm
corresponding to this code.

Encryption: We encrypt a plaintext m ∈ {0, 1}κ in two steps. First we compute
b1‖ . . . ‖bμ := Encode(m). The ciphertext c is then BEnc(G, b1)‖ . . . ‖BEnc(G, bμ).
The complexity of encryption is O (μkn + TEncode), where TEncode is the complex-
ity of the encoding algorithm.

Decryption: To decrypt, we first decrypt each block of n bits using BDec to
recover b′1‖ . . . ‖b′μ, where each b′i �= bi with probability (1− (1/2p)w)/2 =: Perror.
The complexity of decryption is O (μn + TDecode), where TDecode is the complexity
of the decoding algorithm. Let ρ be the maximum number of errors the error-
correcting code can correct. Then, using a Chernoff bound, the probability of
decrypting incorrectly the message is

μ∑

i=ρ+1

(
μ

i

)
(Perror)i(1− Perror)μ−i ≤ exp

[

−2μ

(
ρ

μ
− Perror

)2
]

=: φ . (8)

Theorem 18. HELEN with parameter μ, κ is a φ-cryptosystem, where φ is
given in (8).

Theorem 19. Let εb be the IND-CPA advantage for the elementary cryptosys-
tem HELEN with μ = κ = 1. Then, the advantage of an IND-CPA adversary
against the full cryptosystem HELEN with parameter μ and κ is smaller than
μεb.

Proof. Let A := (A1,A2) be an IND-CPA adversary HELEN with parameter
μ, κ. Given i ∈ {1, . . . , μ}, we define Bi := (Bi,1(G),Bi,2(G, c)) as follows.

Bi,1(G):

1. Let m0, m1 ← A1(G)
2. Let b0

1‖ . . . ‖b0
μ ← Encode(m0), the

encoding of m0

3. Let b1
1‖ . . . ‖b1

μ ← Encode(m1), the
encoding of m1

4. Return b0
i , b

1
i .

Bi,2(G, c):

1. Compute c1 ← BEnc(G, b1
1), . . . ,

ci−1 ← BEnc(G, b1
i−1).

2. Let ci = c
3. Compute ci+1← BEnc(G, b0

i+1), . . . ,
cμ ← BEnc(G, b0

μ).
4. Set y := c1‖ . . . ‖cμ

5. return A2(G, y)
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We know that AdvBi ≤ εb. We have

Pr [A → 0 | m0 encrypted] = Pr
[B1 → 0 | b0

1 encrypted
]

and
Pr [A → 0 | m1 encrypted] = Pr

[Bμ → 0 | b1
μ encrypted

]
.

Also,

Pr
[Bi → 0 | b1

i encrypted
]

= Pr
[Bi+1 → 0 | b0

i+1 encrypted
]

.

Hence,

AdvA = (Pr [A → 0 | m0 encrypted]− Pr [A → 0 | m1 encrypted])

=
μ∑

i=1

(
Pr

[B → 0 | b0
i encrypted

]− Pr
[B → 0 | b1

i encrypted
]) ≤ μεb .

�

Obviously HELEN is not IND-CCA-secure, since it is clearly malleable. It suf-
fices to change one single bit of the ciphertext and to submit it to the decryption
oracle to decrypt the plaintext with good probability. To achieve IND-CCA se-
curity, one can use well-known construction like the Fujisaki-Okamoto hybrid
construction [26]. This construction uses two random oracles H1 and H2 as well
as a symmetric encryption scheme. However, such a construction work only if
the cryptosystem is Γ -uniform.

Definition 20 (Γ -uniformity). Let Enc be an asymmetric encryption scheme,
with key generation algorithm Gen(1λ) and encryption algorithm Enc(Kp, m; r)
over the message space M and the random coins space R. Enc is Γ -uniform if
for any plaintext m ∈ M, for any keys drawn by Gen and for any y ∈ {0, 1}∗,
we have

Pr
[
h

U←− R : y = Enc(Kp, m; h)
]
≤ Γ ,

i.e., the probability that a plaintext and a ciphertext match is bounded.

Lemma 21. HELEN is (1− p)n-uniform.

Proof. Recall that the HELEN encryption of b is y = b · c ⊕ r1G ⊕ Sn
p (r2), for

random coins r1 and r2. We need to bound the probability (taken over r1 and r2)
that a given plaintext x and ciphertext y match. Since in HELEN we consider
only p < 1

2 , the most probable ciphertext corresponds to y = b · c ⊕ r1G, i.e.,
when Sn

p is the zero bitstring. This happens with probability (1− p)n. When we
take the average over the possible r1, this probability can only decrease. Hence,
HELEN is (1 − p)n-uniform. �

Theorem 22. Let q1(resp. q2) be the number of queries an adversary makes
to H1 (resp. H2). Let qd be the number of queries performed to the decryption
oracle. Then, if HELEN is (t, ε)-IND-CPA-secure, the Fujisaki-Okamoto hybrid
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construction using a one-time pad for symmetric encryption with key length � is
(t1, ε1)-IND-CCA-secure in the random oracle model, where

t1 := t−O ((q1 + q2)× (k + �))

ε1 := (2(q1 + q2)ε + 1)(1− (1− p)n − 2−	)−qd − 1 .

Proof. Since HELEN is OW-CPA secure and (1− p)n-uniform, the result follows
from [26, Theorem 14]. �


7 Conclusion

Further Work. HELEN can be extended in multiple ways. A first idea is to
use different H to reduce the probability of error and, hence, to reduce the
transmission overhead. This implies also to verify that Assumption 16 holds for
this new H. Another idea would be to encrypt a message in Fq for q > 2. The
codes C1 and C2 described in Section 3 need then to be modified accordingly
as well as the noise we add. This new extension could then be linked to the
learning with error (LWE) problem [53], a generalization of the LPN problem
over a finite field Fq. Finally, the LPN problem deserves some more analysis in
particular when p is not fixed.

In conclusion, HELEN is a code-based public-key cryptosystem based on the
hardness of some well-known problems. Since its margin of progression is still
large, HELEN can become a competitive cryptosystem with truly practical pa-
rameters.
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18. Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA Secure Cryptog-
raphy Based on a Variant of the LPN Problem. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012)

19. Duc, A., Vaudenay, S.: HELEN: a Public-key Cryptosystem Based on the LPN and
the Decisional Minimal Distance Problems (Extended Abstract). In: Yet Another
Conference on Cryptography (2012)

20. Duc, A., Vaudenay, S.: TCHo: A Code-Based Cryptosystem. In: Kranakis, E. (ed.)
Advances in Network Analysis and its Applications, Mathematics in Industry,
vol. 18, pp. 149–179. Springer, Heidelberg (2013)

21. Duc, D.N., Kim, K.: Securing HB+ against GRS man-in-the-middle attack. In:
Institute of Electronics, Information and Communication Engineers, Symposium
on Cryptography and Information Security (2007)

22. El Gamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 10–18. Springer, Heidelberg (1985)

23. Finiasz, M., Sendrier, N.: Security Bounds for the Design of Code-Based Cryp-
tosystems. In: Matsui (ed.) [44], pp. 88–105

24. Finiasz, M., Vaudenay, S.: When Stream Cipher Analysis Meets Public-Key Cryp-
tography. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp.
266–284. Springer, Heidelberg (2007)



HELEN: A Public-Key Cryptosystem Based on the LPN 125
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