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Abstract. Maximum distance separable (MDS) matrices have applica-
tions not only in coding theory but also are of great importance in the
design of block ciphers and hash functions. It is highly nontrivial to
find MDS matrices which is involutory and efficient. In a paper in 1997,
Youssef et. al. proposed an involutory MDS matrix construction using
Cauchy matrix. In this paper we study properties of Cauchy matrices
and propose generic constructions of low implementation cost MDS ma-
trices based on Cauchy matrices. In a 2009 paper, Nakahara and Abrahao
proposed a 16 × 16 involutory MDS matrix over F28 by using a Cauchy
matrix which was used in MDS-AES design. Authors claimed that their
construction by itself guarantees that the resulting matrix is MDS and
involutory. But the authors didn’t justify their claim. In this paper we
study and prove that this proposed matrix is not an MDS matrix. Note
that this matrix has been designed to be used in the block cipher MDS-
AES, which may now have severe weaknesses. We provide an algorithm to
construct involutory MDS matrices with low Hamming weight elements
to minimize primitive operations such as exclusive-or, table look-ups and
xtime operations. In a 2012 paper, Sajadieh et. al. provably constructed
involutory MDS matrices which were also Hadamard in a finite field by
using two Vandermonde matrices. We show that the same matrices can
be constructed by using Cauchy matrices and provide a much simpler
proof of their construction.

Keywords: Cauchy matrix, Diffusion, Involutory matrix, MDS matrix,
MixColumn operation, Vector space, Subspace, Vandermonde matrix.

1 Introduction

Claude Shannon, in his paper “Communication Theory of Secrecy Systems” [24],
defined confusion and diffusion as two properties, required in the design of
block ciphers. One possibility of formalizing the notion of perfect diffusion is
the concept of multipermutation, which was introduced in [23,26]. Another way
to define it is using MDS matrices. Maximum Distance Separable (MDS) ma-
trices offer diffusion properties and is one of the vital constituents of modern
age ciphers like Advanced Encryption Standard (AES) [6], Twofish [21, 22],
SHARK [18], Square [5], Khazad [1], Clefia [25] and MDS-AES [10]. The stream
cipher MUGI [27] uses MDS matrix in its linear transformations. MDS matrices
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are also used in the design of hash functions. Hash functions like Maelstrom [7],
Grφstl [8] and PHOTON family of light weight hash functions [9] use MDS
matrices as main part of their diffusion layers.

Nearly all the ciphers use predefined MDS matrices for incorporating the dif-
fusion property. Although in some ciphers the possibility of random selection of
MDS matrices with some constraints is provided [30]. In this context we would
like to mention that in papers [9, 11, 14, 19, 30], different constructions of MDS
matrices are provided. In [9], authors constructed lightweight MDS matrices from
companion matrices by exhaustive search. In [11], authors constructed efficient
4 × 4 and 8 × 8 matrices to be used in block ciphers. In [14, 19], authors con-
structed involutory MDS matrices using Vandermonde matrices. In [30], authors
constructed new involutory MDS matrices using properties of Cauchy matrices.

There are two very popular approaches for the design of large MDS matrices.
One involves Cauchy matrices [30] and the other uses Vandermonde matrices
[14, 19]. In some recent works [9, 20, 29], MDS matrices have been constructed
recursively from some suitable companion matrices for lightweight applications.

In [28], authors proposed a special class of substitution permutation networks
(SPNs) that uses same network for both the encryption and decryption opera-
tions. The idea was to use involutory MDS matrix for incorporating diffusion. It
may be noted that for ciphers like FOX [12] and WIDEA-n [13] that follow the
Lai-Massey scheme, there is no need of involutory matrices.

In this paper we revisit and systematize the MDS matrix constructions using
Cauchy matrices [30] and generalize it. We also study involutory MDS matrices
where the entries are preferably of low Hamming weight.

Lacan and Fimes [14] constructed MDS matrices from two Vandermonde ma-
trices. Sajadieh et. al. [19] constructed MDS matrices which were also involu-
tory. They [19] also constructed involutory Hadamard MDS matrices in a finite
field. In this paper we propose a Cauchy based MDS matrix construction and
prove that this is Hadamard in the finite field. We further provide an interest-
ing equivalence of our Cauchy based construction and the Vandermonde based
“Hadamard involutory MDS matrix” construction of [19]. By this equivalence
we have a much simpler proof of generalization of Corollary 2 of [19]. We also
show that our method is faster than the Hadamard involutory MDS matrix
construction of [19] in terms of time complexity.

In [10], authors proposed a new diffusion layer for their AES cipher that
may replace the original ShiftRow and MixColumn layers. They proposed a new
16× 16 matrix M16×16 for designing MDS-AES block cipher, which was claimed
to be involutory and MDS. But the authors did not justify their claims. In this
paper we prove that their claim is not correct and the constructedM16×16 matrix
is not an MDS matrix. Our construction (Algorithm 2) may be used to generate
16× 16 involutory MDS matrices which may be used in MDS-AES block cipher.

MDS matrices of low Hamming weight are desirable for efficient implementa-
tion. In this context it may be noted that multiplication by 1, which is the unit
element of F2n , is trivial. When α is the root of the constructing polynomial of
F2n , the multiplication by α can be implemented by a shift by one bit to the left
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and a conditional XOR with a constant when a carry bit is set (multiplication by
α is often denoted as xtime). Multiplication by α+1 is done by a multiplication
by α and one XOR operation. Multiplication by α2 is done by two successive
multiplications by α.

The organization of the paper is as follows: In Section 2 we provide defini-
tions and preliminaries. In Section 3, we construct MDS matrices using Cauchy
matrices. In Section 4 we study Cauchy and Vandermonde constructions for
FFHadamard involutory MDS matrices. In Section 5 we show that the 16× 16
matrix M16×16 as proposed in [10] is not MDS. We conclude the paper in
Section 6.

2 Definition and Preliminaries

Let F2 = {0, 1} be the finite field of two elements and F2n be the finite field of 2n

elements. Elements of F2n can be represented as polynomials of degree less than
n over F2. For example, let β ∈ F2n , then β can be represented as

∑n−1
i=0 biα

i,
where bi ∈ F2 and α is the root of generating polynomial of F2n . Another compact
representation uses hexadecimal digits. Here the hexadecimal digits are used to
express the coefficients of corresponding polynomial representation. For example
α7+α4+α2+1 = 1.α7+0.α6+0.α5+1.α4+0.α3+1.α2+0.α+1 = (10010101)2 =
95x ∈ F28 . We will often denote a matrix by ((ai,j)), where ai,j is the (i, j)-th
element of the matrix.

The Hamming weight of an integer i is the number of nonzero coefficients in
the binary representation of i and is denoted by H(i). For example H(5) = 2,
H(8) = 1.

F2n and F
n
2 are isomorphic when both of them are regarded as vector space

over F2. The isomorphism is given by x = (x1α1 + x2α2 + · · · + xnαn) �→
(x1, x2 · · · , xn), where {α1, α2, . . . , αn} is a basis of F2n .

Let (H,+) be a group and G is a subgroup of (H,+) and r ∈ H . Then
r +G = {r + g : g ∈ G} is left coset of G in H and G + r = {g + r : g ∈ G} is
right coset of G in H . If the operation + in H is commutative, r +G = G+ r,
i.e. left coset is same as right coset, and r +G is simply called coset of G in H .
It follows that any two left cosets (or right cosets) of G in H are either identical
or disjoint.

Definition 1. Let F be a finite field and p and q be two integers. Let x → M×x
be a mapping from F

p to F
q defined by the q× p matrix M . We say that it is an

MDS matrix if the set of all pairs (x,M × x) is an MDS code, i.e. a linear code
of dimension p, length p+ q and minimal distance q + 1.

An MDS matrix provides diffusion properties that have useful applications in
cryptography. The idea comes from coding theory, in particular from maximum
distance separable code (MDS). In this context we state two important theorems
from coding theory.

Theorem 1. [16, page 33] If C is an [n, k, d] code, then n− k ≥ d− 1.
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Codes with n− k = d− 1 are called maximum distance separable code, or MDS
code for short.

Theorem 2. [16, page 321] An [n, k, d] code C with generator matrix G =
[I|A], where A is a k×(n−k) matrix, is MDS if and only if every square subma-
trix (formed from any i rows and any i columns, for any i = 1, 2, . . . ,min{k, n−
k}) of A is nonsingular.

The following fact is another way to characterize an MDS matrix.

Fact: 1 A square matrix A is an MDS matrix if and only if every square sub-
matrices of A are nonsingular.

The following fact is immediate from the definition.

Fact: 2 All square submatrices of an MDS matrix are MDS.

One of the elementary row operations on matrices is multiplying a row of a
matrix by a scalar except zero. MDS property remains invariant under such
operations. So we have the following fact.

Fact: 3 If A is an MDS matrix over F2n, then A′, obtained by multiplying a
row (or column) of A by any c ∈ F

∗
2n is MDS.

Fact: 4 If A is an MDS matrix over F2n , then c.A is MDS for any c ∈ F
∗
2n .

Recall that many modern block ciphers use MDS matrices as a vital constituent
to incorporate diffusion property. In general two different modules are needed for
encryption and decryption operations. In [28], authors proposed a special class of
SPNs that uses same network for both the encryption and decryption operation.
The idea was to use involutory MDS matrices for incorporating diffusion.

Definition 2. A matrix A is called involutory matrix if it satisfies the condition
A2 = I, i.e. A = A−1.

Several design techniques have been used in past for constructing MDS matri-
ces including exhaustive search for small matrices. For large MDS matrices, the
designers prefer the following two methods: One method involves Cauchy matri-
ces [30] and the other method uses Vandermonde matrices [14,19]. In this paper
we study construction of involutory MDS matrices using Cauchy matrices. Be-
fore going into the construction, we discuss Cauchy matrix and its properties
which are of special importance in our constructions.

Definition 3. Given x0, x1 . . . , xd−1 ∈ F2n and y0, y1 . . . , yd−1 ∈ F2n , such that
xi + yj �= 0 for all 0 ≤ i, j ≤ d− 1, then the matrix A = ((ai,j)), 0 ≤ i, j ≤ d− 1
where ai,j =

1
xi+yj

is called a Cauchy matrix [16,30].

It is known that

det(A) =

∏
0≤i<j≤d−1(xj − xi)(yj − yi)

∏
0≤i,j≤d−1(xi + yj)

.

So provided xi’s are distinct and yj’s are distinct and xi + yj �= 0 for all 0 ≤
i, j ≤ d− 1, det(A) �= 0, i.e. A is nonsingular. So we have the following result.
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Fact: 5 For distinct x0, x1 . . . , xd−1 ∈ F2n and y0, y1 . . . , yd−1 ∈ F2n , such that
xi+yj �= 0 for all 0 ≤ i, j ≤ d−1, the Cauchy matrix A = ((ai,j)), 0 ≤ i, j ≤ d−1
where ai,j =

1
xi+yj

, is nonsingular.

From the definition of a Cauchy matrix we have the following fact.

Fact: 6 Any square submatrix of a Cauchy matrix is a Cauchy matrix.

From Fact 5 and Fact 6; and for distinct xi’s and yj’s, such that xi + yj �= 0, all
square submatrices of a Cauchy matrix are nonsingular. This leads to an MDS
matrix construction [30]. Towards this we have the following Lemma, which we
call a Cauchy construction.

Lemma 1. For distinct x0, x1 . . . , xd−1 and y0, y1 . . . , yd−1, such that xi+yj �= 0
for all 0 ≤ i, j ≤ d − 1, the matrix A = ((ai,j)), where ai,j = 1

xi+yj
is an MDS

matrix.

Proof. It is to be noted that the matrix A is a Cauchy matrix. Also from
Fact 6, all of its submatrices are Cauchy matrices. Since x0, x1 . . . , xd−1 and
y0, y1 . . . , yd−1 are distinct and xi + yj �= 0 for all 0 ≤ i, j ≤ d− 1, so from Fact
5, all square submatrices of A are nonsingular. So A is an MDS matrix. �

Lemma 2. Each row(or each column) of the d×d MDS matrix A, formed using
construction of Lemma 1 has d distinct elements.

Proof. The elements of i’th row of A are 1
xi+yj

for j = 0, . . . , d−1. Now 1
xi+yj1

=
1

xi+yj2
for any two j1, j2 ∈ {0, . . . , d − 1} such that j1 �= j2 implies yj1 = yj2 ,

which is a contradiction to the fact that yj ’s are distinct. Since i is arbitrary,
the result holds for all rows of A. The proof for columns are similar. �

Corollary 1. The d × d MDS matrix A, formed using construction of Lemma
1 has at least d distinct elements.

Definition 4. [16,19] The matrix

V = van(v0, . . . , vd−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 v0 v20 v30 . . . v
d−1
0

1 v1 v21 v31 . . . v
d−1
1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 vj v2j v3j . . . v
d−1
j

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 vd−1 v2d−1 v3d−1 . . . v
d−1
d−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is called a Vandermonde matrix, where vi’s are from any finite or infinite field.

Fact: 7 det(V ) =
∏

i<j(vi − vj), which is non zero if and only if the vi’s are
distinct.

In [14], authors proposed MDS matrix construction from Vandermonde matrices,
which we call a Vandermonde construction. We record this important result in
the following lemma.



48 K. Chand Gupta and I. Ghosh Ray

Lemma 3. [14,19] For distinct x0, x1, . . . , xd−1 and y0, y1, . . . , yd−1, such that
xi + yj �= 0, the matrix AB−1 is an MDS matrix, where A = van(x0, . . . , xd−1)
and B = van(y0, . . . , yd−1).

Authors of [19] proposed techniques to produce involutory MDS matrices. We
record this in the following lemma with slightly different notations.

Lemma 4. [19] Let A = van(x0, . . . , xd−1) and B = van(y0, . . . , yd−1) are
d × d invertible Vandermonde matrices in F2n satisfying xi = yi + r and xi �=
yj , i, j ∈ {0, . . . , d− 1}, r ∈ F

∗
2n , then AB−1 is an involutory MDS matrix.

In [19], authors constructed a special form of MDS matrices called Finite Field
Hadamard matrices, which is defined as follows:

Definition 5. [2, 19] A 2m × 2m matrix H is Finite Field Hadamard matrix
(FFHadamard) in F2n if it can be represented as follows:

H =

(
U V
V U

)

,

where the two submatrices U and V are also FFHadamard.

Fact: 8 [19] Let H = ((hi,j)) be a 2m× 2m matrix whose first row is (x0 x1 . . .
x2m−1) and hi,j = xi⊕j , then H is FFHadamard and is denoted by H = had(x0,
. . . , x2m−1).

Let H = ((hi,j)) = had(x0, . . . , x2m−1), where xi ∈ F2n for i ∈ {0, . . . , 2m − 1}.
Then clearly H ′ = ((h′

i,j)) is FFHadamard, where h′
i,j = r + hi,j , r ∈ F2n . Also

if r + xi �= 0 for i ∈ {0, . . . , 2m − 1}, then it is easy to check that the matrix
H ′′ = ((h′′

i,j)), where h′′
i,j = 1

h′
i,j

is also FFHadamard. We now provide Fact 9

which will be used in Theorem 4.

Fact: 9 [19] Let G = {x0, . . . , x2m−1} be an additive subgroup of F2n, where
x0 = 0 and xi + xj = xi⊕j. Let H = ((hi,j)) be a 2m × 2m matrix over F2n,
where hi,j =

1
r+xi⊕j

, r ∈ F2n \G, then H is FFHadamard.

In [19], authors defined Special Vandermonde matrix (SV matrix), which we
restate differently and equivalently.

Definition 6. Let G be an additive subgroup of F2n of order 2m, which is a
linear span of m linearly independent elements {x1, x2, x22 , . . . , x2m−1} such that

xi =
∑m−1

k=0 bkx2k , where (b0, b1, . . . , bm−1) is the binary representation of i. A
Vandermonde matrix van(y0, . . . , y2m−1) is called a Special Vandermonde matrix
(SV matrix) if yi = r + xi, where r ∈ F2n .

We restate the generalization of Corollary 2 of [19] in the following lemma.

Lemma 5. [19] Let A = van(x0, . . . , x2m−1) and B = van(y0, . . . , y2m−1)
are Special Vandermonde matrices in F2n, where yi = x0 + y0 + xi and y0 /∈
{x0, . . . , x2m−1}, then AB−1 is an FFHadamard involutory MDS matrix.

The proof of Corollary 2 of [19] is several pages long. In Section 4 Theorem 5,
we propose an alternative and a much simpler proof.
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3 Construction of MDS and Involutory MDS Matrices

From Corollary 1, a d × d matrix constructed using Lemma 1 has at least d
distinct elements. In this paper we construct d × d MDS matrices with exactly
d distinct elements. It has two-fold advantage. Firstly, we have to find only d
elements of our liking (say of low implementation cost) to form the MDS matrix
using Cauchy construction. Secondly, for construction of efficient MDS matrices,
it may be desirable to have minimum number of distinct entries to minimize the
implementation overheads(See [11]).

Lemma 6. Let G = (x0, x1, . . . , xd−1) be an additive subgroup of F2n . Let us
consider the coset r+G, r /∈ G of G having elements yj = r+xj, j = 0, . . . , d−1.
Then the d × d matrix A = ((ai,j)), where ai,j = 1

xi+yj
, for all 0 ≤ i, j ≤ d− 1

is an MDS matrix.

Proof. We first prove that xi + yj �= 0 for all 0 ≤ i, j ≤ d − 1. Now, xi + yj =
xi + r + xj = r + xi + xj ∈ r + G. But 0 /∈ r + G (as r /∈ G and 0 ∈ G). So
xi+yj �= 0 for all 0 ≤ i, j ≤ d−1. Also all xi’s are distinct elements of the group
G and yj ’s are distinct elements of the coset r + G. Thus from Lemma 1, A is
an MDS matrix. �

Remark 1. Lemma 6 gives MDS matrix of order d, where d is a power of 2.
When d is not a power of 2, the construction of d × d MDS matrices over F2n

(d < 2n−1) is done in two steps. Firstly we construct 2m × 2m MDS matrix A′

over F2n , where 2m−1 < d < 2m, using Lemma 6. In the next step, we select
d× d submatrix A of A′ of our liking (select d rows and d columns).

Fact: 10 Lemma 3 of [30] is a particular case of Lemma 6 of this paper.

Corollary 2. The matrix A of Lemma 6 is symmetric.

Proof. From definition, ai,j = aj,i =
1

r+xi+xj
for all 0 ≤ i, j ≤ d− 1. Thus A is

symmetric matrix. �

Lemma 7. The d× d matrix A of Lemma 6 has exactly d distinct entries.

Proof. In the ith row the elements are ai,j = 1
r+xi+xj

for j = 0, 1, . . . , d − 1.

Since xj ’s form the additive group G, xi + xj for j = 0, 1, . . . , d − 1 gives all
d distinct elements of G for a fixed i. Thus r + xi + xj for j = 0, 1, . . . , d − 1
gives all d distinct elements of r +G. Since i is arbitrary, therefore in each row
of A, there are d distinct elements. Since these elements are nothing but the
multiplicative inverse of elements of r + G in F2n , the matrix A has exactly d
different elements. �

Corollary 3. By Lemma 2 and Lemma 7, it is evident that all rows of matrix
A constructed by Lemma 6 are the permutations of the first row of A.
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Lemma 6 provides construction of MDS matrices. These matrices may not be
involutory. In general, in substitution permutation networks (SPN) decryption
needs inverse of A. If A is a low implementation-cost MDS matrix, then it is
desirable that A = A−1, otherwise implementation of A−1 may not be efficient.
So we may like to make our MDS matrix to be involutory. Towards this we study
the following Lemma which is also given in [30], but in a slightly different setting.

Lemma 8. Let A = ((ai,j)) be the d × d matrix formed by Lemma 6. Then

A2 = c2I, where c =
∑d−1

k=0
1

r+xk
.

Proof. Let A2 = H = ((hi,j)). From Corollary 2, A is symmetric matrix.
Therefore hi,j is the inner product of i’th row and j’th row of A. Therefore

hi,i =
∑d−1

l=0
1

(r+xi+xl)2
=

∑d−1
k=0

1
(r+xk)2

= c2 as xi’s and xl’s are elements of

a group which is a subgroup of F2n of characteristic 2. Similarly for i �= j,
hi,j =

∑d−1
k=0

1
(r+xi+xk)(r+xj+xk)

= 1
xi+xj

∑d−1
k=0

1
(r+xi+xk)

+ 1
(r+xj+xk)

=

1
xi+xj

(∑d−1
k=0

1
(r+xi+xk)

+
∑d−1

k=0
1

(r+xj+xk)

)
=

1
xi+xj

(∑d−1
l=0

1
r+xl

+
∑d−1

l′=0
1

r+x′
l

)
. Since {r + xl : l = 0, . . . , d− 1} = r +G and

we are working on a field F2n of characteristic 2, therefore(∑d−1
l=0

1
r+xl

+
∑d−1

l′=0
1

r+x′
l

)
= 0. So hi,j = 0. Thus A2 = c2I. �

Corollary 4. The matrix A of Lemma 6 is involutory if the sum of the elements
of any row is 1.

Proof. The sum of elements of any row of A is equal to
∑d−1

i=0
1

r+xi
= c, where

c is as defined in Lemma 8. So if c = 1, c2 = 1 and hence A2 = I (See
Lemma 8). �

Corollary 5. If d × d MDS matrix A is constructed using Lemma 6, then 1
cA

is an involutory MDS matrix, where c =
∑d−1

k=0
1

r+xk
.

Proof. From Lemma 8, ( 1cA)
2 = I and from Fact 4, 1

cA is MDS. �

Remark 2. Multiplication in F2n by 1 is trivial. So for implementation friendly
design, it is desirable to have maximum number of 1’s in MDS matrices to be
used in block ciphers and hash functions. We know that each element in a d× d
matrix A constructed by Lemma 6, occurs exactly d times (See Lemma 7). So
in the construction of d × d matrix A by Lemma 6, maximum d number of 1’s
can occur in A. It is to be noted that A can be converted to have maximum
number of 1’s (i.e. d number of 1’s) without distrurbing the MDS property just
by multiplying A by inverse of one of its entries (See Fact 4). Although this will
guarantee occurrence of 1’s in every row, but with this technique we may not
control Hamming weights of other d−1 elements. Also if A is an involutory MDS
matrix, such conversion will disturbe the involutory property.

Remark 3. In [11], authors introduced the idea of efficient MDS matrices by
maximizing the number of 1’s and minimizing the number of occurrences of
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other distinct elements from F
∗
2n . It is to be noted that multiplication of each

row of d × d MDS matrix A by inverse of the first elements of the respective
rows will lead to an MDS matrix A′ having all 1’s in first column (See Fact 3).
Again by multiplying each columns of d× d MDS matrix A′ (starting from the
second column) by inverse of the first elements of the respective columns will
lead to an MDS matrix A′′ having all 1’s in first row and first column. Thus the
number of 1’s in this matrix is 2d− 1. Although A′′ contains maximum number
of 1’s that can be achieved starting from the MDS matrix A, but the number of
other distinct terms in this case may be greater than d − 1. Also A′′ will never
be involutory.

3.1 Construction of Some Additive Subgroup G of F2n

Recall that F2n and F
n
2 are isomorphic when both of them are regarded as n

dimentional vector space over F2. Any subspace of Fn
2 is by definition an additive

subgroup of F2n . Let B = {x0, . . . , xm−1} be m linearly independent elements of
F2n . Then the linear span of B, denoted by G, is a subspace of Fn

2 of dimension
m and is an additive subgroup of F2n . So G can be used to construct MDS
matrix using Lemma 6. Also note that r in Lemma 6 can be any element of
F2n \ G. Our aim is to construct efficient MDS matrices. Hamming weights of
the elements in the MDS matrix may decide the number of table lookups, xor
and xtime operations. The higher order bits of each entries in the matrix affects
the number of calls to xtime. In the construction of MDS matrices by Lemma 6,
the elements of the matrices are inverses of the elements of r+G (See Lemma 6).
So it is desirable that multiplicative inverses of elements of r+G in F2n must be
of low Hamming weights and also all the 1’s should be towards the lower order
bits.

3.2 An Algorithm to Construct MDS Matrix

Based on Lemma 6, we now provide Algorithm 1 to construct 2m × 2m MDS
matrix over F2n , where m < n. Algorithm 1 gives MDS matrix and when the
input parameter bInvolutory is set true, the Algorithm 1 gives involutory MDS
matrix of order d × d, where d is power of 2. When d is not a power of 2, the
construction of d×d MDS matrices over F2n (d < 2n−1) is done in two steps (see
Remark 1). Firstly we construct 2m×2m MDS matrixA over F2n using Algorithm
1 and keeping input parameter bInvolutory = false, where 2m−1 < d < 2m. In
the next step, we just select some suitable d× d submatrix A′ of A of our liking
(select d rows and d columns of our liking). Note that A′2 may not be equal to
c2I, where c ∈ F

∗
2n . Although the matrix A′ is MDS, it is not involutory (See

Example 1).

Remark 4. The additive subgroup G = {x0, . . . , x2m−1} in Algorithm 1 is con-
structed by the linear combination of m linearly independent elements labeled
x1, x2, x22 . . . , x2m−1 in Step 1. Note that for such group G, xi + xj = xi⊕j ,
xi, xj ∈ G. For such G, the constructed matrix A in Algorithm 1 is FFHadamard
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Algorithm 1. Construction of 2m×2m MDS matrix or Involutory MDS matrix
over F2n

Input n > 1, the generating polynomial π(x) of F2n , m < n and bInvolutory.
Output Outputs a 2m × 2m MDS matrix A.
1: Select m linearly independent elements, labeled x1, x2, x22 . . . , x2m−1 from F2n ;
2: Construct G, the set of 2m elements x0, x1, x2, x3, . . . , x2m−1, where xi =∑m−1

k=0 bkx2k , for all 0 ≤ i ≤ 2m − 1, (bm−1, bm−1, . . . , b1, b0) being the binary
representation if i;

3: Select some r ∈ F2n \G;
4: Construct r+G, the set of 2m elements y0, y1, y2, y3, . . . , y2m−1, where yi = r+ xi

for all 0 ≤ i ≤ 2m − 1;
5: if (bInvolutory == false): Construct 1

yi
; else construct 1

cyi
for i = 0, . . . , d − 1 in

the array ary s, where c =
∑d−1

k=0
1

r+xk
.

6: Construct the 2m × 2m matrix A = ((ai,j)), where ai,j = ary s[k], where i⊕ j = k;

7: Set A as output;

(see Theorem 4). If the ordering is disturbed in Step 1 by labeling the elements
differently, so that xi + xj �= xi⊕j , the matrix A may not be FFHadamard,
although it will be MDS. We maintain the same ordering while constructing
additive subgroup in Algorithm 2. So Algorithm 2 also produces FFHadamard
matrices.

Theorem 3. Algorithm 1 generates d × d MDS or Involutory MDS matrices
over F2n where d = 2m, and the complexity is O(d2) operations in F2n .

Proof. The correctness of Algorithm 1 is immediate from Lemma 6, Lemma 8
and Corollary 4. In Algorithm 1, Step 1-Step 5 takes O(d) operations. Step 6
takes O(d2) operations. Thus the time complexity of Algorithm 1 is O(d2). �

Example 1: Let n = 8, d = 4, π(x) = x8+x4+x3+x+1 and bInvolutory = false.
Set r = 1. Select x1 = α7+α3+α2 and x2 = α7+α6+α5+α4+α2+α+1. Thus
construct x0 = 0.x1+0.x2 = 0 and x3 = 1.x1+1.x2 = α6+α5+α4+α3+α+1.
So y0 = 1, y1 = α7 + α3 + α2 + 1, y2 = α7 + α6 + α5 + α4 + α2 + α and
y3 = α6 + α5 + α4 + α3 + α. So we have from Lemma 6 (as implemented in
Algorithm 1)

A =

⎛
⎜⎜⎝

01x 02x 03x d0x
02x 01x d0x 03x
03x d0x 01x 02x
d0x 03x 02x 01x

⎞
⎟⎟⎠ ,

1

c
A =

⎛
⎜⎜⎝

7ax f4x 8ex 01x
f4x 7ax 01x 8ex
8ex 01x 7ax f4x
01x 8ex f4x 7ax

⎞
⎟⎟⎠ ,

where 01x = 1, 02x = α 03x = α+1, d0x = α7 +α6 +α4, 7ax = α6 +α5 +α4 +
α3+α, f4x = α7+α6+α5+α4+α2, 8ex = α7+α3+α2+α. Here c = d0x. Note
that the matrix A is MDS but not involutory and the matrix 1

cA is involutory
MDS. To form a 3 × 3 MDS matrix, we may take a submatrix A′ from A or
1
cA. Let us consider the 3 × 3 submatrix A′ of the involutory MDS matrix 1

cA

of order 3. Here we take first three rows and columns of 1
cA for constructing A′.

Thus we have
A

′
=

⎛
⎝

7ax f4x 8ex
f4x 7ax 01x
8ex 01x 7ax

⎞
⎠ .
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Note that 2nd and 3rd row of A′ are not permutations of its first row.

Remark 5. For an illustration purpose, we count the number of xtime and xor
operations for the matrix A and A′ of Example 1 without considering any op-
timization technique. The matrix A requires 9 xtimes and 3 xors each row, i.e.
36 xtimes and 12 xors for one matrix computation. Similarly the matrix A′ re-
quires 20 xtimes and 11 xors each row, i.e. 80 xtimes and 44 xors for one matrix
computation.

3.3 An Algorithm to Construct Low Hamming Weight Involutory
MDS Matrix

Here we present an algorithm (Algorithm 2) to construct efficient d×d involutory
MDS matrices, where d is power of 2. By efficient matrix, we mean a matrix
having maximum number of 1’s and minimum number of other distinct elements
of low Hamming weight (see Remark 3). In the construction using Lemma 6, a
d×d MDS matrix A can have maximum d number of 1’s and d−1 other distinct
elements (See Lemma 7). In the iteration of Algorithm 2, we fix r = 1, which
ensures that all diagonal elements are 1. Thus we have d number of 1’s. For d =
2m, we initially select m distinct elements of first row a0,1, a0,2, a0,22 . . . , a0,2m−1

which are of low Hamming weight and compute x1, x2, x22 , . . . , x2m−1 , where
x2i = 1

a0,2i
+ r, i = 0, . . . ,m − 1. We repeat this process by selecting different

elements of next lowest possible Hamming weights unless we get m linearly
independent elements x0, x1, x2, x3, . . . , x2m−1. We next form G and r +G and
finally the matrix A using Lemma 6. If the matrix is not involutory, we repeat
the process unless we get an involutory MDS matrix A.

Remark 6. Note that we can choose m + 1 out of 2m elements of our liking
to have low Hamming weight while constructing involutory MDS matrix using
Algorithm 2. But we have no control upon the other 2m − (m + 1) elements of
the matrix.

Remark 7. Note that Algorithm 2 is similar to Algorithm 1 and is based on
Lemma 6. The Algorithm 2 may not terminate for some conditions in Step 2.
If we relax the conditions of low Hamming weight in Step 2, Algorithm 2 will
eventually terminate but the time complexity is not clear and may depend upon
many conditions.

Remark 8. Algorithm 2 generates d× d involutory MDS matrix over F2n where
d is power of 2. The correctness of Algorithm 2 follows from Lemma 6, Lemma
8 and Corollary 4.

Example 2: Let n = 8, d = 4, π(x) = x8 + x4 + x3 + x + 1. Set r = 1.
Also let α be the root of π(x). We will select a0,1 = 02x = α and search for
the element with next lowest possible Hamming weight for a0,2 so that the
corresponding values 1

a0,1
+ 1 = x1 and 1

a0,2
+ 1 = x2 are linearly independent
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Algorithm 2. Construction of 2m×2m Involutory MDS matrix ((ai,j))over F2n

Input n > 1, the generating polynomial π(x) of F2n and m < n.
Output Outputs a 2m × 2m involutory MDS matrix A.
1: Set r = 1;
2: Select m elements labeled a0,1, a0,2, a0,22 . . . , a0,2m−1 from F

∗
2n of low Hamming

weight;
3: Compute m elements labeled x1, x2, x22 , . . . , x2m−1 , where x2i = 1

a
0,2i

+ r, i =

0, . . . ,m− 1;
4: Check if x1, x2, x22 . . . , x2m−1 are linearly independent. If not, go to Step 2;
5: Construct G, the set of 2m elements x0, x1, x2, x3, . . . , x2m−1, where xi =∑m−1

k=0 bkx2k , for all 0 ≤ i ≤ 2m − 1, (bm−1, bm−2, . . . , b1, b0) being the binary
representation of i;

6: if (r ∈ G) then go to Step 2;
7: Construct r+G, the set of 2m elements y0, y1, y2, y3, . . . , y2m−1, where yi = r+ xi

for all 0 ≤ i ≤ 2m − 1;
8: Compute c =

∑d−1
k=0

1
yk

. if(c �= 1): go to step 2;

9: Construct the 2m × 2m matrix A = ((ai,j)), where ai,j = 1
xi+yj

;

10: Set A as output;

and finally the resulting matrix is involutory MDS. If not involutory, we go for
next element of higher Hamming weight for a0,2. If no suitable candidate for
a0,2 is available, we set a0,1 = 03x = α + 1, and repeat the search of suitable
candidate for a0,2. We iterate and find the first suitable combination as a0,1 = α
and a0,2 = fcx = α7 + α6 + α5 + α4 + α3 + α2 which leads to an involutory
MDS matrix. For such a0,1, and a0,2, we get x1 = 1

a0,1
+ 1 = α7 + α3 + α2

and x2 = 1
a0,2

+ 1 = α7 + α6 + α3 + α2. So we have x0 = 0.x1 + 0.x2 = 0 and

x3 = 1.x1+1.x2 = α6. Thus y0 = 1, y1 = α7+α3+α2+1, y2 = α7+α6+α3+α2+1
and y3 = α6 + 1. Finally, we get

A =

⎛
⎜⎜⎝

01x 02x fcx fex
02x 01x fex fcx
fcx fex 01x 02x
fex fcx 02x 01x

⎞
⎟⎟⎠ .

Note that this matrix is involutory MDS. The MDS matrix A of Example 1
is more implementation friendly, but it is not involutory. Note that the matrix
1
cA of Example 1 is involutory MDS but not as efficient as the involutory MDS
matrix A of Example 2.

Example 3: Here we construct 23× 23 involutory MDS matrix from Algorithm
2. Let r = 1. Using Algorithm 2, we select a0,1 = 02x, a0,2 = 06x and a0,4 = 30x
of low Hamming weight. This generates G = {00x, 8cx, 7ax, f6x, 2dx, a1x, 57x, dbx}. So we
generate r+G and finally the involutory MDS matrix A using Algorithm 2, first
row of which is as follows: (01x 02x 06x 8cx 30x fbx 87x c4x).

Example 4: Here we construct 24×24 involutoryMDS matrix from Algorithm 2.
Let r = 1. Using Algorithm 2, we select a0,1 = 03x, a0,2 = 08x and a0,4 = 0dx and
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a0,8 = 0fx of low Hamming weight. This generates
G = {00x, f7x, e9x, 1ex, e0x, 17x, 09x, fex, c6x, 31x, 2fx, d8x, 26x, d1x, cfx, 38x}. So we generate r +
G and finally the involutory MDS matrix A using Algorithm 2 which is as
follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01x 03x 08x b2x 0dx 60x e8x 1cx 0fx 2cx a2x 8bx c9x 7ax acx 35x
03x 01x b2x 08x 60x 0dx 1cx e8x 2cx 0fx 8bx a2x 7ax c9x 35x acx
08x b2x 01x 03x e8x 1cx 0dx 60x a2x 8bx 0fx 2cx acx 35x c9x 7ax
b2x 08x 03x 01x 1cx e8x 60x 0dx 8bx a2x 2cx 0fx 35x acx 7ax c9x
0dx 60x e8x 1cx 01x 03x 08x b2x c9x 7ax acx 35x 0fx 2cx a2x 8bx
60x 0dx 1cx e8x 03x 01x b2x 08x 7ax c9x 35x acx 2cx 0fx 8bx a2x
e8x 1cx 0dx 60x 08x b2x 01x 03x acx 35x c9x 7ax a2x 8bx 0fx 2cx
1cx e8x 60x 0dx b2x 08x 03x 01x 35x acx 7ax c9x 8bx a2x 2cx 0fx
0fx 2cx a2x 8bx c9x 7ax acx 35x 01x 03x 08x b2x 0dx 60x e8x 1cx
2cx 0fx 8bx a2x 7ax c9x 35x acx 03x 01x b2x 08x 60x 0dx 1cx e8x
a2x 8bx 0fx 2cx acx 35x c9x 7ax 08x b2x 01x 03x e8x 1cx 0dx 60x
8bx a2x 2cx 0fx 35x acx 7ax c9x b2x 08x 03x 01x 1cx e8x 60x 0dx
c9x 7ax acx 35x 0fx 2cx a2x 8bx 0dx 60x e8x 1cx 01x 03x 08x b2x
7ax c9x 35x acx 2cx 0fx 8bx a2x 60x 0dx 1cx e8x 03x 01x b2x 08x
acx 35x c9x 7ax a2x 8bx 0fx 2cx e8x 1cx 0dx 60x 08x b2x 01x 03x
35x acx 7ax c9x 8bx a2x 2cx 0fx 1cx e8x 60x 0dx b2x 08x 03x 01x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Example 5: Here we construct 25× 25 involutory MDS matrix from Algorithm
2. Let r = 1. Using Algorithm 2, we select a0,1 = 02x, a0,2 = 04x and a0,4 = 07x
and a0,8 = 0bx and a0,16 = 0e of low Hamming weight. This generates G =

{00x, 8cx, cax, 46x, d0x, 5cx, 1ax, 96x, c1x, 4dx, 0bx, 87x, 11x, 9dx, dbx, 57x, e4x, 68x, 2ex, a2x, 34x, b8x, fex,

72x, 25x, a9x, efx, 63x, f5x, 79x, 3fx, b3x}. So we generate r+G and finally the involutory
MDS matrixA using Algorithm 2, first row of which is as follows: (01x 02x 04x 69x 07x

ecx ccx 72x 0bx 54x 29x bex 74x f9x c4x 87x 0ex 47x c2x c3x 39x 8ex 1cx 85x 55x 26x 1ex afx 68x b6x

59x 1fx). Note that matrices in Example 2 to Example 5 are FFHadamard (see
Remark 4). So hi,j = h0,i⊕j for all i, j ∈ {0, . . . , 31}.

4 FFHadamard MDS Matrices from Cauchy Based
Construction and Vandermonde Based Constructions

The authors of [19] constructed FFHadamard involutory MDS matrices start-
ing from two Special Vandermonde matrices. In this section we first show that
Cauchy construction of Algorithm 1 gives FFHadamard matrices. We next show
(see Theorem 5) the equivalence of Cauchy based construction and Vandermonde
based construction of “FFHadamard involutory MDS matrices” of [19]. In doing
so, we provide a much simpler proof (see Corollary 8) of generalization of Corol-
lary 2 of [19]. We also prove that Cauchy based construction using Algorithm 1
is faster than the Vandermonde based construction.In the following theorem we
show that the MDS matrices constructed by Algorithm 1 are FFHadamard.

Theorem 4. Algorithm 1 generates FFHadamard Matrices.

Proof. Let us assume that Algorithm 1 produces 2m × 2m matrix A = ((ai,j)).
So ai,j = 1

xi+yj
= 1

r+xi+xj
= 1

r+xi⊕j
, where xi’s and yj ’s are as defined in the

Algorithm 1. From Fact 9, A is FFHadamard matrix. �
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4.1 Equivalence of Cauchy Based Construction and Vandermonde
Based Construction of Involutory MDS FFHadamard Matrices

Here we fix certain notations that will be used freely in the rest of this
Section. Let G = {γ0, γ1, . . . , γd−1} be an additive subgroup of F2n of order d
where γ0 = 0 and γi + γj = γi⊕j for i, j ∈ {0, . . . , d− 1}. For any two arbitrary
r1, r2 ∈ F2n , such that r1 + r2 /∈ G, let us define three cosets of G as follows:
r1+G = {αi : αi = r1+γi for i = 0, . . . , d−1}, r2+G = {βi : βi = r2+γi for i =
0, . . . , d− 1} and r1 + r2 + G = {δi : δi = r1 + r2 + γi for i = 0, . . . , d− 1}. Let
γ be the product of all nonzero elements of G, β be the product of all elements

of r2 +G and δ be the product of all elements of r1 + r2 +G, i.e. γ =
∏d−1

k=1 γk,

β =
∏d−1

k=0 βk and δ =
∏d−1

k=0 δk. Also let us define two d×d Special Vandermonde
matrices (SV matrices) A and B as follows: A = van(α0, α1, . . . , αd−1) and
B = van(β0, β1, . . . , βd−1) and let

B−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

b0,0 b0,1 . . . b0,d−1
b1,0 b1,1 . . . b1,d−1

.

.

.

.

.

.

.

.

.

.

.

.
bd−1,0 bd−1,1 . . . bd−1,d−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, where bi,j ∈ F2n .

We will prove in Theorem 5 the equivalence of Vandermonde based constructions
(see Subsection 3.1 of [19]) and Cauchy based constructions (see Algorithm 1) of
FFHadamard involutory MDS matrices. Before going into the proof, we study
few properties of B and B−1 in Lemma 9 to Lemma 12.

Lemma 9. det(B) = γd/2.

Proof. From Fact 7, det(B) =
∏

k<l(βk+βl) = (
∏

k �=l(βk+βl))
1/2 = (

∏
k �=l(γk+

γl))
1/2. In the product

∏
k �=l(γk + γl), each of the terms γ1, . . . , γd−1 occurs d

times. So
∏

k �=l(γk + γl) =
∏d−1

i=1 γd
i = γd. Therefore det(B) = γd/2. �

In the next lemma, we show that the elements of last row of B−1 i.e. bd−1,j’s for
j = 0, . . . , d− 1 are equal and independent of j.

Lemma 10. bd−1,j =
1
γ for j = 0, . . . , d− 1.

Proof. Let j ∈ {0, 1, . . . , d− 1} be arbitrary. So, bd−1,j =
det(B′)
det(B) . Where

B
′
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 β0 β2
0 β3

0 . . . β
d−2
0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 βj−1 β2
j−1 β3

j−1 . . . β
d−2
j−1

1 βj+1 β2
j+1 β3

j+1 . . . β
d−2
j+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 βd−1 β2
d−1 β3

d−1 . . . β
d−2
d−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now (
∏

k �=l(γk + γl))
1/2 =

∏
k<l(γk + γl) and

∏
k �=l,k,l �=j(γk + γl) =∏

k �=l,(γk+γl)∏
k �=j(γk+γj)

∏
l �=j(γj+γl)

=
∏

k �=l,(γk+γl)∏
k �=0 γk

∏
l �=0 γl

= γd

γ2 = γd−2. Therefore det(B′) =
∏

k<l,k,l �=j(βk + βl) =
∏

k<l,k,l �=j(γk + γl) = (
∏

k �=l,k,l �=j(γk + γl))
1/2 = γ(d−2)/2.
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From the relation B−1 = Adj(B)t

det(B) , we get bn−1,j = det(B′)
det(B) . Using Lemma 9, we

get bn−1,j =
det(B′)
det(B) = γ(d−2)/2

γd/2 = 1
γ . �

Let us define d− 1 degree polynomials Pj(x) =
∑d−1

i=0 bi,jx
i for j = 0, . . . , d− 1.

The coefficients of Pj(x) are the elements of j’th column of B−1. In the next
lemma we study the roots of Pj(x).

Lemma 11. The d − 1 roots of Pj(x) are β0, . . . , βj−1, βj+1, . . . , βd−1 for
j = 0, . . . , d− 1.

Proof. We know BB−1 = I, where I is the d×d identity matrix. The d elements
in the j’th column of BB−1 are Pj(β0), Pj(β1), . . . , Pj(βd−1), of which only j’th
element i.e. Pj(βj) is one and the rest d− 1 are zero. Hence the result follows. �
Corollary 6. Pj(x) =

1
γ

∏
k �=j(x+ βk) for j = 0, . . . , d− 1.

Proof. From Lemma 11, roots of Pj(x) are β0, . . . , βj−1, βj+1, . . . , βd−1. There-
fore, Pj(x) = bd−1,j

∏
k �=j(x−βk). Since elements are from F2n which is of char-

acteristic 2, so Pj(x) = bd−1,j

∏
k �=j(x + βk). Also from Lemma 10, bd−1,j = 1

γ

for j = 0, . . . , d− 1. Hence Pj(x) =
1
γ

∏
k �=j(x+ βk) for j = 0, . . . , d− 1. �

Lemma 12.
∑

j
1
βj

= γ
β .

Proof. We know, B−1B = I. So (0, 0)’th element of B−1B i.e.
∑

k b0,j = 1.

Using Corollary 6, we have Pj(0) = 1
γ

∏
k �=j βk = β

γβj
. But Pj(0) = b0,j . So

1 =
∑

j b0,j =
∑

j Pj(0) =
∑

j
β

γβj
= β

γ

∑
j

1
βj
. Thus

∑
j

1
βj

= γ
β . �

Corollary 7.
∑

j
1
δj

= γ
δ .

Now we propose Theorem 5, which shows the equivalence between Cauchy based
Construction of FFHadamard matrices (Algorithm 1) and Vandermonde based
Construction of FFHadamard matrices [19]. Let 1

cM be the involutory MDS
matrix produced by Algorithm 1, where M = ((mi,j)), mi,j = 1

γi+δj
for i, j ∈

{0, 1, . . . , d − 1}, c =
∑d−1

k=0
1
δk
. Note that in Algorithm 1, if we take G as G, r

as r1 + r2 and set bInvolutory = true, then Algorithm 1 constructs 1
cM .

Theorem 5. AB−1 = 1
cM .

Proof. Let AB−1 = ((hi,j)). Now, the (i, j)’th element of AB−1 is Pj(αi). Using
Corollary 6, we have hi,j = Pj(αi) =

1
γ

∏
k �=j(αi + βk) =

1
γ

∏
k �=j(r1 + γi + r2 +

γk) =
1
γ

∏
k(r1+r2+γi+γk)

(r1+r2+γi+γj)
= 1

γ

∏
k δk

(γi+δj)
= δ

γ
1

(γi+δj)
= δ

γmi,j . Also from Corollary 7,

c =
∑d−1

k=0
1
δk

= γ
δ . Thus hi,j =

1
cmi,j . Hence the proof. �

Note that by Lemma 5 (a generalization of Corollary 2 of [19]), AB−1 is an
FFHadamard involutory MDS matrix. The following corollary gives an alterna-
tive proof of Lemma 5.

Corollary 8. AB−1 is FFHadamard involutory MDS matrix.

Proof. Since 1
cM is FFHadamard involutory MDS (from Theorem 3 and

Theorem 4), so is AB−1 (from Theorem 5). �



58 K. Chand Gupta and I. Ghosh Ray

4.2 Comparison of Algorithm 1 Based on Cauchy Based
Construction, and Vandermonde Based Construction of [19] to
Construct FFHadamard Involutory MDS Matrices

From Theorem 3, the time complexity of constructing d× d FFHadamard invo-
lutory MDS matrix 1

cM is O(d2). In the Vandermonde based Construction [19]
to construct FFHadamard involutory MDS matrix AB−1, it requires a multipli-
cation of d × d matrices A and B−1 and the time complexity is O(d3). So, the
Algorithm 1 is faster than the Vandermonde based Construction of FFHadamard
involutory MDS matrix in [19].

5 The Matrix M16×16 Used in MDS-AES of [10] Is Not
MDS

In [10], authors proposed 16 × 16 involutory MDS matrix M16×16 by Cauchy
based construction with an additional restriction of allowing elements of low
Hamming weights. We checked that their method does not give MDS matrix. It
is easy to verify that the set of inverses of elements of the first row of M16×16

is not a coset of any additive subgroup of F23 . In fact the authors of [10] did
not consider the additive subgroup properly. Some authors [4,15] recommended
M16×16 to be used as a diffusion layer, but using this matrix may introduce
severe weaknesses. The M16×16 matrix of [10] is given below.

M16×16 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01x 03x 04x 05x 06x 07x 08x 09x 0ax 0bx 0cx 0dx 0ex 10x 02x 1ex
03x 01x 05x 04x 07x 06x 09x 08x 0bx 0ax 0dx 0cx 10x 0ex 1ex 02x
04x 05x 01x 03x 08x 09x 06x 07x 0cx 0dx 0ax 0bx 02x 1ex 0ex 10x
05x 04x 03x 01x 09x 08x 07x 06x 0dx 0cx 0bx 0ax 1ex 02x 10x 0ex
06x 07x 08x 09x 01x 03x 04x 05x 0ex 10x 02x 1ex 0ax 0bx 0cx 0dx
07x 06x 09x 08x 03x 01x 05x 04x 10x 0ex 1ex 02x 0bx 0ax 0dx 0cx
08x 09x 06x 07x 04x 05x 01x 03x 02x 1ex 0ex 10x 0cx 0dx 0ax 0bx
09x 08x 07x 06x 05x 04x 03x 01x 1ex 02x 10x 0ex 0dx 0cx 0bx 0ax
0ax 0bx 0cx 0dx 0ex 10x 02x 1ex 01x 03x 04x 05x 06x 07x 08x 09x
0bx 0ax 0dx 0cx 10x 0ex 1ex 02x 03x 01x 05x 04x 07x 06x 09x 08x
0cx 0dx 0ax 0bx 02x 1ex 0ex 10x 04x 05x 01x 03x 08x 09x 06x 07x
0dx 0cx 0bx 0ax 1ex 02x 10x 0ex 05x 04x 03x 01x 09x 08x 07x 06x
0ex 10x 02x 1ex 0ax 0bx 0cx 0dx 06x 07x 08x 09x 01x 03x 04x 05x
10x 0ex 1ex 02x 0bx 0ax 0dx 0cx 07x 06x 09x 08x 03x 01x 05x 04x
02x 1ex 0ex 10x 0cx 0dx 0ax 0bx 08x 09x 06x 07x 04x 05x 01x 03x
1ex 02x 10x 0ex 0dx 0cx 0bx 0ax 09x 08x 07x 06x 05x 04x 03x 01x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The elements of M16×16 are from F28 and the constructing polynomial is x8 +
x4+x3+x+1. Let us consider the 2×2 submatrix A of M16×16 formed by taking
0th and 2nd row and 1st and 5th column. Let α be the root of x8+x4+x3+x+1.
Then in polynomial representation,

A =

(
03x 07x
05x 09x

)
=

(
1 + α 1 + α + α2

1 + α2 1 + α3

)
.

So det(A) = (1+α)(1+α3) + (1+α+α2)(1 +α2) = 1+α4 +α+α3 +1+α2 +
α+α3 +α2 +α4 = 0. Thus the submatrix A is singular. So clearly from Fact 1,
M16×16 is non MDS. Example 4 provides 16× 16 involutory MDS matrix which
can be used instead of M16×16 of [10]. Note that the matrix in Example 4 does
not look as good as M16×16, in terms of Hamming weights of its elements – but
M16×16 is non MDS. One can also generate different involutory MDS matrices
using Algorithm 2.
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6 Conclusion

In this paper, we developed techniques to construct d × d MDS matrices over
F2n . We proposed a simple algorithm (Algorithm 1) based on Lemma 6. This
algorithm is a generalization of the construction proposed in [30]. We propose
another algorithm (Algorithm 2) which uses Algorithm 1 iteratively to find soft-
ware efficient involutory MDS matrices. We find the interesting equivalence of
Cauchy based construction (Algorithm 1) and Vandermonde based construction
of FFHadamard involutory MDS matrices [19]. We also prove that Cauchy based
construction (Algorithm 1) is faster in terms of time complexity compared to
Vandermonde based construction of FFHadamard involutory MDS matrices [19].
We have shown that the 16 × 16 matrix M16×16, used in MDS-AES of [10], is
not MDS.
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