Fast Software Encryption Attacks on AES

David Gstir and Martin Schléffer

TAIK, Graz University of Technology, Austria

martin.schlaeffer@iaik.tugraz.at

Abstract. In this work, we compare different faster than brute-force
single-key attacks on the full AES in software. Contrary to dedicated
hardware implementations, software implementations are more transpar-
ent and do not over-optimize a specific type of attack. We have analyzed
and implemented a black-box brute-force attack, an optimized brute-
force attack and a biclique attack on AES-128. Note that all attacks
perform an exhaustive key search but the latter two do not need to re-
compute the whole cipher for all keys. To provide a fair comparison, we
use CPUs with Intel AES-NI since these instructions tend to favor the
generic black-box brute-force attack. Nevertheless, we are able to show
that on Sandy Bridge the biclique attack on AES-128 is 17% faster,
and the optimized brute-force attack is 3% faster than the black-box
brute-force attack.

Keywords: fast software encryption, AES, brute-force attack, biclique
attack, Intel AES-NI.

1 Introduction

In recent years, new attacks on the full Advanced Encryption Standard (AES)
have been published [I}3]. Especially the single-key attacks are debatable due to
their marginal complexity improvement compared to a generic exhaustive key
search (brute-force). Therefore, Bogdanov et al. have implemented a variant of
the biclique attack in hardware to show that their attack is indeed faster than
brute-force [2].

However, in a dedicated hardware implementation it is less transparent how
much effort has been put on optimizing each attack type. If the difference in com-
plexity is very small, it may be possible to turn the result around by investing
more optimization effort in the slower attack. Contrary to hardware implemen-
tations, the speed of well optimized software implementations tends to be more
stable. This can also be observed when looking at different comparisons of the
NIST SHA-3 candidates in hardware and in software [B[11]. Too many parame-
ters can be optimized in hardware which can easily change a comparison in favor
of one or the other primitive or attack.

In this work, we have implemented different single-key attacks on AES-128
using Intel AES-NI [7], which is the basis for the fastest software implementations
of AES. We compare the generic black-box brute-force attack with an optimized

A. Youssef, A. Nitaj, A.E. Hassanien (Eds.): AFRICACRYPT 2013, LNCS 7918, pp. 359-B74] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

360 D. Gstir and M. Schléffer

brute-force attack and with the (simplified) biclique attack used in the hardware
implementation of Bogdanov et al. [2]. In the optimized brute-force attack we
choose keys such that we do not need to recompute the full cipher for every new
key guess.

Our results indicate that the biclique attack is indeed marginally faster than
a black-box brute-force attack. However, also the optimized brute-force attack
on AES is slightly faster than the black-box brute-force attack. We have con-
centrated our effort on AES-128 but the results are likely to be similar for the
other variants as well. Nevertheless, these attacks do not threaten the security
of AES since for any real world cipher, optimized brute-force attacks are most
likely faster than black-box brute-force attacks.

Outline of the paper: In Section[2, we give a brief description of AES-128 and
the implementation characteristics of Intel AES-NI. In Section [3, we describe
and evaluate the theoretical complexity of the black-box brute-force attack and
an optimized brute-force attack. Section @ describes and analyzes the simplified
biclique attack on AES-128 of Bogdanov et al. [2]. Then, our software imple-
mentations and results of these three attacks are given in Section Bl Finally, we
conclude our work in Section [6l

2 Implementing AES in Software Using AES-NI

In this section, we briefly describe the Advanced Encryption Standard (AES) as
well as the instructions and implementation characteristics of Intel AES-NI.

2.1 Description of AES-128

The block cipher Rijndael was designed by Daemen and Rijmen and standardized
by NIST in 2000 as the Advanced Encryption Standard (AES) [J]. The AES
consists of a key schedule and state update transformation. In the following, we
give a brief description of the AES and for a more detailed description we refer
to [9].

State Update. The block size of AES is 128 bits which are organized in a
4 x 4 state of 16 bytes. This AES state is updated using the following 4 round
transformations with 10 rounds for AES-128:

— the non-linear layer SubBytes (SB) independently applies the 8-bit AES S-
box to each byte of the state

— the cyclical permutation ShiftRows (SR) rotates the bytes of row r to the
left by r positions with r» = {0, ..., 3}

— the linear diffusion layer MixColumns (MC) multiplies each column of the state
by a constant MDS matrix

— in round ¢, AddRoundKey (AK) adds the 128-bit round key rk; to the AES
state

A round key rkq is added prior to the first round and the MixColumns transfor-
mation is omitted in the last round of AES. All 4 round transformations plus
the enumerations of individual state bytes are shown in Fig. [

Fast Software Encryption Attacks on AES 361

Si Si,sr Sinc S, ARk
rk‘i
of4]8(12 ¢
1]5]9s] SB SR MC X
R > E—— > >D >
261014
3|7 [11f1s

Fig. 1. Notation for state bytes and 4 round transformations of AES

Key Schedule. The key schedule of AES recursively generates a new 128-bit
round key rk; from the previous round key rk;_1. In the case of AES-128, the
first round key rkq is the 128-bit master key of AES-128. Each round of the key
schedule consists of the following 4 transformations:

— an upward rotation of 4 column bytes by one position

— the nonlinear SubWord applies the AES S-box to 4 bytes of one column
— a linear part using XOR additions of columns

— a constant addition of the round constant RCON [1i]

More specifically, each column rk; . with ¢ =1,...,10 and ¢ = 0,...,3 of round
key rk; is computed as follows:

rk; o = SubWord(rk;—1,3 >> 1) ® rk;_1,0 & RCON[¢] forc=0
rkic =1kic1 ®Tki—1,c fore=1,...,3

2.2 Efficient Implementations of AES-128 Using AES-NI

For our software implementation we chose to use the Intel AES instruction set
AES-NI (AES New Instructions) [7] because it provides the fastest way to imple-
ment AES on a standard CPU and makes the implementations easier to compare.
Moreover, AES-NI gave us a fair basis for the brute-force and biclique imple-
mentations since all AES operations take exactly the same time throughout all
implementations.

For the AES-NI instruction set, Intel integrated certain operations for AES
directly into the hardware, thus, making them faster than any pure software
implementation and providing more security against timing attacks due to con-
stant time operations [7]. Overall, AES-NT adds the following operations for key
schedule, encryption and decryption and a full description of all instructions can
be found in [8]:

— aesenc, aesdec performs one full encryption or decryption round, respec-
tively.

— aesenclast, aesdeclast performs the last encryption or decryption round.

— aeskeygenassist computes the SubWord, rotation and XOR with RCON oper-
ations required for the key schedule.

— aesimc performs InvMixColumns on the given 128-bit register and stores the
result to another 128-bit register.

362 D. Gstir and M. Schléffer

Modern CPUs use multiple techniques to boost performance of applications.
Hence, creating software implementations with optimal performance requires
some background knowledge on how CPUs operate. For our software implemen-
tations we took the following approaches into account to increase the
performance:

High Pipeline Utilization: CPUs split a single instruction into multiple pops.
This enables the CPU to start processing the next instruction before the
previous has finished. Obviously, this only works if both instructions are
independent of each other.

Minimal Memory Access: Fetching data from memory (registers) outside
the CPU is slow and decreases performance. Since the attacks shown here,
have minimal memory complexities, they can be implemented without al-
most any memory access.

Parallelized Encryption: For optimal pipeline utilization it is important to
carefully utilize AES-NT and SSE instructions since they normally take more
than one CPU cycle. Therefore, we compute each encryption round for mul-
tiple keys at the same time. This results in multiple independent instructions
which are processed by the CPU. This in turn leads to higher pipeline uti-
lization. For instance, on Intel Westmere the execution of aesenc takes 6
CPU cycles and the CPU can execute an instruction every second cycle. If
we perform 4 independent instructions in parallel, it would require 6 cycles
until the first operation is finished. After that, every second cycle another
operation finishes. So, in total it requires only 12 cycles for those four oper-
ations to finish, instead of 24 cycles if we do not parallelize them. On Intel
Sandy Bridge, one execution of aesenc takes 8 CPU cycles and the CPU
can execute an instruction every cycle.

Reducing aeskeygenassist Instructions: The aeskeygenassist instruction
performs suboptimal on current Sandy Bridge CPUs. Our tests have shown
that this instruction has a latency of 8 cycles and a reciprocal throughput of
8 (independently shown in [4]). This is slower compared to the other AES-
NT instructions. Since we have to compute the key schedule very often in
all attacks, we need to compute round keys as fast as possible. Fortunately,
aeskeygenassist is able compute to SubWord and the rotation for two words
in parallel. Thus, we use a single aeskeygenassist instruction for two inde-
pendent round keys. Another solution would be to avoid aeskeygenassist
and compute SubWord using aesenclast and the rotation using an SSE byte
shuffle instruction.

3 Brute-Force Key Recovery Attacks on AES-128

In this section we describe two brute-force attacks on AES-128 and evaluate
their complexities. We show that an optimized brute-force attack which does
not recompute all state bytes is in theory (marginally) faster than a black-box
brute-force attack. A practical evaluation of these two attacks in software using
AES-NI is given in Section

Fast Software Encryption Attacks on AES 363

3.1 Black-Box Brute-Force Attack

We call a generic key recovery attack which does not exploit any structural
properties of a cipher a black-box brute-force attack. This is the only possible
key recovery attack on an ideal cipher. For a cipher with key size n, 2" keys
have to be tested to find the unknown encryption key with probability 1. Thus,
the generic complexity is determined by 2™ evaluations of the cipher. In such
an attack, the data complexity is 1 and the key complexity is 2. Note that
time-memory trade-offs apply if more keys are attacked at the same time [6],
while the black-box brute-force attack and biclique attack need to be repeated
for each key to attack. To compare a black-box brute-force attack on AES-128
with an optimized brute-force attack or any other brute-force attack, we need to
determine its complexity in terms of AES-128 evaluations. Since most optimized
attacks compute only parts of the cipher, we evaluate the complexity in terms of
S-box computations, the most expensive part of most AES implementations. In
total, one full AES-128 encryption including key schedule computation requires
to compute 200 S-boxes.

3.2 Optimized Brute-Force Attack

Every practical cipher consists of non-ideal sub-functions or rounds. If the dif-
fusion is not ideal, a flip in a single key bit does not immediately change all
bits of the state. This effect can be exploited by an optimized brute-force at-
tack. Instead of randomly testing keys in a key recovery attack, we can iterate
the keys in a given order, such that only parts of the cipher need to be recom-
puted for each additional key. Hence, we save computations which may reduce
the overall cost of performing a brute-force key recovery attack. Note that every
optimized brute-force attack still needs to test all 2™ keys, which is not the case
in a short-cut key recovery attack.

Such an optimized brute-force attack is possible for every real world cipher.
However, the complexity reduction will only be marginal. In practical implemen-
tations of an attack it can even be worse, since computing a full round is usually
more efficient than computing, extracting, restructuring and combining parts
of a computation (see Section [l). After all, the final result depends heavily on
the implementations and how well they are optimized themselves. Nevertheless,
in the case of AES we can still count and compare S-box computations as an
estimate for the optimized brute-force complexity.

In the following, we give a basic example of an optimized brute-force attack
on AES-128. Instead of trying keys randomly, we first iterate over all values of
a single key byte and fix the remaining 15 key bytes. Hence, we only compute
the whole cipher once for a base key, and recompute only those parts of the
state which change when iterating over the 2% values for a single byte. Fig.
shows those bytes in white, which do not need to be recomputed for every key
candidate. The number of white bytes also roughly determines the complexity
reduction compared to a black-box brute-force attack. To save additional recom-
putations on the last two rounds, we match the ciphertext only on four instead
of all 16 bytes.

364 D. Gstir and M. Schléffer

For each set of 28 keys, we save the computation of 15 S-boxes of state S;, 9
S-boxes of state Sy, 12 S-boxes of state Sg and 12 S-boxes of state Syg, in total
48 S-boxes. In the key schedule, we save the computation of 4 S-boxes in rky,
3 S-boxes in rk1, rke and rkig, 2 S-boxes in rks and 1 S-box in k4 in total 16
S-boxes. Hence, instead of 200 S-boxes we need to compute only 136 S-boxes or
0.68 full AES-128 evaluations. Therefore, the total complexity of this optimized
brute-force attack is about

2120 (14255 0.68) = 2'74

full AES-128 evaluations.

4 Simplified Biclique Attack for Hardware
Implementation

To evaluate the biclique attack [3] in hardware, Bogdanov et al. have proposed
a simplified variant of the biclique attack [2] which is more suitable for practical
implementations. To verify that the attack is practically faster than a black-
box brute-force attack, they modified the biclique attack to reduce its data
complexity and simplified the matching phase, where the full key is recovered.
The main difference to the original biclique attack is that only a 2-dimensional
biclique is applied on the first two rounds instead of the last three rounds.
Furthermore, the key recovery phase matches on four bytes of the ciphertext
instead of some intermediate state. This simplifies the matching phase since it
is basically just a forward computation from state S3 to these four bytes of the
ciphertext. In this section, we briefly cover the theory of the modified attack
from [2] and give a comparison of each step to a black-box brute-force attack on
AES.

4.1 Biclique Construction

The modified biclique attack targets AES-128. The biclique originates from the
idea of initial structures [I0] and is placed on the initial two rounds and the meet-
in-the-middle matching to recover the encryption key is done on the remaining
eight rounds. The key space is divided into 2'?* groups of 2* keys each. These
key groups are constructed from the initial cipher key rkq (whitening key) and
do not overlap. The partitioning of the key space defines the dimension d of the
biclique which is d = 2.

Each key group is constructed from a base key. We retrieve the base keys by
setting the two least significant bits of rkg[0] and rkq[6] to zero and iterating the
remaining bits of rkg over all possible values. Hence, bytes 0 and 6 of the base
key have the binary value b = bgb1b2b3b4b500. To get the 16 keys within a key
group, we enumerate differences 7,7 € {0,...,3} and add them to bytes 0, 4, 6,
and 10 of the base key (see rko in Fig. [). Note, that we add the same difference
i to bytes 0 and 4 as well as difference j to bytes 6 and 10. This is done to cancel

’l"ko

rk1

Tkz

Tk}3

T‘k4

rks

Fast Software Encryption Attacks on AES

PT
H
H
KS Sh
[E3E3E3 E3
KS 52
53
54
Ss

IJf

<
kol
3

Tkg

’I“klo

-—
. &
[9]

—
=
19

>
0

=20 wn = 0 wn = W0 wn
amw amw amw

=
0

=
w

et

=20 W0
Q o w

wn wn
o W™

... S

]

S7

Ss

cr

365

Fig.2. Partial states which have to be recomputed for each set of 2% keys in the
optimized brute-force attack. Only bytes] (input to S-boxes) need to be recomputed
for every key guess. All empty bytes are recomputed only once for each set of 2% keys.
In total, we save the computation of 48 S-boxes in the state update and 16 S-boxes in

the key schedule.

366 D. Gstir and M. Schléffer

= W
tKS
SB
- ¢
T‘ko MC
pEEN ¥
KS S1
‘W
SB
SR SB
\ MC R
rki — MC
EIR
[
il
‘-
SB
SR SB
MC SR
- m
S ¥
-}
n:
SB
SR SB
MC SR
"y :
-
‘W
KSI S1o0
SB
SR SB
MC
‘o SR
N
‘-
-
SB

rks

=2 W0
Q o

.

Fig. 3. Partial states which have to be recomputed for each set of 2'¢ keys in the
hardware biclique attack. Blue bytes (.) need to be recomputed for every key guess.
White bytes are recomputed only for each set of 2'® keys. Bytes indicated by B and
B are used in the biclique structure and need to be recomputed 7 times for each set
of 216 keys.

Fast Software Encryption Attacks on AES 367

some differences in the following round key such that only bytes 0 and 6 of rk;
have non-zero differences.

Similar to the original biclique attack, we use these key differences to construct
two differential trails A; and 7;. The A;-trail is constructed from the key differ-
ence AKX which covers all keys with i € {1,...,3} and j = 0. For the key difference
vf (Vj-trail), we fix ¢ = 0 and enumerate j € {1,...,3}. Additionally, the key
differences are also used as plaintext differences for the respective trail.

Finally, to construct the biclique, we combine both trails as shown in Fig. Bl
This yields a mapping of 16 plaintexts to 16 values for the intermediate state
Ss under the 16 keys of a grou}E. Since both differential trails are not fully
independent (they both have byte 12 active in S3), we have to consider and
recompute this byte separately as described below.

Until here, we have constructed the biclique from two (almost) independent
differential trails. This yields 16 values for S3 for the 16 plaintexts encrypted
under the corresponding key from a key group. Thus, for each key group, we can
retrieve a different set of 16 values for S3. This enables an effective computation
of 16 values for S3 by performing the following steps for each key group:

1. Perform the base computation by taking the all-zero plaintext and encrypt-
ing it with the base key of the group. Store the resulting value for Sz (S9)
and the value for rkq (rk3).

2. Enumerate the difference i € {1,2,3}, set j = 0 and recompute the active
byte of the combined differential trail (indicated by B in Fig. B). This yields
three values for Sz, denoted by Si.

3. Perform similar computations for j € {1,2,3} and i = 0 to get three more
values for Sz, denoted by S3 (indicated by H).

4. Combine the values for S9 from the base computation, S3 and S} to get the
16 values for 53@.

5. Since S3[12] is active in both differential trails, we consider this byte sepa-
rately and retrieve its value by calculating S3[12] @1 or alternatively S% @ j.

The advantage of the biclique construction over a black-box brute-force attack
is that we save S-box computations by simply combining precomputed values for
Ss. For a black-box brute-force attack, we perform 16 3-round AES computations
to get 16 values for S3. Here, we compute the full three rounds only for the base
computation and then recompute only the required bytes for each differential
trail for ¢, 5 € {1,2,3}.

There is one possible improvement that enables us to save some S-box evalua-
tions in the matching phase: Instead of computing values for S3, we can include
the following SubBytes and ShiftRows operations and compute S3 e (the state
after MixColumns in round 3) instead. In the base computation, we compute the

! Note that this does not exactly match the definition of a biclique as it maps 924
plaintexts to 22 states under 22 keys.

2 To get the values for rko, we just add the i, j differences to the corresponding bytes
of rkJ. This is possible because no S-box has to be computed for the active key bytes
in the key schedule.

368 D. Gstir and M. Schléffer

S-box for bytes 5,7,9,11, and for each of the differential trails we compute the
S-box for their corresponding active bytes. This leaves only byte 12, which we
have to compute for all 16 possible values of S5 uc (see also [2]).

4.2 Key Recovery

As already described, the matching phase is simplified to match on four bytes
of the ciphertexts. Thus, we first take the 16 plaintexts and retrieve the corre-
sponding ciphertexts from the encryption oracle (This has to be performed only
once for the full attack). From the output of the biclique (16 values for Sz uc),
we then compute only the required bytes to get the four ciphertext bytes. As
shown in Fig. Bl we compute the full states from Sy up to S7mc. From this state
on until the ciphertext, we only compute reduced rounds. For the resulting four
ciphertext bytes, we check if they match the corresponding ciphertext bytes re-
trieved from the encryption oracle. If they do, we have a possible key candidate
which we have to verify with one additional plaintext-ciphertext pair. However,
we should get only about one false key candidate per 232 keys.

The advantage of this phase over a black-box brute-force attack is that we
avoid some S-box computations by matching on only four bytes of the ciphertext
instead of all 16 bytes. Note that this part is identical to the optimized brute-
force attack described in Section

4.3 Complexity of the Attack

The data complexity is defined by the biclique and is thus 2%. Concerning the
time complexity, Bogdanov et al. estimated the computation of the 16 values
for S3 using the biclique (precomputation phase) to be at most 0.3 full AES-128
encryptions. For the matching phase they estimated an effort similar to 7.12
AES-128 encryptions. Thus, the time complexity is

2124, (0.3 + 7.12) = 212689

AES-128 encryptions.

However, our calculation yields a slightly higher complexity: The biclique
computation requires 8 S-boxes for key schedule up to rks, 32 S-boxes for the
base computation and 6 S-boxes for the recomputations of both trails. Moreover,
for computing S3 uc, we have to compute 4 S-boxes for the inactive bytes, 4 x
11 = 44 for the active bytes of both differential trails in round 3, and 16 S-
box evaluations for computing byte 12. This results in a total of 110 S-boxes.
Computing three AES rounds (incl. the key schedule) for 16 keys, as it would
be done in a brute force attack, takes 16 x 3 x 20 = 960 S-Box computations.
Thus, the precomputation phase is about the same as 0.11 3-round AES-128
encryptions or equivalently 0.55 full AES-128 executions.

The matching phase has to be performed for every one of the 16 keys in a
key group. This phase requires 80 S-boxes for computing the full rounds 4-8,
8 S-boxes for the last two rounds and 29 S-boxes for the key schedule. This

Fast Software Encryption Attacks on AES 369

results in a total of 16 x 117 = 1872 S-box evaluations per key group. Since a
brute-force attack for 16 keys on seven rounds requires 16 x 7 x 20 = 2240 S-box
computations, the matching phase is about the same as 0.84 7-round AES-128
encryptions or equivalently 9.36 full AES-128 executions. The resulting time
complexity of the full modified biclique attack is thus

2124.(0.55 4+ 9.36) = 212731,

5 Software Implementations and Benchmark Results

To compare the two brute-force attacks with the biclique attack, we have imple-
mented all three variants in software using AES-NI. Of course, GPU or dedicated
hardware implementations of these attacks will always perform better and are
less costly than software implementations on standard CPUs. However, we use
these software implementations to provide a more transparent and fair compari-
son of the attacks. The efficiency of hardware implementations depends a lot on
the used device or underlying technology, which may be in favor of one or the
other attack. Moreover, which attack performs better also depends a lot on the
effort which has been spent in optimizing the attack.

In the case of software implementations using AES-NI all attacks have the
same precondition. If AES-NI benefits one of the attacks, it is the black-box
brute-force attack which needs to compute only complete AES rounds. In the
following, we will show that nevertheless, both the optimized brute-force attack
as well as the biclique attack are slightly faster than the generic attack.

For each attack, we have created and benchmarked a set of implementations
to rule out less optimized versions:

— assembly implementations and C implementation using intrinsics
— parallel versions using 4x and 8x independent AES-128 executions
— benchmarked on Intel Westmere and Intel Sandy Bridge CPUs

Since Intel AES-NI has different implementation characteristics on Westmere
and Sandy Bridge, we get slightly different results but the overall ranking of
attacks does not change. We have also tried to used AVX instructions to save
some mov operations. However, this has only a minor impact on the results. Note
that in the C intrinsics implementations the compiler automatically uses AVX
if it is available on the target architecture.

5.1 Black-Box Brute-Force Implementation

The implementation of the black-box brute-force attack is quite straightforward.
Nevertheless, to find the fastest implementation we have evaluated several ap-
proaches. We have implemented two main variants, which test eight or four keys
in parallel. In the 8x parallel variant, the 6-cycle (Westmere) or 8-cycles (Sandy
Bridge) latency can be hidden. However, we need more memory accesses com-
pared to the 4x variant, since we cannot store all keys, states and temporary

370 D. Gstir and M. Schléffer

values in the 16 128-bit registers. Therefore, the 4x variant may be faster in
some cases.

The main bottleneck of AES implementations using AES-NT is the rather slow
aeskeygenassist instruction. Therefore, the implementations do not reach the
speed given by common AES-NI benchmarks without key schedule recomputa-
tions. Since the throughput of the instruction aeskeygenassist is much lower
than the aesenc instruction, we compute the key schedule on-the-fly. This way,
we also avoid additional memory operations.

The full performance measurements for all implementations are shown in Ta-
ble [The 8x variants test eight keys in parallel but require memory access,
the 4x variants test four keys in parallel without any memory access. The table
shows nicely that the memory-less implementation can in fact be faster under
certain circumstances. Overall, the performance of an implementation depends
highly on the latency of the AES instructions. E.g. on the Sandy Bridge archi-
tecture, the instructions take longer and testing only four keys in parallel does
not utilize the CPU pipeline optimally.

Table 1. Performance measurements for the various software implementations of the
black-box brute-force attack, optimized brute-force attack and biclique attack. All values
are given in cycles/byte. Best results per architecture and implementation are written
in bold.

Black-Box Brute-F. Optimized Brute-F. Biclique (Modified)

Approach

Westmere Sandy B. Westmere Sandy B. Westmere Sandy B.
C, 4x 3.09 3.80 3.20 3.70 2.71 3.18
C, 4x, rnd 1 full 3.10 3.75
ASM, 4x 3.00 3.80 2.61 3.24
ASM-AVX, 4x 3.80 3.21
C, 8x 3.45 3.86 3.52 3.89 3.41 3.39
C, 8x, rnd 1 full 3.24 3.67
ASM, 8x 3.40 3.95
ASM-AVX, 8x 3.93

5.2 Optimized Brute-Force Attack Implementation

The idea for the optimized brute-force attack is to avoid some computations
by iterating all possible keys in a more structured way. As we have seen in
Section [3.2] this slightly reduces the time complexity of the attack. To verify
this, we implemented multiple variants of this attack (4 and 8 keys in parallel)
using AES-NT.

However, since Intel AES-NI is optimized for computing full AES rounds,
it is not possible to efficiently recompute only the required bytes and S-boxes.

Fast Software Encryption Attacks on AES 371

Hence, we often compute the full state although we only need some parts of it.
This is for instance the case for round 2 (see Fig. 2]). The additional instructions
required to perform only a partial encryption in this round take longer than just
using aesenc to compute the full encryption round.

Table [lists the full measurements for this attack. We also included a com-
parison between computing the full round 1 and computing only the reduced
round as it is the idea for this attack. The results clearly show that it is also
faster (in most cases) to just compute the full round instead of a reduced round.

Nevertheless, the last 2 rounds can be computed as reduced rounds since one
round does not contain MixColumns which makes the rearrangement of states
less complex. For these last 2 reduced rounds we collect the required bytes of four
states into one 128-bit register and use one aesenc (or aesenclast) instruction
to compute the remaining bytes. In the matching phase, we save computations in
the last two rounds. For testing 4 keys, we need to compute only 2 AES rounds
and some recombinations instead of 4 - 2 AES rounds.

5.3 Biclique Attack Implementation

The modified biclique attack by Bogdanov et al. as covered in Section Ml has
several advantages when implemented in software. Most notable are the low
data complexity of only 16 plaintext-ciphertext pairs and the simple matching
phase at the end of the cipher on four ciphertext bytes. These modifications
allow us to implement the attack with almost no memory operations.

To better exploit the full-round aesenc instruction, we compute the biclique
only until state S3 and not S3yc. Since the biclique attack considers groups of
16 keys, our main loop consists of three steps:

1. Precompute values for S9, rko and active bytes of S%, Sg

2. Combine the precomputed bytes to 16 values for the full state S3.

3. Encrypt the remaining rounds and match with the ciphertexts from the
encryption oracle.

For the biclique computation we basically follow the steps given in Section [£.1l
However, to compute the differential trails, we directly compute the combined
trail for i = j € {1,2,3}. Afterwards, we extract the values for S and S} to
construct 16 values for S3 using the base computation. Consequently, we perform
4 full computations of the first 2 rounds per key group. This phase is equal for
the 4x and 8x variants.

The 5 full-round computations of the third step are exactly the same as in
the black-box brute-force attack. The 3 round computations at the end and the
matching are the same as in the optimized brute-force attack. Similar to these
attacks, we have implemented two variants, which compute and match either 4
or 8 keys in parallel. Again, we compute the key schedule on-the-fly since this
results in faster code.

In general, our implementations of the biclique attack are quite similar to the
brute-force attacks. Similar to the optimized brute-force attack, we also compute

372 D. Gstir and M. Schléffer

full round more often than necessary. For example, in round 3 and round 8 we
compute full rounds although we would not need to. Especially computing only
SubBytes by aesenclast followed by pshufb is more expensive than computing
a whole round.

Overall, for the full matching phase (4x and 8x variants) we compute six full
rounds with aesenc and then compute the remaining two rounds as reduced
rounds. As can be seen in Fig. 2] and Fig. B the reduced rounds of the biclique
attack and the optimized brute-force attack are in fact equal. Consequently,
the implementation of the matching phase is equal to the last 8 rounds of the
optimized brute-force attack.

5.4 Performance Results

We have tested our implementations of all three attacks on Intel Westmere (Mac-
Book Pro with Intel Core i7 620M, running Ubuntu 11.10 and gcc 4.6.1) and Intel
Sandy Bridge (Google Chromebox with Intel Core i5 2450M, running Ubuntu
12.04 and gcc 4.6.3). For the C implementations we used the following com-
piler flags: -march=native -03 -finline-functions -fomit-frame-pointer
-funroll-loops. All results are shown in Table [l

Overall, the biclique attack is 13% faster on Westmere and 17% faster on
Sandy Bridge, compared to the best black-box brute force on the same architec-
ture. This clearly verifies that the biclique attack is faster than both brute-force
attacks in all scenarios, although the advantage is smaller than in theory. Note
that the Sandy Bridge implementations are slower in general but provide a larger
advantage over the black-box brute-force attack.

The performance of the optimized brute-force attack varies depending on the
CPU architecture and is actually slower than the black-box brute-force attack
on Westmere CPUs. On Sandy Bridge, the optimized brute-force attack is 3%
faster than the black-box brute-force attack. However, assembly implementations
of the optimized brute-force attack may slightly improve the results.

If we compare Sandy Bridge implementations, the biclique attack results in a
time complexity of about 212777 full AES-128 computations. For the optimized
brute-force attack we get a complexity of 212795 in the best case. In the theo-
retical evaluation of the modified biclique attack, we have estimated an average
complexity of 9.9 AES-128 encryptions to test 16 keys. However, using AES-NI
we are able to get a complexity of only 14 AES-128 encryptions to test 16 keys.

6 Conclusions

In this work, we have analyzed three different types of single-key attacks on AES-
128 in software using Intel AES-NI. The first attack is the black-box brute-force
attack with a generic exhaustive key search complexity of 2?8 AES computa-
tions. We have used this implementation as the base line for a comparisons of
other attacks faster than brute-force. We get the best advantage of the faster

Fast Software Encryption Attacks on AES 373

than brute-force attacks on Sandy Bridge CPUs. In this case, the simplified bi-
clique attack by Bogdanov et al. is 17% faster than the black-box brute-force
attack, while our simple optimized brute-force attack is only 3% faster.

Note that we did not put much effort in the optimized brute-force attack.
More clever tricks, better implementations or using a different platform may
still improve the result. Nevertheless, neither the optimized brute-force attack
nor the biclique attack threaten the security of AES in any way, since still all 2"
keys have to be tested. In this sense, both attacks just perform an exhaustive
key search in a more or less optimized and clever way.

With this paper, we hope to provide a basis for a better comparison of close
to brute force attacks. The open problem is to distinguish between clever brute-
force attacks and worrisome structural attacks which may extend to attacks with
less than a marginal improvement over the generic complexity. Based on our
implementation and analysis, the biclique attack in its current form is probably
not such an attack. Therefore, we believe that trying to improve the biclique
attack itself is more important than merely applying it to every published cipher.

Acknowledgements. We thank Vincent Rijmen for valuable comments. This
work has been supported in part by the Secure Information Technology Center-
Austria (A-SIT) and by the Austrian Science Fund (FWF), project TRP251-N23.

References

1. Biryukov, A., Khovratovich, D.: Related-Key Cryptanalysis of the Full AES-192
and AES-256. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp. 1-18.
Springer, Heidelberg (2009)

2. Bogdanov, A., Kavun, E.B., Paar, C., Rechberger, C., Yalcin, T.: Better than
Brute-Force Optimized Hardware Architecture for Efficient Biclique Attacks on
AES-128. In: Workshop records of Special-Purpose Hardware for Attacking Cryp-
tographic Systems — SHARCS 2012, pp. 17-34 (2012),
http://2012.sharcs.org/record.pdf

3. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the
Full AES. In: Lee, D.H., Wang, X. (eds.) ASTACRYPT 2011. LNCS, vol. 7073, pp.
344-371. Springer, Heidelberg (2011)

4. Fog, A.. Instruction tables — Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA CPUs (2012),
http://www.agner.org/optimize/instruction_tables.pdf|(accessed September
2, 2012)

5. Gaj, K.: ATHENa: Automated Tool for Hardware EvaluatioN (2012),
http://cryptography.gmu.edu/athenadb/fpga_hash/table_view
(accessed February 1, 2013)

6. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Transactions on In-
formation Theory 26(4), 401-406 (1980)

7. Intel Corporation:ntel® Advanced Encryption Standard (AES) Instruction Set,
White Paper. Tech. rep., Intel Mobility Group, Israel Development Center, Israel
(January 2010)

http://2012.sharcs.org/record.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://cryptography.gmu.edu/athenadb/fpga_hash/table_view

374

10.

11.

D. Gstir and M. Schléffer

Intel Corporation: Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Intel Corporation (March 2012)

NIST: Specification for the Advanced Encryption Standard (AES). National Insti-
tute of Standards and Technology (2001)

Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134-152.
Springer, Heidelberg (2009)

SHA-3 Zoo Editors: SHA-3 Hardware Implementations (2012),
http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations
(accessed February 1, 2013)

http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations

	Fast Software Encryption Attacks on AES
	1 Introduction
	2 Implementing AES in Software Using AES-NI
	2.1 Description of AES-128
	2.2 Efficient Implementations of AES-128 Using AES-NI

	3 Brute-Force Key Recovery Attacks on AES-128
	3.1 Black-Box Brute-Force Attack
	3.2 Optimized Brute-Force Attack

	4 Simplified Biclique Attack for Hardware Implementation
	4.1 Biclique Construction
	4.2 Key Recovery
	4.3 Complexity of the Attack

	5 Software Implementations and Benchmark Results
	5.1 Black-Box Brute-Force Implementation
	5.2 Optimized Brute-Force Attack Implementation
	5.3 Biclique Attack Implementation
	5.4 Performance Results

	6 Conclusions
	References

