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Abstract. Among the existing PVSS schemes, a proposal by Shoemak-
ers is a very special one. It avoids a common problem in PVSS design and
costly operations by generating the secret to share in a certain way. Al-
though its special secret generation brings some limitations to its applica-
tion, its improvement in simplicity and efficiency is significant. However,
its computational cost is still linear in the square of the number of share
holders. Moreover, appropriate measures need to be taken to extend its
application. In this paper, the PVSS scheme is modified to improve its
efficiency and applicability. Firstly, a more efficient proof technique is de-
signed to reduce the computational cost of the PVSS scheme to be linear
in the number of share holders. Secondly, its secret generation procedure
is extended to achieve better flexibility and applicability.

1 Introduction

In many secure information systems, some secret information is distributed
among multiple parties to enhance security and robustness of systems. The first
secret sharing technique is Shamir’s t-out-of-n secret sharing [22]. A dealer has
a secret s and wants to share it among n share holders. The dealer builds a
polynomial f(x) =

∑t−1
j=0 αjx

j and sends si = f(i) mod q to the ith share holder
for i = 1, 2, . . . , n through a secure communication channel where α0 = s and q
is an integer larger than any possible secret to share. Any t shares can be used to
reconstruct the secret s =

∑
i∈S siui mod q where ui =

∏
j∈S,j �=i j/(j− i) mod q

and S contains the indices of the t shares. Moreover, no information about the
secret is obtained if the number of available shares is less than t. Secret sharing
is widely employed in various secure information systems like e-auction, e-voting
and multiparty computation. As most of the applications require public verifia-
bility, very often secret sharing must be publicly verifiable. Namely, it must be
publicly verified that all the n shares are consistently generated from a unique
share generating polynomial and any t of them reconstruct the same secret. As
the verification is public in those distributed systems, any wrong-doing can be
publicly detected by any one and thus is undeniable.

Publicly verifiable secret sharing is usually called PVSS. It is widely employed
in various applications like mix network [1], threshold access control [20], e-
voting [9,12,14,13], distributed encryption algorithm [6], zero knowledge proof
[7], anonymous token [11] and fair exchange [15]. In PVSS the dealer is not
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trusted and may deviate from the secret sharing protocol. He may distribute
inconsistent shares to the share holders such that some shares reconstruct a secret
while some other shares reconstruct a different secret. This cheating behaviour
compromises security of the applications of secret sharing. For example, in secret-
sharing-based multiple-tallier e-voting [9,12], it allows the talliers to tamper with
the votes. Famous PVSS schemes include [23,4,10,21], where one of the two PVSS
protocols in [23] is a development of the proposal in [8] and [17] is a revisit to [4]
with a different encryption algorithm and stronger security. Usually, PVSS is a
combination of secret sharing and publicly verifiable encryption of an encryption
algorithm, which is employed to implement the secure communication channel
for share distribution. The dealer encrypts shares for the share holders using
their public keys and publishes the ciphertexts. Each share holder can decrypt
the ciphertext for him and obtain his share, while the dealer can publicly prove
that the messages encrypted in the ciphertexts are shares for a unique secret
without revealing the secret or its shares. The following three important security
properties are desired in PVSS.

– Correctness: if the dealer is honest and does not deviate from the PVSS
protocol, he can always successfully prove validity of the shares.

– Soundness: only with an exception of a negligible probability, the shares are
guaranteed to be generated by the same secret-generating polynomial such
that any t of them reconstruct the same secret.

– Privacy: no information about the secret or any of its shares is revealed in
the proof of validity of the shares. More precisely, a private PVSS scheme
should employ zero knowledge proof techniques, which do not reveal any
secret information as their proof transcripts can be simulated without any
difference by a party without any knowledge of the secret or any of its shares.

Those security properties can be defined in a fornal way as follows.

Definition 1 There is a proof function V al(s1, s2, . . . , sn) for a dealer to prove
validity of the shares. If his proof returns V al(s1, s2, . . . , sn) = TRUE, validity
of s1, s2, . . . , sn are accepted. If it returns FALSE, the shares are regarded as
invalid.

– Correctness: an honest dealer can always achieve V al(s1, s2, . . . , sn)
= TRUE and Pr(V al(s1, s2, . . . , sn) = FALSE and ∃f(x) =
∑t−1

j=0 αjx
j such that si = f(i) mod q) = 0 where Pr() stands for the proba-

bility of an event.
– Soundness: Pr(V al(s1, s2, . . . , sn) = TRUE and �f(x) =

∑t−1
j=0 αjx

j such that si = f(i) mod q) is negligible.
– Privacy: suppose the transcript of V al(s1, s2, . . . , sn) is TRANS, and then

anyone without knowledge of s or any share can generate a simulating
transcript TRAN ′ such that distribution of the two transcripts is
indistinguishable.

Although public verification of some operations is discussed in a VSS (verifiable
secret sharing) scheme [18], it is not a PVSS proposal as it does not implement
publicly verifiable encryption.
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There are two basic and compulsory requirements in PVSS, security of en-
cryption algorithm and publicly verifiable encryption, which are explained as
follows.

– A secure encryption algorithm must be employed for the dealer to encrypt
the shares before distributing them to the share holders. The employed en-
cryption algorithm protect privacy of the encrypted messages such that no
polynomial adversary can obtain any information about the secret or any of
its shares from the ciphertexts of all the shares. This assumption is called
basic assumption as it is inevitable in any PVSS scheme.

– The employed encryption algorithm must support publicly verifiable encryp-
tion such that an encrypted share can be publicly proved and verified to
be generated by a secret share-generating polynomial. The existing PVSS
schemes specify the public proof and verification as follows.
1. The dealer publishes ci = Ei(si) for i = 1, 2, . . . , n where Ei() is the

encryption function of the ith share holder’s encryption algorithm.
2. An integer g with multiplicative order q is chosen.
3. Aj = gαj for j = 0, 1, . . . , t − 1 are published by the dealer as a public

commitment to the share-generating polynomial. To enhance privacy, αj

can be committed to in gαjhrj where h is in the cyclic group generated
by g, logg h is secret and rj is a random integer smaller than the order
of g. For simplicity of description, we only discuss the simpler commit-
ment algorithm, while replacing it with the more complex commitment
algorithm does not change the specification of PVSS in essence.

4. A commitment to every share si is publicly available: Ci =
∏t−1

j=0 A
ij

j .
5. The dealer has to publicly prove that the same integer is committed to

in Ci and encrypted in ci.

1.1 A Dilemma in Choosing Encryption Algorithm

Choice of encryption algorithm is a subtle question in PVSS. Most existing
PVSS schemes [4,10,17] choose RSA or Paillier encryption [16] for the share
holders. Those two encryption algorithms have a common property: suppose the
decryption function of the ith share holder’s encryption algorithm is Di() and
the modulus used in the calculations in Di() is qi and then q1, q2, . . . , qn must be
different from each other and so cannot be equal to q. More precisely, Di(Ei(m))
is the remainder of m modulo qi and is not necessary to be m mod q as at least
n − 1 of the qis cannot be equal to q. So if a dealer encrypts a message larger
than qi in ci what the ith share holder obtains through Di(ci) is not equal to
what the dealer encrypts in ci modulo q. Therefore, a malicious dealer can cheat
as follows.

1. He publishes ci = Ei(f(i)+kq) where k is an integer to satisfy f(i)+kq > qi.
2. The ith share holder obtains Di(ci) = f(i) + kq mod qi, which is not equal

to f(i) modulo q.
3. The dealer can still prove that the same integer (namely f(i) + kq) is com-

mitted to in Ci and encrypted in ci. But Di(ci) cannot be used as a share
to reconstruct s, the secret committed to in C0.
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The simplest way to prevent this attack is to set q1 = q2 = . . . = qn = q.
However this setting is impossible with RSA or Paillier encryption. So in the
PVSS schemes employing RSA or Paillier encryption [4,10,17], the dealer has to
prove that the message committed to in Ci and encrypted in ci is smaller than qi
for i = 1, 2, . . . , n. Therefore, n instances of range proof is needed where a range
proof proves that a secret integer is within a certain range without revealing
any other information about it. The most efficient general-purpose range proof
is proposed by Boudot in Section 3 of [5]. Although the range proof by Boudot
costs only a constant number of exponentiations, it is still not efficient enough.
His range proof consists of two proof operations to handle the upper bound
and lower bound of the range respectively, while each of them costs about 20
exponentiations. n instances of such range proof in PVSS is a high cost. Range
proof can be more efficient in terms of the number of exponentiations when a
secret integer is chosen from a range and then proved to be in a much larger
range. This condition is called expansion rate and explained in details in Section
1.2.3 of [5]. For range proof in a range R, a much smaller range R′ is chosen
in the middle of R. The prover chooses a message v in R′ and publishes its
monotone function z = w + cv in Z where w is randomly chosen from a set S1

and c is randomly chosen from a set S2. Then z is verified to be in a range R′′.
Of course, both v and w must be sealed in some appropriate commitments (or
ciphertexts) and satisfaction of z = w+ cv is proved by appropriately processing
the commitments without revealing v or w. More details of this efficient special
range proof (e.g. how to set the sizes of the ranges and sets) can be found in
Section 1.2.3 of [5], which calls it CFT proof and shows that when the parameters
are properly chosen v can be guaranteed to be in R with an overwhelmingly
large probability. Obviously, this range proof is a special solution instead of a
general-purpose range proof technique. Usage of this method is not easy and
liable to many limitations. So its application should be cautious. For example,
R must be at least billions of times larger than R′. Moreover, to minimize the
information about v revealed from its monotone function1 z, w must be at least
billions of times larger than cv. In addition, for soundness of range proof, the
relation between R′′ and the other parameters must be delicately designed. As a
result, R′′ is usually very large and contains extremely large integers. Extra large
integers and computation of them in Z without any modulus bring additional
cost and should be taken into account in efficiency analysis.

It is easy to notice that ElGamal encryption supports the simple solution
q1 = q2 = . . . = qn = q. However, it is not easy to prove that the message in
an ElGamal ciphertext is committed to in a commitment as the exponent to
a public base. The first PVSS scheme employing ElGamal encryption [23] uses
the cut-and-choose strategy and needs to repeat its proof quite a few times to
guarantee that the same integer is committed to in Ci and encrypted in ci with a
large enough probability. So it is inefficient. This dilemma in choice of encryption
algorithm is partially solved in [21]. On one hand it employs ElGamal encryption

1 Revealing of secret information is inevitable as z is calculated in Z as a monotone
function of v.
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and sets q1 = q2 = . . . = qn = q and so avoids range proof of the shares. On the
other hand, it generates the secret to share in a special way to avoid the cut-
and-choose proof mechanism. However, in the PVSS scheme in [21], the dealer
must know the discrete logarithm of the secret to share to a public base and
generate the secret from the discrete logarithm. As explained in section 2.1, this
special secret generation procedure limits application of the PVSS scheme (e.g.
in circumstances where the discrete logarithm of the secret to share is unknown).

1.2 Our Contribution

The analysis above has shown that the RSA and Paillier based PVSS schemes
[4,10,17] depend on n instances of range proof and ElGamal-based PVSS schemes
[23,21] have their own drawbacks like complex and costly proof mechanism and
limited application area. Another point we need to mention is that even the
PVSS scheme in [21] is not efficient enough and cost O(tn) in computation. Our
task is to overcome all those drawbacks.

In this paper, the PVSS scheme in [21] is modified and optimised to achieve
higher efficiency and better applicability. The new PVSS scheme sets q1 = q2 =
. . . = qn = q and thus is inherently free of any range proof. It not only avoids cut-
and-choose in proof of validity of secret sharing but also achieves much higher
efficiency than any existing PVSS scheme. It only costs O(n) in computation.
Moreover, it addresses the problem of limited application caused by the special
secret generation mechanism in [21] and provides an alternative solution. An-
other advantage of our new PVSS scheme over the existing PVSS schemes is that
it only needs the basic assumption and a verifier in zero knowledge proof (who
generates random challenges and can be replaced by a (pseudo)random function
in the random oracle model), both of which are inevitable in any PVSS scheme.
In comparison, the existing PVSS schemes need to publish a public commit-
ment to the share-generating polynomial as recalled earlier in this section. As
no commitment algorithm is completely assumption-free and any commitment
algorithm needs some computational assumption to guarantee that the secret
message in the commitment is private and cannot be changed, they may need
some additional computational assumption(s)2.

2 Background and Preliminaries

Background knowledge and security model are given in this section.

2.1 The PVSS Scheme by Schoenmakers

In the PVSS scheme in [21], a dealer employs a special sharing function to share
a specially-generated secret, while the other PVSS schemes employs the normal

2 Actually, most of the existing PVSS schemes do need some additional computational
assumptions.
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sharing function by Shamir [22] and can share any secret in general. Moreover,
a corresponding special secret reconstruction function is employed in [21] to
reconstruct the secret accordingly. The special sharing function reconstruction
function in [21] are described as follows while its public proof of validity of secret
sharing follows the principle recalled in Section 1, which is commitment-based
and applies to all the existing PVSS.

– Setting
p and q are large primes and q is a factor of p − 1. Gq is the cyclic group
with order q in Z∗

p and g is a generator of Gq.
– Sharing

1. The dealer firstly chooses δ and then calculates the secret s = gδ.
2. He builds a polynomial f(x) =

∑t−1
j=0 ajx

j with a0 = δ and aj for j =
1, 2, . . . , t− 1 are random integers.

3. He publishes ElGamal ciphertext ci = (gri , gδiyrii ) for i = 1, 2, . . . , n
where δi = f(i), yi is Pi’s ElGamal public key.

– Reconstruction
1. Each Pi decrypt ci and obtains s′i = gδi .
2. A set with at least t sharers are put together: s =

∏
i∈I s

′ui

i where
ui =

∏
j∈I,j �=i j/(j − i) and I is the set containing the indices of the t

shares.

In the PVSS scheme in [21], a0 = δ, so actually discrete logarithm of the secret
s is shared using the share-generating polynomial. Its reconstruction function is
accordingly changed to reconstruct s using the shares of δ. So knowledge of dis-
crete logarithm of the secret is compulsory to the dealer and due to hardness of
DL problem its discrete logarithm must be fixed before the secret is generated in
the PVSS scheme in [21]. Therefore, it is not suitable for some applications. One
of the most common applications of PVSS is key sharing (or called distributed
key generation in some cryptographic schemes). A secret key is usually chosen
from a consecutive interval range instead of a cyclic group in many encryption
algorithms (e.g. AES and normal ElGamal) and many other encryption algo-
rithms (e.g. RSA and Paillier) do not first choose a discrete logarithm of the
secret key and then calculate the secret key in a cyclic group either. Another
important application of PVSS is sharing of password or accessing code in dis-
tributed access control. In most applications, a password or accessing code is
usually randomly chosen by users and very often the users would like to choose
some special password or accessing code like their birthdays or phone number.
So it is very probable that discrete logarithm of the password or accessing code
is unknown or even does not exist at all. In general, the secret to share cannot be
generated in the discrete-logarithm-fixed-first manner in many applications. To
guarantee that the secret generated in the discrete-logarithm-fixed-first manner
is distributed in a distribution in a set R required by an application, the set
R′ = {x | gx ∈ R} must be calculated and thus discrete logarithm of the secret
can be chosen from it first. However, due to hardness of DL problem, it is often
hard to calculate R′.
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In summary, although the PVSS scheme in [21] employs ElGamal encryption
to avoid range proof and other complex proof operations for the first time and
partially solved the dilemma explained in Section 1.1, it still has some drawbacks.
Firstly, it still needs O(tn) in computation and is thus not efficient enough.
Secondly, its has some limitations in practical application.

2.2 Security Model

Soundness of PVSS is defined in Definition 2, while privacy of PVSS follows
the simulation-based general definition of privacy of any proof protocol in
Definition 3.

Definition 2 (Soundness of PVSS). If the dealer’s public proof of validity of
the shares passes the public verification of a sound PVSS with a non-negligible
probability, there exist integers α0, α1, . . . , αt−1 such that si =

∑t−1
j=0 αji

j for i =

1, 2, . . . , n where si is the ith share.

Definition 3 (Privacy of a proof protocol). A proof protocol is private if its
transcript can be simulated by a party without any knowledge of any secret such
that the simulating transcript is indistinguishable from the real protocol transcript
as defined in Definition 4.

Definition 4 (Indistinguishability of distributions). Suppose a set of variables
have two transcripts respectively with two distributions T1 and T2. A random
secret bit i is generated. If i = 0, two instances of T2 are published; If i = 1, an
instance of T1 and an instance of T2 are published. An algorithm can distinguish
T1 and T2 if given the two published instances of transcripts he can calculate i
with a probability non-negligibly larger than 0.5.

3 New PVSS Based on ElGamal Encryption

Our new PVSS protocol employs ElGamal encryption algorithm to maintain
consistency of modulus and avoid range proof like in [21] but uses a completely
different proof technique. It does not employ any commitment algorithm to
avoid additional computational assumption. Of course it still needs the basic
assumption, namely semantic security of ElGamal encryption defined in the
following.

Definition 5 (Semantic security of encryption algorithm) A polynomial adver-
sary chooses two messages m0 and m1 in the message space of the encryption
algorithm in any way he likes and submits them to an encryption oracle, who
randomly chooses a bit i and returns the adversary E(mi) where E() denotes
the encryption algorithm. The encryption algorithm is semantically secure if the
probability that the adversary obtains i is not non-negligibly larger than 0.5.
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The main idea of the new PVSS technique is simple: given two sets of shares
s1, s2, . . . , sn and k1, k2, . . . , kn and a random challenge R, if k1 + Rs1, k2 +
Rs2, . . . , kn +Rsn are a set of consistent shares of the same secret, s1, s2, . . . , sn
are a set of consistent shares of the same secret with an overwhelmingly large
probability. It is described as follows where the denotations in [21] are inherited
and the share holders are P1, P2, . . . , Pn.

1. The dealer firstly chooses δ in Zq and then calculates s = gδ mod p. In this
way, he generates an s in Gq such that he knows δ = logg s.

2. He builds a polynomial f1(x) =
∑t−1

j=0 αjx
j with α0 = δ and αj for j =

1, 2, . . . , t− 1 are random integers chosen from Zq.

3. He randomly chooses ε in Zq and builds a polynomial f2(x) =
∑t−1

j=0 βjx
j

with β0 = ε where βj for j = 1, 2, . . . , t− 1 are random integers chosen from
Zq.

4. He publishes ci = (gri mod p, gδiyrii mod p) and c′i = (gr
′
i mod p, gεiy

r′i
i mod

p) for i = 1, 2, . . . , n where δi = f1(i) mod q, εi = f2(i) mod q and ri, r
′
i are

randomly chosen from Zq.
5. A random challenge R in Zq is publicly generated by one or more verifier(s)

or a (pseudo)random function like in any publicly verifiable zero knowledge
proof protocols (e.g. those zero knowledge proof primitives used in all the
existing PVSS schemes). A simple and non-interactive method to publicly
generate R is R = H(c1, c

′
1, c2, c

′
2, . . . , cn, c

′
n) where H() is a (pseudo)random

function (e.g. a hash function). As mentioned in Section 1.2, this randomness
generation procedure is the same as the randomness generation procedure
necessary in any existing PVSS scheme and needs no additional assumption
or technique.

6. He publishes γj = βj + Rαj mod q for j = 0, 1, . . . , t − 1 and Ri = Rri +
r′i mod q for i = 1, 2, . . . , n and any one can publicly verify

aRi a
′
i = gRi mod p (1)

bRi b
′
i = gSiyRi

i mod p (2)

for i = 1, 2, . . . , n where ci = (ai, bi), c
′
i = (a′i, b

′
i) and

Si =
∑t−1

j=0 γji
j mod q. (3)

7. Share decryption and secret reconstruction are as follows.

(a) Each Pi decrypts ci and obtains si = bi/a
xi

i mod p.

(b) A set with at least t sharers are put together: s =
∏

i∈S sui

i mod p where
ui =

∏
j∈S,j �=i j/(j − i) mod q and S is the set containing the indices of

the t shares.

Soundness and privacy of the new ElGamal-based PVSS protocol are proved in
Theorem 1 and Theorem 2 respectively, following Definition 2 and Definition 3
respectively.
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Theorem 1. Proof: If Equations (1), (2) and (3) hold for i = 1, 2, . . . , n with a
probability larger than 1/q, then there exists a t-out-of-n share-generating poly-
nomial f() such that logg Di(ci) = f(i) mod q for i = 1, 2, . . . , n where Di()
denotes the ElGamal decryption function of Pi.

Equations (1), (2) and (3) for i = 1, 2, . . . , n with a probability larger than 1/q
imply

Di(c
R
i c

′
i) = gSi = g

∑t−1
j=0 γji

j

mod p for i = 1, 2, . . . , n (4)

with a probability larger than 1/q. So, there must exist two different inte-
gers in Zq, R and R′, such that the dealer can produce γ0, γ1, . . . , γt−1 and
γ′
0, γ

′
1, . . . , γ

′
t−1 respectively to satisfy

Di(c
R
i c

′
i) = g

∑t−1
j=0 γji

j

mod p for i = 1, 2, . . . , n (5)

Di(c
R′
i c′i) = g

∑t−1
j=0 γ′

ji
j

mod p for i = 1, 2, . . . , n. (6)

Otherwise, there is at most one R in Zq for the dealer to produce a set of integers
γ0, γ1, . . . , γt−1 to satisfy (4) and the probability that (4) is satisfied is no larger
than 1/q, which is a contradiction.

(5) divided by (6) yields

Di(ci)
R−R′

= g
∑t−1

j=0(γj−γ′
j)i

j

mod p for i = 1, 2, . . . , n.

Namely,

logg Di(ci)
(R−R′) =

∑t−1
j=0(γj − γ′

j)i
j mod q for i = 1, 2, . . . , n

and thus

logg Di(ci) =

t−1∑

j=0

((γj − γ′
j)/(R−R′))ij mod q for i = 1, 2, . . . , n. �

Theorem 2. Privacy of the new ElGamal-based PVSS protocol is completely
achieved, only dependent on the basic assumption and randomness of the chal-
lenge R. More precisely, their privacy is formally provable on the assumption
that the employed ElGamal encryption algorithm is semantically secure and R
is random.

Proof: Both protocols have the same PVSS transcript
R, c1, c2, . . . , cn, c

′
1, c

′
2, . . . , c

′
n, R1, R2, . . . , Rn, γ0, γ1,

. . . , γt−1. So their privacy can be universally proved in one simulation. A party
without any access to the secret or any of its shares can simulate the PVSS
transcript and generate a simulated transcript as follows.

1. R, α0, α1, . . . , αt−1, β0, β1, . . . , βt−1, r1, r2, . . . , rn, r′1, r′2, . . . , r′n are ran-
domly chosen from Zq.
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2. Ri = r′i +Rri mod q for i = 1, 2, . . . , n.
3. γj = Rαj + βj mod q for j = 0, 1, . . . , t− 1.

4. si =
∑t−1

j=0 αji
j mod q for i = 1, 2, . . . , n.

5. ki =
∑t−1

j=0 βji
j mod q for i = 1, 2, . . . , n.

6. ci = (gri mod p, gsiyrii mod p) for i = 1, 2, . . . , n.

7. c′i = (gr
′
i mod p, gkiy

r′i
i mod p) for i = 1, 2, . . . , n.

In this simulated transcript of ci, c
′
i, Ri for i = 1, 2, . . . , n, R, γ0, γ1, . . . , γt−1,

– each of ci and c′i alone is uniformly distributed in the ciphertext space of the
employed ElGamal encryption algorithm for i = 1, 2, . . . , n;

– each of R, γ0, γ1, . . . , γt−1 is uniformly distributed in Zq;
– each Ri is uniformly distributed in Zq for i = 1, 2, . . . , n;
– D1(c1), D2(c2), . . . , Dn(cn) are shares of an integer uniformly distributed in

Gq;
– D1(c

′
1), D2(c

′
2), . . . , Dn(c

′
n) are shares of an integer uniformly distributed in

Gq.

In comparison, in the real transcript of ci, c
′
i, Ri for i = 1, 2, . . . , n,

R, γ0, γ1, . . . , γt−1 published by the dealer,

– each of ci and c′i alone is uniformly distributed in the ciphertext space of the
employed ElGamal encryption algorithm for i = 1, 2, . . . , n;

– each of R, γ0, γ1, . . . , γt−1 is uniformly distributed in Zq;
– each Ri is uniformly distributed in Zq for i = 1, 2, . . . , n;
– D1(c1), D2(c2), . . . , Dn(cn) are shares of the shared secret s or gs mod p,

depending on which of the two protocols is referred to;
– D1(c

′
1), D2(c

′
2), . . . , Dn(c

′
n) are shares of an integer uniformly distributed in

Gq.

The only difference between the two transcripts lies in distribution of
c1, c2, . . . , cn, which are encrypted shares of a random integer in the simulated
transcript and encrypted shares of s or gs mod p in the real transcript. The tran-
script of c1, c2, . . . , cn in the real ElGamal-based new PVSS protocols is denoted
as T1; while the simulated transcript of c1, c2, . . . , cn is denoted as T2. If an
algorithm can compromise privacy of the ElGamal-based new PVSS protocols,
according to Definition 3, it can distinguish T1 and T2 as defined in Definition 4.
This algorithm, denoted as A, can be employed to win a game as follows.

1. An adversary sets m0 = s and randomly chooses m1 from Gq and submits
them to a dealer. The dealer randomly chooses a bit i and shares mi among
the share holders using an ElGamal-based new PVSS protocol. The party
needs to calculate i to win the game using the encrypted shares, which is
denoted as T ′

1. Note that T
′
1 and T1 have the same distribution if i = 0; while

T ′
1 and T2 have the same distribution if i = 1.

2. The adversary randomly chooses an integer from Gq and shares it among
the share holders using the ElGamal-based new PVSS protocol. He generates
the encrypted shares of this integer, which is denoted as T ′

2. T
′
2 and T2 have

the same distribution.
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3. He inputs T ′
1 and T ′

2 to A, which outputs i′. As A can distinguish T1 and T2

as defined in Definition 4, with a probability non-negligibly larger than 0.5,
it returns i′ = 0 if i = 1 and returns i′ = 1 if i = 0. So 1 − i′ is a correct
solution for i with a probability non-negligibly larger than 0.5.

However, to win the game with a probability non-negligibly larger than 0.5 will
leads to a contradiction as follows. For simplicity of proof, suppose 2t ≥ n + 1
and like many existing PVSS descriptions the addition modulus is not explicitly
specified. If there is an polynomial algorithm A to win the game above, it is
illustrated in the following that this algorithm can be employed to break semantic
security of the employed encryption algorithm.

1. The adversary in Definition 5 needs to obtain i where the encryption algo-
rithm is E().

2. He calculates integers α0, α1, . . . , αt−1, α′
0, α

′
1, . . . , α

′
t−1 and s2, s3, . . . , sn

such that

m0 =
∑t−1

j=0 αj

m1 =
∑t−1

j=0 α
′
j

si =
∑t−1

j=0 αji
j for i = 2, 3, . . . , n

si =
∑t−1

j=0 α
′
ji

j for i = 2, 3, . . . , n.

As 2t ≥ n+ 1, he can always find such integers using efficient linear algebra
computations.

3. He inputs (α0, α
′
0) to A as the two possible secrets to share. He inputs

(c, c2, c3, . . . , cn) to A as the encrypted shares where ci = Ei(si) for i =
2, 3, . . . , n and each Ei() denotes the same type of encryption algorithm as
E() but with a different key.

4. A guesses which secret is shared in the encrypted shares. As A can break
semantic security of CCSD of the PVSS protocol, the probability that it gets
a correct guess is P , which is non-negligibly larger than 0.5.

5. If A returns 0, the adversary outputs i = 0; if A returns 1, he outputs i = 1.
Note that
– if c = E(m0), then (c, c2, c3, . . . , cn) are encrypted shares of α0;
– if c = E(m1), then (c, c2, c3, . . . , cn) are encrypted shares of α′

0.
So the probability that the adversary obtains i is P and non-negligibly larger
than 0.5.

Therefore, semantic security of E() is broken. When 2t < n + 1 the proof can
work as well but in a more complex way as sometimes neither of the two possible
secrets is shared in the encrypted shares and A has to return a random output.
Due to space limit, this extension is left to interested readers.

Since a contradiction is found, T1 and T2 cannot be can distinguished in
polynomial time. Therefore, if ElGamal encryption is semantical secure, the
ElGamal-based new PVSS protocol achieve privacy. �
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4 Broader Range of Applications and Batch Verification

Application of our new PVSS technique to a broader range and its efficiency
improvement through batch verification are discussed in this section.

4.1 When the Logarithm-Known Secret Generation Mechanism
Cannot Work

If s is not a random string to be freely appointed, but a secret with real meaning
(e.g. a vote in an e-voting application or a bid in an e-auction system), the
PVSS protocol with the logarithm-known secret generation mechanism in last
section cannot work. However, a secret with real meaning is usually distributed
in a relatively small space. For example, a vote is usually the name of one of
the candidates and a bid is usually a biddable price. In this case, searching
for discrete logarithm in the small space is not too costly (e.g. using Pollard’s
Lambda method) and thus our PVSS design can be slightly modified as follows
to solve the problem.

1. To share a secret s, the dealer builds a polynomial f1(x) =
∑t−1

j=0 αjx
j with

α0 = s and αj for j = 1, 2, . . . , t− 1 are random integers chosen from Zq.

2. He randomly builds another polynomial f2(x) =
∑t−1

j=0 βjx
j where βj for

j = 0, 1, . . . , t− 1 are random integers chosen from Zq.

3. He publishes ci = (gri mod p, gsiyrii mod p) and c′i = (gr
′
i mod

p, gkiy
r′i
i mod p) where si = f1(i) mod q, ki = f2(i) mod q and ri, r

′
i are

randomly chosen from Zq.

4. A random challenge R in Zq is generated in the same way as in Section 3.

5. He publishes γj = βj + Rαj mod q for j = 0, 1, . . . , t − 1 and Ri = Rri +
r′i mod q for i = 1, 2, . . . , n and any one can check Equations (1), (2) and (3)
for i = 1, 2, . . . , n.

6. Share decryption and secret reconstruction are as follows.

(a) Each Pi decrypt ci and obtains s′i = bi/a
xi

i mod p.

(b) A set with at least t shares are put together: s′ =
∏

i∈S s′ui

i mod p where
ui =

∏
j∈S,j �=i j/(j − i) mod q and S is the set containing the indices of

the t shares.

(c) logg s
′ is searched for in the space of the secret and the found discrete

logarithm is the reconstruction result. As stated before, a space contain-
ing practical secret with real meaning is often not too large, so the search
is often affordable.

If the secret to share is chosen from a large space and its discrete logarithm is
unknown, its discrete logarithm can be calculated in advance to save real-time
cost and then the first ElGamal-based PVSS protocol is employed to share the
secret.
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4.2 PVSS with Explicit Commitment

Although we have shown that in PVSS explicit commitments can be avoided to
improve efficiency, some applications of PVSS may need an explicit commitment
to the secret, especially when the shared secret has to be processed in the ap-
plications without being revealed. In such applications, our new PVSS scheme
can be extended to support explicit commitment to the shared secret without
compromising high efficiency. It is not necessary to commit to all the coefficients
of the share-generating polynomial like in the existing PVSS schemes. Instead,
we only commit to the shared secret using a simple commitment mechanism as
follows.

1. The secret s is committed to in a public commitment C = gshσ mod p where
σ is randomly chosen from Zq and h is an integer in Gq such that logg h is
unknown.

2. When β0 is employed in PVSS, it is committed to in the same way, namely
in a public commitment C′ = gβ0hσ′

mod p where σ′ is randomly chosen in
Zq.

3. When R and γ0 are published in PVSS, the dealer publishes τ = Rσ +
σ′ mod q as well. Anyone can publicly verify CRC′ = gγ0hτ mod p to be
ensured that the secret committed in C is shared among the share holders
with an overwhelmingly large probability as illustrated in Theorem 3.

Theorem 3. If Equations (1), (2) and (3) hold for i = 1, 2, . . . , n and the dealer
can calculate logh(C

RC′/gγ0) with a probability larger than 1/q, he must have
committed to the shared secret in C.

Proof: Equations (1), (2) and (3) for i = 1, 2, . . . , n with a probability larger
than 1/q imply

Di(c
R
i c

′
i) = gSi = g

∑t−1
j=0 γji

j

mod p for i = 1, 2, . . . , n

with a probability larger than 1/q. So, there must exist two different inte-
gers in Zq, R and R′, such that the dealer can produce γ0, γ1, . . . , γt−1, τ and
γ′
0, γ

′
1, . . . , γ

′
t−1, τ

′ respectively to satisfy

Di(c
R
i c

′
i) = g

∑t−1
j=0 γji

j

mod p for i = 1, 2, . . . , n (7)

Di(c
R′
i c′i) = g

∑t−1
j=0 γ′

ji
j

mod p for i = 1, 2, . . . , n (8)

CRC′ = gγ0hτ mod p (9)

CR′
C′ = gγ

′
0hτ ′

mod p. (10)

Otherwise, there is at most one R in Zq for the dealer to produce

γ0, γ1, . . . , γt−1, τ to satisfy Di(c
R
i c

′
i) = g

∑t−1
j=0 γji

j

mod p for i = 1, 2, . . . , n and
CRC′ = gγ0hτ mod p and the probability that he can produce correct responses
to satisfy the two equations is no larger than 1/q, which is a contradiction.
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(7)/(8) yields

Di(ci)
R−R′

= g
∑t−1

j=0(γj−γ′
j)i

j

mod p for i = 1, 2, . . . , n

and (9)/(10) yields

CR−R′
= gγ0−γ′

0hτ−τ ′
mod p.

Note that R and R′ are different integers in Zq and q is a prime and so
(R−R′)−1 mod q exists. Therefore,

Di(ci) = g
∑t−1

j=0(γj−γ′
j)/(R−R′)ij mod p for i = 1, 2, . . . , n

C = g(γ0−γ′
0)/(R−R′)h(τ−τ ′)/(R−R′) mod p

and thus each logg Di(ci) is a share generated by polynomial f(x) =
∑t−1

j=0((γj − γ′
j)/(R − R′))xj where discrete logarithm of the shared secret,

(γ0 − γ′
0)/(R−R′) mod N , is committed to in C. �

4.3 Further Efficiency Improvement by Batch Verification

High efficiency for the dealer is very obvious in our new PVSS scheme. His only
exponentiation computation in his proof of validity of his secret sharing includes
encryption of kis, namely n instances of ElGamal encryption, which costs 2n
exponentiations. It is a great advantage over the existing PVSS schemes as to
be detailed in Section 5. However, the computational cost for a verifier is not
so efficient. Verification of Equations (1) and (2) for i = 1, 2, . . . , n costs 5n
exponentiations, each with an exponent in Zq. Verification of the two equations
can be batched by a verifier using the idea in [3] as follows.

1. n integers t1, t2, . . . , tn are randomly chosen by the verifier from Z2L where
L is a security parameter such that 2L < q.

2. He verifies

(
∏n

i=1 a
ti
i )

R
∏n

i=1 a
′ti
i = g

∑n
i=1 Riti mod p (11)

(
∏n

i=1 b
ti
i )

R
∏n

i=1 b
′ti
i = g

∑n
i=1 Siti

∏n
i=1 y

Riti
i mod p. (12)

This batch verification is a straightforward application of the principle in Theo-
rem 4. Theorem 4 guarantees that if (11) and (12) are satisfied with a probability
larger than 2−L then (1) and (2) are satisfied. As explained in [3], the principle of
batch verification is employment of small exponents. Bellare et al notice that the
exponentiation computations in cryptographic operations usually employ very
large exponents (hundreds of bits long) and sometimes the exponents are not
necessary to be so large. Actually in many practical applications the exponents
can be much smaller (e.g. scores of bits long) but still large enough to guarantee
very strong security (e.g. to control the probability of failure under one out of



Modification and Optimisation of an ElGamal-Based PVSS Scheme 325

billions). So they employ many small exponents in verification of a batch of equa-
tions and estimate the computational cost in terms of the number of separate
exponentiations with full-length exponents. More precisely, they set the compu-
tational cost of an exponentiation with a full-length exponent as the basic unit
in efficiency analysis and estimate how many basic units cost the same as their
operations3. In this way, they can clearly show advantages of batch verification
in computational efficiency. More precisely, in our batch verification, 2L can be
much smaller than the integers in Zq to improve efficiency, while correctness and
soundness of the verification can still be guaranteed except for a probability of
2−L.

Theorem 4. Suppose H, y1, y2, . . . , yn are in Gq, t1, t2, . . . , tn are randomly
chosen from {0, 1, . . . , 2L − 1}. If

∏n
i=1 y

ti
i = H

∑n
i=1 xiti mod p with a proba-

bility larger than 2−L, then yi = Hxi mod p for i = 1, 2, . . . , n.

Proof:
∏n

i=1 y
ti
i = H

∑n
i=1 xiti mod p with a probability larger than 2−L im-

plies that for any given integer v in {1, 2, . . . , n} there must exist integers
t1, t2, . . . , tn ∈ {0, 1, . . . , 2L − 1} and t′v ∈ {0, 1, . . . , 2L − 1} such that

∏n
i=1 y

ti
i = H

∑n
i=1 xiti mod p (13)

(
∏v−1

i=1 ytii )y
t′v
v
∏n

i=v+1 y
ti
i = H(

∑v−1
i=1 xiti)+xvt

′
v+

∑n
i=v+1 xiti mod p. (14)

Otherwise, for any (t1, t2, . . . , tv−1, tv+1, . . . , tn) in {0, 1, . . . , 2L − 1}n−1, there
is at most one tv in {0, 1, . . . , 2L − 1} to satisfy

∏n
i=1 y

ti
i = H

∑n
i=1 xiti mod p,

which implies that among the 2nL possible choices for {t1, t2, . . . , tn} there are
at most 2(n−1)L choices to satisfy

∏n
i=1 y

ti
i = H

∑n
i=1 xiti mod p and leads to

a contradiction to the assumption that
∏n

i=1 y
ti
i = H

∑n
i=1 xiti mod p with a

probability larger than 2−L.
(13)/(14) yields

ytv−t̂v
v = H(tv−t̂v)xv mod p.

Note that tv and t̂v are L-bit integers and 2L < q. So (tv − t̂v)
−1 mod q exists

and thus
yv = Hxv mod p.

Therefore, yi = Hxi for i = 1, 2, . . . , n as v can be any integer in {1, 2, . . . , n}. �

With this batch optimisation, computational efficiency of a verifier is greatly
improved. For a verifier, the total computational cost includes two full-length
exponentiation and four instances of computation of product of n exponen-
tiations with L-bit exponents and one instance of computation of product
of n exponentiations with log2 q-bit exponents. According to [2], computing
each of the four instances of product of exponentiations with L-bit expo-
nents costs about 2W−1(n + 1) + L + nL/(W + 1) multiplications and com-
puting the product of n exponentiations with log2 q-bit exponents costs about

3 Namely, multiple exponentiations with small exponents are counted as one exponen-
tiation with a full-length exponent, which has the same cost.
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2W−1(n + 1) + |q| + n|q|/(W + 1) multiplications where |q| is the bit-length of
q and W is a parameter in the W -bit-sliding-window exponentiation method
and is normally set as 3. When standard W -bit-sliding-window exponentiation
method is employed, an exponentiation with a full-length exponent in Zq costs
2W−1 + |q|+ |q|/(W +1) multiplications. So the computational cost of a verifier
is approximately equal to

(4(2W−1(n+ 1) + L+ nL/(W + 1)) + 2W−1(n+ 1) + |q|+ n|q|/(W + 1))

/(2W−1 + |q|+ |q|/(W + 1)) + 2

full-length exponentiations. When L = 40, 2−L is smaller than one out of one
trillion and thus negligible in any practical application. In this case, when W = 3
and |q|=1024, the computational cost of a verifier is very low.

5 Conclusion

As stated before, the new PVSS scheme needs no additional condition or assump-
tion as it only needs the most basic assumptions absolutely needed in any PVSS
scheme. The new PVSS scheme has advantages over the existing PVSS schemes
in both security and efficiency. The extension of applicability in Section 4 shows
that it can be widely applied to many distributed secure applications.
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