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Abstract. A scalar multiplication over a binary elliptic curve consists in
a sequence of hundreds of multiplications, squarings and additions. This
sequence of field operations often involves a large amount of operations
of type AB,AC and AB +CD. In this paper, we modify classical poly-
nomial multiplication algorithms to obtain optimized algorithms which
perform these particular operations AB,AC and AB + CD. We then
present software implementation results of scalar multiplication over bi-
nary elliptic curve over two platforms: Intel Core 2 and Intel Core i5.
These experimental results show some significant improvements in the
timing of scalar multiplication due to the proposed optimizations.
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1 Introduction

Finite field arithmetic is widely used in elliptic curve cryptography (ECC) [13,11]
and coding theory [4]. The main operation in ECC is the scalar multiplication
which is computed as a sequence of multiplications and additions in the un-
derlying field [6,8]. Efficient implementations of these sequences of finite field
operations are thus crucial to get efficient cryptographic protocols.

We focus here on the special case of software implementation of scalar mul-
tiplication on elliptic curve defined over an extended binary field F2m . An ele-
ment in F2m is a binary polynomial of degree at most m − 1. In practice m is
a prime integer in the interval [160, 600]. An addition and a multiplication of
field elements consist in a regular binary polynomial addition and multiplication
performed modulo the irreducible polynomial defining F2m . An addition and
a reduction are in practice faster than a multiplication of size m polynomials.
Specifically, an addition is a simple bitwise XOR of the coefficients: in software,
this consists in computing several independent word bitwise XORs (WXOR).
Concerning the reduction, when the irreducible polynomial which defines the
field F2m is sparse, reducing a polynomial can be expressed as a number of word
shifts and word XORs.
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Until the end of 2009 the fastest algorithm for software implementation of
polynomial multiplication was the Comb method of Lopez and Dahab [12].
This method essentially uses look-up tables, word shifts (Wshift), ANDs and
XORs. One of the most recent implementation based on this method was done
by Aranha et al. in [1] on an Intel Core 2. But, since the introduction by Intel of
a new carry-less multiplication instruction on the new processors i3, i5 and i7, the
authors in [16] have shown that the polynomial multiplication based on Karat-
suba method [15] outperforms the former approaches based on Lopez-Dahab
multiplication. In the sequel, we consider implementations on two platforms:
processor without carry-less multiplication (Intel Core 2) and processor i5 which
has such instruction.

Our Contributions. In this paper, we investigate some optimizations of the oper-
ations AB,AC and AB+CD. The fact that we can optimize two multiplications
AB,AC which have a common input A, is well known, it was for example noticed
in [2]. Indeed, since there is a common input A, the computations depending
only on A in AB and AC can be shared.

We also investigate a new optimization based on AB + CD. In this situa-
tion, we show that we can save in Lopez-Dahab polynomial multiplication algo-
rithm 60N WShifts and 30N WXORs if the inputs are stored on N computer
words. We also show that this approach can be adapted to the case of Karatsuba
multiplication and we evaluate the resulting complexity.

We present implementation results of scalar multiplication which involve the
previously mentioned optimizations. The reported results on an Intel Core 2 were
obtained using Lopez-Dahab polynomial multiplication for field multiplication,
and the reported results on an Intel Core i5 were obtained with Karatsuba
multiplication.

Organization of the Paper. In Section 2, we review the best known algorithms
for software implementation of polynomial multiplication of size m ∈ [160, 600].
In Section 3, we then present optimized versions of these algorithms for the
operations AB,AC and AB+CD. In Section 4, we describe how to use the pro-
posed optimizations in a scalar multiplication and give implementation results
obtained on an Intel Core 2 and on an Intel Core i5. Finally, in Section 5, we
give some concluding remarks.

2 Review of Multiplication Algorithms

The problem considered in this section is to compute efficiently a multiplication
in a binary field F2m . A field F2m can be defined as the set of binary polynomials
modulo an irreducible polynomial f(x) ∈ F2[x] of degree m. Consequently,
a multiplication in F2m consists in multiplying two polynomials of degree at
most m− 1 and reducing the product modulo f(x). The fields considered here
are described in Table 1 and are suitable for elliptic curve cryptography. The
irreducible polynomials in Table 1 have a sparse form. This implies that the
reduction can be expressed as a number of shifts and additions (the reader may
refer for example to [8] for further details).
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We then focus on efficient software implementation of binary polynomial mul-
tiplication: we review the best known algorithms for polynomial of cryptographic
size. An element A =

∑m−1
i=0 aix

i ∈ F2[x] is coded over N = �m/64� computer
words of size 64 bits A[0], . . . , A[N − 1]. In the sequel, we will often use a nibble

decomposition of A: A =
∑n−1

i=0 Aix
4i where degAi < 4 and n = �m/4� is the

nibble size of A. In Table 1 we give the value of N and n for the field sizes
m = 233 and m = 409 considered in this paper.

Table 1. Irreducible polynomials and word/nibble sizes of field elements

m the Irreducible N n
field degree polynomial (64-bit word size) (nibble size)

233 x233 + x74 + 1 4 59

409 x409 + x87 + 1 7 103

2.1 Comb Multiplication

One of the best known methods for software implementation of the multiplication
of two polynomials A and B was proposed by Lopez and Dahab in [12]. This
algorithm is generally referred as the left-to-right comb method with window
size w. We present this method for the window size w = 4 since, based on our
experiments and several other experimental results in the literature [1,8], this
seems to be the best case for the platform considered here (Intel Core 2). This
method first computes a table T containing all products u ·A for u(x) of degree
< 4. The second input B is decomposed into 64-bit words and nibbles as follows

B =

N−2∑

j=0

15∑

k=0

B16j+kx
64j+4k +

n−16(N−1)−1∑

k=0

B16(N−1)+kx
64(N−1)+4k

where degB16j+k < 4. Then the product R = A×B is expressed by expanding
the above expression of B as follows

R =A · (∑N−2
j=0

∑15
k=0 B16j+kx

64j+4k +
∑n−16(N−1)−1

k=0 B16(N−1)+4kx
64(N−1)+4k)

=
∑N−2

j=0

∑15
k=0(A · B16j+kx

64j+4k) +
∑n−16(N−1)−1

k=0 (A ·B16(N−1)+k)x
64(N−1)+4k

=
∑n−16(N−1)−1

k=0 x4k
(∑N−1

j=0 A ·B16j+kx
64j

)

+
∑15

k=n−16(N−1) x
4k

(∑N−2
j=0 (A ·B16j+kx

64j)
)
.

The above expression can be computed through a sequence of accumulations
R← R+ T [B16j+k]x

64j , corresponding to the terms A ·B16j+kx
64i, followed by

multiplications by x4. This leads to Algorithm 1 for a pseudo-code formulation
and Algorithm 6 in the appendix for a C-like code formulation.

Complexity. We evaluate the complexity of the corresponding C-like code
(Algorithm 6; see p. 294 ) of the CombMul algorithm in terms of the number
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Algorithm 1. CombMul(A,B)

Require: Two binary polynomials A(x) and B(x) of degree < 64N − 4, and B(x) =∑N−1
j=0

∑15
k=0 B16j+kx

4k+64j is decomposed in 64-bit words and nibbles.
Ensure: R(x) = A(x) · B(x)

// Computation of the table T containing T [u] = u(x) · A(x) for all u such that
deg u(x) < 4
T [0]← 0;
T [1]← A;
for k from 1 to 7 do

T [2k]← T [k] · x;
T [2k + 1]← T [2k] + A;

end for
// right-to-left shifts and accumulations
R← 0
for k from 15 downto 0 do

R← R · x4

for j from N − 1 downto 0 do
R← R+ T [B16j+k]x

64j

end for
end for

of 64-bit word operations (WXOR, WAND and WShift). We do not count the
operations performed for the loop variables k, j, . . .. Indeed, when all the loops
are unrolled, these operations can be precomputed. We have separated the com-
plexity evaluation of the CombMul algorithm into three parts: the computation of
the table T , the accumulations R← R+T [B16j+k]x

64j and the shifts R← R ·x4

of R.

• Table computation. The loop on k is of length 7, and performs one WXOR
and one WShift plus 2(N − 1) WXORs and 2(N − 1) WShifts in the inner
loop on i.
• Shifts by 4. There are two nested loops: the one on k is of length 15 and the
loop on i is of length 2N . The loop operations consist in two WShifts and
one WXOR.
• Accumulations. The number of accumulations R ← R + T [B16j+k]x

64j is
equal to n, the nibble length of B. This results in nN WXOR, n WAND and
n−N WShift operations, since a single accumulation R← R+T [B16j+k]x

64j

requires N WXOR, one WAND and one WShift (except for k = 0).

As stated in Table 2, the total number of operations is equal to nN + 44N − 7
WXORs, n+ 73N − 7 WShifts and n WANDs.

2.2 Karatsuba Multiplication

We review the Karatsuba approach for binary polynomial multiplication. Let
A and B be two binary polynomials of size 64N and assume that N is even.
Then, we first split A and B in two halves A = A0 + x64N/2A1 and B = B0 +
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Table 2. Complexity of the C code of the Comb multiplication

Operation #WXOR #WShift #WAND

Table T 14N − 7 14N − 7 0

R← R + T [B16j+k]x
64j nN n−N n

Shift R← R << 4 30N 60N 0

Total nN + 44N − 7 n+ 73N − 7 n

x64N/2B1 and then we re-express the product A×B in terms of three polynomial
multiplications of half size:

R0 = A0B0, R1 = A1B1, R2 = (A0 +A1)(B0 +B1),

C = R0 + x64N/2(R0 + R1 +R2) + x64NR1.
(1)

The resulting recursive approach is given in KaratRec algorithm (Algorithm 2).
In this case the inputs A and B are supposed to be of size 64N bits where N = 2s

and packed in an array of N computer words. The three products R0, R1 and R2

are computed recursively until we reach inputs of size one computer word. Then
the word products are computed with a Mult64 operation. We further assume
that this Mult64 operation is performed using a single processor instruction: this
is the case of the Intel Cores i3, i5 and i7.

Algorithm 2. KaratRec(A,B,N)
Require: A and B on N = 2s computer words.
Ensure: R = A× B

if N = 1 then
return ( Mult64(A,B) )

else
// Split in two halves of word size N/2.

A = A0 + x64N/2A1

B = B0 + x64N/2B1

// Recursive multiplication
R0 ← KaratRec(A0, B0, N/2)
R1 ← KaratRec(A1, B1, N/2)
R2 ← KaratRec(A0 + A1, B0 + B1, N/2)
// Reconstruction

R← R0 + (R0 + R1 + R2)X
64N/2 + R1X

64N

return (R)

end if

Complexity of KaratRec Approach. We briefly compute the complexity of the
KaratRec algorithm in terms of the number of WXOR and Mult64 operations.
One single recursion of the Karatsuba formula with inputs of word sizeN requires
N WXORs for the additions A0 + A1 and B0 + B1, and 5N/2 WXORs for the
reconstruction of R. We obtain the recursive complexity given in the left side
of (2). We rewrite the complexity in the non-recursive form given in the right
side of (2).
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{
#WXOR(N)=4N + 3#WXOR(N/2),
#WXOR(1)=0.

=⇒ #WXOR(N) = 8N log2(3) − 8N

{
#Mult64(N)=3#Mult64(N/2),
#Mult64(1)=1.

=⇒ #Mult64(N) = N log2(3).

(2)

3 Optimization of the Operations AB +CD and AB,AC

In this section, we present our main building blocks for the optimization of
software implementation of elliptic curve scalar multiplication. The main idea is
that the scalar multiplication involves operations of type AB +CD or AB,AC.
In such operations AB + CD and AB,AC some computations can be saved
resulting in a more efficient software implementation. This idea was previously
mentionned for example in [2] for AB,AC for the CombMul algorithm. We extend
this idea to the variants based on Karatsuba multiplication. We also study the
optimization based on the operation AB+CD in the case of CombMul algorithm
and in the case of the variants of Karatsuba multiplication.

3.1 Optimizations of AB + CD and AB,AC in the CombMul
Approach

Optimization AB,AC in the CombMul Algorithm. The fact that we have
to compute two multiplications with the same operand A, implies that the table
T in the CombMul algorithm, which contains the products T [u] = u · A, can be
computed only once for the two multiplications AB and AC. This saves 14N−7
WXORS and 14N−7 Shifts operations in the computation of AC. The resulting
complexity of the CombMul ABAC algorithm is shown in Table 3.

Optimization AB + CD in the CombMul Algorithm. We optimize the op-
eration AB + CD by performing the final addition (AB) + (CD) during the
accumulation step of the CombMul algorithm. Specifically, we keep the table
computation stage T [u] = u · A and S[u] = u · C for u of degree < 4 un-
changed. But we accumulate T [B16j+k] and S[D16j+k] in the same variable
R← R+ (T [B16j+k] + S[B16j+k])x

64j . The shifts by 4 are then performed only
on R.

The complexity of Algorithm 3 can be easily deduced from the complexity of
the CombMul algorithm (Table 2):

• We have in the CombMul ABplusCD algorithm two table computations which
contribute to twice the complexity of the table computation in Table 2.
• The accumulations R← R+(T [B16j+k] +S[D16j+k])x

64j also contribute to
twice the complexity of the accumulation step in Table 2.
• We have the same amount of shifts R← R ·x4 as in the CombMul algorithm.

The resulting complexity is given in Table 3.
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Algorithm 3. CombMul ABplusCD(A,B)

Require: Four binary polynomials A,B,C and D of degree < 64N − 4, and
B(x) =

∑N−1
j=0

∑15
k=0 B16j+kx

4k+64j with degB16j+k < 4 and D(x) =
∑N−1

j=0

∑15
k=0 D16j+kx

4k+64j with degD16j+k < 4
Ensure: R(x) = A(x) · B(x) + C(x) ·D(x)

// Computation of the table T and S such that T [u] = u(x) · A(x) and S[u] =
u(x) · B(x) for all deg u(x) < 4
T [0]← 0; S[0]← 0;
T [1]← A; S[1]← C;
for k from 1 to 7 do

T [2k]← T [k] · x; S[2k]← S[k] · x;
T [2k + 1]← T [2k] + A; S[2k + 1]← S[2k] + C;

end for
// right-to-left shift Comb multiplication
R← 0
for k from 15 downto 0 do

R← R · x4

for j from N − 1 downto 0 do
R← R+ (T [B16j+k] + S[D16j+k ])x

64j

end for
return (R)

end for

Table 3. Complexity of the optimizations AB,AC and AB + CD on CombMul

Algorithm #WXOR #WShift #WAND

CombMul ABAC 2nN + 74N − 7 2n+ 132N − 7 2n

CombMul ABplusCD 2nN + 58N − 14 2n+ 86N − 14 2n

3.2 Optimizations AB +CD and AB,AC in the KaratRec Approach

The optimization based on AB,AC can be extended to the KaratRec algorithm.
Indeed the recursive splitting and the addition of the two halves A0 + A1 can
be performed only once for the polynomial A. This approach is described in
Algorithm 5.

We also adapt the optimization AB+CD as follows: the addition is performed
before the reconstruction of the two products AB and AC, this means that we
have only one recursive reconstruction instead of two. This approach is specified
in Algorithm 4.

Complexity of KaratRec ABAC. In the first recursion we have 3N/2 WXORs
for A0 + A1, B0 + B1 and C0 + C1 plus 5N WXORs for the reconstructions of
R and S. This leads to the following complexity:
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Algorithm 4.
KaratRec ABpCD(A,B, C,D,N)

require: A,B,C and D are polynomials of
word size N = 2s each.
ensure: R = AB + CD
if N = 1 then
return(Mul64(A, B) + Mul64(C,D))
else
// Splitting in two halves of N/2 64-bit words.

A = A0 + x64N/2A1, B = B0 + x64N/2B1,

C = C0 + x64N/2C1, D = D0 + x64N/2D1

// Additions of the halves
A2 = A0 + A1, B2 = B0 + B1

C2 = C0 + C1, D2 = D0 + D1

// Recursive multiplications/additions
R0 ← KaratRec ABpCD(A0, B0, C0, D0, N/2)
R1 ← KaratRec ABpCD(A1, B1, C1, D1, N/2)
R2 ← KaratRec ABpCD(A2, B2, C2, D2, N/2)
// Reconstruction

R← R0 + (R0 + R1 + R2)x
64N/2 + R1x

64N

return(R)
end if

Algorithm 5. KaratRec ABAC(A,B,C,N)

require: A,B and C are polynomials of
word size N = 2s each.
ensure: R = A · B and S = A · C
if N = 1 then
return(Mul64(A,B),Mul64(A,C))
else
// Splitting in two halves of N/2 64-bit words.

A = A0 + x64N/2A1, B = B0 + x64N/2B1,

C = C0 + x64N/2C1

// Additions of the halves
A2 = A0 + A1, B2 = B0 + B1, C2 = C0 + C1

// Recursive multiplications
R0, S0 ← KaratRec ABAC(A0, B0, C0, N/2)
R1, S1 ← KaratRec ABAC(A1, B1, C1, N/2)
R2, S2 ← KaratRec ABAC(A2, B2, C2, N/2)
// Reconstruction

R← R0 + (R0 + R1 + R2)x
64N/2 + R1x

64N

S ← S0 + (S0 + S1 + S2)x
64N/2 + S1x

64N

return(R,S)
end if

{
#WXOR(N)=13N/2 + 3#WXOR(N/2),
#WXOR(1)=0.

=⇒ #WXOR(N)=13N log2(3)

−13N
{
#Mult64(N)=3#Mult64(N/2),
#Mult64(1)=2.

=⇒ #Mult64(N) = 2N log2(3).

Complexity of KaratRec ABpCD. In the first recursion we have 2N WXORs for
the computations A0 +A1, B0 +B1, C0 +C1 and D0 +D1 plus 5N/2 WXORs
for the reconstruction of R. The complexity for N = 1 is equal to 2Mult64 plus
one WXOR. Based on this, we derive the complexity for the KaratRec ABpCD

algorithm:

#WXOR(N) = 10N log2(3) − 9N, #Mult64(N) = 2N log2(3).

3.3 Complexity Comparison and Implementation Results

Using the complexity results determined in the former subsections, we can
compute the complexities of the multiplication algorithms and their optimized
AB,AC and AB + CD counter parts for the polynomial sizes m = 233 and
m = 409. We implemented these algorithms on the platforms Intel Core 2 and
Intel Core i5. Our implementation uses 128-bit registers and vector instructions
available on these two processors. On the Core 2 we used the modified CombMul

algorithm of [5,1] which uses mostly shifts by multiple of 8; cheaper than an
arbitrary shift for 128-bit data. On the Core i5 we implemented the KaratRec

multiplication method with the PCLMUL instruction which performs carry-less
multiplication of two 64 bit inputs contained in 128-bit registers.
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The resulting complexities and timings are reported in Table 4 and Table 5.

Table 4. Complexity/timing results of the CombMul variants on a Core 2 (2.5 GHz)

Algorithm
Overall complexity in 233 409

terms of word operations #W.Op. #CC #W.Op. #CC

CombMul nN + 2n + 117N − 14 808 336 1732 795
CombMul ABAC 2nN + 4n + 206N − 14 1511 555 3282 1597

CombMul ABplusCD 2nN + 4n + 144N − 28 1256 564 2834 1737
#W. Op. = number of word operations (WXOR, WAND, WShift).
#CC = number of clock cycles.

Table 5. Complexity/timing results of the KaratRec variants on a Core i5 (2.5 GHz)

Algorithm
Complexity for N = 2s 233 409
#WXOR #Mul64 #WXOR #Mul64 #CC #WXOR #Mul64 #CC

KaratRec 8N log2(3) − 8N N log2(3) 40 9 107 152 27 286

KaratRec ABAC 13N log2(3) − 13N 2N log2(3) 65 18 189 247 54 566

KaratRec ABpCD 10N log2(3) − 9N 2N log2(3) 54 18 182 198 54 541

Based on the results presented above, we notice that the optimization AB +
CD has always a better complexity than the optimization AB,AC and better
than two independent multiplications. Concerning the timings we note that:

– On the Core 2 the optimization ABplusCD is always slower than the op-
timization AB,AC. Moreover, the optimizations ABplusCD and AB,AC
are effective only for m = 233, since in this case they are faster than two
independent multiplications. This seems to contradict the corresponding
complexity results since the complexity differences appear quite large.

– On the Core i5 the timing results are more related to the complexity values:
for the two considered degrees ABplusCD and AB,AC are faster than two
independent multiplications and ABplusCD is always faster than AB,AC.

In the literature we can find some timing of the CombMul algorithm over a
Core 2 in [1]. The authors in [1] report implementation timings in the range
of [241, 276] clock-cycles for a polynomial multiplication of size m = 233 and
in the range of [690, 751] for m = 409, which are both better than the results
reported in Table 4. Our results on the Core i5 compares favorably with the
results reported in [16]: 128 clock-cycles for m = 233 and 345 clock-cycles for
m = 409. These reported timings may include the reduction operation (this
is not clearly specified in [16]). The same authors reported later in [17] better
timings on the same processor and compiler: 100 clock-cycles for m = 233 and
270 clock-cycles for m = 409.

4 Implementations of Scalar Multiplication Based on the
Optimizations AB,AC and AB + CD

In this section, we present our experimental results for scalar multiplication
based on the optimizations AB,AC and AB + CD presented in the previous
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section. We first review best known elliptic curve point operation formulas, and
describe how we use the optimizations AB,AC and AB + CD in these formu-
las. Then we describe the strategies we used for our implementations: scalar
multiplication algorithms and implementations of field operations (squaring, in-
version, ... ). Finally, we present the implementation results on an Intel Core 2
and an Intel Core i5.

4.1 Elliptic Curve Arithmetic

The considered curves are ordinary binary elliptic curve defined by the following
Weierstrass equation

y2 + xy = x3 + x2 + b where b ∈ F2m .

We will more specifically focused on the two NIST [14] curves B233 and B409.

Optimization AB,AC and ABplusCD in Curve Operation. We review
Kim-Kim elliptic curve operations [10] in order to describe how the optimized
operations AB,AC and AB + CD can be used in the curve operations. Kim
and Kim in [10] use a specific projective coordinates P = (X : Y : Z : T ) which
corresponds to the affine point (X/Z, Y/T ) where T = Z2. In the following
formulas we use the following notations: A · B is a non reduced polynomial
multiplication, and [R] represents the reduction of the polynomial R modulo the
irreducible polynomial defining the field F2m .

• Point doubling in Kim-Kim coordinates. We compute the doubling P1 =
(X1 : Y1 : Z1 : T1) = 2 · (X : Y : Z : T ) of a point P = (X : Y : Z : T ) by
performing the following sequence of operations

A=X2, B=[Y ]2.

and then:

Z1=[T ·A], T1=[Z2
1 ], X1=[A2 + b · T 2

︸ ︷︷ ︸
AB,AC

], Y1=

ABplusCD
︷ ︸︸ ︷
B · (B +X1 + Z1) + b · T1︸ ︷︷ ︸

AB,AC

+T1.

• Point addition in Kim-Kim coordinates. We review the Kim-Kim formula
for mixed point addition: we add one point P1 = (X1 : Y1 : Z1 : T1) which has
a regular Kim-Kim projective coordinates with a point P2 = (X2 : Y2 : 1 : 1)
which is in affine coordinates, i.e., Z2 = T2 = 1. The coordinates of P3 = (X3 :
Y3 : Z3 : T3) is then computed with the following sequence of operations:

A=X1 + [X2 · Z1], B=[Y1 + Y2 · T1], C=[A · Z1], D=[C · (B + C)]
︸ ︷︷ ︸

AB,AC

.
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and then deduce Z3 = [C2], T3 = [Z2
3 ], and

X3=[B2 + C · [A2]
︸ ︷︷ ︸
AB,AC

] +D, Y3=

ABplusCD
︷ ︸︸ ︷
[(X3 + [X2 · Z3]) ·D + (X2 + Y2) · T3] .

In the above formulas, we indicated the operations which can be performed with
the optimization AB+CD and the operations which can be performed with the
optimization AB,AC.

• Optimization AB,AC and ABplusCD in other curve operation formulas.
We consider the following two cases: Lopez-Dahab formulas, which are variants
of the Kim-Kim formulas, and Montgomery laddering. For the Lopez-Dahab
formulas the optimizations AB,AC and ABplusCD can be applied in both
doubling and mixed addition. For the Montgomery laddering we can just apply
one optimization ABplusCD in the inner loop operation.

Another interesting operation is the point halving, but, unfortunately, we
could not apply any of the optimizations AB,AC or ABplusCD in the halving
formula of [8] (Algorithm 3.81 [8], p. 131]). Indeed, this point halving consists in
one half-trace operation, followed by one multiplication, one trace computation
and one square root, so no optimization based on combined multiplications can
be applied.

Scalar Multiplication Algorithm. The scalar multiplication on the curve
E(F2m) consists in the computation of r · P for a given point P ∈ E(F2m) and
an �-bit integer r where � is the bit length of the order of P . We implemented
the following methods for scalar multiplication:

– Double-and-add. This approach consists in a sequence of doublings and ad-
ditions on the curve. The integer r is generally recoded with the NAFw

algorithm [8] with window size w = 4 in order to reduce the number of
additions performed during the double-and-add algorithm. The scalar mul-
tiplication then requires a table precomputation T [i] = i · P for the odd
integers 0 < i < 2w−1. In our implementations we used the Kim-Kim (cf.
Subsection 4.1) and the Lopez-Dahab [8] doubling and addition formulas.

– Halve-and-add. This approach consists in a sequence of halvings and addi-
tions on the curve. The integer r is first recoded in r′ = r·2�−1 mod #<P >
since in this case we have:

r = r′2−(�−1) = (
�−1∑

i=0

r′i2
i)2−(�−1) = (

�−1∑

i=0

r′i2
i−(�−1))

and we can then compute r · P as a sequence of halvings and additions. We
use again the NAFw algorithm for w = 4 to recode r′ and the variant of
the halve-and-add approach to perform the scalar multiplication. The reader
may refer to Section 3.6 in [8] for further details on point halving approaches.



290 C. Negre and J.-M. Robert

– Parallel (Double-and-add, Halve-and-add). This approach, proposed
in [16,17], splits the computation of the scalar multiplication in two parts:
one uses double-and-add approach and the other uses halve-and-add ap-
proach. This requires some recoding of the scalar r similar to the one used
in halve-and-add approach.

– Montgomery. The last approach we considered is the Montgomery laddering
(cf. Algorithm 3.40, p.103 in [8]): it is a variant of the double-and-add
approach. The main difference is that two points are computed in the inner
for loop of the algorithm: P1 and P2 which have a constant difference P1 −
P2 = P . This approach has some nice properties as counter measure against
side channel attacks.

4.2 Implementation Aspects

We use the following strategies to implement the field operations required in
scalar multiplication algorithms:

– Multiplication. The considered multiplication strategies have already been
described in Subsection 3.3. Specifically, on the Intel Core 2 platform, we use
the version of the CombMul algorithm of [5,1] which uses 128-bit instruction
sets. On the Intel Core i5 platform we use the Karatsuba algorithm along
with vector instructions and more precisely the carry-less instruction which
performs binary polynomial multiplication of size 64 bits.

– Squaring. For the squaring we use the strategy described in [1]. Specifically,
we use a 128-bit word Sq which stores in each byte the squaring of a 4-
bit polynomial. Then for each 128-bit word A[i] of A we separate odd and
even nibbles with a masking and a shift and then apply mm shuffle epi8

intrinsinc function with left input value Sq and right input value the word
containing even or odd nibbles ofA[i]. The result is a 128-bit word containing
the squaring of each nibble. The bytes are then reordered and repacked into
two 128-bit words. The reader may refer to Algorithm 1 in [1] for further
details.

– Square-root. The square root is based on the expression
√
A =

(
∑�m/2�

i=0 a2iX
i) +
√
x(
∑�m/2�

i=0 a2i+1X
i). Following [1], we separate odd and

even coefficients of A using the intrinsinc function named mm shuffle epi8

and by reordering the resulting bytes. Then the multiplication by
√
x is done

through a number of shifts and additions since for m = 233 and m = 409,√
x has a sparse expression.

– Reduction. The reduction follows the strategy of [8]: the considered irre-
ducible polynomials are sparse (cf. Table 1), this makes possible to perform
a reduction with a short sequence of shifts and WXORs.

– Inversion. The inversion is computed using the Itoh-Tsujii algorithm [9].
This algorithm consists in a sequence of multiplications and multi-squarings.
This sequence of multiplication and squaring reconstructs step by step the
exponent of A−1 = A2m−2 following an addition chain in the exponent. For
example, form = 233, the inverse ofA is given by (A2232−1)2, and is obtained
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with the addition chain 1 → 2 → 3 → 6 → 7 → 14 → 28 → 29 → 58 →
116 → 232 in the exponent. For multi-squaring consisting in long sequence
of squaring we use a look-up table approach.

– Half-trace. In the halving curve operation, we have to compute half-trace

(HT ) of an element: HT (A) =
∑(m−1)/2

i=0 A22i . Our implementation is again
inspired from [16] and [7] and uses the intrinsic function mm shuffle epi8

to compute the half-trace of the even bits of A and look-up table to compute
the half-trace of the odd bits of A. For further details on this the reader
may refer to [16,17].

Lazy Reductions. An optimization called lazy-reduction can be used to opti-
mize curve operations (cf. [2,3]). This consists in removing unnecessary reduction
operations performed during the sequence of multiplications and squarings in the
curve operation formulas. Here we considered the following two lazy reduction
optimizations:

– Lazy-reduction 1 (LR1). This optimization regroups reduction operations
corresponding to distinct squarings or multiplications. For example in the
sequence of operations A2 +C ·D we can perform the addition (addition of
polynomial of degree 2m− 2) before performing the reduction. This reduces
the total number of WXORs and WShifts. In the considered elliptic curve
operation formulas (Kim-Kim, Lopez-Dahab and Montgomery) the bracket
[·] specifies the reduction operations corresponding to this LR1 optimization
(cf. Subsection 4.1).

– Lazy-reduction 2 (LR2). In this case the reduction modulo the irreducible
polynomial is partially done, this results in a polynomial with a degree larger
than m − 1. We have applied this approach for m = 233: the polynomial
is reduced to a degree 255 instead of 232. Since the KaratRec algorithm
multiplies polynomials of size 256, we don’t have to reduce the coefficients in
the range [233, 256], so we can use a lazy reduction of this kind. Figure 4.2
illustrates this strategy: we can see in this figure that the LR2 approach
saves the computations involved in the reduction of the word containing
coefficients c255, . . . , c233.
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We did not apply this strategy in the case of Intel Core 2 since the CombMul
approach multiplies polynomials of degree 232 and not 256. For the case of
degree 409, the LR2 approach does not provide any saving in the number of
words which have to be reduced, so, again, we did not implement such LR2
optimization.

4.3 Implementation Results on an Intel Core 2

The timings of our implementation are reported in Table 6. These values were
obtained on a Linux Ubuntu 11.10 platform with GCC 4.6.1. The reported clock-
cycles were obtained with the following strategy: we used the cycle counter rdtsc
attached to each core in the Intel Core 2 to get the number of clock cycles. The
reported values are average timings for randomly generated input datas.

Table 6. Timings in terms of 103 clock-cycles of scalar multiplication on an Intel Core
2 (2.50GHz)

Optimization Formulas
m = 233 m = 409

(#CC)/103 (#CC)/103

Double-and-add

none
KK 592 2125
LD 613 2192

LR1
KK 1249 2207
LD 1179 2832

AB,AC
KK 558 6217
LD 928 2917

ABplusCD
KK 542 2187
LD 553 2296

Halve-and-add

none
KK 387 1504
LD 403 1575

LR1
KK 651 1706
LD 855 1837

AB,AC
KK 858 2277
LD 887 2359

ABplusCD
KK 375 1504
LD 386 1640

Parallel(∗)

(Double-and-add
+

Halve-and-add)

none
KK 280 965
LD 295 999

LR1
KK 335 1042
LD 315 1104

AB,AC
KK 270 2311
LD 289 1362

ABplusCD
KK 273 977
LD 277 1014

Montgomery
none - 593 2190
LR1 - 637 2482

ABplusCD - 549 2289
(∗) The optimizations AB,AC and ABplusCD are applied only on the
double-and-add part.

The experimental results of the lazy-reduction optimization (LR1) do not
show the expected speed-ups: all the codes involving such lazy-reduction are
all slower than the same code running without it. Consequently, we have
not combined this optimization with the two other optimizations AB,AC and
ABplusCD.
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Table 7. Timings in terms of 103 clock-cycles of scalar multiplication on an Intel Core
i5 (2.5 GHz)

Optimizations
Curve

Formulas

m = 233 m = 409

#CC/103 #CC/103

Double-and-add

none
KK 246 917
LD 252 940

LR1 and LR2(∗∗)
KK 220 906
LD 228 959

AB,AC and KK 219 903

LR1 and LR2(∗∗) LD 226 961
ABplusCD and KK 214 877

LR1 and LR2(∗∗) LD 222 903

Halve-and-add

none
KK 165 667
LD 169 719

LR1 and LR2(∗∗)
KK 150 723
LD 155 708

AB,AC and KK 149 733

LR1 and LR2(∗∗) LD 155 720
ABplusCD and KK 150 696

LR1 and LR2(∗∗) LD 154 689

Parallel(∗)

none
KK 131 466
LD 133 478

LR1 and LR2(∗∗)
KK 116 458
LD 122 474

AB,AC and KK 117 457

LR1 and LR2(∗∗) LD 123 476
ABplusCD and KK 117 452

LR1 and LR2(∗∗) LD 118 467

Montgomery

none - 244 924

LR1 and LR2(∗∗) - 229 886
ABplusCD and - 220 883

LR1 and LR2(∗∗) -
(∗) The optimizations AB,AC and ABplusCD are applied only on the double-and-add part.
(∗∗) The optimizations LR2 is applied only for m = 233

Based on the results reported in Table 6, we remark that the proposed op-
timization AB + CD provides some significant speed-up for the field sizes 233
only. The optimization AB,AC does also provide some speed-up compared to
non-optimized results in the case of m = 233, but in some cases we obtain some
sudden loose of performance like in halve-and-add or double-and-add/LD cases.
In the case m = 409, none of the optimizations provide any improvement, this
confirms the timings we get in Table 4.

We could not find in the literature any timing on a Core 2 for the same curves
and same fields. We just mention that Aranha et al. in [1] report in the range
[785000,858000] clock-cycles over the curve NIST-B283 and [4310000,4754000]
clock-cycles over the curve NIST-B571 for double-and-add scalar multiplication
on an Intel Core 2. This means that our timings seem to be in the expected
range of values.

4.4 Implementation Results on an Intel Core i5

In Table 7 we report our timings obtained on an Intel Core i5 using implemen-
tation strategies discussed in Subsections 4.1 and 4.2. The codes were compiled
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Algorithm 6. CombMul C Code

Require: A and B two N 64-bit words polynomials of nibble length n
Ensure: R = A× B
for(i = 0; i < N ; i+ +){ ⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Table: T [u] = u · A with deg u < 4
#WXOR = 7(2(N − 1) + 1) = 14N − 7
#WShift = 7(2(N − 1) + 1) = 14N − 7

T [0][i] = 0;
T [1][i] = A[i]; }

for(k = 2; k < 16; k+= 2){
T [k][0] = (T [k >> 1][0] << 1);
T [k + 1][0] = T [k][0] ∧ A[0];
for(i = 1; i < N ; i + +){

T [k][i] = (T [k >> 1][i] << 1)
∧(T [k >> 1][i− 1] >> 63);

T [k + 1][i] = T [k][i] ∧ A[i]; }}
for(k = 15; k >= n − 16(N − 1); k −−){

for(j = 0; j < N − 1; j + +){
u = (B[j] >> (4 ∗ k)) & 0xf

⎫
⎪⎪⎬

⎪⎪⎭

Accumulation R ← R + x64jBk+16jA
#WXOR = N
#WShift = 1
#WAND = 1

for(i = 0; i < N ; i + +){
R[i + j] = R[i + j] ∧ T [u][i];

}
}
carry = 0
for(i = 0; i < 2 ∗N ; i + +){ ⎫

⎪⎬

⎪⎭

Shift R← R << 4
#WXOR = 2N
#WShift = 4N

temp = R[i];
R[i] = (R[i] << 4) ∧ carry;
carry = temp >> 60; }

}
for(k = n− 16(N − 1)− 1; k > 0; k −−){

for(j = 0; j < N − 1; j + +){
u = (B[j] >> (4 ∗ k)) & 0xf

⎫
⎪⎪⎬

⎪⎪⎭

Accumulation R ← R + x64jBk+16jA
#WXOR = N
#WShift = 1
#WAND = 1

for(i = 0; i < N ; i + +){
R[i + j] = R[i + j] ∧ T [u][i];

}
}
carry = 0
for(i = 0; i < 2 ∗N ; i + +){ ⎫

⎪⎬

⎪⎭

Shift R← R << 4
#WXOR = 2N
#WShift = 4N

temp = R[i];
R[i] = (R[i] << 4) ∧ carry;
carry = temp >> 60; }

}
for(j = 0; j < N ; j + +){

u = B[j] & 0xf ;
⎫
⎪⎪⎬

⎪⎪⎭

Accumulation R ← R + x64jB16j+kA
#WXOR = N
#WShift = 0
#WAND = 1

for (i = 0; i < N − 1; i+ +){
R[i+ j] = (R[i + j] << 4) ∧ T [u];}

}

with GCC 4.7.2 on a Linux Ubuntu 12.10. We also disabled the turbo mode of
the Core i5 in order to avoid miss-evaluations on the timings.

We note that, the lazy reduction optimizations provide a significant speed-up
compared to regular implementations. We also remark that, except in some rare
cases, the optimizations AB+CD and AB,AC provide a speed-up compared to
non-optimized or LR-optimized implementations. In the case of halve-and-add,
the speed-up is less than in the case of double-and-add, but this can be explained
by the fact that, in halve-and-add approach, the optimizations are only used in
the curve additions which are less frequent than the point halvings. Moreover,
the optimization AB + CD is generally more efficient than AB,AC. The only
cases in which neither AB + CD nor AB,AC provide the best timing result is
the parallel implementation for m = 233 and halve-and-add implementation for
m = 409.
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Let us briefly compare our results with the ones obtained by Aranha et al.
over an Intel Core i5 with a GCC compiler in [17]. We remark that, except
for parallel implementation when m = 409, our results are competitive with
the timings of [17]. This means that our implementations reach the level of
performance of [17] and that the proposed optimized operations are efficient
when included in the best known implementation strategies for Intel Core i5.

5 Conclusion

The goal of this paper was to study software optimizations of binary field oper-
ations AB,AC and AB+CD for scalar multiplication on binary elliptic curves.
We have established several algorithms for these optimizations and have evalu-
ated the complexity of the corresponding C-like codes of these algorithms. We
have then presented implementation results for scalar multiplication on an Intel
Core 2 and on an Intel Core i5. In our implementations of scalar multiplication
we have used best known algorithms. We have also tested lazy reduction opti-
mizations. The experimental results have shown that the proposed AB + CD
optimization improves the timing of scalar multiplication on an Intel Core 2 only
for the small field F2233 . On an Intel Core i5, the optimization provides the best
results for scalar multiplication over the two considered fields F2233 and F2409 .
For the case of Intel Core i5, we have reached the level of performance of the
best known results found in the literature [16].
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5. Beuchat, J.-L., López-Trejo, E., Mart́ınez-Ramos, L., Mitsunari, S., Rodŕıguez-
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