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Abstract. Designing a cryptographic algorithm requires to take into ac-
count various cryptanalytic threats. Since the 90’s, Side Channel Analysis
(SCA) has become a major threat against cryptographic algorithms em-
bedded on physical devices. Protecting implementation of ciphers against
such attacks is a very dynamic topic of research and many countermea-
sures have been proposed to thwart these attacks. The most common
countermeasure for block cipher implementations is masking, which ran-
domizes the variables by combining them with one or several random
values. In this paper, we propose to investigate the impact of the size of
the words processed by an algorithm on the security against SCA. For
this matter we describe two AES-like algorithms operating respectively
on 4 and 16-bit words. We then compare them with the regular AES (8
bits) both in terms of complexity and security with respect to various
masking schemes. Our results show that SCA is a determinant criterion
for algorithms design and that cryptographers may have various possi-
bilities depending on their security and complexity requirements.

Keywords: Side Channel Analysis (SCA), S-boxes, Word size, Masking
Countermeasure, Higher-Order SCA, AES Implementation, FPGA.

1 Introduction

When designing a block cipher, cryptographers take into account various crypt-
analytic threats in order to prevent flaws in their algorithm. The most com-
mon methods are linear [19] and differential [5] cryptanalysis, interpolation [17]
or related key attacks [4]. All these attacks target the mathematical primitive
independently of its implementation.

In the 90’s, a new kind of cryptanalysis was developed: Side Channel Analysis
(SCA). SCA is a cryptanalytic method in which an attacker does not attack
the algorithm itself, but rather its implementation. Namely, the attacker ana-
lyzes the side channel leakage (e.g. the power consumption, the electromagnetic
emanations, . . . ) produced during the execution of a cryptographic algorithm
embedded on a physical device. SCA exploits the fact that this leakage is statis-
tically dependent on the intermediate variables that are involved in the compu-
tation. Some of these variables are called sensitive in that they are related to a
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secret data (e.g. the key) and a known data (e.g. the plain text), and recovering
information on them therefore enables efficient key recovery attacks [18,6,14].

However it is a hard task to improve the intrinsic security of a cryptographic
algorithm against SCA. Designers can nonetheless foresee the implementation of
countermeasures, and design their algorithm in order to help these implemen-
tations. As many countermeasures [1,22,15] use the arithmetic structure of the
AES S-box, it seems a good option for designers to keep such type of structure.

To evaluate the efficiency of a countermeasure, Prouff et al. introduce in [23] a
methodology to compute the optimal correlation between a leakage measure and
a (multivariate) known variable. They give the optimal correlation for boolean
masking. We can observe that this correlation depends on the noise standard
variation, the order of the masking, but also on the size of the words targeted by
the attack: the longer the words, the better the security. The goal of this paper
is to study the impact of the word size on both the complexity and the security
of the scheme.

Related work. This paper is mainly related to three kinds of previous works.
In [12,24,15], the authors propose countermeasures that provide a good secu-
rity/complexity compromise for some security level, and propose practical results
implementing their countermeasures to the AES. In [8], small scale variants of
AES are designed in order to compare different cryptanalytic methods. Even-
tually, various optimized hardware implementations of the AES S-box can be
found in [7,20].

Our contribution. In this paper, we propose an evaluation of the impact of
the word size on the security of an algorithm with respect to various masking
schemes, namely boolean [22], affine [12] and polynomial masking [24,15]. We
thus define two AES-like algorithms operating respectively on 4 and 16 bits
words, and discuss their implementation. Then we compare the security and
the complexity of each algorithm depending on the countermeasure scheme. We
finally give practical implementation results on a hardware device for equivalent
level of security.

Organization of the paper. The remainder of this paper is organized as follows.
In the second section we pursue a theoretical analysis about the impact of the
size of the words manipulated by an algorithm upon its resistance to SCA. In
section 3, we recall the AES algorithm and detail the two AES-like algorithms
we have implemented. In section 4 we compare implementation costs of the three
algorithms first theoretically, then on practical hardware implementations. Then
section 5 details simulations results on the SCA resistance of these algorithms
and the AES with respect to various masking schemes. We conclude our work
in section 6.

2 Impact of Sboxes Size upon Side Channel Resistance

S-boxes are the most sensitive layer with respect to the resistance of a block ci-
pher against higher order side channel attacks. For a matter of implementation,
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an S-box must have a short dimension n and therefore, the input block is shared
in n-bit words for the independent internal computations of the algorithm. The
size of these words is determined by designers with respect to the needed prop-
erties of the algorithm and to its resistance against known cryptanalysis.

In the state of the art, we can find block ciphers manipulating 8 bits words
(e.g. the AES [9]), 4 bits words (e.g. Serpent [2]) or non-square S-boxes such as
those of the DES [11]. In the following of this section we investigate, for various
masking schemes, the impact of this dimensions upon the resistance of a block
cipher algorithm against SCA.

In what follows, we shall consider that an intermediate variable Ui is associ-
ated with a leakage variable Li representing the information leaking about Ui

through side channel. We will assume that the leakage can be expressed as a
deterministic leakage function ϕ of the intermediate variable Ui with an inde-
pendent additive noise Bi. Namely, we will assume that the leakage variable Li

satisfies:
Li = ϕ(Ui) +Bi . (1)

In the following, we call dth-order leakage a tuple L of d leakage variables Li

corresponding to d different intermediate variables Ui that jointly depend on
some sensitive variable. Moreover we place ourselves in the Hamming weight
model, i.e. ϕ = HW .

2.1 Security Against HO-DPA

In order to compare various scales of implementation with respect to various
masking schemes, we compute, for each case, the optimal correlation value fol-
lowing the methodology described in [23] for decreasing signal-to-noise ratio
(SNR). Namely we considered the value of

ρopt =

√
Var [E [C(L)|Z = z]]

Var [C(L)] (2)

where Z is a sensitive variable and C is a combining function that converts
the multivariate leakage L into a univariate signal. In our evaluations we have
chosen C to be the normalized product. In [25,12,15], authors give equations for
evaluating the value of ρopt respectively ρbool-d for d-th order boolean masking,
ρaff for affine masking and ρpolynomial for first order polynomial masking. Let us
consider an gaussian noise Bi with 0 mean and standart deviation σ. We have:

ρbool-d = (−1)d
√
n

(n+ 4σ2)
d+1
2

, (3)

ρaff =
n

(4σ2 + n)
√
2n − 1

(4)

and

ρpolynomial =

√
n3 · (2n+1 − 4n − 1)

α2 · σ4 + α1 · σ2 + α0
, (5)
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where

α2 = 192 · 2n − 24n+4 − 64− 208 · 4n + 96 · 8n
α1 = (40 · 8n − 64 · 4n − 8 · 16n + 32 · 2n)n2

+(88 · 8n + 128 · 2n − 24n+4 − 168 · 4n − 32)n
α0 = (8n − 3 · 4n + 6 · 2n − 4)n4 + (−4 · 16n + 14 · 8n − 16 · 4n + 2 · 2n + 4)n3

+(−4 · 16n + 23 · 8n − 44 · 4n + 34 · 2n − 8)n2

+(−3 · 8n + 10 · 4n − 9 · 2n + 2)n.
(6)

As a matter of comparaison, the optimal correlation ρunmasked for a non-masked
implementation is:

ρunmasked =

√
n√

(n+ 4σ2)
, (7)

We then evaluate these values for any bit size n ∈ {4, 8, 16}, any SNR ∈
{1, 1/2, 1/5, 1/10}, and for the variables targeted respectively in [25,12,24]:

– 1O-boolean masking, with targeted variables (x⊕ r1 ; r1)
– 2O-boolean masking, with targeted variables (x⊕ r1 ⊕ r2 ; r1 ; r2)
– 3O-boolean masking, with targeted variables (x⊕ r1⊕ r2⊕ r3 ; r1 ; r2 ; r3)
– Affine masking, with targeted variables (r2 · x⊕ r1 ; r1)

Table 1. Theoretical correlation values

Word length \SNR +∞ 1 1/2 1/5 1/10

2O-DPA against 1O-boolean masking

4-bits 0.5 0.25 0.1 0.083333 0.045455
8-bits 0.353553 0.176777 0.117851 0.058926 0.032141
16-bits 0.25 0.125 0.083333 0.041667 0.022727

3O-DPA against 2O-boolean masking

4-bits 0.25 0.088388 0.022361 0.017010 0.006853
8-bits 0.125 0.044194 0.024056 0.008505 0.003426
16-bits 0.0625 0.022097 0.012028 0.004253 0.001713

4O-DPA against 3O-boolean masking

4-bits 0.125 0.031250 0.005 0.003472 0.001033
8-bits 0.044194 0.011049 0.004910 0.001228 0.000365
16-bits 0.015625 0.003906 0.001736 0.000434 0.000129

2O-DPA against Affine masking [12]

4-bits 0.258199 0.129099 0.015188 0.009931 0.002556
8-bits 0.062622 0.020874 0.006958 0.001228 0.000312
16-bits 0.003906 0.000781 0.000230 0.000039 0.000010

2O-DPA against 1O-polynomial masking [15]

4-bits 0.030589 0.023984 0.015187 0.013612 0.009063
8-bits 0.001854 0.001473 0.001243 0.000876 0.000607
16-bits 0.0000074 0.0000060 0.0000051 0.0000037 0.0000027
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– 1O-polynomial masking, with targeted variables
(
(r1, r3 · r1 ⊕ x) ; (r2,

r3 · r2 ⊕ x)
)
where r1 �= r2 �= 0.

Note that we only consider the best available attacks against these masking.
Table 1 summarizes the theoretical correlations ρopt.

We can state that the security of each scheme evolves in different ways when
the word size increases. Indeed the value of the optimal correlation for boolean
masking decreases polynomialy in n, whereas it decreases exponentially for both
affine and polynomial masking. Intuitively, this can be explained seeing that,
when using boolean masking, every bit of the mask operates on a single bit of the
sensitive variable. Thus the security overhead of a larger bit size is roughly linear
in the word length. In the case of affine and polynomial maskings, the relation
between the targeted values and the sensitive one is much more complex, which
highly improves the security when increasing the word length.

Moreover, in the case of boolean masking, the optimal correlation coefficient
decrease exponentially in the order d. In order to compare the different im-
plementations of (higher order) boolean masking we represent in Figure 1 the
correlation value for various amount of noise. As expected, we can state that
a higher order scheme provides a better security in (almost) all cases. Notably

Fig. 1. Correlation value of boolean maskings with respect to SNR
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(d + 1)-th order boolean masking applied to the 4-bits AES variation provides
better security than d-th order masking applied to the regular 8-bits AES.

2.2 Information Theoretic Analysis

The analysis of the optimal correlation allows us to evaluate precisely the secu-
rity of a countermeasure against CPA but does not give any general informations
independently of the chosen distinguisher. In [26] the authors propose to evaluate
the mutual information between the leakage vector L and the sensitive variable
Z in order to compute the theoretic leakage induced by the computation. Never-
theless, this metric does not give any direct information of the complexity of an
attack but only gives the amount of information leaked during the computation.
We can then efficiently compare two countermeasures implemented on the same
algorithm in terms of security against SCA, but the comparison between two
distinct algorithms does not seems to be so relevant, especially when the word
sizes are distinct.

A third security analysis can be the practical attack simulation but it needs
the definition of a complete algorithm. Such an analysis is the topic of section 5.

In this section we have shown that non-linear masking techniques applied to
large S-boxes (typically 16 bits) provides the best theoratical security among the
considered countermeasures. We may wonder what is the practical complexity of
the implementation of such countermeasures. In the following, we evaluate the
complexity of some implementations in order to emphasize the most interesting
one in terms of complexity for a given security level.

3 Design of the Sboxes

The main goal of this article is to evaluate the optimal word size to implement
countermeasures against SCA. In order to achieve this goal, we define variants
of the AES using different word sizes. For matters of simplicity, we focus on
powers of 2. After recalling the processing of the AES, we propose in this section
two AES-like algorithms working on respectively 4 and 16 bit words. Both are
operating on 128-bit blocks.

3.1 The Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a Substitution-Permutation Net-
work (SPN) introduced by J. Daemen and V. Rijmen in [9]. It iterates 10 times
(for the 128-bit version) a transformation involving four steps : AddRoundKey,
ShiftRows, MixColumn, and SubByte. Details about these steps can be founded
in appendix A. In particular the AES S-box is designed as

Sb8[x] = Q(x) + a(x) · P (x) mod [X8 + 1]

where a(x) is the inverse of x in the field F28 , and P andQ are polynomials chosen
such that it ensure a complicated algebraic expression when combined with the
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inverse mapping, and that there is no fixed points (Sb8[x] = x) and no ’opposite
fixed points’ (Sb8[x] = x̄). This construction ensures a good resistance against
linear and differential cryptanalysis. Following the formalism introduced in [10],
the AES sbox achieve a prop-ratio and an input-output correlation respectively
equal to 2−6 and 2−3.

Remark 1. The inversion of a ∈ F28 as described in [22] can be implemented
using 4 multiplications, 7 squares and 1 refreshMask operation.

3.2 4-Bit Variation

Let F24 = F2[x]/(x
4 + x+ 1).

We define the 4-bit AES-like Sbox as follows :

Sb4[x] = Q(x) + a(x) · P (x) mod [X4 + 1]

where a(x) is the inverse of x in the field F24 , and P and Q are polynomials
chosen according to [9] such that : P (x) = x3 + x+ 1 and Q(x) = x3 + x2 + 1.

A look-up table for the Sbox Sb4 is given (notation in hexadecimal) in table 2.

Table 2. Sbox over F24

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output D 6 B 9 5 C F 4 2 A E 8 7 3 1 0

Remark 2. The inversion of a ∈ F24 can be computed as a−1 = a14 = (a·a2)4 ·a2.
It can then be implemented using only two multiplications and 3 squares.

Resistance Against Known Attacks : In order to evaluate the security
of the S-box against differential and linear cryptanalysis, we have to compute
respectively the prop-ratio and the input-output correlation (see appendix D).
We can then evaluate the length of an efficient linear or differential trail and
adapt the number of round adequately.

– prop-ratio : 2−2

– input-output correlation : 2−1

Keeping the original ShiftRows and MixColumn operating on 8-bits words, we
obtain no 12-round differential trail with a predicted prop ratio above 2−150

(which is sufficient for the 128-bit block length), and no 12-round linear trail with
a correlation above 2−75. In this case, in order to keep an equivalent security,
we have to extend the round number to 30. Moreover this construction is not
directly compatible with every masking schemes operating on 4 bits.

In order to bypass this incompatibility and to optimize the complexity of the
overall cipher, we define a diffusion layer composed of a MixColumns operation
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designed using a 8 × 8 MDS matrix over F24 (see appendix C), combined with
a ShiftRows operation as designed for the AES. We then consider the internal
state as a 8 × 4 matrix over F24 . The branch number is thus 9. For example
the matrix involved in the MixColumns operation can be chosen as a circulant
matrix with first line equal to:

[1 1 2 1 3 4 2 3].

We can deduce that there is no 4-round differential trail with a predicted prop
ratio above 2−98 and no 4-round linear trail with a correlation above 2−49. The
round number can thus be fixed to 15 without any security loss.

However, in [8] the authors design simplified version of AES in order to try
their security against algebraic attacks. For the 4-bit version the succed only with
a small number of round and using a sub-optimal linear layer. Our construction
clearly ensure a much better security against such attacks.

3.3 16-Bit Variation

Let F216 = F2[x]/(x
16 + x13 + x10 + x9 + x2 + x+ 1).

We define the 16 bit AES-like S-box as following :

Sb16[x] = Q(x) + a(x) · P (x) mod [X16 + 1]

where a(x) is the inverse of x in the field F216 , and P and Q are polynomials
chosen according to [9] such that : P (x) = x15 + x8 + x3 + x + 1 and Q(x) =
x15 + x9 + x8 + x7 + x2 + x+ 1.

Remark 3. The inversion of a ∈ F216 can be computed following:

b = (a2.a)2.a = a7

c = b8.b = a63

c = c64.c = a4095

c = c16.b2 = a65534

The inversion can then be implemented using only 5 multiplications and 16
squares.

Resistance Against Known Attacks : As previously, we compute respec-
tively the prop-ratio and the input-output correlation and evaluate the length of
an efficient linear or differential trail and adapt the number of rounds adequately.

– Sb16 prop-ratio : 2−14.
– Sb16 input-output correlation : 2−7.

As for the 4 bit case, the original linear layer of the AES is not compatible
with every masking schemes operating on 16 bits. A good alternative is to use a
8×8 circulant MDS matrix instead of the ShiftRows and MixColumn operations.
Such a matrix can even be optimized allowing the Hamming weight of each of its
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component to be 1 and thus leads to the most optimized overall design for this
size of words. For example such a matrix can be chosen as a circulant matrix
with first line equal to (in hexadecimal):

[0001 0001 0020 0001 0100 0400 0200 0040].

The branch number of this linear layer is maximal (i.e. equal to 9), ensuring that
there is no 1-round differential trail with a predicted prop ratio above 2−125, and
no 1-round linear trail with a correlation above 2−63. As for the 4 bit case, the
round number can thus be lower to 6 rounds without any security loss.

4 Complexity

Previously, we have seen that increasing the word size improves the security of a
device against SCA. However, this security improvement should not lead to an
unreasonable cost. In this section, we compare several implementations to study
the impact of S-boxes sizes on the complexity. Firstly in a theoretical manner,
then by doing a comparative analysis of hardware implementations.

4.1 Overall Complexity

For each masking scheme, we consider the AES variations described in Section 3
(see appendix B for details about multiplication implementations) :

– 4-bit words (using look-up table),
– 8-bit words (using log/alog tables),
– 16-bit words (using log/alog tables),
– 16-bit words (using tower fields method)

The evolution of the theoretical complexity of each masking scheme according
to the word size is given in Table 3.

Remark 4. Each implementation of the affine masking is optimised using the
most appropriate variation of the scheme : that is the reference implementation
for the original AES and the 4-bit variation, and the least memory expensive
variation for the 16-bit (see [12] for details about each variation). Similarly the
implementation of the polynomial masking is made using the straightforward
adaptation of [3] as explained in [24,16].

The 8-bit affine masking appears to be a very good option both in terms of
security and complexity. The complexity of the 4-bit variation is not as low as
it can be expected because of its heavy linear layer. Using a similar S-box in a
Feistel scheme could solve this probleme though, but such a construction is not
in the scope of this paper. With respect to boolean masking, we can state that,
for a high amount of noise, the 4-bit variation provides a very low complexity for
a good security level. For instance, with a SNR near 1, the third order boolean
masking implemented on a 4-bit algorithm provides a better complexity and
a better security than a second order boolean masking implemented on a 8-
bit algorithm. The 16-bit variation does not seem an interesting choice because
of its huge memory requirements. However the very high security provided by
polynomial masking on this variation may justify its implementation on very low
restricted devices.
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Table 3. Theoretical Complexity of cipher implementations

Implementation XORs/ANDs/shifts Table look-ups Random bits RAM (bits) ROM (bits)
1-st order Boolean Masking

4-bit 8580 7920 5760 284 192
8-bit 17640 16144 16896 312 6128

16-bit (log/alog) 7704 9273 13056 368 2097120
16-bit (tower field) 40269 50385 13056 368 1022

2-nd order Boolean Masking
4-bit 14340 14760 15360 328 192
8-bit 37800 32272 46080 352 6128

16-bit (log/alog) 16200 16257 36086 448 2097120
16-bit (tower field) 72549 90273 36086 448 1022

3-rd order Boolean Masking
4-bit 26820 23520 28800 328 192
8-bit 65640 54160 87552 400 6128

16-bit (log/alog) 25656 25257 69120 544 2097120
16-bit (tower field) 114429 141969 69120 544 1022

Affine Masking
4-bit 2176 1224 2400 448 1088
8 bits 3424 1840 1552 4392 8176

16 bits (log/alog) 526560 394456 800 1048912 3145696
16 bits (tower field) 2500080 1971288 800 1048912 1022

1st order polynomial Masking
4 bits 9480 19440 3840 328 192
8 bits 58560 65824 27792 400 6128

16 bits (log/alog) 39840 57568 18592 544 2097120
16 bits (tower field) 321360 409856 18592 544 1022

4.2 Complexity of Chosen Hardware Implementations

The theoretical complexities given in the previous section provide a good overview
of the implementations’ security. However we want to evaluate the practical
feasability of some chosen implementations on hardware devices. As boolean
masking is the most widely implemented scheme, we limited ourselves to imple-
ment Rivain and Prouff’s scheme from [22] at orders 1, 2 and 3.

We developed in VHDL a small system on chip (SoC) embedding a simple se-
rial interface and a 128-bits masked AES implementation running in ECB mode.
The implementations are fully parallelized, notably all Sboxes are processed si-
multaneously. As proposed in [22], the multiplicative inverse is computed using a
d-order secure square-and-multiply algorithm. To do so, each Sbox encompasses
a secure multiplier as well as a square operator, both working on d shares. Then,
alternating the square and the multiply module in a sequential way ensure to
use the minimal area.

The SoC is built on an Altera Cyclone III EP3C25 (24,624 Logic Elements,
Speed grade -7, -8) with no particular optimization technique and an automated
place-and-route stage. The resulting maximal clock frequency is 125 Mhz for all
implementations. Following this fully parallelized design, no protected version of
the 16-bits scheme can be realistically implemented on the SoC.

We implemented multiplier and square blocks for GF(28) and GF(24) in the
same way, that is fully combinatorial with input/output register. In that case,
a secure multiplication takes 3 cycles since some variables have to be processed
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Table 4. Implementations areas (in logic elements) and performances

Word Size Global System (LEs) S-box (LEs) SecMult (LEs) Clock cycles Throughput (MB/s)
1-st order Boolean Masking

4 bits 4350 112 54 197 18.87
8 bits 8089 380 212 282 7.09

2-nd order Boolean Masking
4 bits 7500 207 117 197 18.87
8 bits 13435 690 487 282 7.09

3-rd order Boolean Masking
4 bits 11300 350 212 197 18.87
8 bits 21299 1170 870 282 7.09

at different time as explained in [22], squaring is done in 2 clock cycles and
only one cycle is needed to refresh the masks. Eventually, the linear layer is also
combinatorial so the total number of cycles to process the whole round is equal
to the the number of cycles required for the inversion.

For the 8-bit version, we have 4 secMult + 7 Square + 2 refreshMask =
4 × 3 + 7 × 2 + 2 = 28 cycles per round. Since there are 10 rounds, we obtain
280 cycles for the encryption + 2 cycles to handle the I/O, hence 282 cycles in
total.

For the 4-bit version, we have 2 secMult + 3 Square + 1 refreshMask =
2 × 3 + 3 × 2 + 1 = 13 cycles per round. Since there are 15 rounds, we obtain
195 cycles for the encryption + 2 cycles to handle the I/O, hence 197 cycles in
total.

As expected, the resulting 8-bit S-box is at least 3 times bigger than the 4-bit
version for a given order of masking. The interesting fact is that this inequality
still hold for different order of masking : a d-order 8-bit S-box is bigger than a
(d + 1)-order 4-bit Sbox. Now if we look at the theoretical correlation of each
of this implementations (see Table 1), we observe that any (d + 1)-order 4-bit
AES is more secure the d-order 8-bit version. Notably the 4-bit 2nd-order AES
is more secure and smaller than the regular 8-bit AES using only one mask.

As a matter of fact, we can observe that between the two implementations, the
difference of size of the global circuit is not so important for 1-st order masking
but increases with the order. It can be explained by noticing that the expensive
layer for the 8-bit scheme is clearly the S-box (and in particular the SecMult
operation), while it is the permutation layer in the case of the 4 bit variation.
Indeed, in this case, the cost of the S-box is roughly 4 times lower than the one
operating on 8 bits. Moreover the cost of the S-box transformation is quadratic
in d while the linear layer is only linear in d, and so the difference increases with
the order.

By taking into account the Sbox size during the design of an implementation,
it is possible to improve the security of the device without increasing the size of
the circuit excessively. Actually the linear layer may take a non-negligible place.
Indeed, in order to avoid to increase excessively the number of round, this layer
has to be improved. This leads to a bigger linear layer and the global system
size increases. Anyway, the (d + 1)-order 4-bit variation is wholly more secure
and smaller and faster than the d-order 8-bit variation.
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5 Attack Simulations

To confirm the theoretical analysis conducted in section 2, we performed several
attacks simulations. Formally we applied several side-channel distinguishers to
simulated leakages. The leakage measurements have been simulated as samples
of the random variables Li defined according to equation (1) with ϕ = HW and
Bi ∼ N (0, σ2) where the different Bi’s are assumed mutually independent. For
all the attacks, the sensitive variable Z was chosen to be an S-box output of
the targeted algorithm of the form S(M ⊕ k�) where M represents a varying
plaintext byte and k� represents the key byte to recover.

Side-channel distinguishers. We applied two kind of side-channel distinguishers:
higher-order DPA such as described in section 2.1 and higher-order MIA [21,13].
In a HO-MIA, the distinguisher is the mutual information: the guess k is tested
by estimating I(ϕ̂(Z(k));L). As mutual information is a multivariate operator,
this approach does not involve a combining function.

Targeted variables. Each attack was applied against leakage values associated to
boolean masking, affine masking and polynomial masking. The target variables
are those listed in section 2.1 where x = S(X ⊕ k�):

Prediction functions. For each DPA, we choose ϕ̂ to be the optimal prediction
function :

ϕ̂ : z �→ E [C(L)|Z = z] . (8)

This leads us to select the Hamming weight function in the attacks against both
1O-polynomial masking and dO-boolean masking and the Dirac function δ0 for
the affine masking.

For the MIA attacks, we choose ϕ̂ such that it maximizes the mutual in-
formation I(ϕ̂(Z(k));L) for k = k� while ensuring that the mutual informa-
tion is lower for k �= k�. In our case, every HO-MIA against both polyno-
mial and Boolean masking is performed with ϕ̂ = HW since the distribution
of (HW(Z ⊕m0),HW(m0)) (resp. (HW(Z ⊕ a0 · x0, x0),HW(Z ⊕ a0 · x1, x1)))
only depends on HW(Z). Therefore

I
(
Z; (HW(Z ⊕m0),HW(m0))

)
= I

(
HW(Z); (HW(Z ⊕m0),HW(m0))

)
.

Note that the same relation holds at every masking order. Every HO-MIA against
affine masking is performed using ϕ̂ = δ0 since the distribution of the leakage
functions is identically distributed for any Z �= 0, and is only remarkable for
Z = 0 [12].

Pdf Estimation Method. For the (HO-)MIA attacks, we use the histogram
estimation method with rule of [14] for the bin-widths selection.
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Table 5. Number of leakage measurements for a 90% success rate against 4, 8 and
16-bits algorithms

Word size \ SNR +∞ 1 1/2 1/5 1/10
2O-CPA against 1O-boolean masking

4-bit 70 160 400 1 800 13 000
8-bit 150 500 1 500 6 000 20 000
16-bit 400 1 400 2 000 10 000 25 000

2O-MIA against 1O-boolean masking
4-bit 80 1 000 5 000 10 000 33 000
8-bit 100 5 000 15 000 50 000 160 000

3O-CPA against 2O-boolean masking
4-bit 370 1 700 20 000 50 000 300 000

8-bit 1 500 9000 35 000 280 000 > 106

16-bit 6 500 20 000 85 000 900 000 > 106

3O-MIA against 2O-boolean masking

4-bit 120 10 000 200 000 800 000 > 106

8-bit 160 160 000 650 000 > 106 > 106

2O-CPA against affine masking
4-bit 300 1400 20 000 100 000 400 000
8-bit 6500 20 000 45 000 170 000 650 000

16-bit 55 000 200 000 800 000 > 106 > 106

2O-MIA against affine masking

4-bit 270 10 000 100 000 800 000 > 106

8-bit 5500 100 000 600 000 > 106 > 106

2O-CPA against 1O-polynomial masking
4-bit 15 000 40 000 100 000 150 000 250 000

8-bit > 106 > 106 > 106 > 106 > 106

16-bit > 106 > 106 > 106 > 106 > 106

2O-MIA against 1O-polynomial masking

4-bit 100 000 300 000 600 000 > 106 > 106

8-bit 500 000 > 106 > 106 > 106 > 106

Attack simulation results. Each attack simulation is performed 100 times for
various SNR values (+∞, 1, 1/2, 1/5 and 1/10). Table 5 summarizes the number
of leakage measurements required to observe a success rate of 90% in retrieving
k� for the different attacks.

Remark 5. No MIA processed against an implementation of the 16-bits algo-
rithm had succeeded. This can be explained by the complexity of estimation of
the probability density functions needed by the attack.

The simulation results confirm the security intuition introduced in section 2
that the security of an algorithm is highly dependant of its word size. We can
indeed state that the number of measurements needed for a 90% success rate
increase with the word size. In particular these results show that the security
improvement induced by boolean masking on longer words increase more slowly
than that induced by non-linear masking scheme. Moreover we are able to give
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practical results for the efficiency of MIA upon the considred implementations.
These results shows that the security improvement of a longer word size has the
same kind of impact on both CPA and MIA.

6 Conclusion

In this paper, we investigated the influence of the size of the words in an cryp-
tographic algorithm on the efficiency and the security of the scheme against side
channel analysis. We designed for this matter two algorithms operating respec-
tively on 4 and 16-bit words, and compared them to the original 8-bits AES both
in terms of complexity and SCA resistance.

The 16-bit variation provides a very good security, particularly assiciated
with a non-linear masking, but the complexity overhead is consequent. On the
contrary, we have shown that in some situations, using smaller Sboxes associated
with higher order masking technique improves the security of a device with
almost no extra cost. Our results show that indeed, a 2nd order boolean masking
applied on the 4-bits AES provides both a better resistance as well as better
performances than 1st order boolean masking applied on the 8-bit AES.

The S-boxes size and the masking order can be viewed as two complemen-
tary parameters. By choosing these parameters, one can adapt the performances
(area, thoughput, security) of a device to match a specific need. Table 6 recall
implementations complexities and the corresponding CPA simulation results for
a realistic amount of noise (SNR= 1/2).

Table 6. Comparison of two distinct implementations

CPA (traces) Global System (LEs) S-box (LEs) Clock cycles Throughput (MB/s)
8-bits AES secured by 1-st order Boolean Masking

1 500 8089 380 282 7.09
4-bits AES secured by 2-nd order Boolean Masking

20 000 7500 207 197 18.87

References

1. Akkar, M.-L., Giraud, C.: An Implementation of DES and AES, Secure against
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A Original AES Steps

In this section, we recall the four main operations involved in each round of the
AES encryption Algorithm. For each of them, we denote by s = (si,j)0≤i,j≤3 the
16-byte state at the input of the transformation, and by s′ = (s′i,j)0≤i,j≤3 the
state at the output of the transformation.

1. AddRoundKey: Let k = (ki,j)0≤i,j≤3 denote the round key. Each byte of the
state is XOR-ed with the corresponding round key byte:

(s′i,j)← (si,j)⊕ (ki,j).

2. SubBytes: each byte of the state passes through the 8-bit S-box S:

s′i,j ← S(si,j).

For all x in GF(28), the AES S-box is defined as follows :

S[x] = Q(x) + a(x) · P (x) mod [X8 + 1]

where a(x) is the inversion function in the field GF(28), P (x) = x7 + x6 +
x5 + x4 + 1 coprime to the modulus, and Q(x) = x7 + x6 + x2 + x chosen
such that the S-box has no fixed points (S(x) = x) and no “opposite fixed
point” (S(x) = x̄).

3. ShiftRows: each row of the state is cyclically shifted by a certain offset:

s′i,j ← si,j−i mod 4.

4. MixColumns: each column of the state is modified as follows:

(s′0,c, s
′
1,c, s

′
2,c, s

′
3,c)← MixColumnsc(s0,c, s1,c, s2,c, s3,c)

where MixColumnsc implements the following operations:⎧⎪⎪⎨
⎪⎪⎩

s′0,c ← (02 · s0,c)⊕ (03 · s1,c)⊕ s2,c ⊕ s3,c
s′1,c ← s0,c ⊕ (02 · s1,c)⊕ (03 · s2,c)⊕ s3,c
s′2,c ← s0,c ⊕ s1,c ⊕ (02 · s2,c)⊕ (03 · s3,c)
s′3,c ← (03 · s0,c)⊕ s1,c ⊕ s2,c ⊕ (02 · s3,c),

where · and ⊕ respectively denote the multiplication and the addition in the
field GF(2)[X ]/p(X) with p(X) = X8+X4+X3+X+1, and where 02 and
03 respectively denote the elements X and X + 1.
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B Implementations of the Field Multiplication

The main problem encountered when implementing AES is the implementation
of the field multiplication. In this section we will view several possibilities of
implementations with respect to the words bit-size.

B.1 4-Bit Multiplication :

In the case of a 4-bit implementation, a natural idea is to pre-compute the field
multiplications and store them in a 16 × 16 entries table. The multiplication is
then resumed to 1 table look-up. Such table can be stored on 128 bytes.

B.2 8-Bit Multiplication :

A classical method to implement the multiplication over GF(256) in software
is to use log/alog tables. These tables are constructed using the fact that all
non-zero elements in a finite field GF(2n) can be obtained by exponentiation
of a generator in this field. For a generator α of GF(256)∗ we define log(αi) =
i and alog(i) = αi. This results are stored in two tables of 2n − 1 words of
n bits.

If a, b are non-zero, then the product a · b can be computed using log/alog
tables as

a · b = alog[(log(a) + log(b)) mod (2n − 1)]. (9)

With this representation, computing a product over GF(256) requires 3 table
look-ups, and two additions modulo 256. Both tables can be stored in ROM on
510 bytes.

On hardware systems, the multiplication can easily be implemented using
composite field method using the methodology given in [27], or simple combina-
torial multipliers.

B.3 16-Bits Multiplication :

In order to compute multiplication over GF(216), two tools can be used: log/alog
tables or the tower field method (see [27]).

Using log/alog table requires 3 table look-ups, and two additions mod(216).
Both tables can be stored in ROM on 262140 bytes.

For more memory-restricted implementations, the tower field methodology
can be applied. It consists in considering GF(216) as GF(28) × GF(28), thus
making product in the smaller field GF(28).

In [27], Wolkerstorfer et al. give an efficient hardware implementation of mul-
tiplications and inversions in GF(28). They represent GF(28) as a quadratic
extension of the field GF(24) then exhibit an isomorphism between GF(28)
and GF(24) × GF(24). The multiplication can thus be implemented in
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GF(24)×GF(24), instead of GF(28). We want to develop here the same method-
ology in order to implement the multiplication in GF(216) using multiplication
in GF(28).

Let α be the class of X in GF(216). Let Q(X) = X2 + X + α7 be an irre-
ducible polynomial over GF(28). Let us consider the field GF(28) × GF(28) =
GF(28)[X ]/Q(X). If β is the class of X in GF(28)2, then every element of
GF(28)2 can be written as a · β + b with a and b in GF(28).

Let η and ν be two elements of GF(28)2 such that η = u1β + u0 and ν =
v1β + v0. Then we have :

η · ν = (u1β + u0)(v1β + v0)
= u1v1β

2 + (u1v0 + u0v1)β + u0v0
= (u1v0 + u0v1 + u1v1)β + (u1v1α

7 + u0v0)
(10)

Hence the product in GF(28)2 can be performed using 5 multiplications in
GF(28) and 3 XORs. In order to compute the isomorphism I : GF(216) −→
GF(28)×GF(28) and its inverse, we simply have to define base changing equa-
tions from the relation I(α) = 2Aβ + 1C. Base changing can then be computed
following algorithm 1.

Algorithm 1. Base changing
Input: An element a in the input field F , (µ0, . . . , µ15) the base changing value
Output: The corresponding element a′ in the ouput field G

1. a′ ← 0

2. for i = 0 to 15 do

3. a′ ← a′ ⊕ (ai · µi)

4. return a′

where ai is the ith bit of a.

Remark 6. As both words in GF(28) depend on every 16 bits of the input, there
is no security loss in this implementation.

Using this method, each multiplication in GF(28)×GF(28) can be performed
using 5 multiplications in GF(28) (using log/alog tables) and 3 XORs. Both
isomorphisms I and I−1 can be computed using 16 XORs and 16 ANDs (and
16 shifts in software) knowing both 32-bytes tables of base changing.

C Linear Layer and MDS Matrix

We have seen that the linear layer of the AES is composed of two operations:
ShiftRows and MixColumn. This linear layer allows a reasonable diffusion en-
twined with a very low complexity. However we can define optimal diffusion
function using MDS matrices as follows.

Let C be an (m, k, d)-error correcting code over F2n . Then m is the word size
of C, k is its dimension, and d is the minimal distance between two words of the
code (or the minimal weight of a non-zero word of the code). Let us have the
following definition:
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Definition 1 (MDS code). C is said MDS (Maximum Distance Separable) if it
is a linear code that reaches the Singleton bound, i.e. if and only if d = m−k+1.

An important parameter in the security of a block cipher against linear and
differential cryptanalysis is its branch number B.

Let b be the linear (respectively differential) bias (see section D) associated to
a transformation S : GF(q) → GF(q) of the substitution layer, then the global
resistance provided by N rounds of the algorithm can be evaluated by

bB·N2 .

Let θ be a diffusion layer with input k elements of GF(q) and with output
m elements of GF(q) then

θ : GF(q)k → GF(q)m

x �→ θ(x).

Then θ’s branch number is given by

B(θ) = min
ξ∈(GF(q)k)�

{ω(ξ) + ω(θ(ξ))} .

Proposition 1. We have B(θ) ≤ m+ 1.

Let now C be a (2k, k, k + 1)-MDS code over F2n with generator matrix G =
(I ‖ M) with I the identity and I,M ∈ Mk×k(F2n). M is then called an MDS
matrix. Let us have the following proposition:

Proposition 2. Let M be an MDS matrix over F2n . We can then define an
optimal, i.e having the maximal branch number, invertible SPN-diffusion layer
θC as

θC : F
k
2n → F

k
2n

x �→Mx.

In this case, the branch number of the linear layer is maximal, and equal to k+1.

D Linear and Differential Cryptanalysis

Differential and Linear cryptanalysis were first described respectively by Eli
Biham and Adi Shamir [5] in 1991 and by Mitsuru Matsui [19] in 1993. Both
attacks aims to recover the last round’s subkey of the algorithm by exploiting
statistical bias in the propagation of the message through the algorithm called
linear or differential trails. The efficiency of these attacks depends of the length
of the trails, i.e. the round number. Basically, the round number can be derived
from the branch number of the linear layer and both the prop ratio and the
input-output correlation of the S-boxes [10].

In practice we evaluate the security of an S-box S against differential crypt-
analysis by computing the prop-ratio RS . Let (a′, b′) be a pair where a′ is a
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difference of input values and b′ the difference of the corresponding outputs.
The prop-ratio RS(a

′, b′) of S associated to (a′, b′) is:

RS(a
′, b′) = 2−n

∑
a

δ(b′ ⊕ S(a⊕ a′)⊕ S(a)) (11)

where δ is the Dirac function.
Similarly, we can evaluate the security of S against linear cryptanalysis by

computing its input-output correlation. Let (a′, b′) be an input-output pair, then
the correlation cS(a

′, b′) of S associated to (a′, b′) is:

cS(a
′, b′) = 2 · pX [a′ · S(x) = b′ · x]− 1 (12)

Formally, for a cipher operating on n bits blocks to be resistant against Differ-
ential Cryptanalysis, it is a necessary condition that there is no differential trail
with a predicted prop ratio higher than 21−n.

Similarly, to be resistant against Linear Cryptanalysis, it is a necessary condi-
tion that there is no linear trail with a input-output correlation coefficient higher
than 2n/2.
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