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Abstract. Cryptanalysis mainly has public algorithms as target; how-
ever cryptanalytic effort has also been directed quite successfully to block
ciphers that contain secret components, typically S-boxes. Known ap-
proaches can only attack reduced-round variants of the target algorithms,
AES being a nice example. In this paper we present a novel cryptanalytic
attack that can recover the specification of S-boxes from algorithms that
resist to cryptanalysis, under the assumption that the attacker can work
on a pair of such block ciphers that instantiate related S-boxes. These
S-boxes satisfy the designer’s requirements but are weakly diversified;
the relationship between these unknown components is used in much
the same way as relationship between secret keys is used in related-key
attacks. This attack (called related S-box attack) can be used, under
certain assumptions, to retrieve the content of the S-boxes in practical
time. We apply our attack to two well known ciphers, AES and Camellia;
these ciphers use 8-bit S-boxes but are structurally very different, and
our attack adapts accordingly. This shows that most probably the same
can be applied to other ciphers which can be customized to instantiate
unknown 8-bit S-boxes.

1 Introduction

Block cipher design is a well developed research field; the AES contest has with-
out doubt contributed to its growth. Today, not only we have a significant num-
ber of good algorithms, we also possess criteria that can be used to design ciphers
that are robust against known cryptanalytic techniques, such as linear cryptanal-
ysis [15], differential cryptanalysis [2], algebraic attacks [11].

Those algorithms that are fully public, and withstand all cryptanalytic at-
tacks, are considered to be the best and therefore are used ubiquitously; this
is, after all, the main motivation behind the AES contest (and the SHA-3 one).
But in some cases there may be a need to keep at least part of an algorithm
private. Although this is not commonly seen as good practice, being a contra-
diction of the famous (although perhaps overestimated) Kerckhoffs principle, it
is not rarely done in practice as there may be a good justification.

Considering products such as RFIDs, smart-cards and conditional access
tokens, adversaries may be able to compromise the security of part of the sys-
tem with the ultimate goal of cloning the device (well-funded pirate organiza-
tions have the possibility and technical skills to pursue this goal). Basing the
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cryptographic constructions on completely standard algorithms thus gives the
adversary an advantage because the cloning procedure is easier; assuming the ad-
versary gains complete control over the block cipher under attack, he can choose
a key value and by observing few encryptions he will be able to say which stan-
dard algorithm is used. On the other hand, an unknown algorithm forces the
attacker to fully reverse-engineer the device, a thing which is definitely more
difficult, and costly, than a partially invasive attack. Of course, the algorithms
must still be based on solid constructions, well-analyzed and characterized by
proofs of security.

In many algorithms, the S-box is a natural candidate for customization, for
several reasons. As an example, the Rijndael SPN structure can be easily cus-
tomized by replacing the standard S-box with a randomly picked 8-bit permu-
tation; the resulting cipher still maintains all the structural properties of AES
while it forces the adversary to reverse engineer an implementation to be able
to clone the circuit.

Even if the particular S-box used in Rijndael has optimal differential and lin-
ear characteristics [12], these parameters can actually be relaxed, since a large
margin of security exists with regards to classical attacks in the design of the
cipher. For instance, the expected maximum entry in the Differential Distribu-
tion Table (DDT) of a random 8-bit S-box is 16 [17], whereas the maximum
DDT value of the AES S-box is 4. This means that the probability of differen-
tial trails over 4 rounds is increased from 2−150 to 2−100, a value that anyway
render differential attacks over the full cipher impossible. Regarding algebraic
properties, a random 8-bit bijection is likely to show up no monomial charac-
terization, even if the algebraic degree will not be maximal. We also note that
the recent biclique attacks which have been shown to work on the full AES [8]
and are the most successful attack to date, combine the biclique concept with
the use of meet-in-the-middle structures, for which known differentials must be
used. These differentials are not known by the attacker if the S-box is unknown.

Thus a randomly-generated S-box (e.g. by means of a true random number
generator and application of the Knuth shuffle [14]) is expected to behave well
enough. The number of choices is extremely large; taking into account all per-
mutations on 8 bits, we have a customization space of about log2(256!) ≈ 1684
bits. Even giving the adversary the possibility to completely control the key, he
cannot recover the content of the secret S-box and use it to clone the device.
This is because in the known-key scenario the probability of differential and
linear characteristics for the AES is low enough for them to be useless [19].

Even if it is intuitive that some security is added if part of a block cipher speci-
fication is kept private, there is little available quantitative analysis of the subject
in the literature. We have to say that here we are not focusing on implementation-
based attacks, such as fault injection or side channel analysis; it is today known
that these techniques can be used to reverse engineer block ciphers, such as in
SCARE attacks [10][16][18][13] and in FIRE attacks [3]. The primary goal of this
paper is rather to consider the components of a block cipher (such as unknown
S-boxes) as another design dimension, and to introduce a new class of quite
powerful related-cipher attacks (that we call related-S-box attacks).
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Related-key attacks are today accepted as a way to expose weaknesses of
a block cipher, and are based on the fact that the adversary may know the
relationship between a pair (or a bigger set) of otherwise secret keys [5]. The
concept of related ciphers has been analyzed in [22][20], where the existence of
ciphers parameterized by variable number of rounds was exploited to determine
the value of the key. The relationship between different modes of operation has
also be considered in related cipher attacks [21].

We present here a novel type of attack which follows in these footsteps and
exploits the existence of a strong relationship between different, but unknown,
S-boxes to break the cipher1. This is, to our knowledge, the first cryptana-
lytic attack that can obtain the specification of S-boxes instantiated in block
ciphers with the strength of the AES; and under certain assumptions, we do it in
practical time.

2 The Related S-box Attack

2.1 Overview and Assumptions

Let us examine the case of AES instantiating an unknown S-box, but with usual
key-schedule, round function structure and number of rounds; let us limit our
analysis to the 128-bit key variant. Consider the following definition:

Definition 1. Two S-boxes S1, S2 : F2m → F2n are said to be δ-related if

S1(x) = S2(x) ⇔ x /∈ Δ

|Δ| = δ , 2 ≤ δ ≤ 2m

This definition may seem a bit simplistic, in the sense that it considers the
similarity between two S-boxes only in terms of the number of entries on which
they agree; this is precisely the characteristic which is used by our attack, and we
believe it is the most generic and agnostic notion of similarity. Of course one may
think about linearly equivalent S-boxes [4], or even more complex relationships.
These cases are also interesting, but the class of attacks that could stem from
them is much more limited in the number of rounds that can be attacked2.

Let us consider two identically structured block ciphers which instance two
δ-related S-boxes S1 and S2 according to the definition above; we will by anal-
ogy call them δ-related block ciphers. Note that in our definition, low values
of δ identify pairs of very similar S-boxes, and thus this parameter measures

1 By breaking here we mean that the full specification of the algorithm is retrieved,
since the goal of the attacker in our scenario is to clone the device. We assume that
all block cipher inputs (including the key) are under the attacker’s control.

2 Our relationship definition has the advantage of capturing the case where physical
attacks on memories or logic could result in few entries to be interchanged; more
in general, the S-box generation algorithms could also be attacked or poorly imple-
mented and give strongly related S-boxes as result.
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the degree of relationship between two S-boxes; however, recall that δ is also a
measure of the number of entries that differ between S1 and S2.

The attack starts from the simple but somewhat surprising consideration that
these two ciphers behave in the same way in a relatively large amount of cases,
depending on the value of δ and on the size and number of S-boxes. In the
general case, if we key two block ciphers with the same key k, and we encrypt
the same plaintext p, the chance of obtaining the same ciphertext is equal to the
probability that no S-box receives as input one of the values in the set Δ (no
S-box is Δ-active, in our terminology). If the block cipher contains s S-boxes,
this probability is equal to:

P (c1 = c2|p1 = p2, k1 = k2) =
(2m − δ

2m

)s

(1)

If we look at the case of AES, we have s = 200 and m = 8; if δ = 2 (the minimum
value possible for bijective S-boxes) then the probability becomes:

P (c1 = c2|p1 = p2, k1 = k2) =
(256− 2

256

)200

≈ 0.20833 (2)

so we expect that in about 1 case out of 5 we observe a collision on the ciphertext
values; in this computation we assume that all S-box inputs are uncorrelated
and uniformly distributed, which is obviously not true in practice, however this
probability is easily confirmed with experiments.

This fact seems somewhat in contradiction with the belief that a cipher like
the AES has good randomization properties and such events should intuitively
have a very low probability. If we consider the value of 2−64 as threshold for the
collision probability, we have that δ can reach the value of 50, i.e. S1 and S2 are
different for slightly less than one fifth of the values.

By looking at another well known cipher that contains 8-bit S-boxes, Camellia
[1], we note that S-box s1 is directly instantiated in the round function and key-
schedule, and also used to derive the other three S-boxes s2, s3, s4 in a way
to preserve the value of δ. Since for Camellia we have s = 192 and m = 8,
the collision probability for the different values of δ are even larger than those
of AES.

In our attack, we use this collision probability as a tool to obtain the specifi-
cation of the unknown components, i.e. the complete content of the S-boxes. The
attack scenario is the following: we assume that the attacker is able to submit
encryption queries to two δ-related block ciphers. We assume that the attacker
can re-key the two ciphers as he likes; his goal is to recover the specification
of the unknown component (the two δ-related S-boxes S1, S2). The attack we
present here works on the full AES and Camellia block ciphers and is shown to
work in practical time for δ up to 16.

Since in the attack we are mainly interested in verifying assumptions on the
first round of encryption, we use ciphertext almost collisions, i.e. pairs of cipher-
texts which differ in 8 or less byte positions. For both AES and Camellia, this
means that a difference has most likely been originated within the last round of
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encryption, and this is sufficient for our goals. The probability of having such
differentials springing from the first rounds should be around 2−64, and there-
fore if the theoretical probability of collision is significantly greater than this,
the approach will work well.

More precisely, by looking at a pair of ciphertexts obtained by encrypting the
same plaintext with two δ-related AES ciphers we can make the following list of
statements about the most probable explanation of the given observed difference
pattern:

1. If the difference between the two ciphertexts is non null on only one byte
position, then we most likely have a single Δ-active S-box in the final round
of the cipher.

2. If the difference is a full row of the byte matrix, we most likely have a single
Δ-active S-box in the key schedule computation of the last subkey (remember
that the last round of AES has no MixColumn step).

3. If the difference pattern is (embedded by) a column of the byte matrix, the
Δ-active S-box is in the round before the last.

4. If the difference is (embedded by) a double row of the byte matrix, the Δ-
active S-box is in the key schedule computation of the second-to-last subkey.

These explanations implicitly consider that the event of having a single Δ-active
S-box is much more probable than having two or more of them. Therefore, the
probability of observing an almost-collision is equal to the probability of having
zero Δ-active S-boxes among the first 160 S-boxes and at most 1 among the
remaining 40 S-boxes. This means:

P ≈
(256− δ

256

)160((256− δ

256

)40

+ 40
(256− δ

256

)39 δ

256

)
≈ 2−δ δ ≤ 16 (3)

Therefore to estimate attack workload in the rest of the paper we will use
this approximated value of the almost-collision probability; the error for δ = 8
is 2.4%.

The attack works in two phases, presented in the two sections below for both
AES and Camellia.

2.2 First Phase

The aim of the first phase is to find the complete relationship between S1 and S2,
i.e. a function T : F28 → F28 for which we have S2(T (x)) = S1(x), ∀x. Obviously
T differs from the identity function in exactly δ values. Note that the knowledge
of T says nothing about the values of S1 and S2, it is only characterizing their
relationship.

AES — In AES the input of the 16 S-boxes of the first round is a XOR
between plaintext bytes and key bytes (both controlled by the attacker); thus
we can do the following: we initialize 2m (256) counters, one for each possible
S-box input. We then submit a certain number of random (p, k) queries to the
two δ-related oracles; if the query results in a collision we increment the counters
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corresponding to the 16 inputs of the S-boxes of the first round. The counters
corresponding to the values in Δ can never be incremented, except in the case
where a difference propagating in the cipher is corrected at a later stage. Since
the probability of this event is in general negligible compared to the collision
probability, after having observed about 210 collisions, the only counters which
are left at 0 give us the S-box inputs in the Δ set. Note that this works even if
we do not know in advance the value of δ as we will simply obtain it as |Δ|. Once
we know the number and positions of the differences in the two S-boxes S1 and
S2 we proceed as follows: for all possible pair of values di, dj ∈ Δ we generate
a set of 25+δ (p, k) pairs so that all S-boxes in the first round receive random
inputs (not belonging to Δ) except one S-box, which will be fed with di in the
first cipher, and with dj in the second cipher. If S1(di) = S2(dj) we will observe
almost collisions for the set of queries, otherwise not. Once all δ(δ − 1)25+δ

queries are made we know T .
Camellia — For the Camellia cipher, we proceed in an analogous way, but

since the subkey used for the first round is obtained with 4 applications of the
round function, we cannot use them directly to obtain T . Instead, we will use the
S-boxes in the first F function in the key schedule, whose inputs are completely
controllable (key bytes are XORed with known constants). The targets are the
two s1 instances in the first F function of the key schedule, and we proceed with
the same counter strategy we used for AES; since we have to compensate for
the reduced number of S-boxes, we will need about 214+δ encryptions. In the
case of Camellia, the first phase stops here as we cannot use the same technique
we used for AES to completely characterize T (this is due to the fact that a
XOR difference pattern in a SPN network can be completely eliminated with
one Δ-active S-box, while this is not possible in a Feistel structure). However,
as we will see below, this has no impact on the attack.

The first phase requires at most 230 encryptions if δ ≤ 16 for both
algorithms.

2.3 Second Phase

The aim of the second phase is to use the knowledge we obtained on T in order
to recover the full specification of the S-boxes S1, S2.

AES — The main tool is still the possibility to produce collisions between the
two encryption oracles with non-negligible probability, and we use the subkey
XORs and the interaction between the key schedule and the round function as a
target for our attack. Since it is difficult to impose and verify conditions directly
onto the S-box values, we will work on the XOR differences within the S-box
entries; that is, we imagine to take an (unknown) entry of the S-box as reference,
and we will try to determine the (XOR) difference between this reference value
and all other S-box entries.

First, we choose the reference entry b; for simplicity we impose that b /∈ Δ.
We then generate a set of (p, k) queries of a certain kind; the key value k is the
following, where r stands for a random value (i.e. a byte value which changes
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for each pair and for each byte position), a and c are fixed byte values inside
each set:

k =

⎡
⎢⎢⎣
a⊕ (01) r r b

a r r b
a r r b
a r r b

⎤
⎥⎥⎦

The associated plaintext value in the pair is the following:

p =

⎡
⎢⎢⎣
c⊕ k(0, 0) r r r

r c⊕ k(1, 1) r r
r r c⊕ k(2, 2) r
r r r c⊕ k(3, 3)

⎤
⎥⎥⎦

where k(i, j) is the paired key byte at row i and column j; now, for each pair in
the set the input of all S-boxes of the second round is:

⎡
⎢⎢⎣
S(b)⊕ S(c)⊕ a r r r
S(b)⊕ S(c)⊕ a r r r
S(b)⊕ S(c)⊕ a r r r
S(b)⊕ S(c)⊕ a r r r

⎤
⎥⎥⎦

Pairs belonging to a set have fixed value for a and c and random values for bytes
marked with r. Each set is made up by 25+δ pairs. We have a total of 216 sets
which account for all possible combinations of values for a and c.

All the pairs of one set are submitted for encryption to the two oracles; if no
almost-collision is observed, it means with high probability that the first column
of S-boxes in the second round receive an input belonging to the set Δ, i.e.

S(b)⊕ S(c)⊕ a ∈ Δ (4)

For each value of c, this happens for δ values of a that we can denote as aδi ;
let us call the set of these values A. By looking at equation 4 we easily realize
that the set Δ and the set A are the same set of values, apart from an additive
(XOR) constant, and this constant is precisely one entry of the S-box difference
table at index c taking entry at b as base. Thus we can easily reconstruct the
full XOR difference table of the S-box S1; if c ∈ Δ, we take the additional
care of remapping all values of c in the query as submitted to the first oracle
(instantiating S1) with the value T (c) in the query submitted to the second
oracle (instantiating S2). Once we have the complete XOR difference table of
S1, we just have to guess the value of S1(b) and with a mere 256 trial encryptions
we will obtain the complete content of S1; S2 is then immediately obtained as
we already know the remapping function T .

The computational cost of phase two is roughly equal to 221+δ queries to the
two ciphers. This algorithm has been implemented in C and tested to work;
it takes few minutes on a ordinary PC to recover the complete specification
of secret 8-related AES block ciphers; the search on 16-related S-boxes is still
practical (238 total encryptions). Note that we did not employ parallelization
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or dedicated HW for the search, two things which could make the algorithm
practical for even bigger values of δ.

This algorithm works on the vast majority of cases, but there are some in-
stances of the problem which are not tractable. The reason is that the set A is
not ordered with respect to Δ, in other words we have no means to discriminate
between aδi and aδj as all that we observe from the queries is that no almost
collision could be observed, i.e. that we produce some value δi on the input of
the S-boxes. Thus, when we look for the XOR constant that transforms the set
A in Δ we may end up with multiple values. Let’s try to define more precisely
the problem.

Definition 2. If we denote as σi,j the XOR difference between δi and δj, we
define the non-ordered set

Σk = σi,j |i = k (5)

Now if Σi = Σj, ∀i, j then the algorithm above is guaranteed not to work. Let’s
see a practical example.

Example 1. Let us take δ = 4, and let’s impose that σ3,4 = σ1,2. Then we have
that:

δ1 ⊕ δ2 = σ1,2

δ1 ⊕ δ3 = σ1,3

δ1 ⊕ δ4 = σ1,4

δ2 ⊕ δ1 = σ1,2

δ2 ⊕ δ3 = σ1,2 ⊕ σ1,3 = σ3,4 ⊕ σ1,3 = σ1,4

δ2 ⊕ δ4 = σ1,2 ⊕ σ1,4 = σ3,4 ⊕ σ1,4 = σ1,3

etc...

so that Σ1 = Σ2 = Σ3 = Σ4. Thus, when we look for the XOR constant that
transforms A in Δ, we will get 4 such values, only one of the four being the true
value of S(b)⊕S(c) for that given value of c. If the set Δ is randomly generated,
the chance of falling into this case is the chance that δ3 ⊕ δ4 = δ1 ⊕ δ2, i.e. one
out of 256. 	

Note that the chance of getting such a hard instance is 2−32 for δ = 8 and 2−64

for δ = 16; thus for interesting cases, we will have only a small chance of not
succeeding.

However, if we take δ = 2, our search algorithm will never work; for this
case we give here an additional step which can anyway retrieve S1 and S2,
showing that with little more effort these difficult cases can be overcome. This is
particularly interesting because additional properties of the AES algorithm are
used and because the case of 2-related S-boxes can perhaps easily be produced on
a single device by introducing faults in the S-box computation phase, targeting
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for instance a single S-box during the first round of computation. On the other
hand, the generalized solution to these hard instances is left as an open problem.

For δ = 2, we get two plausible values for each entry of the S-box XOR
difference table; moreover all values come in pairs, so for instance, and depending
on the S-box, if

S(b)⊕ S(c) ∈ {x, y} , x⊕ y = δ1 ⊕ δ2 (6)

then we also have another entry c′ for each we also have that

S(b)⊕ S(c′) ∈ {x, y} (7)

and this is because for each real difference value dS = S(b)⊕S(c) there is always
another one equal to dS ⊕ δ1 ⊕ δ2.

The problem is that we do not know which of the two options is valid for each
entry, i.e. in the end if:

S(c) = S(b)⊕ x (8)

S(c′) = S(b)⊕ y (9)

or vice versa; establishing the real difference table with this information would
cost 2126 encryption trials, as one can compare the output of each trial with that
of the two oracles (in other words we do not need to guess the XOR differences
at δ1 and δ2).

To solve this problem, we will leverage on the properties of the MixColumn
operation which is carried out in the first round. We will use this operation
to produce the δi values at the input of the second round and to establish
relationships between the possible values in the XOR difference table of the
secret S-box.

Let us choose one index of the secret S-box which is different from those
in the set {b, b̃′, δ1, δ2}; let us call this index p1, let us denote its two possible
difference values determined before as dS′(p1) and dS′′(p1) and let us call its
conjugate index p̃1 (the index with the same set of plausible difference values).
Then, consider the index p2 (or its conjugate, it does not change anything) such
that the following condition is valid:

(02) · dS′(p1)⊕ (03) · dS′(p2) = δ1 (10)

where multiplication is carried out in GF(28) using the AES polynomial. Index
p2 is unique and well determined (up to its conjugate) as:

dS′(p2) = (03)−1 · p1 ⊕ (03)−1 · (02) · dS′(p1) (11)

is an affine relationship. Note that if Equation 10 holds, then:

(02) · dS′(p1)⊕ (03) · dS′′(p2) =
= (02) · dS′(p1)⊕ (03) · dS′(p2)⊕ (03) · (δ1 ⊕ δ2) =

= δ1 ⊕ (03) · δ1 ⊕ (03) · δ2 =

= (02) · δ1 ⊕ (03) · δ2 (12)

which is always different from both δ1 and δ2 since δ1 �= δ2.
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On the other hand:

(02) · dS′′(p1)⊕ (03) · dS′′(p2) =
= (02) · dS′(p1)⊕ (02) · (δ1 ⊕ δ2)⊕ (03) · dS′(p2)⊕ (03) · (δ1 ⊕ δ2) =

= δ1 ⊕ (02) · δ1 ⊕ (03) · δ1 ⊕ (02) · δ2 ⊕ (03) · δ2 =

= δ2 (13)

and again it is easy to see that:

(02) · dS′′(p1)⊕ (03) · dS′(p2) �= {δ1, δ2} (14)

For the sake of clearness let us define the Boolean function

μ(a, b) =

{
True if (02) · a⊕ (03) · b ∈ {δ1, δ2}
False if (02) · a⊕ (03) · b /∈ {δ1, δ2}

then we can summarize the discussion above by saying that

μ(dS′(p1), dS′(p2)) ⇐⇒ μ(dS′′(p1), dS′′(p2)) (15)

μ(dS′(p1), dS′′(p2)) ⇐⇒ μ(dS′′(p1), dS′(p2)) (16)

Now consider the two real values of the difference at indexes p1 and p2, we write
them as dS(p1) and dS(p2). If we could produce the value μ(dS(p1), dS(p2)) at
the input of one S-box, we would build a set of pairs with this characteristic and
if no collision would be observed in the two oracles, then we would know that a
δi was produced, i.e. that:

dS(p1) = dS′(p1) ⇒ dS(p2) = dS′(p2) (17)

dS(p1) = dS′′(p1) ⇒ dS(p2) = dS′′(p2) (18)

and if collisions could be observed, then we would know that:

dS(p1) = dS′(p1) ⇒ dS(p2) = dS′′(p2) (19)

dS(p1) = dS′′(p1) ⇒ dS(p2) = dS′(p2) (20)

In other words, we would establish a link between the real XOR difference value
at index p1 and that at index p2 and we would decrease by one bit the search
space needed to find the real S-box table. The shape of the plaintext and key
values in every pair of such set is the following:

k =

⎡
⎢⎢⎣
(01) r r r
r r r b
r r r r
r r r r

⎤
⎥⎥⎦

such that the second subkey is:
⎡
⎢⎢⎣
S(b) r r r
r r r r
r r r r
r r r r

⎤
⎥⎥⎦
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and the associated plaintext value is:

p =

⎡
⎢⎢⎣
p1 ⊕ k(0, 0) r r r

r p2 ⊕ k(1, 1) r r
r r p1 ⊕ k(2, 2) r
r r r p1 ⊕ k(3, 3)

⎤
⎥⎥⎦

Therefore at the end of the first round, right after the XOR with the second
subkey the leftmost and topmost byte in the state matrix is equal to:

S(b)⊕ (02) · S(p1)⊕ (03) · S(p2)⊕ S(p1)⊕ S(p1) =

= S(b)⊕ (02) · dS(p1)⊕ (02) · S(b)⊕ (03) · dS(p2)⊕ (03) · S(b) =
= (02) · dS(p1)⊕ (03) · dS(p2) =
= μ(dS(p1), dS(p2)) (21)

while all other bytes are random. This is exactly the value we need to obtain the
one bit of information from the set.

Once the link between p1 and p2 is established, we can iterate this procedure
taking p2 as starting point and so on; in the end, we will have established links
between all XOR differences in the table and the real difference value at index
p1. Now, to obtain the complete S-box we will have just to guess the value at the
reference index, S(b), and the XOR difference value at index p1. With an effort
of about 217 encryptions, the search space has thus been reduced to 29, which
is trivial to brute-force. The procedure has been implemented in C and tested
to work.

Camellia — The second phase of attack for the Camellia cipher is rather
different from that of AES; our target will not be the XOR difference table of
the secret S-box, we will instead retrieve the S-box itself. First, let’s take a (p, k)
query which leads to an almost-collision; we have already produced a lot of them
in the first phase of attack; in the following we will keep the value of the key
fixed at k, so that we are sure that no S-box in the key schedule is Δ-active.
Then, consider the Camellia F function. First, all input bytes are XORed with
subkey bytes (which in our analysis will be considered unknown); then they are
passed through an array of S-boxes and then through the mixing layer, known
as P function. Let us concentrate our attention on byte 5 of the F output of the
first round, which is obtained as the XOR of bytes 1,2,6,7 and 8 of the input
(after key addition and S-boxes have been applied). Let us keep the values of
the input bytes 1,2,6 and 7 to some values which lead to a ciphertext collision;
then, let us prepare 25+δ queries for each possible combination of values of input
bytes 8 and 12; byte 12 is the byte which is XORed with byte 5 of the F output
to form an input byte for the second round.

If, for a given value of input byte 8, we find that all values of byte 12 lead to
no collision, it means that we are querying the s1 S-box on byte 8 with a value
in the Δ set; this happens for exactly δ values of byte 8 and from those we can
easily obtain the value of the subkey byte which XORs with input byte 8.

On the other hand, if for a value of byte 8 we find that exactly δ values of
byte 12 lead to no collision, it means we are producing the set Δ on the input of
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the S-box in the second round. By comparing the set of these values of byte 12
with Δ, we obtain an entry of S-box s1 XORed with an unknown but constant
byte which is the combination of all unknown constant contributions from other
input bytes of round 1 and the subkey byte of round 2. So if we write down
all these values, and by making a re-arrangement implied by the subkey byte
8 we have found, we obtain an S-box table which is equal to s1 apart from an
additive constant. So with a mere additional 256 encryptions, we will recover the
complete content of s1, actually the content apart from the indexes in the set
Δ. For those, we will have to guess the correct arrangement, i.e. an additional
effort of δ! encryption trials.

The effort of phase 2 is equal to 222+δ+δ! encryptions; for δ = 16 the factorial
dominates and we have an effort of about 244 encryptions.

3 Discussion and Conclusions

Our attack is easily applicable only if the size of S-boxes is such that the collision
probability is high enough to practically employed; 8-bit S-boxes are good can-
didate. Apart from this, we have seen successful reverse engineering of two quite
different ciphers (AES and Camellia); we expect that the attack can be applied
also to other ciphers based on large S-boxes (Clefia, Twofish and Kasumi among
the others). However, if we try to apply our attack to ciphers which instance
4-bit S-boxes, we see that the collision probability is too small to be used, even
for the smallest values of δ. For example, 2-related instances of PRESENT [7]
would show a collision probability of only 2−100. This is a point in favor of such
ciphers, which are in general more compact for hardware implementations and
seem to be more flexible under this aspect.

Previous work exist on the utilization of cryptanalysis to retrieve the content
of unknown S-boxes, see for instance [9][6]. These papers present techniques
which can obtain the S-boxes of reduced-round variants of SPN ciphers. In this
paper, we take a different approach and we show that even full ciphers which are
designed to be hermetic and resistant to related cipher attacks, can be attacked,
provided that the adversary has access to at least two δ-related instances.

If instances of S-boxes are randomly chosen, the probability of success of
the presented attack is negligible. In general, we can conclude that the prob-
ability of collision between different block cipher instances should be verified
to be sufficiently low during the design phase, because it is a tool that can
be used by attackers whose goal is to obtain the complete specification of the
algorithm.

Also, care should be taken w.r.t to physical attacks, such as fault injection,
because it is imaginable that this type of attack could make a single faulty
circuit behave like a pair of δ-related ciphers. In this case an attacker may be
able to attack a single instance of unknown AES-like cipher using the techniques
presented in this paper. We think that this could be an interesting direction
for future research, especially considering the fact that FIRE attacks on AES
ciphers have not yet been developed.
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