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Abstract. We present W-OTS+, a Winternitz type one-time signature
scheme (W-OTS). We prove that W-OTS+ is strongly unforgeable under
chosen message attacks in the standard model. Our proof is exact and
tight. The first property allows us to compute the security of the scheme
for given parameters. The second property allows for shorter signatures
than previous proposals without lowering the security. This improvement
in signature size directly carries over to all recent hash-based signature
schemes. I.e. we can reduce the signature size by more than 50% for
XMSS+ at a security level of 80 bits. As the main drawback of hash-
based signature schemes is assumed to be the signature size, this is a
further step in making hash-based signatures practical.

Keywords: digital signatures, one-time signature schemes, hash-based
signatures, provable security, hash functions.

1 Introduction

Digital signatures are among the most important cryptographic primitives in
practice. They have many applications, including the use in SSL/TLS and se-
curing software updates. Hash-based or Merkle signature schemes (MSS) are an
interesting alternative to the signature schemes used today, not only because
they are assumed to resist quantum computer aided attacks, but also because
of their fast signature generation and verification times as well as their strong
security guarantees. Most MSS come with a standard model security proof and
outperform RSA in many settings regarding runtimes. The main drawback of
MSS is the signature size which to a large extent depends on the used one-time
signature scheme (OTS). Recent MSS proposals [BDH11, HBB13] use a variant
of the Winternitz OTS (W-OTS) introduced in [BDE+11]. The main reason for
this choice is the reduced signature size. Using W-OTS, a MSS signature does not
have to contain the OTS public key as it can be computed given the W-OTS sig-
nature. Moreover, W-OTS type signature schemes allow for a trade-off between
signature size and runtime.
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In this work we introduce W-OTS+, a W-OTS type OTS that allows to re-
duce the signature size more than previous W-OTS variants and reaches a higher
level of security. We prove that W-OTS+ is strongly unforgeable under adap-
tive chosen message attacks (SU-CMA) in the standard model, if the used hash
function is second-preimage resistant, undetectable and one-way (Indeed, we
only present the proof for EU-CMA security in this extended abstract). Previ-
ous proposals require non-standard assumptions to achieve SU-CMA security
(i.e.

”
key-collision resistance“ in case of [BDE+11]). Besides the SU-CMA se-

cure variants there exist W-OTS that achieve EU-CMA security, either using
a collision resistant, undetectable hash function [HM02, DSS05] or a pseudoran-
dom function family [BDE+11]. The first security requirement is strictly stronger
than that of W-OTS+. While the second is comparable, the corresponding proof
is less tight. However, both cases result in larger signatures.

Besides provable security we are also concerned with the practical performance
of the scheme. We show how to use the exact security proof to compute the
security level of W-OTS+ for a given set of parameters. Moreover we discuss
how to instantiate W-OTS+ in practice and present parameter sizes for recent
MSS (XMSS [BDH11], XMSS+ [HBB13]) when instantiated with W-OTS+.

Organization. We start by introducing W-OTS+ in Section 2. Afterwards we
state our main result about the security of W-OTS+ and prove it in Section
3. In Section 4 we discuss possible instantiations and compare W-OTS+ with
previous proposals. Finally, we conclude in Section 5.

2 The Winternitz One-Time Signature Scheme

In this section we describe W-OTS+. The core idea of all W-OTS is to use a
certain number of function chains starting from random inputs. These random
inputs are the secret key. The public key consists of the final outputs of the
chains, i.e. the end of each chain. A signature is computed by mapping the mes-
sage to one intermediate value of each function chain. All previous variants of
W-OTS constructed the function chains as plain iteration of the used function
(or function family in case of [BDE+11]). In contrast, for W-OTS+ we use a
special mode of iteration which enables the tight security proof without requir-
ing the used hash function family to be collision resistant. We start with some
preliminaries. Afterwards we present W-OTS+.

2.1 Signature Schemes

We now fix some notation and define digital signature schemes and existential
unforgeability under adaptive chosen message attacks (EU-CMA). Through out

the paper we write x
$←− X if x is randomly chosen from the set X using the

uniform distribution. We further write log for log2.
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Digital Signature Schemes. Let M be the message space. A digital signa-
ture scheme Dss = (Kg, Sign,Vf) is a triple of probabilistic polynomial time
algorithms:

– Kg(1n) on input of a security parameter 1n outputs a private signing key sk
and a public verification key pk;

– Sign(sk,M) outputs a signature σ under sk for message M , if M ∈M;
– Vf(pk, σ,M) outputs 1 iff σ is a valid signature on M under pk;

such that ∀(pk, sk)←− Kg(1n), ∀(M ∈M) : Vf(pk, Sign(sk,M),M) = 1.

EU-CMA Security. The standard security notion for digital signature schemes
is existential unforgeability under adaptive chosen message attacks (EU-CMA),
which is defined using the following experiment. By Dss(1n) we denote a signa-
ture scheme with security parameter n.

Experiment ExpEU-CMA
Dss(1n) (A)

(sk, pk)←− Kg(1n)
(M�, σ�)←− ASign(sk,·)(pk)
Let {(Mi, σi)}q1 be the query-answer pairs of Sign(sk, ·).
Return 1 iff Vf(pk,M�, σ�) = 1 and M� �∈ {Mi}q1.

For the success probability of an adversary A in the above experiment we write

Succeu-cmaDss(1n) (A) = Pr
[
ExpEU-CMA

Dss(1n) (A) = 1
]
.

Using this, we define EU-CMA the following way.

Definition 1 (EU-CMA). Let n, t, q ∈ N, t, q = poly(n), Dss a digital signa-
ture scheme. We call Dss EU-CMA-secure, if the maximum success probability
InSeceu-cma (Dss(1n); t, q) of all possibly probabilistic adversaries A, running in
time ≤ t, making at most q queries to Sign in the above experiment, is negligible
in n:

InSeceu-cma (Dss(1n); t, q)
def
= max

A
{Succeu-cmaDss(1n) (A)} = negl(n) .

An EU-CMA secure one-time signature scheme (OTS) is aDss that isEU-CMA
secure as long as the number of oracle queries of the adversary is limited to one,
i.e. q = 1.

2.2 W-OTS+

Now we present W-OTS+. Like all previous variants of W-OTS, W-OTS+ is
parameterized by security parameter n ∈ N, the message length m and the
Winternitz parameter w ∈ N, w > 1, which determines the time-memory trade-
off. The last two parameters are used to compute

�1 =

⌈
m

log(w)

⌉
, �2 =

⌊
log(�1(w − 1))

log(w)

⌋
+ 1, � = �1 + �2.
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Furthermore, W-OTS+ uses a family of functions Fn : {fk : {0, 1}n → {0, 1}n|
k ∈ Kn} with key space Kn. The reader might think of it as a cryptographic
hash function family that is non-compressing. Using Fn we define the following
chaining function.

cik(x, r): On input of value x ∈ {0, 1}n, iteration counter i ∈ N, key k ∈ K and
randomization elements r = (r1, . . . , rj) ∈ {0, 1}n×j with j ≥ i, the chaining
function works the following way. In case i = 0, c returns x (c0k(x, r) = x). For
i > 0 we define c recursively as

cik(x, r) = fk(c
i−1
k (x, r)⊕ ri),

i.e. in every round, the function first takes the bitwise xor of the intermediate
value and bitmask r and evaluates fk on the result afterwards. We write ra,b for
the subset ra, . . . , rb of r. In case b < a we define ra,b to be the empty string.
We assume that the parameters m, w and the function family Fn are publicly
known. Now we describe the three algorithms of W-OTS+:

Key Generation Algorithm (Kg(1n)): On input of security parameter n in unary
the key generation algorithm choses �+w−1 n-bit strings uniformly at random.
The secret key sk = (sk1, . . . , sk�) consists of the first � random bit strings.
The remaining w − 1 bit strings are used as the randomization elements r =

(r1, . . . , rw−1) for c. Next, Kg chooses a function key k
$←− K uniformly at

random. The public verification key pk is computed as

pk = (pk0, pk1, . . . , pk�) = ((r, k), cw−1
k (sk1, r), . . . , c

w−1
k (sk�, r)).

Signature Algorithm (Sign(M, sk, r)): On input of a m bit message M , secret
signing key sk and the randomization elements r, the signature algorithm first
computes a base w representation of M : M = (M1 . . .M�1), Mi ∈ {0, . . . , w−1}.
Therefor, M is treated as the binary representation of a natural number x and
then the w-ary representation of x is computed. Next it computes the checksum

C =

�1∑
i=1

(w − 1−Mi)

and its base w representation C = (C1, . . . , C�2). The length of the base w
representation of C is at most �2 since C ≤ �1(w− 1). We set B = (b1, . . . , b�) =
M ‖ C, the concatenation of the base w representations of M and C. The
signature is computed as

σ = (σ1, . . . , σ�) = (cb1k (sk1, r), . . . , c
b�
k (sk�, r)).

Please note that the checksum guarantees that given the bi, 0 < i ≤ � corre-
sponding to one message, the b′i corresponding to any other message include at
least one b′i < bi.
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Verification Algorithm (Vf(1n,M, σ, pk)): On input of message M of binary
length m, a signature σ and a public verification key pk, the verification al-
gorithm first computes the bi, 1 ≤ i ≤ � as described above. Then it does the
following comparison:

pk = (pk0, pk1, . . . , pk�)

?
= ((r, k), cw−1−b1

k (σ1, rb1+1,w−1), . . . , c
w−1−b�
k (σ�, rb�+1,w−1))

If the comparison holds, it returns true and false otherwise.
The runtime of all three algorithms is bounded by �w evaluations of fk. The

size of a signature and the secret key is |σ| = |sk| = �n bits. The public key
size is (� + w − 1)n+ |k| bits, where |k| denotes the number of bits required to
represent any element of K.

3 Security of W-OTS+

In this section we analyze the security of W-OTS+. We prove W-OTS+ is exis-
tentially unforgeable under chosen message attacks, if the used function family
is a second-preimage resistant family of undetectable one-way functions. More
precisely, we prove the following theorem:

Theorem 1. Let n,w,m ∈ N, w,m = poly(n), Fn : {fk : {0, 1}n → {0, 1}n|k ∈
Kn} a second preimage resistant, undetectable one-way function family. Then,
InSeceu-cma

(
W-OTS+(1n, w,m); t, 1

)
, the insecurity of W-OTS+ against an

EU-CMA attack is bounded by

InSeceu-cma
(
W-OTS+(1n, w,m); t, 1

)

≤ w · InSecud (Fn; t
�) + w� ·max {InSecow (Fn; t

′) , w · InSecspr (Fn; t
′)}

with t′ = t+ 3�w and t� = t+ 3�w + w − 1.

It seems natural to assume that the existence of a function that combines these
properties is equivalent to the existence of a one-way function. As the function
has to be one-way itself, the one direction is trivial. On the other hand, we
know that second-preimage resistant functions exist if a one-way function exists
[Rom90] and we know the same for undetectable functions, i.e. pseudorandom
generators [HILL99]. We leave the question if this also implies the existence of
a function family that combines all three properties for future work. If this was
the case, it would mean that W-OTS+ has minimal security requirements. The
practical implications of the proof are discussed in the next section.

In this extended abstract we only prove that W-OTS+ is EU-CMA secure. In
fact it also fulfills the stronger notion of SU-CMA, where the adversary is also
allowed to return a new signature on the message send to the signature oracle.
The claimed bound in Theorem 1 holds for the SU-CMA case, too. We present
the EU-CMA proof, because it contains all important ideas but has less different
cases to handle. Before we present the proof we give some preliminaries. At the
end of this sections we show how to compute the security level of W-OTS+.
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3.1 Preliminaries

In this subsection we provide some more notation and formal definitions. We
denote the uniform distribution over bit strings of length n by Un. In our proofs,
we measure all runtimes counting the evaluations of elements from Fn. In some
proofs and definitions we use the (distinguishing) advantage of an adversary
which we now define.

Definition 2 (Advantage). Given two distributions X and Y, we define the
advantage AdvX ,Y (A) of an adversary A in distinguishing between these two
distributions as

AdvX ,Y (A) = |Pr [1←− A(X )] − Pr [1←− A(Y)]| .

Functions. We now define three properties for families of functions that we use.
In what follows, we only consider families Fn as defined in the last section.We
require that it is possible given n ∈ N to sample a key k from key space Kn

using the uniform distribution in polynomial time. Furthermore we require that
all functions from Fn can be evaluated in polynomial time. We first recall the
definitions of one-wayness (ow) and second preimage resistance (spr).

The success probability of an adversary against the one-wayness of Fn is:

SuccowFn
(A) =Pr [ k

$←− Kn;x
$←− {0, 1}n, y ←− fk(x),

x′ $←− A(k, y) : y = fk(x
′)] (1)

The success probability of an adversary against the second preimage resistance
of Fn is:

SuccsprFn
(A) =Pr [ k

$←− Kn;x
$←− {0, 1}n, x′ ←− A(k, x) :

(x �= x′) ∧ (fk(x) = fk(x
′))] (2)

We call a function family Fn one-way (second preimage resistant, resp.) if the re-
spective success probability given above of any PPT adversary is negligible in n.

Besides spr and ow, we require Fn to provide another property called unde-
tectability to proof W-OTS+ secure. Intuitively, a function family is undetectable
if its outputs can not be distinguished from uniformly random values. This is
what we require from a pseudorandom generator, which in contrast to Fn has
to be length expanding.

To define undetectability, assume the following two distributions over {0, 1}n×
K. A sample (u, k) from the first distribution Dud,U is obtained by sampling

u ←− Un and k
$←− K uniformly at random from the respective domain. A

sample (u, k) from the second distributionDud,F is obtained by sampling k
$←− K

and then evaluating fk on a uniformly random bit string, i.e. u←− fk(Un). The
advantage of an adversary A against the undetectability of Fn is simply the
distinguishing advantage for these two distributions:

AdvudFn
(A) = AdvDud,U ,Dud,F (A)
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Using this we define undetectability as:

Definition 3 (Undetectability (UD)). Let n ∈ N, Fn a family of functions
as described above. We call Fn undetectable, if InSecud (Fn; t) the advantage of
any adversary A against the undetectability of Fn running in time less or equal
t is negligible:

InSecud (Fn; t)
def
= max

A
{AdvudFn

(A)} = negl(n) .

Undetectability was already used by Dods et al. [DSS05] to prove a former version
of W-OTS secure.

3.2 Security Proof

We now present the proof of Theorem 1. The general idea is, that because of
the checksum, a successful forgery must contain at least one intermediate value
x for one chain α, that is closer to the start value of chain α than the value σα

contained in the answer to the signature query. We try to guess the position of σα

and place our preimage challenge yc there. So we can answer the signature query
and hopefully extract a preimage given x. We also include a second preimage
challenge in the same chain α, manipulating the randomization elements. This
is necessary, as x must lead to the same public key value pkα than yc but the
chain continued from x does not need to contain yc as an intermediate value.
But in this case it contains a second preimage which we try to extract.

Manipulating the public key to place our challenges, we slightly change the
distribution of the key. In the second part of the proof we show that this does
not significantly change the success probability of the adversary using the unde-
tectability of Fn.

Proof (of Theorem 1). For the sake of contradiction assume there exists an adver-
sary A that can produce existential forgeries for W-OTS+(1n, w,m) running an
adaptive chosen message attack in time ≤ t and with success probability εA =
Succeu-cmaW-OTS(1n,w,m) (A) greater than the claimed bound InSeceu-cma

(
W-OTS+

(1n, w,m); t, 1
)
. We first show how to construct an oracle machineMA that ei-

ther breaks the second preimage resistance or one-wayness of Fn using A with a
possibly different input distribution. A pseudo-code description ofMA is given
as Algorithm 1.

The oracle machine MA first runs the W-OTS+ key generation to obtain
a key pair (sk, pk). Then, MA selects the positions to place its challenges in
the public key. Therefor it selects a random function chain choosing the index α.
Second it chooses an index β to select a random intermediate value of this chain.
MA places the preimage challenge at this position. This is done, setting yc as
the βth intermediate value of the chain. If β < w − 1, i.e. MA did not sample
the last position in the chain, another intermediate value between β and the end
of the chain is selected, sampling γ. MA places the second preimage challenge
at the input of the γth evaluation of the chain continued from yc, replacing
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Algorithm 1.MA

Input: Security parameter n, function key k, one-way challenge yc and second preimage
resistance challenge xc.
Output: A value x that is either a preimage of yc or a second preimage for xc under
fk or fail.

1. Run Kg(1n) to generate W-OTS+ key pair (sk, pk)

2. Choose indices α
$←− {1, ..., �}, β $←− {1, . . . , w − 1} uniformly at random

3. If β = w − 1 then set r′ = r
4. Else

(a) Choose index γ
$←− {β + 1, . . . , w − 1} uniformly at random

(b) Obtain r′ from r, replacing rγ by cγ−β−1
k (yc, rβ+1,l)⊕ xc.

5. Obtain pk′ by setting pk′i = cw−1
k (ski, r

′), 0 < i ≤ �, i �= α,

pk′α = cw−1−β
k (yc, r

′
β+1,w−1) and pk0 = (r′, k)

6. Run ASign(sk,·)(pk′)
7. If ASign(sk,·)(pk′) queries Sign with message M then

(a) compute B = (b1, ..., b�)
(b) If bα < β then return fail
(c) Generate signature σ of M :

i. Run σ = (σ1, . . . , σ�)←− Sign(M, sk, r′)
ii. Set σα = cbα−β

k (yc, r
′
β+1,w−1)

(d) Reply to query using σ
8. If ASign(sk,·)(pk) returns valid (σ′,M ′) then

(a) Compute B′ = (b′1, ..., b
′
�)

(b) If b′α ≥ β return fail
(c) If β = w − 1

i. Return preimage c
w−1−b′α−1

k (σ′
α, r

′
b′α+1,w−1)⊕ rw−1

(d) Else

i. If c
β−b′α
k (σ′

α, r
′
b′α+1,w−1) = yc then

return preimage c
β−b′α−1

k (σ′
α, r

′
b′α+1,w−1)⊕ rβ

ii. Else if x′ = c
γ−b′α−1

k (σ′
α, rb′α+1,w−1)⊕rγ �= xc and c

γ−b′α
k (σ′

α, rb′α+1,w−1) =

cγ−β
k (yc, rβ+1,w−1) return second preimage x′

9. In any other case return fail

the randomization element rγ (Line 4b). A manipulated public key pk′ is com-
puted using the new set of randomization elements. The αth value of pk′ is com-
puted continuing the chain from yc at position β (Line 5). ThenMA runs A on
input pk’.

W.l.o.g. we assume that A asks for the signature on one message M (Line
7). SoMA computes the bi as described in the signature algorithm.MA knows
the secret key value ski for all chains with exception of chain α. For chain α
MA only knows the βth intermediate value. Hence,MA can answer the query
if bα ≥ β as all intermediate values ≥ β of the αth chain can be computed using
yc. If this is not the case,MA aborts.
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If A returns an existential forgery (σ′,M ′),MA computes the b′i. The forgery
is only useful if b′α < β. If this is not the case,MA returns fail. Now, there are
two mutually exclusive cases. If β = w−1, i.e. we selected the end of chain α, the
forgery contains a preimage of yc. This is the case because σ

′
α is an intermediate

value of chain alpha that ends in yc. So,MA extracts the preimage and returns
it (Line 8(c)i). Otherwise, there are again two mutually exclusive cases. The
chain continued from σ′

α either has yc as the βth intermediate value or it has
not. In the first case, again a preimage can be extracted (Line 8(d)i). In the
second case, the chains continued from yc and σ′

α must collide at some position
between β + 1 and w − 1 according to the pigeonhole principle. If they collide
at position γ for the first time, a second preimage for xc can be extracted (Line
8(d)ii). OtherwiseMA aborts.

Now we compute the success probability of MA. To make it easier, we only
compute the probability for a certain success case. We assume that the bα ob-
tained from A’s query equals β. This happens with probability w−1 as β was
chosen uniformly at random. As our modifications might have changed the in-
put distribution of A, it does not necessarily succeed with probability εA. For
the moment we only denote the probability that A returns a valid forgery when
run by MA as ε′A. Because of the construction of the check sum, M ′ leads to
at least one b′i < bi, 0 < i ≤ �. With probability �−1 this happens for i = α
and the condition in line 8b is fulfilled. At this point there are two mutually
exclusive cases, so one of them occurs with probability p and the other one with
probability (1 − p).

Case 1: Either β = w − 1 or the chain continued from σ′
α has yc as the βth

intermediate value. In this case, MA returns a preimage for yc with
probability 1.

Case 2: β < w − 1 and the chain continued from σ′
α does not have yc as the

βth intermediate value. In this case,MA returns a second preimage for xc if the
two chains collide for the first time at position γ. This happens with probability
greater w−1 as gamma was chosen uniformly at random from within the interval
[β + 1, w − 1].

Using the assumptions about the one-wayness and second preimage resistance
of Fn we can bound the success probability of A if called byMA:

ε′A ≤ w� ·max {InSecow (Fn; t
′) , w · InSecspr (Fn; t

′)} (3)

where the time t′ = t + 3�w is an upper bound for the runtime of A plus the
time needed to run each algorithm of W-OTS+ once.

As the second step, we bound the difference between the success probability ε′A
ofA when called byMA and its success probability εA in the original experiment.
If the first is greater than the latter we already have a contradiction. Hence we
assume εA ≥ ε′A in what follows. Please note, that among the elements of pk′

only the distribution of pk′α might differ from the distribution of a public key
generated by Kg. rγ is uniformly distributed in {0, 1}n, because xc is uniformly
distributed in {0, 1}n. We define two distributions DM and DKg over {0, . . . , w−
1} × {0, 1}n× {0, 1}(n×w−1)×K. A sample (β, u, r, k) follows DM if the entries
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β
$←− {0, . . . , w − 1}, u $←− {0, 1}n, r $←− {0, 1}n×w−1 and k

$←− K are chosen

uniformly at random. A sample (β, u, r1,i, k) follows DKg if β
$←− {0, . . . , w−1},

r
$←− {0, 1}n×w−1 and k

$←− K are chosen uniformly at random and u =

cβk (Un, r). So the two distributions only differ in the way u is chosen. We now
construct an oracle machineM′A that uses the possibly different behavior of A
when given differently distributed inputs, to distinguish between DKg and DM.
Using M′A we can then upper bound εA by a function of the distinguishing
advantage ofM′A and ε′A. Afterwards we use a hybrid argument to bound the
distinguishing advantage ofM′A using the undetectability of Fn.

The oracle machine M′A works the following way. On input of a sample
(β, u, r, k) that is either chosen fromDM or fromDKg,M′A generates a W-OTS+

key pair. Instead of using Kg, M′A samples a secret key sk
$←− {0, 1}n×� and

an index α
$←− {1, . . . , �} uniformly at random. It computes the public key pk

as pk0 = (r, k) and

pki =

{
cw−1
k (ski, r) , if 1 ≤ i ≤ � and i �= α

cw−1−β
k (u, rβ+1,w−1) , if i = α.

ThenM′A runs A on input pk. If A queriesM′A for the signature on a message
M ,M′A behaves the same way asMA. If bα ≥ β,M′A uses sk and u to compute
the signature, otherwise it aborts. If A returns a valid forgery, M′A returns 1
and otherwise 0. The runtime ofM′A is bounded by the runtime of A plus one
evaluation of each algorithm of W-OTS+. So we get t′′ = t + 3�w as an upper
bound.

Now, we compute the distinguishing advantage AdvDM,DKg

(M′A) ofM′A. If
the sample is taken from DM, the distribution of the public keys pk generated
byM′A is the same as the distribution of the public keys pk′ generated byMA.
HenceM′A outputs 1 with probability

Pr
[
(β, u, r, k)←− DM : 1←−M′A(β, u, r, k)

]
= ε′A.

If the sample was taken from DKg, the public keys pk generated byM′A follow
the same distribution than those generated by Kg and so M′ outputs 1 with
probability

Pr
[
(β, u, r, k)←− DKg : 1←−M′A(β, u, r, k)

]
= εA.

So the distinguishing advantage ofM′A is

AdvDKg,DM
(M′A) = |εA − ε′A| .

As mentioned above, we only have to consider the case εA ≥ ε′A. So we obtain
the following bound on εA:

εA = AdvDKg,DM
(M′A)+ ε′A (4)

We now limit the distinguishing advantage ofM′A in our last step. We use a hy-
brid argument to show that this advantage is bound by the undetectability of Fn.
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For a given β ∈ {0, . . . , w−1}, we define the hybridsHj = (β, cβ−j
k (Un, rj+1,w−1),

r, k) with r
$←− {0, 1}n×w−1, k

$←− K for 0 ≤ j ≤ β. Given an adversary B that
can distinguish between H0 and Hβ with advantage εB, a hybrid argument leads
that there must exist two consecutive hybrids that B distinguishes with ad-
vantage ≥ εB/β. Assume these two hybrids are Hα and Hα+1. Then we can
construct an oracle machineM′′B that uses B to distinguish between Dud,U and
Dud,F as defined in the preliminaries and thereby attacking the undetectability of
Fn. Given a distinguishing challenge (u, k),M′′B selects r←− Uw−1

n , computes
x = cβ−(α+1)(u, rα+2,w−1), runs b←− B(β, x, r, k) and outputs b.

Let’s analyze the advantage AdvudFn

(M′′B) of M′′B. If the sample is taken

from Dud,U , u is uniformly random and x = cβ−(α+1)(u, rα+2,w−1) is distributed
exactly like the second element of Hα+1. Otherwise, if the sample is taken from
Dud,F , then u←− fk(Un) is an output of fk and we get

x = cβ−(α+1)(fk(Un), rα+2,w−1) = cβ−(α+1)+1(Un ⊕ rα+1, rα+1,w−1)

= cβ−α(Un, rα+1,w−1) = Hα(2)

whereHα(2)
denotes the second element ofHα. Here we used the fact, that the xor

of a uniformly distributed variable and a fixed value leads again to a uniformly
distributed variable. Summing up, the input of B, produced by M′′B is either
distributed like Hα or like Hα+1, depending onM′′Bs distinguishing challenge.
Hence, the advantage ofM′′B is exactly that of B distinguishing between these
two hybrids. So we get

AdvudFn

(M′′B) ≥ εD/β.

As the advantage ofM′′B is bounded by the undetectability of Fn per assump-
tion,M′A does exactly what we assume B to do and the runtime ofM′′B is that
of B plus at most w − 1 evaluations of elements from Fn, we get

InSecud (Fn; t
�) ≥ AdvudFn

(M′′B) ≥ εB
i

=
AdvDKg,DM

(M′A)
β

where t� = t′′ + w − 1 = t + 3�w + w − 1 is the runtime of M′′B. As β ∈
{0, . . . , w − 1}, we obtain the following bound on the advantage ofM′A:

AdvDKg,DM
(M′A) ≤ w · InSecud (Fn; t

�) . (5)

Putting equations (3), (4) and (5) together we obtain a final bound on εA which
leads the required contradiction:

εA ≤ w · InSecud (Fn; t
�) + w� ·max {InSecow (Fn; t

′) , w · InSecspr (Fn; t
′)}

with t′ = t+ 3�w and t� = t+ 3�w + w − 1. �


3.3 Security Level of W-OTS+

Given Theorem 1, we can compute the security level in the sense of [Len04].
This allows a comparison of the security of W-OTS+ with the security of a
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symmetric primitive like a block cipher for given security parameters. Following
[Len04], we say that W-OTS+ has security level b if a successful attack on the
scheme can be expected to require 2b−1 evaluations of functions from Fn on
average. We can compute the security level, finding a lower bound for t s.th.
1/2 ≤ InSeceu-cma (W-OTS(1n, w,m); t, 1). According to the proof of Theorem
1, W-OTS+ can only be attacked by either attacking the second preimage resis-
tance, one-wayness or undetectability of Fn. Following the reasoning in [Len04],
we only take into account generic attacks on Fn.

Regarding the insecurity of F(n) under generic attacks we assume
InSecspr (F(n); t) = InSecow (F(n); t) = t

2n which corresponds to a brute force
search for (second-)preimages. For the insecurity regarding undetectability we
assume InSecud (F(n); t) = t

2n following [DSS05]. In the following we assume
that the small additive increase of the attack runtime coming from the reduc-
tion is negligible, compared to the value of t for any practical attack. So we
assume t = t′ = t�. We compute the lower bound on t.

1

2
≤ InSeceu-cma (W-OTS(1n, w,m); t, 1)

≤ w
t

2n
+ w� ·max

{
t

2n
, w · t

2n

}
=

tw

2n
+

tw2�

2n
=

t(w2�+ w)

2n

Solving this for t gives us

t ≥ 1

2
· 2n

w2�+ w
= 2n−1−log(w2�+w).

So, for the security level b we obtain b ≥ n− log(w2�+ w).

4 W-OTS+ in Practice

In this section we discuss the practical implications of our result. We first present
practical instantiations of W-OTS+. Then we discuss the implications of the
new security proof, comparing W-OTS+ to other W-OTS type OTS and present
results for XMSS and XMSS+ when instantiated using W-OTS+.

4.1 Instantiations

To use W-OTS+ in practice Fn has to be instantiated. We propose two different
instantiations. The first and most obvious way to instantiate Fn is to simply use
a cryptographic hash function like SHA2 or SHA3. These functions are assumed
to fulfill all the properties we require Fn to provide. In case the input length
of the function is bigger then the output length, we pad the inputs using the
required number of zeros. As we do not allow arbitrary length messages, we do
not need a more involved padding.
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Another way is to use a block cipher. It is well known that a cryptographic
hash function can be constructed using a block cipher. This is very useful, as
many smart cards and CPUs provide hardware acceleration for AES. To con-
struct Fn using a block cipher, we apply the Matyas-Meyer-Oseas (MMO) con-
struction [MMO85] in a manner similar to [BDH11]. The MMO construction
was shown to be secure by Black et al. [BRS02]. Assume we have a block cipher
En : {0, 1}n × {0, 1}n → {0, 1}n with block and key size n. Then we construct
Fn with key space K = {0, 1}n defining the elements of Fn as fk(x) = Ek(x)⊕x
where EK(M) denotes an evaluation of E using key K and message M . So, one
evaluation of fk takes either one evaluation of the used hash function or one
evaluation of the underlying block cipher.

4.2 Performance Comparison

We now compare the performance of W-OTS+ with that of the schemes from
[DSS05] and [BDE+11] which we call W-OTSCR and W-OTSPRF , respectively.
Comparing W-OTS+ with W-OTSCR, the most important point is, that
W-OTSCR requires an undetectable collision resistant hash function. While this
is a strictly stronger security requirement, it also has practical implications.
Namely, collision resistance is threatened by birthday attacks. Hence, to achieve
a security level of b bits, a hash function with n = 2b bits output size is re-
quired. This leads to larger signatures and slows down the scheme, as in general
hash functions get slower with increased output size. It is possible to reach the
same signature size as for W-OTS+ using a greater w, but this further slows
down the scheme. On the other hand, the W-OTS+ public key is bigger than
that of W-OTSCR which has only �n bits. This is because of the randomization
elements. But as we will show later, this is of no relevance in many practical
scenarios as we can reuse randomness.

Comparing W-OTS+ with W-OTSPRF , the differences are more subtle.
First, looking at the instantiations, when using a hash function H to instan-
tiate W-OTSPRF , two evaluations of H are needed per evaluation of Fn (see
[BDH11]) in contrast to one for W-OTS+. So the runtimes are doubled in this
case. For a block cipher based instantiation the runtimes are the same. Second,
at a first glance the sizes of both schemes are the same, only the W-OTS+

public key contains the additional randomization elements. But the bit security
of W-OTSPRF is n − w − 1 − 2 log(�w), i.e. it contains w as a negative linear
term while the bit security of W-OTS+ only looses a term logarithmic in w. In
practice, the consequence of this difference is that the possible choices for w are
limited if we target a certain bit security. This is best illustrated in the following
example. Table 1 shows sizes and runtimes for a signature size below 1kB at a
security level of 100 bit or more. Using W-OTSPRF it is simply impossible to
achieve a signature size below 1kB at 100 bit security. For W-OTSCR it is theo-
retically possible, but one needs more than 10 times the number of evaluations
of Fn which are also slower because of the bigger n.
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Table 1. Parameters for signatures below 1kB for message length m = 256 and security
level b ≥ 100. For W-OTSPRF this is impossible so we give the best possible signature
size for b ≥ 100. Runtime is given in number of evaluations of Fn. As key generation,
signature and verification times are the same, we only included the signature time tSign.

n w |σ| tSign b

W-OTS+ 128 21 992 1,302 113
W-OTSCR 256 455 992 14,105 128
W-OTSPRF 128 8 1,440 720 100

4.3 Impact on XMSS and XMSS+

OTS have numerous applications. The application that motivated this work is us-
age in hash-based signature schemes. Current hash-based signature schemes like
XMSS [BDH11] and XMSS+ [HBB13] are based on W-OTSPRF which turned
out to be the best choice for an OTS so far. In the following we will shortly dis-
cuss what happens if we replace W-OTSPRF by W-OTS+. We do not describe
XMSS and XMSS+ in detail due to the constrained space and refer the reader to
the original papers. Table 2 shows a table from [HBB13] where we recomputed
the results for the case that W-OTS+ is used. Where the values changed, we
included the old values for W-OTSPRF in brackets. The table shows, that in
most cases the public key of the overall scheme does not change. The reason is
that XMSS and XMSS+ public keys already contain public randomization ele-
ments that can be reused. There is only one case where randomization elements
have to be added. We assume that the runtimes do not change. The W-OTSPRF

Table 2. Results for XMSS and XMSS+ using W-OTS+ for message length m = 256
on an Infineon SLE78. We use the same k and w for both trees. b denotes the security
level in bits. The signature times are worst case times. Numbers in brackets are the
values when using W-OTSPRF .

Timings (ms) Sizes (byte)
Scheme h k w KeyGen Sign Verify Secret key Public key Signature b

XMSS+ 16 2 4 5,600 106 25 3,760 544 3,476 96 (85)
XMSS+ 16 2 8 5,800 105 21 3,376 512 2,436 95 (81)
XMSS+ 16 2 16 6,700 118 22 3,200 512 1,892 93 (71)
XMSS+ 16 2 32 10,500 173 28 3,056 544 (480) 1,588 92 (54)
XMSS+ 20 4 4 22,200 106 25 4,303 608 3,540 92 (81)
XMSS+ 20 4 8 22,800 105 21 3,920 576 2,500 91 (77)
XMSS+ 20 4 16 28,300 124 22 3,744 576 1,956 89 (67)
XMSS+ 20 4 32 41,500 176 28 3,600 544 1,652 88 (50)

XMSS 10 4 4 14,600 86 22 1,680 608 2,292 103 (92)
XMSS 10 4 16 18,800 100 17 1,648 576 1,236 100 (78)
XMSS 16 4 4 925,400 134 23 2,448 800 2,388 97 (86)
XMSS 16 4 16 1,199,100 159 18 2,416 768 1,332 94 (72)
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function chains were implemented using one AES encryption per iteration. As
shown above the same can be done for W-OTS+, requiring one additional xor
operation per AES evaluation. This should not lead any recognizable overhead.
Moreover, the table shows that certain parameter sets — those with small signa-
tures — have a very low level of security when using W-OTSPRF . In practice a
scheme has to provide at least a security level of 80 bits. Hence, these parameter
sets could not be used before. Using W-OTS+, the same parameter sets now lead
to a level of security above 80 bits. Hence, they can now be used in practice.

5 Conclusion

In this work we introducedW-OTS+. We proved its security, showed how to com-
pute the security level of a given parameter set and discussed possible practical
instantiations. As shown in the last section, W-OTS+ can be used to decrease
the signature size of hash-based signature schemes significantly without lowering
the security of the scheme. I.e. we can decrease the signature size by 50% for
XMSS+ at a security level of 80 bits. Hopefully this leads to a broader accep-
tance of hash-based signature schemes, as the signature size was so far assumed
to be the main drawback of these schemes. The only drawback of W-OTS+

compared to previous W-OTS variants is the increased public key size. As for
the case of hash-based signature schemes, it might be possible to reuse public
randomness in other scenarios to mitigate this, too. An interesting question we
left open is whether the existance of a one-way function implies the existence of
a second-preimage resistant family of undetectable one-way functions.
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