
Adapting Lyubashevsky’s Signature Schemes

to the Ring Signature Setting

Carlos Aguilar Melchor1, Slim Bettaieb1, Xavier Boyen2, Laurent Fousse3,
and Philippe Gaborit1

1 XLIM-DMI, Université de Limoges, France
{carlos.aguilar,slim.bettaieb,philippe.gaborit}@xlim.fr

2 Queensland University of Technology, Brisbane, Australia
xb@boyen.org

3 Laboratoire Jean-Kuntzmann, Université de Grenoble, France
laurent.fousse@imag.fr

Abstract. Basing signature schemes on strong lattice problems has
been a long standing open issue. Today, two families of lattice-based
signature schemes are known: the ones based on the hash-and-sign con-
struction of Gentry et al.; and Lyubashevsky’s schemes, which are based
on the Fiat-Shamir framework.

In this paper we show for the first time how to adapt the schemes
of Lyubashevsky to the ring signature setting. In particular we trans-
form the scheme of ASIACRYPT 2009 into a ring signature scheme that
provides strong properties of security under the random oracle model.
Anonymity is ensured in the sense that signatures of different users are
within negligible statistical distance even under full key exposure. In fact,
the scheme satisfies a notion which is stronger than the classical full key
exposure setting as even if the keypair of the signing user is adversari-
ally chosen, the statistical distance between signatures of different users
remains negligible.

Considering unforgeability, the best lattice-based ring signature
schemes provide either unforgeability against arbitrary chosen subring
attacks or insider corruption in log-sized rings. In this paper we present
two variants of our scheme. In the basic one, unforgeability is ensured in
those two settings. Increasing signature and key sizes by a factor k (typ-
ically 80− 100), we provide a variant in which unforgeability is ensured
against insider corruption attacks for arbitrary rings. The technique used
is pretty general and can be adapted to other existing schemes.

Keywords: Ring signatures, lattices.

1 Introduction

In 2001 Rivest, Shamir and Tauman [1] introduced the concept of ring signature.
In such a scheme, each user has a keypair; a secret signing key and a public
verification key. Any of them can choose a subset of the public keys (including
his own), the ring, and sign on behalf of the associated subset of users, without

A. Youssef, A. Nitaj, A.E. Hassanien (Eds.): AFRICACRYPT 2013, LNCS 7918, pp. 1–25, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 C. Aguilar Melchor et al.

permission or assistance. This signature can be verified using the ring of public
keys. Such a scheme must have the classic unforgeability property (it is not
possible to sign on behalf of a ring without knowing one of the associated secret
keys) as well as an anonymity property: it is not possible to know which secret
key was used, just that it is associated to one of the public keys in the ring.

In 2006 [2], Bender et al. noted that the usual security setting with respect
to anonymity and unforgeability did not take into account that some of the
public keys in the ring may have been issued adversarially by an attacker. They
therefore proposed adapted security definitions for such a situation as well as
for the one in which all the secret keys including the one of the signers would be
exposed. Of course if all the keys are exposed it is no longer possible to ensure
unforgeability but anonymity of previously issued signatures may be preserved.

Such a strong anonymity property is a reassuring guarantee for a user hes-
itating to leak a secret, specially if the consequences of an identification are
dire. It also seems reasonable, specially if anonymity must be preserved for a
few decades (e.g. depending on the statute of limitations) not to rely on an
estimation of the computational complexity of a given problem and require un-
conditional anonymity. The definitions of Bender et al. can be easily translated
to the unconditional setting and thus cover such a requirement.

A close but different setting, introduced by Chaum and van Heyst in 1991 [3],
is the one of group signature. In this setting there is an anonymity revocation
mechanism that allows a given group manager to reveal who was the signer of
a given message. This property comes however at a cost as it requires a group
setup procedure which is not needed in the ring signature setting.

Most of the existing ring signature schemes are based on number theory as-
sumptions: large integer factorization [4,1], discrete logarithm problem [5,6] and
bilinear pairing problems [7,8,9].

There are also a few ring signature schemes with security based on standard
lattice problems. In [10], Brakerski and Kalai propose a ring signature scheme
in the standard model based on the Small Integer Solution (SIS) problem us-
ing the hash-and-sign/bonsai-tree [11,12] approach. Using again this approach
Wang and Sun propose in [13] two other ring signature schemes, one under
the random oracle model and one on the standard model. Both papers provide
constructions in the standard model but, on the other hand, use Gentry-Peikert-
Vaikuntanathan’s (hereafter GPV) [11] strong trapdoors. These trapdoors are
known to be very versatile and the ring signature constructions come naturally.
However, when using these strong trapdoors a (hidden) structure is added to
the underlying lattice which is, from a theoretical point of view, an important
price to pay. In practice, it is possible to give public bases of these lattices which
are closer to uniform, but some parameters, namely the dimension of the “perp”
lattice (for a definition and details see [14]), are increased significantly in the
process.

Two other schemes, one by Kawachi et al. [15], and one by Cayrel et al. [16],
follow a very different approach. These schemes are based on weak trapdoors
in which the underlying lattice is completely uniform except for some public

Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 3

syndromes given (which corresponds to a small vectors in the “perp” lattice).
Even if we consider the lattice together with the syndromes, very little structure
is added and in practice, it is close to uniform for smaller parameters than with
GPV trapdoors. Such “weak trapdoors” can be used in not that many contexts
(when compared to the strong GPV trapdoors) and [15,16] prove that they are
enough for ring signature. On the other hand, these schemes use pretty straight-
forwardly Stern’s construction for signature schemes [17] which is somehow a bad
property. Of course, it is clearly important to note that the code-based construc-
tions can be translated to the lattice setting. In the case of the scheme by Cayrel
et al. this has the added benefit that by adapting the code-based construction
of Aguilar et al. [18] they obtain a threshold scheme, which is a pretty hard
feature to obtain. However, we believe that finding ring signatures which follow
the more recent and promising techniques of lattice-based cryptography, without
the cumbersome zero-knowledge proofs used in code-based cryptography, is of
independent interest.

Our Contributions. In this paper we present a lattice-based ring signature
algorithm. As in the other lattice-based ring signature schemes, each signa-
ture and verification key is composed of a linear amount of sub-elements in the
ring size.

Our main contribution is that our scheme is the first one to be based on
Lyubashevsky’s approach to lattice-based signature [19,20,21]. This is interest-
ing from a theoretical point of view for two reasons. First, it is one of the ma-
jor approaches to build standard signatures and no ring signature was until
now based on it. Second, as Lyubashevsky’s signatures, our scheme uses a weak
trapdoor (a uniformly random lattice with a single syndrome) without Stern’s
zero-knowledge proofs (previous lattice-based schemes used either GPV strong
trapdoors or Stern’s proofs).

We describe our scheme as a modification of the scheme of ASIACRYPT
2009 [20]. The ideas and proofs can be re-used for the more recent schemes
of [21], but the whole presentation gets trickier and the practical benefits are of
limited interest (unlike in the standard signature setting).

As a second contribution we present a modification of our scheme, which can
be applied to other lattice-based ring signature schemes to provide unforgeability
in the insider corruption setting, even if the ring is of polynomial size in the
security parameter. To the best of our knowledge this is the first time such a
security property is obtained with lattice-based schemes.

Indeed, the schemes of Kawachi et al., Cayrel et al. and Brakerski and Kalai
only provide a proof for the fixed ring or chosen subring attack settings. Wang
and Sun provide a proof for insider corruption which only works for log-sized
rings. More precisely, the advantage of the SIS attacker in their proof is in
O(1/

(
qE

qE/2

)
), qE being an upper-bound on the ring size (see first line of the

Setup step in the proof of Theorem 2 in [13]).
The third contribution we would like to mention is that our ring signature

scheme provides unconditional anonymity even if the secret key of the signer
and the public parameters have not been generated following the key generation

4 C. Aguilar Melchor et al.

process (in fact, even if they are adversarially chosen). In the light of recent
results on the high percentage of unsure RSA keypairs [22], we find such a result
a reassuring property for the users of a ring signature scheme.

Finally, we would like to note that the underlying scheme on which we are
based seems to be more efficient than the schemes on which the alternative works
are based. However, all ring signature lattice-based schemes, including ours, are
still pretty unpractical and in any case far behind the best results of number
theoretic schemes, such as [9], in size as well as in versatility. We therefore focus
on the theoretical contributions and leave aside practical parameter comparisons.

2 Preliminaries

2.1 Notations

Polynomials and Vectors of Polynomials. Let Zp denote the quotient ring
Z/pZ. In this work we build our cryptographic construction upon the ring D =
Zp [x] /〈xn+1〉; where xn+1 is irreducible, n is a power of two, and p is a prime
such that p = 3 mod 8. The elements of D will be represented by polynomials
of degree n− 1 having coefficients in {−(p− 1)/2, . . . , (p− 1)/2}.

We will denote polynomials by roman letters (a, b, . . .), vectors of polynomi-

als will be denoted by a roman letter with a hat (â, b̂, . . .). Let m some pos-
itive integer such that, a1, . . . , am are polynomials in D, then we can write
â = (a1, . . . , am). For any polynomial a, the infinity norm �∞ is defined by
‖a‖∞ = maxi|a(i)|, with a(i) the coefficients of the polynomial, and for a vector
of polynomials by ‖â‖∞ = maxi‖ai‖∞.

Sets. For a positive integer i, [i] denotes the set {1, . . . , i}. For a given set S, the
notation x ← S represents a uniformly random sample from the set, and for a
given randomized algorithm x ← RandomizedAlgorithm represents a sampling
from the possible outputs following the distribution given by the algorithm.

In our scheme, forgery attacks become easier as the ring size grows (this
is also true for other schemes). We therefore suppose that there is a constant
c such that acceptable ring sizes are bounded from above by kc, k being the
security parameter. As signature and verification key sizes have an amount of
sub-elements proportional to the ring size the reader can replace c by 1 or 2
which will cover any reasonable use of these signatures. The table below defines
different sets we use and the parameters associated to these sets.

Rings and Random Oracles. Each keypair of the ring signature scheme is
in any protocol, game or experiment we may present always uniquely defined
by an integer (its index). We define a ring R as a set of verification keys. We
consider that there is a bijection between users and keypairs and sometimes
we will implicitly use this bijection saying that a user belongs to a ring. We
also define #R as the size of the ring (i.e. the amount of verification keys it
contains), and as index(R) the set of integers corresponding to the indexes of
the verification keys in R (each keypair being uniquely defined by its index).

Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 5

Table 1. Sets and parameters

n power of 2 greater than the security parameter k

p prime of order Θ(n4+c) such that p ≡ 3 mod 8

mu (3 + 2c/3) log n

m (3 + 2c/3)nc log n

Dh {g ∈ D : ‖g‖∞ ≤ mn1.5 log n+
√
n log n}

Dy {g ∈ D : ‖g‖∞ ≤ mn1.5 log n}
Dz {g ∈ D : ‖g‖∞ ≤ mn1.5 log n−√

n log n}
Ds,c {g ∈ D : ‖g‖∞ ≤ 1}

H : {0, 1}∗ → Ds,c denotes a random oracle. We describe a ring R =
{pki1 , . . . , pki#R

}, for example when using it as input to the random oracle,
by desc(pki1)‖ . . . ‖desc(pki#R

) where desc(pk) is a binary description of a pub-
lic key, ‖ is the concatenation operator and i1 < · · · < i#R (the representation
is thus unique). When possible we will just skip desc() in such notations, f1‖f2
meaning the concatenation of the description of functions f1 and f2.

2.2 Collision-Resistant Hash Functions

In [23] Lyubashevsky and Micciancio introduced a family H of collision-resistant
hash functions with security based on the worst-case hardness of standard lattice
problems over ideal lattices.1

Definition 1. For any integer mu and D× ⊆ D, let H(D, D×,mu) = {hâ : â ∈
Dmu} be the function family such that for any ẑ ∈ Dmu× , hâ(ẑ) = â · ẑ =

∑
aizi,

where â = (a1, ..., amu) and ẑ = (z1, ..., zmu) and all the operations aizi are
performed in the ring D.

Note that hash functions in H(D, D×,mu) satisfy the following two properties
for any ŷ, ẑ ∈ Dmu and c ∈ D:

h(ŷ + ẑ) = h(ŷ) + h(ẑ) (1)

h(ŷc) = h(ŷ)c (2)

Moreover, when the input domain is restricted to a strategically chosen set
Dmu× ⊂ Dmu , the function family is collision resistant. We first introduce the
collision finding problem and then present the security reduction result for a
well-chosen D×.

1 In this work, by ideal lattices, we make reference to the discrete subgroups of Zn
p

that can be mapped from ideals in rings of the form Zp [x] /〈f〉 for some irreducible
polynomial of degree n. The mapping between ideals and ideal lattices is trivially
derived from the canonical isomorphism between polynomials v(0) + v(1)x + . . . +
v(n−1)xn−1 in Zp[x]/〈f〉 and vectors v = (v(0), . . . , v(n−1)) in Z

n
p .

6 C. Aguilar Melchor et al.

Definition 2 (Collision Problem). Given an element h ∈ H(D, D×,m), the
collision problem Col(h,D×) (where D× ⊂ D) asks to find distinct elements
ẑ1, ẑ2 ∈ D× such that h(ẑ1) = h(ẑ2).

It was shown in [23] that, when D× is restricted to a set of small norm polyno-
mials, solving Col(h,D×) is as hard as solving SV Pγ(L) in the worst case over
lattices that correspond to ideals in D.

Theorem 1 (Theorem 1 in [20], applied to our setting). Let D be the ring
Zp [x] / 〈xn + 1〉 for n a power of two. Define the set D× = {y ∈ D | ‖y‖∞ ≤ d}
for some integer d. Let H(D, D×,m) be a hash function family as in Defini-
tion 1 such that m > log p

log 2d and p ≥ 4dmn1.5 log n. If there is a polynomial-

time algorithm that solves Col(h,D×) for random h ∈ H(D, D×,m) with some
non-negligible probability, then there is a polynomial-time algorithm that can
solve SV Pγ(L) for every lattice corresponding to an ideal in D, where γ =
16dmn log2 n.

In this paper we will set d = mn1.5 logn +
√
n logn, D× = Dh, and n, p,m as

suggested in Table 1. This ensures that the conditions required by the above
theorem are verified and that finding collisions for H(D, Dh,m) implies an al-
gorithm for breaking SV P in the worst-case over ideal lattices for polynomial
gaps (in n and therefore in k).

In the ring signature scheme we present, the manipulated hash functions will
always belong to sets H(D, Dh,m

′) with m′ ≤ m. It is important to note that if
an attacker is able to solve the above problem for m′ ≤ m he can also solve it for
m. Indeed, when given a challenge h ∈ H(D, Dh,m) the attacker can puncture
the tuple of polynomials describing h, to obtain a tuple of m′ polynomials, solve
the collision problem for m′ and the pad the obtained solution with zeros on the
punctured coordinates to obtain a solution to the problem for h.

2.3 Statistical Distance

The statistical distance measures how different are two probability distributions.
In this paper we will use this tool to prove that the ring signature scheme
presented is anonymous.

Definition 3 (Statistical Distance). Let X and X ′ be two random variables
over a countable set S. We define by:

Δ(X,X ′) =
1

2

∑

x∈S
|Pr[X = x]− Pr[X ′ = x]|

the statistical distance between X and X ′.

One important property of the statistical distance is that it cannot be increased
by a randomized algorithm which is formalized by the following proposition.

Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 7

Proposition 1 (Proposition 8.10 in [24]). Let X,X ′ be two random vari-
ables over a common set A. For any (possibly randomized) function f with do-
main A, the statistical distance between f(X) and f(X ′) is at most

Δ(f(X), f(X ′)) ≤ Δ(X,X ′).

This proposition implies that if the statistical distance of two families of random
variables (Xk) and (X ′k) is negligible,

2 an attacker given a sample will only obtain
a negligible advantage over a wild guess when trying to distinguish between the
distributions of (Xk) and the ones of (X ′k). Note that the proposition above does
not make any assumption on the computational complexity of f and thus this
is true whether the attacker is computationally bounded or unbounded.

Note that the statistical distance may grow if we consider multiple variables.
It is easy to verify from definition 3 that if X,Y follow a distribution φ and
X ′, Y ′ a distribution φ′, we have

2Δ(X,X ′) ≥ Δ((X,Y), (X ′, Y ′)) ≥ Δ(X,X ′). (3)

Thus, if an attacker is given many samples of the same distribution he may be
able to distinguish better than with just one sample. More specifically, using (3)
iteratively, if the attacker is given #s samples of the same distribution and the
families of random variables have an upper-bound ε(k) on the statistical distance,
the advantage over a wild guess for such an attacker will be bounded from above
by #s ∗ ε(k).

In Section 4.1 we prove that, for our scheme, the signatures of two different
users have a statistical distance which is exponentially small in k and thus, even a
computationally unbounded attacker given an exponential amount of signatures
of the same user will have a negligible advantage over a wild guess when trying
to break anonymity.3

Attacker with Additional Information. An attacker trying to distinguish
between the distributions of two random variables Xk, X

′
k may have some extra

information which we model as a third random variable Zk. This information
may for example be obtained during an indistinguishability game prior to ob-
taining a sample (e.g. two public keys). If Xk and X ′k are not dependent on Zk,
this extra information is of no use to the attacker as then, using proposition
8.8 from [24], Δ((Xk, Zk), (X

′
k, Zk)) = Δ(Xk, X

′
k) and therefore we still have

Δ(f(Xk, Zk), f(X
′
k, Zk)) ≤ Δ(Xk, X

′
k).

If Xk or X ′k depend on Zk (as signatures depend on the public keys in our
case) we cannot use the same argument, as proposition 8.8 from [24] only applies
to independent variables. However, noting Xk,z and X ′k,z the random variables
conditioned on Z = z, if we have an upper-bound

Δ(Xk,z , X
′
k,z) < ε(k)

2 I.e. asymptotically bounded from above by k−c for any c, k being the security
parameter.

3 For example for 2k/2 samples, and ε(k) = 2−k we have #s ∗ ε(k) = 2−k/2.

8 C. Aguilar Melchor et al.

which is independent of z it is also an upper-bound for Δ(f(Xk, Zk), f(X
′
k, Z

′
k)).

Indeed, we have

Δ(f(Xk, Zk), f(X
′
k, Zk)) ≤ Δ((Xk, Zk), (X

′
k, Zk))

=
1

2

∑

x,z

∣∣Pr[(Xk, Zk) = (x, z)]− Pr[(X′
k, Zk) = (x, z)]

∣∣

=
1

2

∑

z

Pr[Zk = z]
∑

x

∣∣Pr[Xk = x | Zk = z]− Pr[X
′
k = x | Zk = z]

∣∣

=
∑

z

Pr[Zk = z]Δ(Xk,z , X
′
k,z)

Δ(f(Xk, Zk), f(X
′
k, Zk)) ≤ ε(k).

Note that the upper bound is valid independently of the distribution followed
by Zk, and thus we can include in this random variable parameters adversarially
chosen by the attacker.

2.4 Ring Signature Schemes: Definitions and Properties

A ring signature schemes gives means to individual users to define an arbitrary
set of public keys R (the ring), and issue a signature using a secret key associated
to one of the public keys in the ring. Using the set R and a verification algorithm
it is possible to verify that a signature has been issued by a member of the ring
(i.e. by a user who knows a secret key associated to one of the public keys in R),
but it is not possible to learn whom.

Ring Signature Scheme. We will describe a ring signature scheme by triple
of algorithms (Ring−gen, Ring−sign, Ring−verify):
– Ring−gen(1k): A probabilistic polynomial time algorithm that takes as in-

put a security parameter k, outputs a a public key pk and a secret key sk.
For many schemes, the users in a ring must share in common some public
information derived from k. We thus suppose that Ring−gen(1k) has two
sub-algorithms: Ring−gen−params(1k) which generates a set of public pa-
rameters P which are used in all the algorithms; and Ring−gen−keys(P)
which generates keypairs based on the public parameters. We suppose that
the constant c is defined in the description of the scheme (we could also
define it as an input parameter of Ring−gen−params).

– Ring−sign(P , sk, μ,R): A probabilistic polynomial time algorithm that takes
as input a set of parameters P , a signing key sk, a message μ ∈M (M being
the message space of the scheme) and a set of public keys R (the ring). It
returns a signature σ for μ under sk, or failed.

– Ring−verify(P , σ, μ,R): A deterministic algorithm that takes as input a set
of parameters P , a ring signature σ on a message μ and a set of public keys
R, and outputs 1 or 0 for accept or reject respectively.

We require the following correctness condition: for any k, any � (bounded by
a polynomial in k), any P ∈ Ring−gen−params(1k), any {(pki, ski)}i∈[�] ⊂
Ring−gen−keys(P), any i0 ∈ [�], any message μ, and any σ ∈ Ring−sign

Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 9

(P , ski0 , μ, {pki}i∈[�]), σ �= failed, we have Ring−verify(P , μ, σ, {pki}i∈[�]) = 1.
Moreover, in order to be considered secure, a ring signature scheme must satisfy
some anonymity and unforgeability properties. Our goal will be to obtain the
following two properties:

Anonymity. In [2], Bender et al. define various levels of anonymity for a ring sig-
nature scheme. Among them the highest is anonymity against full key exposure.
The authors of [2] use the same definition for two levels of security (attribution
attacks and full-key exposure) which results in a definition which is slightly too
complex for our needs. We use here a definition which is stronger and as a conse-
quence, much simpler. Indeed, we do not need to define a signing or corruption
oracle as the attacker knows all the secrets and can thus simulate both oracles
effectively, and we don’t have a first step in which the challenger generates the
parameters and keys as these can be adversarially chosen. The definition is given
by the following game:

Unconditional Anonymity Against Chosen Setting Attacks

1. A outputs a set of public parameters P = (k, n,mu, p, S), a ring R =
{pk1, . . . , pk�} for � in [kc], two distinct indices i0, i1 ∈ [kc], two secret keys
ski0 , ski1 , and a message μ.

2. Two signatures σ0 ← Ring−sign(P , ski0 , μ, R), σ1 ← Ring−sign(P , ski1 , μ, R)
are generated and a random bit b is chosen. If σ0 �= failed and σ1 �= failed,
A is given σb, else the game is restarted.

3. A outputs a bit b′ and succeeds if b′ = b.

The ring signature scheme achieves unconditional anonymity against chosen set-
ting attacks if any adversary A has an advantage with respect to a wild guess
which is negligible in the security parameter k.

This definition can be easily generalized to the case in which the adversary is
given sets of samples instead of a single sample. In order to simplify the definition
we use just one sample, but the proofs of Section 4.1 show that the anonymity
is ensured even if the attacker is given an exponential amount of samples.

Unforgeability. In [2] different notions of unforgeability are introduced. We
present here all of them as going from the simplest to the most complex definition
helps in the presentation.

For a ring signature scheme with � members, the unforgeability against fixed-
ring attacks is defined using the following experiment. The challenger firstly runs
the algorithm Ring−gen to obtain compatible keypairs (pk1, sk1), . . . , (pk�, sk�)
for the signature scheme and sends R = {pki}i∈[�] to the forger. The forger can
then make polynomially many signing queries. A ring signing query is of the form
(isigner, μ, R) for varying μ ∈ M, isigner ∈ index(R). The challenger replies with
σ ← Ring−sign(P , skisigner , μ, R). Finally the forger outputs (σ�, μ�, R) and it

10 C. Aguilar Melchor et al.

wins if Ring−verify(P , σ�, μ�, R) outputs accept and μ� is not one of the messages
for which a signature was queried.

An intermediate, stronger, definition is unforgeability against chosen subring
attacks in which signing queries and the final forgery can be done with respect
to any subring S ⊂ R. The strongest definition proposed is unforgeability with
respect to insider corruption. In this setting, signing queries can be done with
respect to any ring (i.e. the attacker can add to these rings adversarially gen-
erated public keys). The attacker is also given a corruption oracle that for any
i ∈ index(R) returns ski. Forgeries are valid if they do not correspond to a
signing query, the subring of the forgery is a subset of R, and none of the secret
keys of the subring have been obtained through the corruption oracle.

In this paper we will first show that the proof of [19] can be adapted to our
scheme in order to prove unforgeability with respect to subring attacks. We will
then prove that for an alternative version of this scheme it is also possible to
ensure unforgeability with respect to insider corruption.

3 Our Scheme

3.1 Informal Description

In this section we first provide a high-level description of the tree-less signature
scheme in [19], and then we show how to transform it into a ring signature
scheme. In [19], the signer has as (secret) signing key ŝ and a (public) verification
key (h, S) such that h(ŝ) = S. The domains to which these keys belong will be
made explicit later.

To make a signature of some message μ, the signer will prove that he can:

– Choose a random vector of polynomials ŷ (which he does not reveal)
– Output a vector of polynomials whose difference with ŷ is ŝ (his secret key)

times a small polynomial e that is not of his choice

In order to do this the signer will select some random ŷ, compute e = H(h(ŷ), μ)
and output (ẑ, e) with ẑ = ŝe + ŷ. The verifier tests that e = H(h(ẑ) − Se, μ).
This is true for a correct signature thanks to the linearity of h as h(ẑ) − Se =
h(ŝe+ ŷ)− Se = h(ŷ) + Se− Se = h(ŷ).

To obtain a ring signature from this scheme we make two major modifications.
The first one is to ensure that each user has in his public key a function hi that
satisfies hi(ŝi) = S where ŝi is the secret key and S is a fixed standard polynomial
(not null). Consider a ring R = {hi}i∈[�]. The second modification keeps the real
signer anonymous when he signs a message. We do this by simply adding � − 1
random variables that will corresponds to the ring members except the real
signer. For example, suppose that the real signer is indexed by j ∈ [�], the signer
sends the signature (ẑi; i ∈ [�], e) with e = H(

∑
i∈[�] hi(ŷi), μ), ẑj = ŝje+ ŷj and

ẑi = ŷi for i ∈ [�] \ {j}. Therefore, the final signature will contain [�] elements
one for each member in the ring. Now we go gack to the first modification and
we will show its utility in the correctness of the scheme. In the verification step,

Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 11

the verifier checks if the hash value of (
∑

i∈[�] hi(ẑi)− Se, μ) is equal to e. Note

that this will be true only if
∑

i∈[�] hi(ẑi) − Se is equal to
∑

i∈[�] hi(ŷi). In fact

using the linearity of hj we have hj(ẑj) = hj(ŝje + ŷj) = hj(ŷj) + Se. Since all
the ring members have key pairs (hi, ŝi) such that hi(ŝi) = S, the verifier will
always accept when one of them produces a ring signature.

In order to resist to chosen subring attacks against unforgeability we must
modify the scheme to include in the random oracle call a description of the ring
for which the signature is valid (if not, it is easy to reuse a signature to generate
a forged signature on a larger ring). In order to resist to attacks on adversarially
chosen parameters, the ring signature algorithm starts with an initial step in
which the inputs are required to pass simple tests (bounds on the amount of co-
ordinates, scalar sizes, etc.). The security proofs proposed by Lyubashevsky must
also be modified to take into account the existence of multiple hash functions
and signature elements. Moreover, using modified hash functions also requires
that we introduce a few new lemmas and propositions to complete the proofs.

3.2 A More Formal Description

Ring Signature Scheme

Ring−gen−params(1k):
Given an integer k define the common public parameters.

1. Set n as a power of two larger than k
2. Set mu = 3 logn, and p as a prime larger than n4 such that p = 3

mod 8

— Note: these parameters define the sets D, Dh, Dz, Dy, Ds,c and the
family H.

3. Set S ← D, S �= 0
4. Output P = (k, n,mu, p, S)

Ring−gen−keys(P):
Generate a keypair.

1. Set ŝ = (s1, s2, . . . , smu)← Dmu
s,c

2. If none of the si is invertible, go to 1.
3. Let i0 ∈ {1, . . . ,m} such that si0 is invertible.
4. (a1, a2, . . . , ai0−1, ai0+1, . . . , amu)← Dmu−1.
5. Let ai0 = s−1i0

(S −∑
i�=i0

aisi) and note â = (a1, . . . , amu)
6. Output (pk, sk) = (h, ŝ), h being the hash function in H defined

by â

12 C. Aguilar Melchor et al.

Ring−sign(P , sk, μ,R):
Given a message μ ∈ M, a ring of � members with public keys R =
{hi}i∈[�] ⊂ H(D, Dh,mu), and a private key sk = ŝj associated to one
of the public keys hj in R, generate a ring signature for the message.

0. Verify that: the public parameters respect the constraints of steps
1− 3 in Ring−gen−params ; sk is in Dmu

s,c ; R is of size bounded by
kc ; one of the public keys in R is associated to sk. If the verification
fails output failed.

1. For all i ∈ [�]; i �= j ;ŷi ← Dmu
z

2. For i = j; ŷj ← Dmu
y

3. Set e← H(
∑

i∈[�] hi(ŷi), R, μ) (e is therefore in Ds,c)
4. For i = j, ẑj ← ŝj · e + ŷj
5. If ẑj /∈ Dmu

z then go to Step 2
6. For i �= j, ẑi = ŷi
7. Output σ = (ẑi; i ∈ [�], e)

Ring−verify(P , μ, R, σ):
Given a message μ, a ring R = {hi}i∈[�] and a ring signature σ =
(ẑi; i ∈ [�], e), the verifier accepts the signature only if both of the
following conditions satisfied:

1. ẑi ∈ Dmu
z for all i ∈ [�]

2. e = H(
∑

i∈{1,...,�} hi(ẑi)− S · e,R, μ)

Otherwise, the verifier rejects.

3.3 Correctness and Convergence of the Algorithms

The correctness of the signing algorithm is pretty straightforward. Indeed, let
σ = (ẑi; i ∈ [�], {hi}i∈[�], e) ← Ring−sign(P , ŝj , μ, {hi}i∈[�]) be a signature with
j ∈ [�] and (hj , ŝj) a given keypair. The first test in Ring−verify is always passed
by a valid signature as steps 2 and 5 of Ring−sign ensure that signatures only
contain elements in Dmu

z . With respect to the second test we have:

∑

i∈[�]

hi(ẑi)− S · e = hj(ẑj)− S · e+
∑

i∈[�]\{j}
hi(ẑi)

= hj(ŝje+ ŷj)− S · e+
∑

i∈[�]\{j}
hi(ŷi)

by replacing ẑj by ŝj · e+ ŷj and ẑi by ŷi,

= hj(ŝj) · e+ hj(ŷj)− S · e+
∑

i∈[�]\{j}
hi(ŷi)

using the homomorphic properties of hj ∈ H,

=
∑

i∈[�]

hi(ŷi) as hj(ŝj) = S.

Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 13

As e = H(
∑

i∈[�] hi(ŷi), {hi}i∈[�],m) the second test of Ring−verify is therefore
always satisfied by a valid signature.

A correctly issued signature is therefore always verified. Let’s consider now
the expected running time of the different algorithms.

Proposition 2. The expected running times of Ring−gen−params, Ring−gen−
keys, Ring−sign and Ring−verify are polynomial in the security parameter.

Proof. All the operations in the different algorithms can be executed in polyno-
mial time in the security parameter. Thus, Ring−gen−params and Ring−verify
run in polynomial time and the only possible issue would be the amount of
iterations in the loops of Ring−gen−keys and Ring−sign.

Lemma 3, proved in the appendix, states that each of the polynomials chosen
in step 1 of algorithm Ring−gen−keys is invertible with probability exponentially
close to one and thus the expected amount of iterations in the associated loop is
roughly one. Thus the expected running time of Ring−gen−keys is polynomial.

In Ring−sign the outer loop has a polynomial amount of iterations, on the
other hand inner loop between steps 2 and 5 which will continue as long as
ẑj = ŝj · e+ ŷj �∈ Dmu

z . Corollary 6.2 from [19] states that for any ŝ ∈ Dmu
s ,

P rc←Ds,c,ŷ←Dmu
y

[ŝc+ ŷ ∈ Dmu
z] =

1

e
− o(1).

As e and ŷj are drawn uniformly from Ds,c and Dmu
y we can use this result. This

implies that the expected amount of iterations in the inner loop of Ring−sign
is less than 3, and therefore that Ring−sign also runs in expected polynomial
time. ��

4 Security of the Proposed Scheme

4.1 Anonymity

In the anonymity against chosen setting attacks game, the adversary receives
a signature which depends on a random bit b as well as on a set of public
parameters P = (k, n,mu, p, S), two secret keys ski0 , ski1 , a message μ, and a
ring of public keys R. All of these parameters have been chosen adversarially
except the random bit b.

Let Xb,P,skib
,μ,R be the random variable that represents the signature received

by the adversary for a given set of parameters. The following theorem states that
for any choice of P , ski0 , ski1 , μ, R which does not result in a game restart, the
statistical distance between X0,P,R,ski0 ,μ

and X1,P,R,ski1 ,μ
is negligible in k.

Theorem 2 (Anonymity). For b ∈ {0, 1}, let Xb,P,skib
,μ,R be the random vari-

able describing the output of Ring−sign(P , skib , μ, R) with P = (k, n,mu, p, S),
skib , μ, R a set of arbitrary inputs to the algorithm. If the domains of these vari-
ables are both different from {failed} we have

Δ(X0,P,ski0 ,μ,R
, X1,P,ski1 ,μ,R

) = n−ω(1).

14 C. Aguilar Melchor et al.

The proof of this theorem is available on the appendix. Using the properties of
statistical distance presented in Section 3 this implies that our scheme ensures
unconditional anonymity against chosen setting attacks.

4.2 Unforgeability Against Chosen Subring Attacks

In this section we will show that an adversary able to break the unforgeability in
the chosen subring setting for our scheme is also able to break the unforgeabil-
ity of Lyubashevsky’s scheme. Given the results of [19], this implies an efficient
algorithm to solve SV Pγ on ideal lattices (for γ defined as in Theorem 1). It is
important to note that in Table 1 we change the parameters given by Lyuba-
shevsky by increasing m and p, but the reader can easily check (using the sketch
proof of the corollary below) that the proofs given in [19] are still valid and that
the inequalities in Theorem 1 are verified.

Corollary 1 (of Theorems 6.5 and 6.6 in [19]). If there is a polynomial
time algorithm that can break the unforgeability of the signature scheme proposed
in [19] for the parameters presented in Table 1, and more precisely for hash
functions with m = nc ∗mu columns, there is a polynomial time algorithm that
can solve SV Pγ for γ = O(n2.5+2c) for every lattice L corresponding to an
ideal in D.

Proof (Sketch.). The unforgeability proof of [19] is split in two. First it reduces
signature unforgeability from collision finding and then collision finding from
SVP (for a given gap). The first part of the reduction is given by Theorem 6.6
which is almost unchanged for our parameters. As we have a major modification
on m, the amount of columns of the hash functions, the only point which could
raise an issue is when Lemma 5.2 and Theorem 6.5 are used. These prove that for
the parameters in [19] there is a second pre-image for a given output of the hash
function with high probability and that signatures using two such pre-images are
indistinguishable. As we increase the amount of columns in the hash functions
used, the probability of a second pre-image and the uniformity of the output are
increased and thus we can still use these results.

Therefore using Theorem 6.6 of [19] we can deduce that breaking unforge-
ability for our parameters implies finding collisions for the corresponding hash
functions. As our hash functions have more columns than in [19] it is easier to find
such collisions than with the original parameters. Using Theorem 1 on our param-
eters shows that collision finding can be reduced from SV Pγ for γ = O(n2.5+2c)
(instead of O(n2.5) for the original scheme). ��
In our ring signature scheme, an unforgeability challenge is a set of verification
hash functions defined by a set of � tuples of mu polynomials. In Lyubashevsky’s
signature scheme an unforgeability challenge is a single tuple of m′ polynomials.
The idea is thus, considering an attacker to our scheme, to set m′ = � × mu,
transform this challenge into a set of � tuples and show that if we give this as
a ring signature challenge to the attacker, we will obtain with non-negligible
probability a valid forgery for Lyubashevsky’s scheme.

Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 15

The are two key issues. First, the polynomials in the m′-tuple are uniformly
random but the polynomials in themu-tuples that the attacker expects to receive
are not. We address this issue by proving, in Corollary 2, that the statistical
distance between public keys in our ring signature scheme, and hash functions
chosen uniformly at random is negligible. This implies that an attacker able to
forge signatures for hash functions associated to the public keys is also able to
forge them for hash functions chosen uniformly at random. Indeed, if we model
the attacker by a randomized function, it cannot increase the statistical distance
between the two families of functions and thus if it succeeds with non-negligible
probability for a family he also will for the other. The second issue is that we do
not know the private keys associated to the challenge given to the attacker but
we must be able to answer to his signing queries. We solve this issue simply by
programming the random oracle that the attacker uses.

In order to prove Corollary 2, we will use the following theorem.

Theorem 3 (Adapted from [25], Theorem 3.2). For g1, . . . , gmu−1 ∈ D,
we denote by F (g1, . . . , gmu−1) the random variable

∑
i∈[mu−1] sigi ∈ D where

s1, . . . , smu−1 are chosen uniformly at random in Ds,c. Noting U1, . . . , Umu in-
dependent uniform random variables in D, we have

Δ((U1, . . . , Umu−1, F (U1, . . . , Umu−1)), (U1, . . . , Umu)) ≤ 1

2

√(
1 +

(p

3mu−1

)n/2
)
− 1

Proof. Just apply Theorem 3.2 from [25] to our setting, using the fact that by
Lemma 2.3 from [25] our choice of parameters ensures that xn +1 = f1f2 mod p
where each fi is irreducible in Zp [x] and can be written fi(x) = xn/2+ tix

n/4−1
with ti ∈ Zp. ��
Corollary 2 (Uniformity of the public key). Let XP be a random variable
describing the distribution of the hash functions resulting from the key genera-
tion algorithm Ring−gen−keys(P) and U1, . . . , Umu denote independent uniform
random variables in D. Then

Δ (XP , (U1, . . . , Umu)) ≤ n−ω(1).

Proof. We describe a hash function hâ by the set of polynomials â = (a1,
. . . , amu). We suppose, w.l.o.g. that (a1, . . . , amu) = (a1, . . . , amu−1, s−1mu

(S −∑
i∈[mu−1] aisi)), where ŝ = (s1, . . . , smu) is the secret key corresponding

to hâ.
We first note that the function on the right side of the inequality in Theorem 3

is negligible for our parameters as p = Θ(n4+c) and 3mu−1 = 3(3+2c/3) log2 n/3 =
n(3+2c/3) log2 3/3 > n4.5+c/3. Thus, using Theorem 3, we have

Δ((U1, . . . , Umu−1, F (U1, . . . , Umu−1)), (U1, . . . , Umu)) ≤ n−ω(1).

Proposition 1 states that a function cannot increase the statistical distance. Not-
ing f(g1, . . . , gmu) the function that leaves unchanged themu−1 first coordinates
and replaces gmu by s−1mu

(S − gmu) we get

Δ(f(U1, . . . , Umu−1, F (U1, . . . , Umu−1)), f(U1, . . . , Umu)) ≤ n−ω(1).

16 C. Aguilar Melchor et al.

To prove the corollary we just need to note that f(U1, . . . , Umu−1, F (U1, . . . ,
Umu−1)) has exactly the same distribution as XP , and f(U1, . . . , Umu) the same
as (U1, . . . , Umu). The first assertion is trivially true given the Ring−gen−keys
algorithm. The second one comes from the fact that adding an element (in our
case S) or multiplying by an invertible element (in our case s−1mu

) in D just
permutes the elements of the ring and thus the uniform distribution remains
unchanged. We therefore have

Δ(f(U1, . . . , Umu−1, F (U1, . . . , Umu−1)), f(U1, . . . , Umu)) = Δ(XP , (U1, . . . , Umu))

and thus, Δ(XP , (U1, . . . , Umu)) ≤ n−ω(1). ��

We are now ready to prove our theorem on unforgeability against chosen subring
attacks.

Theorem 4. If there is a polynomial time algorithm that can break the unforge-
ability under chosen subring attacks of the ring signature scheme described in
Section 3.2 for the parameters presented in Table 1, there is a polynomial time
algorithm that can solve SV Pγ(L) for γ = Õ(n2.5+2c) for every lattice L corre-
sponding to an ideal in D.

Proof (Sketch.).
Suppose that we have an adversary A that can output a forgery for the ring

signature scheme with non-negligible advantage in the chosen subring setting.
Given Corollary 1, it is enough to prove that using A, we can construct a poly-
nomial time adversary B that outputs a forgery for Lyubashevsky’s scheme with
non-negligible advantage for the parameters given in Table 1.

Setup: B is given as a challenge a description of a hash function (namely a
tuple of m′ = � × mu polynomials (a1, . . . , a�×mu) in D), an element S of D,
and access to the random oracle HL of the signing algorithm. B splits the set
of polynomials in � sets of mu polynomials (ai,1, . . . , ai,mu) for i ∈ [�]. Finally,
B initializes A by giving it the set of tuples generated, the public parameters
associated (among which S) and access to the ring signature random oracle H
which it controls.

Query Phase: B answers the random oracle and signing queries of A as follows.
For each random oracle query (xy, xh, xm) it will test whether it has already
replied to such a query. If so, it will reply consistently. If not, it will reply with
HL(xy, xh‖xm), ‖ being the concatenation operator and store the result. For
each signing query ({hi}i∈T , i0, μ) for i0 ∈ T ⊆ [�], B programs H to produce a
signature. In other words:

1. It follows the steps of the signature by generating a set of ŷi ← Dmu
y for

i ∈ T
2. It generates at random r ← Ds,c

3. It checks whether HL has been called with parameters (
∑

i hi(ŷi) − S ·
r, {hi}i∈T ‖μ) (if so it aborts)

Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 17

4. It programs the random oracle H so that H(
∑

i hi(ŷi)−S ·r, {hi}i∈T , μ) = r,
and stores the result

5. Finally, it outputs (ŷi; i ∈ T, r).

Forgery Phase: At a given point, A finishes running and outputs a forgery
((ẑi; i ∈ T, e), μ, {hi}i∈T), for T ⊆ [�] with non-negligible probability. B just pads
the remaining coordinates of the signature with null polynomials ẑi = 0 for i ∈
[�]\T and outputs ((ẑ1‖ · · · ‖ẑ�, e), μ), ẑ1‖ · · · ‖ẑ� being the vector of polynomials
resulting from the concatenation of each of the vectors of polynomials ẑi.

Analysis: In this analysis we will detail completely the reasoning but just sketch
the statistical arguments as they are pretty standard and easy to verify.

First of all, note that in step 3 of the protocol above there is the possibility of
an abort. The probability of this event is negligible. Indeed, given the sizes of Dy

and pn,mu is large enough to ensure by leftover hash lemma [26] that
∑

i hi(ŷi)−
S · r is within negligible distance from an uniformly random distribution. Thus,
the probability that A has generated beforehand a query colliding with the one
of the protocol is negligible.

In order to prove that A will output a ring signature forgery with non-
negligible probability we must show that all the inputs it receives are within
negligible statistical distance to the ones it would have received in a ring signa-
ture challenge. Once this is proved, we must show that the final forgery that B
outputs is valid in the basic signature scheme.

First note that by Corollary 2 and using equation (3) of Section 3, we have
that the challenge given to A is within negligible statistical distance to the one
it has in a ring signature challenge. Another family of inputs to consider are
the signatures generated by B. These signatures are trivially valid for the given
random oracle. Following the same ideas as those used in Theorem 2 we have
that these signatures are withing negligible statistical distance from a signature
generated using the signing algorithm (omitted). The last inputs to consider are
the ones coming from the random oracle H which are pairs (preimage, image)
of the graph of H . All of the images of H are chosen uniformly at random over
Ds,c. The issue is that we have programmed H and thus, in our protocol the
first coordinate of the pre-image and the image are related. However, using the
leftover hash lemma as in the first paragraph of this analysis (when considering
aborts) we have that we add to this coordinate

∑
i hi(ŷi) which is close to uni-

form and independent of the image. This implies that (omitting the coordinates
set by A with his query), the pairs (preimage, image) are statistically close to
uniform.

We therefore can ensure thatA outputs a forgery for the ring signature scheme
with non-negligible probability and the only issue left to prove is the validity of
the forgery given by B. The basic idea we will use in the rest of this proof is that
in the forgery ((ẑi; i ∈ T, e), μ, {hi}i∈T) that A outputs, if e has been obtained
during a direct call to the random oracle we can prove that the forgery is valid
in the basic signature scheme. If not, we use the same ideas than in Theorem
6.6 of [19].

18 C. Aguilar Melchor et al.

A wild guess of e can only happen with negligible probability. Indeed, as Ds,c

is exponentially large, if H has not been queried the probability that the output
of A will give e when using H in the verification step is exponentially small. If
we therefore suppose that e has been obtained through a call to H there are two
possibilities: either e has been generated during a signing query, or it has been
generated during a direct random oracle query. We leave the latter option for
the end of the proof.

Suppose e has been generated during a signing query which resulted in an
output (ẑ′i; i ∈ T ′, e) for a ring {hi}i∈T ′ and a message μ′. In order to be valid,
the forgery must be different from ((ẑ′i; i ∈ T ′, e), μ′, {hi}i∈T ′) and thus we must
have either {hi}i∈T ′‖μ′ �= {hi}i∈T ‖μ or (ẑ′i; i ∈ T ′) �= (ẑi; i ∈ T). The former
case can only happen with negligible probability as it implies a collision for
H . Indeed, {hi}i∈T ′‖μ′ �= {hi}i∈T ‖μ implies {hi}i∈T ′ �= {hi}i∈T or μ′ �= μ
and in both cases we have a collision as H(

∑
i∈T ′ hi(ẑ

′
i) − S · e, {hi}i∈T ′ , μ′) =

H(
∑

i∈T hi(ẑi) − S · e, {hi}i∈T , μ) = r (we have twice the same image for two
pre-images that are different either in the second or the third coordinate). In the
latter case, using the same reasoning, the first coordinate of H is the same in
the two cases with overwhelming probability and thus we have

∑
i∈T ′ hi(ẑ

′
i) −

S · e =
∑

i∈T hi(ẑi) − S · e for (ẑ′i; i ∈ T ′) �= (ẑi; i ∈ T). Setting ẑi = 0 for
i ∈ [�]\T and ẑ′i = 0 for i ∈ [�]\T ′ we obtain a collision for a random hash
function of H(D, Dh, �). If this event happens with non-negligible probability,
using Theorem 1 we deduce that we can solve SV Pγ .

We conclude this proof by working on the case in which e has been gener-
ated during a direct random oracle query. We have the forgery ((ẑi; i ∈ T, e), μ,
{hi}i∈T) and as the ring signature must be valid we have H(

∑
i∈T hi(ẑi) − S ·

e, {hi}i∈T , μ) = e. Noting xy =
∑

i∈T hi(ẑi) − S · e and given the algorithm
followed by B, we also have HL(xy , {hi}i∈T ‖μ) = e. If we pad the ẑi with ẑi = 0
for i ∈ [�]\T we still have

∑
i∈[�] hi(ẑi)− S · e = xy and thus HL(

∑
i∈[�] hi(ẑi)−

S · e, {hi}i∈T ‖μ) = e. We therefore have that σ′ = (ẑ1‖ · · · ‖ẑ�, e) is a signature
of μ′ = {hi}i∈T ‖μ and, as we have not done any signing query in the basic
signature scheme, (σ′, μ′, [�]) is a valid forgery.

4.3 Unforgeability Against Insider Corruption Attacks

Suppose that we have an algorithm A able to break the unforgeability of our
scheme with insider corruption attacks. We would like to prove again that there
exists an algorithm B which using A can break the unforgeability of the under-
lying basic signature scheme. The main issue is that when B gets the challenge
from the basic signature scheme he can split the tuple of polynomials but he does
not know the signing keys associated to those split tuples and thus he cannot
answer to the corresponding corruption queries.

One idea would be to pass to A modified versions of these tuples so that B
knows the signing keys associated to them, but we have been unable to find a
way to use the final forgery with such a strategy. A more standard approach to

Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 19

solve this issue is the one used by Wang and Sun in [13], which consists in giving
to A more tuples than the ones obtained from splitting the initial challenge.
These additional tuples are generated using the key generation algorithm and B
knows the associated signing keys. If there are enough of them it is feasible to
obtain a run from A in which all the corruption queries correspond to tuples for
which B has the signing key.

Unfortunately, this creates a new issue in [13] as well as in our case. If we
have a lot of tuples which do not correspond to the challenge then, for some
strategies of A which are plausible, the final forgery is for a ring which contains
tuples which were not in the challenge with overwhelming probability. In some
number theory schemes this is not an issue, but in our case such forgeries are
useless as B could have generated them (as the statistical distance between ring
signatures by different members of the ring is negligible).

In the end, if the ring size for which A works is polynomial in the secu-
rity parameter, for some strategies of A (in particular if he corrupts half of
the ring and gives a ring signature for the other half), all the trade-offs fail.
If we have a super logarithmic amount of new tuples there is an overwhelming
probability to have a forgery for an inappropriate ring, and if not there is an over-
whelming probability that B will be unable to answer to some of the corruption
queries.

Our Approach. In order to solve these issues we modify the key generation
process. Each user generates a set of k verification keys, k being the security
parameter. Among these keys k/2 are generated through the original key gener-
ation algorithm Ring−gen−keys, and the user stores the associated signing keys.
The other k/2 verification keys are just uniformly chosen hash functions. The k
verification keys are numbered, the order being chosen at random (mixing both
types of keys).

Ring−gen−keys−ic(P):

1. Choose randomly a subset T ⊂ [k] of size k/2.
2. For i ∈ T , set pki ← H(D, Dh,m) and ski = 0.
3. For i ∈ [k]\T , set (pki, ski)← Ring−gen−keys(P).
4. Output (pk, sk) = ({pki}i∈[k], {ski}i∈[k]).

For a set of users S ⊂ Z (we associate users to integers), we define fulldesc(S)
as a description of the full set of verification keys of the users of S.

When signing a message μ for a set of users S, the user calls a first random or-
acle with input (μ, fulldesc(S)). The output of this random oracle is {Tσ,i}i∈S ,
a set of subsets of [k], each of them of size k/2. In order to sign, the user will
create a ring of verification keys T which includes for each user i the subset of
verification keys indexed by Tσ,i.

20 C. Aguilar Melchor et al.

Ring−sign−ic(P , sk, μ,R):

0. Verify that: the public parameters respect the constraints of steps
1− 3 in Ring−gen−params ; each ski ∈ sk is in Dmu

s,c ; R is of size
bounded by kc ; one of the public keys in R is associated to sk. If
the verification fails output failed.

1. Set {Tσ,i}i∈R ← Hσ(μ, keys(R))
2. Define keys(T) = (pki,j)i∈R,j∈Tσ,i

3. Let i0 denote the index of the signer in R. Choose randomly ski ∈
sk with i ∈ Tσ,i0 such that ski �= 0. If none exists, abort.

4. Output Ring−sign(P , ski, μ, T).

Note that since the random oracle chooses k/2 verification keys of the signer
at random, the probability that they all are uniformly chosen random hash
functions is exponentially small and thus the probability of an abort in Step 3
is negligible.

The adaptation of the verification algorithm to this new setting is straight-
forward.

Sketch of Proof in the Insider Corruption Setting. We just outline the
ideas of the proof which can be obtained by small modifications in the proof of
Theorem 4.

We use an insider corruption attacker to break a challenge of Lyubashevsky’s
signature. In order to do this we get as a challenge a tuple of m′ = k/2 × � ×
mu polynomials. We use them in our ring signature algorithm instead of the
uniformly chosen hash function obtained in the usual key generation process.
The rest of the keys are generated according to Ring−gen−keys−ic (i.e. through
the original algorithm Ring−gen−keys). Note that as half of the verification keys
of each user are generated using this algorithm, we can answer to the corruption
queries of the attacker.

In order to answer to the challenge we want the attacker to output a signature
that only uses as verification keys the ones corresponding to the challenge and
none of the ones generated by Ring−gen−keys. The main idea is to call the
attacker with a controlled random oracle Hσ, pre-generate a polynomial number
of the outputs of this oracle sampling uniformly its range and guess which one
of these outputs will be used in the forgery. There is a polynomial loss in the
reduction but using this approach we can then order the keys of the different
users so that if the attacker uses the random oracle reply we expect, he will only
use keys for which we do not have the associated signing key. When this happens
(after a polynomial number of calls to the attacker), we obtain a forgery which
can be used to answer the initial challenge.

Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 21

References

1. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

2. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

3. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

4. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad
hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

5. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002)

6. Herranz, J., Sáez, G.: Forking lemmas for ring signature schemes. In: Johansson,
T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer,
Heidelberg (2003)

7. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007)

8. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear
pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

9. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 210–227. Springer, Heidelberg (2007)

10. Brakerski, Z., Kalai, Y.T.: A framework for efficient signatures, ring signatures
and identity based encryption in the standard model. Technical report, Cryptology
ePrint Archive, Report 2010086 (2010)

11. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pp. 197–206. ACM (2008)

12. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

13. Wang, J., Sun, B.: Ring signature schemes from lattice basis delegation. In: Qing,
S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 15–28.
Springer, Heidelberg (2011)

14. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

15. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

16. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold ring
signature scheme. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 255–272. Springer, Heidelberg (2010)

17. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

22 C. Aguilar Melchor et al.

18. Aguilar Melchor, C., Cayrel, P.L., Gaborit, P., Laguillaumie, F.: A new efficient
threshold ring signature scheme based on coding theory. IEEE Transactions on
Information Theory 57(7), 4833–4842 (2010)

19. Lyubashevsky, V.: Towards practical lattice-based cryptography. PhD thesis,
University of California, San Diego (2008)

20. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009)

21. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012)

22. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, whit is right. Cryptology ePrint Archive, Report 2012/064 (2012),
http://eprint.iacr.org/

23. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

24. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic
perspective. The Kluwer International Series in Engineering and Computer Science,
vol. 671. Kluwer Academic Publishers, Boston (2002)

25. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 617–635. Springer, Heidelberg (2009)

26. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discus-
sion. SIAM J. Comput. 17(2), 210–229 (1988)

A Proof of Theorem 2

The contents of this section are closely related to Theorem 6.5 in [19], and the
associated proof, which deals with statistical distance between signatures with
two related secret keys in the signature scheme we are based on. The first major
difference when dealing with statistical distance comes from the fact that we do
not have a single random polynomial y ← Dmu

y (resp. a random hash function)
but a set of � polynomials (resp. a set of hash functions) on each signature. The
second major difference is that we have to verify that the adversarial nature of
some parameters does not result in an explosion of the statistical distance. In
order to make that clear we first introduce a lemma that we will need in the
main proof.

In order to get lighter notations we will denote the random variables of the
theorem X0 and X1 dropping the other parameters. As the output of the ring

signature algorithm is a vector of �+1 coordinates we will note X
(i)
b for i ∈ [�+1]

and b ∈ {0, 1} the random variable associated to the i-th coordinate of Xb.
Suppose that none of these variables has {failed} as domain. We can then
guarantee that the parameters given in the theorem verify the properties tested
on step 0 of the algorithm Ring−sign. We will say that these parameters have
passed the sanity check.

http://eprint.iacr.org/

Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 23

As in [19], we therefore start by noting that the set

Ds,c(ski0 , ski1) = {c ∈ Ds,c : ‖ski0c‖∞, ‖ski1c‖∞ ≤
√
n logn}

has a cardinality negligibly close (in a relative sense) to the one of Ds,c. As the
secret keys have passed the sanity check, they belong to Ds,c and therefore, even
if they are chosen adversarially, Lemma 1 guarantees that

|Ds,c(ski0 , ski1)|
|Ds,c| = 1− n−ω(1). (4)

Note that n is also an adversarially chosen parameter but, again, the sanity
check ensures that n ≥ k and thus that n−ω(1) is a negligible function. Splitting
the statistical distance in two we get

Δ (X0, X1) =
1

2

∑

α̂i∈Dmu
z ;i∈[�],β �∈Ds,c(ski0 ,ski1)

|Pr [X0 = (α̂i; i ∈ [�], β)]− Pr [X1 = (α̂i; i ∈ [�], β)] | (5)

+
1

2

∑

α̂i∈Dmu
z ;i∈[�],β∈Ds,c(ski0 ,ski1)

|Pr [X0 = (α̂i; i ∈ [�], β)]− Pr [X1 = (α̂i; i ∈ [�], β)] |. (6)

In order to prove that the statistical distance is negligible, we will first prove
that (5) is negligible and then that (6) is equal to zero. The first assertion is
almost trivial, as the last coordinate in the signature comes from a random
oracle and thus the probability it does not belong to Ds,c(ski0 , ski1) is negli-

gible. Noting that this is true for X0 as for X1 and that
∑ |Pr

[
X0 = (α̂i;

i ∈ [�], β)
]
− Pr [X1 = (α̂i; i ∈ [�], β)] | ≤ ∑

Pr [X0 = (α̂i; i ∈ [�], β)] +
∑

Pr

[X0 = (α̂i; i ∈ [�], β)] we can prove that

(5) ≤ 1− |Ds,c(ski0 , ski1)|
|Ds,c| = n−ω(1). (7)

More formally, we have

(5) ≤ 1

2

∑

α̂i∈D
mu
z ;i∈[�],β �∈Ds,c(ski0

,ski1
)

Pr [X0 = (α̂i; i ∈ [�], β)] + Pr [X1 = (α̂i; i ∈ [�], β)]

and for any b ∈ {0, 1}, noting that
∑
∀A Pr[A ∧ B] =

∑
∀A Pr[A|B]Pr[B] =

Pr[B], we have

∑

α̂i∈D
mu
z ;i∈[�],β �∈Ds,c(ski0

,ski1
)

Pr [Xb = (α̂i; i ∈ [�], β)] =
∑

β �∈Ds,c(ski0
,ski1

)

Pr
[
X

(�+1)
b = β

]
.

Finally, noting that X
(�+1)
b is obtained through a call to a random oracle

H(
∑

i∈[�] hi(yi), R, μ), the probability it is equal to a given β is 1/|Ds,c|. It
is important to note that this is true, independently of the distribution of the

24 C. Aguilar Melchor et al.

input. Thus, even if the hi in H(
∑

hi(yi), R, rμ) are adversarially chosen (say,
hi(x) = 0 for all x and i), the probability given is still valid. Using this proba-
bility for all β �∈ Ds,c(ski0 , ski1), equation (7) follows immediately.

In order to prove that (6) is equal to zero we will show that each term in the
sum is null. As the last coordinate of a signature is generated through a call to a
random oracle we have for both random variables the same probability to obtain
β. Therefore, we must prove that for each term in (6):

Pr
[
(X

(i)
0 ; i ∈ [�]) = (α̂i; i ∈ [�])|X(�+1)

0 = β
]
= Pr

[
(X

(i)
1 ; i ∈ [�]) = (α̂i; i ∈ [�])|X(�+1)

1 = β
]

(8)

We will prove that for all b ∈ {0, 1}, Pr[X
(i)
b = α̂i|X(�+1)

b = β] is equal to
1/|Dmu

z | if i ∈ [�] \ ib and to 1/|Dmu
y | if i = ib. This is enough to prove (8) as

the first � coordinates of the random variables are independently chosen in the
signature algorithm.

We note ŷb,i the variable ŷi corresponding to an execution of the signature

algorithm in which skib is used. For i �= ib, we have X
(i)
b = α̂i if ŷb,i = α̂i. As

ŷb,i is drawn uniformly at random from Dmu
z , and α̂i ∈ Dmu

z , the probability

that both values are equal is 1/|Dmu
z |. For i = ib, we have X

(ib)
b = α̂ib if ŷb,ib =

α̂ib−skibβ. As ŷb,i is drawn uniformly at random from Dmu
y , the probability that

it is equal to a given value is 1/|Dmu
y | if this value is in Dmu

y , and 0 if not. By
the definition of Ds,c(ski0 , ski1), to which β belongs, we have skibβ ≤

√
n logn

and thus α̂ib − skibβ belongs to Dmu
y which completes the proof. ��

B Lemmas

Lemma 1 (Lemma 2.11 in [19] restricted to our setting). Let a be any
polynomial in Ds,c and b a polynomial uniformly chosen in Ds,c. Then

Pr[‖ab‖∞ ≥
√
n logn] ≤ 4ne

− log2 n
8 .

This lemma will be used to show that for any two secret keys, an overwhelming
fraction of the polynomials in Ds,c result in a small polynomial when multiplied
by any of the two keys. Note that the lemma is valid for any polynomial a in
Ds,c (i.e. even if it is adversarially chosen).

Before proving Lemma 3, which is used in Proposition 2, we recall the following
lemma which is adapted from Lemma 3 in [25].

Lemma 2. Let f = xn+1, r ≥ 2 and n = 2r and p is a prime with p ≡ 3 mod 8,
then there exist f1, f2 such that f = f1f2 mod p where each fi is irreducible in
Zp [x] and can be written fi(x) = xn/2 + tix

n/4 − 1 with ti ∈ Zp

Lemma 3. Let D×s,c denote the set of non-invertible polynomials of Ds,c. We
have

Prf←Ds,c

[
f ∈ D×s,c

] ≤ 2

3n/2
.

Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 25

Proof (Sketch.). We have D = Zp[x]/〈xn + 1〉 and by Lemma 2 and Table 1 we
have xn + 1 = f1f2 mod p, both factors being of degree n/2 and irreducible
over Zp[x]. As these factors are irreducible, we have that the non-invertible
polynomials of D are such that f = 0 mod f1 or f = 0 mod f2.

As Ds,c = {g ∈ Zp[x]/〈xn + 1〉 : ‖g‖∞ ≤ 1} we have

D×s,c = {f ∈ Zp[x]/〈xn + 1〉 : ‖f‖∞ ≤ 1 and (f = 0 mod f1 or f = 0 mod f2)}.

By the union bound, we have

Prf←Ds,c

[
f ∈ D×s,c

] ≤ Prf←Ds,c [f = 0 mod f1] + Prf←Ds,c [f = 0 mod f1] .

It is easy to see that for each choice of n/2 higher order terms of f there is
as most one choice on the n/2 lower order terms that satisfies f = 0 mod f1.
The same can be said for f = 0 mod f2. Thus the probability of each of the
right-hand terms is bounded from above by 1/3n/2 which immediately proves
the result.

	Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Collision-Resistant Hash Functions
	2.3 Statistical Distance
	2.4 Ring Signature Schemes: Definitions and Properties

	3 Our Scheme
	3.1 Informal Description
	3.2 A More Formal Description
	3.3 Correctness and Convergence of the Algorithms

	4 Security of the Proposed Scheme
	4.1 Anonymity
	4.2 Unforgeability Against Chosen Subring Attacks
	4.3 Unforgeability Against Insider Corruption Attacks

	References

