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Preface

This volume contains the papers accepted for presentation at Africacrypt 2013,
the 6th International Conference on the Theory and Application of Crypto-
graphic Techniques in Africa. The aim of this series of conferences is to provide
an international forum for practitioners and researchers from industry, academia,
and government agencies from all over the world for a wide-ranging discussion
of all forms of cryptography and its applications.

The initiative of organizing Africacrypt started in 2008 where it was first
held in Morocco. Subsequent yearly events were held in Tunisia, South Africa,
Senegal, and Morocco. This year, on the initiative of the organizers from Cairo
University, Africacrypt 2013, which is organized in cooperation with the Interna-
tional Association for Cryptologic Research (IACR), was held in the conference
center of Cairo University, Egypt, during June 22–24.

We received 77 submissions authored by researchers from 26 different coun-
tries. After a reviewing process that involved 36 Technical Program Committee
members from 18 countries and 74 external reviewers, the Technical Program
Committee went through a significant online discussion phase before deciding
to accept 26 papers. We are indebted to the members of the Program Commit-
tee and the external reviewers for their diligent work and fruitful discussions.
We are also grateful to the authors of all submitted papers for supporting the
conference. The authors of accepted papers are thanked again for revising their
papers according to the suggestions of the reviewers. The revised versions were
not checked again by the Program Committee, so authors bear full responsibility
for their content.

Besides the peer-reviewed accepted papers, the technical program included
two invited talks by Taher Elgamal and Martin Schläffer.

In Dr. Schläffer’s talk, he gave an introduction to the cryptanalysis of hash
functions and discussed the main idea of the attacks by Wang et al. He also pre-
sented new design ideas submitted to the NIST SHA-3 competition, discussed
some simple attacks on weak submissions, and highlighted common pitfalls made.
Dr. Martin Schläffer also presented Keccak (SHA-3) and new cryptanalysis re-
sults on SHA-2 and SHA-3.

Finally, we would like to thank everyone who contributed to the success of this
conference. The local Organizing Committee from Cairo University were always
a pleasure to work with. We are deeply thankful that they hosted Africacrypt
2013. We are also thankful to the staff at Springer for their help with producing
the proceedings.

April 2013 Amr Youssef
Abderrahmane Nitaj
Aboul Ella Hassanien
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Adapting Lyubashevsky’s Signature Schemes

to the Ring Signature Setting

Carlos Aguilar Melchor1, Slim Bettaieb1, Xavier Boyen2, Laurent Fousse3,
and Philippe Gaborit1

1 XLIM-DMI, Université de Limoges, France
{carlos.aguilar,slim.bettaieb,philippe.gaborit}@xlim.fr

2 Queensland University of Technology, Brisbane, Australia
xb@boyen.org

3 Laboratoire Jean-Kuntzmann, Université de Grenoble, France
laurent.fousse@imag.fr

Abstract. Basing signature schemes on strong lattice problems has
been a long standing open issue. Today, two families of lattice-based
signature schemes are known: the ones based on the hash-and-sign con-
struction of Gentry et al.; and Lyubashevsky’s schemes, which are based
on the Fiat-Shamir framework.

In this paper we show for the first time how to adapt the schemes
of Lyubashevsky to the ring signature setting. In particular we trans-
form the scheme of ASIACRYPT 2009 into a ring signature scheme that
provides strong properties of security under the random oracle model.
Anonymity is ensured in the sense that signatures of different users are
within negligible statistical distance even under full key exposure. In fact,
the scheme satisfies a notion which is stronger than the classical full key
exposure setting as even if the keypair of the signing user is adversari-
ally chosen, the statistical distance between signatures of different users
remains negligible.

Considering unforgeability, the best lattice-based ring signature
schemes provide either unforgeability against arbitrary chosen subring
attacks or insider corruption in log-sized rings. In this paper we present
two variants of our scheme. In the basic one, unforgeability is ensured in
those two settings. Increasing signature and key sizes by a factor k (typ-
ically 80− 100), we provide a variant in which unforgeability is ensured
against insider corruption attacks for arbitrary rings. The technique used
is pretty general and can be adapted to other existing schemes.

Keywords: Ring signatures, lattices.

1 Introduction

In 2001 Rivest, Shamir and Tauman [1] introduced the concept of ring signature.
In such a scheme, each user has a keypair; a secret signing key and a public
verification key. Any of them can choose a subset of the public keys (including
his own), the ring, and sign on behalf of the associated subset of users, without

A. Youssef, A. Nitaj, A.E. Hassanien (Eds.): AFRICACRYPT 2013, LNCS 7918, pp. 1–25, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 C. Aguilar Melchor et al.

permission or assistance. This signature can be verified using the ring of public
keys. Such a scheme must have the classic unforgeability property (it is not
possible to sign on behalf of a ring without knowing one of the associated secret
keys) as well as an anonymity property: it is not possible to know which secret
key was used, just that it is associated to one of the public keys in the ring.

In 2006 [2], Bender et al. noted that the usual security setting with respect
to anonymity and unforgeability did not take into account that some of the
public keys in the ring may have been issued adversarially by an attacker. They
therefore proposed adapted security definitions for such a situation as well as
for the one in which all the secret keys including the one of the signers would be
exposed. Of course if all the keys are exposed it is no longer possible to ensure
unforgeability but anonymity of previously issued signatures may be preserved.

Such a strong anonymity property is a reassuring guarantee for a user hes-
itating to leak a secret, specially if the consequences of an identification are
dire. It also seems reasonable, specially if anonymity must be preserved for a
few decades (e.g. depending on the statute of limitations) not to rely on an
estimation of the computational complexity of a given problem and require un-
conditional anonymity. The definitions of Bender et al. can be easily translated
to the unconditional setting and thus cover such a requirement.

A close but different setting, introduced by Chaum and van Heyst in 1991 [3],
is the one of group signature. In this setting there is an anonymity revocation
mechanism that allows a given group manager to reveal who was the signer of
a given message. This property comes however at a cost as it requires a group
setup procedure which is not needed in the ring signature setting.

Most of the existing ring signature schemes are based on number theory as-
sumptions: large integer factorization [4,1], discrete logarithm problem [5,6] and
bilinear pairing problems [7,8,9].

There are also a few ring signature schemes with security based on standard
lattice problems. In [10], Brakerski and Kalai propose a ring signature scheme
in the standard model based on the Small Integer Solution (SIS) problem us-
ing the hash-and-sign/bonsai-tree [11,12] approach. Using again this approach
Wang and Sun propose in [13] two other ring signature schemes, one under
the random oracle model and one on the standard model. Both papers provide
constructions in the standard model but, on the other hand, use Gentry-Peikert-
Vaikuntanathan’s (hereafter GPV) [11] strong trapdoors. These trapdoors are
known to be very versatile and the ring signature constructions come naturally.
However, when using these strong trapdoors a (hidden) structure is added to
the underlying lattice which is, from a theoretical point of view, an important
price to pay. In practice, it is possible to give public bases of these lattices which
are closer to uniform, but some parameters, namely the dimension of the “perp”
lattice (for a definition and details see [14]), are increased significantly in the
process.

Two other schemes, one by Kawachi et al. [15], and one by Cayrel et al. [16],
follow a very different approach. These schemes are based on weak trapdoors
in which the underlying lattice is completely uniform except for some public
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syndromes given (which corresponds to a small vectors in the “perp” lattice).
Even if we consider the lattice together with the syndromes, very little structure
is added and in practice, it is close to uniform for smaller parameters than with
GPV trapdoors. Such “weak trapdoors” can be used in not that many contexts
(when compared to the strong GPV trapdoors) and [15,16] prove that they are
enough for ring signature. On the other hand, these schemes use pretty straight-
forwardly Stern’s construction for signature schemes [17] which is somehow a bad
property. Of course, it is clearly important to note that the code-based construc-
tions can be translated to the lattice setting. In the case of the scheme by Cayrel
et al. this has the added benefit that by adapting the code-based construction
of Aguilar et al. [18] they obtain a threshold scheme, which is a pretty hard
feature to obtain. However, we believe that finding ring signatures which follow
the more recent and promising techniques of lattice-based cryptography, without
the cumbersome zero-knowledge proofs used in code-based cryptography, is of
independent interest.

Our Contributions. In this paper we present a lattice-based ring signature
algorithm. As in the other lattice-based ring signature schemes, each signa-
ture and verification key is composed of a linear amount of sub-elements in the
ring size.

Our main contribution is that our scheme is the first one to be based on
Lyubashevsky’s approach to lattice-based signature [19,20,21]. This is interest-
ing from a theoretical point of view for two reasons. First, it is one of the ma-
jor approaches to build standard signatures and no ring signature was until
now based on it. Second, as Lyubashevsky’s signatures, our scheme uses a weak
trapdoor (a uniformly random lattice with a single syndrome) without Stern’s
zero-knowledge proofs (previous lattice-based schemes used either GPV strong
trapdoors or Stern’s proofs).

We describe our scheme as a modification of the scheme of ASIACRYPT
2009 [20]. The ideas and proofs can be re-used for the more recent schemes
of [21], but the whole presentation gets trickier and the practical benefits are of
limited interest (unlike in the standard signature setting).

As a second contribution we present a modification of our scheme, which can
be applied to other lattice-based ring signature schemes to provide unforgeability
in the insider corruption setting, even if the ring is of polynomial size in the
security parameter. To the best of our knowledge this is the first time such a
security property is obtained with lattice-based schemes.

Indeed, the schemes of Kawachi et al., Cayrel et al. and Brakerski and Kalai
only provide a proof for the fixed ring or chosen subring attack settings. Wang
and Sun provide a proof for insider corruption which only works for log-sized
rings. More precisely, the advantage of the SIS attacker in their proof is in
O(1/

(
qE

qE/2

)
), qE being an upper-bound on the ring size (see first line of the

Setup step in the proof of Theorem 2 in [13]).
The third contribution we would like to mention is that our ring signature

scheme provides unconditional anonymity even if the secret key of the signer
and the public parameters have not been generated following the key generation
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process (in fact, even if they are adversarially chosen). In the light of recent
results on the high percentage of unsure RSA keypairs [22], we find such a result
a reassuring property for the users of a ring signature scheme.

Finally, we would like to note that the underlying scheme on which we are
based seems to be more efficient than the schemes on which the alternative works
are based. However, all ring signature lattice-based schemes, including ours, are
still pretty unpractical and in any case far behind the best results of number
theoretic schemes, such as [9], in size as well as in versatility. We therefore focus
on the theoretical contributions and leave aside practical parameter comparisons.

2 Preliminaries

2.1 Notations

Polynomials and Vectors of Polynomials. Let Zp denote the quotient ring
Z/pZ. In this work we build our cryptographic construction upon the ring D =
Zp [x] /〈xn+1〉; where xn+1 is irreducible, n is a power of two, and p is a prime
such that p = 3 mod 8. The elements of D will be represented by polynomials
of degree n− 1 having coefficients in {−(p− 1)/2, . . . , (p− 1)/2}.

We will denote polynomials by roman letters (a, b, . . .), vectors of polynomi-

als will be denoted by a roman letter with a hat (â, b̂, . . .). Let m some pos-
itive integer such that, a1, . . . , am are polynomials in D, then we can write
â = (a1, . . . , am). For any polynomial a, the infinity norm �∞ is defined by
‖a‖∞ = maxi|a(i)|, with a(i) the coefficients of the polynomial, and for a vector
of polynomials by ‖â‖∞ = maxi‖ai‖∞.

Sets. For a positive integer i, [i] denotes the set {1, . . . , i}. For a given set S, the
notation x ← S represents a uniformly random sample from the set, and for a
given randomized algorithm x ← RandomizedAlgorithm represents a sampling
from the possible outputs following the distribution given by the algorithm.

In our scheme, forgery attacks become easier as the ring size grows (this
is also true for other schemes). We therefore suppose that there is a constant
c such that acceptable ring sizes are bounded from above by kc, k being the
security parameter. As signature and verification key sizes have an amount of
sub-elements proportional to the ring size the reader can replace c by 1 or 2
which will cover any reasonable use of these signatures. The table below defines
different sets we use and the parameters associated to these sets.

Rings and Random Oracles. Each keypair of the ring signature scheme is
in any protocol, game or experiment we may present always uniquely defined
by an integer (its index). We define a ring R as a set of verification keys. We
consider that there is a bijection between users and keypairs and sometimes
we will implicitly use this bijection saying that a user belongs to a ring. We
also define #R as the size of the ring (i.e. the amount of verification keys it
contains), and as index(R) the set of integers corresponding to the indexes of
the verification keys in R (each keypair being uniquely defined by its index).
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Table 1. Sets and parameters

n power of 2 greater than the security parameter k

p prime of order Θ(n4+c) such that p ≡ 3 mod 8

mu (3 + 2c/3) log n

m (3 + 2c/3)nc log n

Dh {g ∈ D : ‖g‖∞ ≤ mn1.5 log n+
√
n log n}

Dy {g ∈ D : ‖g‖∞ ≤ mn1.5 log n}
Dz {g ∈ D : ‖g‖∞ ≤ mn1.5 log n−√

n log n}
Ds,c {g ∈ D : ‖g‖∞ ≤ 1}

H : {0, 1}∗ → Ds,c denotes a random oracle. We describe a ring R =
{pki1 , . . . , pki#R

}, for example when using it as input to the random oracle,
by desc(pki1)‖ . . . ‖desc(pki#R

) where desc(pk) is a binary description of a pub-
lic key, ‖ is the concatenation operator and i1 < · · · < i#R (the representation
is thus unique). When possible we will just skip desc() in such notations, f1‖f2
meaning the concatenation of the description of functions f1 and f2.

2.2 Collision-Resistant Hash Functions

In [23] Lyubashevsky and Micciancio introduced a family H of collision-resistant
hash functions with security based on the worst-case hardness of standard lattice
problems over ideal lattices.1

Definition 1. For any integer mu and D× ⊆ D, let H(D, D×,mu) = {hâ : â ∈
Dmu} be the function family such that for any ẑ ∈ Dmu× , hâ(ẑ) = â · ẑ =

∑
aizi,

where â = (a1, ..., amu) and ẑ = (z1, ..., zmu) and all the operations aizi are
performed in the ring D.

Note that hash functions in H(D, D×,mu) satisfy the following two properties
for any ŷ, ẑ ∈ Dmu and c ∈ D:

h(ŷ + ẑ) = h(ŷ) + h(ẑ) (1)

h(ŷc) = h(ŷ)c (2)

Moreover, when the input domain is restricted to a strategically chosen set
Dmu× ⊂ Dmu , the function family is collision resistant. We first introduce the
collision finding problem and then present the security reduction result for a
well-chosen D×.

1 In this work, by ideal lattices, we make reference to the discrete subgroups of Zn
p

that can be mapped from ideals in rings of the form Zp [x] /〈f〉 for some irreducible
polynomial of degree n. The mapping between ideals and ideal lattices is trivially
derived from the canonical isomorphism between polynomials v(0) + v(1)x + . . . +
v(n−1)xn−1 in Zp[x]/〈f〉 and vectors v = (v(0), . . . , v(n−1)) in Zn

p .
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Definition 2 (Collision Problem). Given an element h ∈ H(D, D×,m), the
collision problem Col(h,D×) (where D× ⊂ D) asks to find distinct elements
ẑ1, ẑ2 ∈ D× such that h(ẑ1) = h(ẑ2).

It was shown in [23] that, when D× is restricted to a set of small norm polyno-
mials, solving Col(h,D×) is as hard as solving SV Pγ(L) in the worst case over
lattices that correspond to ideals in D.

Theorem 1 (Theorem 1 in [20], applied to our setting). Let D be the ring
Zp [x] / 〈xn + 1〉 for n a power of two. Define the set D× = {y ∈ D | ‖y‖∞ ≤ d}
for some integer d. Let H(D, D×,m) be a hash function family as in Defini-
tion 1 such that m > log p

log 2d and p ≥ 4dmn1.5 log n. If there is a polynomial-

time algorithm that solves Col(h,D×) for random h ∈ H(D, D×,m) with some
non-negligible probability, then there is a polynomial-time algorithm that can
solve SV Pγ(L) for every lattice corresponding to an ideal in D, where γ =
16dmn log2 n.

In this paper we will set d = mn1.5 logn +
√
n logn, D× = Dh, and n, p,m as

suggested in Table 1. This ensures that the conditions required by the above
theorem are verified and that finding collisions for H(D, Dh,m) implies an al-
gorithm for breaking SV P in the worst-case over ideal lattices for polynomial
gaps (in n and therefore in k).

In the ring signature scheme we present, the manipulated hash functions will
always belong to sets H(D, Dh,m

′) with m′ ≤ m. It is important to note that if
an attacker is able to solve the above problem for m′ ≤ m he can also solve it for
m. Indeed, when given a challenge h ∈ H(D, Dh,m) the attacker can puncture
the tuple of polynomials describing h, to obtain a tuple of m′ polynomials, solve
the collision problem for m′ and the pad the obtained solution with zeros on the
punctured coordinates to obtain a solution to the problem for h.

2.3 Statistical Distance

The statistical distance measures how different are two probability distributions.
In this paper we will use this tool to prove that the ring signature scheme
presented is anonymous.

Definition 3 (Statistical Distance). Let X and X ′ be two random variables
over a countable set S. We define by:

Δ(X,X ′) =
1

2

∑
x∈S

|Pr[X = x]− Pr[X ′ = x]|

the statistical distance between X and X ′.

One important property of the statistical distance is that it cannot be increased
by a randomized algorithm which is formalized by the following proposition.



Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 7

Proposition 1 (Proposition 8.10 in [24]). Let X,X ′ be two random vari-
ables over a common set A. For any (possibly randomized) function f with do-
main A, the statistical distance between f(X) and f(X ′) is at most

Δ(f(X), f(X ′)) ≤ Δ(X,X ′).

This proposition implies that if the statistical distance of two families of random
variables (Xk) and (X ′k) is negligible,

2 an attacker given a sample will only obtain
a negligible advantage over a wild guess when trying to distinguish between the
distributions of (Xk) and the ones of (X ′k). Note that the proposition above does
not make any assumption on the computational complexity of f and thus this
is true whether the attacker is computationally bounded or unbounded.

Note that the statistical distance may grow if we consider multiple variables.
It is easy to verify from definition 3 that if X,Y follow a distribution φ and
X ′, Y ′ a distribution φ′, we have

2Δ(X,X ′) ≥ Δ((X,Y ), (X ′, Y ′)) ≥ Δ(X,X ′). (3)

Thus, if an attacker is given many samples of the same distribution he may be
able to distinguish better than with just one sample. More specifically, using (3)
iteratively, if the attacker is given #s samples of the same distribution and the
families of random variables have an upper-bound ε(k) on the statistical distance,
the advantage over a wild guess for such an attacker will be bounded from above
by #s ∗ ε(k).

In Section 4.1 we prove that, for our scheme, the signatures of two different
users have a statistical distance which is exponentially small in k and thus, even a
computationally unbounded attacker given an exponential amount of signatures
of the same user will have a negligible advantage over a wild guess when trying
to break anonymity.3

Attacker with Additional Information. An attacker trying to distinguish
between the distributions of two random variables Xk, X

′
k may have some extra

information which we model as a third random variable Zk. This information
may for example be obtained during an indistinguishability game prior to ob-
taining a sample (e.g. two public keys). If Xk and X ′k are not dependent on Zk,
this extra information is of no use to the attacker as then, using proposition
8.8 from [24], Δ((Xk, Zk), (X

′
k, Zk)) = Δ(Xk, X

′
k) and therefore we still have

Δ(f(Xk, Zk), f(X
′
k, Zk)) ≤ Δ(Xk, X

′
k).

If Xk or X ′k depend on Zk (as signatures depend on the public keys in our
case) we cannot use the same argument, as proposition 8.8 from [24] only applies
to independent variables. However, noting Xk,z and X ′k,z the random variables
conditioned on Z = z, if we have an upper-bound

Δ(Xk,z , X
′
k,z) < ε(k)

2 I.e. asymptotically bounded from above by k−c for any c, k being the security
parameter.

3 For example for 2k/2 samples, and ε(k) = 2−k we have #s ∗ ε(k) = 2−k/2.
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which is independent of z it is also an upper-bound for Δ(f(Xk, Zk), f(X
′
k, Z

′
k)).

Indeed, we have

Δ(f(Xk, Zk), f(X
′
k, Zk)) ≤ Δ((Xk, Zk), (X

′
k, Zk))

=
1

2

∑
x,z

∣∣Pr[(Xk, Zk) = (x, z)]− Pr[(X′
k, Zk) = (x, z)]

∣∣
=

1

2

∑
z

Pr[Zk = z]
∑
x

∣∣Pr[Xk = x | Zk = z]− Pr[X
′
k = x | Zk = z]

∣∣
=

∑
z

Pr[Zk = z]Δ(Xk,z , X
′
k,z)

Δ(f(Xk, Zk), f(X
′
k, Zk)) ≤ ε(k).

Note that the upper bound is valid independently of the distribution followed
by Zk, and thus we can include in this random variable parameters adversarially
chosen by the attacker.

2.4 Ring Signature Schemes: Definitions and Properties

A ring signature schemes gives means to individual users to define an arbitrary
set of public keys R (the ring), and issue a signature using a secret key associated
to one of the public keys in the ring. Using the set R and a verification algorithm
it is possible to verify that a signature has been issued by a member of the ring
(i.e. by a user who knows a secret key associated to one of the public keys in R),
but it is not possible to learn whom.

Ring Signature Scheme. We will describe a ring signature scheme by triple
of algorithms (Ring−gen, Ring−sign, Ring−verify):

– Ring−gen(1k): A probabilistic polynomial time algorithm that takes as in-
put a security parameter k, outputs a a public key pk and a secret key sk.
For many schemes, the users in a ring must share in common some public
information derived from k. We thus suppose that Ring−gen(1k) has two
sub-algorithms: Ring−gen−params(1k) which generates a set of public pa-
rameters P which are used in all the algorithms; and Ring−gen−keys(P)
which generates keypairs based on the public parameters. We suppose that
the constant c is defined in the description of the scheme (we could also
define it as an input parameter of Ring−gen−params).

– Ring−sign(P , sk, μ,R): A probabilistic polynomial time algorithm that takes
as input a set of parameters P , a signing key sk, a message μ ∈ M (M being
the message space of the scheme) and a set of public keys R (the ring). It
returns a signature σ for μ under sk, or failed.

– Ring−verify(P , σ, μ,R): A deterministic algorithm that takes as input a set
of parameters P , a ring signature σ on a message μ and a set of public keys
R, and outputs 1 or 0 for accept or reject respectively.

We require the following correctness condition: for any k, any � (bounded by
a polynomial in k), any P ∈ Ring−gen−params(1k), any {(pki, ski)}i∈[�] ⊂
Ring−gen−keys(P), any i0 ∈ [�], any message μ, and any σ ∈ Ring−sign
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(P , ski0 , μ, {pki}i∈[�]), σ �= failed, we have Ring−verify(P , μ, σ, {pki}i∈[�]) = 1.
Moreover, in order to be considered secure, a ring signature scheme must satisfy
some anonymity and unforgeability properties. Our goal will be to obtain the
following two properties:

Anonymity. In [2], Bender et al. define various levels of anonymity for a ring sig-
nature scheme. Among them the highest is anonymity against full key exposure.
The authors of [2] use the same definition for two levels of security (attribution
attacks and full-key exposure) which results in a definition which is slightly too
complex for our needs. We use here a definition which is stronger and as a conse-
quence, much simpler. Indeed, we do not need to define a signing or corruption
oracle as the attacker knows all the secrets and can thus simulate both oracles
effectively, and we don’t have a first step in which the challenger generates the
parameters and keys as these can be adversarially chosen. The definition is given
by the following game:

Unconditional Anonymity Against Chosen Setting Attacks

1. A outputs a set of public parameters P = (k, n,mu, p, S), a ring R =
{pk1, . . . , pk�} for � in [kc], two distinct indices i0, i1 ∈ [kc], two secret keys
ski0 , ski1 , and a message μ.

2. Two signatures σ0 ← Ring−sign(P , ski0 , μ, R), σ1 ← Ring−sign(P , ski1 , μ, R)
are generated and a random bit b is chosen. If σ0 �= failed and σ1 �= failed,
A is given σb, else the game is restarted.

3. A outputs a bit b′ and succeeds if b′ = b.

The ring signature scheme achieves unconditional anonymity against chosen set-
ting attacks if any adversary A has an advantage with respect to a wild guess
which is negligible in the security parameter k.

This definition can be easily generalized to the case in which the adversary is
given sets of samples instead of a single sample. In order to simplify the definition
we use just one sample, but the proofs of Section 4.1 show that the anonymity
is ensured even if the attacker is given an exponential amount of samples.

Unforgeability. In [2] different notions of unforgeability are introduced. We
present here all of them as going from the simplest to the most complex definition
helps in the presentation.

For a ring signature scheme with � members, the unforgeability against fixed-
ring attacks is defined using the following experiment. The challenger firstly runs
the algorithm Ring−gen to obtain compatible keypairs (pk1, sk1), . . . , (pk�, sk�)
for the signature scheme and sends R = {pki}i∈[�] to the forger. The forger can
then make polynomially many signing queries. A ring signing query is of the form
(isigner, μ, R) for varying μ ∈ M, isigner ∈ index(R). The challenger replies with
σ ← Ring−sign(P , skisigner , μ, R). Finally the forger outputs (σ�, μ�, R) and it
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wins if Ring−verify(P , σ�, μ�, R) outputs accept and μ� is not one of the messages
for which a signature was queried.

An intermediate, stronger, definition is unforgeability against chosen subring
attacks in which signing queries and the final forgery can be done with respect
to any subring S ⊂ R. The strongest definition proposed is unforgeability with
respect to insider corruption. In this setting, signing queries can be done with
respect to any ring (i.e. the attacker can add to these rings adversarially gen-
erated public keys). The attacker is also given a corruption oracle that for any
i ∈ index(R) returns ski. Forgeries are valid if they do not correspond to a
signing query, the subring of the forgery is a subset of R, and none of the secret
keys of the subring have been obtained through the corruption oracle.

In this paper we will first show that the proof of [19] can be adapted to our
scheme in order to prove unforgeability with respect to subring attacks. We will
then prove that for an alternative version of this scheme it is also possible to
ensure unforgeability with respect to insider corruption.

3 Our Scheme

3.1 Informal Description

In this section we first provide a high-level description of the tree-less signature
scheme in [19], and then we show how to transform it into a ring signature
scheme. In [19], the signer has as (secret) signing key ŝ and a (public) verification
key (h, S) such that h(ŝ) = S. The domains to which these keys belong will be
made explicit later.

To make a signature of some message μ, the signer will prove that he can:

– Choose a random vector of polynomials ŷ (which he does not reveal)
– Output a vector of polynomials whose difference with ŷ is ŝ (his secret key)

times a small polynomial e that is not of his choice

In order to do this the signer will select some random ŷ, compute e = H(h(ŷ), μ)
and output (ẑ, e) with ẑ = ŝe + ŷ. The verifier tests that e = H(h(ẑ) − Se, μ).
This is true for a correct signature thanks to the linearity of h as h(ẑ) − Se =
h(ŝe+ ŷ)− Se = h(ŷ) + Se− Se = h(ŷ).

To obtain a ring signature from this scheme we make two major modifications.
The first one is to ensure that each user has in his public key a function hi that
satisfies hi(ŝi) = S where ŝi is the secret key and S is a fixed standard polynomial
(not null). Consider a ring R = {hi}i∈[�]. The second modification keeps the real
signer anonymous when he signs a message. We do this by simply adding � − 1
random variables that will corresponds to the ring members except the real
signer. For example, suppose that the real signer is indexed by j ∈ [�], the signer
sends the signature (ẑi; i ∈ [�], e) with e = H(

∑
i∈[�] hi(ŷi), μ), ẑj = ŝje+ ŷj and

ẑi = ŷi for i ∈ [�] \ {j}. Therefore, the final signature will contain [�] elements
one for each member in the ring. Now we go gack to the first modification and
we will show its utility in the correctness of the scheme. In the verification step,
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the verifier checks if the hash value of (
∑

i∈[�] hi(ẑi)− Se, μ) is equal to e. Note

that this will be true only if
∑

i∈[�] hi(ẑi) − Se is equal to
∑

i∈[�] hi(ŷi). In fact

using the linearity of hj we have hj(ẑj) = hj(ŝje + ŷj) = hj(ŷj) + Se. Since all
the ring members have key pairs (hi, ŝi) such that hi(ŝi) = S, the verifier will
always accept when one of them produces a ring signature.

In order to resist to chosen subring attacks against unforgeability we must
modify the scheme to include in the random oracle call a description of the ring
for which the signature is valid (if not, it is easy to reuse a signature to generate
a forged signature on a larger ring). In order to resist to attacks on adversarially
chosen parameters, the ring signature algorithm starts with an initial step in
which the inputs are required to pass simple tests (bounds on the amount of co-
ordinates, scalar sizes, etc.). The security proofs proposed by Lyubashevsky must
also be modified to take into account the existence of multiple hash functions
and signature elements. Moreover, using modified hash functions also requires
that we introduce a few new lemmas and propositions to complete the proofs.

3.2 A More Formal Description

Ring Signature Scheme

Ring−gen−params(1k):
Given an integer k define the common public parameters.

1. Set n as a power of two larger than k
2. Set mu = 3 logn, and p as a prime larger than n4 such that p = 3

mod 8

— Note: these parameters define the sets D, Dh, Dz, Dy, Ds,c and the
family H.

3. Set S ← D, S �= 0
4. Output P = (k, n,mu, p, S)

Ring−gen−keys(P):
Generate a keypair.

1. Set ŝ = (s1, s2, . . . , smu) ← Dmu
s,c

2. If none of the si is invertible, go to 1.
3. Let i0 ∈ {1, . . . ,m} such that si0 is invertible.
4. (a1, a2, . . . , ai0−1, ai0+1, . . . , amu) ← Dmu−1.
5. Let ai0 = s−1i0

(S −
∑

i�=i0
aisi) and note â = (a1, . . . , amu)

6. Output (pk, sk) = (h, ŝ), h being the hash function in H defined
by â
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Ring−sign(P , sk, μ,R):
Given a message μ ∈ M, a ring of � members with public keys R =
{hi}i∈[�] ⊂ H(D, Dh,mu), and a private key sk = ŝj associated to one
of the public keys hj in R, generate a ring signature for the message.

0. Verify that: the public parameters respect the constraints of steps
1− 3 in Ring−gen−params ; sk is in Dmu

s,c ; R is of size bounded by
kc ; one of the public keys in R is associated to sk. If the verification
fails output failed.

1. For all i ∈ [�]; i �= j ;ŷi ← Dmu
z

2. For i = j; ŷj ← Dmu
y

3. Set e ← H(
∑

i∈[�] hi(ŷi), R, μ) (e is therefore in Ds,c)
4. For i = j, ẑj ← ŝj · e + ŷj
5. If ẑj /∈ Dmu

z then go to Step 2
6. For i �= j, ẑi = ŷi
7. Output σ = (ẑi; i ∈ [�], e)

Ring−verify(P , μ, R, σ):
Given a message μ, a ring R = {hi}i∈[�] and a ring signature σ =
(ẑi; i ∈ [�], e), the verifier accepts the signature only if both of the
following conditions satisfied:

1. ẑi ∈ Dmu
z for all i ∈ [�]

2. e = H(
∑

i∈{1,...,�} hi(ẑi)− S · e,R, μ)

Otherwise, the verifier rejects.

3.3 Correctness and Convergence of the Algorithms

The correctness of the signing algorithm is pretty straightforward. Indeed, let
σ = (ẑi; i ∈ [�], {hi}i∈[�], e) ← Ring−sign(P , ŝj , μ, {hi}i∈[�]) be a signature with
j ∈ [�] and (hj , ŝj) a given keypair. The first test in Ring−verify is always passed
by a valid signature as steps 2 and 5 of Ring−sign ensure that signatures only
contain elements in Dmu

z . With respect to the second test we have:∑
i∈[�]

hi(ẑi)− S · e = hj(ẑj)− S · e+
∑

i∈[�]\{j}
hi(ẑi)

= hj(ŝje+ ŷj)− S · e+
∑

i∈[�]\{j}
hi(ŷi)

by replacing ẑj by ŝj · e+ ŷj and ẑi by ŷi,

= hj(ŝj) · e+ hj(ŷj)− S · e+
∑

i∈[�]\{j}
hi(ŷi)

using the homomorphic properties of hj ∈ H,

=
∑
i∈[�]

hi(ŷi) as hj(ŝj) = S.
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As e = H(
∑

i∈[�] hi(ŷi), {hi}i∈[�],m) the second test of Ring−verify is therefore
always satisfied by a valid signature.

A correctly issued signature is therefore always verified. Let’s consider now
the expected running time of the different algorithms.

Proposition 2. The expected running times of Ring−gen−params, Ring−gen−
keys, Ring−sign and Ring−verify are polynomial in the security parameter.

Proof. All the operations in the different algorithms can be executed in polyno-
mial time in the security parameter. Thus, Ring−gen−params and Ring−verify
run in polynomial time and the only possible issue would be the amount of
iterations in the loops of Ring−gen−keys and Ring−sign.

Lemma 3, proved in the appendix, states that each of the polynomials chosen
in step 1 of algorithm Ring−gen−keys is invertible with probability exponentially
close to one and thus the expected amount of iterations in the associated loop is
roughly one. Thus the expected running time of Ring−gen−keys is polynomial.

In Ring−sign the outer loop has a polynomial amount of iterations, on the
other hand inner loop between steps 2 and 5 which will continue as long as
ẑj = ŝj · e+ ŷj �∈ Dmu

z . Corollary 6.2 from [19] states that for any ŝ ∈ Dmu
s ,

P rc←Ds,c,ŷ←Dmu
y

[ŝc+ ŷ ∈ Dmu
z ] =

1

e
− o(1).

As e and ŷj are drawn uniformly from Ds,c and Dmu
y we can use this result. This

implies that the expected amount of iterations in the inner loop of Ring−sign
is less than 3, and therefore that Ring−sign also runs in expected polynomial
time. ��

4 Security of the Proposed Scheme

4.1 Anonymity

In the anonymity against chosen setting attacks game, the adversary receives
a signature which depends on a random bit b as well as on a set of public
parameters P = (k, n,mu, p, S), two secret keys ski0 , ski1 , a message μ, and a
ring of public keys R. All of these parameters have been chosen adversarially
except the random bit b.

Let Xb,P,skib
,μ,R be the random variable that represents the signature received

by the adversary for a given set of parameters. The following theorem states that
for any choice of P , ski0 , ski1 , μ, R which does not result in a game restart, the
statistical distance between X0,P,R,ski0 ,μ

and X1,P,R,ski1 ,μ
is negligible in k.

Theorem 2 (Anonymity). For b ∈ {0, 1}, let Xb,P,skib
,μ,R be the random vari-

able describing the output of Ring−sign(P , skib , μ, R) with P = (k, n,mu, p, S),
skib , μ, R a set of arbitrary inputs to the algorithm. If the domains of these vari-
ables are both different from {failed} we have

Δ(X0,P,ski0 ,μ,R
, X1,P,ski1 ,μ,R

) = n−ω(1).
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The proof of this theorem is available on the appendix. Using the properties of
statistical distance presented in Section 3 this implies that our scheme ensures
unconditional anonymity against chosen setting attacks.

4.2 Unforgeability Against Chosen Subring Attacks

In this section we will show that an adversary able to break the unforgeability in
the chosen subring setting for our scheme is also able to break the unforgeabil-
ity of Lyubashevsky’s scheme. Given the results of [19], this implies an efficient
algorithm to solve SV Pγ on ideal lattices (for γ defined as in Theorem 1). It is
important to note that in Table 1 we change the parameters given by Lyuba-
shevsky by increasing m and p, but the reader can easily check (using the sketch
proof of the corollary below) that the proofs given in [19] are still valid and that
the inequalities in Theorem 1 are verified.

Corollary 1 (of Theorems 6.5 and 6.6 in [19]). If there is a polynomial
time algorithm that can break the unforgeability of the signature scheme proposed
in [19] for the parameters presented in Table 1, and more precisely for hash
functions with m = nc ∗mu columns, there is a polynomial time algorithm that
can solve SV Pγ for γ = O(n2.5+2c) for every lattice L corresponding to an
ideal in D.

Proof (Sketch.). The unforgeability proof of [19] is split in two. First it reduces
signature unforgeability from collision finding and then collision finding from
SVP (for a given gap). The first part of the reduction is given by Theorem 6.6
which is almost unchanged for our parameters. As we have a major modification
on m, the amount of columns of the hash functions, the only point which could
raise an issue is when Lemma 5.2 and Theorem 6.5 are used. These prove that for
the parameters in [19] there is a second pre-image for a given output of the hash
function with high probability and that signatures using two such pre-images are
indistinguishable. As we increase the amount of columns in the hash functions
used, the probability of a second pre-image and the uniformity of the output are
increased and thus we can still use these results.

Therefore using Theorem 6.6 of [19] we can deduce that breaking unforge-
ability for our parameters implies finding collisions for the corresponding hash
functions. As our hash functions have more columns than in [19] it is easier to find
such collisions than with the original parameters. Using Theorem 1 on our param-
eters shows that collision finding can be reduced from SV Pγ for γ = O(n2.5+2c)
(instead of O(n2.5) for the original scheme). ��

In our ring signature scheme, an unforgeability challenge is a set of verification
hash functions defined by a set of � tuples of mu polynomials. In Lyubashevsky’s
signature scheme an unforgeability challenge is a single tuple of m′ polynomials.
The idea is thus, considering an attacker to our scheme, to set m′ = � × mu,
transform this challenge into a set of � tuples and show that if we give this as
a ring signature challenge to the attacker, we will obtain with non-negligible
probability a valid forgery for Lyubashevsky’s scheme.
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The are two key issues. First, the polynomials in the m′-tuple are uniformly
random but the polynomials in themu-tuples that the attacker expects to receive
are not. We address this issue by proving, in Corollary 2, that the statistical
distance between public keys in our ring signature scheme, and hash functions
chosen uniformly at random is negligible. This implies that an attacker able to
forge signatures for hash functions associated to the public keys is also able to
forge them for hash functions chosen uniformly at random. Indeed, if we model
the attacker by a randomized function, it cannot increase the statistical distance
between the two families of functions and thus if it succeeds with non-negligible
probability for a family he also will for the other. The second issue is that we do
not know the private keys associated to the challenge given to the attacker but
we must be able to answer to his signing queries. We solve this issue simply by
programming the random oracle that the attacker uses.

In order to prove Corollary 2, we will use the following theorem.

Theorem 3 (Adapted from [25], Theorem 3.2). For g1, . . . , gmu−1 ∈ D,
we denote by F (g1, . . . , gmu−1) the random variable

∑
i∈[mu−1] sigi ∈ D where

s1, . . . , smu−1 are chosen uniformly at random in Ds,c. Noting U1, . . . , Umu in-
dependent uniform random variables in D, we have

Δ((U1, . . . , Umu−1, F (U1, . . . , Umu−1)), (U1, . . . , Umu)) ≤ 1

2

√(
1 +

( p

3mu−1

)n/2
)
− 1

Proof. Just apply Theorem 3.2 from [25] to our setting, using the fact that by
Lemma 2.3 from [25] our choice of parameters ensures that xn +1 = f1f2 mod p
where each fi is irreducible in Zp [x] and can be written fi(x) = xn/2+ tix

n/4−1
with ti ∈ Zp. ��
Corollary 2 (Uniformity of the public key). Let XP be a random variable
describing the distribution of the hash functions resulting from the key genera-
tion algorithm Ring−gen−keys(P) and U1, . . . , Umu denote independent uniform
random variables in D. Then

Δ (XP , (U1, . . . , Umu)) ≤ n−ω(1).

Proof. We describe a hash function hâ by the set of polynomials â = (a1,
. . . , amu). We suppose, w.l.o.g. that (a1, . . . , amu) = (a1, . . . , amu−1, s−1mu

(S −
∑

i∈[mu−1] aisi)), where ŝ = (s1, . . . , smu) is the secret key corresponding
to hâ.

We first note that the function on the right side of the inequality in Theorem 3
is negligible for our parameters as p = Θ(n4+c) and 3mu−1 = 3(3+2c/3) log2 n/3 =
n(3+2c/3) log2 3/3 > n4.5+c/3. Thus, using Theorem 3, we have

Δ((U1, . . . , Umu−1, F (U1, . . . , Umu−1)), (U1, . . . , Umu)) ≤ n−ω(1).

Proposition 1 states that a function cannot increase the statistical distance. Not-
ing f(g1, . . . , gmu) the function that leaves unchanged themu−1 first coordinates
and replaces gmu by s−1mu

(S − gmu) we get

Δ(f(U1, . . . , Umu−1, F (U1, . . . , Umu−1)), f(U1, . . . , Umu)) ≤ n−ω(1).
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To prove the corollary we just need to note that f(U1, . . . , Umu−1, F (U1, . . . ,
Umu−1)) has exactly the same distribution as XP , and f(U1, . . . , Umu) the same
as (U1, . . . , Umu). The first assertion is trivially true given the Ring−gen−keys
algorithm. The second one comes from the fact that adding an element (in our
case S) or multiplying by an invertible element (in our case s−1mu

) in D just
permutes the elements of the ring and thus the uniform distribution remains
unchanged. We therefore have

Δ(f(U1, . . . , Umu−1, F (U1, . . . , Umu−1)), f(U1, . . . , Umu)) = Δ(XP , (U1, . . . , Umu))

and thus, Δ(XP , (U1, . . . , Umu)) ≤ n−ω(1). ��

We are now ready to prove our theorem on unforgeability against chosen subring
attacks.

Theorem 4. If there is a polynomial time algorithm that can break the unforge-
ability under chosen subring attacks of the ring signature scheme described in
Section 3.2 for the parameters presented in Table 1, there is a polynomial time
algorithm that can solve SV Pγ(L) for γ = Õ(n2.5+2c) for every lattice L corre-
sponding to an ideal in D.

Proof (Sketch.).
Suppose that we have an adversary A that can output a forgery for the ring

signature scheme with non-negligible advantage in the chosen subring setting.
Given Corollary 1, it is enough to prove that using A, we can construct a poly-
nomial time adversary B that outputs a forgery for Lyubashevsky’s scheme with
non-negligible advantage for the parameters given in Table 1.

Setup: B is given as a challenge a description of a hash function (namely a
tuple of m′ = � × mu polynomials (a1, . . . , a�×mu) in D), an element S of D,
and access to the random oracle HL of the signing algorithm. B splits the set
of polynomials in � sets of mu polynomials (ai,1, . . . , ai,mu) for i ∈ [�]. Finally,
B initializes A by giving it the set of tuples generated, the public parameters
associated (among which S) and access to the ring signature random oracle H
which it controls.

Query Phase: B answers the random oracle and signing queries of A as follows.
For each random oracle query (xy, xh, xm) it will test whether it has already
replied to such a query. If so, it will reply consistently. If not, it will reply with
HL(xy, xh‖xm), ‖ being the concatenation operator and store the result. For
each signing query ({hi}i∈T , i0, μ) for i0 ∈ T ⊆ [�], B programs H to produce a
signature. In other words:

1. It follows the steps of the signature by generating a set of ŷi ← Dmu
y for

i ∈ T
2. It generates at random r ← Ds,c

3. It checks whether HL has been called with parameters (
∑

i hi(ŷi) − S ·
r, {hi}i∈T ‖μ) (if so it aborts)
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4. It programs the random oracle H so that H(
∑

i hi(ŷi)−S ·r, {hi}i∈T , μ) = r,
and stores the result

5. Finally, it outputs (ŷi; i ∈ T, r).

Forgery Phase: At a given point, A finishes running and outputs a forgery
((ẑi; i ∈ T, e), μ, {hi}i∈T ), for T ⊆ [�] with non-negligible probability. B just pads
the remaining coordinates of the signature with null polynomials ẑi = 0 for i ∈
[�]\T and outputs ((ẑ1‖ · · · ‖ẑ�, e), μ), ẑ1‖ · · · ‖ẑ� being the vector of polynomials
resulting from the concatenation of each of the vectors of polynomials ẑi.

Analysis: In this analysis we will detail completely the reasoning but just sketch
the statistical arguments as they are pretty standard and easy to verify.

First of all, note that in step 3 of the protocol above there is the possibility of
an abort. The probability of this event is negligible. Indeed, given the sizes of Dy

and pn,mu is large enough to ensure by leftover hash lemma [26] that
∑

i hi(ŷi)−
S · r is within negligible distance from an uniformly random distribution. Thus,
the probability that A has generated beforehand a query colliding with the one
of the protocol is negligible.

In order to prove that A will output a ring signature forgery with non-
negligible probability we must show that all the inputs it receives are within
negligible statistical distance to the ones it would have received in a ring signa-
ture challenge. Once this is proved, we must show that the final forgery that B
outputs is valid in the basic signature scheme.

First note that by Corollary 2 and using equation (3) of Section 3, we have
that the challenge given to A is within negligible statistical distance to the one
it has in a ring signature challenge. Another family of inputs to consider are
the signatures generated by B. These signatures are trivially valid for the given
random oracle. Following the same ideas as those used in Theorem 2 we have
that these signatures are withing negligible statistical distance from a signature
generated using the signing algorithm (omitted). The last inputs to consider are
the ones coming from the random oracle H which are pairs (preimage, image)
of the graph of H . All of the images of H are chosen uniformly at random over
Ds,c. The issue is that we have programmed H and thus, in our protocol the
first coordinate of the pre-image and the image are related. However, using the
leftover hash lemma as in the first paragraph of this analysis (when considering
aborts) we have that we add to this coordinate

∑
i hi(ŷi) which is close to uni-

form and independent of the image. This implies that (omitting the coordinates
set by A with his query), the pairs (preimage, image) are statistically close to
uniform.

We therefore can ensure thatA outputs a forgery for the ring signature scheme
with non-negligible probability and the only issue left to prove is the validity of
the forgery given by B. The basic idea we will use in the rest of this proof is that
in the forgery ((ẑi; i ∈ T, e), μ, {hi}i∈T ) that A outputs, if e has been obtained
during a direct call to the random oracle we can prove that the forgery is valid
in the basic signature scheme. If not, we use the same ideas than in Theorem
6.6 of [19].
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A wild guess of e can only happen with negligible probability. Indeed, as Ds,c

is exponentially large, if H has not been queried the probability that the output
of A will give e when using H in the verification step is exponentially small. If
we therefore suppose that e has been obtained through a call to H there are two
possibilities: either e has been generated during a signing query, or it has been
generated during a direct random oracle query. We leave the latter option for
the end of the proof.

Suppose e has been generated during a signing query which resulted in an
output (ẑ′i; i ∈ T ′, e) for a ring {hi}i∈T ′ and a message μ′. In order to be valid,
the forgery must be different from ((ẑ′i; i ∈ T ′, e), μ′, {hi}i∈T ′) and thus we must
have either {hi}i∈T ′‖μ′ �= {hi}i∈T ‖μ or (ẑ′i; i ∈ T ′) �= (ẑi; i ∈ T ). The former
case can only happen with negligible probability as it implies a collision for
H . Indeed, {hi}i∈T ′‖μ′ �= {hi}i∈T ‖μ implies {hi}i∈T ′ �= {hi}i∈T or μ′ �= μ
and in both cases we have a collision as H(

∑
i∈T ′ hi(ẑ

′
i) − S · e, {hi}i∈T ′ , μ′) =

H(
∑

i∈T hi(ẑi) − S · e, {hi}i∈T , μ) = r (we have twice the same image for two
pre-images that are different either in the second or the third coordinate). In the
latter case, using the same reasoning, the first coordinate of H is the same in
the two cases with overwhelming probability and thus we have

∑
i∈T ′ hi(ẑ

′
i) −

S · e =
∑

i∈T hi(ẑi) − S · e for (ẑ′i; i ∈ T ′) �= (ẑi; i ∈ T ). Setting ẑi = 0 for
i ∈ [�]\T and ẑ′i = 0 for i ∈ [�]\T ′ we obtain a collision for a random hash
function of H(D, Dh, �). If this event happens with non-negligible probability,
using Theorem 1 we deduce that we can solve SV Pγ .

We conclude this proof by working on the case in which e has been gener-
ated during a direct random oracle query. We have the forgery ((ẑi; i ∈ T, e), μ,
{hi}i∈T ) and as the ring signature must be valid we have H(

∑
i∈T hi(ẑi) − S ·

e, {hi}i∈T , μ) = e. Noting xy =
∑

i∈T hi(ẑi) − S · e and given the algorithm
followed by B, we also have HL(xy , {hi}i∈T ‖μ) = e. If we pad the ẑi with ẑi = 0
for i ∈ [�]\T we still have

∑
i∈[�] hi(ẑi)− S · e = xy and thus HL(

∑
i∈[�] hi(ẑi)−

S · e, {hi}i∈T ‖μ) = e. We therefore have that σ′ = (ẑ1‖ · · · ‖ẑ�, e) is a signature
of μ′ = {hi}i∈T ‖μ and, as we have not done any signing query in the basic
signature scheme, (σ′, μ′, [�]) is a valid forgery.

4.3 Unforgeability Against Insider Corruption Attacks

Suppose that we have an algorithm A able to break the unforgeability of our
scheme with insider corruption attacks. We would like to prove again that there
exists an algorithm B which using A can break the unforgeability of the under-
lying basic signature scheme. The main issue is that when B gets the challenge
from the basic signature scheme he can split the tuple of polynomials but he does
not know the signing keys associated to those split tuples and thus he cannot
answer to the corresponding corruption queries.

One idea would be to pass to A modified versions of these tuples so that B
knows the signing keys associated to them, but we have been unable to find a
way to use the final forgery with such a strategy. A more standard approach to



Adapting Lyubashevsky’s Signature Schemes to the Ring Signature Setting 19

solve this issue is the one used by Wang and Sun in [13], which consists in giving
to A more tuples than the ones obtained from splitting the initial challenge.
These additional tuples are generated using the key generation algorithm and B
knows the associated signing keys. If there are enough of them it is feasible to
obtain a run from A in which all the corruption queries correspond to tuples for
which B has the signing key.

Unfortunately, this creates a new issue in [13] as well as in our case. If we
have a lot of tuples which do not correspond to the challenge then, for some
strategies of A which are plausible, the final forgery is for a ring which contains
tuples which were not in the challenge with overwhelming probability. In some
number theory schemes this is not an issue, but in our case such forgeries are
useless as B could have generated them (as the statistical distance between ring
signatures by different members of the ring is negligible).

In the end, if the ring size for which A works is polynomial in the secu-
rity parameter, for some strategies of A (in particular if he corrupts half of
the ring and gives a ring signature for the other half), all the trade-offs fail.
If we have a super logarithmic amount of new tuples there is an overwhelming
probability to have a forgery for an inappropriate ring, and if not there is an over-
whelming probability that B will be unable to answer to some of the corruption
queries.

Our Approach. In order to solve these issues we modify the key generation
process. Each user generates a set of k verification keys, k being the security
parameter. Among these keys k/2 are generated through the original key gener-
ation algorithm Ring−gen−keys, and the user stores the associated signing keys.
The other k/2 verification keys are just uniformly chosen hash functions. The k
verification keys are numbered, the order being chosen at random (mixing both
types of keys).

Ring−gen−keys−ic(P):

1. Choose randomly a subset T ⊂ [k] of size k/2.
2. For i ∈ T , set pki ← H(D, Dh,m) and ski = 0.
3. For i ∈ [k]\T , set (pki, ski) ← Ring−gen−keys(P).
4. Output (pk, sk) = ({pki}i∈[k], {ski}i∈[k]).

For a set of users S ⊂ Z (we associate users to integers), we define fulldesc(S)
as a description of the full set of verification keys of the users of S.

When signing a message μ for a set of users S, the user calls a first random or-
acle with input (μ, fulldesc(S)). The output of this random oracle is {Tσ,i}i∈S ,
a set of subsets of [k], each of them of size k/2. In order to sign, the user will
create a ring of verification keys T which includes for each user i the subset of
verification keys indexed by Tσ,i.
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Ring−sign−ic(P , sk, μ,R):

0. Verify that: the public parameters respect the constraints of steps
1− 3 in Ring−gen−params ; each ski ∈ sk is in Dmu

s,c ; R is of size
bounded by kc ; one of the public keys in R is associated to sk. If
the verification fails output failed.

1. Set {Tσ,i}i∈R ← Hσ(μ, keys(R))
2. Define keys(T ) = (pki,j)i∈R,j∈Tσ,i

3. Let i0 denote the index of the signer in R. Choose randomly ski ∈
sk with i ∈ Tσ,i0 such that ski �= 0. If none exists, abort.

4. Output Ring−sign(P , ski, μ, T ).

Note that since the random oracle chooses k/2 verification keys of the signer
at random, the probability that they all are uniformly chosen random hash
functions is exponentially small and thus the probability of an abort in Step 3
is negligible.

The adaptation of the verification algorithm to this new setting is straight-
forward.

Sketch of Proof in the Insider Corruption Setting. We just outline the
ideas of the proof which can be obtained by small modifications in the proof of
Theorem 4.

We use an insider corruption attacker to break a challenge of Lyubashevsky’s
signature. In order to do this we get as a challenge a tuple of m′ = k/2 × � ×
mu polynomials. We use them in our ring signature algorithm instead of the
uniformly chosen hash function obtained in the usual key generation process.
The rest of the keys are generated according to Ring−gen−keys−ic (i.e. through
the original algorithm Ring−gen−keys). Note that as half of the verification keys
of each user are generated using this algorithm, we can answer to the corruption
queries of the attacker.

In order to answer to the challenge we want the attacker to output a signature
that only uses as verification keys the ones corresponding to the challenge and
none of the ones generated by Ring−gen−keys. The main idea is to call the
attacker with a controlled random oracle Hσ, pre-generate a polynomial number
of the outputs of this oracle sampling uniformly its range and guess which one
of these outputs will be used in the forgery. There is a polynomial loss in the
reduction but using this approach we can then order the keys of the different
users so that if the attacker uses the random oracle reply we expect, he will only
use keys for which we do not have the associated signing key. When this happens
(after a polynomial number of calls to the attacker), we obtain a forgery which
can be used to answer the initial challenge.
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A Proof of Theorem 2

The contents of this section are closely related to Theorem 6.5 in [19], and the
associated proof, which deals with statistical distance between signatures with
two related secret keys in the signature scheme we are based on. The first major
difference when dealing with statistical distance comes from the fact that we do
not have a single random polynomial y ← Dmu

y (resp. a random hash function)
but a set of � polynomials (resp. a set of hash functions) on each signature. The
second major difference is that we have to verify that the adversarial nature of
some parameters does not result in an explosion of the statistical distance. In
order to make that clear we first introduce a lemma that we will need in the
main proof.

In order to get lighter notations we will denote the random variables of the
theorem X0 and X1 dropping the other parameters. As the output of the ring

signature algorithm is a vector of �+1 coordinates we will note X
(i)
b for i ∈ [�+1]

and b ∈ {0, 1} the random variable associated to the i-th coordinate of Xb.
Suppose that none of these variables has {failed} as domain. We can then
guarantee that the parameters given in the theorem verify the properties tested
on step 0 of the algorithm Ring−sign. We will say that these parameters have
passed the sanity check.

http://eprint.iacr.org/
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As in [19], we therefore start by noting that the set

Ds,c(ski0 , ski1) = {c ∈ Ds,c : ‖ski0c‖∞, ‖ski1c‖∞ ≤
√
n logn}

has a cardinality negligibly close (in a relative sense) to the one of Ds,c. As the
secret keys have passed the sanity check, they belong to Ds,c and therefore, even
if they are chosen adversarially, Lemma 1 guarantees that

|Ds,c(ski0 , ski1)|
|Ds,c|

= 1− n−ω(1). (4)

Note that n is also an adversarially chosen parameter but, again, the sanity
check ensures that n ≥ k and thus that n−ω(1) is a negligible function. Splitting
the statistical distance in two we get

Δ (X0, X1) =
1

2

∑
α̂i∈Dmu

z ;i∈[�],β �∈Ds,c(ski0 ,ski1 )

|Pr [X0 = (α̂i; i ∈ [�], β)]− Pr [X1 = (α̂i; i ∈ [�], β)] | (5)

+
1

2

∑
α̂i∈Dmu

z ;i∈[�],β∈Ds,c(ski0 ,ski1 )

|Pr [X0 = (α̂i; i ∈ [�], β)]− Pr [X1 = (α̂i; i ∈ [�], β)] |. (6)

In order to prove that the statistical distance is negligible, we will first prove
that (5) is negligible and then that (6) is equal to zero. The first assertion is
almost trivial, as the last coordinate in the signature comes from a random
oracle and thus the probability it does not belong to Ds,c(ski0 , ski1) is negli-

gible. Noting that this is true for X0 as for X1 and that
∑

|Pr
[
X0 = (α̂i;

i ∈ [�], β)
]
− Pr [X1 = (α̂i; i ∈ [�], β)] | ≤

∑
Pr [X0 = (α̂i; i ∈ [�], β)] +

∑
Pr

[X0 = (α̂i; i ∈ [�], β)] we can prove that

(5) ≤ 1− |Ds,c(ski0 , ski1)|
|Ds,c|

= n−ω(1). (7)

More formally, we have

(5) ≤ 1

2

∑
α̂i∈D

mu
z ;i∈[�],β �∈Ds,c(ski0

,ski1
)

Pr [X0 = (α̂i; i ∈ [�], β)] + Pr [X1 = (α̂i; i ∈ [�], β)]

and for any b ∈ {0, 1}, noting that
∑
∀A Pr[A ∧ B] =

∑
∀A Pr[A|B]Pr[B] =

Pr[B], we have

∑
α̂i∈D

mu
z ;i∈[�],β �∈Ds,c(ski0

,ski1
)

Pr [Xb = (α̂i; i ∈ [�], β)] =
∑

β �∈Ds,c(ski0
,ski1

)

Pr
[
X

(�+1)
b = β

]
.

Finally, noting that X
(�+1)
b is obtained through a call to a random oracle

H(
∑

i∈[�] hi(yi), R, μ), the probability it is equal to a given β is 1/|Ds,c|. It
is important to note that this is true, independently of the distribution of the
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input. Thus, even if the hi in H(
∑

hi(yi), R, rμ) are adversarially chosen (say,
hi(x) = 0 for all x and i), the probability given is still valid. Using this proba-
bility for all β �∈ Ds,c(ski0 , ski1), equation (7) follows immediately.

In order to prove that (6) is equal to zero we will show that each term in the
sum is null. As the last coordinate of a signature is generated through a call to a
random oracle we have for both random variables the same probability to obtain
β. Therefore, we must prove that for each term in (6):

Pr
[
(X

(i)
0 ; i ∈ [�]) = (α̂i; i ∈ [�])|X(�+1)

0 = β
]
= Pr

[
(X

(i)
1 ; i ∈ [�]) = (α̂i; i ∈ [�])|X(�+1)

1 = β
]

(8)

We will prove that for all b ∈ {0, 1}, Pr[X
(i)
b = α̂i|X(�+1)

b = β] is equal to
1/|Dmu

z | if i ∈ [�] \ ib and to 1/|Dmu
y | if i = ib. This is enough to prove (8) as

the first � coordinates of the random variables are independently chosen in the
signature algorithm.

We note ŷb,i the variable ŷi corresponding to an execution of the signature

algorithm in which skib is used. For i �= ib, we have X
(i)
b = α̂i if ŷb,i = α̂i. As

ŷb,i is drawn uniformly at random from Dmu
z , and α̂i ∈ Dmu

z , the probability

that both values are equal is 1/|Dmu
z |. For i = ib, we have X

(ib)
b = α̂ib if ŷb,ib =

α̂ib−skibβ. As ŷb,i is drawn uniformly at random from Dmu
y , the probability that

it is equal to a given value is 1/|Dmu
y | if this value is in Dmu

y , and 0 if not. By
the definition of Ds,c(ski0 , ski1 ), to which β belongs, we have skibβ ≤

√
n logn

and thus α̂ib − skibβ belongs to Dmu
y which completes the proof. ��

B Lemmas

Lemma 1 (Lemma 2.11 in [19] restricted to our setting). Let a be any
polynomial in Ds,c and b a polynomial uniformly chosen in Ds,c. Then

Pr[‖ab‖∞ ≥
√
n logn] ≤ 4ne

− log2 n
8 .

This lemma will be used to show that for any two secret keys, an overwhelming
fraction of the polynomials in Ds,c result in a small polynomial when multiplied
by any of the two keys. Note that the lemma is valid for any polynomial a in
Ds,c (i.e. even if it is adversarially chosen).

Before proving Lemma 3, which is used in Proposition 2, we recall the following
lemma which is adapted from Lemma 3 in [25].

Lemma 2. Let f = xn+1, r ≥ 2 and n = 2r and p is a prime with p ≡ 3 mod 8,
then there exist f1, f2 such that f = f1f2 mod p where each fi is irreducible in
Zp [x] and can be written fi(x) = xn/2 + tix

n/4 − 1 with ti ∈ Zp

Lemma 3. Let D×s,c denote the set of non-invertible polynomials of Ds,c. We
have

Prf←Ds,c

[
f ∈ D×s,c

]
≤ 2

3n/2
.
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Proof (Sketch.). We have D = Zp[x]/〈xn + 1〉 and by Lemma 2 and Table 1 we
have xn + 1 = f1f2 mod p, both factors being of degree n/2 and irreducible
over Zp[x]. As these factors are irreducible, we have that the non-invertible
polynomials of D are such that f = 0 mod f1 or f = 0 mod f2.

As Ds,c = {g ∈ Zp[x]/〈xn + 1〉 : ‖g‖∞ ≤ 1} we have

D×s,c = {f ∈ Zp[x]/〈xn + 1〉 : ‖f‖∞ ≤ 1 and (f = 0 mod f1 or f = 0 mod f2)}.

By the union bound, we have

Prf←Ds,c

[
f ∈ D×s,c

]
≤ Prf←Ds,c [f = 0 mod f1] + Prf←Ds,c [f = 0 mod f1] .

It is easy to see that for each choice of n/2 higher order terms of f there is
as most one choice on the n/2 lower order terms that satisfies f = 0 mod f1.
The same can be said for f = 0 mod f2. Thus the probability of each of the
right-hand terms is bounded from above by 1/3n/2 which immediately proves
the result.
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Abstract. Eta pairing on a supersingular elliptic curve over the binary
field F21223 used to offer 128-bit security, and has been studied extensively
for efficient implementations. In this paper, we report our GPU-
based implementations of this algorithm on an NVIDIA Tesla C2050
platform. We propose efficient parallel implementation strategies for
multiplication, square, square root and inverse in the underlying field.
Our implementations achieve the best performance when López-Dahab
multiplication with four-bit precomputations is used in conjunction with
one-level Karatsuba multiplication. We have been able to compute up to
566 eta pairings per second. To the best of our knowledge, ours is the
fastest GPU-based implementation of eta pairing. It is about twice as fast
as the only reported GPU implementation, and about five times as fast
as the fastest reported single-core SIMD implementation. We estimate
that the NVIDIA GTX 480 platform is capable of producing the fastest
known software implementation of eta pairing.

Keywords: Supersingular elliptic curve, eta pairing, binary field,
parallel implementation, GPU.

1 Introduction

Recently GPUs have emerged as a modern parallel computing platform for
general-purpose programming. Many cryptographic algorithms have been
implemented efficiently using GPU-based parallelization. Pairing (assumed sym-
metric) is a bilinear mapping of two elements in a group to an element in an-
other group. Elliptic curves are widely used to realize various forms of pairing,
like Weil pairing, Tate pairing, and eta pairing. Eta pairing, being one of the
most efficient pairing algorithms, has extensive applications in identity-based
and attribute-based encryption, multi-party communication, identity-based and
short signatures, and autonomous authentication [6]. Investigating the extent
of parallelizing eta pairing on GPU platforms is an important area of cur-
rent research. Although several implementations of eta pairing have already
been published in the literature [3,5,11], most of them are CPU-based, and
aim at improving the performance of single eta-pairing computations. However,
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many applications (like authentication in vehicular ad hoc networks) require
computing large numbers of eta pairings in short intervals.

In this paper, we report efficient implementations of eta pairing on a supersin-
gular elliptic curve defined over a field of characteristic two. This is a standard
curve studied in the literature. At the time this work was done, this curve was
believed to provide 128-bit security in cryptographic applications. Recent de-
velopments [13] tend to indicate that this security guarantee may be somewhat
less.1 To the best of our knowledge, there are no previous GPU-based imple-
mentations for this curve. The only GPU-based implementation of eta pairing
reported earlier [15] is on a supersingular elliptic curve defined over a field of
characteristic three, which also used to provide 128-bit security (but no longer
now; see [19] and also [13]). Our implementation is about twice as efficient as
this only known GPU implementation. We attempt to parallelize each pair-
ing computation alongside multiple pairing computations, so as to exploit the
GPU hardware as effectively as possible. In other words, we use both intra- and
inter-pairing parallelization.

We start with parallel implementations of the binary-field arithmetic. We use
López-Dahab multiplication [16] with four-bit windows in tandem with one-level
Karatsuba multiplication [14] to obtain the best performance. We report the
variation in performance of multiplication with the number of threads. We also
report our GPU implementations of the square, square-root, inverse and reduc-
tion operations in the field. Finally, we use these parallel field-arithmetic routines
for implementing eta pairing. Our best eta-pairing implementation is capable of
producing up to 566 eta pairings per second on an NVIDIA TESLA C2050 plat-
form. This indicates an average time of 1.76 ms per eta-pairing computation,
which is comparable with the fastest known (1.51 ms) software implementation
[3] (which is a multi-core SIMD-based implementation). The fastest reported
single-core SIMD implementation [3] of eta pairing on this curve takes about
8 ms for each eta pairing. The only reported GPU-based implementation [15]
of eta pairing is capable of producing only 254 eta pairings per second. We es-
timate, based upon previously reported results, that our implementation when
ported to an NVIDIA GTX 480 platform is expected to give a 30% improvement
in throughput, thereby producing 736 eta pairings per second, that is, 1.36 ms
for computing one eta pairing.

It is worthwhile to note here that our work deals with only software implemen-
tations. Hardware implementations, significantly faster than ours, are available in
the literature. For example, some recent FPGA implementations are described
in [1,9]. The paper [1] also reports ASIC implementations. Both these papers
use the same curve as we study here. Other types of pairing functions (like Weil,
Tate, ate, and R-ate pairings) are also widely studied from implementation per-
spectives. The hardware and software implementations reported in [2,7,11] (to
name a recent few) use other types of pairing.

1 We are not changing the title of this paper for historical reasons, and also because
of that the analysis presented in [13] is currently only heuristic.
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The rest of the paper is organized as follows. In Section 2, a short introduction
to GPUs and GPU programming is provided. Section 3 sketches the eta-pairing
algorithm which we implement. Our implementation strategies for the binary-
field arithmetic are detailed in Section 4. This is followed in Section 5 by remarks
about our implementation of eta pairing. In Section 6, our experimental results
are supplied and compared with other reported results. Section 7 concludes this
paper after highlighting some future scopes of work.

2 NVIDIA Graphics Processing Units

In order to program in GPU, it is important to know the architectural details
and how tasks are divided among threads at software level. Here, we briefly
describe the Fermi architecture of CUDA and the programming model. Some
comments on the GPU memory model are also in order.

2.1 GPU Architecture

The next-generation CUDA architecture, code-named Fermi [10], is an advanced
and yet commonly available GPU computing architecture. With over three bil-
lion transistors and featuring up to 512 CUDA cores, it is one of the fastest
GPU platforms provided by CUDA. Our implementations are made on one such
Fermi-based GPU called TESLA C2050.

In TESLA C2050, there are 14 streaming multiprocessors (SMs) with a total
of 448 CUDA cores. Each SM contains 32 CUDA cores along with 4 special
function units and 16 load/store units. The detailed specification can be found
in [17]. The 32 CUDA cores are arranged in two columns of 16 cores each. A
program is actually executed in groups of 32 threads called warps, and a Fermi
multiprocessor allocates a group of 16 cores (half warp) to execute one instruction
from each of the two warps in two clock cycles. This allocation is done by two
warp schedulers which can schedule instructions for each half warp in parallel.
Each SM has a high-speed shared memory to be used by all threads in it.

2.2 GPU Programing Model

In order to get a good performance by parallel execution in GPUs, it is important
to know how the threads can be organized at software level, and how these
threads map to the hardware. A CUDA program is written for each thread. There
is a programmer- or compiler-level organization of threads which directly project
on to the hardware organization of threads. At user level, threads are grouped
into blocks, and each block consists of several threads. A thread block (also called
a work group) is a set of concurrently executing threads that can cooperate
among themselves through barrier synchronization and shared memory. All the
threads of a block must reside in the same SM. As the number of threads in a
SM is limited because of limited number of registers and shared memory, there is
a bound on the maximum number of threads that a single work group can have.
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But we can have as many work groups as we want. In Fermi, the maximum work-
group size is 1024. However, the threads within a work group can be arranged
in one, two or three dimensions, and the work groups themselves can again be
organized into one of the three dimensions. Each thread within a work group
has a local ID, and each work group has a block ID. The block ID and the local
ID together define the unique global ID of a thread.

In Fermi, there can be 48 active warps (1536 threads) and a maximum of
eight active work groups per SM, that can run concurrently. So it is preferred to
have a work group size of 192 in order to perfectly utilize all the active threads,
provided that there is scope for hiding memory latency. The number of resident
work groups in a SM is also bounded by the amount of shared memory consumed
by each work group and by the number of registers consumed by each thread
within each group.

2.3 GPU Memory Architecture

Each GPU is supplied with 3GB of device memory (also known as the global
memory), which can be accessed by all the threads from all the multiprocessors
of the GPU. One of the major disadvantages of this memory is its low band-
width. When a thread in a warp (a group of 32 threads) issues a device memory
operation, that instruction may eat up even hundreds of clock cycles. This per-
formance bottleneck can be overcome to some extent by memory coalescing,
where multiple memory requests from several threads in a warp are coalesced
into a single request, making all the threads request from the same memory seg-
ment. There is a small software-managed data cache (also known as the shared
memory) associated with each multiprocessor. This memory is shared by all the
threads executing on a multiprocessor. This low-latency high-bandwidth index-
able memory running essentially at the register speed is configurable between
16KB and 48KB in Fermi architectures. In TESLA C2050, we have 48KB shared
memory. We additionally have 16KB of hardware cache meant for high-latency
global memory data. The hardware cache is managed by the hardware. Software
programs do not have any control over the data residing in the hardware cache.

3 Eta Pairing in a Field of Characteristic Two

Here, we present the algorithm for eta (ηT ) pairing [4] over the supersingular
curve y2+y = x3+x (embedding degree four) defined over the binary field F21223

represented as an extension of F2 by the irreducible polynomial x1223+x255+1.
As the embedding degree of the supersingular curve is four, we need to work in
the field F(21223)4 . This field is represented as a tower of two quadratic extensions
over F21223 , where the basis for the extension is given by (1, u, v, uv) with g(u) =
u2 + u + 1 being the irreducible polynomial for the first extension, and with
h(v) = v2 + v+ u defining the second extension. The distortion map is given by
φ(x, y) = (x+ u2, y + xu+ v).

All the binary-field operations (addition, multiplication, square, square-root,
reduction and inverse) are of basic importance in the eta-pairing algorithm, and
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are discussed in detail in Section 4. Now, we show the eta-pairing algorithm
which takes two points P and Q on the supersingular curve y2 + y = x3 + x as
input with P having a prime order r, and which computes an element of μr as
output, where μr is the group (contained in F ∗(21223)4) of the r-th roots of unity.

Algorithm 1. Eta-pairing algorithm for a field of characteristic two

Input: P = (x1, y1), Q = (x2, y2) ∈ E(F21223 )[r]
Output: ηT (P,Q) ∈ μr

1 begin
2 T ← x1 + 1
3 f ← T · (x1 + x2 + 1) + y1 + y2 + (T + x2)u+ v
4 for i =1 to 612 do
5 T ← x1

6 x1 ← √
x1, y1 ← √

y1
7 g ← T · (x1 + x2) + y1 + y2 + x1 + 1 + (T + x2)u+ v
8 f ← f · g
9 x2 ← x2

2, y2 ← y2
2

10 end

11 return f (q2−1)(q−2
√

q+1), where q = 21223

12 end

In Algorithm 1, f ← f · g is a multiplication in F(21223)4 requiring eight
multiplications in F21223 . This number can be reduced to six with some added
cost of linear operations, as explained in [11]. Thus, the entire for loop (called the
Miller loop) executes 1224 square-roots, 1224 squares, and 4284 multiplications.
Multiplication being the most frequently used operation, its efficiency has a
direct consequence on the efficiency of Algorithm 1.

4 Arithmetic of the Binary Field

An element of F21223 is represented by 1223 bits packed in an array of twenty
64-bit words. All binary-field operations discussed below operate on these arrays.

4.1 Addition

Addition in F21223 is word-level bit-wise XOR of the operands, and can be han-
dled by 20 threads in parallel. In binary fields, subtraction is same as addition.

4.2 Multiplication

The multiplication operation is associated with some precomputation, where
the results of multiplying the multiplicand with all four-bit patterns are stored
in a two-dimensional array, called the precomputation matrix P . The quadratic
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multiplication loop involves processing four bits together from the multiplier. See
[16] for the details. After the multiplication, the 40-word intermediate product
is reduced back to an element of F21223 using the irreducible polynomial x1223 +
x255+1. To sum up, the multiplication consists of three stages: precomputation,
computation of the 40-word intermediate product, and polynomial reduction.
These three stages are individually carried out in parallel, as explained below.

Precomputation. The precomputation matrix P has 320 entries (words). We
can use 320 threads, where each thread computes one P (i, j). It is also possible
to involve only 160 or 80 threads with each thread computing two or four matrix
entries. The exact number of threads to be used in this precomputation stage is
adjusted to tally with the number of threads used in the second stage (generation
of the intermediate product).

Let us use 320 threads in this stage. Each thread uses its thread ID to deter-
mine which entry in P it should compute. Let Θi,j denote the thread responsible
for computing P (i, j). Let us also denote the i-th word of the multiplicand A
by Ai = (a64i+63a64i+62 . . . a64i+1a64i), where each ak is a bit, and the most
significant bit in the word Ai is written first. Likewise, wj is represented by the
bit pattern (b3b2b1b0). The thread Θi,j performs the following computations:

Initialize P (i, j) to (000 . . . 0).
If b0 = 1, XOR P (i, j) with (a64i+63a64i+62 . . . a64i+1a64i).
If b1 = 1, XOR P (i, j) with (a64i+62a64i+61 . . . a64ia64i−1).
If b2 = 1, XOR P (i, j) with (a64i+61a64i+60 . . . a64i−1a64i−2).
If b3 = 1, XOR P (i, j) with (a64i+60a64i+59 . . . a64i−2a64i−3).

In addition to the word Ai, the thread Θi,j needs to read the three most signif-
icant bits a64i−1a64i−2a64i−3 from Ai−1. This is likely to incur conflicts during
memory access from L1 cache, since the thread Θi−1,j also accesses the word
Ai−1. In order to avoid this, three most significant bits of the words of A are
precomputed in an array M of size 20. As a result, Θi,j reads only from Ai and
Mi, whereas Θi−1,j reads from the different locations Ai−1 and Mi−1. Since M
depends only on A (not on wj), only 20 threads can prepare the array M , and
the resulting overhead is negligible compared to the performance degradation
that was associated with cache conflicts.

Intermediate Product Computation. This stage proceeds like school-book
multiplication. Instead of doing the multiplication bit by bit, we do it by chunks
of four bits. Each word of the multiplier B contains sixteen such four-bit chunks.
Figure 1 shows the distribution of the work among several threads. The threads
use a temporary matrix R for storing their individual contributions. The use of
R is necessitated by that the different threads can write in mutually exclusive
cells of R. In practice, R is implemented as a one-dimensional array. However,
Figure 1 shows it as a two-dimensional array for conceptual clarity. After all the
entries in R are computed by all the threads, the 40-word intermediate product
is obtained by adding the elements of R column-wise.
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Fig. 1. Result Matrix Computation with 120 Threads

In Figure 1, we show how the result matrix R is computed by 120 threads.
Here, R is of size 200 words, and is maintained as a 40× 5 matrix. The figure,
however, does not show these individual words (for lack of space). Instead, each
box of R represents a group of four consecutive words. The range of four consec-
utive integers written within a box of R represents the IDs of the four threads
that compute the four words in that box. In order to prevent synchronization
overheads arising out of the race condition, different threads compute pair-wise
different cells in R.

The first row of R corresponds to the multiplication of A by the least sig-
nificant four words of B (that is, B0, B1, B2, B3). This partial product occupies
24 words which are computed by the threads with IDs 0–23, and stored in the
columns 0–23 (column numbering begins from right). The second row of R is
meant for storing the product of A with the next more significant four words
of B (that is, B4, B5, B6, B7). This 24-word partial product is computed by a
new set of 24 threads (with IDs 24–47), and stored in the second row of R with
a shift of four words (one box). Likewise, the third, fourth and fifth rows of R
are computed by 72 other threads. Notice that each row of R contains sixteen
unused words, and need to be initialized to zero. After the computation of R,
40 threads add elements of R column-wise to obtain the intermediate product
of A and B. Algorithm 2 elaborates this intermediate product generation stage.
The incorporation of the precomputation table P is explicitly mentioned there.
We use the symbols ⊕ (XOR), AND, OR, LEFTSHIFT and RIGHTSHIFT to
stand for standard bit-wise operations.

In Algorithm 2, the values of c− 4r− ID and c− 4r− ID− 1 at Lines 12 and
13 may become negative. In order to avoid the conditional check for negative
values (which degrades performance due to warp divergence [8]), we maintain
the precomputation matrix P as a 28 × 16 matrix instead of a 20 × 16 matrix.
The first four and the last four columns of each row are initialized with zero
entries. The actual values are stored in the middle 20 columns in each row.

1 By a barrier, we mean that any thread must start executing instructions following
MEM FENCE, only after all the currently running threads in a work group have
completed execution up to the barrier. This ensures synchronization among the
running threads.
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Algorithm 2. Code for the i-th thread during intermediate product com-
putation

Input: A,B ∈ F21223 with precomputations on A stored in P
Output: The intermediate product C = A×B (a 40-word polynomial)

1 begin
2 r ← i/24
3 c ← i mod 24
4 r ← r + 4c
5 t1 ← 0, t2 ← 0
6 r ← r + 4
7 for ID = 0 to 4 do
8 w2 ← B4r+ID

9 for j = 0 to 16 do
10 bit ← RIGHTSHIFT(w2, 4j) AND 0x0F

11 w1 ← P (bit, c− 4r − ID)
12 w0 ← P (bit, c− 4r − ID − 1)
13 t1 ← LEFTSHIFT(w1, 4j) ⊕ RIGHTSHIFT(w0, 64− 4j)
14 t2 ← t2 ⊕ t1
15 end

16 end
17 r ← r − 4
18 Rr,c ← t2
19 barrier(MEM FENCE)2

20 if i < 40 then
21 Resulti ← R0,i ⊕R1,i ⊕R2,i ⊕R3,i ⊕R4,i

22 end
23 barrier(MEM FENCE)

24 end

In the above implementation, each thread handles four words of the multiplier
B. This can, however, be improved. If each thread handles only three consecutive
words of B, we need �20/3� = 7 rows in R and 20 + 3 = 23 used columns in
each row. This calls for 7× 23 = 161 threads. Since the 40-th word of the result
is necessarily zero (the product of two polynomials of degrees < 1223 is at most
2444 ≤ 2496 = 39×64), we can ignore the 161-st thread, that is, we can manage
with 160 threads only.

Each thread can similarly be allowed to handle 1, 2, 5, 7, 10, or 20 words of
B. The number of threads required in these cases are respectively 420, 220, 100,
60, 80 and 40. Increasing the number of threads to a high value may increase
the extent of parallelism, but at the same time it will restrict the number of
work groups that can be simultaneously active for concurrent execution in each
multiprocessor. On the other hand, decreasing the number of threads to a small
value increases the extent of serial execution within each thread. Thus, we need to
reach a tradeoff between the number of threads and the amount of computation
by each thread. Among all the above choices, we obtained the best performance
with 160 threads, each handling three words of B.
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One-level Karatsuba Multiplication. Using Karatsuba multiplication in
conjunction with López-Dahab multiplication can speed up eta-pairing com-
putations further, because Karatsuba multiplication reduces the number of F2

multiplications at the cost of some linear operations. If we split each element A
of F21223 in two parts Ahi and Alo of ten words each, López-Dahab multiplication
of A and B requires four multiplications of ten-word operands (AhiBhi, AloBlo,
AloBhi, and AhiBlo), as shown below (where n = 640):

(Ahix
n +Alo)(Bhix

n +Blo) = AhiBhix
2n + (AhiBlo +AloBhi)x

n +AloBlo.

Karatsuba multiplication computes only the three products AhiBhi, AloBlo, and
(Ahi +Alo)(Bhi +Blo), and obtains

AhiBlo +AloBhi = (Ahi +Alo)(Bhi +Blo) +AhiBhi +AloBlo

using two addition operations. Each of the three ten-word multiplications is
done by López-Dahab strategy. Each thread handles two words of the multi-
plier, and the temporary result matrix R contains five rows and twenty columns.
Twelve threads write in each row, so the total number of threads needed for
each ten-word multiplication is 60. All the three ten-word multiplications can
run concurrently, thereby using a total of 180 threads.

Two levels of Karatsuba multiplication require only nine five-word multipli-
cations instead of 16. Although this seems to yield more speedup, this is not
the case in practice. First, the number of linear operations (additions and shifts
that cannot be done concurrently) increases. Second, precomputation overheads
associated with López-Dahab multiplication also increases. Using only one level
of Karatsuba multiplication turns out to be the optimal strategy.

Reduction. The defining polynomial x1223 + x255 + 1 is used to reduce the
terms of degrees ≥ 1223 in the intermediate product. More precisely, for n ≥ 0,
the non-zero term x1223+n is replaced by x255+n + xn. This is carried out in
parallel by 20 threads, where the i-th thread reduces the (20 + i)-th word. All
the threads first handle the adjustments of x255+n concurrently. Reduction of
the entire (20 + i)-th word affects both the (5 + i)-th and the (4 + i)-th words.
In order to avoid race condition, all the threads first handle the (5+ i)-th words
concurrently. Subsequently, after a synchronization, the (4 + i)-th words are
handled concurrently again. The adjustments of xn in a word level are carried
out similarly. Note that for large values of n, we may have 255+ n ≥ 1223. This
calls for some more synchronization of the threads.

4.3 Square

We precompute the squares of all 8-bit patterns, and store them in an array
Q of 256 words [12]. The parallel implementation of squaring in F21223 is done
by a total of 40 threads. Each thread handles a half word (that is, 32 bits) of
the operand A, consults the precomputation table Q four times, and stores the
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partial result in an array R. More precisely, the threads 2i and 2i+ 1 read the
word Ai. The 2i-th thread reads the least significant 32 bits of Ai, and writes
the corresponding square value in R2i, whereas the (2i+1)-st thread writes the
square of the most significant 32 bits of Ai in R2i+1. The threads write in pair-
wise distinct words of R, so they can run concurrently without synchronization.

Algorithm 3. Code for the i-th thread during squaring

Input: An element of A ∈ F21223 and the precomputed table Q
Output: The intermediate 40-word square R = A2

1 begin
2 T ← Ai/2

3 if i is odd then
4 T ← RIGHTSHIFT(T, 32)
5 end
6 RT ← 0
7 for j = 0 to 3 do
8 byte ← T AND 0xFF

9 T ← RIGHTSHIFT(T, 8)
10 RT ← RT ⊕ RIGHTSHIFT(Q[byte], 16j)

11 end
12 Resulti ← RT
13 barrier(MEM FENCE)

14 end

4.4 Square-Root

Write an element A of F21223 as A = Aeven(x) + xAodd(x), where

Aeven(x) = a1222x
1222 + a1220x

1220 + · · ·+ a2x
2 + a0,

Aodd(x) = a1221x
1220 + a1219x

1218 + · · ·+ a3x
2 + a1.

Then,

√
A = Aeven(

√
x ) +

√
xAodd(

√
x )

= (a1222x
611 + a1220x

610 + · · ·+ a2x+ a0) +√
x(a1221x

610 + a1219x
609 + · · ·+ a3x+ a1).

Moreover, since x1223 + x255 + 1 = 0, we have
√
x = x612 + x128.

We use 40 threads for this computation. Twenty threads Θeven,i compute
Aeven(

√
x ), and the remaining twenty threads Θodd,i compute Aodd(

√
x ). For

j = 0, 1, 2, . . . , 9, the thread Θeven,2j reads only the even bits of A2j , that is,
(a128j+62 . . . a128j+2a128j), and stores them in the least significant 32 bits of an
array Teven[0][j]. On the other hand, for j = 0, 1, 2, . . . , 9, the thread Θeven,2j+1
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reads only the even bits of A2j+1, that is, (a128j+126 . . . a128j+66a128j+64) and
stores them in the most significant 32 bits of Teven[1][j]. Likewise, for j =
0, 1, 2, . . . , 9, Θodd,2j writes (a128j+63 . . . a128j+3a128j+1) in the least significant
32 bits of Todd[0][j], and Θodd,2j+1 writes (a128j+127 . . . a128j+67a128j+65) in the
most significant 32 bits of Todd[1][j]. After all these threads finish, ten threads add
Teven column-wise, and ten other threads add Todd column-wise. The column-
wise sum Todd is shifted by 612 and 128 bits, and the shifted arrays are added
to the column-wise sum of Teven. The details are shown as Algorithm 4, where
we have used flattened representations of various two-dimensional arrays.

Algorithm 4. Code for the i-th thread for square-root computation

Input: An element A ∈ F21223

Output: R =
√
A

1 begin
2 d ← i/20, bit ← i/20
3 ID ← i mod 20
4 word ← Ai

5 for j = 0 to 31 do
6 W ← RIGHTSHIFT(word, bit) AND 1
7 T ← T ⊕ LEFTSHIFT(W,bit/2)
8 bit ← bit+ 2

9 end
10 if i is odd then
11 T ← LEFTSHIFT(T, 32)
12 end
13 R20d+10×(ID AND 1)+id/2 ← T
14 EvenOdd20d+ID ← R20d+i ⊕R20d+10+i

15 odd1i ← ShiftBy612Bits(EvenOdd20+i) // multiply by x612

16 odd2i ← ShiftBy128Bits(EvenOdd20+i) // multiply by x128

17 if i < 20 then
18 Ri ← odd1i ⊕ odd2i ⊕ EvenOddi
19 end

20 end

4.5 Inverse

Inverse is used only once during final exponentiation [18]. This is computed in
parallel by the extended Euclidean gcd algorithm for polynomials [12]. In addi-
tion to finding the gcd γ of two polynomials A and B, it also finds polynomials
g and h satisfying the Bézout relation gA+hB = γ. In the inverse computation,
B = f(x) = x1223 + x255 + 1 is irreducible, and A �= 0 is of degree < 1223, so
γ = 1. Thus, the polynomial g computed by the algorithm is the inverse of A
(modulo f). It is not necessary to compute the other polynomial h.
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Algorithm 5. Code for the i-th thread for computing inverse

Input: A non-zero binary polynomial A, and the irreducible polynomial
f(x) = x1223 + x255 + 1, each occupying 20 words

Output: A−1 mod f
1 begin
2 Ui ← fi, Vi ← Ai, g1i ← 0, g2i ← 0
3 SVi ← 0, SVi+20 ← 0, SGi ← 0, SGi+20 ← 0
4 if i = 0 then
5 g2i ← 1
6 end
7 while TRUE do
8 DEGi ← WordDegree(Ui) // highest position of a 1-bit in Ui

9 DEGi+20 ← WordDegree(Vi) // highest position of a 1-bit in Vi

10 barrier(MEM FENCE)
11 if i = 0 then
12 shared terminate ← 0
13 degU ← GetDegree(DEG, 20) // Find deg(U) from DEG[0–19]
14 degV ← GetDegree(DEG, 40) // Find deg(U) from DEG[20–39]
15 shared diff ← degU − degV

16 end
17 barrier(MEM FENCE)
18 d ← diff
19 if d ≤ 1 then
20 Ui ↔ Vi, g1i ↔ g2i , d ← −d
21 end
22 barrier(MEM FENCE)
23 k ← d/64, w ← d mod 64
24 SVi+k ← Vi, SGi+k ← g2i
25 vw ← GetRightMostBits(Vi−1, w)
26 gw ← GetRightMostBits(g2i−1 , w)
27 SVi+k ← LEFTSHIFT(SVi+k, w)⊕ vw
28 SGi+k ← LEFTSHIFT(SGi+k, w)⊕ gw
29 barrier(MEM FENCE)
30 Ui ← Ui ⊕ SVi, g1i ← g1i ⊕ SGi

31 if i = 0 and Ui = 0 then
32 terminate ← 1
33 end
34 barrier(MEM FENCE)
35 if (terminate = 0 and U0 = 1) then
36 Terminate the loop
37 end

38 end

39 end
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Two polynomials U and V are initialized to f and A. Moreover, g1 is initialized
to 0, and g2 to 1. In each iteration, 20 threads compute the word degrees deg(Ui)
and deg(Vi). Then, one thread computes d = deg(U)− deg(V ). If d is negative,
the 20 threads swap U and V , and also g1 and g2. Finally, the threads subtract
(add) xdV from U and also xdg2 from g1. This is repeated until U reduces to 1.
The detailed code is supplied as Algorithm 5.

In our implementation, this algorithm is further parallelized by using 40
threads (Algorithm 5 uses only 20 threads, for simplicity). The degree calcu-
lations of U and V can proceed in parallel. The swapping of (U, V ) and (g1, g2)
can also be parallelized. Finally, the two shifts xdV and xdg2 can proceed con-
currently, and so also can the two additions U + xdV and g1 + xdg2.

5 Parallel Implementations of Eta Pairing

Suppose that we want to compute n eta pairings in parallel. In our implementa-
tion, only two kernels are launched for this task. The first kernel runs the Miller
loop for all these n eta-pairing computations. The output of the Miller loop is
fed to the second kernel which computes the final exponentiation. Each kernel
launches n work groups, each with 180 threads. Threads are launched as warps,
so even if we use only 180 threads, the GPU actually launches six warps (that
is, 192 threads) per work group.

At the end of each iteration of the Miller loop, the threads of each work group
are synchronized. Out of the 180 threads in a work group, 80 threads are used to
compute the two squares x2

2 and y22 in parallel, and also the two square-roots
√
x1

and
√
y1 in parallel. For these operations, only 44.45% of the threads are utilized.

For most part of the six multiplications in an iteration, all the threads are utilized
(we have used Karatsuba and López-Dahab multiplications together). The linear
operations (assignments and additions) in each iteration are usually done in
parallel using 20 threads. In some cases, multiple linear operations can proceed
in parallel, thereby utilizing more threads. Clearly, the square, square-root, and
linear operations are unable to exploit available hardware resources (threads)
effectively. Nevertheless, since multiplication is the most critical field operation
in the eta-pairing algorithm, our implementation seems to exploit parallelism to
the best extent possible.

Each multiprocessor can have up to eight active work groups capable of run-
ning concurrently. Moreover, there are 14 multiprocessors in our GPU platform.
Therefore, a total of 112 work groups can be simultaneously active. As a result,
at most 112 eta-pairing computations can run truly in parallel, at least in theory.
Our implementations corroborate this expected behavior.

6 Experimental Results

Our implementations are done both in CUDA and in OpenCL. Here, we re-
port our OpenCL results only, since OpenCL gives us slightly better results,
potentially because of the following reasons.
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– Kernel initialization time is less in OpenCL than in CUDA. This may account
for better performance of OpenCL over CUDA for small data sets. For large
data sets, both OpenCL and CUDA are found to perform equally well.

– OpenCL can be ported to many other devices (like Intel and AMD graphics
cards) with minimal effort.

– CUDA’s synchronization features are not as flexible as those of OpenCL.
In OpenCL, any queued operation (like memory transfer and kernel execu-
tion) can be forced to wait on any other set of queued operations. CUDA’s
instruction streams at the time of implementation are comparatively more
restrictive. In other words, the in-line synchronization features of OpenCL
have been useful in our implementation.

We have used the CudaEvent() API call for measuring time in CUDA, and the
clGetEventProfilingInfo()API call in OpenCL. Table 1 shows the number of
field multiplications (in millions/sec) performed for different numbers of threads.
In the table, ω represents the number of words in the multiplier, that each thread
handles. This determines the number of threads to be used, as explained in
Section 4.2. Only the entry with 180 threads (ω = 3) uses Karatsuba multipli-
cation in tandem with López-Dahab multiplication.

Table 1. Number of F21223 multiplications with different thread-block sizes

Number of multiplications
ω Number of threads (millions/sec)

20 40 1.3
10 60 1.7
7 80 1.9
5 100 2.3
4 120 2.8
3 160 3.3
2 180 ∗ 3.5
2 220 3.1
1 420 2.3

∗ With Karatsuba multiplication

Table 1 shows that the performance gradually improves with the increase in
the number of threads, reaches the best for 180 threads, and then decreases be-
yond this point. This is because there can be at most 48 concurrent warps in a
multiprocessor, and the number of work groups that can reside in each multipro-
cessor is 8. Since each warp has 32 threads, a work-group size of (48/8)×32 = 192
allows concurrent execution of all resident threads, thereby minimizing memory
latency. With more than 192 threads, the extent of concurrency is restricted,
and the performance degrades.

Table 2 shows the numbers of all field operations computed per second, along
with the number of threads participating in each operation. The multiplication
and square operations include reduction (by the polynomial x1223 + x255 + 1).
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Table 2. Performance of binary-field arithmetic

Number of operations
Field operation Number of threads (millions/sec)

Addition 20 100.09
Reduction 20 62.5
Square ∗ 40 15.8
Square root 40 6.4
Multiplication ∗ 180 3.5
Inverse 40 0.022

∗ Including reduction

Table 3 presents a comparative study of the performances of some eta-pairing
implementations. Currently, the fastest software implementation of 128-bit se-
cure eta pairing over fields of small characteristics is the eight-core CPU imple-
mentation of Aranha et al. [3]. Our implementation on Tesla C2050 is slightly
slower than this. Our codes are readily portable to the GTX 480 platform, but
unavailability of such a machine prevents us from carrying out the actual ex-
periment. We, however, estimate that our implementation ported to a GTX 480
platform can be the fastest software implementation of 128-bit secure eta pairing.

Table 3. Comparison with other software implementations of ηT pairing

Clock freq Time per eta
Implementation Field Platform # cores (GHz) pairing (ms)

Hankerson et al. [11] F21223 CPU, Intel Core2 1 2.4 16.25
F3509 CPU, Intel Core2 1 2.4 13.75
Fp256 CPU, Intel Core2 1 2.4 6.25

Beuchat et al. [5] F3509 CPU, Intel Core2 1 2.0 11.51
F3509 CPU, Intel Core2 2 2.0 6.57
F3509 CPU, Intel Core2 4 2.0 4.54
F3509 CPU, Intel Core2 8 2.0 4.46

Aranha et al. [3] F21223 CPU, Intel Core2 1 2.0 8.70
F21223 CPU, Intel Core2 2 2.0 4.67
F21223 CPU, Intel Core2 4 2.0 2.54
F21223 CPU, Intel Core2 8 2.0 1.51

Katoh et al. [15] F3509 GPU, Tesla C2050 448 1.1 3.93
F3509 GPU, GTX 480 480 1.4 3.01

This Work F21223 GPU, Tesla C2050 448 1.1 1.76
This Work F21223 GPU, GTX 480 480 1.4 1.36 ∗

∗ Estimated running time

7 Conclusion

In this paper, we report our GPU-based implementations of eta pairing on a
supersingular curve over the binary field F21223 . Cryptographic protocols based
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on this curve offer 128-bit security, so efficient implementation of this pairing
is an important issue to cryptographers. Throughout the paper, we report our
optimization strategies for maximizing efficiency on a popular GPU architecture.
Our implementations can be directly ported to similar GPU architectures, and
have the potential of producing the fastest possible implementation of 128-bit
secure eta pairing. Our implementations are most suited to applications where
a large number of eta pairings need to be computed.

We end this paper after highlighting some possible extensions of our work.

– Our implementations can be applied mutatis mutandis to compute eta pair-
ing on another popular supersingular curve defined over the field F3509 .

– Other types of pairing (like Weil and Tate) and other types of curves (like
ordinary) may also be studied for GPU-based implementations.

– Large prime fields involve working with large integers. Since integer arith-
metic demands frequent carry manipulation, an efficient GPU-based imple-
mentation of prime-field arithmetic is a very challenging exercise, differing
substantially in complexity from implementations of polynomial-based arith-
metic of extension fields like F21223 and F3509 .
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Henŕıquez, F.: Multi-core implementation of the tate pairing over supersingular
elliptic curves. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 413–432. Springer, Heidelberg (2009)

6. Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography. London Mathe-
matical Society, vol. 265. Cambridge University Press (1999)

7. Fan, J., Vercauteren, F., Verbauwhede, I.: Efficient hardware implementation of
IFp-arithmetic for pairing-friendly curves. IEEE Transactions on Computers 61(5),
676–685 (2012)

8. Fung, W.W.L., Sham, I., Yuan, G., Aamodt, T.M.: Dynamic warp formation and
scheduling for efficient GPU control flow. Micro 40, 407–420 (2007)



42 U. Bose, A.K. Bhattacharya, and A. Das

9. Ghosh, S., Roychowdhury, D., Das, A.: High speed cryptoprocessor for ηT pairing
on 128-bit secure supersingular elliptic curves over characteristic two fields. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 442–458. Springer,
Heidelberg (2011)

10. Glaskowsky, P.: NVIDIA’s Fermi: The first complete GPU computing architecture.
White paper, NVIDIA Corporation (2009)

11. Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. In:
Cryptology and Information Security Series, vol. 2, pp. 188–206. IOS Press (2009)

12. Hankerson, D., Menezes, A., Vanstone, S.: Guide to elliptic curve cryptography.
Springer (2004)

13. Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in
very small characteristic. Cryptology ePrint Archive, Report 2013/095 (2013),
http://eprint.iacr.org/2013/095

14. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers. Doklady Akad. Nauk. SSSR 145, 293–294 (1962)

15. Katoh, Y., Huang, Y.-J., Cheng, C.-M., Takagi, T.: Efficient implementation of
the ηT pairing on GPU. Cryptology ePrint Archive, Report 2011/540 (2011),
http://eprint.iacr.org/2011/540
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Abstract. Maximum distance separable (MDS) matrices have applica-
tions not only in coding theory but also are of great importance in the
design of block ciphers and hash functions. It is highly nontrivial to
find MDS matrices which is involutory and efficient. In a paper in 1997,
Youssef et. al. proposed an involutory MDS matrix construction using
Cauchy matrix. In this paper we study properties of Cauchy matrices
and propose generic constructions of low implementation cost MDS ma-
trices based on Cauchy matrices. In a 2009 paper, Nakahara and Abrahao
proposed a 16 × 16 involutory MDS matrix over F28 by using a Cauchy
matrix which was used in MDS-AES design. Authors claimed that their
construction by itself guarantees that the resulting matrix is MDS and
involutory. But the authors didn’t justify their claim. In this paper we
study and prove that this proposed matrix is not an MDS matrix. Note
that this matrix has been designed to be used in the block cipher MDS-
AES, which may now have severe weaknesses. We provide an algorithm to
construct involutory MDS matrices with low Hamming weight elements
to minimize primitive operations such as exclusive-or, table look-ups and
xtime operations. In a 2012 paper, Sajadieh et. al. provably constructed
involutory MDS matrices which were also Hadamard in a finite field by
using two Vandermonde matrices. We show that the same matrices can
be constructed by using Cauchy matrices and provide a much simpler
proof of their construction.

Keywords: Cauchy matrix, Diffusion, Involutory matrix, MDS matrix,
MixColumn operation, Vector space, Subspace, Vandermonde matrix.

1 Introduction

Claude Shannon, in his paper “Communication Theory of Secrecy Systems” [24],
defined confusion and diffusion as two properties, required in the design of
block ciphers. One possibility of formalizing the notion of perfect diffusion is
the concept of multipermutation, which was introduced in [23,26]. Another way
to define it is using MDS matrices. Maximum Distance Separable (MDS) ma-
trices offer diffusion properties and is one of the vital constituents of modern
age ciphers like Advanced Encryption Standard (AES) [6], Twofish [21, 22],
SHARK [18], Square [5], Khazad [1], Clefia [25] and MDS-AES [10]. The stream
cipher MUGI [27] uses MDS matrix in its linear transformations. MDS matrices
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c© Springer-Verlag Berlin Heidelberg 2013



44 K. Chand Gupta and I. Ghosh Ray

are also used in the design of hash functions. Hash functions like Maelstrom [7],
Grφstl [8] and PHOTON family of light weight hash functions [9] use MDS
matrices as main part of their diffusion layers.

Nearly all the ciphers use predefined MDS matrices for incorporating the dif-
fusion property. Although in some ciphers the possibility of random selection of
MDS matrices with some constraints is provided [30]. In this context we would
like to mention that in papers [9, 11, 14, 19, 30], different constructions of MDS
matrices are provided. In [9], authors constructed lightweight MDS matrices from
companion matrices by exhaustive search. In [11], authors constructed efficient
4 × 4 and 8 × 8 matrices to be used in block ciphers. In [14, 19], authors con-
structed involutory MDS matrices using Vandermonde matrices. In [30], authors
constructed new involutory MDS matrices using properties of Cauchy matrices.

There are two very popular approaches for the design of large MDS matrices.
One involves Cauchy matrices [30] and the other uses Vandermonde matrices
[14, 19]. In some recent works [9, 20, 29], MDS matrices have been constructed
recursively from some suitable companion matrices for lightweight applications.

In [28], authors proposed a special class of substitution permutation networks
(SPNs) that uses same network for both the encryption and decryption opera-
tions. The idea was to use involutory MDS matrix for incorporating diffusion. It
may be noted that for ciphers like FOX [12] and WIDEA-n [13] that follow the
Lai-Massey scheme, there is no need of involutory matrices.

In this paper we revisit and systematize the MDS matrix constructions using
Cauchy matrices [30] and generalize it. We also study involutory MDS matrices
where the entries are preferably of low Hamming weight.

Lacan and Fimes [14] constructed MDS matrices from two Vandermonde ma-
trices. Sajadieh et. al. [19] constructed MDS matrices which were also involu-
tory. They [19] also constructed involutory Hadamard MDS matrices in a finite
field. In this paper we propose a Cauchy based MDS matrix construction and
prove that this is Hadamard in the finite field. We further provide an interest-
ing equivalence of our Cauchy based construction and the Vandermonde based
“Hadamard involutory MDS matrix” construction of [19]. By this equivalence
we have a much simpler proof of generalization of Corollary 2 of [19]. We also
show that our method is faster than the Hadamard involutory MDS matrix
construction of [19] in terms of time complexity.

In [10], authors proposed a new diffusion layer for their AES cipher that
may replace the original ShiftRow and MixColumn layers. They proposed a new
16× 16 matrix M16×16 for designing MDS-AES block cipher, which was claimed
to be involutory and MDS. But the authors did not justify their claims. In this
paper we prove that their claim is not correct and the constructedM16×16 matrix
is not an MDS matrix. Our construction (Algorithm 2) may be used to generate
16× 16 involutory MDS matrices which may be used in MDS-AES block cipher.

MDS matrices of low Hamming weight are desirable for efficient implementa-
tion. In this context it may be noted that multiplication by 1, which is the unit
element of F2n , is trivial. When α is the root of the constructing polynomial of
F2n , the multiplication by α can be implemented by a shift by one bit to the left
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and a conditional XOR with a constant when a carry bit is set (multiplication by
α is often denoted as xtime). Multiplication by α+1 is done by a multiplication
by α and one XOR operation. Multiplication by α2 is done by two successive
multiplications by α.

The organization of the paper is as follows: In Section 2 we provide defini-
tions and preliminaries. In Section 3, we construct MDS matrices using Cauchy
matrices. In Section 4 we study Cauchy and Vandermonde constructions for
FFHadamard involutory MDS matrices. In Section 5 we show that the 16× 16
matrix M16×16 as proposed in [10] is not MDS. We conclude the paper in
Section 6.

2 Definition and Preliminaries

Let F2 = {0, 1} be the finite field of two elements and F2n be the finite field of 2n

elements. Elements of F2n can be represented as polynomials of degree less than
n over F2. For example, let β ∈ F2n , then β can be represented as

∑n−1
i=0 biα

i,
where bi ∈ F2 and α is the root of generating polynomial of F2n . Another compact
representation uses hexadecimal digits. Here the hexadecimal digits are used to
express the coefficients of corresponding polynomial representation. For example
α7+α4+α2+1 = 1.α7+0.α6+0.α5+1.α4+0.α3+1.α2+0.α+1 = (10010101)2 =
95x ∈ F28 . We will often denote a matrix by ((ai,j)), where ai,j is the (i, j)-th
element of the matrix.

The Hamming weight of an integer i is the number of nonzero coefficients in
the binary representation of i and is denoted by H(i). For example H(5) = 2,
H(8) = 1.

F2n and Fn
2 are isomorphic when both of them are regarded as vector space

over F2. The isomorphism is given by x = (x1α1 + x2α2 + · · · + xnαn) �→
(x1, x2 · · · , xn), where {α1, α2, . . . , αn} is a basis of F2n .

Let (H,+) be a group and G is a subgroup of (H,+) and r ∈ H . Then
r +G = {r + g : g ∈ G} is left coset of G in H and G + r = {g + r : g ∈ G} is
right coset of G in H . If the operation + in H is commutative, r +G = G+ r,
i.e. left coset is same as right coset, and r +G is simply called coset of G in H .
It follows that any two left cosets (or right cosets) of G in H are either identical
or disjoint.

Definition 1. Let F be a finite field and p and q be two integers. Let x → M×x
be a mapping from Fp to Fq defined by the q× p matrix M . We say that it is an
MDS matrix if the set of all pairs (x,M × x) is an MDS code, i.e. a linear code
of dimension p, length p+ q and minimal distance q + 1.

An MDS matrix provides diffusion properties that have useful applications in
cryptography. The idea comes from coding theory, in particular from maximum
distance separable code (MDS). In this context we state two important theorems
from coding theory.

Theorem 1. [16, page 33] If C is an [n, k, d] code, then n− k ≥ d− 1.
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Codes with n− k = d− 1 are called maximum distance separable code, or MDS
code for short.

Theorem 2. [16, page 321] An [n, k, d] code C with generator matrix G =
[I|A], where A is a k×(n−k) matrix, is MDS if and only if every square subma-
trix (formed from any i rows and any i columns, for any i = 1, 2, . . . ,min{k, n−
k}) of A is nonsingular.

The following fact is another way to characterize an MDS matrix.

Fact: 1 A square matrix A is an MDS matrix if and only if every square sub-
matrices of A are nonsingular.

The following fact is immediate from the definition.

Fact: 2 All square submatrices of an MDS matrix are MDS.

One of the elementary row operations on matrices is multiplying a row of a
matrix by a scalar except zero. MDS property remains invariant under such
operations. So we have the following fact.

Fact: 3 If A is an MDS matrix over F2n, then A′, obtained by multiplying a
row (or column) of A by any c ∈ F∗2n is MDS.

Fact: 4 If A is an MDS matrix over F2n , then c.A is MDS for any c ∈ F∗2n .

Recall that many modern block ciphers use MDS matrices as a vital constituent
to incorporate diffusion property. In general two different modules are needed for
encryption and decryption operations. In [28], authors proposed a special class of
SPNs that uses same network for both the encryption and decryption operation.
The idea was to use involutory MDS matrices for incorporating diffusion.

Definition 2. A matrix A is called involutory matrix if it satisfies the condition
A2 = I, i.e. A = A−1.

Several design techniques have been used in past for constructing MDS matri-
ces including exhaustive search for small matrices. For large MDS matrices, the
designers prefer the following two methods: One method involves Cauchy matri-
ces [30] and the other method uses Vandermonde matrices [14,19]. In this paper
we study construction of involutory MDS matrices using Cauchy matrices. Be-
fore going into the construction, we discuss Cauchy matrix and its properties
which are of special importance in our constructions.

Definition 3. Given x0, x1 . . . , xd−1 ∈ F2n and y0, y1 . . . , yd−1 ∈ F2n , such that
xi + yj �= 0 for all 0 ≤ i, j ≤ d− 1, then the matrix A = ((ai,j)), 0 ≤ i, j ≤ d− 1
where ai,j =

1
xi+yj

is called a Cauchy matrix [16,30].

It is known that

det(A) =

∏
0≤i<j≤d−1(xj − xi)(yj − yi)∏

0≤i,j≤d−1(xi + yj)
.

So provided xi’s are distinct and yj’s are distinct and xi + yj �= 0 for all 0 ≤
i, j ≤ d− 1, det(A) �= 0, i.e. A is nonsingular. So we have the following result.
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Fact: 5 For distinct x0, x1 . . . , xd−1 ∈ F2n and y0, y1 . . . , yd−1 ∈ F2n , such that
xi+yj �= 0 for all 0 ≤ i, j ≤ d−1, the Cauchy matrix A = ((ai,j)), 0 ≤ i, j ≤ d−1
where ai,j =

1
xi+yj

, is nonsingular.

From the definition of a Cauchy matrix we have the following fact.

Fact: 6 Any square submatrix of a Cauchy matrix is a Cauchy matrix.

From Fact 5 and Fact 6; and for distinct xi’s and yj’s, such that xi + yj �= 0, all
square submatrices of a Cauchy matrix are nonsingular. This leads to an MDS
matrix construction [30]. Towards this we have the following Lemma, which we
call a Cauchy construction.

Lemma 1. For distinct x0, x1 . . . , xd−1 and y0, y1 . . . , yd−1, such that xi+yj �= 0
for all 0 ≤ i, j ≤ d − 1, the matrix A = ((ai,j)), where ai,j = 1

xi+yj
is an MDS

matrix.

Proof. It is to be noted that the matrix A is a Cauchy matrix. Also from
Fact 6, all of its submatrices are Cauchy matrices. Since x0, x1 . . . , xd−1 and
y0, y1 . . . , yd−1 are distinct and xi + yj �= 0 for all 0 ≤ i, j ≤ d− 1, so from Fact
5, all square submatrices of A are nonsingular. So A is an MDS matrix. �

Lemma 2. Each row(or each column) of the d×d MDS matrix A, formed using
construction of Lemma 1 has d distinct elements.

Proof. The elements of i’th row of A are 1
xi+yj

for j = 0, . . . , d−1. Now 1
xi+yj1

=
1

xi+yj2
for any two j1, j2 ∈ {0, . . . , d − 1} such that j1 �= j2 implies yj1 = yj2 ,

which is a contradiction to the fact that yj ’s are distinct. Since i is arbitrary,
the result holds for all rows of A. The proof for columns are similar. �

Corollary 1. The d × d MDS matrix A, formed using construction of Lemma
1 has at least d distinct elements.

Definition 4. [16,19] The matrix

V = van(v0, . . . , vd−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 v0 v20 v30 . . . v
d−1
0

1 v1 v21 v31 . . . v
d−1
1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 vj v2j v3j . . . v
d−1
j

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 vd−1 v2d−1 v3d−1 . . . v
d−1
d−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is called a Vandermonde matrix, where vi’s are from any finite or infinite field.

Fact: 7 det(V ) =
∏

i<j(vi − vj), which is non zero if and only if the vi’s are
distinct.

In [14], authors proposed MDS matrix construction from Vandermonde matrices,
which we call a Vandermonde construction. We record this important result in
the following lemma.
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Lemma 3. [14,19] For distinct x0, x1, . . . , xd−1 and y0, y1, . . . , yd−1, such that
xi + yj �= 0, the matrix AB−1 is an MDS matrix, where A = van(x0, . . . , xd−1)
and B = van(y0, . . . , yd−1).

Authors of [19] proposed techniques to produce involutory MDS matrices. We
record this in the following lemma with slightly different notations.

Lemma 4. [19] Let A = van(x0, . . . , xd−1) and B = van(y0, . . . , yd−1) are
d × d invertible Vandermonde matrices in F2n satisfying xi = yi + r and xi �=
yj , i, j ∈ {0, . . . , d− 1}, r ∈ F∗2n , then AB−1 is an involutory MDS matrix.

In [19], authors constructed a special form of MDS matrices called Finite Field
Hadamard matrices, which is defined as follows:

Definition 5. [2, 19] A 2m × 2m matrix H is Finite Field Hadamard matrix
(FFHadamard) in F2n if it can be represented as follows:

H =

(
U V
V U

)
,

where the two submatrices U and V are also FFHadamard.

Fact: 8 [19] Let H = ((hi,j)) be a 2m× 2m matrix whose first row is (x0 x1 . . .
x2m−1) and hi,j = xi⊕j , then H is FFHadamard and is denoted by H = had(x0,
. . . , x2m−1).

Let H = ((hi,j)) = had(x0, . . . , x2m−1), where xi ∈ F2n for i ∈ {0, . . . , 2m − 1}.
Then clearly H ′ = ((h′i,j)) is FFHadamard, where h′i,j = r + hi,j , r ∈ F2n . Also
if r + xi �= 0 for i ∈ {0, . . . , 2m − 1}, then it is easy to check that the matrix
H ′′ = ((h′′i,j)), where h′′i,j = 1

h′
i,j

is also FFHadamard. We now provide Fact 9

which will be used in Theorem 4.

Fact: 9 [19] Let G = {x0, . . . , x2m−1} be an additive subgroup of F2n, where
x0 = 0 and xi + xj = xi⊕j. Let H = ((hi,j)) be a 2m × 2m matrix over F2n,
where hi,j =

1
r+xi⊕j

, r ∈ F2n \G, then H is FFHadamard.

In [19], authors defined Special Vandermonde matrix (SV matrix), which we
restate differently and equivalently.

Definition 6. Let G be an additive subgroup of F2n of order 2m, which is a
linear span of m linearly independent elements {x1, x2, x22 , . . . , x2m−1} such that

xi =
∑m−1

k=0 bkx2k , where (b0, b1, . . . , bm−1) is the binary representation of i. A
Vandermonde matrix van(y0, . . . , y2m−1) is called a Special Vandermonde matrix
(SV matrix) if yi = r + xi, where r ∈ F2n .

We restate the generalization of Corollary 2 of [19] in the following lemma.

Lemma 5. [19] Let A = van(x0, . . . , x2m−1) and B = van(y0, . . . , y2m−1)
are Special Vandermonde matrices in F2n, where yi = x0 + y0 + xi and y0 /∈
{x0, . . . , x2m−1}, then AB−1 is an FFHadamard involutory MDS matrix.

The proof of Corollary 2 of [19] is several pages long. In Section 4 Theorem 5,
we propose an alternative and a much simpler proof.
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3 Construction of MDS and Involutory MDS Matrices

From Corollary 1, a d × d matrix constructed using Lemma 1 has at least d
distinct elements. In this paper we construct d × d MDS matrices with exactly
d distinct elements. It has two-fold advantage. Firstly, we have to find only d
elements of our liking (say of low implementation cost) to form the MDS matrix
using Cauchy construction. Secondly, for construction of efficient MDS matrices,
it may be desirable to have minimum number of distinct entries to minimize the
implementation overheads(See [11]).

Lemma 6. Let G = (x0, x1, . . . , xd−1) be an additive subgroup of F2n . Let us
consider the coset r+G, r /∈ G of G having elements yj = r+xj, j = 0, . . . , d−1.
Then the d × d matrix A = ((ai,j)), where ai,j = 1

xi+yj
, for all 0 ≤ i, j ≤ d− 1

is an MDS matrix.

Proof. We first prove that xi + yj �= 0 for all 0 ≤ i, j ≤ d − 1. Now, xi + yj =
xi + r + xj = r + xi + xj ∈ r + G. But 0 /∈ r + G (as r /∈ G and 0 ∈ G). So
xi+yj �= 0 for all 0 ≤ i, j ≤ d−1. Also all xi’s are distinct elements of the group
G and yj ’s are distinct elements of the coset r + G. Thus from Lemma 1, A is
an MDS matrix. �

Remark 1. Lemma 6 gives MDS matrix of order d, where d is a power of 2.
When d is not a power of 2, the construction of d × d MDS matrices over F2n

(d < 2n−1) is done in two steps. Firstly we construct 2m × 2m MDS matrix A′

over F2n , where 2m−1 < d < 2m, using Lemma 6. In the next step, we select
d× d submatrix A of A′ of our liking (select d rows and d columns).

Fact: 10 Lemma 3 of [30] is a particular case of Lemma 6 of this paper.

Corollary 2. The matrix A of Lemma 6 is symmetric.

Proof. From definition, ai,j = aj,i =
1

r+xi+xj
for all 0 ≤ i, j ≤ d− 1. Thus A is

symmetric matrix. �

Lemma 7. The d× d matrix A of Lemma 6 has exactly d distinct entries.

Proof. In the ith row the elements are ai,j = 1
r+xi+xj

for j = 0, 1, . . . , d − 1.

Since xj ’s form the additive group G, xi + xj for j = 0, 1, . . . , d − 1 gives all
d distinct elements of G for a fixed i. Thus r + xi + xj for j = 0, 1, . . . , d − 1
gives all d distinct elements of r +G. Since i is arbitrary, therefore in each row
of A, there are d distinct elements. Since these elements are nothing but the
multiplicative inverse of elements of r + G in F2n , the matrix A has exactly d
different elements. �

Corollary 3. By Lemma 2 and Lemma 7, it is evident that all rows of matrix
A constructed by Lemma 6 are the permutations of the first row of A.
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Lemma 6 provides construction of MDS matrices. These matrices may not be
involutory. In general, in substitution permutation networks (SPN) decryption
needs inverse of A. If A is a low implementation-cost MDS matrix, then it is
desirable that A = A−1, otherwise implementation of A−1 may not be efficient.
So we may like to make our MDS matrix to be involutory. Towards this we study
the following Lemma which is also given in [30], but in a slightly different setting.

Lemma 8. Let A = ((ai,j)) be the d × d matrix formed by Lemma 6. Then

A2 = c2I, where c =
∑d−1

k=0
1

r+xk
.

Proof. Let A2 = H = ((hi,j)). From Corollary 2, A is symmetric matrix.
Therefore hi,j is the inner product of i’th row and j’th row of A. Therefore

hi,i =
∑d−1

l=0
1

(r+xi+xl)2
=

∑d−1
k=0

1
(r+xk)2

= c2 as xi’s and xl’s are elements of

a group which is a subgroup of F2n of characteristic 2. Similarly for i �= j,
hi,j =

∑d−1
k=0

1
(r+xi+xk)(r+xj+xk)

= 1
xi+xj

∑d−1
k=0

1
(r+xi+xk)

+ 1
(r+xj+xk)

=

1
xi+xj

(∑d−1
k=0

1
(r+xi+xk)

+
∑d−1

k=0
1

(r+xj+xk)

)
=

1
xi+xj

(∑d−1
l=0

1
r+xl

+
∑d−1

l′=0
1

r+x′
l

)
. Since {r + xl : l = 0, . . . , d− 1} = r +G and

we are working on a field F2n of characteristic 2, therefore(∑d−1
l=0

1
r+xl

+
∑d−1

l′=0
1

r+x′
l

)
= 0. So hi,j = 0. Thus A2 = c2I. �

Corollary 4. The matrix A of Lemma 6 is involutory if the sum of the elements
of any row is 1.

Proof. The sum of elements of any row of A is equal to
∑d−1

i=0
1

r+xi
= c, where

c is as defined in Lemma 8. So if c = 1, c2 = 1 and hence A2 = I (See
Lemma 8). �

Corollary 5. If d × d MDS matrix A is constructed using Lemma 6, then 1
cA

is an involutory MDS matrix, where c =
∑d−1

k=0
1

r+xk
.

Proof. From Lemma 8, ( 1cA)
2 = I and from Fact 4, 1

cA is MDS. �

Remark 2. Multiplication in F2n by 1 is trivial. So for implementation friendly
design, it is desirable to have maximum number of 1’s in MDS matrices to be
used in block ciphers and hash functions. We know that each element in a d× d
matrix A constructed by Lemma 6, occurs exactly d times (See Lemma 7). So
in the construction of d × d matrix A by Lemma 6, maximum d number of 1’s
can occur in A. It is to be noted that A can be converted to have maximum
number of 1’s (i.e. d number of 1’s) without distrurbing the MDS property just
by multiplying A by inverse of one of its entries (See Fact 4). Although this will
guarantee occurrence of 1’s in every row, but with this technique we may not
control Hamming weights of other d−1 elements. Also if A is an involutory MDS
matrix, such conversion will disturbe the involutory property.

Remark 3. In [11], authors introduced the idea of efficient MDS matrices by
maximizing the number of 1’s and minimizing the number of occurrences of
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other distinct elements from F∗2n . It is to be noted that multiplication of each
row of d × d MDS matrix A by inverse of the first elements of the respective
rows will lead to an MDS matrix A′ having all 1’s in first column (See Fact 3).
Again by multiplying each columns of d× d MDS matrix A′ (starting from the
second column) by inverse of the first elements of the respective columns will
lead to an MDS matrix A′′ having all 1’s in first row and first column. Thus the
number of 1’s in this matrix is 2d− 1. Although A′′ contains maximum number
of 1’s that can be achieved starting from the MDS matrix A, but the number of
other distinct terms in this case may be greater than d − 1. Also A′′ will never
be involutory.

3.1 Construction of Some Additive Subgroup G of F2n

Recall that F2n and Fn
2 are isomorphic when both of them are regarded as n

dimentional vector space over F2. Any subspace of Fn
2 is by definition an additive

subgroup of F2n . Let B = {x0, . . . , xm−1} be m linearly independent elements of
F2n . Then the linear span of B, denoted by G, is a subspace of Fn

2 of dimension
m and is an additive subgroup of F2n . So G can be used to construct MDS
matrix using Lemma 6. Also note that r in Lemma 6 can be any element of
F2n \ G. Our aim is to construct efficient MDS matrices. Hamming weights of
the elements in the MDS matrix may decide the number of table lookups, xor
and xtime operations. The higher order bits of each entries in the matrix affects
the number of calls to xtime. In the construction of MDS matrices by Lemma 6,
the elements of the matrices are inverses of the elements of r+G (See Lemma 6).
So it is desirable that multiplicative inverses of elements of r+G in F2n must be
of low Hamming weights and also all the 1’s should be towards the lower order
bits.

3.2 An Algorithm to Construct MDS Matrix

Based on Lemma 6, we now provide Algorithm 1 to construct 2m × 2m MDS
matrix over F2n , where m < n. Algorithm 1 gives MDS matrix and when the
input parameter bInvolutory is set true, the Algorithm 1 gives involutory MDS
matrix of order d × d, where d is power of 2. When d is not a power of 2, the
construction of d×d MDS matrices over F2n (d < 2n−1) is done in two steps (see
Remark 1). Firstly we construct 2m×2m MDS matrixA over F2n using Algorithm
1 and keeping input parameter bInvolutory = false, where 2m−1 < d < 2m. In
the next step, we just select some suitable d× d submatrix A′ of A of our liking
(select d rows and d columns of our liking). Note that A′2 may not be equal to
c2I, where c ∈ F∗2n . Although the matrix A′ is MDS, it is not involutory (See
Example 1).

Remark 4. The additive subgroup G = {x0, . . . , x2m−1} in Algorithm 1 is con-
structed by the linear combination of m linearly independent elements labeled
x1, x2, x22 . . . , x2m−1 in Step 1. Note that for such group G, xi + xj = xi⊕j ,
xi, xj ∈ G. For such G, the constructed matrix A in Algorithm 1 is FFHadamard
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Algorithm 1. Construction of 2m×2m MDS matrix or Involutory MDS matrix
over F2n

Input n > 1, the generating polynomial π(x) of F2n , m < n and bInvolutory.
Output Outputs a 2m × 2m MDS matrix A.
1: Select m linearly independent elements, labeled x1, x2, x22 . . . , x2m−1 from F2n ;
2: Construct G, the set of 2m elements x0, x1, x2, x3, . . . , x2m−1, where xi =∑m−1

k=0 bkx2k , for all 0 ≤ i ≤ 2m − 1, (bm−1, bm−1, . . . , b1, b0) being the binary
representation if i;

3: Select some r ∈ F2n \G;
4: Construct r+G, the set of 2m elements y0, y1, y2, y3, . . . , y2m−1, where yi = r+ xi

for all 0 ≤ i ≤ 2m − 1;
5: if (bInvolutory == false): Construct 1

yi
; else construct 1

cyi
for i = 0, . . . , d − 1 in

the array ary s, where c =
∑d−1

k=0
1

r+xk
.

6: Construct the 2m × 2m matrix A = ((ai,j)), where ai,j = ary s[k], where i⊕ j = k;

7: Set A as output;

(see Theorem 4). If the ordering is disturbed in Step 1 by labeling the elements
differently, so that xi + xj �= xi⊕j , the matrix A may not be FFHadamard,
although it will be MDS. We maintain the same ordering while constructing
additive subgroup in Algorithm 2. So Algorithm 2 also produces FFHadamard
matrices.

Theorem 3. Algorithm 1 generates d × d MDS or Involutory MDS matrices
over F2n where d = 2m, and the complexity is O(d2) operations in F2n .

Proof. The correctness of Algorithm 1 is immediate from Lemma 6, Lemma 8
and Corollary 4. In Algorithm 1, Step 1-Step 5 takes O(d) operations. Step 6
takes O(d2) operations. Thus the time complexity of Algorithm 1 is O(d2). �

Example 1: Let n = 8, d = 4, π(x) = x8+x4+x3+x+1 and bInvolutory = false.
Set r = 1. Select x1 = α7+α3+α2 and x2 = α7+α6+α5+α4+α2+α+1. Thus
construct x0 = 0.x1+0.x2 = 0 and x3 = 1.x1+1.x2 = α6+α5+α4+α3+α+1.
So y0 = 1, y1 = α7 + α3 + α2 + 1, y2 = α7 + α6 + α5 + α4 + α2 + α and
y3 = α6 + α5 + α4 + α3 + α. So we have from Lemma 6 (as implemented in
Algorithm 1)

A =

⎛
⎜⎜⎝

01x 02x 03x d0x
02x 01x d0x 03x
03x d0x 01x 02x
d0x 03x 02x 01x

⎞
⎟⎟⎠ ,

1

c
A =

⎛
⎜⎜⎝

7ax f4x 8ex 01x
f4x 7ax 01x 8ex
8ex 01x 7ax f4x
01x 8ex f4x 7ax

⎞
⎟⎟⎠ ,

where 01x = 1, 02x = α 03x = α+1, d0x = α7 +α6 +α4, 7ax = α6 +α5 +α4 +
α3+α, f4x = α7+α6+α5+α4+α2, 8ex = α7+α3+α2+α. Here c = d0x. Note
that the matrix A is MDS but not involutory and the matrix 1

cA is involutory
MDS. To form a 3 × 3 MDS matrix, we may take a submatrix A′ from A or
1
cA. Let us consider the 3 × 3 submatrix A′ of the involutory MDS matrix 1

cA

of order 3. Here we take first three rows and columns of 1
cA for constructing A′.

Thus we have
A

′
=

⎛
⎝ 7ax f4x 8ex

f4x 7ax 01x
8ex 01x 7ax

⎞
⎠ .
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Note that 2nd and 3rd row of A′ are not permutations of its first row.

Remark 5. For an illustration purpose, we count the number of xtime and xor
operations for the matrix A and A′ of Example 1 without considering any op-
timization technique. The matrix A requires 9 xtimes and 3 xors each row, i.e.
36 xtimes and 12 xors for one matrix computation. Similarly the matrix A′ re-
quires 20 xtimes and 11 xors each row, i.e. 80 xtimes and 44 xors for one matrix
computation.

3.3 An Algorithm to Construct Low Hamming Weight Involutory
MDS Matrix

Here we present an algorithm (Algorithm 2) to construct efficient d×d involutory
MDS matrices, where d is power of 2. By efficient matrix, we mean a matrix
having maximum number of 1’s and minimum number of other distinct elements
of low Hamming weight (see Remark 3). In the construction using Lemma 6, a
d×d MDS matrix A can have maximum d number of 1’s and d−1 other distinct
elements (See Lemma 7). In the iteration of Algorithm 2, we fix r = 1, which
ensures that all diagonal elements are 1. Thus we have d number of 1’s. For d =
2m, we initially select m distinct elements of first row a0,1, a0,2, a0,22 . . . , a0,2m−1

which are of low Hamming weight and compute x1, x2, x22 , . . . , x2m−1 , where
x2i = 1

a0,2i
+ r, i = 0, . . . ,m − 1. We repeat this process by selecting different

elements of next lowest possible Hamming weights unless we get m linearly
independent elements x0, x1, x2, x3, . . . , x2m−1. We next form G and r +G and
finally the matrix A using Lemma 6. If the matrix is not involutory, we repeat
the process unless we get an involutory MDS matrix A.

Remark 6. Note that we can choose m + 1 out of 2m elements of our liking
to have low Hamming weight while constructing involutory MDS matrix using
Algorithm 2. But we have no control upon the other 2m − (m + 1) elements of
the matrix.

Remark 7. Note that Algorithm 2 is similar to Algorithm 1 and is based on
Lemma 6. The Algorithm 2 may not terminate for some conditions in Step 2.
If we relax the conditions of low Hamming weight in Step 2, Algorithm 2 will
eventually terminate but the time complexity is not clear and may depend upon
many conditions.

Remark 8. Algorithm 2 generates d× d involutory MDS matrix over F2n where
d is power of 2. The correctness of Algorithm 2 follows from Lemma 6, Lemma
8 and Corollary 4.

Example 2: Let n = 8, d = 4, π(x) = x8 + x4 + x3 + x + 1. Set r = 1.
Also let α be the root of π(x). We will select a0,1 = 02x = α and search for
the element with next lowest possible Hamming weight for a0,2 so that the
corresponding values 1

a0,1
+ 1 = x1 and 1

a0,2
+ 1 = x2 are linearly independent
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Algorithm 2. Construction of 2m×2m Involutory MDS matrix ((ai,j))over F2n

Input n > 1, the generating polynomial π(x) of F2n and m < n.
Output Outputs a 2m × 2m involutory MDS matrix A.
1: Set r = 1;
2: Select m elements labeled a0,1, a0,2, a0,22 . . . , a0,2m−1 from F∗

2n of low Hamming
weight;

3: Compute m elements labeled x1, x2, x22 , . . . , x2m−1 , where x2i = 1
a
0,2i

+ r, i =

0, . . . ,m− 1;
4: Check if x1, x2, x22 . . . , x2m−1 are linearly independent. If not, go to Step 2;
5: Construct G, the set of 2m elements x0, x1, x2, x3, . . . , x2m−1, where xi =∑m−1

k=0 bkx2k , for all 0 ≤ i ≤ 2m − 1, (bm−1, bm−2, . . . , b1, b0) being the binary
representation of i;

6: if (r ∈ G) then go to Step 2;
7: Construct r+G, the set of 2m elements y0, y1, y2, y3, . . . , y2m−1, where yi = r+ xi

for all 0 ≤ i ≤ 2m − 1;
8: Compute c =

∑d−1
k=0

1
yk

. if(c = 1): go to step 2;

9: Construct the 2m × 2m matrix A = ((ai,j)), where ai,j = 1
xi+yj

;

10: Set A as output;

and finally the resulting matrix is involutory MDS. If not involutory, we go for
next element of higher Hamming weight for a0,2. If no suitable candidate for
a0,2 is available, we set a0,1 = 03x = α + 1, and repeat the search of suitable
candidate for a0,2. We iterate and find the first suitable combination as a0,1 = α
and a0,2 = fcx = α7 + α6 + α5 + α4 + α3 + α2 which leads to an involutory
MDS matrix. For such a0,1, and a0,2, we get x1 = 1

a0,1
+ 1 = α7 + α3 + α2

and x2 = 1
a0,2

+ 1 = α7 + α6 + α3 + α2. So we have x0 = 0.x1 + 0.x2 = 0 and

x3 = 1.x1+1.x2 = α6. Thus y0 = 1, y1 = α7+α3+α2+1, y2 = α7+α6+α3+α2+1
and y3 = α6 + 1. Finally, we get

A =

⎛
⎜⎜⎝

01x 02x fcx fex
02x 01x fex fcx
fcx fex 01x 02x
fex fcx 02x 01x

⎞
⎟⎟⎠ .

Note that this matrix is involutory MDS. The MDS matrix A of Example 1
is more implementation friendly, but it is not involutory. Note that the matrix
1
cA of Example 1 is involutory MDS but not as efficient as the involutory MDS
matrix A of Example 2.

Example 3: Here we construct 23× 23 involutory MDS matrix from Algorithm
2. Let r = 1. Using Algorithm 2, we select a0,1 = 02x, a0,2 = 06x and a0,4 = 30x
of low Hamming weight. This generates G = {00x, 8cx, 7ax, f6x, 2dx, a1x, 57x, dbx}. So we
generate r+G and finally the involutory MDS matrix A using Algorithm 2, first
row of which is as follows: (01x 02x 06x 8cx 30x fbx 87x c4x).

Example 4: Here we construct 24×24 involutoryMDS matrix from Algorithm 2.
Let r = 1. Using Algorithm 2, we select a0,1 = 03x, a0,2 = 08x and a0,4 = 0dx and
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a0,8 = 0fx of low Hamming weight. This generates
G = {00x, f7x, e9x, 1ex, e0x, 17x, 09x, fex, c6x, 31x, 2fx, d8x, 26x, d1x, cfx, 38x}. So we generate r +
G and finally the involutory MDS matrix A using Algorithm 2 which is as
follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01x 03x 08x b2x 0dx 60x e8x 1cx 0fx 2cx a2x 8bx c9x 7ax acx 35x
03x 01x b2x 08x 60x 0dx 1cx e8x 2cx 0fx 8bx a2x 7ax c9x 35x acx
08x b2x 01x 03x e8x 1cx 0dx 60x a2x 8bx 0fx 2cx acx 35x c9x 7ax
b2x 08x 03x 01x 1cx e8x 60x 0dx 8bx a2x 2cx 0fx 35x acx 7ax c9x
0dx 60x e8x 1cx 01x 03x 08x b2x c9x 7ax acx 35x 0fx 2cx a2x 8bx
60x 0dx 1cx e8x 03x 01x b2x 08x 7ax c9x 35x acx 2cx 0fx 8bx a2x
e8x 1cx 0dx 60x 08x b2x 01x 03x acx 35x c9x 7ax a2x 8bx 0fx 2cx
1cx e8x 60x 0dx b2x 08x 03x 01x 35x acx 7ax c9x 8bx a2x 2cx 0fx
0fx 2cx a2x 8bx c9x 7ax acx 35x 01x 03x 08x b2x 0dx 60x e8x 1cx
2cx 0fx 8bx a2x 7ax c9x 35x acx 03x 01x b2x 08x 60x 0dx 1cx e8x
a2x 8bx 0fx 2cx acx 35x c9x 7ax 08x b2x 01x 03x e8x 1cx 0dx 60x
8bx a2x 2cx 0fx 35x acx 7ax c9x b2x 08x 03x 01x 1cx e8x 60x 0dx
c9x 7ax acx 35x 0fx 2cx a2x 8bx 0dx 60x e8x 1cx 01x 03x 08x b2x
7ax c9x 35x acx 2cx 0fx 8bx a2x 60x 0dx 1cx e8x 03x 01x b2x 08x
acx 35x c9x 7ax a2x 8bx 0fx 2cx e8x 1cx 0dx 60x 08x b2x 01x 03x
35x acx 7ax c9x 8bx a2x 2cx 0fx 1cx e8x 60x 0dx b2x 08x 03x 01x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Example 5: Here we construct 25× 25 involutory MDS matrix from Algorithm
2. Let r = 1. Using Algorithm 2, we select a0,1 = 02x, a0,2 = 04x and a0,4 = 07x
and a0,8 = 0bx and a0,16 = 0e of low Hamming weight. This generates G =

{00x, 8cx, cax, 46x, d0x, 5cx, 1ax, 96x, c1x, 4dx, 0bx, 87x, 11x, 9dx, dbx, 57x, e4x, 68x, 2ex, a2x, 34x, b8x, fex,

72x, 25x, a9x, efx, 63x, f5x, 79x, 3fx, b3x}. So we generate r+G and finally the involutory
MDS matrixA using Algorithm 2, first row of which is as follows: (01x 02x 04x 69x 07x

ecx ccx 72x 0bx 54x 29x bex 74x f9x c4x 87x 0ex 47x c2x c3x 39x 8ex 1cx 85x 55x 26x 1ex afx 68x b6x

59x 1fx). Note that matrices in Example 2 to Example 5 are FFHadamard (see
Remark 4). So hi,j = h0,i⊕j for all i, j ∈ {0, . . . , 31}.

4 FFHadamard MDS Matrices from Cauchy Based
Construction and Vandermonde Based Constructions

The authors of [19] constructed FFHadamard involutory MDS matrices start-
ing from two Special Vandermonde matrices. In this section we first show that
Cauchy construction of Algorithm 1 gives FFHadamard matrices. We next show
(see Theorem 5) the equivalence of Cauchy based construction and Vandermonde
based construction of “FFHadamard involutory MDS matrices” of [19]. In doing
so, we provide a much simpler proof (see Corollary 8) of generalization of Corol-
lary 2 of [19]. We also prove that Cauchy based construction using Algorithm 1
is faster than the Vandermonde based construction.In the following theorem we
show that the MDS matrices constructed by Algorithm 1 are FFHadamard.

Theorem 4. Algorithm 1 generates FFHadamard Matrices.

Proof. Let us assume that Algorithm 1 produces 2m × 2m matrix A = ((ai,j)).
So ai,j = 1

xi+yj
= 1

r+xi+xj
= 1

r+xi⊕j
, where xi’s and yj ’s are as defined in the

Algorithm 1. From Fact 9, A is FFHadamard matrix. �
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4.1 Equivalence of Cauchy Based Construction and Vandermonde
Based Construction of Involutory MDS FFHadamard Matrices

Here we fix certain notations that will be used freely in the rest of this
Section. Let G = {γ0, γ1, . . . , γd−1} be an additive subgroup of F2n of order d
where γ0 = 0 and γi + γj = γi⊕j for i, j ∈ {0, . . . , d− 1}. For any two arbitrary
r1, r2 ∈ F2n , such that r1 + r2 /∈ G, let us define three cosets of G as follows:
r1+G = {αi : αi = r1+γi for i = 0, . . . , d−1}, r2+G = {βi : βi = r2+γi for i =
0, . . . , d− 1} and r1 + r2 + G = {δi : δi = r1 + r2 + γi for i = 0, . . . , d− 1}. Let
γ be the product of all nonzero elements of G, β be the product of all elements

of r2 +G and δ be the product of all elements of r1 + r2 +G, i.e. γ =
∏d−1

k=1 γk,

β =
∏d−1

k=0 βk and δ =
∏d−1

k=0 δk. Also let us define two d×d Special Vandermonde
matrices (SV matrices) A and B as follows: A = van(α0, α1, . . . , αd−1) and
B = van(β0, β1, . . . , βd−1) and let

B−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

b0,0 b0,1 . . . b0,d−1
b1,0 b1,1 . . . b1,d−1

.

.

.

.

.

.

.

.

.

.

.

.
bd−1,0 bd−1,1 . . . bd−1,d−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, where bi,j ∈ F2n .

We will prove in Theorem 5 the equivalence of Vandermonde based constructions
(see Subsection 3.1 of [19]) and Cauchy based constructions (see Algorithm 1) of
FFHadamard involutory MDS matrices. Before going into the proof, we study
few properties of B and B−1 in Lemma 9 to Lemma 12.

Lemma 9. det(B) = γd/2.

Proof. From Fact 7, det(B) =
∏

k<l(βk+βl) = (
∏

k �=l(βk+βl))
1/2 = (

∏
k �=l(γk+

γl))
1/2. In the product

∏
k �=l(γk + γl), each of the terms γ1, . . . , γd−1 occurs d

times. So
∏

k �=l(γk + γl) =
∏d−1

i=1 γd
i = γd. Therefore det(B) = γd/2. �

In the next lemma, we show that the elements of last row of B−1 i.e. bd−1,j’s for
j = 0, . . . , d− 1 are equal and independent of j.

Lemma 10. bd−1,j = 1
γ for j = 0, . . . , d− 1.

Proof. Let j ∈ {0, 1, . . . , d− 1} be arbitrary. So, bd−1,j =
det(B′)
det(B) . Where

B
′
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 β0 β2
0 β3

0 . . . β
d−2
0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 βj−1 β2
j−1 β3

j−1 . . . β
d−2
j−1

1 βj+1 β2
j+1 β3

j+1 . . . β
d−2
j+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 βd−1 β2
d−1 β3

d−1 . . . β
d−2
d−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now (
∏

k �=l(γk + γl))
1/2 =

∏
k<l(γk + γl) and

∏
k �=l,k,l �=j(γk + γl) =∏

k �=l,(γk+γl)∏
k �=j(γk+γj)

∏
l �=j(γj+γl)

=
∏

k �=l,(γk+γl)∏
k �=0 γk

∏
l �=0 γl

= γd

γ2 = γd−2. Therefore det(B′) =∏
k<l,k,l �=j(βk + βl) =

∏
k<l,k,l �=j(γk + γl) = (

∏
k �=l,k,l �=j(γk + γl))

1/2 = γ(d−2)/2.
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From the relation B−1 = Adj(B)t

det(B) , we get bn−1,j = det(B′)
det(B) . Using Lemma 9, we

get bn−1,j =
det(B′)
det(B) = γ(d−2)/2

γd/2 = 1
γ . �

Let us define d− 1 degree polynomials Pj(x) =
∑d−1

i=0 bi,jx
i for j = 0, . . . , d− 1.

The coefficients of Pj(x) are the elements of j’th column of B−1. In the next
lemma we study the roots of Pj(x).

Lemma 11. The d − 1 roots of Pj(x) are β0, . . . , βj−1, βj+1, . . . , βd−1 for
j = 0, . . . , d− 1.

Proof. We know BB−1 = I, where I is the d×d identity matrix. The d elements
in the j’th column of BB−1 are Pj(β0), Pj(β1), . . . , Pj(βd−1), of which only j’th
element i.e. Pj(βj) is one and the rest d− 1 are zero. Hence the result follows. �
Corollary 6. Pj(x) =

1
γ

∏
k �=j(x+ βk) for j = 0, . . . , d− 1.

Proof. From Lemma 11, roots of Pj(x) are β0, . . . , βj−1, βj+1, . . . , βd−1. There-
fore, Pj(x) = bd−1,j

∏
k �=j(x−βk). Since elements are from F2n which is of char-

acteristic 2, so Pj(x) = bd−1,j
∏

k �=j(x + βk). Also from Lemma 10, bd−1,j = 1
γ

for j = 0, . . . , d− 1. Hence Pj(x) =
1
γ

∏
k �=j(x+ βk) for j = 0, . . . , d− 1. �

Lemma 12.
∑

j
1
βj

= γ
β .

Proof. We know, B−1B = I. So (0, 0)’th element of B−1B i.e.
∑

k b0,j = 1.

Using Corollary 6, we have Pj(0) = 1
γ

∏
k �=j βk = β

γβj
. But Pj(0) = b0,j . So

1 =
∑

j b0,j =
∑

j Pj(0) =
∑

j
β

γβj
= β

γ

∑
j

1
βj
. Thus

∑
j

1
βj

= γ
β . �

Corollary 7.
∑

j
1
δj

= γ
δ .

Now we propose Theorem 5, which shows the equivalence between Cauchy based
Construction of FFHadamard matrices (Algorithm 1) and Vandermonde based
Construction of FFHadamard matrices [19]. Let 1

cM be the involutory MDS
matrix produced by Algorithm 1, where M = ((mi,j)), mi,j = 1

γi+δj
for i, j ∈

{0, 1, . . . , d − 1}, c =
∑d−1

k=0
1
δk
. Note that in Algorithm 1, if we take G as G, r

as r1 + r2 and set bInvolutory = true, then Algorithm 1 constructs 1
cM .

Theorem 5. AB−1 = 1
cM .

Proof. Let AB−1 = ((hi,j)). Now, the (i, j)’th element of AB−1 is Pj(αi). Using
Corollary 6, we have hi,j = Pj(αi) =

1
γ

∏
k �=j(αi + βk) =

1
γ

∏
k �=j(r1 + γi + r2 +

γk) =
1
γ

∏
k(r1+r2+γi+γk)

(r1+r2+γi+γj)
= 1

γ

∏
k δk

(γi+δj)
= δ

γ
1

(γi+δj)
= δ

γmi,j . Also from Corollary 7,

c =
∑d−1

k=0
1
δk

= γ
δ . Thus hi,j =

1
cmi,j . Hence the proof. �

Note that by Lemma 5 (a generalization of Corollary 2 of [19]), AB−1 is an
FFHadamard involutory MDS matrix. The following corollary gives an alterna-
tive proof of Lemma 5.

Corollary 8. AB−1 is FFHadamard involutory MDS matrix.

Proof. Since 1
cM is FFHadamard involutory MDS (from Theorem 3 and

Theorem 4), so is AB−1 (from Theorem 5). �
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4.2 Comparison of Algorithm 1 Based on Cauchy Based
Construction, and Vandermonde Based Construction of [19] to
Construct FFHadamard Involutory MDS Matrices

From Theorem 3, the time complexity of constructing d× d FFHadamard invo-
lutory MDS matrix 1

cM is O(d2). In the Vandermonde based Construction [19]
to construct FFHadamard involutory MDS matrix AB−1, it requires a multipli-
cation of d × d matrices A and B−1 and the time complexity is O(d3). So, the
Algorithm 1 is faster than the Vandermonde based Construction of FFHadamard
involutory MDS matrix in [19].

5 The Matrix M16×16 Used in MDS-AES of [10] Is Not
MDS

In [10], authors proposed 16 × 16 involutory MDS matrix M16×16 by Cauchy
based construction with an additional restriction of allowing elements of low
Hamming weights. We checked that their method does not give MDS matrix. It
is easy to verify that the set of inverses of elements of the first row of M16×16
is not a coset of any additive subgroup of F23 . In fact the authors of [10] did
not consider the additive subgroup properly. Some authors [4,15] recommended
M16×16 to be used as a diffusion layer, but using this matrix may introduce
severe weaknesses. The M16×16 matrix of [10] is given below.

M16×16 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01x 03x 04x 05x 06x 07x 08x 09x 0ax 0bx 0cx 0dx 0ex 10x 02x 1ex
03x 01x 05x 04x 07x 06x 09x 08x 0bx 0ax 0dx 0cx 10x 0ex 1ex 02x
04x 05x 01x 03x 08x 09x 06x 07x 0cx 0dx 0ax 0bx 02x 1ex 0ex 10x
05x 04x 03x 01x 09x 08x 07x 06x 0dx 0cx 0bx 0ax 1ex 02x 10x 0ex
06x 07x 08x 09x 01x 03x 04x 05x 0ex 10x 02x 1ex 0ax 0bx 0cx 0dx
07x 06x 09x 08x 03x 01x 05x 04x 10x 0ex 1ex 02x 0bx 0ax 0dx 0cx
08x 09x 06x 07x 04x 05x 01x 03x 02x 1ex 0ex 10x 0cx 0dx 0ax 0bx
09x 08x 07x 06x 05x 04x 03x 01x 1ex 02x 10x 0ex 0dx 0cx 0bx 0ax
0ax 0bx 0cx 0dx 0ex 10x 02x 1ex 01x 03x 04x 05x 06x 07x 08x 09x
0bx 0ax 0dx 0cx 10x 0ex 1ex 02x 03x 01x 05x 04x 07x 06x 09x 08x
0cx 0dx 0ax 0bx 02x 1ex 0ex 10x 04x 05x 01x 03x 08x 09x 06x 07x
0dx 0cx 0bx 0ax 1ex 02x 10x 0ex 05x 04x 03x 01x 09x 08x 07x 06x
0ex 10x 02x 1ex 0ax 0bx 0cx 0dx 06x 07x 08x 09x 01x 03x 04x 05x
10x 0ex 1ex 02x 0bx 0ax 0dx 0cx 07x 06x 09x 08x 03x 01x 05x 04x
02x 1ex 0ex 10x 0cx 0dx 0ax 0bx 08x 09x 06x 07x 04x 05x 01x 03x
1ex 02x 10x 0ex 0dx 0cx 0bx 0ax 09x 08x 07x 06x 05x 04x 03x 01x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The elements of M16×16 are from F28 and the constructing polynomial is x8 +
x4+x3+x+1. Let us consider the 2×2 submatrix A of M16×16 formed by taking
0th and 2nd row and 1st and 5th column. Let α be the root of x8+x4+x3+x+1.
Then in polynomial representation,

A =

(
03x 07x
05x 09x

)
=

(
1 + α 1 + α + α2

1 + α2 1 + α3

)
.

So det(A) = (1+α)(1+α3) + (1+α+α2)(1 +α2) = 1+α4 +α+α3 +1+α2 +
α+α3 +α2 +α4 = 0. Thus the submatrix A is singular. So clearly from Fact 1,
M16×16 is non MDS. Example 4 provides 16× 16 involutory MDS matrix which
can be used instead of M16×16 of [10]. Note that the matrix in Example 4 does
not look as good as M16×16, in terms of Hamming weights of its elements – but
M16×16 is non MDS. One can also generate different involutory MDS matrices
using Algorithm 2.
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6 Conclusion

In this paper, we developed techniques to construct d × d MDS matrices over
F2n . We proposed a simple algorithm (Algorithm 1) based on Lemma 6. This
algorithm is a generalization of the construction proposed in [30]. We propose
another algorithm (Algorithm 2) which uses Algorithm 1 iteratively to find soft-
ware efficient involutory MDS matrices. We find the interesting equivalence of
Cauchy based construction (Algorithm 1) and Vandermonde based construction
of FFHadamard involutory MDS matrices [19]. We also prove that Cauchy based
construction (Algorithm 1) is faster in terms of time complexity compared to
Vandermonde based construction of FFHadamard involutory MDS matrices [19].
We have shown that the 16 × 16 matrix M16×16, used in MDS-AES of [10], is
not MDS.
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Abstract. A characterization of predicate encryption (PE) with
support for homomorphic operations is presented and we describe the
homomorphic properties of some existing PE constructions. Even for the
special case of IBE, there are few known group-homomorphic cryptosys-
tems. Our main construction is an XOR-homomorphic IBE scheme based
on the quadratic residuosity problem (variant of the Cocks’ scheme),
which we show to be strongly homomorphic. We were unable to con-
struct an anonymous variant that preserves this homomorphic property,
but we achieved anonymity for a weaker notion of homomorphic en-
cryption, which we call non-universal. A related security notion for this
weaker primitive is formalized. Finally, some potential applications and
open problems are considered.

1 Introduction

There has been much interest recently in encryption schemes with homomorphic
capabilities. Traditionally, malleability was avoided to satisfy strong security
definitions, but many applications have been identified for cryptosystems sup-
porting homomorphic operations. More recently, Gentry [1] presented the first
fully-homomorphic encryption (FHE) scheme, and several improvements and
variants have since appeared in the literature [2–5]. There are however many
applications that only require a scheme to support a single homomorphic opera-
tion. Such schemes are referred to as partial homomorphic. Notable examples of
unbounded homomorphic cryptosystems include Goldwasser-Micali [6] (XOR),
Paillier [7] and ElGamal [8].

Predicate Encryption (PE) [9] enables a sender to embed a hidden descriptor
within a ciphertext that consists of attributes describing the message content.
A Trusted Authority (TA) who manages the system issues secret keys to users
corresponding to predicates. A user can decrypt a ciphertext containing a de-
scriptor a if and only if he/she has a secret key for a predicate that evaluates
to true for a. This construct turns out to be quite powerful, and generalizes
many encryption primitives. It facilitates expressive fine-grained access control
i.e. complex policies can be defined restricting the recipients who can decrypt
a message. It also facilitates the evaluation of complex queries on data such as
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range, subset and search queries. Extending the class of supported predicates for
known schemes is a topic of active research at present.

PE can be viewed in two ways. It can be viewed as a means to delegate compu-
tation to a third party i.e. allow the third party to perform a precise fixed function
on the encrypted data, and thus limit what the third party learns about the data.
In the spirit of this viewpoint, a generalization known as Functional Encryption
has been proposed [10], which allows general functions to be evaluated.

PE can also be viewed as a means to achieve more fine-grained access control.
It enables a stronger separation between sender and recipient since the former
must only describe the content of the message or more general conditions on
its access while decryption then depends on whether a recipient’s access policy
matches these conditions.

Why consider homomorphic encryption in the PE setting? It is conceivable
that in a multi-user environment such as a large organization, certain computa-
tions may be delegated to the cloud whose inputs depend on the work of multi-
ple users distributed within that organization. Depending on the application, the
circuit to be computed may be chosen or adapted by the cloud provider, and thus
is not fixed by the delegator as in primitives such as non-interactive verifiable
computing [11]. Furthermore, the computation may depend on data sets pro-
vided by multiple independent users. Since the data is potentially sensitive, the
organization’s security policy may dictate that all data must be encrypted. Ac-
cordingly, each user encrypts her data with a PE scheme using relevant attributes
to describe it. She then sends the ciphertext(s) to the cloud. It is desirable that
the results of the computation returned from the cloud be decryptable only by
an entity whose access policy (predicate) satisfies the attributes of all data sets
used in the computation. Of course a public-key homomorphic scheme together
with a PE scheme would be sufficient if the senders were able to interact before
contacting the cloud, but we would like to remove this requirement since the
senders may not be aware of each other. This brings to mind the recent no-
tion of multikey homomorphic encryption presented by López-Alt, Tromer and
Vaikuntanathan [12].

Using a multikey homomorphic scheme, the senders need not interact with
each other before evaluation takes place on the cloud. Instead, they must run an
MPC decryption protocol to jointly decrypt the result produced by the cloud.
The evaluated ciphertexts in the scheme described in [12] do not depend on the
circuit size, and depend only polynomially on the security parameter and the
number of parties who contribute inputs to the circuit. Therefore, the problem
outlined above may be solved with a multikey fully homomorphic scheme used
in conjunction with a PE scheme if we accept the evaluated ciphertext size to
be polynomial in the number of parties. In this work, we are concerned with a
ciphertext size that is independent of the number of parties. Naturally, this limits
the composition of access policies, but if this is acceptable in an application, there
may be efficiency gains over the combination of multikey FHE and PE.

In summary, homomorphic encryption in the PE setting is desirable if there is
the possibility of multiple parties in a large organization (say) sending encrypted
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data to a semi-trusted1 evaluator and access policies are required to appropri-
ately limit access to the results, where the “composition” of access policies is
“lossy”. We assume the semi-honest model in this paper; in particular we do not
consider verifiability of the computation.

The state of affairs for homomorphic encryption even for the simplest special
case of PE, namely identity-based encryption (IBE), leaves open many chal-
lenges. At his talk at Crypto 2010, Naccache [13] mentioned “identity-based
fully homomorphic encryption” as one of a list of theory questions. Towards this
goal, it has been pointed out in [14] that some LWE-based FHE constructions
can be modified to obtain a weak form of an identity-based FHE scheme us-
ing the trapdoor functions from [15]; that is, additional information is needed
(beyond what can be non-interactively derived from a user’s identity) in order
to evaluate certain circuits and to perform bootstrapping. Therefore, the valued
non-interactivity property of IBE is lost whereby no communication between en-
cryptors and the TA is needed. To the best of our knowledge, fully-homomorphic
or even “somewhat-homomorphic” IBE remains open, and a variant of the BGN-
type scheme of Gentry, Halevi and Vaikuntanathan [16] is the only IBE scheme
that can compactly evaluate quadratic formulae (supports 2-DNF).

As far as the authors are aware, there are no (ZN ,+) (like Paillier) or (Z∗p, ∗)
(like ElGamal) homomorphic IBE schemes. Many pairings-based IBE construc-
tions admit multiplicative homomorphisms which give us a limited additive ho-
momorphism for small ranges; that is, a discrete logarithm problem must be
solved to recover the plaintext, and the complexity thereof is O(

√
M), where

M is the size of the message space. Of a similar variety are public-key schemes
such as BGN [17] and Benaloh [18]. It remains open to construct an unbounded
additively homomorphic IBE scheme for a “large” range such as Paillier [7]. Pos-
sibly a fruitful step in this direction would be to look at Galbraith’s variant of
Paillier’s cryptosystem based on elliptic curves over rings [19].

One of the contributions of this paper is to construct an additively homo-
morphic IBE scheme for Z2, which is usually referred to as XOR-homomorphic.
XOR-homomorphic schemes such as Goldwasser-Micali [6] have been used in
many practical applications including sealed-bid auctions, biometric authentica-
tion and as the building blocks of protocols such as private information retrieval,
and it seems that an IBE XOR-homomorphic scheme may be useful in some of
these scenarios.

We faced barriers however trying to make our XOR-homomorphic scheme
anonymous. The main obstacle is that the homomorphism depends on the public
key. We pose as an open problem the task of constructing a variant that achieves
anonymity and retains the homomorphic property. Inheriting the terminology of
Golle et al. [20] (who refer to re-encryption without the public key as universal
re-encryption), we designate homomorphic evaluation in a scheme that does not
require knowledge of the public key as universal. We introduce a weaker primitive
that explicitly requires additional information to be passed to the homomorphic
evaluation algorithm. Our construction can be made anonymous and retain its

1 We assume all parties are semi-honest.
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homomorphic property in this context; that is, if the attribute (identity in the
case of IBE) is known to an evaluator. While this certainly is not ideal, it may
be plausible in some scenarios that an evaluator is allowed to be privy to the
attribute(s) encrypted by the ciphertexts, and it is other parties in the system
to whom the attribute(s) must remain concealed. An adversary sees incoming
and outgoing ciphertexts, and can potentially request evaluations on arbitrary
ciphertexts. We call such a variant non-universal. We propose a syntax for a
non-universal homomorphic primitive and formulate a security notion to capture
attribute-privacy in this context.

1.1 Related Work

There have been several endeavors to characterize homomorphic encryption
schemes. Gjøsteen [21] succeeded in characterizing many well-known group ho-
momorphic cryptosystems by means of an abstract construction whose secu-
rity rests on the hardness of a subgroup membership problem. More recently,
Armknecht, Katzenbeisser and Peter [22] gave a more complete characterization
and generalized Gjøsteen’s results to the IND-CCA1 setting. However, in this
work, our focus is at a higher level and not concerned with the underlying al-
gebraic structures. In particular, we do not require the homomorphisms to be
unbounded since our aim to provide a more general characterization for homo-
morphic encryption in the PE setting. Compactness, however, is required; that
is, informally, the length of an evaluated ciphertext should be independent of
the size of the computation.

The notion of receiver-anonymity or key-privacy was formally established
by Bellare et al. [23], and the concept of universal anonymity (any user can
anonymize a ciphertext) was proposed in [24]. The first universally anonymous
IBE scheme appeared in [25]. Prabhakaran and Rosulek [26] consider receiver-
anonymity for their definitions of homomorphic encryption.

Finally, since Cocks’ IBE scheme [27] appeared, variants have been proposed
( [28] and [25]) that achieve anonymity and improve space efficiency. However,
the possibility of constructing a homomorphic variant has not received attention
to date.

1.2 Organization

Notation and background definitions are set out in Section 2. Our characteriza-
tion of homomorphic predicate encryption is specified in Section 3; the syntax,
correctness conditions and security notions are established, and the properties
of such schemes are analyzed. In Section 4, some instantiations are given based
on inner-product PE constructions. Our main construction, XOR-homomorphic
IBE, is presented in Section 5. Non-universal homomorphic encryption and the
abstraction of universal anonymizers is presented in Section 6 towards realizing
anonymity for our construction in a weaker setting. Conclusions and future work
are presented in Section 7.
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2 Preliminaries

A quantity is said to be negligible with respect to some parameter λ, written
negl(λ), if it is asymptotically bounded from above by the reciprocal of all poly-
nomials in λ.

For a probability distribution D, we denote by x
$←− D that x is sampled

according to D. If S is a set, y
$←− S denotes that y is sampled from x according

to the uniform distribution on S.
The support of a predicate f : A → {0, 1} for some domain A is denoted by

supp(f), and is defined by the set {a ∈ A : f(a) = 1}.

Definition 1 (Homomorphic Encryption). A homomorphic encryption
scheme with message space M supporting a class of �-input circuits C ⊆ M � →
M is a tuple of PPT algorithms (Gen,Enc,Dec,Eval) satisfying the property:

∀(pk, sk) ← Gen(1λ), ∀C ∈ C, ∀m1, . . . ,m� ∈ M
∀c1, . . . , c� ← Enc(pk,m1), . . . ,Enc(pk,m�)

C(m1, . . . ,m�) = Dec(sk,Eval(pk, C, ci, . . . , c�))

The following definition is based on [29],

Definition 2 (Strongly Homomorphic). Let E be a homomorphic encryp-
tion scheme with message space M and class of supported circuits C ⊆ {M � →
M}. E is said to be strongly homomorphic iff ∀C ∈ C, ∀(pk, sk) ←
Gen, ∀m1, . . . ,m�, ∀c1, . . . , c� ← Enc(pk,m1), . . . ,Enc(pk,m�), the following dis-
tributions are statistically indistinguishable

Enc(pk, C(m1, . . . ,m�)) ≈ (Eval(pk, C, c1, . . . , c�).

Definition 3 (Predicate Encryption (Adapted from [9] Definition 1)).
A predicate encryption (PE) scheme for the class of predicates F over the set
of attributes A and with message space M consists of four algorithms Setup,
GenKey, Encrypt, Decrypt such that:

− PE.Setup takes as input the security parameter 1λ and outputs public param-
eters PP and master secret key MSK.

− PE.GenKey takes as input the master secret key MSK and a description of a
predicate f ∈ F . It outputs a key SKf .

− PE.Encrypt takes as input the public parameters PP, a message m ∈ M
and an attribute a ∈ A. It returns a ciphertext c. We write this as c ←
Encrypt(PP, a,m).

− PE.Decrypt takes as input a secret key SKf for a predicate f and a ciphertext
c. It outputs m iff f(a) = 1. Otherwise it outputs a distinguished symbol ⊥
with all but negligible probability.

Remark 1. Predicate Encryption (PE) is known by various terms in the liter-
ature. PE stems from Attribute-Based Encryption (ABE) with Key Policy, or



66 M. Clear, A. Hughes, and H. Tewari

simply KP-ABE, and differs from it in its support for attribute privacy. As a re-
sult, “ordinary” KP-ABE is sometimes known as PE with public index. Another
variant of ABE is CP-ABE (ciphertext policy) where the encryptor embeds her
access policy in the ciphertext and a recipient must possess sufficient attributes
in order to decrypt. This is the reverse of KP-ABE. In this paper, the emphasis
is placed on PE with its more standard interpretation, namely KP-ABE with
attribute privacy.

3 Homomorphic Predicate Encryption

3.1 Syntax

Let M be as message space and let A be a set of attributes. Consider a set
of operations ΓM ⊆ {M2 → M} on the message space, and a set of opera-
tions ΓA ⊆ {A2 → A} on the attribute space. We denote by γ = γA × γM for
some γA ∈ ΓA and γM ∈ ΓM the operation (A × M)2 → (A × M) given by
γ((a1,m1), (a2,m2)) = (γA(a1, a2), γM (m1,m2)). Accordingly, we define the set
of permissible “gates” Γ ⊆ {γA × γM : γA ∈ ΓA, γM ∈ ΓM} ⊆ {(A × M)2 →
(A × M)}2. Thus, each operation on the plaintexts is associated with a single
(potentially distinct) operation on the attributes. Finally, we can specify a class
of permissible circuits C built from Γ .

Definition 4. A homomorphic predicate encryption (HPE) scheme for the non-
empty class of predicates F , message space M , attribute space A, and class of
�-input circuits C consists of a tuple of five PPT algorithms Setup, GenKey,
Encrypt,Decrypt and Eval. such that:

− HPE.Setup, HPE.GenKey, HPE.Encrypt and HPE.Decrypt are as specified in
Definition 3.

− HPE.Eval(PP, C, c1, . . . , c�) takes as input the public parame-
ters PP, an �-input circuit C ∈ C, and ciphertexts c1 ←
HPE.Encrypt(PP, a1,m1), . . . , c� ← HPE.Encrypt(PP, a�,m�).
It outputs a ciphertext that encrypts the attribute-message pair
C((a1,m1), . . . , (a�,m�)).

Accordingly, the correctness criteria are defined as follows:

Correctness Conditions
For any (PP,MSK) ← HPE.Setup(1λ), f ∈ F , SKf ← HPE.GenKey(PP,MSK, f),
C ∈ C:

1. For any a ∈ A,m ∈ M, c ← HPE.Encrypt(PP,m, a):

HPE.Decrypt(SKf , c) = m ⇐⇒ f(a) = 1

2 It is assumed that ΓA and ΓM are minimal insofar as ∀γA ∈ ΓA∃γM ∈ ΓM s.t. γA ×
γM ∈ Γ and the converse also holds. In particular, we later assume this of ΓA.
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2. ∀m1, . . . ,m� ∈ M, ∀a1, . . . , a� ∈ A, ∀c1, . . . , c� ←
HPE.Encrypt(PP, a1,m1), . . . ,HPE.Encrypt(PP, a�,m�) :

∀c′ ← HPE.Eval(PP, C, c1, . . . , c�)
(a)

HPE.Decrypt(SKf , c
′) = m′ ⇐⇒ f(a′) = 1

where (m′, a′) = C((a1,m1), . . . , (a�,m�))
(b)

|c′| < L(λ)

where L(λ) is a fixed polynomial derivable from PP.

The special case of “predicate only” encryption [9] that excludes plaintexts (“pay-
loads”) is modelled by setting M � {0} for a distinguished symbol 0, and setting
Γ � {γA × idM : γA ∈ ΓA} where idM is the identity operation on M .

3.2 Security Notions

The security notions we consider carry over from the standard notions for PE.
The basic requirement is IND-CPA security, which is referred to as “payload-
hiding”. A stronger notion is “attribute-hiding” that additionally entails indis-
tinguishability of attributes. The definitions are game-based with non-adaptive
and adaptive variants. The former prescribes that the adversary choose its tar-
get attributes at the beginning of the game before seeing the public parameters,
whereas the latter allows the adversary’s choice to be informed by the public
parameters and secret key queries.

Definition 5. A (H)PE scheme E is said to be (fully) attribute-hiding (based on
Definition 2 in [9]) if an adversary A has negligible advantage in the following
game:

1. In the non-adaptive variant, A outputs two attributes a0 and a1 at the
beginning of the game.

2. The challenger C runs Setup(1λ) and outputs (PP,MSK)
3. Phase 1

A makes adaptive queries for the secret keys for predicates f1, . . . , fk ∈ F
subject to the constraint that fi(a0) = fi(a1) for 1 ≤ i ≤ k.

4. Remark 2. In the stronger adaptive variant, A only chooses attributes a0
and a1 at this stage.

5. A outputs two messages m0 and m1 of equal length. It must hold that m0 =
m1 if there is an i such that fi(a0) = fi(a1) = 1.

6. C chooses a random bit b, and outputs c ← Encrypt(PP, ab,mb)
7. Phase 2

A second phase is run where A requests secret keys for other predicates sub-
ject to the same constraint as above.

8. Finally, A outputs a guess b′ and is said to win if b′ = b.
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A weaker property referred to as weakly attribute-hiding [9] requires that the
adversary only request keys for predicates f obeying f(a0) = f(a1) = 0.

We propose another model of security for non-universal homomorphic
encryption in Section 6.

3.3 Attribute Operations

We now characterize HPE schemes based on the properties of their attribute
operations (elements of ΓA).

Definition 6 (Properties of attribute operations). ∀f ∈ F , ∀a1, a2 ∈
A, ∀γA ∈ ΓA:

1.

f(γA(a1, a2)) ⇒ f(a1) ∧ f(a2) (3.1)

(Necessary condition for IND-CPA security)

2.

f(γA(a1, a1)) = f(a1) (3.2)

3. ∀d ∈ A:

f(a1) = f(a2) ⇒ f(γA(d, a1)) = f(γA(d, a2))

∧ f(γA(a1, d)) = f(γA(a2, d))

(3.3)

(Non-monotone Indistinguishability)

4.

f(γA(a1, a2)) = f(a1) ∧ f(a2) (3.4)

(Monotone Access)

Property 3.1 is a minimal precondition for payload-hiding i.e. IND-CPA security
under both adaptive and non-adaptive security definitions.

Property 3.2 preserves access under a homomorphic operation on ciphertexts
with the same attribute.

Property 3.3 is a necessary condition for full attribute-hiding.
Property 3.4 enables monotone access; a user only learns a function of a plain-

text if and only if that user has permission to learn the value of that plaintext.
This implies that (A, γA) cannot be a group unless F is a class of constant predi-
cates. In general, 3.4 implies that F is monotonic. Monotone access is equivalent
to the preceding three properties collectively; that is

3.1 ∧ 3.2 ∧ 3.3 ⇐⇒ 3.4
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Non-Monotone Access. Non-monotone access is trickier to define and to suit-
ably accommodate in a security definition. It can arise from policies that involve
negation. As an example, suppose that it is permissible for a party to decrypt
data sets designated as either “geology” or “aviation”, but is not authorized
to decrypt results with both designations that arise from homomorphic com-
putations on both data sets. Of course it is then necessary to strengthen the
restrictions on the adversary’s choice of a0 and a1 in the security game. Let a0
and a1 be the attributes chosen by the adversary. Intuitively, the goal is to show
that any sequence of transitions that leads a0 to a an element outside the sup-
port of f , also leads a1 to an element outside the support of f , and vice versa.
Instead of explicitly imposing this non-triviality constraint on the adversary’s
choice of attributes, one may seek to show that there is no pair of attributes
distinguishable under any γA and f ∈ F . This is captured by the property of
non-monotone indistinguishability (3.3). Trivially, the constant operations sat-
isfy 3.3. Of more interest is an operation that limits homomorphic operations to
ciphertexts with the same attribute. This captures our usual requirements for
the (anonymous) IBE functionality, but it is also satisfactory for many applica-
tions of general PE where computation need only be performed on ciphertexts
with matching attributes. To accomplish this, the attribute space is augmented
with a (logical) absorbing element z such that f(z) = 0 ∀f ∈ F . The attribute
operation is defined as follows:

δ(a1, a2) =

{
a1 if a1 = a2

z if a1 �= a2
(3.5)

δ models the inability to perform homomorphic evaluations on ciphertexts as-
sociated with unequal attributes (identities in the case of IBE). A scheme with
this operation can only be fully attribute-hiding in a vacuous sense (it may be
such that no restrictions are placed upon the adversary’s choice of f but it is
unable to find attributes a0 and a1 satisfying f(a0) = f(a1) = 1 for any f .) This
is the case for anonymous IBE where the predicates are equality relations, and
for the constant map (a1, a2) �→ z that models the absence of a homomorphic
property, although this is preferably modeled by appropriately constraining the
class of permissible circuits. More generally, such schemes can only be weakly
attribute-hiding because their operations γA only satisfy a relaxation of 3.3 given
as follows:

Necessary condition for weakly attribute-hiding ∀a1, a2, d ∈ A:

f(a1) = f(a2) = 0 ⇒ f(γA(d, a1)) = f(γA(d, a2))

∧ f(γA(a1, d)) = f(γA(a2, d))

(3.6)

Remark 3. In the case of general schemes not satisfying 3.3, placing constraints
on the adversary’s choice of attributes weakens the security definition. Further-
more, it must be possible for the challenger to efficiently check whether a pair
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of attributes satisfies such a condition. Given the added complications, it is
tempting to move to a simulation-based definition of security. However, this is
precluded by the recent impossibility results of [30] in the case of both weakly
and fully attribute-hiding in the NA/AD-SIM models of security. However, for
predicate encryption with public index (the attribute is not hidden), this has not
been ruled out for 1-AD-SIM and many-NA-SIM where “1” and “many” refer
to the number of ciphertexts seen by the adversary. See [30,31] for more details.
In the context of non-monotone access, it thus seems more reasonable to focus
on predicate encryption with public index. Our main focus in this work is on
schemes that facilitate attribute privacy, and therefore we restrict our attention
to schemes that at least satisfy 3.6.

Delegate Predicate Encryption. A primitive presented in [32] called “Dele-
gate Predicate Encryption” (DPE) 3 enables a user to generate an encryption key
associated with a chosen attribute a ∈ A, which does not reveal anything about
a. The user can distribute this to certain parties who can then encrypt messages
with attribute a obliviously. The realization in [32] is similar to the widely-used
technique of publishing encryptions of “zero” in a homomorphic cryptosystem,
which can then be treated as a key. In fact, this technique is adopted in [33]
to transform a strongly homomorphic private-key scheme into a public-key one.
Generalizing from the results of [32], this corollary follows from the property of
attribute-hiding

Corollary 1. An attribute-hiding HPE scheme is a DPE as defined in [32] if
there exists a γ ∈ Γ such that (A×M,γ) is unital.

4 Constructions with Attribute Aggregation

In this section, we give some meaningful examples of attribute homomorphisms
(all which satisfy monotone access) for some known primitives. We begin with a
special case of PE introduced by Boneh and Waters [34], which they call Hidden
Vector Encryption. In this primitive, a ciphertext embeds a vector w ∈ {0, 1}n
where n is fixed in the public parameters. On the other hand, a secret key
corresponds to a vector v ∈ V � {∗, 0, 1}n where ∗ is interpreted as a “wildcard”
symbol or a “don’t care” (it matches any symbol). A decryptor who has a secret
key for some v can check whether it matches the attribute in a ciphertext.

To formulate in terms of PE, let A = {0, 1}n and define

F ⊆ {(w1, . . . , wn) �→
n∧

i=1

(vi = wi ∨ vi = ∗) : v ∈ V }

Unfortunately, we cannot achieve a non-trivial homomorphic variant of HVE
that satisfies 3.4. To see this, consider the HVE class of predicates F and an

3 Not to be confused with the different notion of Delegatable Predicate Encryption.
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operation γA satisfying 3.4. For any x,y ∈ A, let z = γA(x,y). Now for 3.4 to
hold, we must have that f(z) = f(x) ∧ f(y) for all f ∈ F . Suppose xi �= yi

and zi = xi. Then there exists an f ∈ F with f(z) = f(x) and f(z) �= f(y).
It is necessary to restrict V . Accordingly, let V = {∗, 1}n Setting the non-
equal elements to 0 yields associativity and commutativity. Such an operation is
equivalent to component-wise logical AND on the attribute vectors, and we will
denote it by ∧n. (A,∧n) is a semilattice.

Recall that a predicate-only scheme does not incorporate a payload into
ciphertexts. Even such a scheme E with the ∧n attribute homomorphism might
find some purpose in real-world scenarios. One particular application of E is se-
cure data aggregation in Wireless Sensor Networks (WSNs), an area which has
been the target of considerable research (a good survey is [35]). It is conceiv-
able that some aggregator nodes may be authorized by the sink (base station to
which packets are forwarded) to read packets matching certain criteria. An ori-
gin sensor node produces an outgoing ciphertext as follows: (1). It encrypts the
attributes describing its data using E . (2) It encrypts its sensor reading with the
public key of the sink using a separate additively (say) homomorphic public-key
cryptosystem. (3) Both ciphertexts are forwarded to the next hop.

Since an aggregator node receives packets from multiple sources, it needs to
have some knowledge about how to aggregate them. To this end, the sink can
authorize it to apply a particular predicate to incoming ciphertexts to check for
matching candidates for aggregation. One sample policy may be [“REGION1”
∧ “TEMPERATURE”’]. It can then aggregate ciphertexts matching this policy.
Additional aggregation can be performed by a node further along the route that
has been perhaps issued a secret key for a predicate corresponding to the more
permissive policy of [“TEMPERATURE”]. In the scenario above, it would be
more ideal if E were also additively homomorphic since besides obviating the
need to use another PKE cryptosystem, more control is afforded to aggregators;
they receive the ability to decrypt partial sums, and therefore, to perform (more
involved) statistical computations on the data.

It is possible to achieve the former case from some recent inner-product PE
schemes that admit homomorphisms on both attributes and payload. We focus
on two prominent constructions with different mathematical structures. Firstly,
a construction is examined by Katz, Sahai and Waters (KSW) [9], which relies
on non-standard assumptions on bilinear groups, assumptions that are justified
by the authors in the generic group model. Secondly, we focus on a construction
presented by Agrawal, Freeman and Vaikuntanathan (AFV) [36] whose security
is based on the learning with errors (LWE) problem.

In both schemes, an attribute is an element of Zn
m

4 and a predicate also
corresponds to an element of Zn

m. For v ∈ Zn
m, a predicate fv : Zn

m → {0, 1} is

4 In [9],m is a product of three large primes and n is the security parameter. In [36], n is
independent of the security parameter and m may be polynomial or superpolynomial
in the security parameter; in the latter case m is the product of many “small” primes.
We require that m be superpolynomial here.
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defined by

fv(w) =

{
1 iff 〈v,w〉
0 otherwise

Roughly speaking, in a ciphertext, all sub-attributes (in Zm) are blinded by
the same uniformly random “blinding” element b 5. The decryption algorithm
multiplies each component by the corresponding component in the predicate
vector, and the blinding element b is eliminated when the inner product evaluates
to zero with all but negligible probability, which allows decryption to proceed.

Let c1 and c2 be ciphertexts that encrypt attributes a1 and a2 respectively.
It can be easily shown that the sum c′ = c1�6 c2 encrypts both a1 and a2 in a
somewhat “isolated” way. The lossiness is “hidden” by the negligible probability
of two non-zero inner-products summing to 0. For linear aggregation, this can
be repeated a polynomial number of times (or effectively unbounded in practice)
while ensuring correctness with overwhelming probability. While linear aggrega-
tion is sufficient for the WSN scenario, it is interesting to explore other circuit
forms. For the KSW scheme, we observe that all circuits of polynomial depth
can be evaluated with overwhelming probability. For AFV, the picture is some-
what similar to the fully homomorphic schemes based on LWE such as [4,5] but
without requiring multiplicative gates.

While there are motivating scenarios for aggregation on the attributes, in
many cases it is adequate or preferable to restrict evaluation to ciphertexts with
matching attributes; that is, by means of the δ operation defined in Section 3.3.
Among these cases is anonymous IBE. In the next section, we introduce an IBE
construction that supports an unbounded XOR homomorphism, prove that it is
strongly homomorphic and then investigate anonymous variants.

5 Main Construction: XOR-Homomorphic IBE

In this section, an XOR-homomorphic IBE scheme is presented whose security is
based on the quadratic residuosity assumption. Therefore, it is similar in many
respects to the Goldwasser-Micali (GM) cryptosystem [6], which is well-known
to be XOR-homomorphic. Indeed, the GM scheme has found many practical
applications due to its homomorphic property. In Section 6.3, we show how
many of these applications benefit from an XOR-homomorphic scheme in the
identity-based setting.

Our construction derives from the IBE scheme due to Cocks [27] which has
a security reduction to the quadratic residuosity problem. To the best of our
knowledge, a homomorphic variant has not been explored to date.

5.1 Background

Let m be an integer. A quadratic residue in the residue ring Zm is an integer x
such that x ≡ y2 mod m for some y ∈ Zm. The set of quadratic residues in Zm

5 a scalar in KSW and a matrix in AFV.
6 � denotes a pairwise sum of the ciphertext components in both schemes.
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is denoted QR(m). If m is prime, it easy to determine whether any x ∈ Zm is a
quadratic residue.

Let N = pq be a composite modulus where p and q are prime. Let x ∈ Z. We

write

(
x

N

)
to denote the Jacobi symbol of x mod N . The subset of integers with

Jacobi symbol +1 (resp. -1) is denoted ZN [+1] (resp. ZN [−1]). The quadratic
residuosity problem is to determine, given input (N, x ∈ ZN [+1]), whether x ∈
QR(N), and it is believed to be intractable.

Define the encoding ν : {0, 1} → {−1, 1} with ν(0) = 1 and ν(1) = −1.
Formally, ν is a group isomorphism between (Z2,+) and ({−1, 1}, ∗).

In this section, we build on the results of [25] and therefore attempt to
maintain consistency with their notation where possible. As in [25], we let
H : {0, 1}∗ → Z∗N [+1] be a full-domain hash. A message bit is mapped to
an element of {−1, 1} via ν as defined earlier (0 (1 resp.) is encoded as 1
(-1 resp.)).

5.2 Original Cocks IBE Scheme

− CocksIBE.Setup(1λ):

1. Repeat: p, q
$←− RandPrime(1λ) Until: p ≡ q ≡ 3 (mod 4)

2. N ← pq

3. Output (PP := N,MSK := (p, q))

− CocksIBE.KeyGen(PP,MSK, id):

1. Parse MSK as (p, q).

2. a ← H(id)

3. r ← a
N+5−p−q

8 (mod N)
(∴ r2 ≡ a (mod N) or r2 ≡ −a (mod N))

4. Output skid := (id, r)

− CocksIBE.Encrypt(PP, id, b):

1. a ← H(id)

2. t1, t2
$←− Z∗N [ν(b)]

3. Output ψ := (t1 + at−11 , t2 − at−12 )

− CocksIBE.Decrypt(PP, skid, ψ):

1. Parse ψ as (ψ1, ψ2)

2. Parse skid as (id, r)
3. a ← H(id)

4. If r2 ≡ a (mod N), set d ← ψ1. Else if r2 ≡ −a (mod N), set d ← ψ2.
Else output ⊥ and abort.

5. Output ν−1(
(
d+ 2r

N

)
)

The above scheme can be shown to be adaptively secure in the random oracle
model assuming the hardness of the quadratic residuosity problem.
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Anonymity. Cocks’ scheme is not anonymous. Boneh et al. [37] report a test
due to Galbraith that enables an attacker to distinguish the identity of a cipher-
text. This is achieved with overwhelming probability given multiple ciphertexts.
It is shown by Ateniese and Gasti [25] that there is no “better” test for attacking
anonymity. Briefly, let a = H(id) be the public key derived from the identity IDa.
Let c be a ciphertext in the Cocks’ scheme. Galbraith’s test is defined as

GT(a, c,N) =

(
c2 − 4a

N

)

Now if c is a ciphertext encrypted with a, then GT(a, c,N) = +1 with all but
negligible probability. For b ∈ Z∗N such that b �= a, the value GT(b, c,N) is sta-
tistically close to the uniform distribution on {−1, 1}. Therefore, given multiple
ciphertexts, it can be determined with overwhelming probability whether they
correspond to a particular identity.

5.3 XOR-Homomorphic Construction

Recall that a ciphertext in the Cocks scheme consists of two elements in ZN .
Thus, we have

(c, d) ← CocksIBE.Encrypt(PP, id, b) ∈ Z2
N

for some identity id and bit b ∈ {0, 1}. Also recall that only one element is
actually used for decryption depending on whether a := H(id) ∈ QR(N) or
−a ∈ QR(N). If the former holds, it follows that a decryptor has a secret key r
satisfying r2 ≡ a (mod N). Otherwise, a secret key r satisfies r2 ≡ −a (mod N).
To simplify the description of the homomorphic property, we will assume that
a ∈ QR(N) and therefore omit the second “component” d from the ciphertext.
In fact, the properties hold analogously for the second “component” by simply
replacing a with −a.

In the homomorphic scheme, each “component” of the ciphertext is repre-
sented by a pair of elements in Z2

N instead of a single element as in the original
Cocks scheme. As mentioned, we will omit the second such pair for the moment.
Consider the following encryption algorithm Ea defined by

Ea(b : {0, 1}) :
t

$←− Z∗N [ν(b)]
return (t+ at−1, 2) ∈ Z2

N .

Furthermore, define the decryption function Da(c) = ν−1(c0 + rc1). The homo-
morphic operation � : Z2

N × Z2
N → Z2

N is defined as follows:

c� d = (c0d0 + ac1d1, c0d1 + c1d0) (5.1)
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It is easy to see that Da(c � d) = Da(c)⊕Da(d):

Da(c� d) = Da((c0d0 + ac1d1, c0d1 + c1d0))

= ν−1((c0d0 + ac1d1) + r(c0d1 + c1d0))

= ν−1(c0d0 + rc0d1 + rc1d0 + r2c1d1)

= ν−1((c0 + rc1)(d0 + rd1))

= ν−1(c0 + rc1)⊕ ν−1(d0 + rd1)

= Da(c)⊕Da(d) (5.2)

Let Ra = ZN [x]/(x2 − a) be a quotient of the polynomial ring R = ZN [x].
It is more natural and convenient to view ciphertexts as elements of Ra and
the homomorphic operation as multiplication in Ra. Furthermore, decryption
equates to evaluation at the point r. Thus the homomorphic evaluation of two
ciphertext polynomials c(x) and d(x) is simply e(x) = c(x)∗d(x) where ∗ denotes
multiplication in Ra. Decryption becomes ν−1(e(r)). Moreover, Galbraith’s test
is generalized straightforwardly to the ring Ra:

GT(a, c(x)) =

(
c20 − c21a

N

)
.

We now formally describe our variant of the Cocks scheme that supports an
XOR homomorphism.

Remark 4. We have presented the scheme in accordance with Definition 4 for
consistency with the rest of the paper. Therefore, it uses the circuit formulation,
which we would typically consider superfluous for a group homomorphic scheme.

Let C � {x �→ 〈t,x〉 : t ∈ Z�
2} ⊂ Z�

2 → Z2 be the class of arithmetic circuits
characterized by linear functions over Z2 in � variables. As such, we associate a
representative vector V (C) ∈ Z�

2 to every circuit C ∈ C. In order to obtain a
strongly homomorphic scheme, we use the standard technique of re-randomizing
the evaluated ciphertext by homomorphically adding an encryption of zero.

− xhIBE.Encrypt(PP, id, b):
1. a ← H(id)
2. As a subroutine (used later), define

E(PP, a, b):

(a) t1, t2
$←− Z∗N [ν(b)]

(b) g1, g2
$←− Z∗N

(c) c(x) ← (t1 + ag21t
−1
1 ) + 2g1x ∈ ZN [x]

(d) d(x) ← (t2 + ag22t
−1
2 ) + 2g2x ∈ ZN [x]

(e) Repeat steps (a) - (d) until GT(a, c(x)) = 1 and GT(−a, d(x)) = 1.
(f) Output (c(x), d(x))

3. Output ψ := (E(PP, a, b), a)
− xhIBE.Decrypt(PP, skid, ψ):

1. Parse ψ as (c(x), d(x), a)
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2. Parse skid as (id, r)
3. If r2 ≡ a (mod N) and GT(a, c(x)) = 1, set e(x) ← c(x). Else if r2 ≡ −a

(mod N) and GT(−a, c(x)) = 1, set e(x) ← d(x). Else output ⊥ and
abort.

4. Output ν−1(
(
e(r)

N

)
)

xhIBE.Eval(PP, C, ψ1, . . . , ψ�):
1. Parse ψi as (ci(x), di(x), ai) for 1 ≤ i ≤ �
2. If ai �= aj for 1 ≤ i, j ≤ �, abort with ⊥.
3. Let a = a1 and let Ra = ZN [x]/(x2 − a)
4. v ← V (C)
5. J ← {1 ≤ i ≤ � : vi = 1}
6. (c′(x), d′(x)) ← (

∏
i∈J ci(x) mod (x2 − a),

∏
i∈I di(x)) mod (x2 + a)

7. (cz(x), dz(x)) ← E(PP, a, 0) (E is defined as a subroutine in the specifi-
cation of xhIBE.Encrypt)

8. Output (c′(x) ∗ cz(x) mod (x2 − a), d′(x) ∗ dz(x) mod (x2 + a), a).

We now prove that our scheme is group homomorphic and strongly homomor-
phic. A formalization of group homomorphic public-key schemes is given in [38].
Our adapted definition for the PE setting raises some subtle points. The third
requirement in [38] is more difficult to formalize for general PE; we omit it from
the definition here and leave a complete formalization to the full version 7. We
remark that this property which relates to distinguishing “illegitimate cipher-
texts” during decryption is not necessary to achieve IND-ID-CPA security.

Definition 7 (Adapted from Definition 1 in [38]). Let E = (G,K,E,D)
be a PE scheme with message space M , attribute space A, ciphertext space Ĉ
and class of predicates F . The scheme E is group homomorphic with respect to
a non-empty set of attributes A′ ⊆ A if for every (PP,MSK) ← G(1λ), every
f ∈ F : A′ ⊆ supp(f), and every skf ← K(MSK, f), the message space (M, ·)
is a non-trivial group, and there is a binary operation � : Ĉ2 → Ĉ such that the
following properties are satisfied for the restricted ciphertext space Ĉf = {c ∈ Ĉ :
Dskf (c) �= ⊥}:

1. The set of all encryptions C := {c ∈ Ĉf | c ← E(PP, a,m), a ∈ A′,m ∈ M}
under attributes in A′ is a non-trivial group under the operation �.

2. The restricted decryption D∗skf := Dskf |C is surjective and ∀c, c′ ∈
C Dskf (c� c′) = Dskf (c) ·Dskf (c

′).
3. IBE only (generalized in the full version) If E is an IBE scheme, then

Ĉf is also required to be a group, and it is required to be computationally
indistinguishable from C; that is:

{(PP, f, skf , S, c) | c $←− C, S ⊂ {skg ← K(g) : g ∈ F}}

≈
C
{(PP, f, skf , S, ĉ) | ĉ $←− Ĉf , S ⊂ {skg ← K(g) : g ∈ F}}.

7 Available at http://arxiv.org/abs/1302.1192 .

http://arxiv.org/abs/1302.1192
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Informally, the above definition is telling us that for a given subset of attributes
A′ satisfying a predicate f , the set of honestly generated encryptions under these
attributes forms a group that is epimorphic to the plaintext group. It does not
say anything about ciphertexts that are not honestly generated except in the
case of IBE, where we require that all ciphertexts that do not decrypt to ⊥
under a secret key are indistinguishable.

For the remainder of this section, we show that xhIBE fulfills the definition
of a group homomorphic scheme, and that it is IND-ID-CPA secure under the
quadratic residuosity assumption in the random oracle model. To simplify the
presentation of the proofs, additional notation is needed. In particular, we inherit
the notation from [25], and generalize it to the ring Ra.

Define the subset Ga ⊂ Ra as follows:

Ga = {c(x) ∈ Ra : GT(a, c(x)) = 1}

Define the subset Sa ⊂ Ga
8:

Sa = {2hx+ (t+ ah2t−1) ∈ Ga | h, t, (t+ ah2t−1) ∈ Z∗N}

We have the following simple lemma:

Lemma 1.

1. (Ga, ∗) is a multiplicative subgroup of Ra.
2. (Sa, ∗) is a subgroup of Ga

Proof. We must show that Ga is closed under ∗. Let c(x), d(x) ∈ Ga, and let
e(x) = c(x) ∗ d(x).

GT(a, e(x)) =

(
e20 − ae21

N

)

=

(
(c0d0 + ac1d1)

2 − a(c0d1 + c1d0)
2

N

)

=

(
(c20 − ac21)(d

2
0 − ad21)

N

)

=

(
(c20 − ac21)

N

)(
(d20 − ad21)

N

)
= GT(a, c(x)) · GT(a, d(x))
= 1

Therefore, e(x) ∈ Ga.
It remains to show that every element of Ga is a unit. Let z = c20 − ac21 ∈ ZN .

An inverse d1x + d0 of c(x) can be computed by setting d0 = c0
z and d1 = −c1

z
if it holds that z is invertible in ZN . Indeed such a d1x + d0 is in Ga. Now if z

8 This definition is stricter than its analog in [25] in that all elements are in Ga.
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is not invertible in ZN then p|z or q|z, which implies that

(
z

p

)
= 0 or

(
z

q

)
= 0.

But GT(a, c(x)) =

(
z

N

)
=

(
z

p

)(
z

q

)
= 1 since c(x) ∈ Ga. Therefore, z is a unit

in ZN , and c(x) is a unit in Ga.
Finally, to prove (2), note that the members of Sa are exactly the elements

c(x) such that c20 − c21a is a square, and it is easy to see that this is preserved
under ∗ in Ra. ��

We will also need the following corollary

Corollary 2 (Extension of Lemma 2.2 in [25]). The distributions {(N, a, t+

ah2t−1, 2h) : N ← Setup(1λ), a
$←− Z∗N [+1], t, h

$←− Z∗N )} and {(N, a, z0, z1) :

N ← Setup(1λ), a
$←− Z∗N [+1], z0+z1x

$←− Ga\Sa} are indistinguishable assuming
the hardness of the quadratic residuosity problem.

Proof. The corollary follows immediately from Lemma 2.2 in [25] Let A be an
efficient adversary that distinguishes both distributions. Lemma 2.2 in [25] shows

that the distributions d0 := ({(N, a, t+ at−1) : N ← Setup(1λ), a
$←− Z∗N [+1], t}

and d1 := {(N, a, z0) : N ← Setup(1λ), a
$←− Z∗N [+1], z1x+z0

$←− Ga\Sa | z2 = 2}
are indistinguishable. Given a sample (N, a, c), the simulator generates h

$←− Z∗N
and computes b := h−2a. It passes the element (N, b, c, 2h) to A. The simulator
aborts with the output of A. ��

Theorem 1. xhIBE is a group homomorphic scheme with respect to the group
operation of (Z2,+).

Proof. Let a = H(id) for any valid identity string id. Assume that the secret key
r satisfies r2 ≡ a mod N . The analysis holds analogously if r2 ≡ −a mod N ;
therefore, we omit the second component of the ciphertexts for simplicity.

By definition, Sa = {c(x) ∈ Ra | ψ := (c(x), d(x), a) ←
xhIBE.Encrypt(PP, id,m),m ∈ M}. By corollary 2, it holds that Sa ≈

C
Ga with-

out the master secret key. The decryption algorithm only outputs ⊥ on input
ψ := (c(x), d(x), a) if c(x) /∈ Ga or d(x) /∈ G−a. Thus, omitting the second com-
ponent, we have that Sa corresponds to C and Ga corresponds to Ĉf in Definition
7 (in this case f is defined as f(id′) = 1 iff id′ = id). It follows that the third
requirement of Definition 7 is satisfied.

By Lemma 1, Ga is a group and Sa is a non-trivial subgroup of Ga. The
surjective homomorphism between C := Sa and M := Z∗2 has already been
shown in the correctness derivation in equation 5.2. This completes the proof.

��

Remark 5. It is straightforward to show that xhIBE also meets the criteria for a
shift-type homomorphism as defined in [38].

Corollary 3. xhIBE is strongly homomorphic.
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Proof. Any group homomorphic scheme can be turned into a strongly homo-
morphic scheme by rerandomizing an evaluated ciphertext. Indeed this follows
from Lemma 1 in [38]. Rerandomization is achieved by multiplying the evaluated
ciphertext by an encryption of the identity, as in xhIBE.Eval. Details follow for
completeness.

Let id be an identity and let a = H(id). For any circuit C ∈ C, any
messages b1, . . . , b� and ciphertexts ψ1, . . . , ψ� ← xhIBE.Encrypt(PP, b1, id), . . . ,
xhIBE.Encrypt(PP, b�, id), we have

(c′(x), d′(x), a) ← xhIBE.Eval(PP, C, ψ1, . . . , ψ�).

From the last step of xhIBE.Eval, we see that c′(x) ← c′′(x) ∗ r(x) where r(x)
$←−

Sa
(0) and c′′(x) is the result of the homomorphic evaluation. Suppose that c′′(x)

encrypts a bit b. Since Sa is a group, it follows that c′(x) is uniformly distributed

in the coset S
(b)
a (of the subgroup S

(0)
a ) and is thus distributed according to a

“fresh” encryption of b. ��
Theorem 2. xhIBE is IND-ID-CPA secure in the random oracle model under
the quadratic residuosity assumption.

Proof. Let A be an adversary that breaks the IND-ID-CPA security of xhIBE.
We use A to construct an algorithm S to break the IND-ID-CPA security of the
Cocks scheme with the same advantage. S proceeds as follows:

1. Uniformly sample an element h
$←− Z∗N . Receive the public parameters PP

from the challenger C and pass them to A.
2. S answers a query to H for identity id with H ′(id) · h−2 where H ′ is S’s

random oracle. The responses are uniformly distributed in ZN [+1].
3. S answers a key generation query for id with the response K(id) · h−1 where

K is its key generation oracle.
4. When A chooses target identity id∗, S relays id∗ to C. Assume w.l.o.g that H

has been queried for id, and that A has not made a secret key query for id∗.
Further key generation requests are handled subject to the condition that
id �= id∗ for a requested identity id.

5. Let a = H(id∗). On receiving a challenge ciphertext (c, d) from C, compute

c(x) ← 2hx + c ∈ R and d(x) ← (2hx + d) ∗ r(x) ∈ R where r(x)
$←− S

(0)
−a

and S
(0)
−a is the second component of the set of legal encryptions of 0. From

corollary 3, d(x) is uniformly distributed in S
(b)
−a where the ciphertext (c, d) in

the Cocks scheme encrypts the bit b. It follows that (c(x), d(x)) is a perfectly
simulated encryption of b under identity id∗ in xhIBE. Give (c(x), d(x)) to A.

6. Output A’s guess b′.

Since the view of A in an interaction with S is indistinguishable from its view
in the real game, we conclude that the advantage of S is equal to the advantage
of A.

��
In the next section, attention is drawn to obtaining an anonymous variant of our
construction.
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6 Anonymity

Cocks’ scheme is notable as one of the few IBE schemes that do not rely on pair-
ings. Since it appeared, there have been efforts to reduce its ciphertext size and
make it anonymous. Boneh, Gentry and Hamburg [28] proposed a scheme with
some elegant ideas that achieves both anonymity and a much reduced cipher-
text size for multi-bit messages at the expense of performance, which is O(n4)
for encryption and O(n3) for decryption (where n is the security parameter).
Unfortunately the homomorphic property is lost in this construction.

As mentioned earlier (cf. Section 5.2), another approach due to Ateniese and
Gasti [25] achieves anonymity and preserves performance, but its per-bit ci-
phertext expansion is much higher than in [28]. However, an advantage of this
scheme is that it is universally anonymous (anyone can anonymize the message,
not merely the encryptor [24]).

On the downside, anonymizing according to this scheme breaks the homo-
morphic property of our construction, which depends crucially on the public
key a. More precisely, what is forfeited is the universal homomorphic prop-
erty mentioned in the introduction (i.e. anyone can evaluate on the ciphertexts
without additional information). There are applications where an evaluator is
aware of the attribute(s) associated with ciphertexts, but anonymity is desir-
able to prevent any other parties in the system learning about such attributes.
This motivates a variant of HPE, which we call non-universal HPE, denoted
by HPEŪ .

6.1 Non-Universal HPE

Motivation. “Non-universal” homomorphic encryption is proposed for schemes
that support attribute privacy but require some information that is derivable
from the public key (or attribute in the case of PE) in order to perform ho-
momorphic evaluation. Therefore, attribute privacy must be surrendered to an
evaluator. If this is acceptable for an application, while at the same time there
is a requirement to hide the target recipient(s) from other entities in the system,
then “non-universal” homomorphic encryption may be useful. Consider the fol-
lowing informal scenario. Suppose a collection of parties P1, . . . , P� outsource a
computation on their encrypted data sets to an untrusted remote server S. Sup-
pose S sends the result (encrypted) to an independent database DB from which
users can retrieve the encrypted records. For privacy reasons, it may be desirable
to limit the information that DB can learn about the attributes associated with
the ciphertexts retrieved by certain users. Therefore, it may desirable for the
encryption scheme to provide attribute privacy. However, given the asymmet-
ric relationship between the delegators P1, . . . , P� and the target recipient(s), it
might be acceptable for S to learn the target attribute(s) provided there is no
collusion between S and DB. In fact, the delegators may belong to a different
organization than the recipient(s).
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In this paper, we introduce a syntax and security model for non-universal ho-
momorphic IBE. The main change in syntax entails an additional input α that
is supplied to the Eval algorithm. The input α ∈ {0, 1}d (where d = poly(λ))
models the additional information needed to compute the homomorphism(s). A
description of an efficient map QA : A → {0, 1}d is included in the public pa-
rameters. We say that two attributes(i.e. identities in IBE) a1, a2 ∈ A satisfying
QA(a1) = QA(a2) belong to the same attribute class.

One reason that the proposed syntax is not general enough for arbitrary PE
functionalities is that it only facilitates evaluation on ciphertexts whose at-
tributes are in the same attribute class, which suffices for (relatively) simple
functionalities such as IBE.

We now formulate the security notion of attribute-hiding for non-universal
homomorphic IBE. Our security model provides the adversary with an evaluation
oracle whose identity-dependent input α is fixed when the challenge is produced.
Accordingly, for a challenge identity id ∈ A, and binary string α = QA(id) ∈
{0, 1}d, the adversary can query IBEŪ.Eval(PP, α, ·, ·) for any circuit in C and
any �-length sequence of ciphertexts.

Formally, consider the experiment

Experiment ŪPriv(A1,A2)
9

(PP,MSK) ← IBE.Setup(1λ)

(id0,m0), (id1,m1), σ ← AIBEŪ.KeyGen(MSK,·)
1 (PP) � σ denotes the

adversary’s state

b
$←− {0, 1}

α ← QA(idb)
c ← IBE.Encrypt(PP, idb,mb)

b′ ← AIBEŪ.KeyGen
∗(MSK,·),IBEŪ.Eval(PP,α,·,·)

2 (PP, c, σ)
return 1 iff b′ = b and 0 otherwise.

Define the advantage of an adversary A := (A1,A2) in the above experiment for
a IBEŪ scheme E as follows:

AdvŪPriv
E (A) = Pr

[
ŪPriv(A) ⇒ 1

]
− 1

2
.

A IBEŪ scheme E is said to be attribute-hiding if for all pairs of PPT algorithms

A := (A1,A2), it holds that AdvŪPriv
E (A) ≤ negl(λ). Note that the above defini-

tion assumes adaptive adversaries, but can be easily modified to accommodate
the non-adaptive case.

6.2 Universal Anonymizers

We now present an abstraction called a universal anonymizer. With its help,
we can transform a universally-homomorphic, non-attribute-hiding IBE scheme

9 In the random oracle model, the adversary is additionally given access to a random
oracle. This is what the results in this paper will use.
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E into a non-universally homomorphic, attribute-hiding scheme E ′. In accor-
dance with the property of universal anonymity proposed in [24], any party can
anonymize a given ciphertext.

Let E := (Setup,KeyGen,Encrypt,Decrypt,Eval) be a PE scheme parameter-
ized with message space M , attribute space A, class of predicates F , and class
of circuits C. Denote its ciphertext space by C. Note that this definition of a
universal anonymizer only suffices for simple functionalities such as IBE.

Definition 8. A universal anonymizer UE for a PE scheme E is a tuple
(G,B,B−1, QA, QF) where G is a deterministic algorithm, B and B−1 are ran-
domized algorithms, and QA and QF are efficient maps, defined as follows:

− G(PP):
On input the public parameter of an instance of E, output a parameters
structure params. This contains a description of a modified ciphertext space
Ĉ as well as an integer d = poly(λ) indicating the length of binary strings
representing an attribute class.

− B(params, c):
On input parameters params and a ciphertext c ∈ C, output an element of Ĉ.

− B−1(params, α, ĉ):
On input parameters params, a binary string α ∈ {0, 1}d and an element of
Ĉ, output an element of C

− Both maps QA and QF are indexed by params: QAparams : A → {0, 1}d and

QFparams : F → {0, 1}d

Note: params can be assumed to be an implicit input; it will not be explicitly
specified to simplify notation.

The binary string α is computed by means of a mapQA : A → {0, 1}d. In order
for a decryptor to invert B, α must also be computable from any predicate that
satisfies an attribute that maps onto α. Therefore, the map QF : F → {0, 1}d
has the property that for all a ∈ A and f ∈ F :

f(a) = 1 ⇒ QA(a) = QF(f).

We define an equivalence relation ∼ on F given by

f1 ∼ f2 � QF(f1) = QF(f2).

We have that

f ∼ g ⇐⇒ ∃h1, . . . , hk ∈ F supp(f)∩supp(h1) �= ∅∧. . .∧supp(hk)∩supp(g) �= ∅.

It follows that each α is a representative of an equivalence class in F/ ∼. As a
result, as mentioned earlier, our definition of a universal anonymizer above is only
meaningful for “simple” functionalities such as IBE. For example, |F/ ∼ | = |F|
for an IBE scheme whose ciphertexts leak the recipient’s identity.
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Let c be a ciphertext associated with an attribute a. Let α = QA(a). Infor-
mally, c′ := B−1(α,B(c)) should “behave” like c; that is, (1) it should have the
same homomorphic “capacity” and (2) decryption with a secret key for any f
should have the same output as that for c. A stronger requirement captured in
our formal correctness criterion defined in the full version is that c and c′ should
be indistinguishable even when a distinguisher is given access to MSK.

A universal anonymizer is employed in the following generic transformation
from a universally-homomorphic, non-attribute-hiding IBE scheme E to a non-
universally homomorphic, attribute-hiding scheme E ′.

The transformation is achieved by setting:

− E ′.Encrypt(PP, a,m) :=

B(E .Encrypt(PP, a,m))

− E ′.Decrypt(SKf , c) :=

E .Decrypt(SKf ,B−1(QF(f), c))
− E ′.Eval(PP, α, C, c1, . . . , c�) :=

return B(E .Eval(PP, C,B−1(α, c1), . . . ,B−1(α, c�)))

Denote the above transformation by TUE (E). We leave to future work the task
of establishing (generic) sufficient conditions that E must satisfy to ensure that
E ′ := TUE (E) is an attribute-hiding HPEŪ scheme.

An instantiation of a universal anonymizer for our XOR homomorphic scheme
is given in the full version.

6.3 Applications (Brief Overview)

It turns out that XOR-homomorphic cryptosystems have been considered to play
an important part in several applications. The most well-known and widely-used
unbounded XOR-homomorphic public-key cryptosystem is Goldwasser-Micali
(GM) [6], which is based on the quadratic residuosity problem. Besides being
used in protocols such as private information retrieval (PIR), GM has been em-
ployed in some specific applications such as:

− Peng, Boyd and Dawson (PBD) [39] propose a sealed-bid auction system
that makes extensive use of the GM cryptosystem.

− Bringer et al. [40] apply GM to biometric authentication. It is used in two
primary ways; (1) to achieve PIR and (2) to assist in computing the hamming
distance between a recorded biometric template and a reference one.

Perhaps in some of these applications, a group-homomorphic identity-based
scheme may be of import, although the authors concede that no specific us-
age scenario has been identified so far.

With regard to performance, our construction requires 8 multiplications in
ZN for a single homomorphic operation in comparison to a single multiplication
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in GM. Furthermore, the construction has higher ciphertext expansion than GM
by a factor of 4. Encryption involves 2 modular inverses and 6 multiplications
(only 4 if the strongly homomorphic property is forfeited). In comparison, GM
only requires 1.5 multiplications on average.

7 Conclusions and Future Work

We have presented a characterization of homomorphic encryption in the PE
setting and classified schemes based on the properties of their attribute homo-
morphisms. Instantiations of certain homomorphic properties were presented for
inner-product PE. However, it is clear that meaningful attribute homomorphisms
are limited. We leave to future work the exploration of homomorphic encryption
with access policies in a more general setting .

In this paper, we introduced a new XOR-homomorphic variant of the Cocks’
IBE scheme and showed that it is strongly homomorphic. However, we failed
to fully preserve the homomorphic property in anonymous variants; that is, we
could not construct an anonymous universally-homomorphic variant. We leave
this as an open problem. As a compromise, however, a weaker primitive (non-
universal IBE) was introduced along with a related security notion. Furthermore,
a transformation strategy adapted from the work of Ateniese and Gasti [25] was
exploited to obtain anonymity for our XOR-homomorphic construction in this
weaker primitive.

In future work, it is hoped to construct other group homomorphic IBE schemes,
and possibly for more general classes of predicates than the IBE functionality.

Noteworthy problems, which we believe are still open:

1. Somewhat-homomorphic IBE scheme (even non-adaptive security in the
ROM)

2. (Unbounded) Group homomorphic IBE schemes for (Zm,+) where m =
O(2λ) and (Z∗p, ∗) for prime p. Extensions include anonymity and support
for a wider class of predicates beyond the IBE functionality.
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1 Université Grenoble 1, CNRS, Verimag, France
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Abstract. Auctions have a long history, having been recorded as early as 500
B.C. [17]. Nowadays, electronic auctions have been a great success and are in-
creasingly used. Many cryptographic protocols have been proposed to address
the various security requirements of these electronic transactions, in particular
to ensure privacy. Brandt [4] developed a protocol that computes the winner us-
ing homomorphic operations on a distributed ElGamal encryption of the bids.
He claimed that it ensures full privacy of the bidders, i.e. no information apart
from the winner and the winning price is leaked. We first show that this proto-
col – when using malleable interactive zero-knowledge proofs – is vulnerable to
attacks by dishonest bidders. Such bidders can manipulate the publicly available
data in a way that allows the seller to deduce all participants’ bids. Additionally
we discuss some issues with verifiability as well as attacks on non-repudiation,
fairness and the privacy of individual bidders exploiting authentication problems.

1 Introduction

Auctions are a simple method to sell goods and services. Typically a seller offers a good
or a service, and the bidders make offers. Depending on the type of auction, the offers
might be sent using sealed envelopes which are opened simultaneously to determine the
winner (the “sealed-bid” auction), or an auctioneer could announce prices decreasingly
until one bidder is willing to pay the announced price (the “dutch auction”). Addi-
tionally there might be several rounds, or offers might be announced publicly directly
(the “English” or “shout-out” auction). The winner usually is the bidder submitting the
highest bid, but in some cases he might only have to pay the second highest offer as a
price (the “second-price”- or “Vickrey”-Auction). In general a bidder wants to win the
auction at the lowest possible price, and the seller wants to sell his good at the highest
possible price. For more information on different auction methods see [17]. To address
this huge variety of possible auction settings and to achieve different security and effi-
ciency properties numerous protocols have been developed, e.g. [4,11,19,20,21,22,23]
and references therein.

One of the key requirements of electronic auction (e-Auction) protocols is privacy,
i.e. the bids of losing bidders remain private. Brandt proposed a first-price sealed-bid
auction protocol [4,3,2] and claimed that it is fully private, i.e. it leaks no information
apart from the winner, the winning bid, and what can be deduced from these two facts
(e.g. that the other bids were lower).

A. Youssef, A. Nitaj, A.E. Hassanien (Eds.): AFRICACRYPT 2013, LNCS 7918, pp. 88–106, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Our Contributions. The protocol is based on an algorithm that computes the winner
using bids encoded as bit vectors. In this paper we show that the implementation using
the homomorphic property of a distributed Elgamal encryption proposed in the original
paper suffers from a weakness. In fact, we prove that any two different inputs (i.e.
different bids) result in different outcome values, which are only hidden using random
values. We show how a dishonest participant can remove this random noise, if malleable
interactive zero-knowledge proofs are used. The seller can then efficiently compute the
bids of all bidders, hence completely breaking privacy. We also discuss two problems
with verifiability, and how the lack of authentication enables attacks on privacy even if
the above attack is prevented via non-malleable non-interactive proofs. Additionally we
show attacks on non-repudiation and fairness, and propose solutions to all discovered
flaws in order to recover a fully resistant protocol.

Outline. In the next section, we recall the protocol of Brandt. Then, in the following
sections, we present our attacks in several steps. In Section 3, we first study the proto-
col using interactive zero-knowledge proofs and without noise. Then we show how a
dishonest participant can remove the noise, thus mount the attack on the protocol with
noise, and discuss countermeasures. Finally, in Section 4, we discuss verifiability and
in Section 5 we discuss attacks on fairness, non-repudiation and privacy exploiting the
lack of authentication.

2 The Protocol

The protocol of Brandt [4] was designed to ensure full privacy in a completely
distributed way. It exploits the homomorphic properties of a distributed El-Gamal en-
cryption scheme [12] for a secure multi-party computation of the winner. Then it uses
zero-knowledge proofs of knowledge of discrete logarithms to ensure correctness of the
bids while preserving privacy. We first give a high level description of the protocol and
then present details on its main cryptographic primitives.

2.1 Informal Description

The participating n bidders and the seller communicate essentially using broadcast
messages. The latter can for example be implemented using a bulletin board, i.e. an
append-only memory accessible to everybody. The bids are encoded as k-bit-vectors
where each entry corresponds to a price. If the bidder a wants to bid the price ba, all
entries will be 1, except the entry ba which will be Y (a public constant). Each entry of
the vector is then encrypted separately using a n-out-of-n-encryption scheme set up by
all bidders. The bidders use multiplications of the encrypted values to compute values
vaj , exploiting the homomorphic property of the encryption scheme. Each one of this
values is 1 if the bidder a wins at price j, and is a random number otherwise. The de-
cryption of the final values takes place in a distributed way to ensure that nobody can
access intermediate values.
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2.2 Mathematical Description (Brandt [4])

Let Gq be a multiplicative subgroup of order q, prime, and g a generator of the group.
We consider that i, h ∈ {1, . . . , n}, j, bida ∈ {1, . . . , k} (where bida is the bid chosen
by the bidder with index a), Y ∈ Gq \ {1}. More precisely, the n bidders execute the
following five steps of the protocol [4]:
1. Key Generation

Each bidder a, whose bidding price is bida among {1, . . . , k} does the following:
– chooses a secret xa ∈ Z/qZ
– chooses randomly ma

ij and raj ∈ Z/qZ for each i and j.
– publishes ya = gxa and proves the knowledge of ya’s discrete logarithm.
– using the published yi then computes y =

∏n
i=1 yi.

2. Bid Encryption
Each bidder a

– sets baj =

{
Y if j = bida

1 otherwise
– publishes αaj = baj · yraj and βaj = graj for each j.
– proves that for all j, logg(βaj) equals logy(αaj) or logy

(αaj

Y

)
, and that

logy

(∏k
j=1 αaj

Y

)
= logg

(∏k
j=1 βaj

)
.

3. Outcome Computation
– Each bidder a computes and publishes for all i and j:

γa
ij =

((∏n
h=1

∏k
d=j+1 αhd

)
·
(∏j−1

d=1 αid

)
·
(∏i−1

h=1 αhj

))ma
ij

δaij =
((∏n

h=1

∏k
d=j+1 βhd

)
·
(∏j−1

d=1 βid

)
·
(∏i−1

h=1 βhj

))ma
ij

and proves its correctness.
4. Outcome Decryption

– Each bidder a sends φa
ij = (

∏n
h=1 δ

h
ij)

xa for each i and j to the seller and
proves its correctness. After having received all values, the seller publishes φh

ij

for all i, j, and h �= i.
5. Winner determination

– Everybody can now compute vaj =
∏n

i=1 γi
aj∏

n
i=1 φi

aj
for each j.

– If vaw = 1 for some w, then the bidder a wins the auction at price pw.

2.3 Malleable Proofs of Knowledge and Discrete Logarithms

In the original paper [4] the author suggests using zero-knowledge proofs of knowledge
to protect against active adversaries. The basic protocols he proposes are interactive
and malleable, but can be converted into non-interactive proofs using the Fiat-Shamir
heuristic [13], as advised by the author. We first recall the general idea of such proofs,
then we expose the man-in-the-middle attacks on the interactive version, which we will
use as part of our first attack.

Let PDL denote a proof of knowledge of a discrete logarithm. A first scheme for
PDL was developed in 1986 by Chaum et al. [6]. In the original auction paper [4]
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Brandt proposes to use a non-interactive variant of PDL as developed by Schnorr [24],
which are malleable. Unfortunately, interactive malleable PDL are subject to man-in-
the-middle attacks [16]. We first recall the classic Σ-protocol on a group with generator
g and order q [1,5,7]. Peggy and Victor know v and g, but only Peggy knows x, so
that v = gx. She can prove this fact, without revealing x, by executing the following
protocol:

1. Peggy chooses r at random and sends z = gr to Victor.
2. Victor chooses a challenge c at random and sends it to Peggy.
3. Peggy sends s = (r + c · x) mod q to Victor.
4. Victor checks that gs = z · vc.

Man-in-the-middle Attacks on Interactive PDL. Suppose Peggy possesses some se-
cret discrete logarithm x. We present here the man-in-the-middle attack of [16], where
an attacker can pretend to have knowledge of any affine combination of the secret x,
even providing the associated proof of knowledge, without breaking the discrete loga-
rithm. To prove this possession to say Victor, the attacker will start an interactive proof
knowledge session with Peggy and another one with Victor. The attacker will transform
Peggy’s outputs and forward Victor’s challenges to her. The idea is to use the proof of
possession of Peggy’s x, to prove possession of 1 − x to Victor. Indeed to prove for
instance possession of just x to Victor, an attacker would only have to forward Peggy’s
messages to Victor and Victor’s messages to Peggy. The idea of the attack is similar,
except that one needs to modify the messages of Peggy. We show the example of 1− x
in Figure 1 since it is used in Section 3.4 to mount our attack. Upon demand by Victor
to prove knowledge of 1 − x, Mallory, the man-in-the-middle, simply starts a proof of
knowledge of x with Peggy. Peggy chooses a random exponent r and sends the com-
mitment z = gr to Mallory. Mallory simply inverts z and sends y = z−1 to Victor.
Then Victor presents a challenge c that Mallory simply forwards without modification
to Peggy. Finally Peggy sends a response s that Mallory combines with c, as u = c− s,
to provide a correct answer to Victor. This is summarized in Figure 1.

Peggy Mallory V ictor

Secret : x

Public : g, v = gx g,w = gv−1 g

z = gr
1 : z �� y = z−1

1′ : y ��

c
2 : c�� c

2′ : c��

s = r + c · x 3 : s �� u = c− s
3′ : u ��

Check : gs
?

== z · vc gu
?

== y · wc

Fig. 1. Man-in-the-middle PDL of 1− x, with x an unknown discrete logarithm
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Actually, the attack works in the generic settings of [5,18] or of Σ-protocols [10].
We let f : Γ → Ω denote a one way homomorphic function between two commutative
groups (Γ,+) and (Ω,×). We use this generalization to prevent possible countermea-
sures of our first attack in Section 3.6.

For an integral value α, α ·x ∈ Γ (resp. yα ∈ Ω) denotes α applications of the group
law + (resp. ×). For a secret x ∈ Γ , and any (h, α, β) ∈ Γ ×Z2, the attacker can build
a proof of possession of α ·h+ β · x. In the setting of the example of Figure 1, we used
f(x) = gx, h = 1, α = 1 and β = −1.

In the general case also, upon demand of proof by Victor, Mallory starts a proof with
Peggy. The secret of Peggy is x, and the associated witness v is v = f(x). Then Mallory
wants to prove that his witness w corresponds to any combination of x with a logarithm
h that he knows. With only public knowledge and his chosen (h, α, β) ∈ Γ × Z2,
Mallory is able to compute w = f(h)α · vβ . For the proof of knowledge, Mallory
still modifies the commitment z = f(r) of Peggy to y = zβ . Mallory forwards the
challenge c of Victor without modification. Finally Mallory transforms the response
s of Peggy, still with only public knowledge and his chosen (h, α, β) ∈ Γ × Z2, as
u = c · (α · h) + β · s. We summarize this general attack on Figure 2.

Peggy Mallory V ictor

Secret : x ∈ Γ (h, α, β) ∈ Γ × Z2

Public : v = f(x) w = f(h)α × vβ f

z = f(r)
1 : z �� y = zβ

1′ : y ��

c
2 : c�� c

2′ : c��

s = r + c · x 3 : s �� u = c · (α · h) + β · s 3′ : u ��

Check : f(s)
?

== z × vc f(u)
?

== y × wc

Fig. 2. Man-in-the-middle attacks proving knowledge of affine transforms of a secret discrete
logarithm in the generic setting

Lemma 1. In the man-in-the-middle attack of Figure 2 of the interactive proof of knowl-
edge of a discrete logarithm, Victor is convinced by Mallory’s proof of knowledge of
α · h+ β · x.

Proof. Indeed,

u = c · (α · h) + β · s = c · (α · h) + β · (r + c · x) = β · r + c · (α · h+ β · x). (1)

Now, since z = f(r), y = zβ , v = f(x) and f(h)α × vβ = w, the latter Equation (1)
proves in turn that

f(u) = f(r)β × f(α · h+ β · x)c = zβ × (f(h)α × f(x)β)c = y × wc. (2)
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Now Victor has to verify the commitment-challenge-response (y, c, u) of Mallory for
his witness w. Then Victor needs to checks whether f(u) corresponds to y×wc, which
is the case as shown by the latter Equation (2). ��

Generalizations to Equality of Discrete Logarithms. We let EQDL denote a proof of
equality of several discrete logarithms. Any PDL can in general easily be transformed
to an EQDL by applying it k times on the same witness. It is often more efficient
to combine the application in one as in [8,9], or more generally as composition of Σ-
protocols, here with two logarithms and two generators g1 and g2. Peggy wants to prove
that she knows x such that v = gx1 and w = gx2 :

1. Peggy chooses r at random and sends λ = gr1 and μ = gr2 to Victor.
2. Victor chooses a challenge c at random and sends it to Peggy.
3. Peggy computes s = (r + c · x) mod q and sends it to Victor.
4. Victor tests if gs1 = λ · vc and gs2 = μ · wc.

This protocol remains malleable, and the previous attacks are still valid since the
response remains of the form r + c · x.

Countermeasures. Direct countermeasures to the above attacks are to use
non-interactive and/or non-malleable proofs:

– An interactive protocol can be converted into a non-interactive one using the
Fiat-Shamir heuristic [13].

– Also the first PDL by [6] uses bit-flipping, and more generally non-malleable
protocols like [15] could be used.

We will show in the following that if the proofs proposed in the original paper are not
converted into non-interactive proofs, there is an attack on privacy. Note that even if
non-interactive non-malleable zero-knowledge proofs are used, a malicious attacker in
control of the network can nonetheless recover any bidder’s bid as the messages are not
authenticated, as we show in Section 5.

3 Attacking the Fully Private Computations

The first attack we present uses some algebraic properties of the computations
performed during the protocol execution.

3.1 Analysis of the Outcome Computation

The idea is to analyze the computations done in Step 3 of the protocol. Consider the
following example with three bidders and three possible prices. Then the first bidder
computes
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γ1
11 = ( (α12 · α13· α22 · α23· α32 · α33) · (1) · (1) )m

1
11

γ1
12 = ( (α13· α23· α33) · (α11) · (1) )m

1
12

γ1
13 = ( (1) · (α11 · α12) · (1) )m

1
13

γ1
21 = ( (α12 · α13· α22 · α23· α32 · α33) · (1) · (α11) )m

1
21

γ1
22 = ( (α13· α23· α33) · (α21) · (α12) )m

1
22

γ1
23 = ( (1) · (α21 · α22) · (α13) )m

1
23

γ1
31 = ( (α12 · α13· α22 · α23· α32 · α33) · (1) · (α11 · α21) )

m1
31

γ1
32 = ( (α13· α23· α33) · (α31) · (α12 · α22) )

m1
32

γ1
33 = ( (1) · (α31 · α32) · (α13 · α23) )

m1
33

The second and third bidder do the same computations, but using different random
values ma

ij . Since each αij is either the encryption of 1 or Y , for example the value γ1
22

will be an encryption of 1 only if

– nobody submitted a higher bid (the first block) and
– bidder 2 did not bid a lower bid (the second block) and
– no bidder with a lower index submitted the same bid (the third block).

If we ignore the exponentiation by ma
ij , each γa

ij is the encryption of the product of

several bij’s. Each bij can be either 1 or Y , hence (γa
ij)
−ma

ij will be the encryption of
a value Y lij , where 0 ≤ lij ≤ n. The lower bound of lij is trivial, the upper bound
follows from the observation that each αij will be used at most once, and that each
bidder will encrypt Y at most once.

Assume for now that we know all lij . We show next that this is sufficient to
obtain all bids. Consider the function f which takes as input the following vector1:

b = logY

((
b11, . . . , b1k, b21, . . . , b2k, . . . , bn1, . . . , bnk

)T)
, and returns the

values lij . The input vector is thus a vector of all bid-vectors, where 1 is replaced by 0
and Y by 1. Consider our above example with three bidders and three possible prices,
then we have:

b = logY

((
b11, b12, b13, b21, b22, b23, b31, b32, b33

)T)
.

A particular instance where bidder 1 and 3 submit price 1, and bidder 2 submits price

2 would then look as: b =
(
1, 0, 0, 0, 1, 0, 1, 0, 0

)T
. Hence only the factors α11,

α22 and α31 are encryptions of Y , all other α’s are encryptions of 1. By simply counting
how often the factors α11, α22 and α31 show up in each equation as described above,

we can compute the following result: f(b) =
(
1, 1, 1, 2, 0, 1, 2, 1, 1

)T
. Note that

since we chose the input of f to be a bit-vector, we have to simply count the ones (which
correspond to Y ’s) in particular positions in b, where the positions are determined by
the factors inside γa

ij . Hence we can express f as a matrix, i.e. f(b) = M · b for the
following matrix M :

1 By abuse of notation we write logs
(
x1, . . . , xn

)
for

(
logs(x1), . . . , logs(xn)

)
.
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f(b) = M · b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 1 0 1 1
1 0 1 0 0 1 0 0 1
1 1 0 0 0 0 0 0 0

1 1 1 0 1 1 0 1 1
0 1 1 1 0 1 0 0 1
0 0 1 1 1 0 0 0 0

1 1 1 1 1 1 0 1 1
0 1 1 0 1 1 1 0 1
0 0 1 0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

0
1
0

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

2
0
1

2
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

To see how the matrix M is constructed, consider for example (γa
22)
−ma

22 = (α13 ·α23 ·
α33) · (α21) · (α12) which corresponds to the second row in the second vertical block:

– α12 and α13; hence the two ones at position 2 and 3 in the first horizontal block
– α21 and α23; hence the two ones at position 1 and 3 in the second horizontal block
– α33; hence the one at position 3 in the third horizontal block

More generally, we can see that each 3× 3 block consists of potentially three parts:

– An upper triangular matrix representing all bigger bids.
– On the diagonal we add a lower triangular matrix representing a lower bid by the

same bidder,
– In the lower left half we add an identity matrix representing a bid at the current

price by a bidder with a lower index.

This corresponds exactly to the structure of the products inside each γa
ij . It is also equiv-

alent to formula (1) in Section 4.1.1 of the original paper [4] without the random vector
R∗k. In the following we prove that the function f is injective. We then discuss how
this function can be efficiently inverted (i.e. how to compute the bids when knowing all
lij’s).

3.2 Linear Algebra Toolbox

Let Ik be the k×k identity matrix; let Lk be a lower k×k triangular matrix with zeroes
on the diagonal, ones in the lower part and zeroes elsewhere; and let Uk be an upper
k × k triangular matrix with zeroes on the diagonal, ones in the upper part, and zeroes
elsewhere:

Ik =

⎡
⎢⎢⎢⎢⎣
1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ Lk =

⎡
⎢⎢⎢⎢⎣
0 0 · · · 0

1
. . .

. . .
...

...
. . .

. . . 0
1 · · · 1 0

⎤
⎥⎥⎥⎥⎦ Uk =

⎡
⎢⎢⎢⎢⎣
0 1 · · · 1

0
. . .

. . .
...

...
. . .

. . . 1
0 · · · 0 0

⎤
⎥⎥⎥⎥⎦

By abuse of notation we use I , L and U to denote respectively Ik, Lk and Uk. For
a k × k-matrix Mk we define (Mk)

r = M · · ·M (r times) and (Mk)
0 = Ik . Let

(e1, . . . , ek) be the canonical basis.
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Lemma 2. Matrices Lk and Uk have the following properties, for 0 < j ≤ k and
r ≥ 0: (Uk)

r · ej =
∑j−r

s=1 es and (Lk)
r · ej =

∑k
s=j+r es.

Lemma 3. Matrices Lk and Uk are nilpotent, i.e. (Uk)
k = 0 and (Lk)

k = 0.

This follows immediately from Lemma 2 by computing (Uk)
k · Ik and (Lk)

k · Ik.

Lemma 4. If
∑k

i=1 xi = 1 then we have Lk · x = (1, . . . , 1)T − (Ik + Uk) · x.

Proof. First note that since
∑k

i=1 xi = 1,

Lk · x =

⎡
⎢⎢⎢⎢⎣
0 0 · · · 0

1
. . .

. . .
...

...
. . .

. . . 0
1 · · · 1 0

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎣x1

...
xk

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0
x1

x1 + x2

...∑k−1
i=1 xi

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
1−

∑k
i=1 xi

1−
∑k

i=2 xi

...
1− xk

⎤
⎥⎥⎥⎦

On the other hand, if we let 1 = (1, . . . , 1)T , we have also:

1− (Ik + Uk) · x = 1−

⎡
⎢⎢⎢⎢⎣
1 1 · · · 1

0 1
. . .

...
...

. . .
. . . 1

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎣x1

...
xk

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣
1−

∑k
i=1 xi

1−
∑k

i=2 xi

...
1− xk

⎤
⎥⎥⎥⎦

Lemma 5. eT1 · Uk−t−1 · z = zk−t−1 + eT1 · Uk−t · z

The proof follows immediately from the fact that eT1 · Uk−x = (0, . . . , 0︸ ︷︷ ︸
k−x

, 1, . . . , 1︸ ︷︷ ︸
x

). As

a direct consequence we obtain the following corollary.

Corollary 1. eT1 · Uk−t · z = zk−t + eT1 · Uk−t+1 · z

Lemma 6. For z = ei − ej , we have that (Lk + Uk) · z = −z.

Proof. If i = j, then z = 0 and the results is true. Suppose w.l.o.g. that i > j (otherwise
we just prove the result for −z). Then Uk ·(ei−ej) =

∑i−1
s=1 es−

∑j−1
s=1 es =

∑i−1
s=j es.

Similarly Lk · (ei − ej) =
∑k

s=i+1 es −
∑k

s=j+1 es =
∑i

s=j+1 −es. Therefore (Lk +

Uk) · (ei − ej) =
∑i−1

s=j es −
∑i

s=j+1 es = ej − ei = −z.

3.3 How to Recover the Bids When Knowing the lij ’s

As discussed above, we can represent the function f as a matrix multiplication. Let M
be the following square matrix of size nk × nk:

M =

⎡
⎢⎢⎢⎢⎢⎣
(U + L) U . . . . . . U
(U + I) (U + L) U . . . U

...
. . .

. . .
. . .

...
(U + I) . . . (U + I) (U + L) U
(U + I) . . . . . . (U + I) (U + L)

⎤
⎥⎥⎥⎥⎥⎦ . Then f(b) = M · b.
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The function takes as input a vector composed of n vectors, each of k bits. It returns the
nk values lij , 1 ≤ i ≤ n and 1 ≤ j ≤ k. As explained above, the structure of the matrix
is defined by the formula that computes γa

ij , which consists essentially of three factors:
first we multiply all αij which encode bigger bids (represented by the matrix U ), then
we multiply all αij which encode smaller bids by the same bidder (represented by
adding the matrix L on the diagonal), and finally we multiply by all αij which encode
the same bid by bidders with a smaller index (represented by adding the matrix I on the
lower triangle of M ). In our encoding there will be a “1” in the vector for each Y in the
protocol, hence f will count how many Y s are multiplied when computing γa

ij . Using
this representation we can prove the following theorem.

Theorem 1. f is injective on valid bid vectors, i.e. for two different correct bid vectors
u = [u1, . . . , uk]

T and v = [v1, . . . , vk]
T with u �= v we have M · u �= M · v.

Proof. Let u and v be two correct bid vectors such that u �= v. We want to prove that
M ·u �= M ·v. We make a proof by contradiction, hence we assume that M ·u = M ·v
or that M · (u− v) = 0. Because u and v are two correct bid vectors, each one of them
is an element of the canonical basis (e1, . . . , ek), i.e. u = ei and v = ej , as shown
in Section 3.1. We denote u − v by z, and consequently z = ei − ej . Knowing that
M · z = 0, we prove by induction on a that for all a the following property P (a) holds:

P (a) : ∀l, 0 < l ≤ a, diag(Uk−l) · z = 0

where diag(Uk−x) is a nk×nk block diagonal matrix containing only diagonal blocks
of the same matrix Uk−x. The validity of P (k) proves in particular that diag(U0) ·zl =
0, i.e. z = 0 which contradicts our hypothesis.

– Case a = 1: we also prove this base case by induction, i.e. for all b ≥ 1 the property
Q(b) holds, where:

Q(b) : ∀m, 0 < m ≤ b, Uk−1 · zm = 0

which gives us that Uk−1 · z = 0.
• Base case b = 1: We start by looking at the multiplication of the first row of M

with z. We obtain: (L+U) ·z1+U · (z2+ . . .+zk) = 0. We can multiply each
side by Uk−1, and use Lemma 6 to obtain: Uk−1 ·[−z1+Uk ·(z2+. . .+zk)] =
0. Since U is nilpotent, according to Lemma 3 the latter gives −Uk−1 · z1 = 0.
Hence we know Q(1) : Uk−1 · z1 = 0, i.e. the last entry of z1 is 0.

• Inductive step b + 1: assume Q(b). Consider now the multiplication of the
(b + 1)-th row of the matrix M :
(U + I) · z1+ . . .+(U + I) · zb+(L+U) · zb+1+U · (zb+2 + . . .+ zk) = 0.
Then by multiplying by Uk−1 and using Lemma 6 we obtain:
Uk−1 · [(U + I) · z1 + . . .+ (U + I) · zb − zb+1 +U · (zb+2 + . . .+ zk)] = 0.
Since U is nilpotent according to Lemma 3 we have Uk−1 · z1 + . . .+ Uk−1 ·
zb−Uk−1 ·zb+1 = 0. Using the fact that for all m < b we have Uk−1 ·zm = 0,
the latter gives −Uk−1 · zb+1 = 0.

– Inductive step a+ 1: assume P (a). By induction on b ≥ 1 we will show that Q′(b)
holds, where

Q′(b) : ∀m, 0 < m ≤ b, Uk−(a+1) · zm = 0
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which gives us that Uk−(a+1) · z = 0, i.e. P (a+ 1).

• Base case b = 1: Consider the multiplication of the first row with Uk−(a+1):
Uk−(a+1) · [(L+U) · z1 +U · (z2 + . . .+ zk)] = 0 which can be rewritten as
−Uk−(a+1) · z1 + Uk−a · (z2 + . . .+ zk)] = 0. Using Uk−a · zl = 0 for all l,
we can conclude that −Uk−(a+1) · z1 = 0, i.e. Q′(1) holds.

• Inductive step b + 1: assume Q′(b). Consider now the (b + 1)-th row of the
matrix M :
(U + I) · z1+ . . .+(U + I) · zb+(L+U) · zb+1+U · (zb+2 + . . .+ zk) = 0.
Then by multiplying by Uk−(a+1) and using Lemma 6 we obtain:
Uk−(a+1) · [(U + I) · z1 + . . . + (U + I) · zb + −zb+1 + U · (zb+2 + . . . +
zk)] = 0. Using Uk−a · zl = 0 for all l, we can conclude that Uk−(a+1) · z1 +
. . . + Uk−(a+1) · zb − Uk−(a+1) · zb+1 = 0. Now, for all m < b, we have
Uk−(a+1) · zm = 0, so that −Uk−(a+1) · zb+1 = 0; i.e. Q′(b+ 1) holds. ��

This theorem shows that if there is a constellation of bids that led to certain values lij ,
this constellation is unique. Hence we are able to invert f on valid outputs. We will now
show that this can be efficiently done.

An Efficient Algorithm. Our aim is solve the following linear system: M · x = l.
We will use the same steps we used for the proof of injectivity to solve this system
efficiently. First note that

M · x = l ⇒ diag(Uk−t−1) ·M · x = diag(Uk−t−1) · l.

Consider the r-th block of size k of the latter equality. We have xr = (xr,1, xr,2, . . . ,
xr,k). When multiplying by eT1 we obtain the first line of this block. The r-th block of
M · x is

(U + I)x1 + . . .+ (U + I)xr−1 + (L+ U)xr + Uxr+1 + . . .+ Uxk

= U(
∑k

i=1 xi) + (
∑r−1

i=1 xi) + Lxr

and the r-th block of l is lr. Hence:

eT1

[
Uk−t

(∑k
i=1 xi

)
+ Uk−t−1

(∑r−1
i=1 xi

)
+ Uk−t−1Lxr

]
= eT1 U

k−t−1lr
Using Lemma 4, we can exchange L in the latter to get:

eT1

[
Uk−t

(∑k
i=1 xi

)
+ Uk−t−1

(∑r−1
i=1 xi

)
+ Uk−t−1 (1− (In + Un)xr)

]
= eT1 U

k−t−1lr. We then remark that eT1 U
k−t−11 = t+ 1, which gives:

eT1

[
Uk−t

(∑k
i=1,i�=r xi

)
+ Uk−t−1

(∑r−1
i=1 xi

)
− Uk−t−1xr

]
= eT1 U

k−t−1lr − (t+ 1). Using Lemma 5, we have

eT1

[
Uk−t

((∑k
i=1 xi

)
− 2xr

)
+ Uk−t−1

(∑r−1
i=1 xi

)]
+ (t+ 1)− eT1 U

k−t−1lr

= xr,k−t−1 (3)

Using several times Corollary 1 we have:
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• eT1 U
k−t

((∑k
i=1 xi

)
− 2xr

)
= eT1 U

k−t+1
((∑k

i=1 xi

)
− 2xr

)
+ eTk−t

((∑k
i=1 xi

)
− 2xr

)
• eT1 U

k−t−1
(∑r−1

i=1 xi

)
= eT1 U

k−t
(∑r−1

i=1 xi

)
+ eTk−t−1

(∑r−1
i=1 xi

)
• eT1 U

k−t−1lr = eT1 U
k−tlr + lr,k−t−1

By changing t to t− 1 in Equation (3) we get:

eT1

[
Uk−t+1

((∑k
i=1 xi

)
− 2xr

)
+ Uk−t

(∑r−1
i=1 xi

)]
+ t− eT1 U

k−tlr = xr,k−t.
Then regrouping the applications of Corollary 1 and the latter formula within Equa-
tion (3), we obtain:

xr,k−t+eTk−t

((
k∑

i=1

xi

)
− 2xr

)
+ek−t−1

(
r−1∑
i=1

xi

)
+1+lr,k−t−1 = xr,k−t−1 (4)

This gives us a formula to compute the values of xi,j , starting with the last element
of the first block x1,k. Then we can compute the last elements of all other blocks
x2,k, . . . , xn,k, and then the second to last elements x1,k−1, . . . , xn,k−1, etc.

Complexity Analysis. To obtain all values, we have to apply the above formula for
each t ≤ n and r ≤ k, hence we have:

n∑
t=1

k∑
r=1

(k + r) = n

(
k2 +

k(k + 1)

2

)
=

3

2
nk2 +

1

2
nk ∈ O

(
nk2

)
This is efficient enough to be computed on a standard PC for realistic values of n (the
number of bidders) and k (the number of possible bids). Those could be less than a
hundred bidders with a thousand different prices, thus requiring about the order of only
a hundred million arithmetic operations. It is anyway the order of magnitude of the
number of operations required of each user just to compute her encrypted bids.

3.4 Attack on the Random Noise: How to Obtain the lij’s

In the previous section we showed that knowing the lij’s allows us the efficiently break
the privacy of all bidders. Here is how to obtain the lij ’s. The seller will learn all vij =(
Y lij

)(∑n
h=1 mh

ij) at the end of the protocol. Since the mh
ij are randomly chosen, this

will be a random value if lij �= 0. However a malicious bidder (“Mallory”, of index a)
can cancel out the mh

ij as follows: in Step 3 of the protocol each bidder will compute
his γa

ij and δaij . Mallory waits until all other bidders have published their values (the
protocol does not impose any synchronization or special ordering) and then computes
his values γω

ij and δωij as:

γω
ij =

((∏n
h=1

∏k
d=j+1 αhd

)
·
(∏j−1

d=1 αid

)
·
(∏i−1

h=1 αhj

))
·
(∏

k �=ω γk
ij

)−1
δωij =

((∏n
h=1

∏k
d=j+1 βhd

)
·
(∏j−1

d=1 βid

)
·
(∏i−1

h=1 βhj

))
·
(∏

k �=ω δkij

)−1
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The first part is a correct encryption of Y lij , with mω
ij = 1 for all i and j. The second

part is the inverse of the product of all the other bidders γk
ij and δkij , and thus it will

eliminate the random exponents. Hence after decryption the seller obtains vij = Y lij ,
where lij < n for a small n. He can compute lij by simply (pre-)computing all possible
values Y r and testing for equality. This allows the seller to obtain the necessary values
and then to use the resolution algorithm to obtain each bidder’s bid. Note that although
we changed the intermediate values, the output still gives the correct result (i.e. winning
bid). Therefore, the attack might even be unnoticed by the other participants. Note also
that choosing a different Yi per bidder does not prevent the attack, since all the Yi need
to be public in order to prove the correctness of the bid in Step 2 of the protocol.

However the protocol requires Mallory to prove that γω
ij and δωij have the same ex-

ponent. This is obviously the case, but Mallory does not know the exact value of this
exponent. Thus it is impossible for him to execute the proposed zero-knowledge proto-
col directly.

In the original paper [4] the malleable interactive proof of [8], presented in Sec-
tion 2.3, is used to prove the correctness of γa

ij and δaij in Step 3 of the protocol. If this
proof is not converted into a non-interactive proof, then Mallory is able to fake it as
follows.

3.5 Proof of Equality of the Presented Outcomes

Note that we can rewrite γω
ij and δωij as:

v = γω
ij =

⎛
⎝
⎛
⎝ n∏

h=1

k∏
d=j+1

αhd

⎞
⎠ ·

(
j−1∏
d=1

αid

)
·
(

i−1∏
h=1

αhj

)⎞
⎠

︸ ︷︷ ︸
g1

1−(∑k �=ω mk
ij)

w = δωij =

⎛
⎝
⎛
⎝ n∏

h=1

k∏
d=j+1

βhd

⎞
⎠ ·

(
j−1∏
d=1

βid

)
·
(

i−1∏
h=1

βhj

)⎞
⎠

︸ ︷︷ ︸
g2

1−(∑k �=ω mk
ij)

When Mallory, the bidder m, is asked by Victor for a proof of correctness of his values,
he starts by asking all other bidders for proofs to initialize the man-in-the-middle attack
of Figure 1. Each of them answers with values λo = gzo1 and μo = gzo2 . Mallory can
then answer Victor with values λ =

∏
o λ
−1
o and μ =

∏
o μ
−1
o , where o ∈ ([1, n] \m).

Victor then sends a challenge c, which Mallory simply forwards to the other bidders.
They answer with ro = zo + c ·mo

ij , and Mallory sends r = c−
∑

o ro to Victor, who
can check that gr1 = λ·vc and gr2 = μ ·wc. If the other bidders did their proofs correctly,
then Mallory’s proof will appear valid to Victor:

λ · vc =
∏

o λ
−1
o ·

(
g
1−(∑o mo

ij)
1

)c

=
∏

o g
−zo
1 · gc−c(

∑
o mo

ij)
1 = g

c−∑o(zo+cmo
ij)

1

μ · wc =
∏

o μ
−1
o ·

(
g
1−(∑o mo

ij)
2

)c

=
∏

o g
−zo
2 · gc−c(

∑
o mo

ij)
2 = g

c−∑o(zo+cmo
ij)

2
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Hence in the case of malleable interactive zero-knowledge proofs Mallory is able to
modify the values γω

ij and δωij as necessary, and even prove the correctness using the
bidders. Hence the modifications may stay undetected and the seller will be able to
break privacy.

3.6 The Complete Attack and Countermeasures

Putting everything together, the attack works as follows:
1. The bidders set up the keys as described in the protocol.
2. They encrypt and publish their bids.
3. They compute γh

ij and δhij and publish them.
4. Mallory, who is a bidder himself, waits until all other bidders have published their

values. He then computes his values as defined above, and publishes them.
5. If he is asked for a proof, he can proceed as explained above in Section 3.5.
6. The bidders (including Mallory) jointly decrypt the values.
7. The seller obtains all Y lij ’s. He can then compute the lij’s by testing at most n

possibilities.
8. Once he has all values, he can invert the function f as explained above.
9. He obtains all bidders bids.

Again, note that for all honest bidders, this execution will look normal, so they might
not even notice that an attack took place. To prevent this attack, one could perform the
following actions:

– To counteract the removal of the noise of Section 3.4, the bidders could check
whether the product of the γa

i,j for all bidders a is equal to the product of the αhd

without any noise (exponent is 1). Unfortunately, the man-in-the-middle attack gen-
eralizes to any exponent as shown in Figure 2. Therefore the attacker could use a
randomly chosen exponent only known to him.

– As mentioned above, another countermeasure is the use of non-interactive, non-
malleable proofs of knowledge. In this case, we will show in Section 5 that it is still
possible to attack a targeted bidder’s privacy.

4 Attacking Verifiability

Brandt claims that the protocol is verifiable as the parties have to provide
zero-knowledge proofs for their computations, however there are two problems.

4.1 Exceptional Values

First, a winning bidder cannot verify if he actually won. To achieve privacy, the protocol
hides all outputs of vaj except for the entry containing “1”2. This is done by exponenti-

ation with random values ma
ij inside all entries γa

ij and δaij , i.e. by computing x
∑

a ma
ij

ij

where xij is the product of some αij as specified in the protocol. If xij is one, xm
ij

2 Note that the protocol contains a mechanism to resolve ties, i.e. there should always be exactly
one entry equal to 1, even in the presence of ties.
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will still return one for any m, and in principle something different from one for any
other value of xij . Now, the random values ma

ij may add up to zero (mod q), hence
the returned value will be xm

ij = x0
ij = 1 and the bidder will conclude that he won,

although he actually lost (xij �= 1). Hence simply verifying the proofs is not sufficient
to be convinced that the observed outcome is correct. For the same reason the seller
might observe two or more “1”-values, even though all proofs are correct. In such a
situation he is unable to decide which bidder actually won since he cannot determine
which “1”s correspond to a real bids, and hence which bid is the highest real bid. If two
“1”s correspond to real bids, he could even exploit such a situation to his advantage: he
can tell both bidders that they won and take money from both, although there is only
one good to sell – this is normally prohibited by the protocol’s tie-breaking mechanism.
If the bidders do not exchange additional data there is no way for them to discover that
something went wrong, since the seller is the only party having access to all values.

A solution to this problem could work as follows: when computing the γa
ij and δaij ,

the bidders can check if the product

xij =

⎛
⎝ n∏

h=1

k∏
d=j+1

αhd

⎞
⎠ ·

(
j−1∏
d=1

αid

)
·
(

i−1∏
h=1

αhj

)

is equal to one – if yes, they restart the protocol using different keys and random values.
If not, they continue, and check if

∏
a γ

a
ij = 1. If yes, they choose different random val-

ues ma
ij and re-compute the γa

ij and δaij , otherwise they continue. Since the probability
of the random values adding up to zero is low, this will rapidly lead to correct values.

4.2 Different Private Keys

Second, the paper does not precisely specify the proofs that have to be provided in the
joint decryption phase. If the bidders only prove that they use the same private key on
all decryptions and not also that it is the one they used to generate their public key,
they may use a wrong one. This will lead to a wrong decryption where with very high
probability no value is “1”, as they will be random. Hence all bidders will think that
they lost, thus allowing a malicious bidder to block the whole auction, as no winner
is determined. Hence, if we assume that the verification test consists in verifying the
proofs, a bidder trying to verify that he lost using the proofs might perform the verifica-
tion successfully, although the result is incorrect and he actually won – since he would
have observed a “1” if the vector had been correctly decrypted.

This problem can be addressed by requiring the bidders to also prove that they used
the same private key as in the key generation phase.

5 Attacks Using the Lack of Authentication

The protocol as described in the original paper does not include any authentication of
the messages. This means that an attacker in control of the network can impersonate
any party, which can be exploited in many ways. However, the authors supposed in the
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original paper a “reliable broadcast channel, i.e. the adversary has no control of com-
munication” [4]. Yet even under this assumption dishonest participants can impersonate
other participants by submitting messages on their behalf. Additionally, this assumption
is difficult to achieve in asynchronous systems [14]. In the following we consider an
attacker in control of the network, however many attacks can also be executed analo-
gously by dishonest parties (which are considered in the original paper) in the reliable
broadcast setting.

5.1 Another Attack on Privacy

Our first attack on privacy only works in the case of malleable interactive proofs. If we
switch to non-interactive non-malleable proofs, Mallory cannot ask the other bidders
for proofs using a challenge of his choice.

However, even with non-interactive non-malleable zero-knowledge proofs, the pro-
tocol is still vulnerable to attacks on a targeted bidder’s privacy if an attacker can im-
personate any bidder of his choice as well as the seller, which is the case for an attacker
controlling the network due to the lack of authentication. In particular, if he wants to
know Alice’s bid he can proceed as follows:

1. Mallory impersonates all other bidders. He starts by creating keys on their behalf
and publishes the values yi and the corresponding proofs for all of them.

2. Alice also creates her secret keyshare and publishes ya together with a proof.
3. Alice and Mallory compute the public key y.
4. Alice encrypts her bid and publishes her αaj and βbj together with the proofs.
5. Mallory publishes αij = αaj and βij = βaj for all other bidders i and also copies

Alice’s proofs.
6. Alice and Mallory execute the computations described in the protocol and publish

γa
ij and δaij .

7. They compute φa
ij and send it to the seller.

8. The seller publishes the φa
ij and computes the vaj .

Since all submitted bids are equal, the seller (which might also be impersonated by Mal-
lory) will obtain Alice’s bid as the winning price, hence it is not private any more. This
attack essentially simulates a whole instance of the protocol to make Alice indirectly
reveal a bid that was intended for another, probably real auction. To counteract this it is
not sufficient for Alice to check that the other bids are different: Mallory can produce
different αij = αajy

x together with βij = βajg
x which are still correct encryptions of

Alice bids.
Note that the same attack also works if dishonest bidders collude with the seller: they

simply re-submit the targeted bidders bid as their own bid.

5.2 Attacking Fairness, Non-repudiation and Verifiability

The lack of authentication obviously entails that a winning bidder can claim that he
did not submit his bid, hence violating non-repudiation (even in the case of reliable
broadcast). Additionally, this also enables an attack on fairness: an attacker in control
of the network can impersonate all bidders vis-à-vis the seller, submitting bids of his
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choice on their behalf and hence completely controlling the winner and winning price.
This also causes another problem with verifiability: it is impossible to verify if the bids
were submitted by the registered bidders or by somebody else.

5.3 Countermeasures

The solution to these problems is simple: all the messages need to be authenticated, e.g.
using signatures or Message Authentication Codes (MACs) based on a trust anchor, for
example a Public Key Infrastructure (PKI).

6 Conclusion

In this paper we analyze the protocol of Brandt [4] from various angles. We show that
the underlying computations have a weakness which can be exploited by malicious bid-
ders to break privacy if malleable interactive zero-knowledge proofs are used. We also
identified two problems with verifiability and proposed solutions. Finally we showed
how the lack of authentication can be used to mount different attacks on privacy, verifi-
ability as well as fairness and non-repudiation. Again we suggested a solution to address
the discovered flaws.

So sum up, the following countermeasures have to be implemented:

– Use of non-interactive or non-malleable zero-knowledge proofs.
– All messages have to be authenticated, e.g. using a Public-Key Infrastructure (PKI)

and signatures.
– In the outcome computation step: when computing the γa

ij and δaij , the bidders can

check if xij =
(∏n

h=1

∏k
d=j+1 αhd

)
·
(∏j−1

d=1 αid

)
·
(∏i−1

h=1 αhj

)
is equal to one –

if yes, they restart the protocol using different keys and random values. If not, they
continue, and check if

∏
a γ

a
ij = 1. If yes, they choose different random values ma

ij

and re-compute the γa
ij and δaij , otherwise they continue.

– In the outcome decryption step: the bidders have to prove that the value xa they
used to decrypt is the same xa they used to generate their public key ya in the first
step.

The attacks show that properties such as authentication can be necessary to achieve
other properties which might appear to be unrelated at first sight, like for instance pri-
vacy. It also points out that there is a difference between computing the winner in a fully
private way, and ensuring privacy for the bidders: in the second attack we use modified
inputs to break privacy even though the computations themselves are secure. Addition-
ally our analysis highlights that the choice of interactive or non-interactive, malleable
or non-malleable proofs is an important decision in any protocol design.

As for possible generalizations of our attacks, of course the linear algebra part of our
first attack is specific to this protocol. Yet the man-in-the-middle attack on malleable
proofs as well as the need of authentication for privacy are applicable to any protocol.
Similarly, checking all exceptional cases and ensuring that the same keys are used all
along the process are also valid insights for other protocols.
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HELEN: A Public-Key Cryptosystem
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Abstract. We propose HELEN, a code-based public-key cryptosystem
whose security is based on the hardness of the Learning from Parity with
Noise problem (LPN) and the decisional minimum distance problem.
We show that the resulting cryptosystem achieves indistinguishability
under chosen plaintext attacks (IND-CPA security). Using the Fujisaki-
Okamoto generic construction, HELEN achieves IND-CCA security in
the random oracle model. Our cryptosystem looks like the Alekhnovich
cryptosystem. However, we carefully study its complexity and we further
propose concrete optimized parameters.

Keywords: Code-based cryptosystem, learning from parity with noise
problem, minimum distance problem, random linear code, public-key
cryptostem.

1 Introduction

Every public-key cryptosystem relies on problems that are believed computa-
tionally hard. The two mostly used problems are the integer factorization prob-
lem [54,52] and the discrete logarithm problem [22]. However, these two problems
can be solved in polynomial time on a quantum computer. It is thus important
to develop new cryptosystem that are secure even on quantum computers and
to correctly propose some parameters depending on the required security.

In this paper, we present HELEN, a public-key cryptosystem, the security
of which relies on the hardness of the Learning from Parity with Noise prob-
lem (LPN) and the minimum distance problem which are both NP-hard.1 The
former consists in recovering an unknown vector while given access to noisy
versions of its scalar product with random vectors. There is also no known
polynomial-time algorithm on quantum computers. In short, the keys in HE-
LEN consists in a low-weight parity check equation h (the private key) which is
hidden in a random matrix G (the public key) such that it is indistinguishable
from a totally random matrix. The matrix G spans a linear code. Our cryptosys-
tem looks like the Alekhnovich cryptosystem [1]. However, we carefully study its
� This paper is an extended version of [19].

�� Supported by a grant of the Swiss National Science Foundation, 200021 143899/1.
1 HELEN stands for Hidden Equation for Linear Encryption with Noise.
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complexity, we further propose concrete and optimized parameters, and we make
incorrectness small.

We encrypt a duplicated bit by hiding it using a random linear codeword
as well as a random biased noise vector. For decryption, the random linear
codeword is removed by multiplying the ciphertext with h. The noise is removed
by majority logic decoding. With a proper parameter choice, the probability of
decrypting erroneously the message is small. We show in a further section how
to reduce this probability of error as well as how to encrypt multiple bits at the
same time using HELEN.

Related Work. The LPN problem is well studied in the cryptographic commu-
nity. There is an authentication protocol based on the LPN problem named
HB by Hopper and Blum [34]. This protocol was later improved into the HB+

protocol by Juels and Weis [36]. However, HB+ was shown vulnerable to man-
in-the-middle attacks [28]. Several variants were proposed [12,21,47] but all of
them suffer from the same vulnerability [29]. A new variant HB# was proposed
by Gilbert, Robshaw and Seurin [30] to improve the transmission cost of the
protocol and its securtiy against man-in-the-middle attacks but an attack was
also found in this variant [49]. Two more recent versions were introduced based
on the hardness of some variant of the LPN problem, namely Ring-LPN [32] and
subspace LPN [38].

Among other work based on the LPN problem, a PRNG is presented by Blum
et al. in [10] along with a one-way function and a private-key encryption scheme
based on some hard learning problems. A private-key encryption scheme named
LPN-C was proposed by Gilbert, Robshaw and Seurin [31]. LPN-C was shown
IND-CPA secure.

The construction of HELEN [19] presents some similarities with the trapdoor
cipher TCHo [20,3,24] by Aumasson et al. which similarly encrypts a message
by adding some random biased noise and some contribution from a linear code.
In TCHo, this noise is introduced using an LFSR whose feedback polynomial
has a multiple of low weight.

A class of lattice-based cryptosystems introduced by Regev is based on the
worst-case complexity of the learning with errors (LWE) problem [53,50,43,57],
which is a generalisation of the LPN problem on fields Fq with q > 2. The last
two introduce the ring-LWE problem, an algebraic variant of the LWE problem.
According to the authors, it is the first truly practical lattice-based cryptosystem
based on the LWE problem.

Other well-known post-quantum cryptosystems include the McEliece cryp-
tosystem [46] and its dual the Niederreiter cryptosystem [48], which are code-
based making use of Goppa codes. In lattice-based cryptosystem, one has to
mention NTRU [33] based on the hardness of the shortest vector problem in
a particular class of lattices. We refer the reader to [7] for a more exhaustive
survey on post-quantum cryptosystems.

More closely related cryptosystems were proposed. Gentry et al. proposed
an LWE-based cryptosystem [27] in which users share a common random ma-
trix and whose private key (resp. public key) consists in a random error vector
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(resp. its syndrome). Extensions to p = 2 have been open so far. Our procedure
is different from theirs in the sense that we hide a low-parity check equation in
a matrix so that this matrix looks random, whereas they pick a totally random
matrix. Similarly, Alekhnovich proposed a scheme based on problem to distin-
guish (A, Ax + e) with x following uniform distribution and e either in

(
n
nδ

)
or(

n
nδ+1

)
with δ < 1/2 which he conjectures to be hard [1]. Our scheme differs

with the scheme proposed in [1] in the following ways. First, we encode the bit
so that decryption is correct with constant probability φ and which is indepen-
dent from the encrypted bit b (in [1], this probability is just known to be close
to one for b = 0 and 1/2 for b = 1). Finally, we propose concrete parameters and
asymptotic parameters for our scheme. Applebaum et al. proposed a scheme,
which is very similar to ours but which uses sparse matrices instead of random
ones. Thus, the security reduces to the less-studied 3LIN problem instead of
LPN. This problem is similar to the LPN problem except that queries are done
with vectors of weight 3 instead of random vectors. Also, the authors do not
provide any concrete parameters [2]. n Asiacrypt 2012, Döttling et al. presented
an IND-CCA secure cryptosystem based on Alekhnovich’s scheme, but again,
no concrete parameters are given [18]. IND-CCA security is obtained using a
technique by Dolev et al. [17] based on one-time signatures and a tool by Rosen
and Segev [55]. So, to the best of our knowledge, we propose for the first time a
concrete PKC whose security is based on LPN.

2 Preliminaries

We denote by log the logarithm in base two. The concatenation of two bitstrings
x and y is written x‖y. We consider vectors as row vectors. The transpose of
a vector v is denoted by vt. We denote the Hamming weight of a bitstring x

by wt(x). We write x
U←− D if an element x is drawn uniformly at random in

a domain D. A function f(λ) is negligible if for all d ∈ R we have f(λ) =
O

(
λ−d

)
. We denote the Bernoulli distribution with parameter p by Ber(p), i.e.,

if x ← Ber(p), we have Pr[x = 1] = p and Pr[x = 0] = 1 − p. We write Sn
p

to denote the sequence of n independent Bernoulli trials with parameter p. We
write Sn

p (r) when we need to specify the seed r used to generate this sequence.
Given a permutation σ in Sn, the group of all permutations over n elements,
and given h ∈ {0, 1}n, we write σ � h when we apply σ on the bits of h. That is,
(σ � h)i = hσ−1(i). Given a k × n matrix G, we write σ � G when we apply σ on
the columns of G, i.e., (σ � G)i,j = Gi,σ−1(j).

Notation. Given some initial parameters Π and a predicate P , we write

Pr

⎡
⎢⎢⎣P (v1, . . . , vm; rp) :

v1 ← f1(Π ; r1)
...
vm ← fm(Π, v1, . . . , vm−1; rm)

⎤
⎥⎥⎦

to denote the probability (over the randomnesses r1, . . . , rm, rp) that there exist
v1 ← f1(Π ; r1), . . . , vm ← fm(Π, v1, . . . , vm; rm) such that P (v1, . . . , vm; rp).
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2.1 Security Notions

Definition 1 (Public-key Encryption Scheme). Given a function ϕ(λ), a
ϕ(λ)-cryptosystem over a given message space M and random coin space R
consists of three polynomial-time algorithms:

– a probabilistic key-generation algorithm Gen(1λ; ρg) taking as input some
security parameter 1λ in unary representation and some random coins ρg,
and producing a secret key Ks and a public key Kp;

– a probabilistic encryption algorithm Enc(Kp, m; r) taking as input a public
key Kp and a message m ∈M with some random coins r ∈ R, and producing
a ciphertext y in the ciphertext space C;

– a deterministic decryption algorithm Dec(Ks, c) taking as input a secret key
Ks and a ciphertext c ∈ C, and producing a message or an error.

The cryptosystem must satisfy the following correctness property:

max
m∈M

Pr
[
Dec(Ks, Enc(Kp, m; ρ)) �= m : (Ks, Kp)← Gen(1λ; ρg)

] ≤ ϕ(λ) .

We will also use the following security notions and acronyms. Adaptive
Chosen Ciphertext Attack is denoted CCA, Chosen Plaintext Attack CPA,
Indistinguishability IND and one-wayness OW.

Definition 2 (IND-CPA-security). A cryptosystem is said (t, ε)-IND-CPA-
secure or (t, ε)-semantically secure against chosen plaintext attacks if no adver-
sary A = (A1,A2) with running time bounded by t can distinguish the encryption
of two different plaintexts m0 and m1 with a probability higher than ε.2 More
formally, for all A bounded by t,

Pr

⎡
⎢⎢⎢⎢⎣A2(Kp, c; ρ) = b :

(Ks, Kp)← Gen(1λ; ρg)
m0, m1 ← A1(Kp; ρ) (�)

r
U←− R; b

U←− {0, 1}
c← Enc(Kp, mb; r)

⎤
⎥⎥⎥⎥⎦ ≤

1
2

+ ε . (1)

Asymptotically, a cryptosystem is IND-CPA-secure if for any polynomial t(λ)
there exists a negligible function ε(λ) such that it is (t(λ), ε(λ))-IND-CPA-secure.

IND-CPA-security can also be represented in the simple real-or-random game
model [6,5].3

Definition 3 (Simple real-or-random IND-CPA game security). A cryp-
tosystem is (t, ε)-real-or-random-IND-CPA-secure if in Definition 2, line (�) in (1)
is replaced by m0 ← A1(Kp; ρ); m1

U←−M
2 We include in the running time the size of the code of A in a fixed RAM model of

computation to avoid trivial adversaries.
3 In our definition of real-or-random game model, we consider only simple adversaries,

i.e., adversaries who can query the oracle once. This definition is enough to prove
the IND-CPA-security of our scheme.
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A (t, ε)-real-or-random-IND-CPA-secure system is (t, 2ε)-IND-CPA-secure [5]. Con-
versely, a (t, ε)-IND-CPA-secure system is (t, ε)-real-or-random-IND-CPA-secure.
Asymptotically, both models are equivalent.

Definition 4 (IND-CCA-security). A cryptosystem is said (t, ε)-IND-CCA-
secure or (t, ε)-secure against adaptive chosen ciphertext attacks if no adversary
A = (A1,A2), with access to a decryption oracle OKs and with running time
bounded by t can distinguish the encryption of two different plaintexts m0 and
m1 with a probability higher than ε. More formally, for all A bounded by t,

Pr

⎡
⎢⎢⎢⎢⎣AOKs

2 (Kp, c; ρ) = b :

(Ks, Kp)← Gen(1λ; ρg)

m0, m1 ← AOKs

1 (Kp; ρ)

r
U←− R; b

U←− {0, 1}
c← Enc(Kp, mb; r)

⎤
⎥⎥⎥⎥⎦ ≤

1
2

+ ε ,

where OKs,c(y) = Dec(Ks, y) for y �= c and OKs,c(c) = ⊥. Asymptotically, a
cryptosystem is IND-CCA-secure if for any polynomial t(λ) there exists a negli-
gible function ε(λ) such that it is (t(λ), ε(λ))-IND-CCA-secure.

Definition 5 (Statistical distance). Given two discrete distributions D0 and
D1 over a set Z, we define the statistical distance between D0 and D1 by

d(D0,D1) :=
1
2

∑
z∈Z
|D1(z)−D0(z)| .

Definition 6. Given two distributions D0 and D1, a distinguisher between them
is an algorithm A that takes as input one sample x from either D0 or D1 and
has to decide which distribution was used. Its advantage is

AdvA(D0,D1) = Pr [A(x) = 1: x← D1]− Pr [A(x) = 1: x← D0] .

We know that for all A, AdvA(D0,D1) ≤ d(D0,D1). Equality is reached for A
defined by A(x) = 1 iff D1(x) ≥ D0(x).

We say that D0 and D1 are ε-statistically indistinguishable if d(D0,D1) ≤ ε.
We say that the two distributions are (t, ε)-computationally indistinguishable

if for any distinguisher A with running time bounded by t,

|AdvA(D0,D1)| ≤ ε .

Asymptotically, two distributions depending on a parameter λ are computation-
ally indistinguishable if for any polynomial t(λ) there exists a negligible function
ε(λ) such that, they are (t(λ), ε(λ))-computationally indistinguishable.

2.2 The Learning from Parity with Noise Problem

The Learning from Parity with Noise (LPN) problem has been well studied both
in learning theory and in cryptography. The goal of this problem is to find out
an unknown vector u, given some noisy versions of its scalar product with some
known random vector. More formally
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Definition 7 (LPN Oracle). An LPN oracle Πu,p for a hidden vector u ∈
{0, 1}k and 0 < p < 1

2 is an oracle returning vectors of the form

〈a U←− {0, 1}k , a · u⊕ ν〉 ,
where, ν ← Ber(p). Note that the output is a k + 1-bit vector.

Problem 8 (Learning from Parity with Noise Problem). The (k, p)-Learning from
Parity with Noise Problem ((k, p)-LPN) consists, given an LPN Oracle Πu,p, to
recover the hidden vector u.

We say that an algorithm A (t, n, δ)-solves the (k, p)-LPN problem if A runs
in time at most t, makes at most n oracle queries and

Pr
[
u

U←− {0, 1}k : AΠu,p(1k) = u
]
≥ δ .

The Decisional LPN Problem. The LPN problem has also a decisional form.
The problem is the following: let Uk+1 be an oracle returning random k + 1-bit
vectors. Then, an algorithm A (t, n, δ)-solves the (k, p)-decisional LPN prob-
lem (D-LPN) if A runs in time at most t, makes at most n oracle queries and∣∣∣Pr

[
u

U←− {0, 1}k : AΠu,p(1k) = 1
]
− Pr

[AUk+1(1k) = 1
]∣∣∣ ≥ δ .

It is shown [37,53] that if there exists an algorithm A that (t, n, δ)-solves the
(k, p)-D-LPN problem, then there is an algorithm A′ that (t′, n′, δ/4)-solves the
(k, p)-LPN problem, with t′ := O

(
t · kδ−2 log k

)
and n′ := O

(
n · δ−2 log k

)
.

Thus, the hardness of the LPN problem implies that the output of the LPN
vector oracle is indistinguishable from a random source.

We say that the (k, p)-D-LPN problem is (t, ε)-hard, if there is no algorithm
solving it with running time bounded by t and advantage higher than ε.

Algorithms that Solve the LPN Problem. The first subexponential al-
gorithm to solve the LPN problem was given by Blum, Kalai, and Wasserman
in [11] and they estimated its complexity to 2O(k/ log k). We denote this algorithm
by BKW algorithm.

The idea of the BKW algorithm is to first query the LPN oracle to obtain a
large amount of LPN vectors. It searches then for basis vectors ej by finding a
low amount of vectors that xor to ej. If the number of vectors that xor to ej is
small, the noise for this vector will be small as well. Using different independent
instances that xor to the same ej, one can recover the jth bit of u with good
probability. All this procedure can be done using a large amount of queries.

The BKW algorithm was analyzed in details and improved in [40,25]. We
give here the complexity of the improvement given in [40] that we will use as a
security bound in our cryptosystem.

Theorem 9 ([40], Theorem 2). For b ≥ 1, let a := k/b and q := (8b + 200)×
(1 − 2p)−2a

+ (a− 1)× 2b. There exists an algorithm that (kaq, q, 1
2 )-solves the

(k, p)-LPN problem.



HELEN: A Public-Key Cryptosystem Based on the LPN 113

Some parameters along with their security are given in [40, Section 5.2]. This
algorithm requires a subexponential (in k) number of samples. When the number
of samples is polynomial (as it is in our case), Lyubashevsky showed that one
can scramble randomly the samples to get more of them with a higher noise
level [42]. Then, the problem is solvable in 2O(k/ log log k). More precisely, one can
transform the (k, p)-LPN problem with k1+ε samples in the (k, p′)-LPN problem
with enough samples to use the BKW algorithm and with

p′ =
1
2
− 1

2

(
1
4
− p

2

) 2k
ε log k

. (2)

Combining this idea with Theorem 9, we get the following time complexity
(TLPN) for solving LPN and we will use it as a security bound.

Theorem 10 (LPN with limited number of queries). For b ≥ 1, let q :=
k1+ε, and let

TLPN := min
0<a≤k

(
k × a×

((
8k

a
+ 200

)
× (1− 2p′)−2a

+ (a− 1)× 2
k
a

))
, (3)

where p′ is given in Equation (2). There exists an algorithm that (TLPN, q, 1
2 )-

solves the (k, p)-LPN problem.

2.3 Finding a Low-weight Codeword in a Random Linear Code

In our security proof, we will also need to bound the complexity of finding a
low-weight parity-check equation in a random linear code which is the same
as finding a low-weight codeword in the dual code. This problem of finding a
low-weight codeword is also called the minimum distance problem.

Problem 11 (Minimum Distance Problem (MDP)). The (n, k, w)-decisional min-
imum distance problem is the following. Given an (n− k)× n matrix H drawn
uniformly and given w ∈ N, w ≥ 0, is there a non-zero x ∈ Fn

2 with wt(x) ≤ w
such that xHt = 0?

The computation counterpart of this problem consists in finding such an x.

Its hardness remained open for a long time. It was even set the “open problem
of the month” in [35]. It was finally shown to be NP-hard by Vardy [59] using
a reduction from the decisional syndrome decoding problem. Many algorithms
solving this problem were developed (e.g. [39,58,13,14,15,23].)

Finally, a general lower-bound on the complexity of the information set decod-
ing algorithm was derived by Finiasz and Sendrier [23] using idealized algorithms.
However, it was shown in [9,45] and very recently in [4] that it is possible to do
better than this bound.

A new lower-bound for information set decoding is proposed in [9]. This bound
is much simpler and we give it in Assumption 12.
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Assumption 12 ([9]). Let r := n − k. Given an [n, k]-code and given a weight
w, if

(
n
w

) ≤ 2r, the cost of finding a parity-check equation of weight w is
lower-bounded by

TMDP(w, n, k) := min
i

(
n
w

)
2
(

k
w−i

)√(
r
i

) , (4)

bit operations, with r = n− k.

We will assume this lower-bound for our cryptosystem. Note that a similar
analysis for linear codes over a general field Fq is presented in [51].

3 The Cryptosystem

We will first consider how to encrypt one single bit b. Hence, our message space
is M = {0, 1}. We denote the cryptosystem by HELEN. We generalize the
encryption to multiple bits in Section 6.

HELEN uses the following parameters which are described below: n, k, p, w, c,
and H. We encode first our message bit b with a binary [n, 1]-error-correcting
code C1, for n ∈ N. The goal of this code is to be able to recover b when errors
occur. Let c ∈ {0, 1}n be the generating matrix of this code (in fact, it is a
vector). We encode b as b · c. This message is hidden by a random codeword
from a random binary linear [n, k]-code C2 which has a low-weight parity-check
equation h ∈ {0, 1}n and a generator matrix G ∈ {0, 1}k×n. The parameter
k ∈ N determines the dimension of the codeword space in C2 and needs to be
tuned so that the system has the required security. The parity-check equation h
will be the private key of our system while G will be the public key. Since h is a
parity check equation of the code generated by G, we have h ·Gt = 0. We denote
the weight of h by w and the set of all possible h by H. We require H to verify
the following property: there should exist a subgroup P of Sn such that for any
σ ∈ P and any h ∈ H, σ � h ∈ H. The group P defines a group action on the
set H. We require P to be a transitive group action, i.e, for any two h, h′ ∈ H,
there exists a σ ∈ P such that σ � h = h′. In the following, H will be the set
of all vectors of weight w and dimension n but we keep this more general H for
further improvements. We also hide then the message further by adding some
low weight random noise vector ν ∈ {0, 1}n produced by a source Sp.

For correct decryption, we require also that h · ct = 1 for all h ∈ H. When H
contains all the vectors of weight w, this condition implies c = (1, . . . , 1) (see (5)
below).

In the following, we describe more precisely the cryptosystem. All algorithms
are summarized in Algorithm 1.

3.1 Encryption

A bit b ∈ M is encrypted as BEnc(G, b; r1‖r2) = b · c ⊕ r1G ⊕ ν, where c is the
generator vector for C1, G is the generator matrix for C2, r1 ∈ {0, 1}k is random
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and ν := Sn
p (r2), i.e., it is the n first bits generated by the source Sp with random

seed r2. The ciphertext space is, thus, C = {0, 1}n. The complexity of encryption
is O (kn).

3.2 Decryption

We define b′ := BDec(h, y) = h·yt. Given a ciphertext y ∈ {0, 1}n, we recover the
original message by first removing the noise due to C2. This is done by applying
h on y since h ·Gt = 0. Hence, we get b′ := BDec(h, y) = h · yt = (h · ct · bt)⊕ ν′,
for ν′ := h · ν a noise with

Pr[ν′ = 1] =
1− (1 − 2p)w

2
by Lemma 14. Note that it is necessary that

h · ct = 1 (5)

for all vector h ∈ H if one wants to be able to recover b. When H includes
all vectors of weight w, this condition is equivalent to setting c to the all-one
vector and w to an odd number. The resulting bit b′ is then different from b with
probability ϕ, which is given in the following theorem.

Theorem 13. HELEN is a ϕ-cryptosystem, where ϕ := (1− (1− 2p)w)/2.

Note that the complexity of decryption is O (n).

Lemma 14. Let X be a random variable defined as the sum modulo 2 of w iid
Bernoulli random variables equals to 1 with probability p and to 0 else. Then

Pr[X = 1] =
1− (1− 2p)w

2
.

Proof. We have 1− 2 Pr[X = 1] = E
[
(−1)X

]
= (1− 2p)w. �

3.3 Key Generation

We need now to generate a code that is indistinguishable from a random code
but that contains a known secret parity-check equation h of low weight. Let w
be the required weight of h and let H be the set of all possible private keys. The
key generation algorithm is given in Algorithm 1.

The resulting public key size is k×n bits, since we have to store the matrix G.
The private key is w log n bits long. The key generation complexity is O (k × n).
Note that we have hGt = 0.

4 Security Analysis

We will reduce the security of our scheme to the LPN problem presented in
Section 2.2. To do this, we will proceed in two steps. First, we show that the
code we construct for C2 is computationally indistinguishable from a random
matrix.
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Algorithm 1. Algorithm to generate keys, to encrypt, and to decrypt.
Key Generation:
Input: Lengths k, n and a set H.
Output: A private key h and a public key G.
1: Draw a random vector h of length n in the set H.
2: Let 0 < u ≤ n be any index of h such that hi = 1 , e.g., max {i : hi = 1}.
3: Let gij ← Ber( 1

2
), for 1 ≤ i ≤ k and 1 ≤ j ≤ n, j �= u.

4: Let
giu =

∑
1≤j≤n

j �=u

gijhj

for 1 ≤ i ≤ k, where the sum is taken over F2.
5: return the matrix G := [gij ]1≤i≤k

1≤j≤n
and the vector h.

Encryption:
Input: A bit b to encrypt, a public key G, two random seeds r1 and r2, a length n,

an n-bit vector c, and a noise parameter p.
Output: A ciphertext y encrypted under the public key G.
1: Let ν := Sn

p (r2).
2: return y ← b · c⊕ r1G⊕ ν.

Decryption:
Input: A ciphertext y and a private key h.
Output: The original plaintext b with probability ϕ defined in Theorem 13.
1: return b′ ← h · yt.

4.1 Link to Random Codes

We will compare the distributions of the output of different generators and show
that their statistical distance is negligible using various lemmas. We conclude in
Theorem 15. The first generator is our key generation algorithm.

Generator A: Run the key generation algorithm to obtain G and h and return
A := G.

Generator G1: Run generator A until the resulting matrix G has only one parity
check equation in H and return G1 := G.

Generator G2: Draw a random k×n matrix G2 until it has a single parity check
equation in H and return G2.

Generator G3: Draw a random k × n matrix G3 until it has at least one parity
check equation in H and return G3.

Generator B: Return a random k × n matrix B.

In the following, we show that the statistical distance between A and G3 is
negligible for suitable parameters.
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Theorem 15. Assume that there exists a subgroup P of Sn that acts transitively
on H. Then,

d(A, G3) ≤ (#H− 1)(#H+ 2)
2k+1

=: DA,G3 . (6)

Proof. We do the proof in three steps.

– We have d(G1, G2) = 0.
Recall that there exists a subgroup P of Sn that acts transitively on H.
Clearly, G2 generates a uniform distribution among all G’s which have a
unique parity check equation in H. So, we just have to prove that G1 has
the same distribution. Clearly, hGt = 0 if and only if (σ � h)× (σ � G)t = 0.
Also, A generates uniformly a pair (h, G) with h ∈ H and G such that
hGt = 0. Let Gh be the set of all G’s for which h is the only element of H
satisfying hGt = 0. For any h ∈ H and any G ∈ Gh, we have

Pr[G1 → G] =
1

#H×#Gh

Due to the above property on the action �, any σ induces a permutation
from Gh to Gσ�h. Since the action is further transitive, all Gh’s have same
cardinality. Hence, G1 generates a uniform distribution among all the G’s
which have a unique parity check equation in H.

– We have d(G2, G3) ≤ (#H−1)#H
2k+1 .

Let p1(G3) denote the probability that generator G3 has exactly one parity-
check equation in H. The best distinguisher between G2 and G3 outputs 1
if and only if the generated matrix has two or more parity-check equations
in H. So, d(G2, G3) = 1− p1(G3).
Let a (resp. b) be the probability that a random matrix verifies at least one
(resp. two) parity-check equations in H. Then a ≥ 2−k, since any parity-
check equation is verified with probability exactly 2−k. Similarly,

b ≤ (#H)(#H− 1)
2

× 2−2k

Thus,

d(G2, G3) = 1− p1(G3) =
b

a
≤ (#H− 1)#H

2
× 2−k .

– We have d(A, G1) ≤ #H−1
2k .

Let p1(A) denote the probability that the output of generator A has ex-
actly one parity-check equation in H. The best distinguisher between A and
G1 checks if the generated matrix has only one parity-check equation. So,
d(A, G1) = 1−p1(A) ≤ #H−1

2k since we are looking for a second parity-check
equation in a random matrix which has already one of them.

Using triangular inequality, we get the wanted result. �
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We want now to link this distribution with the distribution of an uniformly
distributed k × n matrix, i.e., a matrix produced by generator B. We will need
suitable parameters such that G3 is computationally indistinguishable from B.

The best distinguisher between G3 and B consists in deciding whether the
output of the unknown generator has a parity-check equation in H or not.
As discussed, the decisional problem is believed as hard as the computational
problem. Hence, we extend Assumption 12 to the following one.

Assumption 16. For any distinguisher between G3 and B, the complexity over
advantage ratio is lower bounded by TMDP(w, n, k), which is defined in (4).

So, by selecting parameters such that the right-hand side of (6) is negligible
and such that TMDP(w, n, k) ≥ 2λ, for a security parameter λ, any game involving
our cryptosystem produces a computationally indistinguishable outcome when
the key generator is replaced by B.

4.2 Semantic Security

Now that we have B computationally indistinguishable from A, we can link our
cryptosystem with the LPN problem.

Theorem 17. Let ε0 := d(A, G3) as defined in Theorem 15. If the (n, k, w)-
decisional minimum distance problem is (t1, ε1)-computationally unsolvable, and
if the (k, p)-decisional LPN problem is (t2, ε2)-hard, then there exists a constant
τ such that our cryptosystem is

(min{t1, t2 − τkn}, 2(ε0 + ε1 + ε2)) -IND-CPA-secure .

Proof. We introduce the following three games Γ0, Γ1 and Γ2. Γ0 is the IND-
CPA game for our cryptosystem in the simple real-or-random model. Γ1 is the
IND-CPA game in the same model but using generator B instead of A. Γ2 is the
(k, p)-D-LPN game.

By the assumptions, we know that the best advantage between Γ0 and Γ1 is
ε1 + ε2.

For the best advantage between Γ1 and Γ2, we do the following. Recall that
in the simple real-and-random game this model, the adversary submits first a
chosen plaintext b using an algorithm Aror

1 (G). Then, given a n-bit word u, has
to decide using an algorithm Aror

2 (G, u), whether u is the encryption of b or is
a random bitstring. Let (Aror

1 (G),Aror
2 (G, u)) be an IND-CPA adversary for our

cryptosystem when G is generated using generator B.
We show that using this adversary, we can solve the D-LPN problem. We

query first the unknown oracle of the D-LPN problem n times to obtain n-
vectors α1, . . . , αn. Note that each of these αi has exactly k + 1 bits. We create
now the k × n matrix G̃ using the first k bits of αi as column i, for 1 ≤ i ≤ n.
Using Aror

1 (G̃), we recover a plaintext b. Let z := b · c ⊕ (α1|k+1‖ . . . ‖αn|k+1),
where αi|k+1 denotes the k+1-th bit of αi. If the unknown oracle returns random
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bitstrings, then z will be random as well. However, if it is an LPN oracle, then
z is a valid ciphertext of b using the public key G̃. Note also that the matrix G̃
follows the same distribution as the output of generator B.

Hence, using Aror
2 (G̃, z), we can decide whether z is a ciphertext corresponding

to b or not. The complexity of this simulation is τkn for a constant τ > 0 large
enough. Thus, the advantage between game Γ1 and Γ2 is zero.

Since the D-LPN problem is supposed (t2, ε2)-hard, we get that our cryp-
tosystem when we use generator B is (t2 − τkn, ε2)-IND-CPA-secure in the sim-
ple real-or-random model. Similarly, we get that the original cryptosystem is
(min{t1, t2 − τkn}, ε0 + ε1 + ε2)-IND-CPA-secure in the simple real-or-random
model. Thus, our cryptosystem is (min{t1, t2 − τkn}, 2(ε0 + ε1 + ε2))-IND-CPA-
secure in the standard model [6]. �
Hence, we reduced the semantic security of our cryptosystem to the hardness of
the decisional LPN problem with n queries and noise parameter p.

Note that since we encrypt one single bit, an IND-CPA adversary has to dis-
tinguish BEnc(G, 0) from BEnc(G, 1) which is equivalent to OW-CPA security.

5 Selection of Parameters

To summarize, we need to tune the following security parameters for HELEN:

– The dimension k of the code C2 generated by G,
– The ciphertext length n (also the length of the codewords in C2),
– The weight w of the secret key, and
– The noise probability p.

For our cryptosystem to be semantically secure, we need the parameters to
verify Theorem 17. In particular, this implies that the D-LPN problem should
be hard, that finding a low-weight parity-check equation in the code is hard as
well, i.e., that TMDP(w, n, k) ≥ 2λ and that the statistical distance DA,G3 defined
in Theorem 15 is lower than 2−λ. We need also w to be odd. For the LPN
problem, we want TLPN ≥ 2λ, where TLPN is given in Equation (3).

Recall that the probability of decrypting incorrectly a bit is

Perror :=
1− (1− 2p)w

2
. (7)

Hence, to compare different parameters, we will normalize them with the ca-
pacity of a binary symmetric channel (BSC) with parameter Perror. Recall that
the capacity of the BSC is C := 1 − H2(Perror) with H2(p) := −p log(p) − (1 −
p) log(1 − p). We normalize by this factor, since we know that such a rate is
achievable by the channel coding theorem. This gives us a good way of compar-
ing the parameters.

We propose two sets of parameters. Some (I) which minimizes the n/C ratio
to minimize the number of transmitted bits and some (II) with a smaller kn/C
ratio to minimize the encryption/decryption complexity. We give in Table 1
concrete parameters for different security parameters λ.
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Table 1. Parameters for our cryptosystem

λ k n w p kn n/C kn/C TMDP DA,G3 TLPN C

I 64 4 500 18 000 33 0.01 226.3 216.4 228.6 265.3 2−3813 ≥ 2k 0.20
II 64 2 200 16 000 23 0.02 225.0 217.1 228.2 264.7 2−1707 ≥ 2k 0.11

I 80 5 600 28 000 35 0.01 227.2 217.2 229.7 280.5 2−4832 ≥ 2k 0.18

II 80 2 800 27 000 25 0.02 226.2 218.1 229.6 280.4 2−2232 ≥ 2k 0.10

In Table 2, we compare for concrete parameters HELEN with the code-based
McEliece cryptosystem [46] and with an LWE-based cryptosystem [41]. Note
that for encryption and decryption time, we neglect the cost of encoding and
decoding.

We propose the following asymptotic parameters for our system:

k = Θ
(
λ2

)
n = Θ

(
λ2

)
w = Θ (λ) p = Θ (1/λ) .

Indeed, we obtain TMDP and TLPN ≥ 2λ, DA,G3 ≤ 2−λ, Perror = 1
2 − 1

eO(1) , and
C > 0. In Table 3, we compare the asymptotic parameters.

Table 2. Comparison with other cryptosystems

Name λ Message
expansion

Pub key size Encryption time Decryption time

HELEN I 80 217.2 227.2 O
(
229.7

)
O

(
217.2

)
McEliece [8] 80 1.29 218.8 O

(
221.0

)
O

(
221.3

)
LWE [41] 128 22 217.5 O

(
224

)
O

(
218.5

)
Ring-LWE [41] 128 22 ≈ 210 O

(
224

)
O

(
218.5

)

Table 3. Asymptotic comparison with other cryptosystems. The Θ (.)’s have been
omitted.

Name Message
expansion

Public key
size

Private key
size

Key generation Encryption Decryption

HELEN λ2 λ4 λ log λ λ4 λ4 λ2

TCHo λ2 λ2 λ log λ λ6 log λ log log λ λ5 λ4

McEliece 1 λ2 λ2 λ3 λ2 λ2 log λ
RSA 1 λ3 λ3 λ12 λ6 λ9

NTRU 1 λ λ λ3 λ2 λ2
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6 Encrypting More than One Bit

In this section, we show how to encrypt more than one bit using HELEN.
Taking advantage of an efficient coding scheme, we can also improve the prob-
ability of decrypting correctly the message. In addition to the previous param-
eters n, k, p, w and H we add a [μ, κ]-error-correcting code. Let Encode be this
[μ, κ]-error-correcting code. Let also Decode be an efficient decoding algorithm
corresponding to this code.

Encryption: We encrypt a plaintext m ∈ {0, 1}κ in two steps. First we compute
b1‖ . . . ‖bμ := Encode(m). The ciphertext c is then BEnc(G, b1)‖ . . . ‖BEnc(G, bμ).
The complexity of encryption is O (μkn + TEncode), where TEncode is the complex-
ity of the encoding algorithm.

Decryption: To decrypt, we first decrypt each block of n bits using BDec to
recover b′1‖ . . . ‖b′μ, where each b′i �= bi with probability (1− (1/2p)w)/2 =: Perror.
The complexity of decryption is O (μn + TDecode), where TDecode is the complexity
of the decoding algorithm. Let ρ be the maximum number of errors the error-
correcting code can correct. Then, using a Chernoff bound, the probability of
decrypting incorrectly the message is

μ∑
i=ρ+1

(
μ

i

)
(Perror)i(1− Perror)μ−i ≤ exp

[
−2μ

(
ρ

μ
− Perror

)2
]

=: φ . (8)

Theorem 18. HELEN with parameter μ, κ is a φ-cryptosystem, where φ is
given in (8).

Theorem 19. Let εb be the IND-CPA advantage for the elementary cryptosys-
tem HELEN with μ = κ = 1. Then, the advantage of an IND-CPA adversary
against the full cryptosystem HELEN with parameter μ and κ is smaller than
μεb.

Proof. Let A := (A1,A2) be an IND-CPA adversary HELEN with parameter
μ, κ. Given i ∈ {1, . . . , μ}, we define Bi := (Bi,1(G),Bi,2(G, c)) as follows.

Bi,1(G):

1. Let m0, m1 ← A1(G)
2. Let b0

1‖ . . . ‖b0
μ ← Encode(m0), the

encoding of m0

3. Let b1
1‖ . . . ‖b1

μ ← Encode(m1), the
encoding of m1

4. Return b0
i , b

1
i .

Bi,2(G, c):

1. Compute c1 ← BEnc(G, b1
1), . . . ,

ci−1 ← BEnc(G, b1
i−1).

2. Let ci = c
3. Compute ci+1← BEnc(G, b0

i+1), . . . ,
cμ ← BEnc(G, b0

μ).
4. Set y := c1‖ . . . ‖cμ

5. return A2(G, y)
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We know that AdvBi ≤ εb. We have

Pr [A → 0 | m0 encrypted] = Pr
[B1 → 0 | b0

1 encrypted
]

and
Pr [A → 0 | m1 encrypted] = Pr

[Bμ → 0 | b1
μ encrypted

]
.

Also,

Pr
[Bi → 0 | b1

i encrypted
]

= Pr
[Bi+1 → 0 | b0

i+1 encrypted
]

.

Hence,

AdvA = (Pr [A → 0 | m0 encrypted]− Pr [A → 0 | m1 encrypted])

=
μ∑

i=1

(
Pr

[B → 0 | b0
i encrypted

]− Pr
[B → 0 | b1

i encrypted
]) ≤ μεb .

�
Obviously HELEN is not IND-CCA-secure, since it is clearly malleable. It suf-
fices to change one single bit of the ciphertext and to submit it to the decryption
oracle to decrypt the plaintext with good probability. To achieve IND-CCA se-
curity, one can use well-known construction like the Fujisaki-Okamoto hybrid
construction [26]. This construction uses two random oracles H1 and H2 as well
as a symmetric encryption scheme. However, such a construction work only if
the cryptosystem is Γ -uniform.

Definition 20 (Γ -uniformity). Let Enc be an asymmetric encryption scheme,
with key generation algorithm Gen(1λ) and encryption algorithm Enc(Kp, m; r)
over the message space M and the random coins space R. Enc is Γ -uniform if
for any plaintext m ∈ M, for any keys drawn by Gen and for any y ∈ {0, 1}∗,
we have

Pr
[
h

U←− R : y = Enc(Kp, m; h)
]
≤ Γ ,

i.e., the probability that a plaintext and a ciphertext match is bounded.

Lemma 21. HELEN is (1− p)n-uniform.

Proof. Recall that the HELEN encryption of b is y = b · c ⊕ r1G ⊕ Sn
p (r2), for

random coins r1 and r2. We need to bound the probability (taken over r1 and r2)
that a given plaintext x and ciphertext y match. Since in HELEN we consider
only p < 1

2 , the most probable ciphertext corresponds to y = b · c ⊕ r1G, i.e.,
when Sn

p is the zero bitstring. This happens with probability (1− p)n. When we
take the average over the possible r1, this probability can only decrease. Hence,
HELEN is (1 − p)n-uniform. �
Theorem 22. Let q1(resp. q2) be the number of queries an adversary makes
to H1 (resp. H2). Let qd be the number of queries performed to the decryption
oracle. Then, if HELEN is (t, ε)-IND-CPA-secure, the Fujisaki-Okamoto hybrid
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construction using a one-time pad for symmetric encryption with key length � is
(t1, ε1)-IND-CCA-secure in the random oracle model, where

t1 := t−O ((q1 + q2)× (k + �))

ε1 := (2(q1 + q2)ε + 1)(1− (1− p)n − 2−	)−qd − 1 .

Proof. Since HELEN is OW-CPA secure and (1− p)n-uniform, the result follows
from [26, Theorem 14]. �

7 Conclusion

Further Work. HELEN can be extended in multiple ways. A first idea is to
use different H to reduce the probability of error and, hence, to reduce the
transmission overhead. This implies also to verify that Assumption 16 holds for
this new H. Another idea would be to encrypt a message in Fq for q > 2. The
codes C1 and C2 described in Section 3 need then to be modified accordingly
as well as the noise we add. This new extension could then be linked to the
learning with error (LWE) problem [53], a generalization of the LPN problem
over a finite field Fq. Finally, the LPN problem deserves some more analysis in
particular when p is not fixed.

In conclusion, HELEN is a code-based public-key cryptosystem based on the
hardness of some well-known problems. Since its margin of progression is still
large, HELEN can become a competitive cryptosystem with truly practical pa-
rameters.
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Abstract. The Advanced Encryption Standard (AES) was selected by
NIST due to its heavy resistance against classical cryptanalysis like dif-
ferential and linear cryptanalysis. Even after the appearance of the mod-
ern side-channel attacks like timing and power consumption side-channel
attacks, NIST claimed that AES is not vulnerable to timing attacks.
In 2005, Bernstein [6] has successfully attacked the OpenSSL AES im-
plementation on a Pentium III processor and completely retrieved the
full AES key using his cache timing side-channel attack. This paper
reproduces Bernstein’s attack on Pentium Dual-Core and Core 2 Duo
processors. We have successfully attacked the AES implemented in the
latest OpenSSL release 1.0.1c using the most recent GCC compiler 4.7.0
running on both Windows and Linux in some seconds by sending 222

plaintexts at most. We improved Bernstein’s first round attack by using
2 way measurements. Instead of using only the above average timing
information, we added the above minimum timing information which
significantly improved the results.

Keywords: AES, timing attack, Bernstein’s attack, cache memory
attack, side-channel attack, cryptanalysis.

1 Introduction

For a long time, attacking cryptographic systems was relying only on its
mathematical basis like the case in differential and linear cryptanalysis. To con-
duct such attacks you have to know either a number of ciphertexts or pairs of
ciphertexts and plaintexts. Nowadays, several attacks are based on the infor-
mation revealed from the encryption devices. Since this information is not the
ciphertext or the plaintext, so it is often called side-channel information [5].
This information may be revealed by measuring the power consumption, heat
consumption, cache access or time elapsed during processing.

The timing attacks can be considered as the most popular attacks that have
greatly developed during the last ten years. Measuring the time taken to access
cache memory helps identifying cache hits and misses which in turn is considered
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a dangerous information to be revealed. NIST has stated in [20] (section 3.6.2)
that ”Table lookup: not vulnerable to timing attacks; relatively easy to effect
a defense against power attacks by software balancing of the lookup address.”.
However, the most powerful timing attacks on AES depend on measuring table
lookup access times, which reveals most of the AES key bits.

2 AES Implementation Background

AES is the most widely used secret key block cipher. It is a substitution-
permutation network (SPN), it has an iterative structure that works in rounds.
That is, both encryption and decryption consists of number of iterations, called
rounds, each round consists of a fixed set of operations, namely (SubBytes,
ShiftRows, MixColumns, and AddRoundKey). The operations are applied to
the input plaintext block, called state. After iterating a predefined number of
rounds, (10, 12, and 14 rounds for 128-bit, 192-bit, and 256-bit keys, respec-
tively), the final state is the ciphertext block.

Although the optimized ANSI C code submitted with Rijndael proposal uses
5 T-tables [31], high performance implementations like OpenSSL [25], uses only
four 256-entry 32-bit T-tables T0, T1, T2 and T3 during encryption. This imple-
mentation precomputes original S-boxes and stores every lookup vector in a dif-

ferent T-table each of 1024-byte size. Each round state word (x
(r)
4i , x

(r)
4i+1, x

(r)
4i+2,

x
(r)
4i+3), i = 0, 1, 2, 3, is generated as:

(x
(r)
0 , x

(r)
1 , x

(r)
2 , x

(r)
3 ) = T0[x

(r−1)
0 ]⊕ T1[x

(r−1)
5 ]⊕ T2[x

(r−1)
10 ]⊕ T3[x

(r−1)
15 ]⊕ (k

(r−1)
0 , k

(r−1)
1 , k

(r−1)
2 , k

(r−1)
3 )

(x
(r)
4 , x

(r)
5 , x

(r)
6 , x

(r)
7 ) = T0[x

(r−1)
4 ]⊕ T1[x

(r−1)
9 ]⊕ T2[x

(r−1)
14 ]⊕ T3[x

(r−1)
3 ]⊕ (k

(r−1)
4 , k

(r−1)
5 , k

(r−1)
6 , k

(r−1)
7 )

(x
(r)
8 , x

(r)
9 , x

(r)
10 , x

(r)
11 ) = T0[x

(r−1)
8 ]⊕ T1[x

(r−1)
13 ]⊕ T2[x

(r−1)
2 ]⊕ T3[x

(r−1)
7 ]⊕ (k

(r−1)
8 , k

(r−1)
9 , k

(r−1)
10 , k

(r−1)
11 )

(x
(r)
12 , x

(r)
13 , x

(r)
14 , x

(r)
15 ) = T0[x

(r−1)
12 ]⊕ T1[x

(r−1)
1 ]⊕ T2[x

(r−1)
6 ]⊕ T3[x

(r−1)
11 ]⊕ (k

(r−1)
12 , k

(r−1)
13 , k

(r−1)
14 , k

(r−1)
15 )

Here, T0, T1, T2, T3 are four lookup tables with 1 byte input and 4 bytes output
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4i+3), i = 0, 1, 2, 3 is the i-th word of the r-th round key.

3 Cache Based Side Channel Attacks Background

Cache based side channel attacks, cache attacks, can be classified into three
major types of attacks: time-driven, access-driven, and trace-driven.

In a trace-driven attack, the attacker should be able to monitor and collect the
cache activity including every memory access during an encryption. This data
collection process is meant to create a profile (trace) of cache hits and misses for
a single encryption. The quality of the attack depends on how many traces are
needed to begin the analysis phase, a better attack requires less traces.

In a time-driven attack, the attacker do not need to have the ability of collect-
ing data of every memory access. Instead, the attack relies on a value that can
be used to describe or approximate the total number of cache hits and misses. In
most of time-driven attacks, the attacker collects only the total execution time of
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an encryption as many times as needed, then use mathematical tools to analyze
the collected data. The quality of the attack depends on how many encryptions
are needed to begin the analysis phase, a better attack requires less encryptions.

In an access-driven attack, the attacker can detect which cache sets were
modified by the encryption process, which leads the attacker to know which
lookup table entries are accessed during the encryption. Then, uses elimination
and non-elimination techniques to detect the right key candidates. For more
information about microarchitectural attacks, consult [2].

4 Related Work

In this section, we introduce the history of cache based side channel attacks and
timing attacks related to Bernstein’s attack.

In 1996, Kocher [16] first introduced timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. In 1998, Kelsey et al. [15] men-
tioned the “attacks based on cache hit ratio in large S-box ciphers” prospect. In
2002, Page [27] expanded the idea proposed by Kelsey et al., of cache memory
being used as a side-channel which leaks information during the run of DES. As
well as describing and simulating the theoretical attack. He discussed how hard-
ware and algorithmic alterations can be used to defend against such techniques
in [28] in 2003. Later on, Tsunoo et al. [34,35] implemented the first practical
cache timing cryptanalysis of DES, 3DES, MISTY1, Camellia and AES.

In 2003, Brumley and Boneh [10] devised and implemented a remote timing
attack against unprotected OpenSSL implementation of RSA over a local area
network.

In 2005, Acıiçmez et al. [4] improved the efficiency of Brumley and Boneh
timing attack on unprotected SSL implementations of RSA-CRT by a factor of
more than 10. Earlier in the same year, Bertoni et al. [7] introduced the first
trace-driven attack on AES based on induced cache misses. Also they proposed
a simple countermeasure against the attack.

Bernstein [6] derived an attack on AES which depends only on calculating
the encryption time information caused by cache memory hits and misses then
comparing timing data using statistical methods. Bernstein’s attack is a time-
driven cache attack. It is performed as a template attack where at first a profile
under a known key is generated with the same platform as the later attacked one.
The real attack is performed in a second phase where a profile of an unknown
key is generated. Those two profiles are then correlated and the key space for
the unknown key is reduced. In a last phase for full key recovery, a brute-force
of the remaining key space is performed. This attack is not affected by cache
architecture or active manipulation, it only depends on the similarity between
reference and target machines. Later, Percival [29] was the first to use access-
driven attack against RSA, and demonstrated that the shared access to cache
memory provides an easily used covert channel between threads, allowing in
many cases for theft of cryptographic keys.

Osvik et al. [26,33] led the work on attacking AES using access-driven cache
memory attacks, and described several software side-channel attacks based on



130 H. Aly and M. ElGayyar

inter-process leakage through the state of the CPU’s cache memory. The au-
thors discussed an attack called synchronous attack, which requires knowledge
of either the plaintext or the ciphertext. The synchronous attacker can oper-
ate synchronously with the encryption on the same processor. Moreover, they
demonstrated an extremely strong type of attack called asynchronous attack,
which does not require any knowledge of plaintexts or ciphertexts. The asyn-
chronous attacker will execute his own program on the same processor as the en-
cryption program without any explicit interaction, depending on the knowledge
of the non-uniform distribution of the plaintexts or ciphertexts. They also ex-
perimentally demonstrated their applicability to real systems, such as OpenSSL
and presented a variety of countermeasures which can be used to mitigate such
attacks. However, they did not give a description of how to perform a full asyn-
chronous attack. Lauradoux [17] proposed some countermeasures against these
attacks, and Canteaut et al. [11] followed him in 2006.

In 2006 also, Neve et al. [23,22] presented a thorough analysis of Bernstein’s
attack, reproducing the attack and demonstrating results of important experi-
ments practically. They answered a lot of open questions about the attack like,
what if there is no learning phase? Can this attack be a real remote threat or
not? and more. Then they extended the attack with a second round attack to
reveal other key bits that could not be revealed by Bernstein’s first round attack.

In the same year, Neve et al. [21] introduced an access-driven attack on AES,
by demonstrating how a spy process running on the same single threaded CPU
can measure the number of accessed cache lines by another process running on
the same CPU.

Another cache memory attack was introduced in 2006 by Bonneau et al. [9],
in this cache collision attack, they aimed to predict cache collisions timing varia-
tion using a simplified cache model. Their most powerful attack recovered a full
128-bit AES key with an improvement of almost four orders of magnitude over
Bernstein’s attack.

A cache based remote timing attack followed by Acıiçmez et al. [3], they
described an expanded second round attack that can be used to obtain secret
keys of remote cryptosystems. Their attack requires hyper threading enabled
system with a large enough workload. In 2006, Acıiçmez et al. [1] presented a
trace-driven attack on AES. They described a first two rounds attack and a
last round attack as well. At the end of their work, they show the trade-off
between the online and offline cost of the attack in details. Later in the same
year, Bonneau [8] described a final round trace-driven attack on AES, building
off of previous work by Acıiçmez and Koç [1]. Bonneau introduced an algorithm
that reduces the problem of attacking AES given a small set of cache traces, to
a simple constraint satisfaction problem.

In 2007, Tiri et al. [32] have proposed an analytical model for time-driven
cache attacks. They presented a tool to help us evaluate the security of symmetric
key ciphers against against such attacks.

In 2008, Zhao et al. [37] introduced a first two rounds access-driven at-
tack on AES. Introducing the elimination technique in guessing the key bytes.
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They succeeded in recovering the full 128-bit AES key through the first round
attack using about 350 samples, and two rounds attack using about 80 samples
in a few seconds.

In 2010, Rebeiro et al. [30] justified that cache timing attacks on AES are
unable to force hits in the third round and concluded that a similar third round
cache timing attack does not work. Hence, protecting only the first two AES
rounds prohibits cache based timing attacks. Zhao and Wang [36] presented an
improved trace-driven attack on AES and CLEFIA by considering S-box mis-
alignment, and due to this feature, about 200 samples are enough to obtain full
128-bit AES key within seconds. Bogdanov et al. introduced a novel differential
collision attack based on the MDS properties of AES on embedded CPUs. Their
experiments show that efficient attacks on embedded systems implementing AES
are not theoretical any more.

In 2011, Gallais et al. [12] introduced an improved adaptive plaintext, and
presented a new known plaintext trace-driven cache-collision attacks against em-
bedded AES implementations. Their experiments show that with approximately
30 known plaintexts, the key space of AES 128-bit is reduced to 230. Gullasch et
al. [13] improved over prior work [26,21,33] by providing a first practical access-
driven cache attack on AES in the asynchronous model. They introduced a novel
approach by using neural networks to handle noise surrounding key candidates.
Their experiments shows that performing only 100 encryptions is enough to find
the key in average of 3 minutes including key search phase. They mentioned a
way to transfer the offline phase to another machine by downloading 62.5 KB
only per attack.

In 2012, Mowery et al. [19] proved that any cache timing attack against x86
processors that does not somehow subvert the prefetcher, physical indexing, and
massive memory requirements of modern programs is doomed to fail.

5 Bernstein’s Attack on AES

Bernstein’s attack is a first round cache timing attack, it consists of two online
phases, namely profiling and attacking phases, and two offline phases, namely
correlation and key search phase. During profiling and attacking phases, it mea-
sures and collects total execution time of a single encryption, thousands or mil-
lions of times. Then a mathematical correlation phase matches between results
of the earlier online stages and generates a list of possible key candidates. The
last phase is the key search phase, it is a brute force attack, searching for the
unknown key in the reduced key space generated by the correlation phase.

The biggest advantage of this attack, it is a generic attack and it can be
performed mostly without any knowledge about many processor details.

Bernstein succeeded to attack an OpenSSL implementation of AES, which
makes use of four T-tables only, and utilizes a total of four kilobytes (4096
bytes) of memory. The idea is that for the first round, the table lookup indices

x
(0)
i are each related to only one key byte k

(0)
i and one plaintext byte pi:

x
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i = pi ⊕ k

(0)
i , i = 0, 1, 2, ..., 15.
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So, at the profiling phase we know the i-th key byte k
(0)
i and the i-th plaintext

byte pi, which leads directly to the table lookup index x
(0)
i . On the other hand,

at the attacking phase we know both pi and x
(0)
i , which reveals the unknown

i-th key byte k̂
(0)
i :

k̂
(0)
i = pi ⊕ x

(0)
i , i = 0, 1, 2, ..., 15.

Osvik et al. [26,33] mentioned a lot of important shortcomings about Bern-
stein’s attack:

– it requires reference measurements of encryption under known key in an
identical configuration, and these are often not readily available (e.g., a user
may be able to write data to an encrypted file system, but creating a reference
file system with a known key is a privileged operation).

– it relies on timing the encryption and thus, it seems impractical on many
real systems due to excessively low signal-to-noise ratio.

– even when this attack works, it requires high number of analyzed encryptions.

To work around these shortcomings, Neve et al. [23,22] suggested that instead
of using another reference machine, attacking two different keys on the same
machine might recover some bits by comparing similar byte signatures. Also, we
tried to compare between two different attacking stages for the same key, but
we failed to get any good results.

However, in some cases like a shared computer with different users accounts,
the attacker has access to his own account on the machine in which he can collect
required information about his own known key.

6 Our Work

Bernstein in [6] presented his attack against the OpenSSL 0.9.7a of AES
implementation on an 850MHz Pentium III desktop computer running FreeBSD
4.8. O’Hanlon and Tonge [24] failed to collect any useful data about the key by
attacking a Pentium IV running GCC 4.0.0 and OpenSSL 0.9.7f. They succeeded
with a Pentium III running GCC 2.95.3 against the MIRACL [18] implementa-
tion of AES. Followed by Canteaut et al., they attacked a Pentium IV processor
[11] trying to modify the cache state before the attack by removing system calls.
Also recently, Jayasinghe et al. [14] succeeded to implement Bernstein’s attack
on the original configuration used by Bernstein at 2005. Table 1 outlines all these
implementation of the attack.

While through our experiments we tested over 100 random keys, we decided
to attack a fixed key k = {2b, a8, 62, a3, 4d, 42, e2, 44, 27, 89, a4, 4a, c6, 7e, cd, eb},
through the rest of this paper.

After testing the attack on Ubuntu 9.10, OpenSSL version 0.9.8g and GCC
4.4.1 on a Pentium Dual-Core processor as shown in Table (2), we noticed that
smaller packet sizes are giving better results. Our best results were achieved by
sending 227 plaintexts of size 100 bytes.

1 This attack was performed on a 32-bit Windows7 Ultimate sp1.
2 This attack was performed on a 64-bit Windows7 Home Premium sp1.
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Table 1. This table shows attackers hardware and software configurations

Attacker CPU model GCC AES software #Packets

Bernstein[6] Pentium III 2.95.4 OpenSSL 0.9.7a 227

O’Hanlon et al.[24] Pentium III 2.95.3 MIRACL 230/3
Canteaut et al.[11] Pentium III 3.2.2 Original [31] 230

Pentium IV 3.2.2 Original [31] 226

Jayasinghe et al.[14] Pentium III 2.95.4 OpenSSL 0.9.7a 227

Our attack Pentium Dual-Core 4.4.1 OpenSSL 0.9.8g 226

Pentium Dual-Core1 4.7.0 OpenSSL 1.0.1c 220

Pentium Core 2 Duo2 4.7.0 OpenSSL 1.0.1c 220

Table 2. This table shows the attacked processor model and cache size

CPU model Level Cache line size Cache sets Associativity Total size

Pentium Dual-Core T2060 L1 64 B 2×64 8 2×32 KB
L2 64 B 4096 4 1 MB

Pentium Core 2 Duo P7550 L1 64 B 2×64 8 2×32 KB
L2 64 B 4096 12 3 MB

After testing the attack on a similar configuration to Bernstein’s, we started
porting the attack to test on Windows7 32-bit and 64-bit operating systems. We
chose to port the attack to MinGW, not Cygwin, so the attack is not restricted
to machines running Cygwin only. Porting the attack to MinGW was a hard job,
due to the differences between sockets implemented in Linux and Windows.

Performing the first attack on Windows 32-bit, OpenSSL version 0.9.8g and
GCC 4.7.0 on a Pentium Dual-Core processor as shown in Table (2) was suc-
cessful, and some key candidates appeared after sending 226 samples of size 100.
After this we followed Neve et al. [22] by removing the network delay from the at-
tack, since the execution time is measured on the server. We merged the original
study and server programs to create the new ServerNoNetwork program which
runs locally. Also, we fixed the samples length to 16 as Neve et al. advised, since
only the first 16 bytes are encrypted even if the packet size is 1000.

Performing the attack again with the new attack program on our testing
platforms lead to better results in less time. Our best results began to appear
at 225 samples. This attack took less than 30 minutes and the results included 4
accurate peaks for k1, k5, k9, k13. By repeating the attack several times with the
same configuration, the same 4 peaks kept appearing and no other candidates
were observed.

Since the main concept used by Bernstein depends on touching the cache
memory before and after AES encryption, we restored back the ability to send
different sizes of samples again. At the first glance, we tried to speedup the attack
by removing unused code like calling rand() function, which fills the whole packet
array while we need only the first 16 entries to be randomized, also we added a
command line argument for the limit to stop whenever it reaches that limit.
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Fig. 1. Single peaks for group g1 = {a8, 42, 89, 7e} are marked with red. x-axis repre-
sents byte values in hexadecimal and y-axis represents the 16 key bytes

By repeating the attack ten times, we discovered that results are mostly ap-
pearing as single peaks on this configuration see Fig. 1. Another interesting be-
havior is the relation between results of the same attack, it appears that results
are grouped in 4 groups, g0, g1, g2, and g3, each group contains 4 key candidates:
gi = {ki, ki+4, ki+8, ki+12}, i = 0, 1, 2, 3.. The first group appeared while sending
samples of size 16 was g1, other groups appeared later with larger samples.

After improving and optimizing the speed of the merged program, a successful
attack on Windows7, GCC 4.71, and OpenSSL 1.0.1c, required sending only 1M
of samples with different sizes, and we recovered the full key without a brute
force attack in less than 20 seconds. We didn’t need to use the brute force attack,
since all key candidates were found as single peaks.

The reason behind this grouping is how OpenSSL implemented AES and how
the MinGW GCC compiler assembles the implementation on Windows. Every
group corresponds to a set of certain table lookup indices, i.e g0 corresponds to
T0 lookup indices and so on, recalling that:(
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where i = 0, 1, 2, 3 and all sum operations are done modulo 16.
While analyzing the results in Table 3, we found that peaks are changing

approximately every extra 300-350 bytes to the sample. It appears that the
attacked operating system and/or MinGW GCC compiler are partitioning the
T-tables into 256 byte chunks (4 cache lines per table), and due to misalignment
of the tables in cache, an extra cache line is used which means 256 + 64 = 320
bytes in cache.

Following this theory, we found that 320, 640, 960, and 1280 bytes are very
special sample sizes that reveals more than 8 key candidates at once in some
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Table 3. This table shows the relation between revealed groups and sample size by
sending only 220 samples

Sample Size in Bytes Recovered Key Indices Group Time in Seconds Improved Time

16 1, 5, 9, 13 g1 1.6 0.9
100-300 5, 9, 13 g1 2-10 1.1-1.5
350 0, 4, 8, 12 g0 12 1.6
400-600 0, 4, 8 g0 13-19 1.7-2.0
650 3, 7, 11, 15 g3 21 2.1
700-950 7, 11, 15 g3 22.5-30 2.2-2.7
1000 2, 6, 10, 14 g2 32.5 2.8

cases. Figure 2 shows the evolution of the correct key candidate against the
number of samples, the figure shows the results of measuring 1M samples of size
320 Byte, as you can notice, the correct key candidates were very clear at the
level of 256K and in some cases at 64K samples only.

Fig. 2. Single peaks for group g0 = {2b, 4d, 27, c6} are marked with red. In this grouped
correlation graph, the x-axis represents the byte value and the y-axis represents number
of samples.

The last part of our work is the most exciting part. We tried to modify the
core of the attack by replacing the main measurement criteria by another one.
The core measurement criteria in the attack is u[j][b]− taverage where

taverage :=

total#packets∑
i=0

timingi

total#packets
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is the total overall average time and

u[j][b] :=

tnum[j][b]∑
i=0

timing[j][b]i

tnum[j][b]
,

tnum[j][b] is the total number of samples for the j-th key candidate and the
plaintext byte b. We aimed to replace this complicated formula with a simpler
one to help gain more speed and accuracy in our attack program, our formula is
umin[j][b]− tmin where

tmin := mini(timingi)

is the overall minimum timing and

umin[j][b] := mini(timing[j][b]i)

is the local minimum for the j-th key candidate and the plaintext byte b.
We were not surprised when this new measure succeeded to recover the same

groups as the original measure with the same configurations, since the minimum
is used in access-driven attacks to eliminate wrong key candidates. Calculating
minimum timing information for each candidate eliminates all low value candi-
dates easily because candidates with cache hits have a lower timing information
than candidates with cache misses. Calculating the minimum also eliminates the
noise; if a particular candidate is affected by noise and hence had a high timing
value, using minimum means that at the first instant of noise absence, the real
timing information is recorded and will never be raised again even if the noise
is back.

Figure 3 shows the results of the first group with the new measurement, which
looks more clear than the original measure.

Our experiments show that the reasons behind our success in recovering the
full 128-bit key so fast is a combination of the simple structure of GCC 4.7.0
for MinGW, optimizing the attack program, removing all redundant code, and
using two measurement criterions instead of only one.

After succeeding with the new measure, we kept both measurements, so the
attacker can choose which measure to use. At the correlation stage, both mea-
surements data are kept together in the file for double checking.

At this point, using the merged program ServerNoNetwork, with the original
and new measurements, we succeeded to recover the full AES key, without a
brute force search in less than 20 seconds, using less than 1M random plaintexts.

7 Future Work

After attacking OpenSSL successfully we plan to attack other cryptographic
libraries. Our first trial was to attack MIRACL version 5.5.4 [18] which imple-
ments AES in a small slow implementation and another high performance one,
using 5 lookup T-tables: 4 for all rounds and one for the final round. Attacking
this implementation failed to extract more than 2 or 3 key bytes for the small
implementation, while we succeeded to get a better chance with the fast one.
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Fig. 3. Single peaks for group g1 = {a8, 42, 89, 7e} are marked with red. In this grouped
correlation graph, the x-axis represents the byte value and the y-axis represents number
of samples.

8 Conclusion

We succeeded to attack the latest OpenSSL implementation of AES using Bern-
stein’s cache timing attack on a different testing environment from those used
earlier. We replaced the original ”above average” measure with a simple ”above
minimum” one. Our experiments shows that GCC 4.7.0 for MinGW might be
the reason behind recovering the 128-bit key in seconds using either the original
or new measurements.
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CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003)

36. Zhao, X., Wang, T.: Improved cache trace attack on AES and CLEFIA by consid-
ering cache miss and S-box misalignment. Tech. rep., Cryptology ePrint Archive,
Report 2010/056 (2010)

37. Zhao, X., Wang, T., Dong, M., Yuanyuan, Z., Zhaoyang, L.: Robust first two rounds
access driven cache timing attack on AES. In: 2008 International Conference on
Computer Science and Software Engineering, vol. 3, pp. 785–788. IEEE (2008)

http://www.openssl.org
http://fastcrypto.org/front/misc/rijndael-alg-fst.c


Optimal Public Key Traitor Tracing Scheme

in Non-Black Box Model

Philippe Guillot1, Abdelkrim Nimour2, Duong Hieu Phan1,
and Viet Cuong Trinh1
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Abstract. In the context of secure content distribution, the content
is encrypted and then broadcasted in a public channel, each legitimate
user is provided a decoder and a secret key for decrypting the received
signals. One of the main threat for such a system is that the decoder
can be cloned and then sold out with the pirate secret keys. Traitor
tracing allows the authority to identify the malicious users (are then
called traitors) who successfully collude to build pirate decoders and
pirate secret keys. This primitive is introduced by Chor, Fiat and Naor
in ’94 and a breakthrough in construction is given by Boneh and Franklin
at Crypto ’99 in which they consider three models of traitor tracing: non-
black-box tracing model, single-key black box tracing model, and general
black box tracing model.

Beside the most important open problem of obtimizing the black-box
tracing, Boneh-Franklin also left an open problem concerning non-black-
box tracing, by mentioning: “it seems reasonable to believe that there
exists an efficient public key traitor tracing scheme that is completely
collusion resistant. In such a scheme, any number of private keys cannot
be combined to form a new key. Similarly, the complexity of encryption
and decryption is independent of the size of the coalition under the pi-
rate’s control. An efficient construction for such a scheme will provide a
useful solution to the public key traitor tracing problem”.

As far as we know, this problem is still open. In this paper, we re-
solve this question in the affirmative way, by constructing a very efficient
scheme with all parameters are of constant size and in which the full
collusion of traitors cannot produce a new key. Our proposed scheme is
moreover dynamic.

Keywords: traitor tracing, non-black-box tracing, full collusion,
pairings.

1 Introduction

Traitor tracing, introduced in [12], is an important cryptographic primitive in
the context of secure content distribution. Traitor tracing is a main ingredient in
many practical applications of global networking such as pay-per-view television,
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satellite transmission. In secure content distribution, the content is encrypted
and broadcasted in a public channel, each legitimate user is provided a decoder
and a secret key for decrypting the received signals. The main threat in this
context is that the decoder can be cloned or be produced and then sold out
with the pirate secret keys. Traitor tracing allows the authority to identify the
malicious users (are then called traitors) who successfully collude to build pirate
decoders and pirate secret keys.

A breakthrough was proposed by Boneh-Franklin in [6] in which an effi-
cient public key traitor tracing scheme was introduced. They considered three
following tracing models:

1. Non-black-box tracing model considers the situation where the collusion of
t traitors can derive a new valid secret key. The tracing algorithm takes as
inputs this new valid secret key and outputs at least a traitor in the collusion.

2. Single-key black box tracing model extends a bit the non-black-box tracing
model. It always considers the scenario that the collusion of t traitors can
derive a new valid secret key and then this new valid secret key is embedded
in a pirate decoder. The tracing algorithm takes as inputs the pirate decoder
and should be able to output the identity of one of the traitors.

3. General black box tracing model is the strongest model of tracing in which
the tracer cannot open the pirate decoder and only interact with it in a black
box manner by sending the ciphertext and observing the output of the pirate
decoder. It is required that whenever the pirate can decrypt the ciphertext,
the tracer should be able to trace back one of the traitors.

1.1 Non-Black-Box Tracing vs. General Black Box Tracing

The general black box tracing is evidently the most desired model as it covers all
the possible strategies of the pirate. However, all the schemes in this model are
still quite impractical. The most efficient black box traitor tracing are code based
schemes [15,2,8,17]. However, the main weakness of code based schemes is that
the user’s secret key is long (at least O(t2 log N) where t, N are the number of
traitors and of users in the system) and thus it cannot be highly protected as one
cannot put a long key in a tamper-resistant memory in a smart-card. Moreover,
the leakage of some small part of the key can be efficiently used in the attack as
shown in Pirates 2.0 [3]. Therefore, these schemes are still far to be applicable
in practice. Algebraic schemes achieve the general black box tracing [6,16,9,10] in
inefficient ways: either the tracing algorithm is of exponential time complexity
[6,16], or the ciphertext size is still large (i.e., O(

√
N)) and the constructions

make use of bilinear maps in groups of composite order [9,10]. These two last
schemes are very interesting in the sense that they can deal with full collusion.

While it seems a very difficult and challenging problem to achieve a practical
general black box tracing, it’s of practical interest in considering the weaker mod-
els of the non-black-box tracing and the single-key black box tracing. Moreover,
these models are also very practical, there are many scenarios that these models
are suitable, as also discussed in [19,14].
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Let us explain some details in the context of pay-TV. In the majority of
the existing systems, each user has been provided a Set-Top box (STB) and a
smartcard. The secret key of the user is stored in the smartcard which has the role
of decrypting the session key for every crypto-period (between 2 and 10 seconds),
this session key is then transmitted to the STB for decrypting the content. The
pirate always wants to minimize the cost of distribution of his solution and in
practice, he really wants to try to produce new pirate smartcard to be used
in already deployed STBs. It is thus necessary that these pirate smartcard are
compatible with the STBs in the fields (including the legitimate STBs). As a
consequence, the smartcard should preserve the functionality of the legitimate
smartcard and it has to embed a pirate but valid key in the memory. It is often
in reality that the authority can reverse this key in the memory of the pirate
smartcard and the scenario exactly falls in the non-black-box tracing model.
Even if the tracer cannot reserve the memory of the pirate smartcard, we argue
that the single-key pirate tracing model is suitable. Indeed, in the modern CAS
(Conditional Access Systems), the session key is delivered at the last moment
so that there is only a small delay between the time the smartcard decrypts the
session key and the time the decoder receive the encrypted content. Therefore,
if the pirate card (which is evidently cannot more performant than a legitimate
smartcard) always try to decrypt the session key with different, say two, keys,
it will fails to decrypt the content in time and will give the STB the session key
after the encrypted content arrive for that crypto-period. One could wonder what
happens if the pirate decoder only try to detect the presence of tracing algorithm
from time to time. Fortunately, the single-key black box tracing algorithms, as
in Boneh-Franklin schemes and in our scheme, only need to ask just one query
and the decoder is resettable in practice, this strategy of pirate does not work.
All in all, we would like to argue that the non-black-box tracing model and the
single-key black box tracing model, though much weaker than the general black
box tracing model and cannot thus cover all the strategies of the pirate, are
still very practical. In fact, there are quite a lot of interesting works that only
concentrate on these models, namely [19,14,1].

In a theoretical point of view, it’s also a very interesting problem to consider
non-black-box tracing because there is still no optimal solution, far from that, in
spite of many efforts. Indeed, the Boneh-Fraklin is efficient with respect to the
non-black-box tracing and single-key black box tracing but its ciphertext size
is still linear in the number of traitors. The Tonien-Safavi scheme [19] and the
Junod-Karlov-Lenstra sheme [14] managed to improve the tracing algorithm but
the ciphertext size is always linear in the number of traitors. A side effect of this
high ciphertext size in the number of traitors is that these schemes cannot be used
with full collusion because in this later case, these schemes are worse than the
trivial scheme of assigning each user an independent key. Agrawal et. al. [1] go one
step further by achieving an intermediate level between bounded tracing (when
one assumes a maxmixum t number of traitors) and full collusion: they allow the
pirate to collect up to t keys and get some bounded partial information about the
others keys. We notice that the authors in [1] only considers the non-black-box
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tracing model and therefore a full collusion resistant scheme in the non-black-
box tracing model satisfies immediately their security notion proposed. All in
all, there is still an important gap between the efficiency of all these schemes
and an optimal solution: the ciphertext size depends on the number of traitors
and none of them can deal with full collusion. Our objective is to close this gap.

1.2 Our Contributions

We consider the non-black-box tracing and the single-key black box tracing mod-
els for which we propose an optimal scheme in the sense that all the parameters
including private key size, public key size, ciphertext size, encryption and de-
cryption time complexity are constant. In addition, our scheme also achieves
two interesting properties of a public key traitor tracing scheme: it is fully collu-
sion resistant and dynamic where there is no need to update any parameter when
a user joins the system. We also highly improve the time complexity in tracing al-
gorithms, in particular we achieve O(1)−time non-black-box tracing. Regarding
the single-key black box tracing, we consider both the full access model (where
the decoder pirate has to return the correct message for any valid ciphertext)
and the minimal access model (where the pirate decoder only needs to return
a single bit signifying whether the ciphertext is valid or not). We then design a
O(log N)−time full access single-key black box tracing and a O(N)−time mini-
mal access single-key black box tracing.

The detailed comparison between our scheme and other schemes is given in
the full version of this paper [18]. We notice that our scheme is the only scheme
that allows minimal access single-key black box tracing.

The main weakness in our scheme is that the security for the tracing problem
is based on a type of q-assumption. However, we notice that these types of
assumptions have been widely used in security proofs, for example in [4,5], [7,11].
We also prove that the proposed assumptions hold in the generic group.

2 Preliminaries

2.1 Traitor Tracing Scheme

We refine the definition of a non-black-box public key traitor tracing scheme
from [6]. Formally, a non-black-box public key traitor tracing encryption scheme
is made up of the following algorithms:

Setup(λ): Takes as input the security parameter λ, it returns a master key msk
and a public key mpk.

Joint(i, msk): Takes as inputs a user’s index i, together with the master key,
and outputs a user’s secret key ski.

Encrypt(M, mpk): Takes as inputs a message M , together with the public key,
and outputs a ciphertext C.

Decrypt(ski, mpk, C): Takes as inputs a secret key ski, public key, and a ci-
phertext C, outputs the corresponding message M .
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Trace(D, sk∗, tracing − key)→ i: Takes as input the public key mpk, the
tracing − key, a pirate decoder D and some valid secret key sk∗ embedded
in D and outputs an index i corresponding to an accused traitor.

When the knowledge of the tracer about the pirate decoder is more restricted,
one can get the stronger following notions, which were discussed in [6]:

– in the single-key black box tracing model, the tracing algorithm only takes
as inputs the public key mpk, the tracing − key, and interact with a pirate
decoder D with the assumption that the pirate decoder only embed a single
valid key sk∗.

– in the general black box tracing model, there is no any assumption on the
pirate decoder and the tracer can only interact with it. It is however re-
quired that D can decrypt the well-form ciphertexts with a non-negligible
probability because otherwise the pirate decoder is useless.

For correctness, we require that for all i ∈ N, if (msk, mpk) ← Setup(λ),
ski ← Joint(i, msk) and C ← Encrypt(M, mpk) then one should get M =
Decrypt(ski, C).

The security of the scheme is defined in terms of two properties: semantic
security and tracing security.

Semantic security. The standard notion of semantic security requires that, for
any PPT A, we have |Pr[A wins]− 1/2| is negligible in the following game:

– In the setup phase, the challenger runs Setup(λ) algorithm to get a master
key msk and a public key mpk. It then gives mpk to A.

– In the challenge phase, A outputs two messages M0, M1. The challenger then
chooses a bit b ∈ {0, 1} at random, sets C ← Encrypt(Mb, mpk), and gives
C to A.

– In the guess phase, the attacker A outputs a bit b′. We say A wins if b′ = b.

non-black-box tracing security. We say that a secret key sk is a valid secret key
iff there exists some message M in message-domain such that if C = Encrypt
(M, mpk) then one should get M = Decrypt(sk, C) with probability at least 1

2 .
We say that non-black-box tracing security holds if, for any PPT A, we have

|Pr[challenger wins]− 1/2| is considerable in the following game:

– In the setup phase, the challenger runs Setup(λ) algorithm to get a master
key msk and a public key mpk. It then gives mpk to A.

– In the query phase, A may adaptively ask corrupt query for user index i and
gets ski.

– At some point A outputs some sk∗ and a pirate decoder D in which sk∗

is embedded in. The challenger then runs Trace(D, sk∗, tracing − key) → i.
We say that the challenger wins if the secret key sk∗ is a valid secret key
and the traced index i is in the set of corrupted indexes.



Optimal Public Key Traitor Tracing Scheme in Non-Black Box Model 145

In the single-key black box tracing security, A only outputs a decoder D in which
only sk∗, mpk are embedded in it. In the general black box tracing security, A
only outputs a decoder D with a requirement that D can decrypt the well-
form ciphertexts with a non-negligible probability because otherwise the pirate
decoder is useless.

Full access black box tracing vs Minimal access black box tracing. These two
types of models are discussed in [6].

1. In the full access black box tracing model, the tracer can query the pirate de-
coder on a ciphertext C, if C is a well-form ciphertext, he will always receive
the corresponding plantext M . Otherwise, the pirate decoder can return an
arbitrary output (it can return a signal indicating that the ciphertext C is
invalid or can maliciously choose a random message M ′ and return M ′).

2. In the minimal access black box tracing model, the tracer queries the pirate
decoder on a pair (C, M) and only receives a signal: valid if the ciphertex C
is a valid encryption of M , invalid if not.

Dynamic public key traitor tracing scheme. We adapt the definition of a dynamic
broadcast encryption in [13] for a public key traitor tracing scheme, note that
our definition is in the strongest sense because it requires no any update in the
parameters of the systems. Indeed:

1. the system setup as well as the ciphertext size are fully independent from
the number of users in the system. The number of users in the system is
flexible,

2. a new user can join the system at anytime without implying a modification
of preexisting user decryption keys and of the encryption key.

2.2 Bilinear Maps

Our scheme employs bilinear maps and related assumptions, which we now recall.
Let G and GT denote two finite multiplicative abelian groups of large prime

order p > 2λ where λ is the security parameter. Let g be a generator of G. We
assume that there exists an admissible bilinear map e : G × G → GT , meaning
that for all a, b ∈ Zp

(1) e(ga, gb) = e(g, g)ab,
(2) e(ga, gb) = 1 iff a = 0 or b = 0,
(3) e(ga, gb) is efficiently computable.

(p,G,GT , e(·, ·)) is then called a bilinear map group system. We now recall the
generalization of the Diffie-Hellman exponent assumption in [5] on bilinear map
group system.

Let (p,G,GT , e(·, ·)) a bilinear map group system and g ∈ G be a generator
of G, and set gT = e(g, g) ∈ GT . Let s, n be positive integers and P, Q ∈
Fp[X1, . . . , Xn]s be two s-tuples of n-variate polynomials over Fp. Thus, P and
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Q are just two lists containing s multivariate polynomials each. We write P =
(p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs) and impose that p1 = q1 = 1. For any
function h : Fp → Ω and vector (x1, . . . , xn) ∈ Fn

p , h(P (x1, . . . , xn)) stands
for (h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))) ∈ Ωs. We use a similar notation
for the s-tuple Q. Let f ∈ Fp[X1, . . . , Xn]. It is said that f depends on (P, Q),
which denotes f ∈ 〈P, Q〉, when there exists a linear decomposition

f =
∑

1≤i,j≤s

ai,j · pi · pj +
∑

1≤i≤s

bi · qi, ai,j , bi ∈ Zp

Let P, Q be as above and f ∈ Fp[X1, . . . , Xn]. The (P, Q, f)− GDDHE problem
is defined as follows.

Definition 1. ((P, Q, f)− GDDHE) [5].
Given H(x1, . . . , xn) ∈ Gs × Gs

T as above and T ∈ GT decide whether T =
g

f(x1,...,xn)
T .

The (P, Q, f)− GDDHE assumption says that it is hard to solve the (P, Q, f)−
GDDHE problem if f is independent of (P, Q). In this paper, we will prove our
scheme is semantically secure under this assumption.

3 Construction

Let (p,G,GT , e(·, ·)) a bilinear map group system and g ∈ G be a generator of
G, our scheme is constructed as follows:

Setup(λ). The algorithm chooses e1, e2, v
$← Zp then sets d1 = e−1

1 , d2 = e−1
2

The master key msk is (e1, e2, v). The system public keys mpk is:

(gd1 , e(g, g)d2, gd1·d2, e(g, g), e(g, g)v, e(g, g)d2·v)

Joint(i, msk). For each user i chooses ai
$← Zp such that ai �= −1,−v, d2 − 1.

The secret key for user i is set as: Ai = ge1(ai+v), Bi = 1
(ai+1) − e2. We call

the secret keys in the case ai = −v or ai = d2 − 1 are special keys. The
users in the system can be assigned to all secret keys in the secret key space
except these special keys. Note that the special key, in the case ai = −v, is
not useful for decryption.

Encrypt(M, mpk). Encryptor picks a random k in Zp, then computes:

C1 = gd1·k, C2 = e(g, g)d2·k, C3 = gd1·d2·k,

C4 = e(g, g)k·v, C5 = e(g, g)d2·k·v, C6 = e(g, g)−k ·M
Finally, outputs C = (C1, C2, C3, C4, C5, C6).
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Decrypt(Ai, Bi, C). User i′th first computes:

e(Ai, C1)

C4
· CBi−1

2 · (e(Ai, C3)

C5
)Bi =

e(ge1(ai+v), gd1·k)

e(g, g)k·v · e(g, g)
d2·k·( 1

(ai+1)−e2−1)·

·
(

e(ge1(ai+v), gd1·d2·k)

e(g, g)d2·k·v

) 1
(ai+1)−e2

=

= e(g, g)k·ai ·e(g, g)
d2·k

(ai+1) ·e(g, g)−k ·e(g, g)−d2·k ·e(g, g)
k·ai·( d2

(ai+1)−1)
= e(g, g)−k.

then outputs M = C6/e(g, g)−k.

Intuition about our construction. In the decryption, we emphasize that the cru-
cial element is (e(Ai,C3)

C5
)Bi . We remark that, though a pirate can perform a

linear combination on the elements Ai in his collected keys, there is no way for
the pirate to exploit the combination of his keys to do a linear combination for
the elements ( e(Ai,C3)

C5
) because C5 is changed for each encryption. Therefore

the well-known pirate’s strategy of making a linear combination on the collected
keys do not work for our scheme. The next section is devoted for formal analysis
of security.

4 Security

Definition 2 (GDDHE1 Assumption). The (t, ε)−GDDHE1 assumption says
that for any t-time adversary A that is given input = (g, gx, gy, gxy, gkx, gky, gkxy)
cannot distinguish between a value e(g, g)k ∈ GT or a random value T ∈ GT ,
where x, y, k ∈ Zp, g ∈ G, with advantage greater than ε:

AdvGDDHE1(A) =
∣∣∣∣Pr[A(input, e(g, g)k) = 1]
−Pr[A(input, T ) = 1]

∣∣∣∣ ≤ ε.

It is not hard to see that GDDHE1 assumption is a special case of (P, Q, f) −
GDDHE assumption. Indeed, we set P = (p1 = 1, p2 = X, p3 = Y, p4 = XY,
p5 = KX, p6 = KY, p7 = KXY ), Q = (q1 = 1), f = K. Suppose that f is not
independent to 〈P, Q〉, i.e., one can find a8 �= 0 such that the following equation
holds for all X, Y, K ∈ Zp

a8f =
∑

1≤i,j≤7

ai,j ·pi·pj+b1·q1

⇐⇒ a8K = (KX+KY +KXY )(a1+a2X+a3Y +a4XY +a5KX+a6KY +a7KXY )

⇐⇒ a8 = (X+Y +XY )(a1+a2X+a3Y +a4XY +a5KX+a6KY +a7KXY )

⇐⇒ (X+Y +XY )(a1+a2X +a3Y +a4XY +a5KX +a6KY +a7KXY )−a8 = 0

This implies that the constant term a8 = 0 which is a contradiction with the
requirement that a8 �= 0. Therefore, f is independent to 〈P, Q〉.
Theorem 1. Under the GDDHE1 assumption, our scheme is semantically
secure.
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Proof. Assume that there exists an adversary B who is successful in breaking
the semantic security of our scheme, we prove that there also exists an adversary
A which attacks the GDDHE1 assumption with the same advantage.

We show that A can simulate the interaction with B and then use the output
of B to break the GDDHE1 assumption as follow:

In the setup, A receives the inputs from his challenger:

(g, gx, gy, gxy, gkx, gky, gkxy, T )

and needs to distinguish T is either e(g, g)k or a random value in GT .
In the next step, A provides the inputs for B as follow:
He chooses randomly z ∈ Zp, implicitly sets d1 = zy, d2 = x, v = y, then

computes the public key:

gd1 = (gy)z, e(g, g)d2 = e(g, gx), gd1·d2 = (gxy)z, e(g, g), e(g, g)v = e(g, gy),

e(g, g)d2·v = e(g, gxy)

In the challenge phase, B outputs two messages M0 and M1. A chooses randomly
a bit b ∈ {0, 1} then computes the challenge ciphertext as follow:

C1 = (gky)z = gd1·k, C2 = e(g, gkx) = e(g, g)d2·k, C3 = (gkxy)z = gd1·d2·k,
C4 = e(g, gky) = e(g, g)k·v, C5 = e(g, gkxy) = e(g, g)d2·k·v, C6 = 1

T ·Mb

then gives it to B.
B outputs its guess b′ for b. If b′ = b the algorithm A outputs 0 (indicating

that T = e(g, g)k). Otherwise, it outputs 1 (indicating that T is random in GT ).
As the simulation of A is perfect, A can thus break GDDHE1 assumption with

the same advantage that B can break the semantic security.

5 Traitor Tracing

5.1 Non-Black-Box Tracing

Definition 3 (GDDHE2 Assumption). The (t, ε)−GDDHE2 assumption says
that for any t-time adversary A that is given (b1, . . . , bl, input) in which b1, . . . , bl

are random in Zp and �= 0,

input =
(

gd1 , gd1d2 , g
1

d1 , g
d2−b1d2−1
d1(b1d2+1) , . . . , g

d2−bld2−1
d1(bld2+1)

)

its probability to output a value g
d2
d1 ∈ G, where d1, d2 ∈ Zp, g ∈ G, is

bounded by ε:

SuccGDDHE2(A) = Pr[A(b1, . . . , bl, input) = g
d2
d1 ] ≤ ε.

We show that this assumption holds in the generic group, the details can be
found in the full version of this paper [18]. Next, we recall the definition of
Modified−l − SDH assumption from [11].
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Definition 4 (Modified−l− SDH Assumption).
Given g, gα ∈ G and l − 1 pairs 〈wj , g

1/(α+wj)〉 ∈ Zp × G for a fixed parameter
l ∈ N.

Output another pair 〈w, g1/(α+w)〉 ∈ Zp ×G.

Theorem 2. Under the GDDHE2 assumption and Modified−l − SDH assump-
tion, our scheme is secure in the non-black-box tracing model.

Proof. It is sufficient for us to show that the collusion of any number of traitors
cannot derive a new valid secret key. Then, the proof is automatically followed
since at least a traitor’s key must be embedded in the pirate decoder and when
the tracer reverse this key, the identity of the corresponding traitor is revealed.

To prove that the collusion of any number of traitors cannot derive a new valid
secret key, we first prove that they cannot derive a special key A, B in which
a = d2 − 1, we then prove that they also cannot derive any new valid secret key
that differs from this special key.

Lemma 1. Under the GDDHE2 assumption, the collusion of any number of
traitors cannot derive a special key A, B in which a = d2 − 1.

Proof. Assume that there is an adversary B which takes as inputs l traitors’
keys, for any number l, the system public key, and successfully derive a special
key A, B in which a = d2 − 1. We construct an algorithm A which can simulate
the interaction with B and then use the output of B to break the GDDHE2

assumption as follow:
In the setup, A receives the inputs from his challenger:

b1, . . . , bl, g
d1 , gd1d2 , g

1
d1 , g

d2−b1d2−1
d1(b1d2+1) , . . . , g

d2−bld2−1
d1(bld2+1)

And needs to output the value g
d2
d1 .

In the next step, A first chooses randomly v ∈ Zp, then provides the inputs
for B as follow:

– A provides a secret key Ai, Bi, i = 1, . . . , l for B by setting Bi = bi =
1

ai+1 − e2, therefore implicitly ai = d2−bid2−1
(bid2+1) , then computes

Ai = g
d2−bid2−1
d1(bid2+1) · g v

d1 = g
ai
d1 · g v

d1 = ge1(ai+v)

where e1 = d−1
1 , e2 = d−1

2 . Note that because bi, d1, d2, v are randomly chosen
in Zp, the resulted secret key is also chosen in the same distribution as in
the joint algorithm.

– For the public key, A computes:

gd1 , e(g, g)d2 = e(gd1d2 , g
1

d1 ), gd1d2 , e(g, g) = e(gd1, g
1

d1 ), e(g, g)v,

e(g, g)v·d2 = e(gd1d2 , g
v

d1 )
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When B outputs the special secret key A, B in which a = d2 − 1

A = ge1(d2+v−1), B = 0

then A outputs
A · g 1

d1

g
v

d1
= g

d2
d1

As a result, the probability that the collusion of any number of traitors can
derive a special key A, B in which a = d2− 1 is the same as the probability that
a t-time adversary A who breaks the security of the GDDHE2 assumption.

Lemma 2. Under the Modified−l−SDH assumption, the collusion of any num-
ber of traitors cannot derive any new valid secret key that differs from the special
key above.

Proof. Assume that there is an adversary B which takes as inputs l− 2 traitors’
keys, for any number l, the system public key, and successfully derive a new valid
secret key which is different from these l − 2 traitors’ keys and the special key
above. We construct an algorithm A which can simulate the interaction with
B and then use the output of B to break the Modified−l − SDH assumption as
follow:

In the setup, A receives the inputs from his challenger:

(w1, . . . , wl−1, g, gα, g
1

α+w1 , . . . , g
1

α+wl−1 )

In the next step, A provides the inputs for B as follow:
He first chooses randomly e1, v ∈ Zp, then implicitly sets e2 = α + w1 thus

g
1

α+w1 = g
1

e2 = gd2 . A can easily compute the system public keys and gives them
to B.

To compute Ai, Bi, i = 2, . . . , l − 1, A sets Bi = 1
ai+1 − e2 = wi − w1 thus

ai = 1
e2+wi−w1

− 1 and

Ai = (g
1

α+wi )e1 · ge1(v−1) = g
e1(

1
e2+wi−w1

+v−1) = ge1(ai+v)

Note that α = e2 − w1.
When B outputs a new secret key

A = ge1(a+v), B =
1

(a + 1)
− e2

where a �= −1, d2−1, a2, . . . , al−1, then A outputs w = B +w1 = 1
(a+1) −e2 +w1

thus a = 1
e2+w−w1

− 1, and

g
1

α+w = (
A

ge1(v−1)
)

1
e1 =

ga+v

gv−1
= ga+1 = g

1
e2+w−w1

−1+1 = g
1

e2+w−w1 = g
1

α+w

Note that a �= −1, d2 − 1, a2, . . . , al−1 thus w �= w1, . . . , wl−1.
As the simulation of A is perfect, A can thus break Modified−l − SDH as-

sumption with the same advantage that B can successfully derive a new valid
secret key.
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5.2 Single-Key Black Box Tracing

Definition 5 (GDDHE3 Assumption). The (t, ε)−GDDHE3 assumption says
that for any t-time adversary A that is given a pair (b, input) in which b �= 0 is
random in Zp and

input =
(
g, gd1, gd1d2 , g

v
d1 , g

d2−bd2−1
d1(bd2+1) , gkd1 , gkd1d2 , e(g, g)d2, e(g, g)k

)
cannot distinguish between a value e(g, g)kd2 ∈ GT and a random value T ∈ GT ,
where d1, d2, v, k ∈ Zp, g ∈ G, with an advantage greater than ε:

AdvGDDHE3(A) =
∣∣∣∣Pr[A(b, input, e(g, g)kd2) = 1]
−Pr[A(b, input, T ) = 1]

∣∣∣∣ ≤ ε

We notice that, unlike the Modified−l−SDH assumption, this is a static assump-
tion. We show that this assumption holds in the generic group, the details can
be found in the full version of this paper [18].

Theorem 3. Under the GDDHE3 assumption, our scheme is secure in the
single-key black box tracing model.

Proof. We note that in the single-key black box tracing model, there are two
separate functions which are called the key-builder and the box-builder. In the
first one, the traitors will collude to derive a new valid secret key. In the second
one, one receives this new secret key and build a pirate decoder based on it.

In our proof we first prove that the pirate decoder takes as inputs a secret
key and the public key, cannot distinguish a probe ciphertext and a well-form
ciphertext, therefore it will run the decryption algorithm normally. Finally, we
present a tracing algorithm in which the tracer creates a probe ciphertext and
then queries the pirate decoder on this probe ciphertext. After the pirate decoder
outputs the answer, the tracer can identify the secret key that pirate decoder is
using to decrypt.

Assume that there is a pirates decoder B, on inputs a secret key and the public
key, can successfully distinguish a probe ciphertext and a well-form ciphertext.
We show that A can simulate the interaction with B and then use the output of
B to break the GDDHE3 assumption:

In the setup, A receives the inputs from his challenger:

b, g, gd1, gd1d2 , g
v

d1 , g
d2−bd2−1
d1(bd2+1) , gkd1 , gkd1d2 , e(g, g)d2, e(g, g)k, T

with b, d1, d2, v, k are randomly chosen in Zp, and needs to distinguish T is
e(g, g)kd2 or not.

In the next step, A provides the inputs for B as follow:

– A provides a secret key for B by setting B = b = 1
a+1−e2, therefore implicitly

a = d2−bd2−1
(bd2+1) , then computes

A = g
d2−bd2−1
d1(bd2+1) · g v

d1 = g
a

d1 · g v
d1 = ge1(a+v)
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where e1 = d−1
1 , e2 = d−1

2 . Note that because b, d1, d2, v are randomly chosen
in Zp, the resulted secret key is also chosen in the same distribution as in
the joint algorithm.

– For the public key, A computes:

gd1 , e(g, g)d2, gd1·d2 , e(g, g), e(g, g)v = e(gd1 , g
v

d1 ), e(g, g)v·d2 = e(gd1d2 , g
v

d1 )

A next chooses a random message M and uses T to compute the challenge
ciphertext and passes it to B:

gkd1 , T, gkd1d2 , e(g
v

d1 , gkd1), e(g
v

d1 , gkd1d2), e(g, g)−k ·M
In the guess phase, if B outputs 0 (indicating that this is well-form ciphertext)
then A outputs 0 (indicating that T is e(g, g)kd2), and otherwise if B outputs 1
(indicating that this is probe ciphertext) then A also outputs 1 (indicating that
T is a random element).

We also note that B can maliciously output a random message M ′ in the case
he knows the challenge ciphertext is a probe ciphertext, however A still knows
the right answer of B because he knows the real message M .

As the simulation of A is perfect, A can thus break GDDHE3 assumption with
the same advantage that B can successfully distinguish a probe ciphertext and
a well-form ciphertext. We can thus construct a single-key black box tracing
algorithm as follow:

Full Access Single-Key Black Box Tracing Algorithm: When a user j
joins the system, the tracer computes and stores the pair (j, e(g, g)Bj ) in
a sorted table Tab. The tracing algorithm then works as follow:
1. The tracer picks random k, r ∈ Zp then creates a probe ciphertext:

C1 = gkd1 , C2 = e(g, g)kd2+r, C3 = gkd1d2 , C4 = e(g, g)kv,

C5 = e(g, g)kvd2 , C6 = M ′

2. Assume the decryption key Ai, Bi is embedded in the pirate decoder.
Then the tracer queries the pirate decoder on this probe ciphertext. The
pirate decoder will compute:

K =
e(Ai, C1)

C4
·CBi−1

2 ·(e(Ai, C3)

C5
)Bi = e(g, g)

kd2ai
ai+1 ·e(g, g)

(kd2+r)( 1
ai+1− 1

d2
−1)

= e(g, g)−k · e(g, g)r(Bi−1)

Then outputs:
C6/K

3. The tracer first recovers K then computes e(g, g)Bi since it knows k, r.
Then the tracer simply verifies if the element e(g, g)Bi is in the table
Tab and eventually outputs the traitor. It is easy to see that our tracing
algorithm never accuses any innocent user and the time complexity of
our tracing security is O(log N). We also notice that, in our system, N
is the effective number of the actual users in the system.
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Minimal Access Single-key Black Box Tracing Algorithm: In the setup
phase, the tracer picks random k, r ∈ Zp and a message M , then creates:

C1 = gkd1 , C2 = e(g, g)kd2+r, C3 = gkd1d2 , C4 = e(g, g)kv, C5 = e(g, g)kvd2

and store these values in a table Tab.
When a user j joins the system, the tracer computes

C6,j = e(g, g)−k · e(g, g)r(Bj−1) ·M
and stores the pair (j, C6,j) in the table Tab.
The tracing algorithm then works as follow:
1. For each user’s indices j, the tracer queries the pirate decoder on a pair

(C = (C1, C2, C3, C4, C5, C6,j), M)

2. Assume the decryption key Ai, Bi is embedded in the pirate decoder.
The pirate decoder will compute:

K =
e(Ai, C1)

C4
·CBi−1

2 ·(e(Ai, C3)

C5
)Bi = e(g, g)

kd2ai
ai+1 ·e(g, g)

(kd2+r)( 1
ai+1− 1

d2
−1)

= e(g, g)−k · e(g, g)r(Bi−1)

Then computes:
M ′ = C6,j/K

3. At user’s indices j, if the tracer receives a signal valid which indicates
that C is a valid encryption of M , then the tracer outputs user’s indices
j is a traitor. It is easy to see that our tracing algorithm never accuses
any innocent user and the time complexity of our tracing security is
O(N). We also notice that, in our system, N is the effective number of
the actual users in the system.

6 Conclusion

In this paper, we restrict ourselves to the non-black-box tracing and the single-
key black box tracing models and proposed an optimal and practical scheme
in these models. As far as we know, this is the first practical fully collusion
resistant traitor tracing scheme. However the most important open problem in
traitor tracing remains the construction of a practical fully collusion resistant
traitor tracing scheme in the general black box tracing model. The schemes in
[2,8] has constant ciphertext size but when considering the full collusion, the
secret key size of user is O(N2) which is impractical. The most relevant schemes
in [9] and in [10] still have large ciphertext size of O(

√
N) and require the use of

bilinear maps in groups of composite order. We also recall that, non-black-box
tracing and the single- key black box tracing models deal with pirates who are
required to implement a key that has the form of the keys distributed to the
users (this consideration is justified and discussed in the introduction) and do
not consider pirates who can produce new form of key that can help to decrypt
ciphertexts. One of the promising direction is to consider a model between the
single-key black box tracing and the general black box tracing model in which
one can still achieve a practical scheme.
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Abstract. This paper presents first results of the Networking and Cryp-
tography library (NaCl) on the 8-bit AVR family of microcontrollers. We
show that NaCl, which has so far been optimized mainly for different
desktop and server platforms, is feasible on resource-constrained devices
while being very fast and memory efficient. Our implementation shows
that encryption using Salsa20 requires 268 cycles/byte, authentication
using Poly1305 needs 195 cycles/byte, a Curve25519 scalar multiplication
needs 22 791 579 cycles, signing of data using Ed25519 needs 23 216 241
cycles, and verification can be done within 32 634 713 cycles. All imple-
mented primitives provide at least 128-bit security, run in constant time,
do not use secret-data-dependent branch conditions, and are open to the
public domain (no usage restrictions).

Keywords: Elliptic-curve cryptography, Edwards curves, Curve25519,
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1 Introduction

This paper describes implementations of the Networking and Cryptography li-
brary (NaCl) [4] on 8-bit AVR microcontrollers. More specifically, we describe
two different approaches, one aiming at higher speed, one aiming at smaller
memory requirements, of porting NaCl to the AVR ATmega family of microcon-
trollers. The aim of the high-speed implementation is not to achieve the highest
possible speed at all (memory-)costs for all primitives. Similarly, the aim of
the low-memory implementation is not to obtain the smallest possible footprint
without any performance considerations. The two implementations are rather
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two example tradeoffs between speed and memory footprint that we consider
reasonable and useful for various applications and different microcontrollers in
the ATmega family.

Previous NaCl optimization focused on large general-purpose server and desk-
top CPUs; the “smallest” architecture targeted by previous NaCl optimization
is ARMv7 CPUs with the NEON vector-instruction set [10]. Despite this focus
on large processors, the NaCl designers claim in [4, Section 4] that

“all of the cryptographic primitives in NaCl can fit onto much smaller
CPUs: there are no requirements for large tables or complicated code”

This paper shows that this claim is actually correct.
The cryptographic primitives used by default in NaCl to provide public-key

authenticated encryption are the Curve25519 elliptic-curve Diffie-Hellman key-
exchange protocol [2], the Poly1305 authenticator [5], and the Salsa20 stream
cipher [3]. The designers of NaCl announced, that the next release of NaCl will
use the Ed25519 elliptic-curve signature scheme [7,8] to provide cryptographic
signatures. This signature scheme—as described in the original paper and as
implemented in this paper—uses the SHA-512 hash function [28].

We will put all software described in this paper into the public domain to
maximize reusability of our results1. We will furthermore discuss possibilities
for public benchmarking with the editors of eBACS [9] and XBX [35]. Currently
eBACS does not support benchmarking on AVR microcontrollers; XBX only
supports benchmarking of hash functions.

Main contribution. There exists an extensive literature describing implemen-
tations of cryptographic primitives on AVR microcontrollers and other embed-
ded processors. Some of them have been integrated into libraries that offer a set
of cryptographic functionalities, e.g., AVR-Crypto-Lib [15], TinyECC[24], Na-
noECC [32], or the AVR Cryptolibrary from Efton s.r.o. [13]. These libraries are
specifically tailored to match the specific restricted environment of the AVR.

This paper is the first to describe implementations of the entire NaCl library
on AVR microcontrollers. These include the cryptographic primitives Salsa20 [3],
Poly1305 [5], Curve25519 [2], and Ed25519 [8]. All primitives are based—in con-
trast to existing AVR libraries—on at least 128-bit security and provide new
speed records for that level of security. In addition, all functions run in con-
stant time and do not contain secret-data-dependent branch conditions. This is
important to provide a certain level of security against basic implementation at-
tacks [22,25]. In particular the implementation is protected against remote side-
channel attacks. Other cryptographic libraries for AVR do not address this issue.
Moreover, the entire library is very small in size and requires only 17366 bytes
of code, no static RAM, and less than 1350 bytes of stack memory; it therefore
fits into very resource-constrained devices such as the very small ATmega family
of microcontrollers, e.g., the ATmega32, ATmega328, and ATmega324A. Last
but not least, we present new speed records for Salsa20 on AVRs and give first

1 The software is available online at http://cryptojedi.org/crypto/#avrnacl

http://cryptojedi.org/crypto/#avrnacl
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results of scalar multiplication for Curve25519 and signing and verifying using
Ed25519 on AVR.

Roadmap. The paper is organized as follows. In Section 2, we briefly describe
the AVR family of microcontrollers. Section 3 describes the NaCl library and
the general approach to porting it to AVR. In Section 4, we describe the imple-
mentation of Salsa20. In Section 5, we describe the implementation of Poly1305.
Section 6 presents the implementations of Curve25519 and Ed25519 (including
SHA-512). Results, a comparison with previous work, and a discussion are given
in Section 7.

2 The 8-Bit Family of AVR Microcontrollers

Atmel offers a wide range of 8-bit microcontrollers that can be mainly sepa-
rated into three groups. High-end devices with high performance (ATxmega),
mid-range devices featuring most functionality needed for the majority of ap-
plications (ATmega), and low-end devices with limited memory and processing
power (ATtiny). Typical use cases of those devices are embedded systems such
as motor control, sensor nodes, smart cards, networking, metering, medical ap-
plications, etc.

All those devices process data on 8-bit words. There are 32 general-purpose
registers available, R0-R31, which can be freely used by implementations. Some
of them have special features like R26-R31, which are register pairs used to
address 16-bit addresses in SRAM, i.e., X (R27:R26), Y (R29:R28), and Z
(R31:R30). Some of those registers (R0-R15) can also only be accessed by a
limited set of instructions (in fact only those that do not have an immediate
value as one operand).

The instruction set offers up to 90 instructions which are equal for all AVR
devices. For devices with more memory or enhanced cores, it is extended by more
than 30 additional instructions. The most important instruction for (public-key)
cryptography is multiplication. It is not available for minimal cores such as the
ATtiny or AT90Sxxxx family. But for enhanced cores like most of the ATmega
and also all ATxmega cores, it allows (signed or unsigned) multiplication of two
8-bit words within two clock cycles. The 16-bit result of the multiplication is
always stored in the register pair R1:R0. The software described in this paper
makes use of these multipliers and does therefore not support the low-end ATtiny
and AT90Sxxxx devices.

ATmega example configurations. We perform all benchmarks on an AT-
mega2560 which has a maximal clock frequency of 16MHz, a flash storage of
256KB and 8 KB of RAM. Other typical configurations of ATmega microcon-
trollers are, for example, the ATmega128 with a maximal clock frequency of
16MHz, 128KB of flash storage and 4KB of RAM and the ATmega328 with a
maximal clock frequency of 20MHz, 32KB of flash storage and 2KB of RAM.

Radix-28 representation. The typical representation of integers of size larger
than 8 bits on an 8-bit architecture is to split integers into byte arrays using
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radix 28. In other words, an m-bit integer x is represented as n = �m/8� bytes
(x0, x1, . . . , xn−1) such that x =

∑n
i=0 xi28∗i. We use this representation for all

integers and elements of finite fields.

3 The NaCl Library

The Networking and Cryptography library (short: NaCl; pronounced: “salt”) is a
cryptographic library for securing Internet communication [4]. It was developed
as one deliverable of the project CACE (Computer Aided Cryptography Engi-
neering) funded by the European Commission. After CACE ended in December
2010, development of NaCl continued within the VAMPIRE virtual lab [23] of
the European Network of Excellence in Cryptology, ECRYPT II [12]. The main
features of the library are the following:

Easy usability. The library provides a high-level API for public-key authen-
ticated encryption through one function call to crypto box. The receiver of
the message verifies the authentication and recovers the message through
one function call to crypto box open. A pair of a public and a private key
is generated through cryto box keypair. A similarly easy-to-use API is of-
fered for cryptographic signatures: A function call to crypto sign signs a
message, crypto sign open verifies the signature and recovers the message,
crypto sign keypair generates a keypair for use with this signature scheme.
Implementors of information-security systems obtain high-security crypto-
graphic protection without having to bother with the details of the underly-
ing primitives and parameters. Those are chosen by the NaCl
designers.

High security. The key sizes are chosen such that the security level of the
primitives is at least 128 bits. Furthermore, NaCl is the only cryptographic
library that systematically protects against timing attacks by avoiding loads
from addresses that depend on secret data and avoiding branch conditions
that depend on secret data. For further security features of NaCl see the
extensive discussion in [4, Section 3].

High speed. The cryptographic primitives chosen for NaCl allow very fast
implementations on a large variety of architectures.

No usage restrictions. The library is free of copyright restrictions. It is in the
public domain. Furthermore the library avoids all patents that the authors are
aware of. NaCl is free for download at http://nacl.cr.yp.to/.

3.1 Porting NaCl to AVRs

Reusing code. Porting a whole cryptographic library to a memory-restricted
and storage-restricted environment such as AVR microcontrollers is different
from porting each primitive in the library separately. To minimize code size we
can use some functionalities (such as big-integer arithmetic) in multiple prim-
itives. Sometimes this requires optimizing algorithm choices across primitives.

http://nacl.cr.yp.to/
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For example, the Poly1305 authenticator described in Section 5 needs multi-
plication of 130-bit numbers; the Curve25519 key-exchange and Ed25519 sig-
natures described in Section 6 need fast multiplication of 256-bit (or at least
255-bit) numbers. With the Karatsuba technique [20] we decompose the 256-
bit (32 × 32-byte) multiplication into two 16× 16-byte multiplications and one
17×17-byte multiplication. The latter one can directly be used for the Poly1305
authenticator.

Secret load addresses. On all architectures targeted in previous NaCl op-
timization, loading data from an address that depends on secret data causes
timing variation that can be used by an attacker to mount a timing attack.
The reason is that memory access on all these architectures uses a hierarchy of
transparent caches; the time required for a load operation depends on whether
the requested data is in cache (cache hit) or not (cache miss). Memory access
on the AVR microcontroller is not cached, it takes a constant amount of time.
Loading data from a secret position on an AVR will not leak timing information.
Avoiding loads from secret positions incurs performance penalties, we therefore
decided to not avoid loads from secret addresses on the AVR.

Secret branch conditions. Conditional branches are an even more obvious
source for timing variation than data loads. Even if both possible branches take
the same amount of time to execute, branch conditions that depend on secret
data will leak timing information on most architectures. The reason is that
most processors use branch-prediction techniques to avoid pipeline stalls. If a
branch is predicted correctly, the branch will incur only a small or no penalty;
a mispredicted branch typically takes much more time.

AVR microcontrollers do not use any branch-prediction techniques so in prin-
ciple one can write software that does use secret branch conditions and still runs
in constant time. However, it is very tedious to review such code for constant-
time behavior and the performance benefits are relatively small. We therefore
follow the strategy of all other NaCl optimizations and avoid all data flow from
secret data to branch conditions.

Randomness generation. NaCl uses the operating-system’s random-number
generator and reads random bytes from /dev/urandom (see [4, Section 3, “Cen-
tralizing randomness”]). This is not possible on the AVR microcontroller. Our
implementation of NaCl does not contain any cryptographically secure random-
ness generator. To test the key-generation functions that require randomness
we used the deterministic randombytes function from the try-anything pro-
gram of the SUPERCOP benchmarking suite. There are two different ways to
address randomness generation on the AVR: One can use NaCl in a way that
does not require randomness by computing key pairs on an external device and
transferring them to the AVR. In NaCl, all operations except key-generation are
deterministic. See [4, Section 3, “Avoiding unnecessary randomness”].

If one needs to generate keys on an AVR microcontroller it is necessary to
include cryptographically secure randomness generation. One possible source of
randomness is, for example, the jitter of the RC oscillator as described in [18].
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Message lengths. In the C interface of NaCl, message lengths are passed as 64-
bit unsigned integers (datatype unsigned long long). Addresses on the AVR
ATmega microcontrollers have only 16 bits; we therefore omit expensive arith-
metic on 64-bit integers to support messages of a length that would anyway not
fit into the addressable memory.

Benchmarking. The cycle-count numbers of the various primitives presented
in this paper have been obtained as follows. The numbers given in the follow-
ing sections are the results of cycle-accurate simulations for an ATmega2560
microcontroller. The results given in the Section 7 (the results given in Table 1
in particular), are obtained through actual measurements on the same tar-
geted microcontroller. For this purpose we re-implemented the 64-bit resolution
cpucycles cycle counter included in NaCl and the eBACS benchmarking suite
SUPERCOP [9] for AVR. We combine the 8-bit and the 16-bit cycle counters
into one 24-bit cycle counter and increase the overall count by 224 for an overflow
interrupt of the higher counter. The cycle counts include an 247-cycle overhead
(284-cycle overhead for the low-area variant) for function call and reading the
64-bit cycle count; this is reported as “empty” benchmark in Table 1. We mea-
sured this overhead by subsequently calling an empty function and reading the
cycle counter many times and computing the differences of the measurements.
We also measured the overhead for reading the cycle counter without the over-
head of function calls by computing differences of subsequent readings of the
cycle counter. This overhead is 230 cycles (274 cycles for the low-area variant);
it is reported as “nothing” benchmark in Table 1.

4 Implementation of Salsa20

Salsa20 is a stream cipher which has been proposed in 2005 [3]. It has been
included in the final portfolio of the eSTREAM project initiated in 2004 by
the European Network of Excellence for Cryptology (ECRYPT). The cipher
consists of 20 rounds2 where an internal state is modified by various (logical and
arithmetic) transformations. To encrypt a message, a 32-byte key is used.

4.1 High-Speed Implementation

The Salsa20 stream cipher is implemented in the library functions crypto stream
and crypto stream xor. The function crypto stream only generates a pseudo-
random bitstream, the function crypto stream xor generates this stream and
xors it to a message to produce a ciphertext. The pseudorandom stream is gener-
ated in blocks of 64 bytes, each block is generated by the function crypto core.
This function first initializes a 32-byte state and starts the round calculation af-
terwards. We implemented both the initialization and crypto core in assembly
to improve the performance in Salsa20. The functions crypto stream and
2 Note that there also exist round-reduced versions of Salsa20, e.g., Salsa20/12 apply-

ing 12 rounds instead of 20.
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crypto stream xor are written in C; to save code size we implemented crypto
stream as a call to crypto stream xor with an all zero-message.

Initialization of the state. The function init core mainly consists of 7 loop
iterations where the state x (and a copy of the state j which is later added to
the cipher output) gets initialized with the 32-byte key, the 64-byte input, and
a 16-byte nonce. The initialization takes 642 clock cycles in total.

Round calculation. The round-calculation function provides the most promis-
ing potential to increase the speed of Salsa20. It treats 64-byte blocks as 4 × 4
matrix of 32-bit words and transforms this state matrix through ten loop iter-
ations consisting of 8 quarterround function calls each (thus 80 function calls
in total). Within one quarterround function, three different 32-bit operations
(addition, bitwise addition, and rotations) are performed on either the rows or
the columns of the state x.

We implemented the following optimizations. First, we used all 32 available
registers of the AVR to avoid unnecessary storing and loading from the stack
which is costly in terms of memory and speed. For this, we passed the addresses
of the current row or column of the state in the registers R18-R25. The val-
ues of the state are then loaded into the registers R0-R15. The register pair
R17:R16 is reserved to store the 16-bit base address. It will not be modified
within the quarterround function. The remaining address registers R26-R31 are
used for fast addressing during the round transformations. They allow to implic-
itly decrement the addresses before or after a ST (store) or LD (load) instruction.
Second, the state variables are modified in-place. This means that the state is
directly modified without needing extra variables and copy instructions. Third,
we implemented shifts by 7 and 9 as cheap logical shift (LSR and LSL) and rotate-
through-carry instructions (ROR and ROL). Shifts by 13 and 18 are performed as
multiplications (MUL instruction) with the constants 25 = 32 and 22 = 4.

One quarterround function call requires 176 clock cycles in total. The en-
tire round calculation needs 15 763 clock cycles. The entire crypto stream xor
function needs 17 787 clock cycles to encrypt a 64-byte message. The code size
of Salsa20 is 1 556 bytes, including crypto stream and crypto stream xor.

4.2 Low-Area Implementation

For the low-area version, we looped the final addition of j at the end of the
quarterround function. The remaining assembly parts are already optimized in
terms of low area. We also used the -Os compiler flag to optimize for small code
size. With these modifications, the performance is slightly reduced by 159 clock
cycles, resulting in 17 893 clock cycles for crypto stream xor; the code size is
reduced by 426 bytes to only 1 130 bytes, i.e., by 27.38%.

5 Implementation of Poly1305

Poly1305 is a message authentication code (MAC) proposed in 2005 [5]. The
name is related to the underlying finite field 2130−5. A message m with variable
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size n is authenticated using a (random) 32-byte one-time secret key s (and a 16-
byte nonce). The secret key s consists of two parts, each 16-bytes in length, i.e.,
s = (k, r). First, the message m is split into 16-byte blocks where each block is
padded with a 1. The resulting 17-byte chunks ci, where i ∈ [1, q] and q = �n/16�,
are then represented as unsigned little-endian integers. After that, one addition
and one modular multiplication is performed for each chunk c resulting in the
16-byte authenticator h, i.e.,

h = (((c1 · rq + c2 · rq−1 + ... + cq · r1) mod 2130 − 5) + s) mod 2128.

5.1 High-Speed Implementation

The most time-consuming operation in Poly1305 is modular multiplication in
the field 2130−5. In order to obtain high speeds, we implemented both multipli-
cation and reduction in assembly. To save code size, we implemented a 2136-bit
multiplier that is also (re)used by the Karatsuba-multiplier implementation for
Curve25519 and Ed25519 as described in Section 6.

17 × 17-byte multiplication. There exist various ways to implement large-
integer multiplication, for example, the widely used schoolbook or Comba mul-
tiplication. On AVRs, it has been shown by various papers that a combination
of both techniques significantly helps in speeding up the computation. See, for
example, [16,24,32,34].

We followed a similar approach by breaking the 136-bit multiplication into
8 × 8-byte, 9 × 9-byte, and 9 × 8-byte multiplications and combine the partial
results within each block in a conventional schoolbook approach. The 17× 17-
byte multiplication takes 1 882 cycles (excluding function call overhead). The
code size of the fully unrolled implementation is 2 944 bytes.

Reduction mod 2130 − 5 on AVR. We implemented modular reduction as
follows. Since the prime p = 2130− 5 is a Mersenne-like prime, we can apply fast
reduction by using simple shifts and additions only which are relatively cheap on
AVRs. Consider the integer X ∈ [0, p2) and let X = X1 · 2130 + X0 be the result
of the multiplication. Then, we can exploit the congruence 2130 ≡ 5 and we can
add x1 ·5 to the lower part x0, i.e., X ≡ x1 ·5+x0 = x1 +(x1 � 2)+x0 (mod p).
Note that one of the two input operands to the multiplication in Poly1305 has
only 124 bits. Even if we assume that the other argument has full 17 bytes,
i.e., 136 bits, the result of the multiplication has at most 260 bits. After adding
x1 · 5 to x0 we obtain a number of at most 133 bits; addition with a 128-bit
number during processing of the next block yields at most 134 bits which fits
into 17 bytes and is thus safe to use as input for the following multiplication.
We therefore do not have to reduce further after adding x1 · 5 to x0.

We optimize the reduction by exploiting the gap between 2128 and 2130 − 5
on the AVR. Since we operate on radix-28, the integer X is represented as
X = X ′

1 · 2128 + X ′
0 where X ′

0 is a 128-bit integer represented as 16-byte array
and X ′

1 is an integer represented as a 17-byte array. Let X ′′
1 = 4 · �X1/4�, i.e.,

X ′
1 with the two lowest bits set to zero. Note that 4X1 = X ′′

1 . We compute
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the reduction as X0 + X ′′
1 + X ′′

1 /4 = X0 + X ′′
1 + (X ′′

1 � 2). Shifting X ′′
1 right

by one bit can done in two clock cycles per byte through a logical-shift-right
(LSR) instruction (which shifts the LSB to the carry register) and a rotate-right-
through-carry (ROR) instruction which rotates a byte by shifting the carry into
the MSB. Shifting by two bits means performing this shift twice.

5.2 Low-Area Implementation

For the low-area version of Poly1305, we implemented three operations in a loop,
i.e., two initializations of intermediate variables and the addition operation. For
the latter operation we simply re-used the function bigint add, which is also
used for scalar arithmetic in Ed25519. These modifications have only a slight
impact in performance (13 270 clock cycles are needed for a 64-byte message
instead of 12 525) but the code size is reduced from 1 153 bytes to only 729, i.e.,
by 36.77%.

6 Curve25519 and Ed25519

In 2006, Bernstein introduced the Curve25519 elliptic-curve Diffie-Hellman key-
exchange primitive and the corresponding high-speed software for various x86
CPUs [2]. Curve25519 uses the elliptic curve defined by the equation E : y2 =
x3 + 486662x2 + x over the field F2255−19. The scalar multiplication performed
in Curve25519 uses the x-coordinate-based differential addition introduced by
Montgomery in [27, Section 10]. The main computational effort for the scalar
multiplication are 255 so called ladder steps, 255 conditional swaps, each based
on one bit of the scalar, and one inversion in 22255−19. Each of the laddersteps
consists of 5 multiplications, 4 squarings, 1 multiplication with the constant
121666, 4 additions, and 4 subtractions in F2255−19.

In 2011, Bernstein, Lange, Duif, Schwabe, and Yang introduced the Ed25519
elliptic-curve digital-signature scheme and presented corresponding high-speed
software for Intel Nehalem/Westmere processors [7,8]. The signatures are based
on arithmetic on the twisted Edwards curve [6] defined by the equation E :
x2 + y2 = 1− 121665

121666x2y2 over F2255−19. This curve is birationally equivalent to
the Montgomery curve used in the Curve25519 key-exchange software. The main
computational effort for Ed25519 key-pair generation and signing is one fixed-
base-point scalar multiplication with a secret scalar. The main computational
effort for signature verification is one point decompression (Ed25519 stores only
the y coordinate and one bit of the x coordinate of public keys) and one double-
point scalar multiplication with public scalars. One of the two points involved
in this double-point scalar multiplication is the fixed-base-point also used in
key-pair generation and signing.

6.1 High-Speed Implementation

Arithmetic in F2255−19. The computations of both Curve25519 key exchange
and Ed25519 signatures break down to operations in the field F2255−19. The most
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speed-critical operations are multiplications and squarings. We decided to not
specialize squarings to save code size.

Multiplication is implemented as one level of Karatsuba multiplication, that
breaks the 32× 32-byte multiplication into two 16× 16-byte multiplications and
one 17×17-byte multiplication. Note that the latter multiplication is also used for
the Poly1305 authenticator described in Section 5. On top these multiplications,
we need two 16-byte additions, two 33-byte additions, and two 33-byte subtrac-
tions to accumulate the intermediate results. The entire 32× 32-byte Karatsuba
multiplication takes 6 868 cycles; this is slightly slower than the current state of
the art presented at CHES 2011 [19] (6 208 cycles); but we save in code size, es-
pecially for the low-area variant as described later. For the completely unrolled
high-speed version of the 32 × 32-byte multiplication, 7 184 bytes of code are
required.

Throughout the whole computation we do not reduce modulo 2255 − 19, but
instead only modulo 2256−38. Only at the very end we “freeze” the values mod-
ulo 2255 − 19. To perform modular reduction after a multiplication or squaring
we multiply the upper 32 bytes of the 64-byte result by 38 and then add those
to the lower 32 bytes. This will leave us with a 33-bit value. We multiply the
highest byte again by 38 and add the 2-byte result to the lowest two bytes and
ripple the carry through all 32 bytes. This may again produce a carry which we
multiply by 38, add to the lowest byte and carry to the second byte. Note that
this final addition of the carry bit can not produce a carry. After an addition
or subtraction we simply multiply the final carry bit by 38 and add to (or sub-
tract from) the lowest byte; then ripple through the carry and again multiply
the carry by 38 and add to the lowest byte. These reductions after multiplica-
tion and addition use fully unrolled loops. We use a separate function call to
the modular reduction after multiplication and squaring. This way we are able
to reuse the 32 × 32-byte multiplication for arithmetic on scalars in Ed25519
signature verification. Addition and subtraction in F2255−19 do not use separate
function calls to reduction. They have been also fully unrolled.

Curve25519. Our Curve25519 software uses the same sequence of 255 Mont-
gomery ladder steps and 255 conditional swaps as previous optimized implemen-
tations of Curve25519 [10,2]. The conditional swaps neither use lookups from
secret addresses nor (as previously explained) secret branch conditions; a con-
ditional swap between two values a and b depending on one secret bit s is com-
puted as two conditional moves; each conditional move is computed by first
expanding the secret bit s to an all-one or all-zero mask s and then computing
a← a XOR (s AND (a XOR b)).

The final inversion in F2255−19 is computed as exponentiation with 2255 −
21 using the same sequence of 254 squarings and 11 multiplications as [2]. We
implemented this sequence of function calls in C and used the compiler flags
-mmcu=atmega2560 -Os -mcall-prologues to translate it.

Ed25519 key-pair generation and signing. The fixed-base-point scalar mul-
tiplication in key-pair generation and signing is implemented through a signed-
fixed-window scalar multiplication with window size 4. The elliptic-curve arith-
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metic uses the extended coordinates introduced in [17]. In total the fixed-base-
point scalar multiplication requires 64 table lookups, 63 additions of a precom-
puted multiple of the basepoint to a point in extended coordinates, and 252
doublings in extended coordinates. At the end of this computation we need
one inversion and two multiplications in F2255−19 to convert to affine coordi-
nates. The precomputed multiples of the base point are in an array marked as
PROGMEM. This way they do not occupy space in the data segment in RAM but
only in the (much larger) flash memory. Before performing the fixed-base-point
scalar multiplication we copy this table of precomputed points into a space on
the stack to avoid (secretly indexed) lookups from flash memory.

Ed25519 verification. We perform point decompression of the public key in
the same way as explained in [8, Section 5]. We implement the required expo-
nentiation by 2252 − 3 the same way as the inversion: A sequence of function
calls to multiplications and squarings implemented in C and compiled with the
flags -mmcu=atmega2560 -Os -mcall-prologues.

For double-scalar multiplication we apply Straus’ algorithm [31] with window-
size 1, a special case that is sometimes referred to as “Shamir’s trick”. For the
multiplication of 256-bit scalars modulo the group order we use the 32×32-byte
multiplication and subsequent Barrett reduction [1].

SHA-512. Ed25519 signatures need a 512-bit-output hash function; the original
paper [8] uses SHA-512 but the authors comment that they “will not hesitate
to recommend Ed25519-SHA-3 after SHA-3 is standardized”. In order to pro-
vide a compatible implementation to the Ed25519 implementations currently
included in SUPERCOP [9] we also use Ed25519-SHA-512. We implemented all
speed-critical low-level functions, in particular arithmetic on 64-bit integers, in
assembly. This assembly implementation unrolls all length-8 loops. Calls to the
low-level assembly functionalities are implemented in C. Compiling this SHA-512
C code with the -O3 flag, which we use for most files in the high-speed version,
results in unacceptably large code; for SHA-512 we therefore use compiler flags
-mmcu=atmega2560 -Os -mcall-prologues.

6.2 Low-Area Implementation

Arithmetic in F2255−19. The main difference in the implementation of finite-
field arithmetic for the low-area implementation is that we get rid of the 16 ×
16-byte multiplication. Instead we copy the arguments to 17-byte arrays with
leading zero byte and use the 17×17-byte multiplication. The resulting assembly
implementation of 32 × 32-byte multiplication that performs 3 calls to 17 × 17
byte multiplication and all necessary additions and copies for the Karatsuba
multiplication has a size of 3 358 bytes (53.25% less code size compared to the
high-speed version). The runtime is increased to 8 322 clock cycles.

Aside from that change we do not unroll the loops in the modular reduction
after multiplication, addition, and subtraction to further reduce code size.

Curve25519. The high-level implementation of Curve25519 is the same for the
small-area implementation as for the high-speed implementation.
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Ed25519 key-pair generation and signing. For the fixed-base-point scalar
multiplication we also use a signed-fixed-window scalar-multiplication algorithm.
Instead of window size 4 (as in the high-speed implementation) we use a window
size of only 2 to save space in flash and RAM.

Ed25519 verification. The high-level implementation of verification is the
same for the small-area implementation as for the high-speed implementation.

SHA-512. SHA-512 uses almost the same code as same in the high-speed im-
plementation. The only difference is that we do not unroll the 3 length-8 loops
in the σ-transformation of SHA-256. This change slightly shrinks the code size
without significantly hurting performance.

7 Results

In this section we report benchmarks of our software and give a comparison with
previous results. As described in Subsection 3.1, the benchmarks are not obtained
in a simulator but by measuring cycles on an actual ATmega2560 microcontroller
clocked at 16MHz (on the Arduino Mega 2560 development board). Measuring
cycles incurs a certain overhead; we give this overhead as a “nothing” bench-
mark, i.e., simply differences of subsequent readings to the cycle counter. The
reported numbers are the median of the cycle counts of 20 runs of the respective
primitive.

We compiled all C software with avr-gcc version 4.7.2. For the high-speed
implementation we used compiler flags -mmcu=atmega2560 -O3 where not oth-
erwise reported; for the low-area implementation we used the compiler flags
-mmcu=atmega2560 -Os -mcall-prologues. Our implementation does not use
any space in the data segment and no dynamic memory allocation; so RAM is
only used by the stack3. We measured stack space by writing a canary value
to the whole stack before running the actual function; then reading later how
many of the canary bytes have been overwritten. Reporting code sizes for indi-
vidual primitives does not make much sense because of large portions of code
that is shared between the primitives (for example Curve25519 and Ed25519
share the code for field arithmetic in F2255−19). Instead, we report the code
size (i.e. required space in the flash memory) for both implementations of the
whole library. These sizes were obtained with avr-size from GNU binutils version
2.20.1.20100303. Our results are summarized in Table 1.

Comparison with related work. To the authors’ knowledge, there exist three
resources that present results of Salsa20 on AVR microcontrollers. Meiser et
al. [26] and Eisenbarth et al. [14] reported results of Salsa20 implemented in C
and assembly. Their fastest design needs 17 812 clock cycles for one 64-byte mes-
sage block needing 2 984 bytes of code. Their low-area variant needs 18 400 clock
cycles and 1 452 bytes of code. Both implementations need 280 bytes of RAM.

3 We observed that earlier versions of avr-gcc, for example, avr-gcc 4.5, place some
constants in the data segment; gcc-4.7 stores those constants in program memory.
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Table 1. Benchmark results of NaCl on the AVR ATmega2560 microcontroller

Primitive Message bytes Cycles Stack bytes

nothing high-speed 230
low-area 274

empty high-speed 247
low-area 284

Salsa20 high-speed 8 17 076 268
64 17 787

576 155 195
1024 275 427
2048 550 243

low-area 8 17 202 273
64 17 893

576 155 981
1024 276 808
2048 552 984

Poly1305 high-speed 8 4 411 148
64 12 525

576 98 477
1024 173 685
2048 345 588

low-area 8 4 773 148
64 13 270

576 103 286
1024 182 050
2048 362 081

SHA-512 high-speed 8 536 133 689
64 535 945

576 2 656 525
1024 4 777 297
2048 9 018 552

low-area 8 607 082 669
64 606 916

576 3 012 120
1024 5 417 516
2048 10 228 019

Primitive Operation Cycles Stack bytes

Curve25519 high-speed crypto scalarmult base 22 791 580 677
crypto scalarmult 22 791 579 677

low-area crypto scalarmult base 27 926 288 917
crypto scalarmult 27 926 278 920

Ed25519 high-speed crypto sign keypair 21 928 751 1 566
crypto sign 23 216 241 1 642

crypto sign open 32 634 713 1 315
low-area crypto sign keypair 32 870 759 1 282

crypto sign 34 303 972 1 289
crypto sign open 40 083 281 1 346

NaCl implementation Code size (in bytes)

high-speed 27 962
low-area 17 366
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There is also a C implementation of Salsa20 in the AVR-Crypto-Lib [15] written
by Daniel Otte. His implementation requires 723 clock cycles for initializing the
state and 94 476 clock cycles for encryption.

In view of elliptic-curve implementations on AVR, there exist many results
presented for example in [16,21,33,34]. Most of these results are hard to compare
since the implementations differ in various ways such as in the size of the un-
derlying finite field, the used ECC group formulas, the multiplication technique
(both in terms of group and field arithmetic), and additionally implemented
higher-level protocols (e.g., hash functions, signing and verifying of messages,
random number generation, ...). For example, one of the first who reported the
performance of ECC on an ATmega128 are Gura et al. [16] who presented their
results at CHES 2004. They implemented ECC using the NIST standardized
curves over the prime fields Fp160, Fp192, and Fp224. Their implementation needs
17.52 million clock cycles for a single scalar multiplication on the curve over
Fp224. Uhsadel et al. [33] reported around 10 million cycles for a 160-bit scalar
multiplication.

One of the few AVR libraries that support also higher-level protocols are
TinyECC, NanoECC, or CRS-AVR010X-ECC. TinyECC has been presented by
Liu et al. [24] in 2008. The library implements ECDSA, ECDH, and ECIES on the
SECG curves over Fp128, Fp160

4, and Fp192. Signing using ECDSA-SECP160r1
needs 16 million clock cycles and 27 million cycles in addition to precompute
the base-point multiples of the implemented sliding window scalar-multiplication
method. The entire library needs between 15 492 and 19 308 bytes of code (de-
pending on the used multiplication method) and around 1 500 bytes of RAM.
The low-area variant needs 10 180 bytes of code and 152 bytes of RAM. Na-
noECC has been proposed by Szczechowiak et al. [32]. The library implements
the NIST-K163 Koblitz curve over Fp160. They reported 9.37 million clock cy-
cles for one scalar multiplication and the code size of the library is 46 100 bytes5

and the RAM usage is 1 800 bytes. There exist also another library called CRS-
AVR010X-ECC [29] that implements ECDSA and ECDH on SECG curves over
Fp160, Fp192, Fp224, and Fp256. The implementation on the curve over Fp256 needs
5 to 8 kB of code and 750 to 900 bytes of RAM. Signing using ECDSA requires
76.8 million cycles. Their high-speed implementation requires only 27.2 million
cycles with an additional memory of 16 384 bytes.

Recently, Chu et al. [11] set new speed records for a single scalar multi-
plication on Twisted Edwards curves on AVRs. Their implementation needs
only 5.9 million clock cycles for a 160-bit curve on an ATmega128. However,
the authors aimed for high-speed without considering implementation attacks,
e.g., they implemented the conventional double-and-add method and used data-
dependent branch conditions which can be exploited in implementation attacks
[22,25].

4 Curve secp160r1 has been used in [24] for evaluating the performance of TinyECC.
5 NanoECC is based on the MIRACLE (Multi-precision Integer and Rational Arith-

metic C/C++ Library) [30], which provides many functions and tools to implement
higher-level protocols.
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Discussion. As explained in the introduction, our implementation of NaCl does
not aim at highest speed at all costs. Instead we aimed at good speeds with a
moderate RAM and ROM usage. With this paper we are hoping for feedback
from potential users of AVR NaCl telling us what the specific requirements of
their application are. For applications that require higher speeds for a specific
primitive there are various possibilities for speedups, in particular in Curve25519
and Ed25519:

– Arithmetic in F2255−19 does not use special code for squarings but instead
uses calls to the multiplication. A specialized squaring implementation would
speed up both Curve25519 and Ed25519.

– The Karatsuba multiplier used for multiplication in F2255−19 is only slightly
slower than the operand-caching multiplication presented in [19]; however,
switching to operand-caching multiplication would offer further speedups for
Curve25519 and Ed25519.

– The multiplication with the small constant 121 666 in Curve25519 is not
specialized; again we are using a call to the full multiplication. A specialized
function for multiplication with this constant would speed up Curve25519.

– Ed25519 signature verification uses Straus’ algorithm with window size 1
instead of, for example, a sliding-window algorithm that would require sig-
nificantly more RAM. If RAM usage is not a critical limitation we could thus
easily speed up signature verification.

– We do not expect users of AVR NaCl to have any use for the fast batch
verification of signatures; processing many signatures in short time is not
exactly the typical domain for embedded microcontrollers. If applications
benefit from fast batch verification and are willing to spend some space in
RAM, we could also include the fast batch verification based on the Bos-
Coster multi-scalar-multiplication algorithm described in [8, Section 5].
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Abstract. We present W-OTS+, a Winternitz type one-time signature
scheme (W-OTS). We prove that W-OTS+ is strongly unforgeable under
chosen message attacks in the standard model. Our proof is exact and
tight. The first property allows us to compute the security of the scheme
for given parameters. The second property allows for shorter signatures
than previous proposals without lowering the security. This improvement
in signature size directly carries over to all recent hash-based signature
schemes. I.e. we can reduce the signature size by more than 50% for
XMSS+ at a security level of 80 bits. As the main drawback of hash-
based signature schemes is assumed to be the signature size, this is a
further step in making hash-based signatures practical.

Keywords: digital signatures, one-time signature schemes, hash-based
signatures, provable security, hash functions.

1 Introduction

Digital signatures are among the most important cryptographic primitives in
practice. They have many applications, including the use in SSL/TLS and se-
curing software updates. Hash-based or Merkle signature schemes (MSS) are an
interesting alternative to the signature schemes used today, not only because
they are assumed to resist quantum computer aided attacks, but also because
of their fast signature generation and verification times as well as their strong
security guarantees. Most MSS come with a standard model security proof and
outperform RSA in many settings regarding runtimes. The main drawback of
MSS is the signature size which to a large extent depends on the used one-time
signature scheme (OTS). Recent MSS proposals [BDH11, HBB13] use a variant
of the Winternitz OTS (W-OTS) introduced in [BDE+11]. The main reason for
this choice is the reduced signature size. Using W-OTS, a MSS signature does not
have to contain the OTS public key as it can be computed given the W-OTS sig-
nature. Moreover, W-OTS type signature schemes allow for a trade-off between
signature size and runtime.
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In this work we introduce W-OTS+, a W-OTS type OTS that allows to re-
duce the signature size more than previous W-OTS variants and reaches a higher
level of security. We prove that W-OTS+ is strongly unforgeable under adap-
tive chosen message attacks (SU-CMA) in the standard model, if the used hash
function is second-preimage resistant, undetectable and one-way (Indeed, we
only present the proof for EU-CMA security in this extended abstract). Previ-
ous proposals require non-standard assumptions to achieve SU-CMA security
(i.e.

”
key-collision resistance“ in case of [BDE+11]). Besides the SU-CMA se-

cure variants there exist W-OTS that achieve EU-CMA security, either using
a collision resistant, undetectable hash function [HM02, DSS05] or a pseudoran-
dom function family [BDE+11]. The first security requirement is strictly stronger
than that of W-OTS+. While the second is comparable, the corresponding proof
is less tight. However, both cases result in larger signatures.

Besides provable security we are also concerned with the practical performance
of the scheme. We show how to use the exact security proof to compute the
security level of W-OTS+ for a given set of parameters. Moreover we discuss
how to instantiate W-OTS+ in practice and present parameter sizes for recent
MSS (XMSS [BDH11], XMSS+ [HBB13]) when instantiated with W-OTS+.

Organization. We start by introducing W-OTS+ in Section 2. Afterwards we
state our main result about the security of W-OTS+ and prove it in Section
3. In Section 4 we discuss possible instantiations and compare W-OTS+ with
previous proposals. Finally, we conclude in Section 5.

2 The Winternitz One-Time Signature Scheme

In this section we describe W-OTS+. The core idea of all W-OTS is to use a
certain number of function chains starting from random inputs. These random
inputs are the secret key. The public key consists of the final outputs of the
chains, i.e. the end of each chain. A signature is computed by mapping the mes-
sage to one intermediate value of each function chain. All previous variants of
W-OTS constructed the function chains as plain iteration of the used function
(or function family in case of [BDE+11]). In contrast, for W-OTS+ we use a
special mode of iteration which enables the tight security proof without requir-
ing the used hash function family to be collision resistant. We start with some
preliminaries. Afterwards we present W-OTS+.

2.1 Signature Schemes

We now fix some notation and define digital signature schemes and existential
unforgeability under adaptive chosen message attacks (EU-CMA). Through out

the paper we write x
$←− X if x is randomly chosen from the set X using the

uniform distribution. We further write log for log2.
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Digital Signature Schemes. Let M be the message space. A digital signa-
ture scheme Dss = (Kg, Sign,Vf) is a triple of probabilistic polynomial time
algorithms:

– Kg(1n) on input of a security parameter 1n outputs a private signing key sk
and a public verification key pk;

– Sign(sk,M) outputs a signature σ under sk for message M , if M ∈ M;
– Vf(pk, σ,M) outputs 1 iff σ is a valid signature on M under pk;

such that ∀(pk, sk) ←− Kg(1n), ∀(M ∈ M) : Vf(pk, Sign(sk,M),M) = 1.

EU-CMA Security. The standard security notion for digital signature schemes
is existential unforgeability under adaptive chosen message attacks (EU-CMA),
which is defined using the following experiment. By Dss(1n) we denote a signa-
ture scheme with security parameter n.

Experiment ExpEU-CMA
Dss(1n) (A)

(sk, pk) ←− Kg(1n)
(M�, σ�) ←− ASign(sk,·)(pk)
Let {(Mi, σi)}q1 be the query-answer pairs of Sign(sk, ·).
Return 1 iff Vf(pk,M�, σ�) = 1 and M� �∈ {Mi}q1.

For the success probability of an adversary A in the above experiment we write

Succeu-cmaDss(1n) (A) = Pr
[
ExpEU-CMA

Dss(1n) (A) = 1
]
.

Using this, we define EU-CMA the following way.

Definition 1 (EU-CMA). Let n, t, q ∈ N, t, q = poly(n), Dss a digital signa-
ture scheme. We call Dss EU-CMA-secure, if the maximum success probability
InSeceu-cma (Dss(1n); t, q) of all possibly probabilistic adversaries A, running in
time ≤ t, making at most q queries to Sign in the above experiment, is negligible
in n:

InSeceu-cma (Dss(1n); t, q)
def
= max

A
{Succeu-cmaDss(1n) (A)} = negl(n) .

An EU-CMA secure one-time signature scheme (OTS) is aDss that isEU-CMA
secure as long as the number of oracle queries of the adversary is limited to one,
i.e. q = 1.

2.2 W-OTS+

Now we present W-OTS+. Like all previous variants of W-OTS, W-OTS+ is
parameterized by security parameter n ∈ N, the message length m and the
Winternitz parameter w ∈ N, w > 1, which determines the time-memory trade-
off. The last two parameters are used to compute

�1 =

⌈
m

log(w)

⌉
, �2 =

⌊
log(�1(w − 1))

log(w)

⌋
+ 1, � = �1 + �2.
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Furthermore, W-OTS+ uses a family of functions Fn : {fk : {0, 1}n → {0, 1}n|
k ∈ Kn} with key space Kn. The reader might think of it as a cryptographic
hash function family that is non-compressing. Using Fn we define the following
chaining function.

cik(x, r): On input of value x ∈ {0, 1}n, iteration counter i ∈ N, key k ∈ K and
randomization elements r = (r1, . . . , rj) ∈ {0, 1}n×j with j ≥ i, the chaining
function works the following way. In case i = 0, c returns x (c0k(x, r) = x). For
i > 0 we define c recursively as

cik(x, r) = fk(c
i−1
k (x, r)⊕ ri),

i.e. in every round, the function first takes the bitwise xor of the intermediate
value and bitmask r and evaluates fk on the result afterwards. We write ra,b for
the subset ra, . . . , rb of r. In case b < a we define ra,b to be the empty string.
We assume that the parameters m, w and the function family Fn are publicly
known. Now we describe the three algorithms of W-OTS+:

Key Generation Algorithm (Kg(1n)): On input of security parameter n in unary
the key generation algorithm choses �+w−1 n-bit strings uniformly at random.
The secret key sk = (sk1, . . . , sk�) consists of the first � random bit strings.
The remaining w − 1 bit strings are used as the randomization elements r =

(r1, . . . , rw−1) for c. Next, Kg chooses a function key k
$←− K uniformly at

random. The public verification key pk is computed as

pk = (pk0, pk1, . . . , pk�) = ((r, k), cw−1k (sk1, r), . . . , c
w−1
k (sk�, r)).

Signature Algorithm (Sign(M, sk, r)): On input of a m bit message M , secret
signing key sk and the randomization elements r, the signature algorithm first
computes a base w representation of M : M = (M1 . . .M�1), Mi ∈ {0, . . . , w−1}.
Therefor, M is treated as the binary representation of a natural number x and
then the w-ary representation of x is computed. Next it computes the checksum

C =

�1∑
i=1

(w − 1−Mi)

and its base w representation C = (C1, . . . , C�2). The length of the base w
representation of C is at most �2 since C ≤ �1(w− 1). We set B = (b1, . . . , b�) =
M ‖ C, the concatenation of the base w representations of M and C. The
signature is computed as

σ = (σ1, . . . , σ�) = (cb1k (sk1, r), . . . , c
b�
k (sk�, r)).

Please note that the checksum guarantees that given the bi, 0 < i ≤ � corre-
sponding to one message, the b′i corresponding to any other message include at
least one b′i < bi.
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Verification Algorithm (Vf(1n,M, σ, pk)): On input of message M of binary
length m, a signature σ and a public verification key pk, the verification al-
gorithm first computes the bi, 1 ≤ i ≤ � as described above. Then it does the
following comparison:

pk = (pk0, pk1, . . . , pk�)

?
= ((r, k), cw−1−b1k (σ1, rb1+1,w−1), . . . , cw−1−b�k (σ�, rb�+1,w−1))

If the comparison holds, it returns true and false otherwise.
The runtime of all three algorithms is bounded by �w evaluations of fk. The

size of a signature and the secret key is |σ| = |sk| = �n bits. The public key
size is (� + w − 1)n+ |k| bits, where |k| denotes the number of bits required to
represent any element of K.

3 Security of W-OTS+

In this section we analyze the security of W-OTS+. We prove W-OTS+ is exis-
tentially unforgeable under chosen message attacks, if the used function family
is a second-preimage resistant family of undetectable one-way functions. More
precisely, we prove the following theorem:

Theorem 1. Let n,w,m ∈ N, w,m = poly(n), Fn : {fk : {0, 1}n → {0, 1}n|k ∈
Kn} a second preimage resistant, undetectable one-way function family. Then,
InSeceu-cma

(
W-OTS+(1n, w,m); t, 1

)
, the insecurity of W-OTS+ against an

EU-CMA attack is bounded by

InSeceu-cma
(
W-OTS+(1n, w,m); t, 1

)
≤ w · InSecud (Fn; t

�) + w� ·max {InSecow (Fn; t
′) , w · InSecspr (Fn; t

′)}

with t′ = t+ 3�w and t� = t+ 3�w + w − 1.

It seems natural to assume that the existence of a function that combines these
properties is equivalent to the existence of a one-way function. As the function
has to be one-way itself, the one direction is trivial. On the other hand, we
know that second-preimage resistant functions exist if a one-way function exists
[Rom90] and we know the same for undetectable functions, i.e. pseudorandom
generators [HILL99]. We leave the question if this also implies the existence of
a function family that combines all three properties for future work. If this was
the case, it would mean that W-OTS+ has minimal security requirements. The
practical implications of the proof are discussed in the next section.

In this extended abstract we only prove that W-OTS+ is EU-CMA secure. In
fact it also fulfills the stronger notion of SU-CMA, where the adversary is also
allowed to return a new signature on the message send to the signature oracle.
The claimed bound in Theorem 1 holds for the SU-CMA case, too. We present
the EU-CMA proof, because it contains all important ideas but has less different
cases to handle. Before we present the proof we give some preliminaries. At the
end of this sections we show how to compute the security level of W-OTS+.
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3.1 Preliminaries

In this subsection we provide some more notation and formal definitions. We
denote the uniform distribution over bit strings of length n by Un. In our proofs,
we measure all runtimes counting the evaluations of elements from Fn. In some
proofs and definitions we use the (distinguishing) advantage of an adversary
which we now define.

Definition 2 (Advantage). Given two distributions X and Y, we define the
advantage AdvX ,Y (A) of an adversary A in distinguishing between these two
distributions as

AdvX ,Y (A) = |Pr [1 ←− A(X )] − Pr [1 ←− A(Y)]| .

Functions. We now define three properties for families of functions that we use.
In what follows, we only consider families Fn as defined in the last section.We
require that it is possible given n ∈ N to sample a key k from key space Kn

using the uniform distribution in polynomial time. Furthermore we require that
all functions from Fn can be evaluated in polynomial time. We first recall the
definitions of one-wayness (ow) and second preimage resistance (spr).

The success probability of an adversary against the one-wayness of Fn is:

SuccowFn
(A) =Pr [ k

$←− Kn;x
$←− {0, 1}n, y ←− fk(x),

x′ $←− A(k, y) : y = fk(x
′)] (1)

The success probability of an adversary against the second preimage resistance
of Fn is:

SuccsprFn
(A) =Pr [ k

$←− Kn;x
$←− {0, 1}n, x′ ←− A(k, x) :

(x �= x′) ∧ (fk(x) = fk(x
′))] (2)

We call a function family Fn one-way (second preimage resistant, resp.) if the re-
spective success probability given above of any PPT adversary is negligible in n.

Besides spr and ow, we require Fn to provide another property called unde-
tectability to proof W-OTS+ secure. Intuitively, a function family is undetectable
if its outputs can not be distinguished from uniformly random values. This is
what we require from a pseudorandom generator, which in contrast to Fn has
to be length expanding.

To define undetectability, assume the following two distributions over {0, 1}n×
K. A sample (u, k) from the first distribution Dud,U is obtained by sampling

u ←− Un and k
$←− K uniformly at random from the respective domain. A

sample (u, k) from the second distributionDud,F is obtained by sampling k
$←− K

and then evaluating fk on a uniformly random bit string, i.e. u ←− fk(Un). The
advantage of an adversary A against the undetectability of Fn is simply the
distinguishing advantage for these two distributions:

AdvudFn
(A) = AdvDud,U ,Dud,F (A)
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Using this we define undetectability as:

Definition 3 (Undetectability (UD)). Let n ∈ N, Fn a family of functions
as described above. We call Fn undetectable, if InSecud (Fn; t) the advantage of
any adversary A against the undetectability of Fn running in time less or equal
t is negligible:

InSecud (Fn; t)
def
= max

A
{AdvudFn

(A)} = negl(n) .

Undetectability was already used by Dods et al. [DSS05] to prove a former version
of W-OTS secure.

3.2 Security Proof

We now present the proof of Theorem 1. The general idea is, that because of
the checksum, a successful forgery must contain at least one intermediate value
x for one chain α, that is closer to the start value of chain α than the value σα

contained in the answer to the signature query. We try to guess the position of σα

and place our preimage challenge yc there. So we can answer the signature query
and hopefully extract a preimage given x. We also include a second preimage
challenge in the same chain α, manipulating the randomization elements. This
is necessary, as x must lead to the same public key value pkα than yc but the
chain continued from x does not need to contain yc as an intermediate value.
But in this case it contains a second preimage which we try to extract.

Manipulating the public key to place our challenges, we slightly change the
distribution of the key. In the second part of the proof we show that this does
not significantly change the success probability of the adversary using the unde-
tectability of Fn.

Proof (of Theorem 1). For the sake of contradiction assume there exists an adver-
sary A that can produce existential forgeries for W-OTS+(1n, w,m) running an
adaptive chosen message attack in time ≤ t and with success probability εA =
Succeu-cmaW-OTS(1n,w,m) (A) greater than the claimed bound InSeceu-cma

(
W-OTS+

(1n, w,m); t, 1
)
. We first show how to construct an oracle machine MA that ei-

ther breaks the second preimage resistance or one-wayness of Fn using A with a
possibly different input distribution. A pseudo-code description of MA is given
as Algorithm 1.

The oracle machine MA first runs the W-OTS+ key generation to obtain
a key pair (sk, pk). Then, MA selects the positions to place its challenges in
the public key. Therefor it selects a random function chain choosing the index α.
Second it chooses an index β to select a random intermediate value of this chain.
MA places the preimage challenge at this position. This is done, setting yc as
the βth intermediate value of the chain. If β < w − 1, i.e. MA did not sample
the last position in the chain, another intermediate value between β and the end
of the chain is selected, sampling γ. MA places the second preimage challenge
at the input of the γth evaluation of the chain continued from yc, replacing
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Algorithm 1. MA

Input: Security parameter n, function key k, one-way challenge yc and second preimage
resistance challenge xc.
Output: A value x that is either a preimage of yc or a second preimage for xc under
fk or fail.

1. Run Kg(1n) to generate W-OTS+ key pair (sk, pk)

2. Choose indices α
$←− {1, ..., �}, β $←− {1, . . . , w − 1} uniformly at random

3. If β = w − 1 then set r′ = r
4. Else

(a) Choose index γ
$←− {β + 1, . . . , w − 1} uniformly at random

(b) Obtain r′ from r, replacing rγ by cγ−β−1
k (yc, rβ+1,l)⊕ xc.

5. Obtain pk′ by setting pk′i = cw−1
k (ski, r

′), 0 < i ≤ �, i = α,

pk′α = cw−1−β
k (yc, r

′
β+1,w−1) and pk0 = (r′, k)

6. Run ASign(sk,·)(pk′)
7. If ASign(sk,·)(pk′) queries Sign with message M then

(a) compute B = (b1, ..., b�)
(b) If bα < β then return fail
(c) Generate signature σ of M :

i. Run σ = (σ1, . . . , σ�) ←− Sign(M, sk, r′)
ii. Set σα = cbα−β

k (yc, r
′
β+1,w−1)

(d) Reply to query using σ
8. If ASign(sk,·)(pk) returns valid (σ′,M ′) then

(a) Compute B′ = (b′1, ..., b
′
�)

(b) If b′α ≥ β return fail
(c) If β = w − 1

i. Return preimage c
w−1−b′α−1

k (σ′
α, r

′
b′α+1,w−1)⊕ rw−1

(d) Else

i. If c
β−b′α
k (σ′

α, r
′
b′α+1,w−1) = yc then

return preimage c
β−b′α−1

k (σ′
α, r

′
b′α+1,w−1)⊕ rβ

ii. Else if x′ = c
γ−b′α−1

k (σ′
α, rb′α+1,w−1)⊕rγ = xc and c

γ−b′α
k (σ′

α, rb′α+1,w−1) =

cγ−β
k (yc, rβ+1,w−1) return second preimage x′

9. In any other case return fail

the randomization element rγ (Line 4b). A manipulated public key pk′ is com-
puted using the new set of randomization elements. The αth value of pk′ is com-
puted continuing the chain from yc at position β (Line 5). Then MA runs A on
input pk’.

W.l.o.g. we assume that A asks for the signature on one message M (Line
7). So MA computes the bi as described in the signature algorithm. MA knows
the secret key value ski for all chains with exception of chain α. For chain α
MA only knows the βth intermediate value. Hence, MA can answer the query
if bα ≥ β as all intermediate values ≥ β of the αth chain can be computed using
yc. If this is not the case, MA aborts.



W-OTS+– Shorter Signatures for Hash-Based Signature Schemes 181

If A returns an existential forgery (σ′,M ′), MA computes the b′i. The forgery
is only useful if b′α < β. If this is not the case, MA returns fail. Now, there are
two mutually exclusive cases. If β = w−1, i.e. we selected the end of chain α, the
forgery contains a preimage of yc. This is the case because σ

′
α is an intermediate

value of chain alpha that ends in yc. So, MA extracts the preimage and returns
it (Line 8(c)i). Otherwise, there are again two mutually exclusive cases. The
chain continued from σ′α either has yc as the βth intermediate value or it has
not. In the first case, again a preimage can be extracted (Line 8(d)i). In the
second case, the chains continued from yc and σ′α must collide at some position
between β + 1 and w − 1 according to the pigeonhole principle. If they collide
at position γ for the first time, a second preimage for xc can be extracted (Line
8(d)ii). Otherwise MA aborts.

Now we compute the success probability of MA. To make it easier, we only
compute the probability for a certain success case. We assume that the bα ob-
tained from A’s query equals β. This happens with probability w−1 as β was
chosen uniformly at random. As our modifications might have changed the in-
put distribution of A, it does not necessarily succeed with probability εA. For
the moment we only denote the probability that A returns a valid forgery when
run by MA as ε′A. Because of the construction of the check sum, M ′ leads to
at least one b′i < bi, 0 < i ≤ �. With probability �−1 this happens for i = α
and the condition in line 8b is fulfilled. At this point there are two mutually
exclusive cases, so one of them occurs with probability p and the other one with
probability (1 − p).

Case 1: Either β = w − 1 or the chain continued from σ′α has yc as the βth
intermediate value. In this case, MA returns a preimage for yc with
probability 1.

Case 2: β < w − 1 and the chain continued from σ′α does not have yc as the
βth intermediate value. In this case, MA returns a second preimage for xc if the
two chains collide for the first time at position γ. This happens with probability
greater w−1 as gamma was chosen uniformly at random from within the interval
[β + 1, w − 1].

Using the assumptions about the one-wayness and second preimage resistance
of Fn we can bound the success probability of A if called by MA:

ε′A ≤ w� ·max {InSecow (Fn; t
′) , w · InSecspr (Fn; t

′)} (3)

where the time t′ = t + 3�w is an upper bound for the runtime of A plus the
time needed to run each algorithm of W-OTS+ once.

As the second step, we bound the difference between the success probability ε′A
ofA when called byMA and its success probability εA in the original experiment.
If the first is greater than the latter we already have a contradiction. Hence we
assume εA ≥ ε′A in what follows. Please note, that among the elements of pk′

only the distribution of pk′α might differ from the distribution of a public key
generated by Kg. rγ is uniformly distributed in {0, 1}n, because xc is uniformly
distributed in {0, 1}n. We define two distributions DM and DKg over {0, . . . , w−
1} × {0, 1}n × {0, 1}(n×w−1) ×K. A sample (β, u, r, k) follows DM if the entries
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β
$←− {0, . . . , w − 1}, u $←− {0, 1}n, r $←− {0, 1}n×w−1 and k

$←− K are chosen

uniformly at random. A sample (β, u, r1,i, k) follows DKg if β
$←− {0, . . . , w−1},

r
$←− {0, 1}n×w−1 and k

$←− K are chosen uniformly at random and u =

cβk (Un, r). So the two distributions only differ in the way u is chosen. We now
construct an oracle machine M′A that uses the possibly different behavior of A
when given differently distributed inputs, to distinguish between DKg and DM.
Using M′A we can then upper bound εA by a function of the distinguishing
advantage of M′A and ε′A. Afterwards we use a hybrid argument to bound the
distinguishing advantage of M′A using the undetectability of Fn.

The oracle machine M′A works the following way. On input of a sample
(β, u, r, k) that is either chosen fromDM or fromDKg,M′A generates a W-OTS+

key pair. Instead of using Kg, M′A samples a secret key sk
$←− {0, 1}n×� and

an index α
$←− {1, . . . , �} uniformly at random. It computes the public key pk

as pk0 = (r, k) and

pki =

{
cw−1k (ski, r) , if 1 ≤ i ≤ � and i �= α

cw−1−βk (u, rβ+1,w−1) , if i = α.

Then M′A runs A on input pk. If A queries M′A for the signature on a message
M ,M′A behaves the same way asMA. If bα ≥ β, M′A uses sk and u to compute
the signature, otherwise it aborts. If A returns a valid forgery, M′A returns 1
and otherwise 0. The runtime of M′A is bounded by the runtime of A plus one
evaluation of each algorithm of W-OTS+. So we get t′′ = t + 3�w as an upper
bound.

Now, we compute the distinguishing advantage AdvDM,DKg

(
M′A) of M′A. If

the sample is taken from DM, the distribution of the public keys pk generated
by M′A is the same as the distribution of the public keys pk′ generated by MA.
Hence M′A outputs 1 with probability

Pr
[
(β, u, r, k) ←− DM : 1 ←− M′A(β, u, r, k)

]
= ε′A.

If the sample was taken from DKg, the public keys pk generated by M′A follow
the same distribution than those generated by Kg and so M′ outputs 1 with
probability

Pr
[
(β, u, r, k) ←− DKg : 1 ←− M′A(β, u, r, k)

]
= εA.

So the distinguishing advantage of M′A is

AdvDKg,DM
(
M′A) = |εA − ε′A| .

As mentioned above, we only have to consider the case εA ≥ ε′A. So we obtain
the following bound on εA:

εA = AdvDKg,DM
(
M′A)+ ε′A (4)

We now limit the distinguishing advantage of M′A in our last step. We use a hy-
brid argument to show that this advantage is bound by the undetectability of Fn.
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For a given β ∈ {0, . . . , w−1}, we define the hybridsHj = (β, cβ−jk (Un, rj+1,w−1),

r, k) with r
$←− {0, 1}n×w−1, k $←− K for 0 ≤ j ≤ β. Given an adversary B that

can distinguish between H0 and Hβ with advantage εB, a hybrid argument leads
that there must exist two consecutive hybrids that B distinguishes with ad-
vantage ≥ εB/β. Assume these two hybrids are Hα and Hα+1. Then we can
construct an oracle machine M′′B that uses B to distinguish between Dud,U and
Dud,F as defined in the preliminaries and thereby attacking the undetectability of
Fn. Given a distinguishing challenge (u, k), M′′B selects r ←− Uw−1

n , computes
x = cβ−(α+1)(u, rα+2,w−1), runs b ←− B(β, x, r, k) and outputs b.

Let’s analyze the advantage AdvudFn

(
M′′B) of M′′B. If the sample is taken

from Dud,U , u is uniformly random and x = cβ−(α+1)(u, rα+2,w−1) is distributed
exactly like the second element of Hα+1. Otherwise, if the sample is taken from
Dud,F , then u ←− fk(Un) is an output of fk and we get

x = cβ−(α+1)(fk(Un), rα+2,w−1) = cβ−(α+1)+1(Un ⊕ rα+1, rα+1,w−1)

= cβ−α(Un, rα+1,w−1) = Hα(2)

whereHα(2)
denotes the second element ofHα. Here we used the fact, that the xor

of a uniformly distributed variable and a fixed value leads again to a uniformly
distributed variable. Summing up, the input of B, produced by M′′B is either
distributed like Hα or like Hα+1, depending on M′′Bs distinguishing challenge.
Hence, the advantage of M′′B is exactly that of B distinguishing between these
two hybrids. So we get

AdvudFn

(
M′′B) ≥ εD/β.

As the advantage of M′′B is bounded by the undetectability of Fn per assump-
tion, M′A does exactly what we assume B to do and the runtime of M′′B is that
of B plus at most w − 1 evaluations of elements from Fn, we get

InSecud (Fn; t
�) ≥ AdvudFn

(
M′′B) ≥ εB

i
=

AdvDKg,DM
(
M′A)

β

where t� = t′′ + w − 1 = t + 3�w + w − 1 is the runtime of M′′B. As β ∈
{0, . . . , w − 1}, we obtain the following bound on the advantage of M′A:

AdvDKg,DM
(
M′A) ≤ w · InSecud (Fn; t

�) . (5)

Putting equations (3), (4) and (5) together we obtain a final bound on εA which
leads the required contradiction:

εA ≤ w · InSecud (Fn; t
�) + w� ·max {InSecow (Fn; t

′) , w · InSecspr (Fn; t
′)}

with t′ = t+ 3�w and t� = t+ 3�w + w − 1. ��

3.3 Security Level of W-OTS+

Given Theorem 1, we can compute the security level in the sense of [Len04].
This allows a comparison of the security of W-OTS+ with the security of a
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symmetric primitive like a block cipher for given security parameters. Following
[Len04], we say that W-OTS+ has security level b if a successful attack on the
scheme can be expected to require 2b−1 evaluations of functions from Fn on
average. We can compute the security level, finding a lower bound for t s.th.
1/2 ≤ InSeceu-cma (W-OTS(1n, w,m); t, 1). According to the proof of Theorem
1, W-OTS+ can only be attacked by either attacking the second preimage resis-
tance, one-wayness or undetectability of Fn. Following the reasoning in [Len04],
we only take into account generic attacks on Fn.

Regarding the insecurity of F(n) under generic attacks we assume
InSecspr (F(n); t) = InSecow (F(n); t) = t

2n which corresponds to a brute force
search for (second-)preimages. For the insecurity regarding undetectability we
assume InSecud (F(n); t) = t

2n following [DSS05]. In the following we assume
that the small additive increase of the attack runtime coming from the reduc-
tion is negligible, compared to the value of t for any practical attack. So we
assume t = t′ = t�. We compute the lower bound on t.

1

2
≤ InSeceu-cma (W-OTS(1n, w,m); t, 1)

≤ w
t

2n
+ w� ·max

{
t

2n
, w · t

2n

}
=

tw

2n
+

tw2�

2n
=

t(w2�+ w)

2n

Solving this for t gives us

t ≥ 1

2
· 2n

w2�+ w
= 2n−1−log(w

2�+w).

So, for the security level b we obtain b ≥ n− log(w2�+ w).

4 W-OTS+ in Practice

In this section we discuss the practical implications of our result. We first present
practical instantiations of W-OTS+. Then we discuss the implications of the
new security proof, comparing W-OTS+ to other W-OTS type OTS and present
results for XMSS and XMSS+ when instantiated using W-OTS+.

4.1 Instantiations

To use W-OTS+ in practice Fn has to be instantiated. We propose two different
instantiations. The first and most obvious way to instantiate Fn is to simply use
a cryptographic hash function like SHA2 or SHA3. These functions are assumed
to fulfill all the properties we require Fn to provide. In case the input length
of the function is bigger then the output length, we pad the inputs using the
required number of zeros. As we do not allow arbitrary length messages, we do
not need a more involved padding.
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Another way is to use a block cipher. It is well known that a cryptographic
hash function can be constructed using a block cipher. This is very useful, as
many smart cards and CPUs provide hardware acceleration for AES. To con-
struct Fn using a block cipher, we apply the Matyas-Meyer-Oseas (MMO) con-
struction [MMO85] in a manner similar to [BDH11]. The MMO construction
was shown to be secure by Black et al. [BRS02]. Assume we have a block cipher
En : {0, 1}n × {0, 1}n → {0, 1}n with block and key size n. Then we construct
Fn with key space K = {0, 1}n defining the elements of Fn as fk(x) = Ek(x)⊕x
where EK(M) denotes an evaluation of E using key K and message M . So, one
evaluation of fk takes either one evaluation of the used hash function or one
evaluation of the underlying block cipher.

4.2 Performance Comparison

We now compare the performance of W-OTS+ with that of the schemes from
[DSS05] and [BDE+11] which we call W-OTSCR and W-OTSPRF , respectively.
Comparing W-OTS+ with W-OTSCR, the most important point is, that
W-OTSCR requires an undetectable collision resistant hash function. While this
is a strictly stronger security requirement, it also has practical implications.
Namely, collision resistance is threatened by birthday attacks. Hence, to achieve
a security level of b bits, a hash function with n = 2b bits output size is re-
quired. This leads to larger signatures and slows down the scheme, as in general
hash functions get slower with increased output size. It is possible to reach the
same signature size as for W-OTS+ using a greater w, but this further slows
down the scheme. On the other hand, the W-OTS+ public key is bigger than
that of W-OTSCR which has only �n bits. This is because of the randomization
elements. But as we will show later, this is of no relevance in many practical
scenarios as we can reuse randomness.

Comparing W-OTS+ with W-OTSPRF , the differences are more subtle.
First, looking at the instantiations, when using a hash function H to instan-
tiate W-OTSPRF , two evaluations of H are needed per evaluation of Fn (see
[BDH11]) in contrast to one for W-OTS+. So the runtimes are doubled in this
case. For a block cipher based instantiation the runtimes are the same. Second,
at a first glance the sizes of both schemes are the same, only the W-OTS+

public key contains the additional randomization elements. But the bit security
of W-OTSPRF is n − w − 1 − 2 log(�w), i.e. it contains w as a negative linear
term while the bit security of W-OTS+ only looses a term logarithmic in w. In
practice, the consequence of this difference is that the possible choices for w are
limited if we target a certain bit security. This is best illustrated in the following
example. Table 1 shows sizes and runtimes for a signature size below 1kB at a
security level of 100 bit or more. Using W-OTSPRF it is simply impossible to
achieve a signature size below 1kB at 100 bit security. For W-OTSCR it is theo-
retically possible, but one needs more than 10 times the number of evaluations
of Fn which are also slower because of the bigger n.
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Table 1. Parameters for signatures below 1kB for message length m = 256 and security
level b ≥ 100. For W-OTSPRF this is impossible so we give the best possible signature
size for b ≥ 100. Runtime is given in number of evaluations of Fn. As key generation,
signature and verification times are the same, we only included the signature time tSign.

n w |σ| tSign b

W-OTS+ 128 21 992 1,302 113
W-OTSCR 256 455 992 14,105 128
W-OTSPRF 128 8 1,440 720 100

4.3 Impact on XMSS and XMSS+

OTS have numerous applications. The application that motivated this work is us-
age in hash-based signature schemes. Current hash-based signature schemes like
XMSS [BDH11] and XMSS+ [HBB13] are based on W-OTSPRF which turned
out to be the best choice for an OTS so far. In the following we will shortly dis-
cuss what happens if we replace W-OTSPRF by W-OTS+. We do not describe
XMSS and XMSS+ in detail due to the constrained space and refer the reader to
the original papers. Table 2 shows a table from [HBB13] where we recomputed
the results for the case that W-OTS+ is used. Where the values changed, we
included the old values for W-OTSPRF in brackets. The table shows, that in
most cases the public key of the overall scheme does not change. The reason is
that XMSS and XMSS+ public keys already contain public randomization ele-
ments that can be reused. There is only one case where randomization elements
have to be added. We assume that the runtimes do not change. The W-OTSPRF

Table 2. Results for XMSS and XMSS+ using W-OTS+ for message length m = 256
on an Infineon SLE78. We use the same k and w for both trees. b denotes the security
level in bits. The signature times are worst case times. Numbers in brackets are the
values when using W-OTSPRF .

Timings (ms) Sizes (byte)
Scheme h k w KeyGen Sign Verify Secret key Public key Signature b

XMSS+ 16 2 4 5,600 106 25 3,760 544 3,476 96 (85)
XMSS+ 16 2 8 5,800 105 21 3,376 512 2,436 95 (81)
XMSS+ 16 2 16 6,700 118 22 3,200 512 1,892 93 (71)
XMSS+ 16 2 32 10,500 173 28 3,056 544 (480) 1,588 92 (54)
XMSS+ 20 4 4 22,200 106 25 4,303 608 3,540 92 (81)
XMSS+ 20 4 8 22,800 105 21 3,920 576 2,500 91 (77)
XMSS+ 20 4 16 28,300 124 22 3,744 576 1,956 89 (67)
XMSS+ 20 4 32 41,500 176 28 3,600 544 1,652 88 (50)

XMSS 10 4 4 14,600 86 22 1,680 608 2,292 103 (92)
XMSS 10 4 16 18,800 100 17 1,648 576 1,236 100 (78)
XMSS 16 4 4 925,400 134 23 2,448 800 2,388 97 (86)
XMSS 16 4 16 1,199,100 159 18 2,416 768 1,332 94 (72)
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function chains were implemented using one AES encryption per iteration. As
shown above the same can be done for W-OTS+, requiring one additional xor
operation per AES evaluation. This should not lead any recognizable overhead.
Moreover, the table shows that certain parameter sets — those with small signa-
tures — have a very low level of security when using W-OTSPRF . In practice a
scheme has to provide at least a security level of 80 bits. Hence, these parameter
sets could not be used before. Using W-OTS+, the same parameter sets now lead
to a level of security above 80 bits. Hence, they can now be used in practice.

5 Conclusion

In this work we introducedW-OTS+. We proved its security, showed how to com-
pute the security level of a given parameter set and discussed possible practical
instantiations. As shown in the last section, W-OTS+ can be used to decrease
the signature size of hash-based signature schemes significantly without lowering
the security of the scheme. I.e. we can decrease the signature size by 50% for
XMSS+ at a security level of 80 bits. Hopefully this leads to a broader accep-
tance of hash-based signature schemes, as the signature size was so far assumed
to be the main drawback of these schemes. The only drawback of W-OTS+

compared to previous W-OTS variants is the increased public key size. As for
the case of hash-based signature schemes, it might be possible to reuse public
randomness in other scenarios to mitigate this, too. An interesting question we
left open is whether the existance of a one-way function implies the existence of
a second-preimage resistant family of undetectable one-way functions.
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Abstract. Since the introduction of the CUDA programming model,
GPUs are considered a viable platform for accelerating non-graphical ap-
plications. Many cryptographic algorithms have been reported to achieve
remarkable performance speedups, especially block ciphers. For stream
ciphers, however, the lack of reported GPU acceleration endeavors is
due to their inherent iterative structures that prohibit parallelization.
In this paper, we propose an efficient implementation methodology for
data-parallel cryptographic functions in a batch processing fashion on
modern GPUs in general and optimizations for Salsa20 in particular. We
present an autotuning framework to reach the most optimized set of de-
vice and application parameters for Salsa20 kernel variants with through-
put maximization as a figure of merit. The peak performance achieved
by our implementation for Salsa20/12 is 2.7 GBps and 43.44 GBps with
and without memory transfers respectively on NVIDIA GeForce GTX
590. These figures beat the fastest reported GPU implementation of any
stream cipher in the eSTREAM portfolio including Salsa20/12, as well
as the block cipher AES optimized by hand-tuning, and thus, to the best
of our knowledge set a new speed record.

Keywords: CUDA, eSTREAM, GPU, Salsa20, Salsa20/r, stream
cipher.

1 Introduction and Motivation

Performance enhancement on a GPU is a function of the extent of parallelism
within the application. In case of symmetric block ciphers, for the encryption
of long messages, the plaintext is first partitioned into chunks of the cipher’s
blocksize and then encrypted. For avoiding the weakness of generating iden-
tical ciphertexts for identical plaintext blocks, chaining dependencies between
adjacent plaintext blocks are added, defined by modes of operations. The ci-
phertext Ci for the ith plaintext block Pi under different modes of operations is
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given below. Here IV stands for the Initialization Vector and Ek stands for the
encryption function parametrized by the secret key k.

Operation Mode Ci

Electronic codebook (ECB) Ek(Pi)
Counter (CTR) Pi ⊕ Ek(nonce, counter)

Cipher block chaining (CBC) Ek(Pi ⊕ Ci−1), C0 = IV
Propagating CBC (PCBC) Ek(Pi ⊕ Pi−1 ⊕ Ci−1), P0 ⊕ C0 = IV
Cipher feedback (CFB) Ek(Ci−1)⊕ Pi, C0 = IV

Observe that all the modes of operation of block ciphers are not parallelizable.
The ECB and CTR modes of operation pose encryption as a massively parallel
problem with all the plaintext blocks being available for simultaneous encryp-
tion without any dependency. However, in CBC, PCBC and CFB modes, due
to the dependency or a “carry over” from the previous block, the encryption
must progress sequentially on a block by block basis. Consequently, almost all
the results of GPU based acceleration undertake block cipher encryption or de-
cryption in Electronic Codebook (ECB) or Counter (CTR) mode for which the
inter-dependency between data blocks does not exist and a parallel encryption
of blocks of plaintext data is possible.

The use of stream ciphers is best suited for applications requiring high through-
put and where the amount of data is either unknown, or continuous. A block
cipher is generic in nature and can be used as a stream cipher in CTR mode. In
comparison to block ciphers, stream ciphers are simpler and faster and typically
execute at a higher speed than block ciphers [3]. Using a block cipher as a stream
ciphers is therefore an overkill and consequently, results in a lower throughput
of encryption in comparison. For example, on a Core 2 Intel processor, 20 rounds
of Salsa20 stream cipher run at 3.93 cycles/byte, while 10 rounds of AES block
cipher are reported to run more than twice as slow at 9.2 cycles/byte for long
data streams (bitsliced AES-CTR) [2]. In this paper, we focus on the GPU
implementation of Salsa20 series [4] of stream ciphers.

1.1 Why Salsa20?

The eSTREAM [1] competition was created to attract stream ciphers in two
separate profiles, namely for software and hardware platforms. Out of 34 initial
submissions, four software stream ciphers, namely, HC-128, Rabbit, Salsa20/12,
SOSEMANUK and three hardware stream ciphers, namely, Grain v1, MICKEY
2.0 and Trivium made into the final portfolio [1]. Unlike the parallelizable modes
of operations defined for block ciphers, most stream ciphers do not have the lib-
erty of employing the “divide and rule” policy on chunks of plaintext and exhort
parallelism on GPUs. Their highly iterative structures have inter-dependencies
on subsequent keystream values generated.

For example, in case of HC-128 [14], the limitation on parallelization of the
keystream generation routine from two S-boxes P andQ is severe. This is because
there are inter-S-box as well as intra-S-box dependencies. The update of the
values in S-boxes is a function of previous index values in the array (update
of Q[j] requires Q[j � 3], Q[j � 10] and Q[j � 511], where � is subtraction
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modulo 512). This limitation renders no more than 3 parallel threads deployment
to ensure correctness of results [8]. The other five eSTREAM finalists are also
no different. The update of the internal states for generation of next block of
keystream is dependent on its previous values.

Salsa20 [4] has an edge over the rest of the stream ciphers for mapping on
GPUs, since it has no chaining or dependence between blocks of data dur-
ing encryption / decryption. Hence a large number of parallel homogeneous
threads can be subjected to plaintext data chunks enabling instruction execu-
tion in a Single Instruction Multiple Thread (SIMT) fashion exploiting well
the parallelism offered by many-core architecture of GPUs. Each block takes
a nonce, a secret key, constants and a counter and combines them to gener-
ate a block of keystream. For additive stream ciphers the keystream generation
is independent of the plaintext. For generating ciphertext, keystream is sim-
ply XOR-ed with the plaintext. This property motivated us to take up and
report an efficient implementation of Salsa20 stream ciphers on recent graphics
hardware.

1.2 Why Autotuning?

Another motivation of the work was the development of an autotuning frame-
work for cryptographic kernels with optimization of throughput performance
in mind. The recommended autotuning framework can tune optimally to other
and newer devices of NVIDIA GPUs and can be extended to other cryptographic
algorithms. The need of such autotuners is emphasized by the fact that consider-
ing device occupancy as a figure of merit is not guaranteed to achieve maximized
throughput. Extensive experimentation is recommended with variation of factors
like register usage, thread-block sizes, loop unroll factor etc. The implementa-
tion results after autotuning stand out in performance compared to hand-tuned
codes for Salsa20.

Autotuning methodologies for multi-core devices are gaining popularity since
hand-tuning a large number of parameters optimally for an algorithm on a ma-
chine is hard. Most of these autotuning efforts are limited to either a class of
similar algorithms, a family of similar devices or an optimization strategy of
one parameter for performance enhancement. Murthy et al. studied the effect
of loop unrolling on various GPGPU programs and claimed 70 percent better
throughput by optimally unrolling iterations [11]. A class of algorithms exten-
sively undertaken for autotuning is General Matrix Multiply (GEMM), a part
of Basic Linear Algebra Subprograms (BLAS) for matrix multiplication [18].
Kurzak et al. presented the optimized choice of tiling and thread arrangement
for various versions of GEMM mapped on Fermi family of NVIDIA GPUs [9].
Our autotuning framework is similar in spirit to their work, however specialized
for symmetric cryptographic schemes, for which no autotuning endeavors have
been reported so far.
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1.3 Our Contributions

The major contributions of our work are summarized as follows.

(1) We introduce a batch processing framework for processing any parallelizable
cryptographic task in a hybrid CPU-GPU environment.

(2) We recommend a better memory hierarchy utilization for Salsa20 kernels,
i.e., use of constant memory instead of shared memory for keeping the initial
state vector for Salsa20 (boosting throughput considerably).

(3) We propose an autotuning framework for Salsa20 kernels with two goals
in mind: fast device portability and selection of application-specific, device-
specific and compiler-specific optimization parameters for throughput max-
imization. Performance tuning by various parameter search space genera-
tion and pruning is generic enough to be extended to other cryptographic
schemes, for which no autotuning framework has been reported.

(4) Throughput curves for very long message streams encrypted by Salsa20/r,
with and without memory transfers are presented. We hereby report so far
the fastest implementation results for Salsa20 variants mapped on any GPU.

2 Parallelism Opportunities of Salsa20 in GPUs

We begin with a functional description of the Salsa20 stream cipher, followed
by an overview of the CUDA programming model for NVIDIA GPUs. Then
we connect these two by critically analyzing the parallelization opportunities of
Salsa20 in GPU.

2.1 Description of Salsa20

Salsa20 accepts four types of inputs, each consisting of 32-bit words: an input
key of either 256-bit (k0, k1, ..., k7) or 128-bit (k4 = k0, ..., k7 = k3) size, a 64-bit
nonce (n0, n1), a 64-bit counter (t0, t1) and four words of pre-defined constants
φi, whose values are dependent upon the key size.

Initialization. These inputs are arranged in a predefined order into a 4x4 state
vector X , as follows.

X =

⎛
⎜⎝

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

⎞
⎟⎠ =

⎛
⎜⎝

φ0 k0 k1 k2

k3 φ1 n0 n1

t0 t1 φ2 k4

k5 k6 k7 φ3

⎞
⎟⎠ .

Keystream Generation. The state vector is subjected to a series of rounds
composed of additions, cyclic rotations and XORs, to achieve a random per-
mutation. Originally, the number of rounds was set to 20 (Salsa20/r, r=20);
however, the version included in the eSTREAM portfolio [1], it was reduced to
12 rounds, for performance reasons.

Then Salsa20/r function for keystream generation can be represented
mathematically as:
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Salsa20k(X)=DoubleRoundr/2(X)+X, with DoubleRound(X) =RowRound(ColumnRound(X)).

Each double round comprises of four QuarterRounds (in short, QR) performed
first on the columns of the state vector X and then on the rows of the output.

Y = (y0, y1, ..., y15) = ColumnRound(X), and Z = (z0, z1, ..., z15) = RowRound(Y ), where
(y0, y4, y8, y12) = QR(x0, x4, x8, x12), (y5, y9, y13, y1) = QR(x5, x9, x13, x1),
(y10, y14, y2, y6) = QR(x10, x14, x2, x6), (y15, y3, y7, y11) = QR(x15, x3, x7, x11),

(z0, z1, z2, z3) = QR(y0, y1, y2, y3), (z5, z6, z7, z4) = QR(y5, y6, y7, y4),

(z10, z11, z8, z9) = QR(y10, y11, y8, y9), (z15, z12, z13, z14) = QR(y15, y12, y13, y14).

Each QuarterRound(a, b, c, d) consists of four ARXrounds, comprising of addi-
tions (A), cyclic rotations (R) and XOR (X) operations only, as below:

b = b⊕ ((a + d) ≪ 7), c = c⊕ ((b + a) ≪ 9), d = d⊕ ((c + b) ≪ 13), a = a⊕ ((d + c) ≪ 18).

Encryption and Decryption. A 16-word ciphertext block C is calculated sim-
ply by bitwise XOR-ing a 16-word plaintext block P with the 16-word keystream
block S. On the receiver side, the same keystream, when bitwise XOR-ed with
the ciphertext C, reproduces the plaintext P .

2.2 CUDA Programming Model Overview

CUDA defines a convenient programming model for heterogeneous computing
environment for a CPU host and GPU device. This section briefly presents
NVIDIA GPU architecture and its programming environment. The reader is
kindly referred to CUDA C programming guide [16] and Fermi Architecture
manual [15] for more information.

Execution Model. CUDA device execution model is depicted in Fig. 1. Parallel
portions of an application, executed on the device are called kernels. A Kernel
call launches a number of threads, each executing the same code but having a
unique threadID. Threads are forwarded to the CUDA device in groups called
warps for execution. A threadblock is a batch of threads that may or may not
cooperate with each other by sharing data or by synchronizing their execution.
Threads from different threadblocks cannot cooperate.

Kernels are launched in grids for execution, comprising of one or more
threadblocks. The grid dimensions are specified by blocksPerGrid and
threadsPerBlock. A CUDA device consists of several Streaming Multiproces-
sors (SM), each responsible for handling one or more blocks in a grid. Threads
in a block are not divided across multiple SMs.

Memory Model. CUDA provides explicit methods to organize memory archi-
tecture. Local variables within a kernel reside in registers (regs) or in the off-chip
local memory (lmem). Shared memory (shmem) is shared by each threadblock.
Global memory (gmem) is accessible by all threads as well as host. The lifetime
of global memory is from allocation to de-allocation by the host. However, for
the other memories mentioned, the lifetime is only during the kernel execution.
Other than these memories, each thread within a grid can access read-only, con-
stant and texture memories. These memories can be modified from the host only,
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Fig. 1. CUDA GPU execution model [16]

and are useful for storing immutable data structures like lookup tables. The per-
formance of any algorithmic implementation on the GPUs depends heavily on
the proper utilization of this memory hierarchy.

2.3 Analyzing Parallelism Opportunities of Salsa20

The immense parallelism offered by the GPUs for acceleration can be better
harnessed by a careful study of the parallelism opportunities offered by the ap-
plication intended for mapping on it. The degree of parallelism also effects the
potential throughput performance achievable after mapping. For Salsa20, we ob-
serve two categories of parallelism.

Functional Parallelism. As evident from Section 2.1, each block of 64 bytes
of Salsa20 keystream can be independently generated and mixed with data
to get the ciphertext. Salsa20/r has r/2 DoubleRounds, each comprising of
a ColumnRound and a RowRound. These Column or Row-Rounds undergo 4
ARXrounds for each row/column. Hence a total of 16×r invertible ARXrounds
complete the keystream generation for one block of Salsa20/r. A CUDA compat-
ible device, capable of launching t parallel threads, each undertaking one data
block of plaintext, will give a throughput of (t× 64)/(16× r×α) Bytes/sec if α
is the time taken for one ARXround as depicted in Fig. 2. We ignore the final
addition of DoubleRound output with the state vector for keystream generation
since its overhead is negligible in comparison.

Data Parallelism. In Salsa20, each QuarterRound operates on either a row
or a column of the 4x4 array. Each of the four ARXrounds constitutes of a
QuarterRound, modifying exactly one value of that row or column. Hence 4
parallel QuarterRounds can be executed due to absence of inter-column/row
dependence. Consequently, 16 × r transformations of one Salsa20 block can be
broken down as 4 × r transformations mapped on 4 parallel threads giving a
throughput of (t × 64)/(4 × r × α) Bytes/sec, or 4 times higher than a single
thread per block mapping. Exploiting further parallelism within one ARXround
is not possible due to dependence of XOR (X) operation on the output of rotation
(R) and addition (A) as shown in Fig. 2.
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Fig. 2. Parallelism in Salsa20/r

For coding Salsa20 kernels employing functional parallelism (one thread per
data block), internal registers and shared memory were used for storing re-
sults of DoubleRounds and X respectively. For manipulating data parallelism
(four threads per data block) inter-thread communication is required within the
threads of a threadblock. Therefore the results of DoubleRounds are also held
in shared memory. For this implementation the need of thread-synchronization
makes it lag behind in performance compared to single thread per block imple-
mentation. Experimentation of mapping AES on GPUs with different granulari-
ties also conform to our findings, as the best throughput performance is achieved
when no synchronization is required between different threads [10,7]. Another
reason for avoiding intra-block synchronization is that for most GPU devices is
as follows. The limited number of shared memory limits instruction-level paral-
lelism by restricting the number of threads launched, lowering occupancy. Hence,
for the rest of the discussion, we consider only the single thread per data block
implementation due to its superior throughput performance.

3 Batch Processing Framework

Salsa20 algorithm is a classic case of a parallelizable application, for which per-
formance is dependent on the amount of parallel work received. For all such
applications, a batch processing framework of operation is recommended. It is
termed batch processing, since a batch of threads work simultaneously to encrypt
one data block each and iterating in a loop for encryption of more plaintext. The
batch of active threads die when all the data to be encrypted is exhausted.

3.1 CPU-GPU Interaction

Algorithm 1 explains the batch processing framework for encryption or decryp-
tion in a hybrid environment (CPU-GPU). We consider plaintext (P ), given
as 1-D data to be the input to the application. Inputs to the framework for
Salsa20 encryption have already been explained in the functional description of
the algorithm in Section 2.1. The byte-length of a data block for encryption or
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decryption is called the blocksize. The initial state vector (X) is set up at the
host machine using algorithm specific Initialization routine and transferred to
the global memory (gmem). Assuming encryption of P having size larger than
global memory (gmem) size, P is divided into chunks equal to size of gmem,
termed as Pk. Every kth iteration encrypts a portion of plaintext Pk into an
equal sized ciphertext Ck (line no. 3). For simplicity, we assume the total size
of plaintext to be a multiple of the size of gmem, in case of non-conformity,
the number of data blocks forwarded to kernel for encryption is changed to the
residue after division with size(gmem) in the last iteration. For Salsa20, X is
a 16-word array and its subscript represents its existence location, i.e., h, g, s, r
representing host, global memory, shared memory and registers respectively. Af-
ter the transfer of Pk to device’s gmem, launch of kernel is kick-started in an
iterative fashion. One batch of threads or threadsPerGrid, executed in parallel
on device, is blocksPerGrid × threadsPerBlock. In every iteration, when the
kernel call is terminated, gmem contains the cipher text, that must be read out
by the host (line no. 7) before writing the next plaintext chunk into the device
memory (line no. 4).

Input: key(k), nonce(n), counter(t), constants(φi), rounds, blocksize, plaintext(P )
Output: ciphertext (C)

1 Xh = Initialization(key, constants, counter, nonce);
2 Xh : host⇒ gmem;

3 for k=1 to  size(P)
size(gmem)

� step 1 do

4 Pk : host⇒ gmem;
5 Salsa20 kernel ≪ blocksPerGrid, threadsPerBlock ≫

(rounds, size(gmem)/blocksize);
6 Xg : gmem ⇒ host;
7 Ck : gmem ⇒ host;

end

Algorithm 1. Batch processing for a cryptographic kernel

3.2 The CUDA Kernel

Algorithm 2 is the CUDA kernel call and is executed on the GPU device. Al-
though CUDA kernel functions do not have any output, the algorithm represents
a pseudo-code and the output specified is not the output of the kernel function.
Two local variables called counter and batch are declared and initialized, contain-
ing the unique threadID and the total number of threads in a batch respectively.
Variable counter is used to update the counter in the state vector of Salsa20,
incremented by the variable batch after every iteration. When a thread finishes
encrypting a block, it encrypts again the block corresponding to that thread
index plus the total number of active threads running (batch), which is constant
and device dependent.

The state vector, residing in global memory, is first copied to faster shmem.
As the size of global memory of newer NVIDIA GPUs is in GBs, a single batch
of parallel threads each encrypting one data block, will not finish up the Pk,
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Input: rounds, dataBlocks, plaintext(Pk)
Output: ciphertext (Ck)

1 counter = blockDim.x ∗ blockIdx.x+ threadIdx.x;
2 batch = gridDim.x× blockDim.x;
3 Xg : gmem⇒ shmem;

4 for i=1 to dataBlocks step dataBlocks
batch do

5 Xs = Xs + counter;
6 Xs : shmem⇒ regs;
7 for j=1 to rounds step 2 do
8 stater = DoubleRound(stater );

end
9 Si = Xs ⊕ stater ;

10 Pki : gmem ⇒ regs;
11 Cki = Pki ⊕ Si;
12 Cki : regs⇒ gmem;
13 counter+ = batch

end
14 Xs : shmem ⇒ gmem;

Algorithm 2. Salsa20 kernel

requiring iterations over variable i, as given in line no. 4. Here too, for the sake
of simplicity, we consider the number of dataBlocks forwarded to the kernel for
encryption or decryption to be a multiple of batch of threads. In case of non-
conformity, the pseudo code can be modified to launch lesser number of threads
in the batch in the last iteration. The state vector is updated with the counter
value as given in line no. 5. Since threadID is different for each thread in a batch,
all threads get a different state vector. The variable stater refers to the register
copy of the state vector (it is copied from shmem to regs in line no. 6).

The value of rounds is either 8, 12 or 20 for various flavors of Salsa20/r. A
copy of stater in thread-local registers apply DoubleRound transformations for
rounds

2 times. One block of keystream, generated by XOR-ing the state vector
with its transformed copy in local registers (line no. 9), is held in Si.

The last step is the encryption of the plaintext with the generated keystream.
Plaintext is read from gmem, one block at a time (Pki), XOR-ed with the gener-
ated keystream to produce a block of ciphertext (Cki) and then is written back
to gmem. Saving of state vector into gmem is required before exiting the kernel,
since its lifetime in shared memory lasts only as long as threadblock’s lifetime.

3.3 Programming Recommendations

CUDA programmers are recommended to follow the guides [16,17] to achieve
the best performance. We summarize some more relevant recommendations for
good throughput performance when Algorithm 1 and 2 are mapped onto a GPU.

Avoiding threadBlock Switching Overhead. Each kernel launch on the de-
vice bears overheads of a kernel call, memory allocation and argument copying
into the device. If the amount of work per kernel is small in comparison to the
total workload, the run-time of the application is dominated by these overheads
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instead of the actual computation time. In order to decrease these overheads,
the amount of work per kernel call should be increased. Hence we resort to it-
erations computed inside a kernel call (loop indexed with i in Algorithm 2) to
continue as long as the entire workload is finished instead of launching a new
batch of threads. This strategy amortizes the overhead of multiple kernel calls
across more computation and boosts throughput.

Reuse Memory. For cryptographic applications, the plaintext Pk once handed
over to the device is not needed back by the host device. A prudent decision is
to overwrite the plaintext with ciphertext in the gmem. It saves the iterations
of loop indexed by k by half in Algorithm 1.

Data Coalescing: Global memory accesses incur a 100x access penalty com-
pared to kernel local registers [16]. If these accesses are close to each other and
dispatched in a group, they are coalesced as a single access. The device can read
4-byte, 8-byte, or 16-byte words from global memory into registers in a single
instruction. Mixing of plaintext for generating ciphertext requires reading, XOR-
ing with keystream and writing back into the global memory as given by line
no.s 10, 11 and 12 respectively (in Algorithm 2). Maximum memory coalescing
that the device supports gives good saving in access time.

Autotune. The choice of grid dimensions, blocksPerGrid and threadsPerBlock
is critical since it affects the throughput. It is discussed in detail in Section 4.

3.4 Optimization for Salsa20

For a given key, the initial state vector for multiple blocks of Salsa20 encryption
remains the same except for a counter value, that is incremented for each block.
Hence it can be treated as a constant array, while the counter is taken care of by
each thread kernel individually by its threadID. Keeping the initial state vector
in fast read-only constant memory, instead of shared memory, is therefore useful
as constant memory is optimized for broadcast due to data coalescing. Since
each block of Salsa20 requires reading of initial state vector twice, once before
the DoubleRound iterations and once after it (line no. 6 and 9 respectively
in Algorithm 2), the use of constant memory is highly suited. CUDA specific
function cudaMemcpyToSymbol writes the initial state vector in the constant
memory. This strategy cannot be generalized to all ciphers. However, a prudent
use of a faster memory, whenever applicable, always enhances performance for
CUDA applications. This factor alone boosts the peak throughput for Salsa20/12
(for 1 GB of plaintext) by 4 GBps.

4 Autotuning Framework for Performance Optimizations

In context of a CUDA back-end application, our autotuning framework auto-
matically chooses tunable parameters of application mapping with the aim of
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improving a designated Figure of Merit (FoM). The tunable parameters may
be application specific, device dependent or compiler optimizations. Finding the
optimal values of these parameters may require extensive experimentation on a
case-by-case basis. Apart from promising a performance boost, another reason
for developing an autotuning framework is the provision of portability across dif-
ferent devices belonging to the same architecture family. Some common figures
of merit are listed below.

Occupancy. Device occupancy (or concurrency) is the ratio of active resident
threads to the maximum number of resident threads whose resources can be
stored on-chip simultaneously. Occupancy serves as a guideline for performance,
but does not guarantee optimized throughput.

GFLOPs. Comparison of application’s GFLOPs (Giga FLoating point Opera-
tions Per Second) against peak GFLOPs specified for a device. However, peak
GFLOPs is quoted strictly for Floating point instructions.

Throughput. It is the measured output rate (Bytes/sec) of an application
using timing functions on the device. Given the application in hand, we chose it
to be our FoM.

The aim of an autotuning framework is to admit a large range of tunable
parameters to CUDA application and select the one that makes the kernel run
most efficiently. The range of these tunable parameters may be dependent on the
constraints imposed by the device, application or both. The task of identifying
what parameters should be subjected to tuning is critical, since they vary widely
between algorithms. Keeping in mind the operation flow of the framework, we
classify these parameters optimizations as Compiler-specific and Device-specific.

4.1 Device-Specific Optimizations

Device-specific optimizations are the ones that are tweakable at the runtime of
the application, e.g., device grid dimensions. The given CUDA application is
enhanced by the addition of the provision of the kernel variants being subjected
to all possible combinations of these parameters after pruning by certain checks.
Benchmarking for throughput is also added for later use. As shown in Fig. 3, en-
hancement of the application with the addition of device specific optimizations
and benchmarking provision is the first step of the autotuning framework. How-
ever, execution of these enhancements does not manifest before various compiler
optimizations have been done and multiple copies of the code executables are
ready. Final runs of these programs result in sifting the fastest implementation
with recommended parametrization choices.

Algorithm 3 gives the pseudo-code of the device specific optimizations setup.
Out of the 4 different inputs, device properties (obtained by cudaDeviceProp
function) and compute capability properties (obtained from a lookup table corre-
sponding to major and minor compute capability) are device dependent. Kernel
constraints are application dependent and are obtained after compilation of the
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Fig. 3. Autotuning Framework Flowchart

program. minOccupancy is specified by user to filter out kernels with too low
occupancy from experimentation. A higher value will prune the search space
more but might miss the fastest kernels too; a lower value, on the other hand,
will compromise on speed due to large search space for the fastest kernel.

All possible values of the two critical device parameters, threadsPerBlock and
blocksPerSM , are considered for experimentation within their permitted range
in nested loops as specified by line no. 1 and 2. Threadblock size should always be
a multiple of warpSize, because kernels issue instructions in warps. The next four
lines of code calculate the resource budget for the current configuration of the
device parameters. Total resident threadsPerSM is a product of blocksPerSM
and threadsPerBlock. The next two lines calculate the resource usage of register
and shared memory per kernel from the application specific parameters.

A kernel is subjected to experimentation with a set of possible device param-
eters configuration after pruning by 4 checks as specified from line no. 7 to 10.
Check 1 ensures that the maximum number of possible threads executable on
an SM is not exceeded. Check 2 and 3 ensure that the register budget and the
shared memory budget specific to one kernel is not exceeded. Check 4 makes
sure that the current device configuration has an occupancy higher than the
minimum specified by the user. Functions to calculate the time elapsed before
and after the kernel call are used to carryout the time duration benchmarking.

4.2 Compiler-Specific Optimizations

Compiler-specific optimizations are the ones that are subjected to the nvcc com-
piler at the compile time, e.g., preprocessor directives. As shown in Fig. 3, this
step generates a number of optimized programs, each pertaining to a possible
permutation out of the range of all the compiler-specific optimization parame-
ters. Other than getting these executables, compiler generates information re-
garding the resource usage of the application in question, i.e., global, constant
memory usage per grid, register count, local memory and shared memory usage
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Input: 4 types of inputs:
1. Device: warpSize, maxRegsPerBlock, maxShMemPerBlock, maxThreadsPerBlock,
maxSM;
2. Compute Capability: maxBlocksPerSM, maxWarpsPerSM ;
3. Kernel constraints: regsPerThread, shMemPerThread;
4. User constraints: minOccupancy.
Output: Valid parameter variants for benchmarking

1 for threadsPerBlock = warpSize to maxThreadsPerBlock step warpSize do
2 for blocksPerSM = 1 to maxBlocksPerSM step 1 do

3 threadsPerSM = blocksPerSM × threadsPerBlock;
4 regsPerSM = threadsPerSM × regsPerThread;
5 ShMemPerSM = threadsPerSM × shMemPerThread;

6 occupancy = threadsPerSM
(maxWarpsPerSM×warpSize)

;

7 Check1: threadsPerSM ≤ (maxWarpsPerSM × warpSize);
8 Check2: regsPerSM ≤ maxRegsPerBlock;
9 Check3: ShMemPerSM ≤ maxShMemPerBlock;

10 Check4: occupancy ≥ minOccupancy;

11 blocksPerGrid = maxSM × blocksPerSM ;
12 success = kernel launch ≪ blocksPerGrid, threadsPerBlock ≫

end

end

Algorithm 3. Device-specific optimizations: Search space generation and
pruning

per kernel. These resources are used as constraints during the empirical experi-
mentation before reaching the performance-optimized kernel. The two compiler-
specific optimizations applicable for the current application are loop unrolling
and restricting per kernel register budget. Both of these manifest as a compro-
mise between parallelism and register pressure.

Unroll Factor. Loop Unrolling replaces the main body of a loop with mul-
tiple copies of itself, adjusting the control logic accordingly. #pragma unroll
n is a preprocessing directive where n defines the unroll factor (n = 1 means
no unrolling, n = k means full unrolling, where the trip count of the loop is
k). On the positive side, loop unrolling results in reduced dynamic instructions
(compare and jump) count, boosting speedup. On the negative side, however,
unrolling increases the total instruction count of the loop body and leads to an
increased register pressure. Since registers are partitioned among threadblocks,
an increased use of registers per threadblock reduces the device occupancy. This
may or may not affect the throughput and requires experimentation for assur-
ance. For Salsa20, the three flavors of the algorithm iterate for 4, 6 and 10 times
for Salsa20/8, Salsa20/12 and Salsa20/20 respectively. For each of these, unroll
factor from no unrolling to maximum unrolling is considered for experimentation.

Register Budget. A CUDA programmer can force a restricted number of reg-
isters by specifying cuda-nvcc-opts=-maxrregcount R, limiting the register use to
R per kernel. Lowering register count allows increased occupancy which may
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result in increased throughput. On a negative note, it may cause spilling into
the local memory when the register limit is exceeded. The local memory is as
slow as the global memory and spilling into it can consequently cause severe
performance degradation despite the higher occupancy. For all Salsa20 kernel
variants, the register budget varies from 26 to 43 for no unrolling to maximum
unrolling. For parametrization of register budget, all the multiples of 5 within
this minimum and maximum register use are considered. Lowering the register
budget any further than the minimum limit causes spilling and hence these cases
are omitted from benchmarking.

5 Results and Discussion

In this section, we present detailed experimental results and compare them with
the available state-of-the art benchmarks.

5.1 Experimental Setup

Throughput performances of Salsa20 stream cipher is reported for NVIDIA
GeForce GTX 590, although the autotuning framework is generic enough to
cater for any Fermi NVIDIA GPU device. To quantify the speedup against a
general purpose computer, a single threaded application program written in C
was run on an AMD Phenom 1055T Processor (clockspeed 2.8 GHz) with 8 GB
of RAM and Linux operating system. For a good approximation, each experi-
ment was run 100 times and the timing results were averaged.

5.2 Search Space Generation and Pruning

Table 1 gives the possible range of parameters for the Salsa20 application kernel
for NVIDIA GeForce GTX 590. The register budget range was chosen within
the minimum and the maximum register requirements with no unroll and full
unroll respectively, in steps of 5. All possible values of the unroll factor are taken
into consideration. Grid dimension’s permitted range is dependent on the device.
Minimum occupancy was chosen to be 0.16, i.e., 256 threads per SM (256/1536),
since tests with selective lower occupancies gave inferior throughputs.

In order to give an idea of the magnitude of the possible kernel configura-
tions on which the autotuning framework carried out experimentation, some
numbers are presented. For Salsa20/20, 10 possible unroll factors generate 10

Table 1. Range of parameters for autotuning Salsa20 kernel on a GTX 590

Parameter Range

Compiler-specific optimizations
Register budget 26, 30, 35, 40, 43
Unroll factor 1, 2, ..., r/2

Device-specific optimizations
Threads per block 32, 64, ..., 1024
Blocks per SM 1, 2, ...8

Minimum occupancy 0.16
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optimized versions of the program, each a candidate for experimentation. Fur-
ther, each of them is subjected to restricted register budget to generate multiple
versions. Considering only the case of full unroll and unrestricted use of regis-
ters for Salsa20/20 kernel subjected to device specific constraints, the number
of allowed grid size combinations comes out to be 55. Extensive experimenta-
tion of all possible combinations of parameters after pruning was carried out for
benchmarking.

5.3 Compile Time Optimization of Register Pressure

To find the optimal trade-off between active concurrent threads and registers
availability per thread, two parameters have been tweaked. These are the re-
stricted use of register budget and register unrolling. Restricting the use of reg-
isters per thread was benchmarked to always have a deteriorating effect on the
throughput, in spite of increased occupancy. Changing the unroll factor, how-
ever, gives improved performance results. Fig. 4(a) gives the effect of unrolling
factor on the registers used per thread for Salsa20/8, Salsa20/12 and Salsa20/20.
Since Salsa20/20 requires 10 loop iterations of DoubleRound function, unrolling
factors range from 1 to 10. Unrolling an n-iteration loop more than n times
makes no difference and is considered by the CUDA compiler as a full unroll.
Consequently, the unrolling of Salsa20/8 and Salsa20/12 kernels show no change
after unroll factor of 4 and 6 respectively.

5.4 Register Unroll vs. Throughput

The register unrolling positively effects the throughput in general as shown in
Fig. 4(b). These results are obtained after benchmarking more than 2500 kernel
variants considering the full range of unroll factors and all grid dimensions sup-
ported by the device. Constraint of minOccupancy is applied, but register use
restriction at compile time is skipped since it does not boost the throughput.
The size of plaintext is kept 32 KB for encryption by the kernel.

Interestingly, the highest throughput for a Salsa20 kernel variant is obtained
when the inner loop is unrolled by a factor one less than the full unrolling. Con-
sidering the case of Salsa20/20, the registers used per kernel remain unchanged
till the unroll factor is raised from 1 till half of the full unroll factor, i.e., 5 as
given in Fig. 4(a). For an unroll factor of 6 to 9, the no. of registers per kernel
increases from 39 and saturates to a maximum of 43 for the full unroll. By vary-
ing the grid dimension, we find that the best throughput figures are obtained
when the unroll factor is 9. Although partially unrolled loops may require some
cleanup code to account for loop iterations that are not an exact multiple of
the unrolling factor, it may or may not decrease the performance in practice.
Hence considering a range of unroll factors for experimentation proves beneficial
in reaching the optimized performance.

Similarly, for the other flavors of Salsa20, i.e., for Salsa20/8 and Salsa20/12,
the highest throughput is achieved when unroll factor is 3 and 5 respectively, as
shown in Table 2. For these unroll factors, the register usage in the three kernels
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Fig. 4. (a) Register pressure and (b) kernel throughput against unroll factor

Table 2. Salsa20 optimized parameters for GTX 590 (32 KB plaintext)

Autotuned Hand-tuned
Kernel Unroll Threads Blocks Device Throughput Throughput Improvement
variant factor per block per SM occupancy (GBps) (GBps) (GBps)

Salsa20/8 3 448 1 0.29 48.29 45.77 2.52
Salsa20/12 5 320 2 0.41 41.14 39.91 1.23
Salsa20/20 9 512 1 0.33 26.60 24.42 2.18

restricts the occupancy of the device. With 40 registers, no more than 25 warps
can be launched on each SM for GTX 590 (register limit on the device being
32K) restricting the device occupancy to 0.52. Table 2 gives the throughput
performance with hand-tuned parametrization for maximum device occupancy.
The improvement in throughput obtained emphasizes the need of autotuning as
a necessary requirement for performance enhancement of a CUDA application.

5.5 Workload vs. Performance

Fig. 5 shows the performance of Salsa20 variants on a GTX 590 for varying
plaintext sizes. For throughput estimation, the plaintext blocksize is increased
from 1 Byte till 1 GB. For GTX 590, we cannot go beyond 1.5 GB in one batch
of plaintext encryption due to the size of the global memory (obtained from
cudaDeviceProp function). It is easy to see that the performance of Salsa20
is highly dependent on the amount of parallel work it receives. We find the

Fig. 5. Salsa20 throughput on GTX 590 for varying plaintext sizes (w/o mem trans.)
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Fig. 6. Salsa20 throughput comparison on a CPU and GPU

peak throughput performance of Salsa20/8, Salsa20/12 and Salsa20/20 to reach
51.55, 43.44 and 27.65 GBps, respectively, outperforming the best reported GPU
implementations so far.

We also took into account the overhead attributable to the plaintext data
transfer from CPU to GPU and ciphertext data transfer from GPU to CPU to get
the effective throughput, as given in Fig. 6. The peak performance for the GPU
under consideration reaches around 2.8 GBps with memory transfer overheads.
The severe drop in the throughput clearly indicates that the bottleneck in the
system is the data transfer bandwidth: PCIe bandwidth. For the host CPU, i.e.,
for AMD Phenom 1055T, the peak performance reaches 157 MBps.

5.6 Comparison with Other Works

Table 3 gives a comparison of our work on Salsa20 acceleration on GPUs with
the results presented by D. Stefan [13] and S. Neves [12]. We also compare the
performance with the fastest reported AES implementation on GPUs [7]. For a
fair comparison, we scale up the throughput figures of other devices (without
memory transfers) in accordance with our newer GPU device by considering the
number of processor cores per device. Although the processing frequency of our
device is slower in comparison, we ignore this factor for scaling the throughput
calculation. The throughputs (GBps) per core from [13,12] is (5.3/480 and
9/192), which is multiplied with the number of cores of our device (512) to get
5.7 GBps and 24 Gbps respectively. These scaled throughputs are surpassed
by our peak performance of 43.44 GBps. In [13], the maximum throughput of
5.3 GBps (without memory transfers) was achieved for Trivium and that is also
far behind (even after scaling) the throughput of our implementation. Scaling on
similar lines, the AES implementation by Iwai et al. [7] results in a throughput of
9.3 GBps which is about 4.6 times slower than our reported peak performance for
Salsa20/12. This re-scaling formula would be invalid for throughput calculation
with memory transfers, since, like most of the cryptographic algorithms, Salsa20
and AES are data intensive in nature and show performance dependence on
external memory access speed. The main factor contributing to our performance
gain is the use of constant memory instead of shared memory for keeping the copy
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Table 3. Comparison of peak performance (Tp stands for Throughput)

D. Stefan[13] S. Neves[12] This work Iwai et al.[7]
Algorithm Salsa20/12 Salsa20/12 Salsa20/12 AES

NVIDIA device GTX 295 GTX 260 GTX 590 (one GF110) GTX 285
Release (DD/MM/YYYY) 08/01/2009 16/06/2008 24/03/2011 15/01/2009

Compute Capability 1.3 1.2 2.0 1.3
Processor cores 480 192 512 240

Shader Frequency (MHz) 1242 1350 1215 1470
Threads / Block 256 256 320 512
Tp (GBps)(w/ m) - 1.3 2.8 2.8
Tp (GBps)(w/o m) 5.3 9 43.44 4.4

Scaled Tp (GBps)(w/o m) 5.7 24 43.44 9.3

of the initial state vector. Moreover, our autotuning framework to sift out the
choice of parameters maximizing throughput also helps in reaching the claimed
performance. According to Table 3, our throughput with memory transfer is
the same as the best result known for AES. However, the claimed speed of
2.8 GBps for AES with memory transfers is reported after being improved by
68% by optimization of overlapping GPU processing and data transfers [7]. Our
current framework does not support this optimization. However, the search for
an optimal transfer blocksize to hide the transfer latency is on our roadmap.

6 Conclusion

We present an autotuning framework for Salsa20 series of stream cipher. It not
only guarantees fast portability for Fermi GPUs and optimized throughput per-
formance, but it can be generalized and extended to other massive parallel cryp-
tographic operations also. Moreover, our peak throughput figure of 43.44 GBps
surpasses the fastest GPU based performance reported so far for all stream ci-
phers (both hardware and software) in the eSTREAM portfolio [12,13,8], as well
as AES in CTR mode [7].

Regarding the future work, we plan to extend our efforts in different directions.
Firstly, we intend to benchmark GPU implementation of other parallelizable
stream ciphers (e.g., ChaCha [5], a variant of Salsa20). Secondly, we plan to
extend our autotuning framework to handle plaintext data ordered as a 2-D
array for multimedia applications. Generalization of our autotuning framework
for optimizing any symmetric key cryptographic kernel is also intended.
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Abstract. Cryptanalysis mainly has public algorithms as target; how-
ever cryptanalytic effort has also been directed quite successfully to block
ciphers that contain secret components, typically S-boxes. Known ap-
proaches can only attack reduced-round variants of the target algorithms,
AES being a nice example. In this paper we present a novel cryptanalytic
attack that can recover the specification of S-boxes from algorithms that
resist to cryptanalysis, under the assumption that the attacker can work
on a pair of such block ciphers that instantiate related S-boxes. These
S-boxes satisfy the designer’s requirements but are weakly diversified;
the relationship between these unknown components is used in much
the same way as relationship between secret keys is used in related-key
attacks. This attack (called related S-box attack) can be used, under
certain assumptions, to retrieve the content of the S-boxes in practical
time. We apply our attack to two well known ciphers, AES and Camellia;
these ciphers use 8-bit S-boxes but are structurally very different, and
our attack adapts accordingly. This shows that most probably the same
can be applied to other ciphers which can be customized to instantiate
unknown 8-bit S-boxes.

1 Introduction

Block cipher design is a well developed research field; the AES contest has with-
out doubt contributed to its growth. Today, not only we have a significant num-
ber of good algorithms, we also possess criteria that can be used to design ciphers
that are robust against known cryptanalytic techniques, such as linear cryptanal-
ysis [15], differential cryptanalysis [2], algebraic attacks [11].

Those algorithms that are fully public, and withstand all cryptanalytic at-
tacks, are considered to be the best and therefore are used ubiquitously; this
is, after all, the main motivation behind the AES contest (and the SHA-3 one).
But in some cases there may be a need to keep at least part of an algorithm
private. Although this is not commonly seen as good practice, being a contra-
diction of the famous (although perhaps overestimated) Kerckhoffs principle, it
is not rarely done in practice as there may be a good justification.

Considering products such as RFIDs, smart-cards and conditional access
tokens, adversaries may be able to compromise the security of part of the sys-
tem with the ultimate goal of cloning the device (well-funded pirate organiza-
tions have the possibility and technical skills to pursue this goal). Basing the
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c© Springer-Verlag Berlin Heidelberg 2013



Cryptanalysis of AES and Camellia with Related S-boxes 209

cryptographic constructions on completely standard algorithms thus gives the
adversary an advantage because the cloning procedure is easier; assuming the ad-
versary gains complete control over the block cipher under attack, he can choose
a key value and by observing few encryptions he will be able to say which stan-
dard algorithm is used. On the other hand, an unknown algorithm forces the
attacker to fully reverse-engineer the device, a thing which is definitely more
difficult, and costly, than a partially invasive attack. Of course, the algorithms
must still be based on solid constructions, well-analyzed and characterized by
proofs of security.

In many algorithms, the S-box is a natural candidate for customization, for
several reasons. As an example, the Rijndael SPN structure can be easily cus-
tomized by replacing the standard S-box with a randomly picked 8-bit permu-
tation; the resulting cipher still maintains all the structural properties of AES
while it forces the adversary to reverse engineer an implementation to be able
to clone the circuit.

Even if the particular S-box used in Rijndael has optimal differential and lin-
ear characteristics [12], these parameters can actually be relaxed, since a large
margin of security exists with regards to classical attacks in the design of the
cipher. For instance, the expected maximum entry in the Differential Distribu-
tion Table (DDT) of a random 8-bit S-box is 16 [17], whereas the maximum
DDT value of the AES S-box is 4. This means that the probability of differen-
tial trails over 4 rounds is increased from 2−150 to 2−100, a value that anyway
render differential attacks over the full cipher impossible. Regarding algebraic
properties, a random 8-bit bijection is likely to show up no monomial charac-
terization, even if the algebraic degree will not be maximal. We also note that
the recent biclique attacks which have been shown to work on the full AES [8]
and are the most successful attack to date, combine the biclique concept with
the use of meet-in-the-middle structures, for which known differentials must be
used. These differentials are not known by the attacker if the S-box is unknown.

Thus a randomly-generated S-box (e.g. by means of a true random number
generator and application of the Knuth shuffle [14]) is expected to behave well
enough. The number of choices is extremely large; taking into account all per-
mutations on 8 bits, we have a customization space of about log2(256!) ≈ 1684
bits. Even giving the adversary the possibility to completely control the key, he
cannot recover the content of the secret S-box and use it to clone the device.
This is because in the known-key scenario the probability of differential and
linear characteristics for the AES is low enough for them to be useless [19].

Even if it is intuitive that some security is added if part of a block cipher speci-
fication is kept private, there is little available quantitative analysis of the subject
in the literature. We have to say that here we are not focusing on implementation-
based attacks, such as fault injection or side channel analysis; it is today known
that these techniques can be used to reverse engineer block ciphers, such as in
SCARE attacks [10][16][18][13] and in FIRE attacks [3]. The primary goal of this
paper is rather to consider the components of a block cipher (such as unknown
S-boxes) as another design dimension, and to introduce a new class of quite
powerful related-cipher attacks (that we call related-S-box attacks).
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Related-key attacks are today accepted as a way to expose weaknesses of
a block cipher, and are based on the fact that the adversary may know the
relationship between a pair (or a bigger set) of otherwise secret keys [5]. The
concept of related ciphers has been analyzed in [22][20], where the existence of
ciphers parameterized by variable number of rounds was exploited to determine
the value of the key. The relationship between different modes of operation has
also be considered in related cipher attacks [21].

We present here a novel type of attack which follows in these footsteps and
exploits the existence of a strong relationship between different, but unknown,
S-boxes to break the cipher1. This is, to our knowledge, the first cryptana-
lytic attack that can obtain the specification of S-boxes instantiated in block
ciphers with the strength of the AES; and under certain assumptions, we do it in
practical time.

2 The Related S-box Attack

2.1 Overview and Assumptions

Let us examine the case of AES instantiating an unknown S-box, but with usual
key-schedule, round function structure and number of rounds; let us limit our
analysis to the 128-bit key variant. Consider the following definition:

Definition 1. Two S-boxes S1, S2 : F2m → F2n are said to be δ-related if

S1(x) = S2(x) ⇔ x /∈ Δ

|Δ| = δ , 2 ≤ δ ≤ 2m

This definition may seem a bit simplistic, in the sense that it considers the
similarity between two S-boxes only in terms of the number of entries on which
they agree; this is precisely the characteristic which is used by our attack, and we
believe it is the most generic and agnostic notion of similarity. Of course one may
think about linearly equivalent S-boxes [4], or even more complex relationships.
These cases are also interesting, but the class of attacks that could stem from
them is much more limited in the number of rounds that can be attacked2.

Let us consider two identically structured block ciphers which instance two
δ-related S-boxes S1 and S2 according to the definition above; we will by anal-
ogy call them δ-related block ciphers. Note that in our definition, low values
of δ identify pairs of very similar S-boxes, and thus this parameter measures

1 By breaking here we mean that the full specification of the algorithm is retrieved,
since the goal of the attacker in our scenario is to clone the device. We assume that
all block cipher inputs (including the key) are under the attacker’s control.

2 Our relationship definition has the advantage of capturing the case where physical
attacks on memories or logic could result in few entries to be interchanged; more
in general, the S-box generation algorithms could also be attacked or poorly imple-
mented and give strongly related S-boxes as result.



Cryptanalysis of AES and Camellia with Related S-boxes 211

the degree of relationship between two S-boxes; however, recall that δ is also a
measure of the number of entries that differ between S1 and S2.

The attack starts from the simple but somewhat surprising consideration that
these two ciphers behave in the same way in a relatively large amount of cases,
depending on the value of δ and on the size and number of S-boxes. In the
general case, if we key two block ciphers with the same key k, and we encrypt
the same plaintext p, the chance of obtaining the same ciphertext is equal to the
probability that no S-box receives as input one of the values in the set Δ (no
S-box is Δ-active, in our terminology). If the block cipher contains s S-boxes,
this probability is equal to:

P (c1 = c2|p1 = p2, k1 = k2) =
(2m − δ

2m

)s

(1)

If we look at the case of AES, we have s = 200 and m = 8; if δ = 2 (the minimum
value possible for bijective S-boxes) then the probability becomes:

P (c1 = c2|p1 = p2, k1 = k2) =
(256− 2

256

)200

≈ 0.20833 (2)

so we expect that in about 1 case out of 5 we observe a collision on the ciphertext
values; in this computation we assume that all S-box inputs are uncorrelated
and uniformly distributed, which is obviously not true in practice, however this
probability is easily confirmed with experiments.

This fact seems somewhat in contradiction with the belief that a cipher like
the AES has good randomization properties and such events should intuitively
have a very low probability. If we consider the value of 2−64 as threshold for the
collision probability, we have that δ can reach the value of 50, i.e. S1 and S2 are
different for slightly less than one fifth of the values.

By looking at another well known cipher that contains 8-bit S-boxes, Camellia
[1], we note that S-box s1 is directly instantiated in the round function and key-
schedule, and also used to derive the other three S-boxes s2, s3, s4 in a way
to preserve the value of δ. Since for Camellia we have s = 192 and m = 8,
the collision probability for the different values of δ are even larger than those
of AES.

In our attack, we use this collision probability as a tool to obtain the specifi-
cation of the unknown components, i.e. the complete content of the S-boxes. The
attack scenario is the following: we assume that the attacker is able to submit
encryption queries to two δ-related block ciphers. We assume that the attacker
can re-key the two ciphers as he likes; his goal is to recover the specification
of the unknown component (the two δ-related S-boxes S1, S2). The attack we
present here works on the full AES and Camellia block ciphers and is shown to
work in practical time for δ up to 16.

Since in the attack we are mainly interested in verifying assumptions on the
first round of encryption, we use ciphertext almost collisions, i.e. pairs of cipher-
texts which differ in 8 or less byte positions. For both AES and Camellia, this
means that a difference has most likely been originated within the last round of
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encryption, and this is sufficient for our goals. The probability of having such
differentials springing from the first rounds should be around 2−64, and there-
fore if the theoretical probability of collision is significantly greater than this,
the approach will work well.

More precisely, by looking at a pair of ciphertexts obtained by encrypting the
same plaintext with two δ-related AES ciphers we can make the following list of
statements about the most probable explanation of the given observed difference
pattern:

1. If the difference between the two ciphertexts is non null on only one byte
position, then we most likely have a single Δ-active S-box in the final round
of the cipher.

2. If the difference is a full row of the byte matrix, we most likely have a single
Δ-active S-box in the key schedule computation of the last subkey (remember
that the last round of AES has no MixColumn step).

3. If the difference pattern is (embedded by) a column of the byte matrix, the
Δ-active S-box is in the round before the last.

4. If the difference is (embedded by) a double row of the byte matrix, the Δ-
active S-box is in the key schedule computation of the second-to-last subkey.

These explanations implicitly consider that the event of having a single Δ-active
S-box is much more probable than having two or more of them. Therefore, the
probability of observing an almost-collision is equal to the probability of having
zero Δ-active S-boxes among the first 160 S-boxes and at most 1 among the
remaining 40 S-boxes. This means:

P ≈
(256− δ

256

)160((256− δ

256

)40

+ 40
(256− δ

256

)39 δ

256

)
≈ 2−δ δ ≤ 16 (3)

Therefore to estimate attack workload in the rest of the paper we will use
this approximated value of the almost-collision probability; the error for δ = 8
is 2.4%.

The attack works in two phases, presented in the two sections below for both
AES and Camellia.

2.2 First Phase

The aim of the first phase is to find the complete relationship between S1 and S2,
i.e. a function T : F28 → F28 for which we have S2(T (x)) = S1(x), ∀x. Obviously
T differs from the identity function in exactly δ values. Note that the knowledge
of T says nothing about the values of S1 and S2, it is only characterizing their
relationship.

AES — In AES the input of the 16 S-boxes of the first round is a XOR
between plaintext bytes and key bytes (both controlled by the attacker); thus
we can do the following: we initialize 2m (256) counters, one for each possible
S-box input. We then submit a certain number of random (p, k) queries to the
two δ-related oracles; if the query results in a collision we increment the counters
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corresponding to the 16 inputs of the S-boxes of the first round. The counters
corresponding to the values in Δ can never be incremented, except in the case
where a difference propagating in the cipher is corrected at a later stage. Since
the probability of this event is in general negligible compared to the collision
probability, after having observed about 210 collisions, the only counters which
are left at 0 give us the S-box inputs in the Δ set. Note that this works even if
we do not know in advance the value of δ as we will simply obtain it as |Δ|. Once
we know the number and positions of the differences in the two S-boxes S1 and
S2 we proceed as follows: for all possible pair of values di, dj ∈ Δ we generate
a set of 25+δ (p, k) pairs so that all S-boxes in the first round receive random
inputs (not belonging to Δ) except one S-box, which will be fed with di in the
first cipher, and with dj in the second cipher. If S1(di) = S2(dj) we will observe
almost collisions for the set of queries, otherwise not. Once all δ(δ − 1)25+δ

queries are made we know T .
Camellia — For the Camellia cipher, we proceed in an analogous way, but

since the subkey used for the first round is obtained with 4 applications of the
round function, we cannot use them directly to obtain T . Instead, we will use the
S-boxes in the first F function in the key schedule, whose inputs are completely
controllable (key bytes are XORed with known constants). The targets are the
two s1 instances in the first F function of the key schedule, and we proceed with
the same counter strategy we used for AES; since we have to compensate for
the reduced number of S-boxes, we will need about 214+δ encryptions. In the
case of Camellia, the first phase stops here as we cannot use the same technique
we used for AES to completely characterize T (this is due to the fact that a
XOR difference pattern in a SPN network can be completely eliminated with
one Δ-active S-box, while this is not possible in a Feistel structure). However,
as we will see below, this has no impact on the attack.

The first phase requires at most 230 encryptions if δ ≤ 16 for both
algorithms.

2.3 Second Phase

The aim of the second phase is to use the knowledge we obtained on T in order
to recover the full specification of the S-boxes S1, S2.

AES — The main tool is still the possibility to produce collisions between the
two encryption oracles with non-negligible probability, and we use the subkey
XORs and the interaction between the key schedule and the round function as a
target for our attack. Since it is difficult to impose and verify conditions directly
onto the S-box values, we will work on the XOR differences within the S-box
entries; that is, we imagine to take an (unknown) entry of the S-box as reference,
and we will try to determine the (XOR) difference between this reference value
and all other S-box entries.

First, we choose the reference entry b; for simplicity we impose that b /∈ Δ.
We then generate a set of (p, k) queries of a certain kind; the key value k is the
following, where r stands for a random value (i.e. a byte value which changes
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for each pair and for each byte position), a and c are fixed byte values inside
each set:

k =

⎡
⎢⎢⎣
a⊕ (01) r r b

a r r b
a r r b
a r r b

⎤
⎥⎥⎦

The associated plaintext value in the pair is the following:

p =

⎡
⎢⎢⎣
c⊕ k(0, 0) r r r

r c⊕ k(1, 1) r r
r r c⊕ k(2, 2) r
r r r c⊕ k(3, 3)

⎤
⎥⎥⎦

where k(i, j) is the paired key byte at row i and column j; now, for each pair in
the set the input of all S-boxes of the second round is:⎡

⎢⎢⎣
S(b)⊕ S(c)⊕ a r r r
S(b)⊕ S(c)⊕ a r r r
S(b)⊕ S(c)⊕ a r r r
S(b)⊕ S(c)⊕ a r r r

⎤
⎥⎥⎦

Pairs belonging to a set have fixed value for a and c and random values for bytes
marked with r. Each set is made up by 25+δ pairs. We have a total of 216 sets
which account for all possible combinations of values for a and c.

All the pairs of one set are submitted for encryption to the two oracles; if no
almost-collision is observed, it means with high probability that the first column
of S-boxes in the second round receive an input belonging to the set Δ, i.e.

S(b)⊕ S(c)⊕ a ∈ Δ (4)

For each value of c, this happens for δ values of a that we can denote as aδi ;
let us call the set of these values A. By looking at equation 4 we easily realize
that the set Δ and the set A are the same set of values, apart from an additive
(XOR) constant, and this constant is precisely one entry of the S-box difference
table at index c taking entry at b as base. Thus we can easily reconstruct the
full XOR difference table of the S-box S1; if c ∈ Δ, we take the additional
care of remapping all values of c in the query as submitted to the first oracle
(instantiating S1) with the value T (c) in the query submitted to the second
oracle (instantiating S2). Once we have the complete XOR difference table of
S1, we just have to guess the value of S1(b) and with a mere 256 trial encryptions
we will obtain the complete content of S1; S2 is then immediately obtained as
we already know the remapping function T .

The computational cost of phase two is roughly equal to 221+δ queries to the
two ciphers. This algorithm has been implemented in C and tested to work;
it takes few minutes on a ordinary PC to recover the complete specification
of secret 8-related AES block ciphers; the search on 16-related S-boxes is still
practical (238 total encryptions). Note that we did not employ parallelization
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or dedicated HW for the search, two things which could make the algorithm
practical for even bigger values of δ.

This algorithm works on the vast majority of cases, but there are some in-
stances of the problem which are not tractable. The reason is that the set A is
not ordered with respect to Δ, in other words we have no means to discriminate
between aδi and aδj as all that we observe from the queries is that no almost
collision could be observed, i.e. that we produce some value δi on the input of
the S-boxes. Thus, when we look for the XOR constant that transforms the set
A in Δ we may end up with multiple values. Let’s try to define more precisely
the problem.

Definition 2. If we denote as σi,j the XOR difference between δi and δj, we
define the non-ordered set

Σk = σi,j |i = k (5)

Now if Σi = Σj, ∀i, j then the algorithm above is guaranteed not to work. Let’s
see a practical example.

Example 1. Let us take δ = 4, and let’s impose that σ3,4 = σ1,2. Then we have
that:

δ1 ⊕ δ2 = σ1,2

δ1 ⊕ δ3 = σ1,3

δ1 ⊕ δ4 = σ1,4

δ2 ⊕ δ1 = σ1,2

δ2 ⊕ δ3 = σ1,2 ⊕ σ1,3 = σ3,4 ⊕ σ1,3 = σ1,4

δ2 ⊕ δ4 = σ1,2 ⊕ σ1,4 = σ3,4 ⊕ σ1,4 = σ1,3

etc...

so that Σ1 = Σ2 = Σ3 = Σ4. Thus, when we look for the XOR constant that
transforms A in Δ, we will get 4 such values, only one of the four being the true
value of S(b)⊕S(c) for that given value of c. If the set Δ is randomly generated,
the chance of falling into this case is the chance that δ3 ⊕ δ4 = δ1 ⊕ δ2, i.e. one
out of 256. ��

Note that the chance of getting such a hard instance is 2−32 for δ = 8 and 2−64

for δ = 16; thus for interesting cases, we will have only a small chance of not
succeeding.

However, if we take δ = 2, our search algorithm will never work; for this
case we give here an additional step which can anyway retrieve S1 and S2,
showing that with little more effort these difficult cases can be overcome. This is
particularly interesting because additional properties of the AES algorithm are
used and because the case of 2-related S-boxes can perhaps easily be produced on
a single device by introducing faults in the S-box computation phase, targeting
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for instance a single S-box during the first round of computation. On the other
hand, the generalized solution to these hard instances is left as an open problem.

For δ = 2, we get two plausible values for each entry of the S-box XOR
difference table; moreover all values come in pairs, so for instance, and depending
on the S-box, if

S(b)⊕ S(c) ∈ {x, y} , x⊕ y = δ1 ⊕ δ2 (6)

then we also have another entry c′ for each we also have that

S(b)⊕ S(c′) ∈ {x, y} (7)

and this is because for each real difference value dS = S(b)⊕S(c) there is always
another one equal to dS ⊕ δ1 ⊕ δ2.

The problem is that we do not know which of the two options is valid for each
entry, i.e. in the end if:

S(c) = S(b)⊕ x (8)

S(c′) = S(b)⊕ y (9)

or vice versa; establishing the real difference table with this information would
cost 2126 encryption trials, as one can compare the output of each trial with that
of the two oracles (in other words we do not need to guess the XOR differences
at δ1 and δ2).

To solve this problem, we will leverage on the properties of the MixColumn
operation which is carried out in the first round. We will use this operation
to produce the δi values at the input of the second round and to establish
relationships between the possible values in the XOR difference table of the
secret S-box.

Let us choose one index of the secret S-box which is different from those
in the set {b, b̃′, δ1, δ2}; let us call this index p1, let us denote its two possible
difference values determined before as dS′(p1) and dS′′(p1) and let us call its
conjugate index p̃1 (the index with the same set of plausible difference values).
Then, consider the index p2 (or its conjugate, it does not change anything) such
that the following condition is valid:

(02) · dS′(p1)⊕ (03) · dS′(p2) = δ1 (10)

where multiplication is carried out in GF(28) using the AES polynomial. Index
p2 is unique and well determined (up to its conjugate) as:

dS′(p2) = (03)−1 · p1 ⊕ (03)−1 · (02) · dS′(p1) (11)

is an affine relationship. Note that if Equation 10 holds, then:

(02) · dS′(p1)⊕ (03) · dS′′(p2) =
= (02) · dS′(p1)⊕ (03) · dS′(p2)⊕ (03) · (δ1 ⊕ δ2) =

= δ1 ⊕ (03) · δ1 ⊕ (03) · δ2 =

= (02) · δ1 ⊕ (03) · δ2 (12)

which is always different from both δ1 and δ2 since δ1 �= δ2.
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On the other hand:

(02) · dS′′(p1)⊕ (03) · dS′′(p2) =
= (02) · dS′(p1)⊕ (02) · (δ1 ⊕ δ2)⊕ (03) · dS′(p2)⊕ (03) · (δ1 ⊕ δ2) =

= δ1 ⊕ (02) · δ1 ⊕ (03) · δ1 ⊕ (02) · δ2 ⊕ (03) · δ2 =

= δ2 (13)

and again it is easy to see that:

(02) · dS′′(p1)⊕ (03) · dS′(p2) �= {δ1, δ2} (14)

For the sake of clearness let us define the Boolean function

μ(a, b) =

{
True if (02) · a⊕ (03) · b ∈ {δ1, δ2}
False if (02) · a⊕ (03) · b /∈ {δ1, δ2}

then we can summarize the discussion above by saying that

μ(dS′(p1), dS′(p2)) ⇐⇒ μ(dS′′(p1), dS′′(p2)) (15)

μ(dS′(p1), dS′′(p2)) ⇐⇒ μ(dS′′(p1), dS′(p2)) (16)

Now consider the two real values of the difference at indexes p1 and p2, we write
them as dS(p1) and dS(p2). If we could produce the value μ(dS(p1), dS(p2)) at
the input of one S-box, we would build a set of pairs with this characteristic and
if no collision would be observed in the two oracles, then we would know that a
δi was produced, i.e. that:

dS(p1) = dS′(p1) ⇒ dS(p2) = dS′(p2) (17)

dS(p1) = dS′′(p1) ⇒ dS(p2) = dS′′(p2) (18)

and if collisions could be observed, then we would know that:

dS(p1) = dS′(p1) ⇒ dS(p2) = dS′′(p2) (19)

dS(p1) = dS′′(p1) ⇒ dS(p2) = dS′(p2) (20)

In other words, we would establish a link between the real XOR difference value
at index p1 and that at index p2 and we would decrease by one bit the search
space needed to find the real S-box table. The shape of the plaintext and key
values in every pair of such set is the following:

k =

⎡
⎢⎢⎣
(01) r r r
r r r b
r r r r
r r r r

⎤
⎥⎥⎦

such that the second subkey is:⎡
⎢⎢⎣
S(b) r r r
r r r r
r r r r
r r r r

⎤
⎥⎥⎦
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and the associated plaintext value is:

p =

⎡
⎢⎢⎣
p1 ⊕ k(0, 0) r r r

r p2 ⊕ k(1, 1) r r
r r p1 ⊕ k(2, 2) r
r r r p1 ⊕ k(3, 3)

⎤
⎥⎥⎦

Therefore at the end of the first round, right after the XOR with the second
subkey the leftmost and topmost byte in the state matrix is equal to:

S(b)⊕ (02) · S(p1)⊕ (03) · S(p2)⊕ S(p1)⊕ S(p1) =

= S(b)⊕ (02) · dS(p1)⊕ (02) · S(b)⊕ (03) · dS(p2)⊕ (03) · S(b) =
= (02) · dS(p1)⊕ (03) · dS(p2) =
= μ(dS(p1), dS(p2)) (21)

while all other bytes are random. This is exactly the value we need to obtain the
one bit of information from the set.

Once the link between p1 and p2 is established, we can iterate this procedure
taking p2 as starting point and so on; in the end, we will have established links
between all XOR differences in the table and the real difference value at index
p1. Now, to obtain the complete S-box we will have just to guess the value at the
reference index, S(b), and the XOR difference value at index p1. With an effort
of about 217 encryptions, the search space has thus been reduced to 29, which
is trivial to brute-force. The procedure has been implemented in C and tested
to work.

Camellia — The second phase of attack for the Camellia cipher is rather
different from that of AES; our target will not be the XOR difference table of
the secret S-box, we will instead retrieve the S-box itself. First, let’s take a (p, k)
query which leads to an almost-collision; we have already produced a lot of them
in the first phase of attack; in the following we will keep the value of the key
fixed at k, so that we are sure that no S-box in the key schedule is Δ-active.
Then, consider the Camellia F function. First, all input bytes are XORed with
subkey bytes (which in our analysis will be considered unknown); then they are
passed through an array of S-boxes and then through the mixing layer, known
as P function. Let us concentrate our attention on byte 5 of the F output of the
first round, which is obtained as the XOR of bytes 1,2,6,7 and 8 of the input
(after key addition and S-boxes have been applied). Let us keep the values of
the input bytes 1,2,6 and 7 to some values which lead to a ciphertext collision;
then, let us prepare 25+δ queries for each possible combination of values of input
bytes 8 and 12; byte 12 is the byte which is XORed with byte 5 of the F output
to form an input byte for the second round.

If, for a given value of input byte 8, we find that all values of byte 12 lead to
no collision, it means that we are querying the s1 S-box on byte 8 with a value
in the Δ set; this happens for exactly δ values of byte 8 and from those we can
easily obtain the value of the subkey byte which XORs with input byte 8.

On the other hand, if for a value of byte 8 we find that exactly δ values of
byte 12 lead to no collision, it means we are producing the set Δ on the input of
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the S-box in the second round. By comparing the set of these values of byte 12
with Δ, we obtain an entry of S-box s1 XORed with an unknown but constant
byte which is the combination of all unknown constant contributions from other
input bytes of round 1 and the subkey byte of round 2. So if we write down
all these values, and by making a re-arrangement implied by the subkey byte
8 we have found, we obtain an S-box table which is equal to s1 apart from an
additive constant. So with a mere additional 256 encryptions, we will recover the
complete content of s1, actually the content apart from the indexes in the set
Δ. For those, we will have to guess the correct arrangement, i.e. an additional
effort of δ! encryption trials.

The effort of phase 2 is equal to 222+δ+δ! encryptions; for δ = 16 the factorial
dominates and we have an effort of about 244 encryptions.

3 Discussion and Conclusions

Our attack is easily applicable only if the size of S-boxes is such that the collision
probability is high enough to practically employed; 8-bit S-boxes are good can-
didate. Apart from this, we have seen successful reverse engineering of two quite
different ciphers (AES and Camellia); we expect that the attack can be applied
also to other ciphers based on large S-boxes (Clefia, Twofish and Kasumi among
the others). However, if we try to apply our attack to ciphers which instance
4-bit S-boxes, we see that the collision probability is too small to be used, even
for the smallest values of δ. For example, 2-related instances of PRESENT [7]
would show a collision probability of only 2−100. This is a point in favor of such
ciphers, which are in general more compact for hardware implementations and
seem to be more flexible under this aspect.

Previous work exist on the utilization of cryptanalysis to retrieve the content
of unknown S-boxes, see for instance [9][6]. These papers present techniques
which can obtain the S-boxes of reduced-round variants of SPN ciphers. In this
paper, we take a different approach and we show that even full ciphers which are
designed to be hermetic and resistant to related cipher attacks, can be attacked,
provided that the adversary has access to at least two δ-related instances.

If instances of S-boxes are randomly chosen, the probability of success of
the presented attack is negligible. In general, we can conclude that the prob-
ability of collision between different block cipher instances should be verified
to be sufficiently low during the design phase, because it is a tool that can
be used by attackers whose goal is to obtain the complete specification of the
algorithm.

Also, care should be taken w.r.t to physical attacks, such as fault injection,
because it is imaginable that this type of attack could make a single faulty
circuit behave like a pair of δ-related ciphers. In this case an attacker may be
able to attack a single instance of unknown AES-like cipher using the techniques
presented in this paper. We think that this could be an interesting direction
for future research, especially considering the fact that FIRE attacks on AES
ciphers have not yet been developed.
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[18] Réal, D., Dubois, V., Guilloux, A.-M., Valette, F., Drissi, M.: SCARE of an Un-
known Hardware Feistel Implementation. In: Grimaud, G., Standaert, F.-X. (eds.)
CARDIS 2008. LNCS, vol. 5189, pp. 218–227. Springer, Heidelberg (2008)

[19] Sasaki, Y.: Known-Key Attacks on Rijndael with Large Blocks and Strengthening
ShiftRow Parameter. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010.
LNCS, vol. 6434, pp. 301–315. Springer, Heidelberg (2010)

[20] Sung, J., Kim, J., Lee, C., Hong, S.: Related-Cipher Attacks on Block Ciphers with
Flexible Number of Rounds. In: Research in Cryptology - 1st Western European
Workshop, WEWoRC 2005, Leuven-Heverlee,be. LNCS, p. 10. Springer (2005)

[21] Wang, D., Lin, D., Wu, W.: Related-mode attacks on ctr encryption mode. I. J.
Network Security 4(3), 282–287 (2007)

[22] Wu, H.: Related-Cipher Attacks. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.)
ICICS 2002. LNCS, vol. 2513, pp. 447–455. Springer, Heidelberg (2002)



New Results on Generalization of Roos-Type

Biases and Related Keystreams of RC4

Subhamoy Maitra1, Goutam Paul2,�, Santanu Sarkar3,��, Michael Lehmann4,
and Willi Meier4

1 Applied Statistics Unit, Indian Statistical Institute,
Kolkata 700 108, India
subho@isical.ac.in

2 Department of Computer Science and Engineering,
Jadavpur University, Kolkata 700 032, India

goutam.paul@ieee.org
3 Chennai Mathematical Institute, Chennai 603 103, India

sarkar.santanu.bir@gmail.com
4 FHNW, Windisch, Switzerland

willi.meier@fhnw.ch, michael.lehmann87@gmail.com

Abstract. The first known result on RC4 cryptanalysis (presented by
Roos in 1995) points out that the most likely value of the y-th element of
the permutation after the key scheduling algorithm (KSA) for the first
few values of y is given by SN [y] = fy , some linear combinations of the
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behaviour for the event SN [SN [y]] = fy−t of RC4 KSA in this direction.
Further, we investigate near-colliding keys that lead to related states af-
ter the KSA and related keystream bytes. Our investigation reveals that
near-colliding states do not necessarily lead to near-colliding keystreams.
From this motivation, we present a heuristic to find a related key pair
with differences in two bytes, that lead to significant matches in the initial
keystream. In the process, we discover a class of related key distinguish-
ers for RC4. The best one of these shows that given a random key and
a related one to that (the last two bytes increased and decreased by 1
respectively), the first pair of bytes corresponding to the related keys are
same with very high probability (e.g., approximately 0.011 for 16-byte
keys to 0.044 for 30-byte keys).
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1 Introduction

RC4 is perhaps the simplest of all commercial ciphers, requiring only a few lines
of code for its implementation. The cipher has been around for almost twenty five
years since Ron Rivest designed it (alleged RC4) for RSA Data Security in 1987.
In this long journey, the elegant design of RC4 and its reasonable security have
attracted the attention of many cryptologists around the world. However, none
of the existing cryptanalytic attacks on RC4 proves to be a serious threat to the
cipher and it continues to be of significant interest in the cryptology community.
The works [10, 12] summarize the entire literature of RC4 till date. This is “yet
another effort” to study certain important results in the area of RC4 cryptanal-
ysis. However, given the serious attention of several eminent researchers to this
cipher for quite a long time, it is very competitive to obtain improved results
in this area. The Roos bias [11] and the Mantin-Shamir distinguisher [7] are
among the most celebrated cryptanalytic results in RC4 research. We generalize
the first one, while improve the second in this effort. It is surprising that such
natural observations eluded the community for a long period.

Like all stream ciphers, RC4 has two components, namely, the Key Schedul-
ing Algorithm (KSA) and the Pseudo-Random Generation Algorithm (PRGA).
All operations are done modulo N = 256. The KSA uses an l-byte secret key
k[0, . . . , (l−1)] to scramble an identity permutation S over ZN . The PRGA uses
the scrambled permutation to generate a pseudo-random sequence of keystream
bytes, z1, z2, . . ., that are bitwise XOR-ed with the plaintext to generate the ci-
phertext at the sender end and bitwise XOR-ed with the ciphertext to get back
the plaintext at the receiver end.

Given the state-of-the-art cryptanalytic results, the practical range of l should
be in between 16 to 30 bytes. For ease of description, the l-byte key is expanded
into an N -byte array K[0 . . . (N − 1)], such that K[y] = k[y mod l] for any y,
0 ≤ y ≤ N − 1. Both the KSA and the PRGA uses two indices i and j to access
the permutation entries and swap a pair at every round. A brief description is
given below.

KSA(K)

Initialization:
For i = 0, . . . , N − 1

S[i] = i;
j = 0;

Scrambling :
For i = 0, . . . , N − 1

j = (j + S[i] +K[i]);
Swap(S[i], S[j]);

PRGA(S)

Initialization:
i = j = 0;

Keystream Generation Loop:
i = i+ 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

Let Sr, ir, jr denote the permutation and the two indices after round r of RC4
KSA. Thus, the initial identity permutation is given by S0 and the final permu-
tation after the KSA is given by SN . For 0 ≤ y ≤ N − 1, let
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fy =
y(y + 1)

2
+

y∑
x=0

K[x].

In 1995, Roos [11] argued that the most likely value of the y-th element of the
permutation after the KSA for the first few values of y is given by SN [y] = fy.
The experimental values of the probabilities P (SN [y] = fy) for y reported in [11]
steadily decrease from 0.37 to 0.006 as y varies from 0 to 47 and then slowly
settles down to the random association of 1/N ≈ 0.003906. Much later, the
theoretical proof appeared in [9]. While it was quite natural to explore little
deviations of events like SN [y] = fy, it was not attempted before. The way the
Roos biases appear is through the addition of the secret key bytes and the value
of the indices. The study considers swaps in the S array for once, but not more
than once. We show that looking at the number of swaps more than once reveals
that SN [y] does not only relate to fy, but also relates to fy − t, for small integer
values t.

In 2008, it was shown in [6] that not only the permutation bytes SN [y], but
the nested permutation bytes, e.g., the bytes SN [SN [y]], SN [SN [SN [y]]], and so
on, are also biased to fy. When we observe the generalization of Roos bias as
above, it is quite natural that similar biases will be observed for the nested cases
and we also prove those results generalizing the work of [6].

Another important problem related to RC4 KSA (in fact for any stream ci-
pher) is to obtain related keys. The most important question is to obtain two
different keys that will provide the same permutation after the KSA and thus,
will generate the exact same keystream. The question was first raised in [2, Sec-
tion 5.1], but the actual collision could be demonstrated in [8] for keys of length
24 bytes. This was later improved in [3] where colliding pairs for 22 byte keys
could be obtained. Note that these are only a very few examples and it is not
possible to obtain many of them in reasonable amount of computation. It is also
noted in [3, 8] that finding exact collisions for key-length of 16 bytes (which is
mostly used in practice) is computationally very hard. Thus, we look into the
problem of finding near-colliding keys that lead to near-colliding final states af-
ter the KSA for which we get related keystreams where a large number of initial
bytes match. In [4], related keys (k1, k2) of RC4 of length 256 bytes were reported
that lead to two keystreams whose many initial bytes match. These keys were of
the following form: k2[d] = k1[d] + δ, k2[d+ 1] = k1[d+ 1]− δ, where d = N − 2
and δ = 127 or 255. However, this method does not work with significant ef-
ficiency for practical key-length of 16 to 30 bytes. The kind of strategies used
in [3, 8] provides near-colliding keys quite easily, but unfortunately, the amount
of matching keystream in initial bytes is not significant. The pair of keys used
in [3, 8] differ only in one byte. Instead, we consider difference in two bytes for
this purpose.

These results, in obtaining key-pairs such that the corresponding keystreams
match significantly in initial bytes, can be used as related-key distinguishers in
the simplest sense. Given the key-length l (indexed by 0 to l−1), we consider the
keys k1 and k2 such that k2[i] = k1[i] for i ≤ l− 3, k2[l− 2] = k1[l− 2] + 1, and
k2[l−1] = k1[l−1]−1 (additions and subtractions are modulo N). Note that the
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key k1 can be chosen randomly, and then modifying k1 as explained, we obtain k2.
Applying these two related keys k1, k2 in RC4, we get the initial keystream bytes
that match significantly. In particular, to obtain the most efficient distinguisher,
we consider only the first byte in each of the keystream output and they are
equal with significantly high probability. Experiments show that the first two
bytes are same with probability 0.011 for 16-byte keys and it increases to 0.044
for 30-byte keys. For an ideal stream cipher, this probability should have been
1
N due to random association, which is 0.003906 for N = 256. For 16-byte key
length, the expected number of samples (each sample consists of the first byte
from the two related keystreams) needed to reliably mount the distinguisher
equals 138. Quite naturally, it is even better as the key length increases. For
example, for 30-byte key-length, the required number of samples is only 12.

The 2nd byte distinguisher reported in [7] was of probability 2
N , which is

less efficient than ours. It is well known that the initial keystream bytes of RC4
should not be used and thus our distinguisher (similar to all the distinguishers
of RC4 based on initial keystreams including [7]) can also be made ineffective
if the initial keystream bytes are discarded. However, given the design of the
cipher, this is the best known distinguisher against RC4.

2 Extension of Roos Biases

The Roos biases [11] relate the permutation entry SN [y] to the key combina-
tion fy. They were first reported in [11] and theoretically derived in [9]. We
recapitulate the main results below.

Proposition 1. [9, Lemma 1] If index j is pseudo-random at each KSA round,
we have for 0 ≤ y ≤ N − 1,

Pr (jy+1 = fy) ≈
1

N
+

(
1− 1

N

)1+ y(y+1)
2

.

Proposition 2. [9, Lemma 2] For 1 ≤ r ≤ N , 0 ≤ y ≤ r − 1, we have

Pr (Sr[y] = jy+1) ≈
(
1− y

N

) (
1− 1

N

)r−1
.

The Roos bias is formally stated in the following result.

Proposition 3. [9, Theorem 1] On completion of RC4 KSA, we have for 0 ≤
y ≤ N − 1,

Pr(SN [y] = fy) ≈
1

N
+

(
1− y

N

)
·
(
1− 1

N

) y(y+1)
2 +N

.

In this section, we state and prove a set of new key-correlations in RC4, which
are analogous to the biases observed by Roos [11], but address biases to the value
(fy − t) instead of fy, where 1 ≤ t < y.

The first new result, analogous to Proposition 1, is as follows.
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Theorem 1. If j is pseudo-random at each KSA round, we have for 2 ≤ y ≤
N − 1 and 1 ≤ t < y, Pr (jy+1 = fy − t) ≈ 1

N +
(
1− 1

N

)
py,t, where

py,t =
∑y−t

u=0

(
1− y

N

)
· · ·

(
1− y−u+1

N

)
· 1
N ·

(
1− y−u−1

N

)
· · ·

(
1− 1

N

)
.

Proof. Let us define the event Ay,t,u for 1 ≤ t < y and 0 ≤ u ≤ y − t as follows:
Ay,t,u : j1 /∈ {1, . . . , y}, . . ., ju /∈ {u, . . . , y}, ju+1 = u+ t, ju+2 /∈ {u+ 2, . . . , y},
. . ., jy �= y.

Note that for each u ∈ {0, . . . , y − t}, the event Ay,t,u implies that Sr[r] = r
for all 0 ≤ r ≤ y except for r = u + t, where we have Su+t[u + t] = u, instead
of u+ t. This results in jy+1 = fy − t, and thus provides a special path for our
desired event.

One may compute

Pr(Ay,t,u) =
(
1− y

N

)
. . .

(
1− y − u+ 1

N

)
1

N

(
1− y − u− 1

N

)
. . .

(
1− 1

N

)
,

and if we define Ay,t :
⋃y−t

u=0 Ay,t,u, we have the probability Pr(Ay,t) as

py,t =

y−t∑
u=0

(
1− y

N

)
· · ·

(
1− y − u+ 1

N

)
· 1

N
·
(
1− y − u− 1

N

)
· · ·

(
1− 1

N

)
.

As the event Ay,t leads to a favorable path for jy+1 = fy − t, we may write

Pr (jy+1 = fy − t) = Pr(Ay,t) · Pr (jy+1 = fy − t | Ay,t)

+Pr(Ay,t) · Pr
(
jy+1 = fy − t | Ay,t

)
≈ py,t · 1 + (1 − py,t) ·

1

N
=

1

N
+

(
1− 1

N

)
py,t,

where we assume that for Ay,t, the desired condition jy+1 = fy − t is true by
random association. ��

Remark 1. Note that the result does not hold for t = y. For example, when
t = y = 1, the event j2 = f1 − 1 occurs if and only if K[0] = 1, which holds with
probability 1

N . So in general, we take t < y.

The following result is an extension to Proposition 3, which was observed by
Roos [11].

Theorem 2. On completion of RC4 KSA, we have for 2 ≤ y ≤ N−1, 1 ≤ t < y,

Pr(SN [y] = fy − t) ≈ 1
N +

(
1− y

N

) (
1− 1

N

)N
py,t, where

py,t =
∑y−t

u=0

(
1− y

N

)
· · ·

(
1− y−u+1

N

)
· 1
N ·

(
1− y−u−1

N

)
· · ·

(
1− 1

N

)
.

Proof. We start by proving a general result for 1 ≤ t < y < r ≤ N , as follows:

Pr (Sr[y] = fy − t) ≈ 1

N
+

(
1− y

N

)(
1− 1

N

)r

py,t,

Along one path, the event (Sr[y] = fy − t) occurs if the following two conditions
are satisfied.
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1. The event Ay,t defined in the proof of Theorem 1 occurs, with probability
py,t, as before, and

2. The event (Sr[y] = jy+1) occurs, with probability
(
1− y

N

) (
1− 1

N

)r−1
, as in

Proposition 2.

Assuming the above two events are independent, the probability that both the
conditions are satisfied is given by (1− y

N )(1− 1
N )r−1py,t. If one of the condition

fails, still Sr can equal fy − t by random association, and the probability of this
path is given by (1− (1− y

N )(1− 1
N )r−1py,t) · 1

N . Adding the contributions from
the two paths, and substituting r = N , we get the result. ��

Remark 2. From the proof of Theorem 1, it is clear that the main source of the
bias towards fy−t (with t > 0) is the event Su+t[u+t] = u, instead of u+t. This
is a high probability event. To have biases towards fy + t, 1 ≤ t ≤ N − 1 − fy,
we would need Su−t[u − t] = u, which is essentially random. Our experimental
observations also support this fact.

In Table 1, we show theoretical values of Pr(SN [y] = fy − t) for some sample
values of y and t. These values closely match with the empirical values averaged
over 1 billion key schedulings, each with randomly generated 16-byte key. For a
comparative study, we list the Roos biases of Proposition 3 in the second column.

Table 1. Theoretical values of Pr(SN [y] = fy − t). These are much more significant
than the random association having probability 1

256
= 0.003906.

y t = 0 (Roos bias) t = 1 t = 2 t = 3 t = 4

10 0.288393 0.015191 0.014083 0.012970 0.011853

15 0.220008 0.016815 0.015978 0.015138 0.014295

20 0.152696 0.015733 0.015164 0.014593 0.014020

25 0.096759 0.013039 0.012692 0.012342 0.011992

30 0.056426 0.009979 0.009789 0.009597 0.009405

The idea of extending the correlation between the S array locations and the
secret key to the correlation between the keystream bytes and secret key has
been pointed out in [5] and later it has been studied in [6]. We like to summarize
the main idea behind this. We use the notation SG to denote the permutation
during the PRGA.

Proposition 4. [6, Lemma 4] Let φ be some function related to the secret key
bytes of RC4. Then, for r ≥ 1, we have Pr(zr = r − φ) = 1

N · (1 + ωr), where
Pr(SG

r−1[r] = φ) = ωr.

Now let us present the result how the keystream bytes during the PRGA rounds
provide some information about the secret keys.

Theorem 3. During RC4 PRGA, for y ≥ 2, 1 ≤ t < y, we have Pr(zy = y−fy+

t) = 1
N ·(1+ωy), where ωy = py,t

(
1− y

N

) (
1− 1

N

)N−1 (
1− 1

N

)y−1 (
1− 1

N

)
+ 1

N .
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Proof. Consider the event Ay,t occurs during KSA. So we have jy+1 = fy − t.
Now applying Proposition 2 and assuming that the y-th location during PRGA
is not touched by the index j in y − 1 rounds, we get the probability that

SG
y−1[y] = fy − t in this path is ω′y = py,t

(
1− y

N

) (
1− 1

N

)N−1 (
1− 1

N

)y−1
. On

the other hand, the event SG
y−1[y] = fy − t holds randomly with probability 1

N .
Thus, total probability

ωy = Pr(SG
y−1[y] = fy − t) = ω′y + (1− ω′y)

1

N
.

Following Proposition 4, Pr(zy = y − fy + t) = 1
N · (1 + ωy). ��

Table 2. Theoretical and Experimental values of Pr(zy = y − fy + t)

y Data t = 1 t = 2 t = 3

10
Theory 0.00396406 0.00395988 0.00395569
Exp 0.00395183 0.00394792 0.00393499

15
Theory 0.00396924 0.00396615 0.00396304
Exp 0.00395311 0.00395563 0.00393300

20
Theory 0.00396440 0.00396233 0.00396026
Exp 0.00395378 0.00394837 0.00394727

25
Theory 0.00395399 0.00395275 0.00395151
Exp 0.00393417 0.00393210 0.00392483

30
Theory 0.00394268 0.00394202 0.00394135
Exp 0.00393857 0.00393038 0.00392104

In Table 2, we compare the theoretical and experimental values of Pr(zy = y −
fy + t) for some sample values of y and t. The experimental values
are generated from 1 billion key schedulings, each with randomly generated
16-byte key.

2.1 Generalizing Nested Biases of [6]

In [6], Roos correlations were extended to nested permutation entries in the
direction that not only the elements of S have non-random association with
secret keys, but the nested elements also have significant correlations. The main
existing result in this direction is as follows.

Proposition 5. [6, Theorem 2] On completion of RC4 KSA, for 0 ≤ y ≤ 31,
Pr(SN [SN [y]] = fy) is approximately given by(

y

N
+

1

N

(
1− 1

N

)2−y
+

(
1− y

N

)2
(
1− 1

N

))(
1− 1

N

) y(y+1)
2 +2N−4

.

We have a new result analogous to that of Roos along the same line. But to
prove the main result, we first need the following two technical results for nested
indices.
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Lemma 1. For 2 ≤ y ≤ N − 1 and 1 ≤ t < y, we have

Pr ((Sy+1[Sy+1[y]] = fy − t) ∧ (Sy+1[y] ≤ y))

≈ y

N
·
(
1− 2

N

)y−1
· φy,t +

1

N
· ψy+1,y,t,

where φy,t = Pr (jy+1 = fy − t), as in Theorem 1, and ψr,y,t = Pr(Sr[y] = fy−t),
as in Theorem 2.

Proof. Note that the condition (Sy+1[y] ≤ y) implies that Sy+1[y] can only take
the values 0, 1, . . . , y. First, suppose Sy+1[y] = x, where 0 ≤ x ≤ y − 1. Then
Sy+1[Sy+1[y]] = Sy+1[x] = fy − t can occur along one path in the following way.

1. From round 1 to x (i.e., for i = 0 to x−1), index j does not touch the places
x and fy − t. Thus, after round x, Sx[x] = x and Sx[fy − t] = fy − t. This
happens with probability (N−2N )x.

2. In round x + 1 (i.e., for i = x), index jx+1 equals fy − t, and after the
swap, Sx+1[x] = fy − t and Sx+1[fy − t] = x. The probability of this event
is Pr(jx+1 = fy − t) ≈ 1/N .

3. From round x+2 to y (i.e., for i = x+1 to y−1), index j does not touch the
places x and fy − t once again. Thus, after round y, we have Sy[x] = fy − t
and Sy[fy − t] = x. This occurs with probability (N−2N )y−x−1.

4. In round y+ 1 (i.e., for i = y), index jy+1 equals fy − t, and after the swap,
Sy+1[y] = Sy[fy − t] = x and Sy+1[Sy+1[y]] = Sy+1[x] = Sy[x] = fy − t.
According to Theorem 1, this happens with probability φy,t.

Considering the above events to be independent, the probability of the joint
event

((Sy+1[Sy+1[y]] = fy − t) ∧ (Sy+1[y] = x))

can be computed as (1 − 2
N )x · 1

N · (1 − 2
N )y−x−1 · φy,t =

1
N · (1 − 2

N )y−1 · φy,t.
Summing for all x in [0, . . . , y − 1], as considered in the path above, we get

Pr ((Sy+1[Sy+1[y]] = fy − t) ∧ (Sy+1[y] ≤ y − 1)) =
y

N
·
(
1− 2

N

)y−1
· φy,t.

For the case Sy+1[y] = y, we can have Sy+1[Sy+1[y]] = Sy+1[y] = fy − t only if
fy−t = y, which happens with probability 1/N . We also require Sy+1[y] = fy−t,
which happens with probability ψy+1,y,t, obtained by substituting r = y + 1
in the expression of ψr,y,t = Pr(Sr[y] = fy − t) as computed in the proof of
Theorem 2. Hence, we have P ((Sy+1[Sy+1[y]] = fy − t) ∧ (Sy+1[y] = y)) = 1

N ·
ψy+1,y,t. Adding the contributions for Sy+1[y] ≤ y − 1 and Sy+1[y] = y, we get
the result. ��

Lemma 2. If we denote qr(y, t) = Pr ((Sr[Sr[y]] = fy − t) ∧ (Sr[y] ≤ r − 1)) for
1 ≤ r ≤ N , 2 ≤ y ≤ N − 1, and 1 ≤ t < y, then the following recurrence relation
holds:

qr(y, t) =

(
1− 2

N

)
qr−1(y, t) +

1

N

(
1− 1

N

)r−1
ψr−1,y,t +

1

N2
,
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for 1 ≤ t < y, 2 ≤ y ≤ N − 1, y + 2 ≤ r ≤ N , where ψr,y,t = Pr(Sr[y] = fy − t),
as in Theorem 2.

Proof. Then event ((Sr[Sr[y]] = fy − t) ∧ (Sr[y] ≤ r − 1)) can occur in two mu-
tually exclusive ways:

((Sr[Sr[y]] = fy − t) ∧ (Sr[y] ≤ r − 2)) and

((Sr[Sr[y]] = fy − t) ∧ (Sr[y] = r − 1)) .

We compute the contribution of each separately.
In round r, we have ir = r− 1, which does not touch the indices 0, . . . , r− 2.

Thus, the event

((Sr[Sr[y]] = fy − t) ∧ (Sr[y] ≤ r − 2))

occurs if

((Sr−1[Sr−1[y]] = fy − t) ∧ (Sr−1[y] ≤ r − 2))

occurred in the previous round (i.e., for i = r− 2) and if simultaneously we have
jr /∈ {y, Sr−1[y]}. Thus, the contribution of this path of the event is qr−1(y, t) ·
(1 − 2

N ). On the other hand, the event ((Sr[Sr[y]] = fy − t) ∧ (Sr[y] = r − 1))
may occur in one path as follows:

1. After round r− 1, we have Sr−1[r− 1] = r− 1. This happens if the location
r − 1 is not touched during the rounds i = 0, . . . , r − 2, thus occurs with
probability (1− 1

N )r−1.
2. We have Sr−1[y] = fy − t. This happens with probability ψr−1,y,t, as in

Theorem 2.

3. In the r-th round (i.e., for i = r − 1), index jr equals y causing a swap
involving the indices y and r − 1. This happens with probability 1/N .

The contribution of this path is 1
N (1− 1

N )r−1ψr−1,y,t, and the other path owing
to random association contributes 1/N2 towards the event. Adding all the con-
tributions, we get the desired result. ��

The recurrence in Lemma 2 along with the base case proved in Lemma 1
completely specifies the probabilities qr(y, t) for all 1 ≤ t < y < r ≤ N . On
solving the recurrence for r = N , we get our desired key correlation analogous
to Proposition 5, as follows.

Theorem 4. On completion of RC4 KSA, for 2 ≤ y ≤ N − 1 and 1 ≤ t < y,
Pr(SN [SN [y]] = fy − t) is approximately given by

yφy,t

N

(
1− 1

N

)2(N−2)
+

ψy+1,y,t

N

(
1− 1

N

)2(N−y−1)
+ 1

N

(
1− 1

N

)N−1 (
1− y+1

N

)
+py,t

(
1− y+1

N

) (
1− y

N

) (
1− 1

N

)2(N−1)
+ 1

2N

(
1−

(
1− 1

N

)2(N−y−1))
,

where φy,t = Pr (jy+1 = fy − t), as in Theorem 1, ψr,y,t = Pr(Sr[y] = fy − t),
as in Theorem 2, and py,t is as defined in Theorem 1.
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Proof. The recurrence in Lemma 2 can be rewritten (with a few approximations)
as

qr(y, t) = b2qr−1(y, t) + a2br−1 + cb2(r−1) + a2,

where a = 1
N , b = 1 − a = 1 − 1

N and c = 1
N

(
1− y

N

)
py,t. The solution of this

for r ≥ y + 1 is

qr(y, t) = b2(r−y−1)qy+1(y, t) + abr−1
(
1− br−y−1

)
+cb2(r−1)(r − y − 1) +

a

1 + b

(
1− b2(r−y−1)

)
.

We substitute the values of a, b, c as above, the base case qy+1(y, t) from
Lemma 1, and perform a few natural approximations to obtain the result. ��

Table 3. Theoretical values of Pr(SN [SN [y]] = fy − t)

y t = 0 (Nested Roos) t = 1 t = 2 t = 3 t = 4

10 0.105889 0.007267 0.006855 0.006441 0.006025

15 0.080614 0.007854 0.007541 0.007228 0.006914

20 0.055678 0.007434 0.007221 0.007008 0.006793

25 0.034889 0.006410 0.006280 0.006148 0.006017

30 0.019835 0.005242 0.005170 0.005097 0.005025

We already discussed in Remark 2 that for 1 ≤ t ≤ N − 1 − fy, the event
(SN [y] = fy + t) occurs with probability 1

N . The same is the case for the event
(SN [SN [y]] = fy + t). In Table 3, we show theoretical values of Pr(SN [SN [y]] =
fy − t) for some sample values of y and t. These values closely match with the
empirical values averaged over 1 billion key schedulings, each with randomly
generated 16-byte key. For a comparative study, we list the nested Roos biases
of Proposition 5 in the second column.

3 Near-Colliding States and Related Keystreams

The idea presented in [3,8] succeeded to provide a few examples of colliding key-
pairs, but those are obtained with quite significant computational effort. The
similar idea can be used to obtain near-collisions. However, it is not immediate
that near-collisions will always provide good match in initial keystream bytes. In
this section we explore how the ideas of [3,8] can be modified to obtain significant
match in the initial keystream bytes of RC4 for related keys.

Consider a key-pair whose first byte-difference occurs in position d. Note that
if one cannot access the internal state variables, then the best way to update
the key would be to use the Roos biases. We know that jd+1 = jd + Sd[d] +
k[d] ≈ jd + d + k[d]. According to Proposition 1, the most likely value of jd is

fd−1 = d(d − 1)/2 +
∑d−1

y=0 k[y]. If we want jd+1 = target, then we must set

k[d] = target− d(d+1)
2 −

∑d−1
y=0 k[y]. We will see that the approach of [3, 8] is to
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take target = d (see Table 4) and our approach is to take target = N − 1 (see
Table 5). However, if one can access the internal state variables, one can update
k[d] deterministically in both the approaches, as we will see shortly.

3.1 Analysis for Key-Pairs with One Key-Byte Difference

In [8], an algorithm is presented to find a colliding key-pair (k1, k2), such that
all the bytes are the same except k2[d] = k1[d] + 1, for some d in 0 ≤ d ≤ l − 1.
The conditions required for such a key pair to collide is tabulated in [8, Table
3] which has been summarized in [3, Table 1] noting that the conditions can be
expressed in terms of the index j corresponding to the key k1 only. We reproduce
these conditions in our notations in Table 4.

Table 4. Matsui’s j conditions corresponding to key k1 to achieve a collision

Period Range of i Class 1 conditions on j Class 2 conditions on j

1 [0, d+ 1] jd+1 = d, jd+2 = d+ l jr = d, d+ 1, r ∈ [1, d]

2 [d + 2, d+ l] jd+l+1 = d+ 2l jr = d+ l, r ∈ [d+ 3, d+ l]

· · · · · · · · · · · ·
t [d + (t− 2)l + 1, jd+(t−1)l+1 = d+ tl jr = d+ (t− 1)l, r ∈
d+ (t− 1)l] [d+ (t− 2)l + 2, d+ (t− 1)l]

· · · · · · · · · · · ·
n− 1 [d + (n− 3)l + 1, jd+(n−2)l+1 = jr = d+ (n− 2)l, r ∈

d+ (n− 2)l] (d− 1) + (n− 1)l [d+ (n− 3)l + 2, d+ (n− 2)l]

n [d + (n− 2)l + 1, jd+(n−1)l−1 = S−1
d+(n−1)l−2[d], jr = d+ (n− 1)l − 1, r ∈ [d+

d+ (n− 1)l − 1] jd+(n−1)l = d+ (n− 1)l − 1 (n− 2)l + 2, d+ (n− 1)l − 2]

The key is repeated n = �(N + l − 1 − d)/l� times during the KSA, each of
which we call a period.1 Note that the Class 1 conditions are less probable and
hence computationally more expensive than the Class 2 conditions. The collision-
finding algorithm of Chen and Miyaji [3] is essentially the same algorithm as that
of Matsui [8], albeit with certain tricks to reduce the search complexity. Even
with the improvements, finding exact collision for 16 byte key-length remains
practically infeasible.

We therefore shift our focus to finding near-colliding key-pairs that result in
related states after the KSA with many bytes matching and related keystreams
with many initial bytes matching. However, our detailed experimentation re-
vealed that though the methods of [3, 8] is effective in finding exact collision,
it is not as effective as finding near-collisions with the above requirement. For
example, the 20-byte near-colliding key reported by Matsui [8] lead to a match
of only 20 bytes in the first 256 keystream bytes. We find that the key-pairs with
two key-byte differences become more effective in this case which we analyze in
next subsection.
1 This is called a round in [3], but to avoid confusion with the N KSA rounds, we
prefer to call each key repetition a period.
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3.2 Analysis of Key-Pairs with Two Key-Byte Differences

In this section, first, we investigate the conditions required for collision of a
key-pair differing in two bytes and use it to search for near-colliding key-pairs.

Along the same line as [2, Section 5.1], we consider two l-byte keys k1, k2 such
that k1[i] = k2[i] for all i ∈ [0, l− 1]\ {d, d+1} and k2[d] = k1[d]+1, k2[d+1] =
k1[d+ 1]− 1 for some d in 0 ≤ d < l − 1.

A quick experiment with random key-pairs of the above form with l = 16 and
d = 14 immediately shows that the average number of keystream bytes matching
in initial 256 bytes is around 1.015, which is clearly more than 1. On the other
hand, randomly generated 16-byte key-pairs of the form of [3, 8] with one key-
byte difference give an average of 1.005 matches in the initial 256 keystream
bytes.

We also define the number of periods as n = "N+1−l
l #. We list all the condi-

tions required for collision in Table 5.

Table 5. Our j conditions corresponding to key k1 to achieve a collision

Period Range of i Class 1 conditions on j Class 2 conditions on j

1 [0, d+ 1] jd+1 = N − 1 jr = 0, N − 1, r ∈ [1, d]

2 [d+ 2, d+ l + 1] jd+l+1 = N − 1 jr = 0, N − 1, r ∈ [d + 3, d+ l]

· · · · · · · · · · · ·
n [d+ (n− 1)l + 2, jd+nl+1 = N − 1 jr = 0, N − 1, r ∈
d+ nl + 1] [d+ (n− 1)l + 1, d+ nl]

n+ 1 [d+ nl + 2, jN = 0, SN−1[jN−1+ jr = 0, N − 1, r ∈
N − 1] k[N − 1] +N − 1] = N − 1 [d+ nl + 2, N − 1]

By tracing the state evolution with the above conditions, the following result
is immediately established.

Theorem 5. For two secret keys k1, k2 of RC4 with k2[d] = k1[d]+1, k2[d+1] =
k1[d + 1] − 1, and otherwise same, if all the conditions of Table 5 are satisfied
during the KSA, then the final states will be same and the intermediate states
would differ in at most three bytes.

Proof. Let S
(1)
r , S

(2)
r be the states and j

(1)
r , j

(2)
r be the j indices corresponding

to the two keys respectively after the r-th round of the KSA. Note that at round

d+1, when i = d, three differences are introduced at indices j
(1)
d+1 = N −1, i = d

and j
(1)
d+1 + 1 = 0. Because of the Class 2 conditions of the first period, we have

the following values.

S
(1)
d+1[0] = 0, S

(1)
d+1[d] = N − 1, S

(1)
d+1[N − 1] = S

(1)
d [d],

S
(2)
d+1[0] = S

(1)
d [d], S

(2)
d+1[d] = 0, S

(2)
d+1[N − 1] = N − 1.

The values at indices 0 and N−1 remain the same up to i = N−1 and the third
difference is at an index y ∈ [1, N − 2]. In the last round, the conditions we need
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to get a collision are 2 j
(1)
N = 0 and j

(2)
N = j

(2)
N−1 + S

(2)
N−1[N − 1] + k2[N − 1] =

j
(1)
N−1 + k1[N − 1] +N − 1 = y. We know that S

(1)
d+1[y] = S

(1)
N−1[y] = N − 1, and

therefore the second condition becomes S
(1)
N−1[y] = S

(1)
N−1[j

(1)
N−1 + k1[N − 1] +

N − 1] = N − 1. ��

As an example, consider N = 32, l = 10 and two keys as given below.
k1 = [24, 5, 21, 27, 9, 8, 27, 18, 16, 14], k2 = [24, 5, 21, 27, 9, 8, 27, 18, 17, 13].

The two state arrays do not differ till i = 7. During i = 8, 9, 10, they differ in
positions 0, 8, 31. From i = 11 to 30 they differ in positions 0, 11, 31. When
i = 31, they become identical once again.
We adopt the following strategies to reduce the search complexity.

Deterministically Passing Period 1. We run KSA up to i = d − 1. Now
setting k1[d] = (N − 1− jd − Sd[d]), we get jd+1 = jd + Sd[d] + k1[d] = N − 1.

Passing Period 2 with High Probability. We require jd+l+1 = N − 1. We
first run KSA up to i = l − 2. We can write jd+l+1

= jl−1 + Sl−1[l − 1] + . . .+ Sd+l[d+ l] + k1[l − 1] + . . .+ k1[d+ l]
≈ jl−1 + Sl−2[l − 1] + . . . Sl−2[d+ l] + k1[l − 1] + . . .+ k1[d+ l].

The above approximation will be true, if the index jl+x /∈ {l + x, . . . , d + l} for
0 ≤ x ≤ d which happens with probability (N−d−2N ) · · · (N−1N ).

Hence we choose k1[l − 1] such that
jl−1 + Sl−2[l − 1] + . . . Sl−2[d+ l] + k1[l − 1] + . . .+ k1[d+ l] = N − 1.

Choice of d. In general, if there exists a d such that "N−1−d
l # = n and N − 1−

(d+ nl) = d, then one can choose that d. But at the same time, we should have
d as close to l − 1 as possible. Hence, we take d = l − 2.

This is because when i = N − 1, SN−1[d] = N − 1 and SN−1[N − 1] = d+ nl
holds with higher probability. Assume that all the previous periods are satisfied,
i.e., jd+1 = N − 1, . . . , jd+nl+1 = N − 1. So, if j does not touch the positions d
and d+nl in the first N − 1 rounds of the KSA, which happens with probability
(N−2N )N−3, then SN−1[d] = N − 1 and SN−1[N − 1] = d + nl. Note that in
the power, we have N − 3 instead of N − 1, because we already know that
jd+1 = N − 1 and jd+nl+1 = N − 1. In such a situation, if the two arrays are
S(1) and S(2), then in the last round with i = N − 1, they would differ in three
places as follows:

S(1)[0] = X, S(1)[d] = N − 1, S(1)[N − 1] = d+ nl,
S(2)[0] = d+ nl, S(2)[d] = X, S(2)[N − 1] = N − 1.

Hence, we require j
(1)
N = 0 and j

(2)
N = d for a collision to occur. Thus, if

N − 1− (d + nl) = d and j
(1)
N = 0, j

(2)
N will always be d. So, in the last period,

the success probability would be much higher than 1
N2 .

Multi-Key Modification. We can use similar kind of multi-key modification
as [3]. For each periods to follow, two other key bytes need to be set at prescribed

2 Note that in k1[r] or k2[r], index r should be reduced modulo l.
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positions. Let t denoting the first period not passed. For (t − 1)l + d ≥ r ≥
(t − 2)l + d − 1, suppose we want to decrease jr+1 = jr + Sr[r] + k1[r] by
D = jr+1 − target. We require the new value of Sr[r] to be

Δr = Sr[r]−D = Sr[r] − jr+1 + target.

This can be achieved by setting new jΔr+1 as j′Δr+1 = jΔr +SΔr [Δr]+k′1[Δr] =
r. Noting that j′Δr+1 − jΔr+1 = k′1[Δr] − k1[Δr] = r − jΔr+1, we find that the
key has to be modified as follows.

k′1[Δr] = k1[Δr] + r − jΔr+1, k′1[Δr + 1] = k1[Δr + 1]− r + jΔr+1.

Using the above strategy, for the same key-length, we can have the same number
of Class 1 conditions for our case as that of [3], and hence the overall probability
for holding Class 1 conditions would be of the same order. However, since we
have two Class 2 conditions in each KSA round instead of one, the probability
that all our Class 2 conditions are satisfied is of the order of (N−2N ) ≈ (N−1N )2,
which is the square of the success probability of the Class 2 conditions of [3]
(refer to Table 4).

3.3 Near-Collision Search Algorithm

Though finding exact collision using the two key-byte difference strategy is not
as effective as [3,8], it provides significant improvement in finding near-colliding
states that lead to a match of significant number of bytes in the initial portion
of the keystream.

When designing a near-collision search algorithm, it is quite natural to have
the following goals in mind.

P1. The position of the first mismatch in the state comes as late as possible.
P2. The total number of mismatches in the state is as low as possible.

Considering the update and the output function of RC4, both the properties
are in favor of colliding keystream bytes. As a consequence of the first property,
with significant probability the colliding state bytes are carried in the output
function, whereas the second property makes the j-values coincide in both the
states, so that the updated state bytes continue to remain the same with good
probability.

Our search strategy is presented in Algorithm 1. The parameter target de-
notes the admissible value(s) of jd+ml+1. According to Table 5, target = N − 1.
However, in practice, better results are obtained by a target varying over a spe-
cific range of values. The parameter ncond denotes the maximum number of
periods up to which jd+ml+1 must equal to target; the algorithm proceeds even
if the condition fails after ncond periods. For a key-pair, the number of bytes that
match in the corresponding final states after the KSA is denoted by nstate and
the number of matches in the first 256 keystream bytes is denoted by nstream.

The larger the value of the parameter ncond, the higher is the probability
of P1 being satisfied. P1 indirectly favours P2. However, for explicitly meeting
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P2, one may specify a threshold minState and restart the search with a new
random key if nstate < minState. For better near-collision in keystream, one
may also specify a parameter minStream and repeat the search if nstream <
minStream.

Input: Key length l, d = l − 2, target, ncond, minState, minStream.
Output: A near-colliding key-pair (k1, k2).

1 Generate a random key k1;
2 Run the KSA until i = d− 1 after the swap. Modify k1[d] = target− jd − Sd[d];
3 Keep running the KSA until i = d after the swap. Modify

k1[d+ 1] = −∑d+l
y=d+1 Sd+1[y]−

∑d+l
y=d+2 k1[y];

4 Rerun the KSA with checkpoints at i mod l = d, until i = d+ (ncond − 1)l;
If at these points, j = target, then call NewSearch(k1, i, target);

5 Set k2 = k1, k2[d] = k1[d] + 1, k2[d + 1] = k1[d+ 1]− 1;
6 Run the KSA with k1 and k2 separately to compute nstate and nstream;
7 if nstate < minState or nstream < minStream then
8 go to Step 1;

end
9 else

10 return (k1, k2);

end

Subroutine NewSearch(k1, i, target):
Set m = (i− d)/l;
for r = d+ (m− 1)l + 1 to d+ml in step of 1 do

Set Δr = Sr[r]− jr+1 + target;
if Δr < d+ (m− 1)l then

k1[Δr] = k1[Δr] + r − jΔr+1, k1[Δr + 1] = k1[Δr + 1]− r + jΔr+1;
return;

end

end

Algorithm 1. Our Algorithm for Finding Near-Colliding Key Pairs.

In Table 6, we compare the average and the maximum values of nstate and
nstream for different near-collision search strategies for 16-byte keys. The aver-
ages were computed over 10000 runs of each algorithm.

For the strategy in the last row, we consider target = d for the following
reason. Note that for any value of target �= d, at period i = d we generally
get three differences in the two permutations (corresponding to the two keys),
namely at indices d, jd+1 and j′d+1, where j

′ denotes the index corresponding to
the second key k2. On the other hand, if target = d, we get only two differences
in period i = d. Thus, towards favouring P2, we take target = d. We have also
relaxed the check at Step 4 as jd+ml+1 ≤ d+ml, which includes the checkpoint
jd+ml+1 = target = d. This increases the probability of crossing the m-th check-
point from 1

N to ml+1
N and hence we consider a higher value of ncond, namely,
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9. We give examples of two key-pairs corresponding to this strategy. The best
results in terms of collisions in the state is obtained by the key-pair

k1 = [66, 59, 221, 167, 250, 203, 16, 105, 88, 24, 201, 249, 175, 1, 136, 239],
k2 = [66, 59, 221, 167, 250, 203, 16, 105, 88, 24, 201, 249, 175, 1, 137, 238],

resulting in nstate = 229, but with nstream = 6 only.
On the other hand, the best result in terms of collisions in the keystream is

achieved by the key-pair
k1 = [134, 185, 224, 14, 229, 137, 109, 10, 210, 196, 84, 204, 124, 238, 114, 35],
k2 = [134, 185, 224, 14, 229, 137, 109, 10, 210, 196, 84, 204, 124, 238, 115, 34],

giving nstate = 222 and nstream = 94.

Table 6. Experimental results related to near-collisions

Search strategy target ncond nstate nstream
avg max avg max

Random diff. of +1 at d - - 4.94 42 1.002 9

Random diff. of ±1 at d, d+ 1 - - 24.27 221 1.015 58

Chen-Miyaji’s Method Table 4, Class 1 5 4.78 18 0.980 6

Our Algorithm 1 N − 1 5 56.24 217 1.140 40

Our Algorithm 1 ∈ [N − 13, N + 1] 5 91.14 221 1.600 35

Our Algorithm 1 d 9 150.59 229 2.740 94

As evident from the third row of Table 6, Chen-Miyaji’s method is not suitable
for finding near-collisions either in state or in keystream. Sometimes a higher
maximum for nstate or nstream is obtained by a modified version of Chen-
Miyaji’s method having the same conditions as in Table 4 but key-pairs having
two-byte differences like Algorithm 1. However, the average values of nstate and
nstream are always higher in case of Algorithm 1.

3.4 Related Keystream Distinguisher

From Table 6, it is evident that one can mount a distinguisher on RC4 using
related keys as follows. Assume that the attacker can only modify the secret key
and rerun the keystream generation algorithm as a black box as many time as
he wants. For uniform random stream, the probability that the first keystream
byte will match is 1

N , which is 0.003906 for N = 256. However, if the key-pairs
are chosen with two-byte differences (k2[d] = k1[d] + 1, k2[d+1] = k1[d+1]− 1,
d = l−2), we get that the first pair of keystream bytes in the related keystreams
match with significantly higher probability. This can distinguish the keystream
of RC4 from random keystream reliably.

The exact theoretical derivation of this distinguisher seems extremely hard due
to dependence in key-length and non-randomness in pairs of j values. However,
empirical evidences support that for two secret keys k1, k2 of RC4 with k2[d] =
k1[d]+1, k2[d+1] = k1[d+1]−1, and otherwise same, the corresponding pseudo-
random indices j(1) and j(2) differ for the first time after 3l+d rounds of the KSA
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(except when i(1) = i(2) = d mod l) with very high probability. If this holds, then
for the remaining N−3l−d rounds, j(1) does not touch the indices 1, S(1)[1] and
S(1)[1] + S(1)[S(1)[1]] in S(1) and j(2) does not touch the indices 1, S(2)[1] and

S(2)[1] + S(2)[S(2)[1]] in S(2) with a probability p =
(
N−3
N

)2(N−3l−d)
. Assuming

a complimentary path of random association, an approximate estimate of the
probability of the first two keystream bytes being equal is given by p+(1−p)/N =
1
N +

(
1− 1

N

) (
N−3
N

)2(N−3l−d)
.

Table 7. Experimental (A) and estimated (B) values of probabilities of the first pair of
keystream output bytes matching that are generated from related keys. (C) The average
number of key pairs that provide the first match in the first byte. (D) The probability
that we get at least one match in certain number of trials given in parenthesis.

l 16 18 20 22 24 26 28 30

Emp. Prob. (A) 0.011 0.014 0.017 0.021 0.026 0.031 0.037 0.044

Est. Prob. (B) 0.014 0.016 0.019 0.022 0.026 0.030 0.036 0.042

Data Comp. (C) 89.16 70.70 58.07 47.34 38.73 32.61 27.48 22.88

Data Comp. (D)
0.676 0.679 0.702 0.722 0.730 0.712 0.727 0.737
(100) (80) (70) (60) (50) (40) (35) (30)

Table 7 shows the experimental (averaged over one million runs) and estimated
values of the above probability for different values of key-length l with d = l−2. It
is clear that our results are improved than the observation on second byte in [7].
The probability, that the second output byte of RC4 keystream is zero, is 2

N [7].
In our case, for 16 (respectively 30) byte key-length, the probability is 0.011
(respectively 0.044) which is approximately 3

N (respectively 11
N ) for N = 256.

This is significantly greater than the observation of [7] and thus provides the
most efficient distinguisher for RC4.

According to [1, Section 4.1], if an event occurs in random stream with proba-
bility p and in RC4 (or in any algorithm) with probability p(1+q), the number of
samples required for mounting the distinguishing attack with success probability

69.15% is given by

(√
1−p+

√
(1+q)(1−p(1+q))

)2

4pq2 . This general formula (instead of
1

pq2 ) needs to be used in this case as q is not small here. Plugging in the appro-
priate values of our biases from Table 7, one can easily see that our distinguisher
requires only 138 samples (i.e., pair of 1st bytes of keystreams from 138 key-
pairs) for 16-byte key and 12 samples (i.e., pair of 1st bytes of keystreams from
12 key-pairs) for 30-byte key.

Experimentally, we also note in how many trials the first byte is matching.
The results show the average data required in Table 7 corresponding to each
key-length. Similarly, we also consider what is the probability of at least one
match in x many trials. The probability and the value of x is also reported in
Table 7. These are also easily theoretically justified (using the mean of Geo-
metric distribution and the tail of Binomial distribution to estimate the rows
C and D respectively) given our basic observation of probabilities as described
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in row A (the second row) of Table 7. One may note that this is significantly
distinguishable from the cases of random associations.

4 Conclusion

In this paper, we revisit Roos biases, i.e., biases of the permutation bytes S[y]

after the KSA towards fy = y(y + 1)/2 +
∑l−1

y=0 k[y]. We show that these biases
can be extended towards fy − t for small positive integers t. The same extension
is also possible for the nested permutation entries S[S[y]]. We also look into the
problem searching colliding key pairs in RC4. The existing algorithms are not
efficient enough for finding near-collisions that will provide significant matches
in initial keystream bytes. We propose an algorithm for finding near-colliding
RC4 keys that can yield related states after the KSA for a good amount of
match in initial keystream bytes. This result, provides a class of related key
distinguishers for RC4. We particularly explain the one that is the best ever
known distinguisher for RC4.
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Abstract. Designing a cryptographic algorithm requires to take into ac-
count various cryptanalytic threats. Since the 90’s, Side Channel Analysis
(SCA) has become a major threat against cryptographic algorithms em-
bedded on physical devices. Protecting implementation of ciphers against
such attacks is a very dynamic topic of research and many countermea-
sures have been proposed to thwart these attacks. The most common
countermeasure for block cipher implementations is masking, which ran-
domizes the variables by combining them with one or several random
values. In this paper, we propose to investigate the impact of the size of
the words processed by an algorithm on the security against SCA. For
this matter we describe two AES-like algorithms operating respectively
on 4 and 16-bit words. We then compare them with the regular AES (8
bits) both in terms of complexity and security with respect to various
masking schemes. Our results show that SCA is a determinant criterion
for algorithms design and that cryptographers may have various possi-
bilities depending on their security and complexity requirements.

Keywords: Side Channel Analysis (SCA), S-boxes, Word size, Masking
Countermeasure, Higher-Order SCA, AES Implementation, FPGA.

1 Introduction

When designing a block cipher, cryptographers take into account various crypt-
analytic threats in order to prevent flaws in their algorithm. The most com-
mon methods are linear [19] and differential [5] cryptanalysis, interpolation [17]
or related key attacks [4]. All these attacks target the mathematical primitive
independently of its implementation.

In the 90’s, a new kind of cryptanalysis was developed: Side Channel Analysis
(SCA). SCA is a cryptanalytic method in which an attacker does not attack
the algorithm itself, but rather its implementation. Namely, the attacker ana-
lyzes the side channel leakage (e.g. the power consumption, the electromagnetic
emanations, . . . ) produced during the execution of a cryptographic algorithm
embedded on a physical device. SCA exploits the fact that this leakage is statis-
tically dependent on the intermediate variables that are involved in the compu-
tation. Some of these variables are called sensitive in that they are related to a
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secret data (e.g. the key) and a known data (e.g. the plain text), and recovering
information on them therefore enables efficient key recovery attacks [18,6,14].

However it is a hard task to improve the intrinsic security of a cryptographic
algorithm against SCA. Designers can nonetheless foresee the implementation of
countermeasures, and design their algorithm in order to help these implemen-
tations. As many countermeasures [1,22,15] use the arithmetic structure of the
AES S-box, it seems a good option for designers to keep such type of structure.

To evaluate the efficiency of a countermeasure, Prouff et al. introduce in [23] a
methodology to compute the optimal correlation between a leakage measure and
a (multivariate) known variable. They give the optimal correlation for boolean
masking. We can observe that this correlation depends on the noise standard
variation, the order of the masking, but also on the size of the words targeted by
the attack: the longer the words, the better the security. The goal of this paper
is to study the impact of the word size on both the complexity and the security
of the scheme.

Related work. This paper is mainly related to three kinds of previous works.
In [12,24,15], the authors propose countermeasures that provide a good secu-
rity/complexity compromise for some security level, and propose practical results
implementing their countermeasures to the AES. In [8], small scale variants of
AES are designed in order to compare different cryptanalytic methods. Even-
tually, various optimized hardware implementations of the AES S-box can be
found in [7,20].

Our contribution. In this paper, we propose an evaluation of the impact of
the word size on the security of an algorithm with respect to various masking
schemes, namely boolean [22], affine [12] and polynomial masking [24,15]. We
thus define two AES-like algorithms operating respectively on 4 and 16 bits
words, and discuss their implementation. Then we compare the security and
the complexity of each algorithm depending on the countermeasure scheme. We
finally give practical implementation results on a hardware device for equivalent
level of security.

Organization of the paper. The remainder of this paper is organized as follows.
In the second section we pursue a theoretical analysis about the impact of the
size of the words manipulated by an algorithm upon its resistance to SCA. In
section 3, we recall the AES algorithm and detail the two AES-like algorithms
we have implemented. In section 4 we compare implementation costs of the three
algorithms first theoretically, then on practical hardware implementations. Then
section 5 details simulations results on the SCA resistance of these algorithms
and the AES with respect to various masking schemes. We conclude our work
in section 6.

2 Impact of Sboxes Size upon Side Channel Resistance

S-boxes are the most sensitive layer with respect to the resistance of a block ci-
pher against higher order side channel attacks. For a matter of implementation,
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an S-box must have a short dimension n and therefore, the input block is shared
in n-bit words for the independent internal computations of the algorithm. The
size of these words is determined by designers with respect to the needed prop-
erties of the algorithm and to its resistance against known cryptanalysis.

In the state of the art, we can find block ciphers manipulating 8 bits words
(e.g. the AES [9]), 4 bits words (e.g. Serpent [2]) or non-square S-boxes such as
those of the DES [11]. In the following of this section we investigate, for various
masking schemes, the impact of this dimensions upon the resistance of a block
cipher algorithm against SCA.

In what follows, we shall consider that an intermediate variable Ui is associ-
ated with a leakage variable Li representing the information leaking about Ui

through side channel. We will assume that the leakage can be expressed as a
deterministic leakage function ϕ of the intermediate variable Ui with an inde-
pendent additive noise Bi. Namely, we will assume that the leakage variable Li

satisfies:
Li = ϕ(Ui) +Bi . (1)

In the following, we call dth-order leakage a tuple L of d leakage variables Li

corresponding to d different intermediate variables Ui that jointly depend on
some sensitive variable. Moreover we place ourselves in the Hamming weight
model, i.e. ϕ = HW .

2.1 Security Against HO-DPA

In order to compare various scales of implementation with respect to various
masking schemes, we compute, for each case, the optimal correlation value fol-
lowing the methodology described in [23] for decreasing signal-to-noise ratio
(SNR). Namely we considered the value of

ρopt =

√
Var [E [C(L)|Z = z]]

Var [C(L)] (2)

where Z is a sensitive variable and C is a combining function that converts
the multivariate leakage L into a univariate signal. In our evaluations we have
chosen C to be the normalized product. In [25,12,15], authors give equations for
evaluating the value of ρopt respectively ρbool-d for d-th order boolean masking,
ρaff for affine masking and ρpolynomial for first order polynomial masking. Let us
consider an gaussian noise Bi with 0 mean and standart deviation σ. We have:

ρbool-d = (−1)d
√
n

(n+ 4σ2)
d+1
2

, (3)

ρaff =
n

(4σ2 + n)
√
2n − 1

(4)

and

ρpolynomial =

√
n3 · (2n+1 − 4n − 1)

α2 · σ4 + α1 · σ2 + α0
, (5)
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where

α2 = 192 · 2n − 24n+4 − 64− 208 · 4n + 96 · 8n
α1 = (40 · 8n − 64 · 4n − 8 · 16n + 32 · 2n)n2

+(88 · 8n + 128 · 2n − 24n+4 − 168 · 4n − 32)n
α0 = (8n − 3 · 4n + 6 · 2n − 4)n4 + (−4 · 16n + 14 · 8n − 16 · 4n + 2 · 2n + 4)n3

+(−4 · 16n + 23 · 8n − 44 · 4n + 34 · 2n − 8)n2

+(−3 · 8n + 10 · 4n − 9 · 2n + 2)n.
(6)

As a matter of comparaison, the optimal correlation ρunmasked for a non-masked
implementation is:

ρunmasked =

√
n√

(n+ 4σ2)
, (7)

We then evaluate these values for any bit size n ∈ {4, 8, 16}, any SNR ∈
{1, 1/2, 1/5, 1/10}, and for the variables targeted respectively in [25,12,24]:

– 1O-boolean masking, with targeted variables (x⊕ r1 ; r1)
– 2O-boolean masking, with targeted variables (x⊕ r1 ⊕ r2 ; r1 ; r2)
– 3O-boolean masking, with targeted variables (x⊕ r1 ⊕ r2⊕ r3 ; r1 ; r2 ; r3)
– Affine masking, with targeted variables (r2 · x⊕ r1 ; r1)

Table 1. Theoretical correlation values

Word length \SNR +∞ 1 1/2 1/5 1/10

2O-DPA against 1O-boolean masking

4-bits 0.5 0.25 0.1 0.083333 0.045455
8-bits 0.353553 0.176777 0.117851 0.058926 0.032141
16-bits 0.25 0.125 0.083333 0.041667 0.022727

3O-DPA against 2O-boolean masking

4-bits 0.25 0.088388 0.022361 0.017010 0.006853
8-bits 0.125 0.044194 0.024056 0.008505 0.003426
16-bits 0.0625 0.022097 0.012028 0.004253 0.001713

4O-DPA against 3O-boolean masking

4-bits 0.125 0.031250 0.005 0.003472 0.001033
8-bits 0.044194 0.011049 0.004910 0.001228 0.000365
16-bits 0.015625 0.003906 0.001736 0.000434 0.000129

2O-DPA against Affine masking [12]

4-bits 0.258199 0.129099 0.015188 0.009931 0.002556
8-bits 0.062622 0.020874 0.006958 0.001228 0.000312
16-bits 0.003906 0.000781 0.000230 0.000039 0.000010

2O-DPA against 1O-polynomial masking [15]

4-bits 0.030589 0.023984 0.015187 0.013612 0.009063
8-bits 0.001854 0.001473 0.001243 0.000876 0.000607
16-bits 0.0000074 0.0000060 0.0000051 0.0000037 0.0000027
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– 1O-polynomial masking, with targeted variables
(
(r1, r3 · r1 ⊕ x) ; (r2,

r3 · r2 ⊕ x)
)
where r1 �= r2 �= 0.

Note that we only consider the best available attacks against these masking.
Table 1 summarizes the theoretical correlations ρopt.

We can state that the security of each scheme evolves in different ways when
the word size increases. Indeed the value of the optimal correlation for boolean
masking decreases polynomialy in n, whereas it decreases exponentially for both
affine and polynomial masking. Intuitively, this can be explained seeing that,
when using boolean masking, every bit of the mask operates on a single bit of the
sensitive variable. Thus the security overhead of a larger bit size is roughly linear
in the word length. In the case of affine and polynomial maskings, the relation
between the targeted values and the sensitive one is much more complex, which
highly improves the security when increasing the word length.

Moreover, in the case of boolean masking, the optimal correlation coefficient
decrease exponentially in the order d. In order to compare the different im-
plementations of (higher order) boolean masking we represent in Figure 1 the
correlation value for various amount of noise. As expected, we can state that
a higher order scheme provides a better security in (almost) all cases. Notably

Fig. 1. Correlation value of boolean maskings with respect to SNR
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(d + 1)-th order boolean masking applied to the 4-bits AES variation provides
better security than d-th order masking applied to the regular 8-bits AES.

2.2 Information Theoretic Analysis

The analysis of the optimal correlation allows us to evaluate precisely the secu-
rity of a countermeasure against CPA but does not give any general informations
independently of the chosen distinguisher. In [26] the authors propose to evaluate
the mutual information between the leakage vector L and the sensitive variable
Z in order to compute the theoretic leakage induced by the computation. Never-
theless, this metric does not give any direct information of the complexity of an
attack but only gives the amount of information leaked during the computation.
We can then efficiently compare two countermeasures implemented on the same
algorithm in terms of security against SCA, but the comparison between two
distinct algorithms does not seems to be so relevant, especially when the word
sizes are distinct.

A third security analysis can be the practical attack simulation but it needs
the definition of a complete algorithm. Such an analysis is the topic of section 5.

In this section we have shown that non-linear masking techniques applied to
large S-boxes (typically 16 bits) provides the best theoratical security among the
considered countermeasures. We may wonder what is the practical complexity of
the implementation of such countermeasures. In the following, we evaluate the
complexity of some implementations in order to emphasize the most interesting
one in terms of complexity for a given security level.

3 Design of the Sboxes

The main goal of this article is to evaluate the optimal word size to implement
countermeasures against SCA. In order to achieve this goal, we define variants
of the AES using different word sizes. For matters of simplicity, we focus on
powers of 2. After recalling the processing of the AES, we propose in this section
two AES-like algorithms working on respectively 4 and 16 bit words. Both are
operating on 128-bit blocks.

3.1 The Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a Substitution-Permutation Net-
work (SPN) introduced by J. Daemen and V. Rijmen in [9]. It iterates 10 times
(for the 128-bit version) a transformation involving four steps : AddRoundKey,
ShiftRows, MixColumn, and SubByte. Details about these steps can be founded
in appendix A. In particular the AES S-box is designed as

Sb8[x] = Q(x) + a(x) · P (x) mod [X8 + 1]

where a(x) is the inverse of x in the field F28 , and P andQ are polynomials chosen
such that it ensure a complicated algebraic expression when combined with the
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inverse mapping, and that there is no fixed points (Sb8[x] = x) and no ’opposite
fixed points’ (Sb8[x] = x̄). This construction ensures a good resistance against
linear and differential cryptanalysis. Following the formalism introduced in [10],
the AES sbox achieve a prop-ratio and an input-output correlation respectively
equal to 2−6 and 2−3.

Remark 1. The inversion of a ∈ F28 as described in [22] can be implemented
using 4 multiplications, 7 squares and 1 refreshMask operation.

3.2 4-Bit Variation

Let F24 = F2[x]/(x
4 + x+ 1).

We define the 4-bit AES-like Sbox as follows :

Sb4[x] = Q(x) + a(x) · P (x) mod [X4 + 1]

where a(x) is the inverse of x in the field F24 , and P and Q are polynomials
chosen according to [9] such that : P (x) = x3 + x+ 1 and Q(x) = x3 + x2 + 1.

A look-up table for the Sbox Sb4 is given (notation in hexadecimal) in table 2.

Table 2. Sbox over F24

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output D 6 B 9 5 C F 4 2 A E 8 7 3 1 0

Remark 2. The inversion of a ∈ F24 can be computed as a−1 = a14 = (a·a2)4 ·a2.
It can then be implemented using only two multiplications and 3 squares.

Resistance Against Known Attacks : In order to evaluate the security
of the S-box against differential and linear cryptanalysis, we have to compute
respectively the prop-ratio and the input-output correlation (see appendix D).
We can then evaluate the length of an efficient linear or differential trail and
adapt the number of round adequately.

– prop-ratio : 2−2

– input-output correlation : 2−1

Keeping the original ShiftRows and MixColumn operating on 8-bits words, we
obtain no 12-round differential trail with a predicted prop ratio above 2−150

(which is sufficient for the 128-bit block length), and no 12-round linear trail with
a correlation above 2−75. In this case, in order to keep an equivalent security,
we have to extend the round number to 30. Moreover this construction is not
directly compatible with every masking schemes operating on 4 bits.

In order to bypass this incompatibility and to optimize the complexity of the
overall cipher, we define a diffusion layer composed of a MixColumns operation
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designed using a 8 × 8 MDS matrix over F24 (see appendix C), combined with
a ShiftRows operation as designed for the AES. We then consider the internal
state as a 8 × 4 matrix over F24 . The branch number is thus 9. For example
the matrix involved in the MixColumns operation can be chosen as a circulant
matrix with first line equal to:

[1 1 2 1 3 4 2 3].

We can deduce that there is no 4-round differential trail with a predicted prop
ratio above 2−98 and no 4-round linear trail with a correlation above 2−49. The
round number can thus be fixed to 15 without any security loss.

However, in [8] the authors design simplified version of AES in order to try
their security against algebraic attacks. For the 4-bit version the succed only with
a small number of round and using a sub-optimal linear layer. Our construction
clearly ensure a much better security against such attacks.

3.3 16-Bit Variation

Let F216 = F2[x]/(x
16 + x13 + x10 + x9 + x2 + x+ 1).

We define the 16 bit AES-like S-box as following :

Sb16[x] = Q(x) + a(x) · P (x) mod [X16 + 1]

where a(x) is the inverse of x in the field F216 , and P and Q are polynomials
chosen according to [9] such that : P (x) = x15 + x8 + x3 + x + 1 and Q(x) =
x15 + x9 + x8 + x7 + x2 + x+ 1.

Remark 3. The inversion of a ∈ F216 can be computed following:

b = (a2.a)2.a = a7

c = b8.b = a63

c = c64.c = a4095

c = c16.b2 = a65534

The inversion can then be implemented using only 5 multiplications and 16
squares.

Resistance Against Known Attacks : As previously, we compute respec-
tively the prop-ratio and the input-output correlation and evaluate the length of
an efficient linear or differential trail and adapt the number of rounds adequately.

– Sb16 prop-ratio : 2−14.
– Sb16 input-output correlation : 2−7.

As for the 4 bit case, the original linear layer of the AES is not compatible
with every masking schemes operating on 16 bits. A good alternative is to use a
8×8 circulant MDS matrix instead of the ShiftRows and MixColumn operations.
Such a matrix can even be optimized allowing the Hamming weight of each of its
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component to be 1 and thus leads to the most optimized overall design for this
size of words. For example such a matrix can be chosen as a circulant matrix
with first line equal to (in hexadecimal):

[0001 0001 0020 0001 0100 0400 0200 0040].

The branch number of this linear layer is maximal (i.e. equal to 9), ensuring that
there is no 1-round differential trail with a predicted prop ratio above 2−125, and
no 1-round linear trail with a correlation above 2−63. As for the 4 bit case, the
round number can thus be lower to 6 rounds without any security loss.

4 Complexity

Previously, we have seen that increasing the word size improves the security of a
device against SCA. However, this security improvement should not lead to an
unreasonable cost. In this section, we compare several implementations to study
the impact of S-boxes sizes on the complexity. Firstly in a theoretical manner,
then by doing a comparative analysis of hardware implementations.

4.1 Overall Complexity

For each masking scheme, we consider the AES variations described in Section 3
(see appendix B for details about multiplication implementations) :

– 4-bit words (using look-up table),
– 8-bit words (using log/alog tables),
– 16-bit words (using log/alog tables),
– 16-bit words (using tower fields method)

The evolution of the theoretical complexity of each masking scheme according
to the word size is given in Table 3.

Remark 4. Each implementation of the affine masking is optimised using the
most appropriate variation of the scheme : that is the reference implementation
for the original AES and the 4-bit variation, and the least memory expensive
variation for the 16-bit (see [12] for details about each variation). Similarly the
implementation of the polynomial masking is made using the straightforward
adaptation of [3] as explained in [24,16].

The 8-bit affine masking appears to be a very good option both in terms of
security and complexity. The complexity of the 4-bit variation is not as low as
it can be expected because of its heavy linear layer. Using a similar S-box in a
Feistel scheme could solve this probleme though, but such a construction is not
in the scope of this paper. With respect to boolean masking, we can state that,
for a high amount of noise, the 4-bit variation provides a very low complexity for
a good security level. For instance, with a SNR near 1, the third order boolean
masking implemented on a 4-bit algorithm provides a better complexity and
a better security than a second order boolean masking implemented on a 8-
bit algorithm. The 16-bit variation does not seem an interesting choice because
of its huge memory requirements. However the very high security provided by
polynomial masking on this variation may justify its implementation on very low
restricted devices.
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Table 3. Theoretical Complexity of cipher implementations

Implementation XORs/ANDs/shifts Table look-ups Random bits RAM (bits) ROM (bits)
1-st order Boolean Masking

4-bit 8580 7920 5760 284 192
8-bit 17640 16144 16896 312 6128

16-bit (log/alog) 7704 9273 13056 368 2097120
16-bit (tower field) 40269 50385 13056 368 1022

2-nd order Boolean Masking
4-bit 14340 14760 15360 328 192
8-bit 37800 32272 46080 352 6128

16-bit (log/alog) 16200 16257 36086 448 2097120
16-bit (tower field) 72549 90273 36086 448 1022

3-rd order Boolean Masking
4-bit 26820 23520 28800 328 192
8-bit 65640 54160 87552 400 6128

16-bit (log/alog) 25656 25257 69120 544 2097120
16-bit (tower field) 114429 141969 69120 544 1022

Affine Masking
4-bit 2176 1224 2400 448 1088
8 bits 3424 1840 1552 4392 8176

16 bits (log/alog) 526560 394456 800 1048912 3145696
16 bits (tower field) 2500080 1971288 800 1048912 1022

1st order polynomial Masking
4 bits 9480 19440 3840 328 192
8 bits 58560 65824 27792 400 6128

16 bits (log/alog) 39840 57568 18592 544 2097120
16 bits (tower field) 321360 409856 18592 544 1022

4.2 Complexity of Chosen Hardware Implementations

The theoretical complexities given in the previous section provide a good overview
of the implementations’ security. However we want to evaluate the practical
feasability of some chosen implementations on hardware devices. As boolean
masking is the most widely implemented scheme, we limited ourselves to imple-
ment Rivain and Prouff’s scheme from [22] at orders 1, 2 and 3.

We developed in VHDL a small system on chip (SoC) embedding a simple se-
rial interface and a 128-bits masked AES implementation running in ECB mode.
The implementations are fully parallelized, notably all Sboxes are processed si-
multaneously. As proposed in [22], the multiplicative inverse is computed using a
d-order secure square-and-multiply algorithm. To do so, each Sbox encompasses
a secure multiplier as well as a square operator, both working on d shares. Then,
alternating the square and the multiply module in a sequential way ensure to
use the minimal area.

The SoC is built on an Altera Cyclone III EP3C25 (24,624 Logic Elements,
Speed grade -7, -8) with no particular optimization technique and an automated
place-and-route stage. The resulting maximal clock frequency is 125 Mhz for all
implementations. Following this fully parallelized design, no protected version of
the 16-bits scheme can be realistically implemented on the SoC.

We implemented multiplier and square blocks for GF(28) and GF(24) in the
same way, that is fully combinatorial with input/output register. In that case,
a secure multiplication takes 3 cycles since some variables have to be processed
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Table 4. Implementations areas (in logic elements) and performances

Word Size Global System (LEs) S-box (LEs) SecMult (LEs) Clock cycles Throughput (MB/s)
1-st order Boolean Masking

4 bits 4350 112 54 197 18.87
8 bits 8089 380 212 282 7.09

2-nd order Boolean Masking
4 bits 7500 207 117 197 18.87
8 bits 13435 690 487 282 7.09

3-rd order Boolean Masking
4 bits 11300 350 212 197 18.87
8 bits 21299 1170 870 282 7.09

at different time as explained in [22], squaring is done in 2 clock cycles and
only one cycle is needed to refresh the masks. Eventually, the linear layer is also
combinatorial so the total number of cycles to process the whole round is equal
to the the number of cycles required for the inversion.

For the 8-bit version, we have 4 secMult + 7 Square + 2 refreshMask =
4 × 3 + 7 × 2 + 2 = 28 cycles per round. Since there are 10 rounds, we obtain
280 cycles for the encryption + 2 cycles to handle the I/O, hence 282 cycles in
total.

For the 4-bit version, we have 2 secMult + 3 Square + 1 refreshMask =
2 × 3 + 3 × 2 + 1 = 13 cycles per round. Since there are 15 rounds, we obtain
195 cycles for the encryption + 2 cycles to handle the I/O, hence 197 cycles in
total.

As expected, the resulting 8-bit S-box is at least 3 times bigger than the 4-bit
version for a given order of masking. The interesting fact is that this inequality
still hold for different order of masking : a d-order 8-bit S-box is bigger than a
(d + 1)-order 4-bit Sbox. Now if we look at the theoretical correlation of each
of this implementations (see Table 1), we observe that any (d + 1)-order 4-bit
AES is more secure the d-order 8-bit version. Notably the 4-bit 2nd-order AES
is more secure and smaller than the regular 8-bit AES using only one mask.

As a matter of fact, we can observe that between the two implementations, the
difference of size of the global circuit is not so important for 1-st order masking
but increases with the order. It can be explained by noticing that the expensive
layer for the 8-bit scheme is clearly the S-box (and in particular the SecMult
operation), while it is the permutation layer in the case of the 4 bit variation.
Indeed, in this case, the cost of the S-box is roughly 4 times lower than the one
operating on 8 bits. Moreover the cost of the S-box transformation is quadratic
in d while the linear layer is only linear in d, and so the difference increases with
the order.

By taking into account the Sbox size during the design of an implementation,
it is possible to improve the security of the device without increasing the size of
the circuit excessively. Actually the linear layer may take a non-negligible place.
Indeed, in order to avoid to increase excessively the number of round, this layer
has to be improved. This leads to a bigger linear layer and the global system
size increases. Anyway, the (d + 1)-order 4-bit variation is wholly more secure
and smaller and faster than the d-order 8-bit variation.
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5 Attack Simulations

To confirm the theoretical analysis conducted in section 2, we performed several
attacks simulations. Formally we applied several side-channel distinguishers to
simulated leakages. The leakage measurements have been simulated as samples
of the random variables Li defined according to equation (1) with ϕ = HW and
Bi ∼ N (0, σ2) where the different Bi’s are assumed mutually independent. For
all the attacks, the sensitive variable Z was chosen to be an S-box output of
the targeted algorithm of the form S(M ⊕ k�) where M represents a varying
plaintext byte and k� represents the key byte to recover.

Side-channel distinguishers. We applied two kind of side-channel distinguishers:
higher-order DPA such as described in section 2.1 and higher-order MIA [21,13].
In a HO-MIA, the distinguisher is the mutual information: the guess k is tested
by estimating I(ϕ̂(Z(k));L). As mutual information is a multivariate operator,
this approach does not involve a combining function.

Targeted variables. Each attack was applied against leakage values associated to
boolean masking, affine masking and polynomial masking. The target variables
are those listed in section 2.1 where x = S(X ⊕ k�):

Prediction functions. For each DPA, we choose ϕ̂ to be the optimal prediction
function :

ϕ̂ : z �→ E [C(L)|Z = z] . (8)

This leads us to select the Hamming weight function in the attacks against both
1O-polynomial masking and dO-boolean masking and the Dirac function δ0 for
the affine masking.

For the MIA attacks, we choose ϕ̂ such that it maximizes the mutual in-
formation I(ϕ̂(Z(k));L) for k = k� while ensuring that the mutual informa-
tion is lower for k �= k�. In our case, every HO-MIA against both polyno-
mial and Boolean masking is performed with ϕ̂ = HW since the distribution
of (HW(Z ⊕ m0),HW(m0)) (resp. (HW(Z ⊕ a0 · x0, x0),HW(Z ⊕ a0 · x1, x1)))
only depends on HW(Z). Therefore

I
(
Z; (HW(Z ⊕m0),HW(m0))

)
= I

(
HW(Z); (HW(Z ⊕m0),HW(m0))

)
.

Note that the same relation holds at every masking order. Every HO-MIA against
affine masking is performed using ϕ̂ = δ0 since the distribution of the leakage
functions is identically distributed for any Z �= 0, and is only remarkable for
Z = 0 [12].

Pdf Estimation Method. For the (HO-)MIA attacks, we use the histogram
estimation method with rule of [14] for the bin-widths selection.
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Table 5. Number of leakage measurements for a 90% success rate against 4, 8 and
16-bits algorithms

Word size \ SNR +∞ 1 1/2 1/5 1/10
2O-CPA against 1O-boolean masking

4-bit 70 160 400 1 800 13 000
8-bit 150 500 1 500 6 000 20 000
16-bit 400 1 400 2 000 10 000 25 000

2O-MIA against 1O-boolean masking
4-bit 80 1 000 5 000 10 000 33 000
8-bit 100 5 000 15 000 50 000 160 000

3O-CPA against 2O-boolean masking
4-bit 370 1 700 20 000 50 000 300 000

8-bit 1 500 9000 35 000 280 000 > 106

16-bit 6 500 20 000 85 000 900 000 > 106

3O-MIA against 2O-boolean masking

4-bit 120 10 000 200 000 800 000 > 106

8-bit 160 160 000 650 000 > 106 > 106

2O-CPA against affine masking
4-bit 300 1400 20 000 100 000 400 000
8-bit 6500 20 000 45 000 170 000 650 000

16-bit 55 000 200 000 800 000 > 106 > 106

2O-MIA against affine masking

4-bit 270 10 000 100 000 800 000 > 106

8-bit 5500 100 000 600 000 > 106 > 106

2O-CPA against 1O-polynomial masking
4-bit 15 000 40 000 100 000 150 000 250 000

8-bit > 106 > 106 > 106 > 106 > 106

16-bit > 106 > 106 > 106 > 106 > 106

2O-MIA against 1O-polynomial masking

4-bit 100 000 300 000 600 000 > 106 > 106

8-bit 500 000 > 106 > 106 > 106 > 106

Attack simulation results. Each attack simulation is performed 100 times for
various SNR values (+∞, 1, 1/2, 1/5 and 1/10). Table 5 summarizes the number
of leakage measurements required to observe a success rate of 90% in retrieving
k� for the different attacks.

Remark 5. No MIA processed against an implementation of the 16-bits algo-
rithm had succeeded. This can be explained by the complexity of estimation of
the probability density functions needed by the attack.

The simulation results confirm the security intuition introduced in section 2
that the security of an algorithm is highly dependant of its word size. We can
indeed state that the number of measurements needed for a 90% success rate
increase with the word size. In particular these results show that the security
improvement induced by boolean masking on longer words increase more slowly
than that induced by non-linear masking scheme. Moreover we are able to give
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practical results for the efficiency of MIA upon the considred implementations.
These results shows that the security improvement of a longer word size has the
same kind of impact on both CPA and MIA.

6 Conclusion

In this paper, we investigated the influence of the size of the words in an cryp-
tographic algorithm on the efficiency and the security of the scheme against side
channel analysis. We designed for this matter two algorithms operating respec-
tively on 4 and 16-bit words, and compared them to the original 8-bits AES both
in terms of complexity and SCA resistance.

The 16-bit variation provides a very good security, particularly assiciated
with a non-linear masking, but the complexity overhead is consequent. On the
contrary, we have shown that in some situations, using smaller Sboxes associated
with higher order masking technique improves the security of a device with
almost no extra cost. Our results show that indeed, a 2nd order boolean masking
applied on the 4-bits AES provides both a better resistance as well as better
performances than 1st order boolean masking applied on the 8-bit AES.

The S-boxes size and the masking order can be viewed as two complemen-
tary parameters. By choosing these parameters, one can adapt the performances
(area, thoughput, security) of a device to match a specific need. Table 6 recall
implementations complexities and the corresponding CPA simulation results for
a realistic amount of noise (SNR= 1/2).

Table 6. Comparison of two distinct implementations

CPA (traces) Global System (LEs) S-box (LEs) Clock cycles Throughput (MB/s)
8-bits AES secured by 1-st order Boolean Masking

1 500 8089 380 282 7.09
4-bits AES secured by 2-nd order Boolean Masking

20 000 7500 207 197 18.87
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A Original AES Steps

In this section, we recall the four main operations involved in each round of the
AES encryption Algorithm. For each of them, we denote by s = (si,j)0≤i,j≤3 the
16-byte state at the input of the transformation, and by s′ = (s′i,j)0≤i,j≤3 the
state at the output of the transformation.

1. AddRoundKey: Let k = (ki,j)0≤i,j≤3 denote the round key. Each byte of the
state is XOR-ed with the corresponding round key byte:

(s′i,j) ← (si,j)⊕ (ki,j).

2. SubBytes: each byte of the state passes through the 8-bit S-box S:

s′i,j ← S(si,j).

For all x in GF(28), the AES S-box is defined as follows :

S[x] = Q(x) + a(x) · P (x) mod [X8 + 1]

where a(x) is the inversion function in the field GF(28), P (x) = x7 + x6 +
x5 + x4 + 1 coprime to the modulus, and Q(x) = x7 + x6 + x2 + x chosen
such that the S-box has no fixed points (S(x) = x) and no “opposite fixed
point” (S(x) = x̄).

3. ShiftRows: each row of the state is cyclically shifted by a certain offset:

s′i,j ← si,j−i mod 4.

4. MixColumns: each column of the state is modified as follows:

(s′0,c, s
′
1,c, s

′
2,c, s

′
3,c) ← MixColumnsc(s0,c, s1,c, s2,c, s3,c)

where MixColumnsc implements the following operations:⎧⎪⎪⎨
⎪⎪⎩

s′0,c ← (02 · s0,c)⊕ (03 · s1,c)⊕ s2,c ⊕ s3,c
s′1,c ← s0,c ⊕ (02 · s1,c)⊕ (03 · s2,c)⊕ s3,c
s′2,c ← s0,c ⊕ s1,c ⊕ (02 · s2,c)⊕ (03 · s3,c)
s′3,c ← (03 · s0,c)⊕ s1,c ⊕ s2,c ⊕ (02 · s3,c),

where · and ⊕ respectively denote the multiplication and the addition in the
field GF(2)[X ]/p(X) with p(X) = X8+X4+X3+X+1, and where 02 and
03 respectively denote the elements X and X + 1.
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B Implementations of the Field Multiplication

The main problem encountered when implementing AES is the implementation
of the field multiplication. In this section we will view several possibilities of
implementations with respect to the words bit-size.

B.1 4-Bit Multiplication :

In the case of a 4-bit implementation, a natural idea is to pre-compute the field
multiplications and store them in a 16 × 16 entries table. The multiplication is
then resumed to 1 table look-up. Such table can be stored on 128 bytes.

B.2 8-Bit Multiplication :

A classical method to implement the multiplication over GF(256) in software
is to use log/alog tables. These tables are constructed using the fact that all
non-zero elements in a finite field GF(2n) can be obtained by exponentiation
of a generator in this field. For a generator α of GF(256)∗ we define log(αi) =
i and alog(i) = αi. This results are stored in two tables of 2n − 1 words of
n bits.

If a, b are non-zero, then the product a · b can be computed using log/alog
tables as

a · b = alog[(log(a) + log(b)) mod (2n − 1)]. (9)

With this representation, computing a product over GF(256) requires 3 table
look-ups, and two additions modulo 256. Both tables can be stored in ROM on
510 bytes.

On hardware systems, the multiplication can easily be implemented using
composite field method using the methodology given in [27], or simple combina-
torial multipliers.

B.3 16-Bits Multiplication :

In order to compute multiplication over GF(216), two tools can be used: log/alog
tables or the tower field method (see [27]).

Using log/alog table requires 3 table look-ups, and two additions mod(216).
Both tables can be stored in ROM on 262140 bytes.

For more memory-restricted implementations, the tower field methodology
can be applied. It consists in considering GF(216) as GF(28) × GF(28), thus
making product in the smaller field GF(28).

In [27], Wolkerstorfer et al. give an efficient hardware implementation of mul-
tiplications and inversions in GF(28). They represent GF(28) as a quadratic
extension of the field GF(24) then exhibit an isomorphism between GF(28)
and GF(24) × GF(24). The multiplication can thus be implemented in
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GF(24)×GF(24), instead of GF(28). We want to develop here the same method-
ology in order to implement the multiplication in GF(216) using multiplication
in GF(28).

Let α be the class of X in GF(216). Let Q(X) = X2 + X + α7 be an irre-
ducible polynomial over GF(28). Let us consider the field GF(28) × GF(28) =
GF(28)[X ]/Q(X). If β is the class of X in GF(28)2, then every element of
GF(28)2 can be written as a · β + b with a and b in GF(28).

Let η and ν be two elements of GF(28)2 such that η = u1β + u0 and ν =
v1β + v0. Then we have :

η · ν = (u1β + u0)(v1β + v0)
= u1v1β

2 + (u1v0 + u0v1)β + u0v0
= (u1v0 + u0v1 + u1v1)β + (u1v1α

7 + u0v0)
(10)

Hence the product in GF(28)2 can be performed using 5 multiplications in
GF(28) and 3 XORs. In order to compute the isomorphism I : GF(216) −→
GF(28)×GF(28) and its inverse, we simply have to define base changing equa-
tions from the relation I(α) = 2Aβ + 1C. Base changing can then be computed
following algorithm 1.

Algorithm 1. Base changing
Input: An element a in the input field F , (μ0, . . . , μ15) the base changing value
Output: The corresponding element a′ in the ouput field G

1. a′ ← 0

2. for i = 0 to 15 do

3. a′ ← a′ ⊕ (ai · μi)

4. return a′

where ai is the ith bit of a.

Remark 6. As both words in GF(28) depend on every 16 bits of the input, there
is no security loss in this implementation.

Using this method, each multiplication in GF(28)×GF(28) can be performed
using 5 multiplications in GF(28) (using log/alog tables) and 3 XORs. Both
isomorphisms I and I−1 can be computed using 16 XORs and 16 ANDs (and
16 shifts in software) knowing both 32-bytes tables of base changing.

C Linear Layer and MDS Matrix

We have seen that the linear layer of the AES is composed of two operations:
ShiftRows and MixColumn. This linear layer allows a reasonable diffusion en-
twined with a very low complexity. However we can define optimal diffusion
function using MDS matrices as follows.

Let C be an (m, k, d)-error correcting code over F2n . Then m is the word size
of C, k is its dimension, and d is the minimal distance between two words of the
code (or the minimal weight of a non-zero word of the code). Let us have the
following definition:
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Definition 1 (MDS code). C is said MDS (Maximum Distance Separable) if it
is a linear code that reaches the Singleton bound, i.e. if and only if d = m−k+1.

An important parameter in the security of a block cipher against linear and
differential cryptanalysis is its branch number B.

Let b be the linear (respectively differential) bias (see section D) associated to
a transformation S : GF(q) → GF(q) of the substitution layer, then the global
resistance provided by N rounds of the algorithm can be evaluated by

bB·
N
2 .

Let θ be a diffusion layer with input k elements of GF(q) and with output
m elements of GF(q) then

θ : GF(q)k → GF(q)m

x �→ θ(x).

Then θ’s branch number is given by

B(θ) = min
ξ∈(GF(q)k)�

{ω(ξ) + ω(θ(ξ))} .

Proposition 1. We have B(θ) ≤ m+ 1.

Let now C be a (2k, k, k + 1)-MDS code over F2n with generator matrix G =
(I ‖ M) with I the identity and I,M ∈ Mk×k(F2n). M is then called an MDS
matrix. Let us have the following proposition:

Proposition 2. Let M be an MDS matrix over F2n . We can then define an
optimal, i.e having the maximal branch number, invertible SPN-diffusion layer
θC as

θC : Fk
2n → Fk

2n

x �→ Mx.

In this case, the branch number of the linear layer is maximal, and equal to k+1.

D Linear and Differential Cryptanalysis

Differential and Linear cryptanalysis were first described respectively by Eli
Biham and Adi Shamir [5] in 1991 and by Mitsuru Matsui [19] in 1993. Both
attacks aims to recover the last round’s subkey of the algorithm by exploiting
statistical bias in the propagation of the message through the algorithm called
linear or differential trails. The efficiency of these attacks depends of the length
of the trails, i.e. the round number. Basically, the round number can be derived
from the branch number of the linear layer and both the prop ratio and the
input-output correlation of the S-boxes [10].

In practice we evaluate the security of an S-box S against differential crypt-
analysis by computing the prop-ratio RS . Let (a′, b′) be a pair where a′ is a
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difference of input values and b′ the difference of the corresponding outputs.
The prop-ratio RS(a

′, b′) of S associated to (a′, b′) is:

RS(a
′, b′) = 2−n

∑
a

δ(b′ ⊕ S(a⊕ a′)⊕ S(a)) (11)

where δ is the Dirac function.
Similarly, we can evaluate the security of S against linear cryptanalysis by

computing its input-output correlation. Let (a′, b′) be an input-output pair, then
the correlation cS(a

′, b′) of S associated to (a′, b′) is:

cS(a
′, b′) = 2 · pX [a′ · S(x) = b′ · x]− 1 (12)

Formally, for a cipher operating on n bits blocks to be resistant against Differ-
ential Cryptanalysis, it is a necessary condition that there is no differential trail
with a predicted prop ratio higher than 21−n.

Similarly, to be resistant against Linear Cryptanalysis, it is a necessary condi-
tion that there is no linear trail with a input-output correlation coefficient higher
than 2n/2.
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Abstract. We design a secure multiparty protocol for arithmetic
circuits against covert adversaries in the dishonest majority setting. Our
protocol achieves a deterrence factor of

(
1− 1

t

)
with O(Mn2t2s) com-

munication complexity and O(Mn3t2) exponentiations where s is the
security parameter, n is the number of parties and M is the number of
multiplication gates. Our protocol builds on the techniques introduced
in (Mohassel and Weinreb, CRYPTO’08), extending them to work in
the multiparty case, working with higher deterrence factors, and pro-
viding simulation-based security proofs. Our main underlying primitive
is a lossy additive homomorphic public key encryption scheme where
the lossiness is critical for the simulation-based proof of security to go
through. Our concrete efficiency measurements show that our protocol
performs better than previous solutions for a range of deterrence factors,
for functions such as AES and matrix multiplication.

Keywords: Multiparty Computation, Covert Adversary, Dishonest Ma-
jority, Arithmetic Circuit, Homomorphic Encryption, Lossy Encryption.

1 Introduction

In a secure multiparty computation (MPC) problem, a group of parties compute
a possibly randomized function of their inputs in such a way that the privacy
of their inputs are maintained and the computed output follows the distribution
of the function definition. MPC is a very strong primitive in cryptography since
almost all cryptographic problems can be solved, in principle, by a general secure
MPC protocol. In many applications, arithmetic circuits offer a more efficient
representation than boolean circuits. This includes applications such as secure
auction [6], secure linear algebra [19], distributed key generation [7], financial
data analysis [5] and privacy preserving data mining [18].

Much of the literature on secure MPC concerns security against either passive
or active adversaries. To achieve a trade-off between higher security in the ac-
tive model and better efficiency in the passive model, a third type of adversary
called covert adversary was introduced by Aumann and Lindell [1]. In the covert
adversary model, a corrupted party may cheat in an arbitrary way (similar to an
active adversary model) and if a party cheats, then it is guaranteed to get caught
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with a reasonable (though not all but negligible) probability. This probability is
called the deterrence factor of the model and denoted by ε. In many real world
settings, the loss of reputation associated with getting caught is such that the
parties involved in a computation will possibly avoid cheating when a realistic
probability of getting caught is ensured. Protocols with covert security tend to
be noticeably more efficient than their active counterparts.

For efficiency of an MPC protocol, we focus on the communication and com-
putational complexity. The communication complexity of a protocol is defined
as the total number of bits transferred among the parties during the execution of
the protocol. As for the computation complexity, we mainly focus on the number
of exponentiations since they are the dominant factor in practical efficiency.

MPC against Covert Adversaries for Boolean Circuits. Aumann and
Lindell [1] designed a two-party protocol secure against covert adversaries, with
deterrence ε = (1 − �−1)(1 − 2−m+1) in constant rounds and O(�s|Cb| + ms)
communication complexity where s is the security parameter and |Cb| is the
size of the boolean circuit representing the function. Goyal et al. [14] designed
a two-party protocol secure against covert adversaries, that achieves deterrence
ε =

(
1− 1

t

)
in constant rounds and O(|Cb|+ sq + t) communication complexity

where q is the input size.
Goyal et al. [14] devised a multiparty protocol secure against covert adver-

saries with a dishonest majority, with deterrence ε =
(
1− 1

t

)
requiring O(log n)

rounds and O(n3ts|Cb|) communication complexity where n is the number of
parties.

For multiparty dishonest majority setting, Lindell et al. [17] designed a com-
piler that converts a protocol secure against passive adversaries into a protocol
secure against covert adversaries with deterrence ε = 1− e−0.25 = 0.2212.

MPC for Arithmetic Circuits. Starting with the work of [3] and [9], a long
line of research on MPC considers secure computation of arithmetic circuits with
an honest majority. But our paper is focused on the dishonest majority setting
which includes the important two-party setting as a special case. In this setting,
there are only a handful of protocols for arithmetic circuits with active/covert
security [11,12] that provide practical efficiency. The other constructions such as
[17] are mostly of theoretical interest.

Damg̊ard and Orlandi [11] designed a multiparty protocol that is secure with
probability (1− 2−κ) against active adversaries with a dishonest majority. Their
protocol needs O(Mn2s+ κn2s) communication complexity where κ is the sta-
tistical security parameter,M is the number of multiplication gates in the circuit
and s is the (computational) security parameter. The constant factors of [11] are
quite large – it needs (126Mn2s+457n2κs+564Mns+2030nκs+O(Mn2+n2κ))
communication complexity and (6Mn3 + 211Mn2 + 211Mn + 20n3κ + 7n3 +
769n2κ + O(nκ)) exponentiations. This motivates the design of more efficient
protocols in this setting.

Damg̊ard et al. [10] designed a protocol secure against covert adversaries with
a dishonest majority, with deterrence ε = min{1− 1

p ,
1

2(n−1)} where p is the size



262 I. Nargis, P. Mohassel, and W. Eberly

of the finite field over which the computation is performed. This protocol uses
lattice-based cryptosystems. The lattice-based constructions tend to have bet-
ter computation complexity but significantly larger communication costs than
protocols based on number-theoretic complexity assumptions. However, a more
accurate comparison is not possible as the underlying primitives are quite dif-
ferent. Hence, for the purpose of this paper, we focus on comparison with [11]
which uses similar underlying operations.

Our Contribution. We designed a secure multiparty protocol for arithmetic
circuits in the presence of covert adversaries with a dishonest majority. Our pro-
tocol achieves a deterrence factor ε =

(
1− 1

t

)
with O(Mn2t2s) communication

complexity and O(Mn3t2) exponentiations.
The protocol of Goyal et al. [14] works for boolean circuits, in the presence of

covert adversaries with a dishonest majority. Their protocol requires O(n3ts|Cb|)
communication complexity to achieve deterrence ε =

(
1− 1

t

)
where |Cb| repre-

sents the size of the boolean circuit representing the function. For functions
involving many addition and multiplication operations, arithmetic circuits give
a more efficient representation than boolean circuits. As an example, the secure
multiplication of two shared matrices of size � × � needs |Cb| ∈ O(�2.38). The
set of � × � matrices over a finite field F forms a matrix ring, denoted M�(F),
under matrix addition and matrix multiplication. Our protocol can be general-
ized to work over matrix rings M�(F). 1 So the number of multiplication in the
matrix ring M�(F), M = 1. The communication complexity is multiplied by �2

(The communication of an �×�matrix requires the communication of �2 field ele-
ments.). For this problem, the protocol of [14] needs O(n3t�2.38s) communication
complexity and our protocol needs O(n2t2�2s) communication complexity.

The security of our protocol is comparable to the security of protocol πAMPC

of Damg̊ard and Orlandi [11] if we set κ = log2 t. For deterrence factor 1
2 , the

asymptotic communication complexity of our protocol and πAMPC is similar,
but the constant factor for our leading coefficient is four times smaller than
that of πAMPC . Asymptotically, the number of exponentiations needed by the
two protocols are similar (i.e. both O(Mn3)). For evaluating an AES cipher
with deterrence 1

2 , our protocol is up to 11 times more communication efficient
than πAMPC and needs up to 5 times less exponentiations than πAMPC . For
performing matrix multiplication of size 128×128 with deterrence 1

2 , our protocol
is up to 33 times more communication efficient than πAMPC and needs up to
17 times fewer exponentiations than πAMPC .

Techniques. Our protocol builds on the techniques introduced by Mohassel and
Weinreb [19], extending them to work in the multiparty case, working with higher
deterrence factors, and providing simulation-based security proofs. Our protocol
is based on the application of cut-and-choose techniques to additive sharing of
the inputs and intermediate values, and a lossy additive homomorphic public key
encryption scheme. In all stages of the computation it is maintained that each

1 In this generalization, the functionality is defined over inputs and outputs from
M�(F).
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party holds an additive share, an associated randomness and an encrypted share
of other parties for each wire that has been evaluated so far. Parties evaluate
the multiplication gates by splitting their shares into subshares, broadcasting
encryptions of subshares and performing homomorphic multiplication by their
own subshares to these encryptions while a randomly selected portion of the
computations are opened for verification. After evaluating all the gates in the
circuit, each party sends its share and randomness calculated for the output
wire of each other party. The receiving party holds the encryption of the shares
of the remaining parties for this wire and uses this encryption to check the
consistency of the received share and randomness. In this way, the encryption
acts as a commitment to ensure that a party trying to send an invalid share
gets caught. Due to the binding property of a traditional encryption scheme, a
simulation-based proof of the above idea is not possible. At the end, the simulator
has to generate shares and randomness on behalf of the honest parties, in a way
that is consistent with the actual outputs of the corrupted parties (based on
the actual inputs of the honest parties) and the messages transmitted so far
(based on dummy inputs of the honest parties). This task is not possible given a
traditional encryption scheme. But we show that this goal is achievable if a lossy
encryption scheme is used. In a lossy encryption scheme, a ciphertext generated
using a lossy key can be opened as an encryption of any message of choice.
But this raises another security issue. A corrupted party can try to cheat by
using a lossy key in the protocol. To prevent such an attack, a cut-and-choose
verification of the key generation is also incorporated in the protocol.

2 Background

2.1 Covert Adversary Model

Aumann and Lindell [1] introduced the covert adversary model. Let ε denote the
deterrence factor. The security is defined in an ideal/real world simulation-based
paradigm [8]. In the ideal world, there are two additional types of inputs that
a party can send to the trusted party. If a party Pi sends an input corruptedi,
then the trusted party sends corruptedi to all honest parties and halts. If a
party Pi sends an input cheati, then the trusted party performs the following
step according to the outcome of a random coin toss. With probability ε, the
trusted party sends corruptedi to all honest parties and halts. With probability
(1− ε), the trusted party sends undetected and the inputs of the honest parties
to the adversary. Then the adversary sends a set of outputs of its choice for the
honest parties to the trusted party. The trusted party sends these outputs to the
honest parties as their outputs. For full security definition of this model, see [1].

2.2 Homomorphic Encryption Scheme

An encryption scheme is called additive homomorphic if it is possible to compute
an encryption of (m1+m2) from the encryptions ofm1 andm2. This operation is
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called homomorphic addition, denoted by+h :Ek(m1+m2) = Ek(m1)+hEk(m2).
We can similarly define homomorphic subtraction, we denote this by −h. For an
additive homomorphic scheme, for an unknown plaintextm and a constant c in the
plaintext space, it is possible to compute an encryption of c·m from the encryption
of m. This operation is called homomorphic multiplication by constant, denoted
by×h : Ek(c ·m) = c×hEk(m). The Paillier encryption scheme [20] is an additive
homomorphic encryption scheme.

2.3 Lossy Encryption

Bellare et al. defined Lossy Encryption in [2], extending the definition of Dual-
Mode Encryption of [21] and Meaningful/Meaningless Encryption of [16]. In a
lossy encryption scheme, there are two modes of operations. In the injective
mode, encryption is an injective function of the plaintext. In the lossy mode, the
ciphertexts generated are independent of the plaintext.

For a probabilistic polynomial time Turing machine A, let a
$← A(x) denote

that a is obtained by running A on input x where a is distributed according
to the internal randomness of A. Let coins(A) denote the distribution of the

internal randomness of A. For a set R, let r
$← R denote that r is obtained by

sampling uniformly from R. Let Epk(m, r) denote the result of encryption of
plaintext m using encryption key pk and randomness r. Let Dsk(c) denote the
result of decryption of ciphertext c using decryption key sk.

Definition 1. (Lossy Public Key Encryption Scheme [2]) A lossy public-
key encryption scheme is a tuple (G,E,D) of probabilistic polynomial time al-
gorithms such that
– keys generated by G(1s, inj) are called injective keys.
– keys generated by G(1s, lossy) are called lossy keys.

The algorithms must satisfy the following properties.
1. Correctness on injective keys. For all plaintexts x ∈ X,

Pr[(pk, sk)
$← G(1s, inj); r

$← coins(E) : Dsk(Epk(x, r)) = x] = 1.
2. Indistinguishability of keys. The public keys in lossy mode are computa-

tionally indistinguishable from the public keys in the injective mode.

3. Lossiness of lossy keys. If (pklossy , sklossy)
$← G(1s, lossy), then for all

x0, x1 ∈ X, the distributions Epklossy
(x0, R) and Epklossy

(x1, R) are statisti-
cally indistinguishable.

4. Openability. If (pklossy , sklossy)
$← G(1s, lossy) and r

$← coins(E), then
for all x0, x1 ∈ X with overwhelming probability, theres exists r′ ∈ coins(E)
such that Epklossy

(x0, r) = Epklossy
(x1, r

′).
That is, there exists a (possibly inefficient) algorithm opener that can open a
lossy ciphertext to any arbitrary plaintext with all but negligible probability.

The semantic security of a lossy encryption scheme is implied by definition, as

follows. For any x0, x1 ∈ X, Eproj(G(1s,inj))(x0, R)
c≡ Eproj(G(1s,lossy))(x0, R)

s≡
Eproj(G(1s,lossy))(x1, R)

c≡ Eproj(G(1s,inj))(x1, R).
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Definition 2. (Key Pair Detection) A lossy encryption scheme (G,E,D) is
said to satisfy key pair detection, if it holds that it can be decided in polynomial
time whether a given pair (PKi, SKi) of keys generated by invoking G is a lossy
pair or an injective pair.

In our protocol, we use a public key encryption scheme that satisfies the following
properties.
1. additive homomorphic,
2. lossy encryption with an efficient (polynomial time) Opener algorithm, and
3. key pair detection.

Hemenway et al. [15] designed a lossy encryption scheme based on Paillier’s
encryption scheme. This scheme satisfies all these required properties.

3 Problem Description and Useful Subprotocols

All the computation will be performed over a finite field F of size p. Here p
is either a prime or a prime power. For simplicity we assume that the secu-
rity parameter s = log p. Let n denote the number of parties. Let P1, . . . , Pn

denote the parties. Let f : Fn → Fn denote an n-party functionality where
f(x1, . . . , xn) = {f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)}. Pi has input xi ∈ F and
output yi = fi(x1, . . . , xn) ∈ F.

Let C denote an arithmetic circuit representing f .2 C consists of three types
of gates – addition gates, multiplication-by-constant gates and multiplication
gates. No output wire of C is connected as an input to any gate of C. Then it
is possible to define a topological ordering of the gates of C. Let θ denote the
number of gates in C. Let wzδ denote the output wire of gate gδ of C. If gδ is
an addition or multiplication gate, then gδ has two input wires – let wuδ

and
wvδ denote the input wires of gδ. Otherwise, gδ has one input wire – let wuδ

denote the input wire of gδ. Let ρ be the number of wires in C. The wires of C
are numbered (w1, . . . , wρ) in such a way that the input wires of each gate in
C has smaller indices than the index of its output wire. The input wires of C
are numbered w1, . . . , wn where wi denotes the wire holding the input xi of Pi.
Let γ = (ρ−n). The output wires of C are numbered wγ+1, . . . , wγ+n where the
wire wγ+i holds the output yi of Pi.

The parties communicate through an authenticated broadcast channel. The
communication model is synchronous. The adversary is a probabilistic polyno-
mial time Turing machine and can corrupt at most (n−1) parties. The adversary
is assumed to be static, meaning that the adversary fixes the set of parties to
corrupt before the start of the protocol. Let [n] denote the set {1, . . . , n}.

We assume the existence of the following multiparty protocols, which are
secure against active adversaries.

2 For simplicity of presentation, we describe the protocol for arithmetic circuits such
that each gate has one output wire (this type of arithmetic circuits are called arith-
metic formula). The protocol can be generalized for any arithmetic circuit simply
by repeating the step of the protocol that is described for the single output wire of
a gate, for each of the output wires of the gates with more than one output wires.
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1. Simulatable Coin Flipping from Scratch, CoinF lipPublic: This protocol gen-
erates a shared random string σ. A simulator controlling a single party can
control the result. This string σ is used as the common reference string in
the commitment and opening protocols described below.
The commitment and opening protocols described below are designed in the
CRS model. 3.

2. Committed Coin Flipping, CommittedCoinF lipPublicσ: This protocol gen-
erates a commitment to a random string in such a way that each party is
committed to an additive share of the string.

3. Open Commitment, OpenComσ: In this protocol, the parties open their
commitments in the broadcast channel. A simulator controlling a subset of
the parties can generate a valid simulation where all the honest parties lie
about their committed values but all the corrupted parties are bound to tell
the truth or otherwise they will get caught.

There exists secure multiparty protocols against active adversaries for these
tasks, based on the Decisional Diffie-Hellman assumption. More details about
these protocols can be found in [14,13].

4 Protocol for Secure Computation

Let wk be a wire in C. Let Sk,i denote the share of Pi for the wire wk. Let rsk,i
denote the randomness of Pi for the wire wk. For each j ∈ [n] \ {i}, let ESk,i,j

denote the encrypted share of Pj that Pi holds for the wire wk.
We designed a protocol Circuit for computing functionality f in the presence

of covert adversaries. The main stages of protocol Circuit are presented in Fig. 1.
Each stage is presented in a separate figure later. Unless otherwise specified, we
describe the action of each party Pi, i ∈ [n], in the protocol.

In the CRS generation stage (see Fig. 2), parties generate a common reference
string σ. σ is used as the common reference string in commitment and opening
subprotocols used during the rest of the protocol.

In the key generation stage (see Fig. 3), each party generates two pair of keys
and broadcasts the public keys of each pair. One pair is randomly selected to
verify that it is an injective key of the lossy encryption scheme being used.4 The
unopened keys are set as the keys of the corresponding parties to be used during
the rest of the protocol.

In the input sharing stage (see Fig. 4), each party distributes two sets of addi-
tive shares of its input and their encryptions to other parties. One set is randomly
selected for verification and the unopened shares are used in the computation. 5

Then we say that the input wires w1, . . . , wn of C have been evaluated. By saying

3 In the common reference string (CRS) model, it is assumed that all parties have
access to a common string that is selected from some specified distribution [4].

4 For verification, the generating party has to broadcast the private key of the selected
pair.

5 This verification is only making sure that the encryptions of the shares are done
correctly.
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Protocol Circuit.
Common Inputs:

1. An arithmetic circuit C describing f : Fn → Fn = {f1, . . . , fn},
2. A topological ordering (g1, . . . , gθ) of gates in C, and
3. An ordering (w1, . . . , wρ) of wires in C such that the input wires of each gate

in C has smaller indices than the index of its output wire.
Input of Pi : xi ∈ F.
Output of Pi : yi = fi(x1, . . . , xn) ∈ F.

In some steps of the protocol, each party is supposed to broadcast some message. If
some party Pj does not broadcast any message in one of these steps, then Pi aborts.
1. CRS Generation Stage. Parties generate a common reference string.
2. Key Generation Stage. Parties generate keys for the encryption scheme.
3. Input Sharing Stage. Each party distributes additive shares of its input and

the encryptions of these shares to other parties.
4. Computation Stage. Parties evaluate the circuit gate-by-gate.
5. Output Generation Stage. Parties evaluate their outputs.

Fig. 1. Protocol Circuit

Parties generate a common reference string σ of length p1(s) using the protocol
CoinF lipPublic. Here p1(s) is a polynomial of s.

Fig. 2. The CRS generation stage

that a wire wk has been evaluated we mean that the share Sk,i, randomness rsk,i
of each party Pi for wk and the encrypted share ESk,i,j that each party Pi holds
for each other party Pj for wk, have been fixed.6

In the computation stage (see Fig. 5), parties evaluate the circuit gate-by-gate,
in the order (g1, . . . , gθ). When the evaluation of gate gδ is finished, we say that
the output wire wzδ of gδ has been evaluated. At each point of computation the
following holds for each wire wk of C that has been evaluated so far: each party
Pi holds an additive share Sk,i, an associated randomness rsk,i and an encrypted
share ESk,i,j of each other party Pj for the wire wk.

If gδ is an addition gate, each party Pi sets its share Szδ,i for the output wire of
gδ to the sum of the shares of Pi for the input wires of gδ. Each party Pi computes
its randomness rszδ,i for the output wire of gδ such that EPKi(Szδ,i , rszδ,i ) equals
the result of homomorphic addition of the ciphertexts (ESuδ,j,i and ESvδ,j,i,
j �= i) that other parties hold for the input wires of gδ for Pi. Each party Pi

computes the encrypted share ESzδ,i,j of each other party Pj for the output wire
of gδ locally, by performing homomorphic addition of the encrypted shares of Pj

that Pi holds for the input wires of gδ.
If gδ is a multiplication-by-constant gate, each party Pi sets its share Szδ,i for

the output wire of gδ to the product of the share of Pi for the input wire of gδ and
qδ where qδ is the known constant multiplicand for gate gδ. This constant qδ is

6 ESk,i,j is supposed to be EPKj (Sk,j , rsk,j).
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1. Parties generate challenge. Parties generate a challenge mkey ∈ {1, 2} using
the protocol CommittedCoinF lipPublicσ in the CRS model.

2. Parties broadcast injective public keys. Pi generates two pairs of keys in
injective mode, that is, Pi generates (Ui,j , Vi,j) = G(1s, inj), for each j ∈ {1, 2}.
Pi broadcasts the public keys Ui,1 and Ui,2.

3. Parties open the challenge. Parties open the challenge mkey , using the pro-
tocol OpenComσ in the CRS model.

4. Parties respond to challenge. Pi broadcasts the private key Vi,mkey .
5. Parties verify the responses. For each j ∈ [n]\{i}, Pi verifies that the key pair

(Uj,mkey , Vj,mkey ) is a valid injective pair of keys for the lossy encryption scheme
being used. If this is not the case, then Pi broadcasts corruptedj and aborts.

6. Parties fix their keys. Pi performs the following steps.
(a) Pi sets (PKi, SKi) to (Ui,3−mkey , Vi,3−mkey ),
(b) For each j ∈ [n] \ {i}, Pi sets PKj to Uj,3−mkey .

Fig. 3. The key generation stage

1. Parties generate challenge. Parties generate a challenge min ∈ {1, 2} using
the protocol CommittedCoinF lipPublicσ in the CRS model.

2. Parties broadcast encrypted shares. Pi randomly selects two sets of shares
{B1,i,j}j∈[n] and {B2,i,j}j∈[n] such that

∑
j∈[n] B1,i,j =

∑
j∈[n] B2,i,j = xi.

Pi randomly selects two sets of strings {b1,i,j}j∈[n] and {b2,i,j}j∈[n].
For each � ∈ {1, 2} and each j ∈ [n], Pi broadcasts Y�,i,j = EPKj (B�,i,j , b�,i,j).

3. Parties send share and randomness to the designated parties. Pi sends
{B1,i,j , B2,i,j , b1,i,j , b2,i,j} to Pj , for each j ∈ [n] \ {i}.

4. Parties open the challenge. Parties open the challenge min using the protocol
OpenComσ in the CRS model.

5. Parties respond to challenge. Pi broadcasts the sets {Bmin,i,j}j∈[n]\{i} and
{bmin,i,j}j∈[n]\{i}.

6. Parties verify the responses. For each j ∈ [n] \ {i} and each k ∈ [n] \ {j}, Pi

verifies that Ymin,j,k = EPKk(Bmin,j,k, bmin,j,k).
If any of the equalities does not hold, then Pi broadcasts corruptedj and aborts.

7. Parties fix their shares, randomness and encrypted shares of other
parties. For each k ∈ [n], Pi sets the followings for the input wire wk of C.
(a) Pi sets Sk,i to B3−min,k,i,
(b) Pi sets rsk,i to b3−min,k,i, and
(c) For each j ∈ [n] \ {i}, Pi sets ESk,i,j to Y3−min,k,j .

Fig. 4. The input sharing stage

part of the description of C and known to all parties. Each party Pi computes its
randomness rszδ,i for the output wire of gδ such that EPKi(Szδ,i , rszδ,i ) equals
the result of homomorphic addition of the ciphertexts (ESuδ,j,i and ESvδ,j,i,
j �= i) that other parties hold for the input wires of gδ for Pi. Each party Pi

computes the encrypted share ESzδ,i,j of each other party Pj for the output wire
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of gδ locally, by performing homomorphic multiplication by qδ to the encrypted
share of Pj that Pi holds for the input wire of gδ.

If gδ is a multiplication gate, then each party Pi first generates two sets of ran-
dom shares and broadcasts their encryptions. One set is randomly selected for
verification and the unopened set will be used as the set {Ci,j}j∈[n]\{i} during the
evaluation of gδ. Each party Pi splits its shares Ai = Suδ,i and Bi = Svδ,i (for the
input wires of gδ) into two additive subshares (Ai,1+Ai,2 = Ai and Bi,1+Bi,2 =
Bi), then broadcasts the encryptions of these subshares. Each party Pi splits
its random share Ci,j into four additive subshares (Hi,j,1,1, Hi,j,1,2, Hi,j,2,1, and
Hi,j,2,2) and broadcasts their encryptions, for each j ∈ [n] \ {i}. Each party Pi

performs homomorphic multiplication by its own subshare Ai,k to the encryp-
tion Yi,� of its own subshare Bi,�, then adds a random encryption of zero and
broadcasts the resulting ciphertext Li,k,�, for each k, � ∈ {1, 2}2. Each party Pi

performs homomorphic multiplication by its own subshare Ai,k to the encryption
Yj,� of the subshare Bj,� of each other party Pj , then adds a random ciphertext
of Hi,j,k,� and broadcasts the resulting ciphertext Ki,j,k,�, for each k, � ∈ {1, 2}2.
After receiving the results of these calculations from other parties, each party Pi

decrypts the ciphertexts {Kj,i,k,�}j∈[n]\{i},k,�∈{1,2}2 under its own key PKi, sums
the results of decryptions up, then subtracts its own randomness ({Ci,j}j∈[n]\{i})
to get its share Szδ,i of the product. Each party Pi sets its randomness rszδ,i
for the output wire of gδ to a string such that encrypting Szδ,i under PKi using
this string as randomness would result in the ciphertext (ESzδ,j,i, j �= i) that
the other parties would hold as the encryption of the share of Pi for the out-
put wire of gδ. Each party Pi computes the encryption ESzδ,i,j of the share of
each other party Pj for the output wire of gδ, by performing the corresponding
homomorphic additions to the corresponding ciphertexts as all the ciphertexts
(including the results after calculations) are available to all parties. Exactly half
of all the calculations (splitting into subshares, encryption of subshares, ho-
momorphic multiplication by own subshares to own encrypted subshares, and
homomorphic multiplication by own subshares to other parties’ encrypted sub-
shares) are randomly selected for verification, ensuring that a party attempting
to cheat gets caught with probability at least 1

2 . It is also verified that the ho-
momorphic encryptions of the additive subshares (e.g. the encryptions Xi,1 and
Xi,2 of subshares Ai,1 and Ai,2) and an encryption of zero (e.g. EPKi(0, ai,0))
results in the encryption of the original share (e.g. EAj,i = ESuδ,j,i, j �= i, the
encryption of Ai that Pj holds, that is, the encryption of the share of Pi that Pj

holds for the input wire uδ of gδ) – the splitting party Pi has to broadcast the
string to be used as randomness to encrypt zero (e.g. ai,0) to prove this equality.
A party attempting to cheat gets caught with probability 1 in this case.

In the output generation stage (see Fig. 6), each party Pi sends its share Sγ+k,i

and randomness rsγ+k,i for the output wire wγ+k to each other party Pk. The
receiving party Pk holds the encryption ESγ+k,k,i of each other party Pi for its
output wire wγ+k,i. The receiving party Pk checks the consistency of the received
input and randomness with the corresponding ciphertexts (Pk checks whether
ESγ+k,k,i = EPKi(Sγ+k,i, rsγ+k,i) or not).
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5 Security of Protocol Circuit

We have the following Theorem on the security of protocol Circuit.

Theorem 1. Assuming the existence of lossy additive homomorphic public key
encryption schemes with efficient Opener algorithm and secure coin tossing pro-
tocols in the presence of active adversaries, protocol Circuit securely computes
functionality f with deterrence 1

2 in the presence of static covert adversaries that
can corrupt up to (n− 1) parties.

Let M denote the number of multiplication gates in the arithmetic circuit
representing f . Protocol Circuit runs in O(M logn) rounds and needs O(Mn2s)
communication among the parties where s is the security parameter.

The parties generate two challenges for evaluating each multiplication gate. The
challenge generation step requires O(log n) rounds, so the overall round com-
plexity is O(M logn). Parties do not need any interaction for evaluating addi-
tion gates or multiplication-by-constant gates. So the number of these two types
of gates in the circuit does not affect the communication complexity or round
complexity. The evaluation of one multiplication gate requires O(n2s) commu-
nication complexity, so the total communication complexity is O(Mn2s).

Now we describe the main intuition behind the security of protocol Circuit.
A full proof is deferred to the full version due to lack of space. The security is
proved by constructing a simulator S that acts as the ideal-world adversary. Let
A denote the adversary in the real-world.

In each stage of protocol Circuit, S checks the responses of A for both values
of the challenge, by rewinding the challenge generation step and using the sim-
ulator for the coin flip protocol to set the challenge to the other possible value.
If A cheats on behalf of a corrupted party Pi for both values of the challenge,
then S simulates catching Pi. If A cheats on behalf of a corrupted party Pi for
exactly one value of the challenge and that value is selected for verification, then
S simulates catching Pi. If A cheats on behalf of a corrupted party Pi for exactly
one value of the challenge and that value is not selected for verification, then
the simulation continues to the next stage. If A does not cheat on behalf of any
corrupted party for both values of the challenge, then S proceeds to the next
stage.

In the key generation stage, at step 2, S randomly selects dkey ∈ {1, 2}.
For each honest party Pi, S generates one injective pair (ui,dkey

, vi,dkey
) and

one lossy pair (ui,3−dkey
, vi,3−dkey

). S rewinds to step 2 until mkey equals dkey .
7 By the “key indistinguishability” property of the lossy encryption scheme,
public key of a lossy pair and public key of an injective pair are computationally
indistinguishable. No honest party gets caught as the opened keys of the honest

7 The expected number of rewinds until dkey = mkey is 2. That means the execution
of steps 2–4 of this stage of S needs expected constant time. To bound the running
time of these steps within a polynomial of the security parameter s, we can continue
rewinding S at most s� times where � ∈ N. If dkey = mkey after s� rewinds, then S
fails. The probability of failure of S is negligible.
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For each δ ∈ [θ], parties perform the following actions, depending on the type of gate gδ.
Case 1: gδ is an addition gate.

1. Pi sets Szδ,i = Suδ ,i + Svδ ,i.
2. Pi computes rszδ,i such that the following equality holds. EPKi

(Szδ ,i, rszδ,i) =
EPKi

(Suδ ,i, rauδ,i) +h EPKi
(Svδ ,i, ravδ ,i).

3. For each j ∈ [n] \ {i}, Pi sets ESzδ,i,j = ESuδ,i,j +h ESvδ,i,j .
Case 2: gδ is a multiplication-by-constant gate.

Let qδ ∈ F be the constant with which the multiplication will be done.
1. Pi sets Szδ,i = qδ · Suδ,i.
2. Pi computes rszδ,i such that the following equality holds. EPKi

(Szδ ,i, rszδ,i) =
qδ ×h EPKi

(Suδ ,i, rsuδ,i).
3. For each j ∈ [n] \ {i}, Pi sets ESzδ,i,j = qδ ×h ESuδ,i,j .

Case 3: gδ is a multiplication gate.
For each i ∈ [n], let Ai, Bi, rai and rbi denote Suδ,i, Svδ,i, rsuδ,i, and rsvδ,i, respectively.
For each i ∈ [n] and each j ∈ [n]\{i}, let EAi,j and EBi,j denote ESuδ,i,j and ESvδ,i,j ,
respectively.
1. Parties generate random shares.

(a) Parties generate challenge. Parties generate challenge mr ∈ {1, 2} using
the protocol CommittedCoinF lipPublicσ in the CRS model.

(b) Parties generate random shares. Pi randomly selects two sets of shares
{Q1,i,j}j∈[n]\{i} and {Q2,i,j}j∈[n]\{i} and two sets of strings {q1,i,j}j∈[n]\{i}
and {q2,i,j}j∈[n]\{i}.

(c) Parties broadcast encrypted shares. For each � ∈ {1, 2} and each j ∈
[n] \ {i}, Pi broadcasts Y�,i,j = EPKi

(Q�,i,j , q�,i,j).
(d) Parties open the challenge. Parties open the challenge mr using the protocol

OpenComσ in the CRS model.
(e) Parties respond to challenge. Pi broadcasts Qmr,i,j and qmr,i,j for each

j ∈ [n] \ {i}.
(f) Parties verify the responses. For each j ∈ [n] \ {i} and each k ∈ [n] \ {j},

Pi verifies that Ymr ,j,k = EPKj
(Qmr ,j,k, qm,j,k).

If any of these equalities does not hold for party Pj , then Pi broadcasts
corruptedj and aborts.

(g) Parties fix their randomness. Pi performs the following steps.
i. For each j ∈ [n] \ {i}, Pi sets Ci,j to Q3−mr ,i,j and rci,j to q3−mr ,i,j .
ii. For each j ∈ [n] \ {i} and each k ∈ [n] \ {j}, Pi sets ECj,k to Y3−mr ,j,k.

2. Parties generate challenge. Parties generate a challenge m ∈ {1, 2} using the
protocol CommittedCoinF lipPublicσ in the CRS model.

3. Parties split their shares into subshares.
(a) Pi chooses Ai,1 and Bi,1 uniformly at random from F.
(b) Pi sets Ai,2 = Ai − Ai,1, and Bi,2 = Bi − Bi,1.
(c) Pi generates two random strings ri,1 and ri,2.
(d) For each j ∈ {1, 2}, Pi broadcasts Xi,j = EPKi

(Ai,j , ri,j), and Yi,j =
EPKi

(Bi,j , ri,j).
(e) For each j ∈ [n] \ {i}, and each k, � ∈ {1, 2}2, Pi chooses Hi,j,k,� uniformly at

random from F such that
∑

k,�∈{1,2}2 Hi,j,k,� = Ci,j .

(f) For each j ∈ [n]\{i}, and each k, � ∈ {1, 2}2, Pi chooses a random string hi,j,k,�

and broadcasts Gi,j,k,� = EPKi
(Hi,j,k,�, hi,j,k,�).

4. Parties prove their sums.
(a) Pi computes two strings ai,0 and bi,0 such that

EPKi
(0, ai,0) = EPKi

(Ai, rai)−h Xi,1 −h Xi,2, and
EPKi

(0, bi,0) = EPKi
(Bi, rbi)−h Yi,1 −h Yi,2.

(b) Pi broadcasts ai,0 and bi,0.

Fig. 5. The computation stage
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Case 3: gδ is a multiplication gate.
4. Parties prove their sums.

(c) For each j ∈ [n] \ {i}, Pi performs the following two actions.
i. Pi computes a string ci,j,0 such that EPKi

(0, ci,j,0) = EPKi
(Ci,j , rci,j)−h

Gi,j,1,1 −h Gi,j,1,2 −h Gi,j,2,1 −h Gi,j,2,2.
ii. Pi broadcasts ci,j,0.

5. Parties send output parts that depend only on their own subshares. For
each k, � ∈ {1, 2}2, Pi selects a random string vvi,k,�, then broadcasts Li,k,� =
Ai,k ×h Yi,� +h EPKi

(0, vvi,k,�).
6. Parties perform computations on other parties’ encrypted subshares. For

each k, � ∈ {1, 2}2 and each j ∈ [n] \ {i}, Pi selects a random string hhi,j,k,�,
performs the following computation on the encrypted inputs of Pj , then broadcasts
Ki,j,k,� = Ai,k ×h Yj,� +h EPKj

(Hi,j,k,�, hhi,j,k,�).
7. Parties open the challenge. Parties open the challenge m using the protocol

OpenComσ in the CRS model.
8. Parties respond to challenge.

(a) Pi broadcasts Ai,m, Bi,m, ri,m, vvi,m,1 and vvi,m,2.
(b) For each j ∈ [n] \ {i}, and each � ∈ {1, 2}, Pi broadcasts Hi,j,m,�, hi,j,m,� and

hhi,j,m,�.
9. Parties verify the responses. Pi verifies the following for each party Pj , j ∈

[n] \ {i}:
(a) Pj’s encryption sums.

i. EPKj
(0, aj,0) = EAi,j −h Xj,1 −h Xj,2.

ii. EPKj
(0, bj,0) = EBi,j −h Yj,1 −h Yj,2.

iii. For each k ∈ [n] \ {j},
EPKj

(0, cj,k,0) = ECj,k −h Gj,k,1,1 −h Gj,k,1,2 −h Gj,k,2,1 −h Gj,k,2,2.
(b) Pj knows its encrypted data.

i. Xj,m = EPKj
(Aj,m, rj,m).

ii. Yj,m = EPKj
(Bj,m, rj,m).

iii. For each k ∈ [n] \ {j} and each � ∈ {1, 2},
Gj,k,m,� = EPKj

(Hj,k,m,�, hj,k,m,�).
(c) The computations performed by Pj on its own subshares are correct.

For each � ∈ {1, 2}, Lj,m,� = Aj,m ×h Yj,� +h EPKj
(0, vvj,m,�).

(d) The computations performed by Pj on other parties’ subshares are
correct. For each k ∈ [n] \ {j}, and for each � ∈ {1, 2}, Kj,k,m,� = Aj,m ×h

Yk,� +h EPKk
(Hj,k,m,�, hhj,k,m,�).

If Pj fails in any of the verifications, then Pi broadcasts corruptedj and aborts.
10. Parties compute their shares of product.

(a) For each j ∈ [n] \ {i}, Pi performs the following two actions.
i. Pi computes Vj,i = Kj,i,1,1 +h Kj,i,1,2 +h Kj,i,2,1 +h Kj,i,2,2.
ii. Pi computes Wj,i = DSKi

(Vj,i) = AjBi + Cj,i.
(b) Pi computes its share Szδ,i as follows.

Szδ,i = AiBi +
∑

j∈[n] \ {i} Wj,i −
∑

j∈[n] \ {i} Ci,j

= (
∑

j∈[n] Suδ,j)Svδ ,i +
∑

j∈[n] \ {i} Cj,i −
∑

j∈[n] \ {i} Ci,j .

(c) Pi computes its randomness rszδ,i such that the following equality holds.
EPKi

(Szδ ,i, rszδ,i) =
∑

k,� Li,k,� +h
∑

k∈[n]\{i}
∑

�,q∈{1,2}2 Kk,i,�,q −h∑
k∈[n]\{i}EPKi

(Ci,k , rci,k).
11. Parties compute encryption of the shares of other parties. For each j ∈

[n] \ {i}, Pi computes the encrypted share ESzδ,i,j of Pj as follows.
ESzδ,i,j =

∑
k,� Lj,k,� +h

∑
k∈[n]\{j}

∑
�,q∈{1,2}2 Kk,j,�,q −h

∑
k∈[n]\{j} Uj,k.

Fig. 5. (continued)
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Note that the wire wγ+k is supposed to carry the output yk of party Pk.
1. For each k ∈ [n], the parties perform the following steps.

(a) Parties send their shares and randomness for the wire wγ+k to Pk.
Pi, i ∈ [n] \ {k}, sends Sγ+k,i and rsγ+k,i to Pk. If some Pj does not send
these to Pk in this step, then Pk aborts.

(b) Pk verifies the responses. For each i ∈ [n] \ {k}, Pk compares
EPKi(Sγ+k,i, rsγ+k,i) with the ciphertext ESγ+k,k,i that Pk holds as the
encryption of the share of Pi for the wire wγ+k. If the ciphertexts do not
match, then Pk broadcasts corruptedi and aborts.

(c) Pk computes its output. Pk computes Lk =
∑

i∈[n] Sγ+k,i.

(d) If Pk broadcasts corruptedj for some j during step 1(b) of this stage, then
Pi, i ∈ [n] \ {k}, aborts.

2. Pi, i ∈ [n], outputs Li.

Fig. 6. The output generation stage

parties are injective keys. At the end of the key generation stage of the simulation,
the key pair of each honest party Pi is set to a lossy pair (ui,3−dkey

, vi,3−dkey
)

of keys. From the responses of A for both values of the challenge, S learns the
decryption keys ({vi,3−mkey

}i∈I) of the corrupted parties that will be used during
the rest of the protocol. By the “key detection” property of the lossy encryption
scheme, a corrupted party attempting to cheat by using lossy keys gets caught
with probability at least 1

2 . A corrupted party Pi attempting to cheat by using
lossy keys may not get caught with probability at most 1

2 .
8 In that case, the key

pair of Pi is set to a lossy pair for the rest of the protocol.
In the input sharing stage, S uses zero as the inputs of the honest parties

and sends shares of zero to the adversary. By the semantic security of the lossy
encryption scheme, the ciphertexts are indistinguishable in two worlds. Since
there is at least one honest party, the set of shares of the corrupted parties for
the input wire wi in two worlds are identically distributed, for each honest party
Pi. At step 5, for each honest party Pi, S sends (n−1) out of n additive shares of
zero ({Bmin,i,j}j∈[n]\{i}) to A, the set of these (n− 1) shares in both worlds are
identically distributed. A corrupted party attempting to cheat by sending invalid
encryption to other parties gets caught with probability at least 1

2 . A corrupted
party Pi may modify its input by modifying its own shares B1,i,i and B2,i,i –
such a behavior can not be prohibited in the ideal world as well. By rewinding
the challenge generation step, S learns Y1,i,i and Y2,i,i for each corrupted party
Pi. S computes the shares B1,i,i and B2,i,i by decrypting Y1,i,i and Y2,i,i using
the decryption key of Pi, and thereby learns the replaced input x′i of Pi for f ,
for each corrupted party Pi.

In the computation stage, for addition gates and multiplication-by-constant
gates, for each honest party Pi, S performs the same steps as an honest Pi would.
For evaluating a multiplication gate gδ, S behaves honestly during the random

8 This happens only if Pi selects one lossy pair and one injective pair, and the injective
pair of Pi is opened for verification.
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share generation step 1. At step 3, S randomly selects d ∈ {1, 2}. For each
honest party Pi, S honestly generates Ai,d, ri,d, computes Xi,d = Ei(Ai,d, rai,d)
honestly and sets Xi,3−d to a ciphertext such that the homomorphic addition
of Xi,1, Xi,2 and a random encryption of zero under PKi (EPKi(0, ai,0)) equals
EAq,i where q ∈ I.9 S performs similarly for the shares of Bi for each honest
party Pi. Similarly, for each honest party Pi and each j ∈ [n] \ {i}, S honestly
generates three shares Gi,j,d,1, Gi,j,d,2, Gi,j,3−d,1, corresponding randomness and
performs their encryptions honestly, and sets Hi,j,3−d,2 to a ciphertext such that
the homomorphic addition of Hi,j,1,1, Hi,j,1,2, Hi,j,2,1, Hi,j,2,2 and a random en-
cryption of zero under PKi equals ECq,i,j where q ∈ I. S rewinds to step 2 until
the challenge m equals d. So no honest party gets caught during the verifica-
tion. At steps 5 and 6, on behalf of each honest party Pi, S honestly performs
the homomorphic multiplications by generated subshares of Pi. By the semantic
security of the lossy encryption scheme, the ciphertexts are indistinguishable in
two worlds. For each honest party Pi, exactly one out of two subshares of Ai and
Bi are opened for verification – the distribution of the opened subshares are iden-
tical in two worlds. The same holds for Ci,j as exactly two out of four subshares
are opened for verification. Since exactly half of all the calculations are checked
for verification, a party attempting to cheat in any calculation gets caught with
probability at least 1

2 . Let q ∈ I. For each honest party Pi, S computes ESzδ,q,i

by performing homomorphic addition of the ciphertexts {Li,k,�}k,�∈{1,2}2 and
{Kj,i,k,�}j∈[n]\{i},k,�∈{1,2}2 , then homomorphically subtracting the ciphertexts
{ECq,i,j}j∈[n]\{i} from the result.10 For each honest party Pi, S randomly se-
lects its share Szδ,i of the output wire of gδ and computes its randomness rszδ,i
by running the Opener algorithm on inputs PKi, Szδ,i and ESzδ,q,i.

11

In the output generation stage, S sends the replaced inputs {x′i}i∈Iof the
corrupted parties to the trusted party and receives the actual outputs {yOi}i∈I of
the corrupted parties. For each corrupted party Pk, S selects a set {S′γ+k,i}i∈[n]\I
of shares of the honest parties such that the sum of these shares and the set
{Sγ+k,i}i∈I of the shares of the corrupted parties for the wire wγ+k equals the
actual output yOk of Pk. Note that the key pair of each honest party Pi was set
to a lossy pair in the key generation stage in the simulation. For each corrupted
party Pk and each honest party Pi, S computes fake randomness rs′γ+k,i by
running the Opener algorithm on inputs PKi, S

′
γ+k,i and ESγ+k,k,i so that it

satisfies EPKi(S
′
γ+k,i, rs

′
γ+k,i) = ESγ+k,k,i(ESγ+k,k,i is the ciphertext held by A

for Pi for the wire wγ+k). For each honest party Pk, S simulates the consistency
checking as an honest Pk would. If a corrupted party Pi sends inconsistent share
and randomness to an honest party Pk, then one of the following two situations
may happen. If the key pair of Pi is an injective pair of keys, then Pi gets caught
in both worlds. If the key pair of Pi is a lossy pair of keys, then Pi does not get

9 EAq,i = ESuδ,q,i is the encryption of the share Ai = Suδ,i of Pi that A holds for
the input wire wuδ of gδ.

10 ESzδ,q,i is the encrypted share of Pi that A will hold for the output wire of gδ.
11 Since the key of honest Pi is a lossy key, this will satisfy that EPKi(Szδ,i, rszδ,i) =

ESzδ,q,i.
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caught in both worlds and the output of honest Pk is set to an output desired
by the adversary. 12 By definition of security in the covert adversary model,
such an event can happen with probability at most (1− ε) in the ideal world as
well.13 In our protocol too, such an event can happen with probability at most
(1− ε) = 1− 1

2 = 1
2 .

5.1 Achieving a Higher Deterrence Factor

Here we outline what modifications are performed to protocol Circuit, to achieve
a deterrence factor ε = 1− 1

t where t is a positive integer. In the key generation
stage and the input sharing stage, each party Pi generates t key pairs and t sets
of shares where (t − 1) pair of keys and (t − 1) sets of shares are opened for
verification. For evaluating a multiplication gate, each party splits each of its
two shares into t subshares. t−1

t fraction of all the calculations are opened for
verification. We have the following Corollary.

Corollary 1. Assuming the existence of lossy additive homomorphic public key
encryption schemes with efficient Opener algorithm and secure coin tossing pro-
tocols in the presence of active adversaries, protocol Circuit securely computes
functionality f with deterrence

(
1− 1

t

)
in the presence of static covert adver-

saries that can corrupt up to (n− 1) parties.
Let M denote the number of multiplication gates in the arithmetic circuit

representing f . Then the aforementioned runs in O(M logn) rounds and needs
O(Mn2t2s) communication among the parties where s is the security parameter.

6 Efficiency and Applications

The security of protocol Circuit is comparable to the security of protocol πAMPC

of [11] if we set κ = log2 t. Both protocols work in the arithmetic circuit represen-
tation and in the dishonest majority setting. In both protocols, the computation
is performed over a finite field of size p, so the security parameter s = log p.

In our protocol Circuit, we use the lossy encryption scheme based on Paillier
cryptosystem [15] and a multiparty secure commitment scheme against active
adversaries, based on ElGamal encryption scheme [14,13]. A commitment per-
forms two exponentiations. The size of a commitment is s. In our protocol, the
public key (N, g) of the Paillier cryptosystem must satisfy N > p, so we can
assume that logN = log p+ 1 = s+ 1. Then the size of a ciphertext is (2s+ 2).
Each encryption performs two exponentiations and each decryption performs
one exponentiation. Homomorphic multiplication of a ciphertext by a constant
performs one exponentiation.

Table 1 compares the communication and computation complexity of proto-
cols πAMPC and Circuit. Moreover, protocol πAMPC needs (30Mn2s+108n2κs+

12 This can happen with probability at most 1
2
, as described in the key generation stage.

13 This happens when the trusted party replies with undetected.
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Table 1. Comparison of [11] and Circuit protocol, κ = log2 t. Here CC and Exp
denotes the communication complexity and the number of exponentiations required by
the protocols, respectively.

Criterion Protocol Performance

CC
[11] (126Mn2 + 564Mn + 457n2κ − 12n2 + 2030nκ − 230n)s +

82Mn2 − 82Mn+ 297n2κ− 39n2 − 298nκ + 39n
Circuit (7Mn2t2 + Mn2t − Mn2 − 5Mnt2 + 8Mnt − 2Mn + 6n2t +

3nt−2n)s+6Mn2t2+Mn2t−4Mnt2 −Mn+5n2t+4nt−2n

Exp
[11] 6Mn3 + 211Mn2 + 211Mn + 20n3κ+ 7n3 + 769n2κ− 75n2 +

653nκ − 82n
Circuit 5Mn3t2−3Mn3t−2Mn2t2+9Mn2t+6Mn2−2Mnt+2n3t−

2n3 − 2n2t+ 10n2 + 2nt− 4n

163Mns+599nκs+O(n2)) storage complexity for the preprocessing phase that
our protocol does not need.

Next we present the concrete efficiency comparison of these two protocols for
two applications.

6.1 Application 1: AES Cipher

The AES cipher has become a standard benchmark for evaluating the perfor-
mance of secure multiparty protocols [10].

Table 2. Comparison of [11] and Circuit protocol for t = 2, s = 40 for AES

Communication Complexity Number of exponentiations

n [11] Circuit Ratio [11] Circuit Ratio

3 328,056,840 28,672,320 11.44 7,767,408 1,468,908 5.29

5 694,453,000 81,948,800 8.47 20,413,980 6,134,800 3.33

7 1,465,584,640 162,554,560 6.88 40,004,384 16,008,020 2.50

10 2,127,364,000 334,705,600 6.36 84,226,910 44,815,400 1.88

In Table 2, we compare the communication complexity and the number of
exponentiations of both protocols for evaluating AES cipher on a shared input
with t = 2, s = 40 for various number of parties. Here the column ‘Ratio’ shows
the factor by which our protocol improves the previous work (in both commu-
nication and number of exponentiations). In this case, our protocol is up to 11
times more communication efficient than πAMPC . Our protocol needs up to 5
times less exponentiations than πAMPC .

6.2 Application 2: Matrix Multiplication

We consider the problem of performing secure multiplication of two shared ma-
trices of size �× � over a finite field F of size p. Our protocol can be generalized
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to work over matrix rings M�(F). The number of multiplication over the ring
M�(F), M = 1. This application is in high contrast to our first application AES
in the sense that AES needs a huge number of multiplications while matrix
multiplication problem performs a single secure multiplication.

Table 3. Comparison of [11] and Circuit protocol for t = 2, s = 40 for matrix multi-
plication of size 128× 128 for n parties

Communication Complexity Number of exponentiations

n [11] Circuit Ratio [11] Circuit Ratio

3 8,049,082,368 242,663,424 33.17 2,741,403,648 159,940,608 17.14

5 17,212,948,480 679,034,880 25.35 8,313,733,120 665,681,920 12.49

7 29,415,063,552 1,335,083,008 22.03 17,494,736,896 1,738,440,704 10.06

10 53,414,952,960 2,731,048,960 19.56 39,181,680,640 4,875,223,040 8.04

Table 3 compares the communication complexity and the number of expo-
nentiations needed by both protocol for performing matrix multiplication of size
128×128 for t = 2, s = 40 for various number of parties. Our protocol is up to 33
times more communication efficient than πAMPC . Our protocol requires up to 17
times less exponentiations than πAMPC . For performing matrix multiplication
of this size with t = 4 and deterrence ε = (1 − 1

4 ) = 3
4 , our protocol requires

up to 19 times less communication than πAMPC and needs up to 14 times fewer
exponentiations than πAMPC .

From these analysis we see that asymptotic analysis does not tell us everything
– in order to analyze the performance, it is sometimes necessary to perform the
exact calculation of runtime and communication complexity. The exact analysis
shows that our protocol performs much better than protocol πAMPC , both in
terms of communication complexity and the time complexity, measured by the
number of exponentiations.
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Abstract. A scalar multiplication over a binary elliptic curve consists in
a sequence of hundreds of multiplications, squarings and additions. This
sequence of field operations often involves a large amount of operations
of type AB,AC and AB +CD. In this paper, we modify classical poly-
nomial multiplication algorithms to obtain optimized algorithms which
perform these particular operations AB,AC and AB + CD. We then
present software implementation results of scalar multiplication over bi-
nary elliptic curve over two platforms: Intel Core 2 and Intel Core i5.
These experimental results show some significant improvements in the
timing of scalar multiplication due to the proposed optimizations.

Keywords: Optimized field operations AB,AC and AB+CD, double-
and-add, halve-and-add, parallel, scalar multiplication, software
implementation, carry-less multiplication.

1 Introduction

Finite field arithmetic is widely used in elliptic curve cryptography (ECC) [13,11]
and coding theory [4]. The main operation in ECC is the scalar multiplication
which is computed as a sequence of multiplications and additions in the un-
derlying field [6,8]. Efficient implementations of these sequences of finite field
operations are thus crucial to get efficient cryptographic protocols.

We focus here on the special case of software implementation of scalar mul-
tiplication on elliptic curve defined over an extended binary field F2m . An ele-
ment in F2m is a binary polynomial of degree at most m − 1. In practice m is
a prime integer in the interval [160, 600]. An addition and a multiplication of
field elements consist in a regular binary polynomial addition and multiplication
performed modulo the irreducible polynomial defining F2m . An addition and
a reduction are in practice faster than a multiplication of size m polynomials.
Specifically, an addition is a simple bitwise XOR of the coefficients: in software,
this consists in computing several independent word bitwise XORs (WXOR).
Concerning the reduction, when the irreducible polynomial which defines the
field F2m is sparse, reducing a polynomial can be expressed as a number of word
shifts and word XORs.
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Until the end of 2009 the fastest algorithm for software implementation of
polynomial multiplication was the Comb method of Lopez and Dahab [12].
This method essentially uses look-up tables, word shifts (Wshift), ANDs and
XORs. One of the most recent implementation based on this method was done
by Aranha et al. in [1] on an Intel Core 2. But, since the introduction by Intel of
a new carry-less multiplication instruction on the new processors i3, i5 and i7, the
authors in [16] have shown that the polynomial multiplication based on Karat-
suba method [15] outperforms the former approaches based on Lopez-Dahab
multiplication. In the sequel, we consider implementations on two platforms:
processor without carry-less multiplication (Intel Core 2) and processor i5 which
has such instruction.

Our Contributions. In this paper, we investigate some optimizations of the oper-
ations AB,AC and AB+CD. The fact that we can optimize two multiplications
AB,AC which have a common input A, is well known, it was for example noticed
in [2]. Indeed, since there is a common input A, the computations depending
only on A in AB and AC can be shared.

We also investigate a new optimization based on AB + CD. In this situa-
tion, we show that we can save in Lopez-Dahab polynomial multiplication algo-
rithm 60N WShifts and 30N WXORs if the inputs are stored on N computer
words. We also show that this approach can be adapted to the case of Karatsuba
multiplication and we evaluate the resulting complexity.

We present implementation results of scalar multiplication which involve the
previously mentioned optimizations. The reported results on an Intel Core 2 were
obtained using Lopez-Dahab polynomial multiplication for field multiplication,
and the reported results on an Intel Core i5 were obtained with Karatsuba
multiplication.

Organization of the Paper. In Section 2, we review the best known algorithms
for software implementation of polynomial multiplication of size m ∈ [160, 600].
In Section 3, we then present optimized versions of these algorithms for the
operations AB,AC and AB+CD. In Section 4, we describe how to use the pro-
posed optimizations in a scalar multiplication and give implementation results
obtained on an Intel Core 2 and on an Intel Core i5. Finally, in Section 5, we
give some concluding remarks.

2 Review of Multiplication Algorithms

The problem considered in this section is to compute efficiently a multiplication
in a binary field F2m . A field F2m can be defined as the set of binary polynomials
modulo an irreducible polynomial f(x) ∈ F2[x] of degree m. Consequently,
a multiplication in F2m consists in multiplying two polynomials of degree at
most m− 1 and reducing the product modulo f(x). The fields considered here
are described in Table 1 and are suitable for elliptic curve cryptography. The
irreducible polynomials in Table 1 have a sparse form. This implies that the
reduction can be expressed as a number of shifts and additions (the reader may
refer for example to [8] for further details).
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We then focus on efficient software implementation of binary polynomial mul-
tiplication: we review the best known algorithms for polynomial of cryptographic
size. An element A =

∑m−1
i=0 aix

i ∈ F2[x] is coded over N = �m/64� computer
words of size 64 bits A[0], . . . , A[N − 1]. In the sequel, we will often use a nibble

decomposition of A: A =
∑n−1

i=0 Aix
4i where degAi < 4 and n = �m/4� is the

nibble size of A. In Table 1 we give the value of N and n for the field sizes
m = 233 and m = 409 considered in this paper.

Table 1. Irreducible polynomials and word/nibble sizes of field elements

m the Irreducible N n
field degree polynomial (64-bit word size) (nibble size)

233 x233 + x74 + 1 4 59

409 x409 + x87 + 1 7 103

2.1 Comb Multiplication

One of the best known methods for software implementation of the multiplication
of two polynomials A and B was proposed by Lopez and Dahab in [12]. This
algorithm is generally referred as the left-to-right comb method with window
size w. We present this method for the window size w = 4 since, based on our
experiments and several other experimental results in the literature [1,8], this
seems to be the best case for the platform considered here (Intel Core 2). This
method first computes a table T containing all products u ·A for u(x) of degree
< 4. The second input B is decomposed into 64-bit words and nibbles as follows

B =

N−2∑
j=0

15∑
k=0

B16j+kx
64j+4k +

n−16(N−1)−1∑
k=0

B16(N−1)+kx
64(N−1)+4k

where degB16j+k < 4. Then the product R = A×B is expressed by expanding
the above expression of B as follows

R =A · (∑N−2
j=0

∑15
k=0 B16j+kx

64j+4k +
∑n−16(N−1)−1

k=0 B16(N−1)+4kx
64(N−1)+4k)

=
∑N−2

j=0

∑15
k=0(A · B16j+kx

64j+4k) +
∑n−16(N−1)−1

k=0 (A ·B16(N−1)+k)x
64(N−1)+4k

=
∑n−16(N−1)−1

k=0 x4k
(∑N−1

j=0 A ·B16j+kx
64j

)
+
∑15

k=n−16(N−1) x
4k

(∑N−2
j=0 (A ·B16j+kx

64j)
)
.

The above expression can be computed through a sequence of accumulations
R ← R+ T [B16j+k]x

64j , corresponding to the terms A ·B16j+kx
64i, followed by

multiplications by x4. This leads to Algorithm 1 for a pseudo-code formulation
and Algorithm 6 in the appendix for a C-like code formulation.

Complexity. We evaluate the complexity of the corresponding C-like code
(Algorithm 6; see p. 294 ) of the CombMul algorithm in terms of the number
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Algorithm 1. CombMul(A,B)

Require: Two binary polynomials A(x) and B(x) of degree < 64N − 4, and B(x) =∑N−1
j=0

∑15
k=0 B16j+kx

4k+64j is decomposed in 64-bit words and nibbles.
Ensure: R(x) = A(x) · B(x)

// Computation of the table T containing T [u] = u(x) · A(x) for all u such that
deg u(x) < 4
T [0] ← 0;
T [1] ← A;
for k from 1 to 7 do

T [2k] ← T [k] · x;
T [2k + 1] ← T [2k] + A;

end for
// right-to-left shifts and accumulations
R ← 0
for k from 15 downto 0 do

R ← R · x4

for j from N − 1 downto 0 do
R ← R+ T [B16j+k]x

64j

end for
end for

of 64-bit word operations (WXOR, WAND and WShift). We do not count the
operations performed for the loop variables k, j, . . .. Indeed, when all the loops
are unrolled, these operations can be precomputed. We have separated the com-
plexity evaluation of the CombMul algorithm into three parts: the computation of
the table T , the accumulations R ← R+T [B16j+k]x

64j and the shifts R ← R ·x4

of R.

• Table computation. The loop on k is of length 7, and performs one WXOR
and one WShift plus 2(N − 1) WXORs and 2(N − 1) WShifts in the inner
loop on i.

• Shifts by 4. There are two nested loops: the one on k is of length 15 and the
loop on i is of length 2N . The loop operations consist in two WShifts and
one WXOR.

• Accumulations. The number of accumulations R ← R + T [B16j+k]x
64j is

equal to n, the nibble length of B. This results in nN WXOR, n WAND and
n−N WShift operations, since a single accumulation R ← R+T [B16j+k]x

64j

requires N WXOR, one WAND and one WShift (except for k = 0).

As stated in Table 2, the total number of operations is equal to nN + 44N − 7
WXORs, n+ 73N − 7 WShifts and n WANDs.

2.2 Karatsuba Multiplication

We review the Karatsuba approach for binary polynomial multiplication. Let
A and B be two binary polynomials of size 64N and assume that N is even.
Then, we first split A and B in two halves A = A0 + x64N/2A1 and B = B0 +
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Table 2. Complexity of the C code of the Comb multiplication

Operation #WXOR #WShift #WAND

Table T 14N − 7 14N − 7 0

R ← R + T [B16j+k]x
64j nN n−N n

Shift R ← R << 4 30N 60N 0

Total nN + 44N − 7 n+ 73N − 7 n

x64N/2B1 and then we re-express the product A×B in terms of three polynomial
multiplications of half size:

R0 = A0B0, R1 = A1B1, R2 = (A0 +A1)(B0 +B1),

C = R0 + x64N/2(R0 + R1 +R2) + x64NR1.
(1)

The resulting recursive approach is given in KaratRec algorithm (Algorithm 2).
In this case the inputs A and B are supposed to be of size 64N bits where N = 2s

and packed in an array of N computer words. The three products R0, R1 and R2

are computed recursively until we reach inputs of size one computer word. Then
the word products are computed with a Mult64 operation. We further assume
that this Mult64 operation is performed using a single processor instruction: this
is the case of the Intel Cores i3, i5 and i7.

Algorithm 2. KaratRec(A,B,N)
Require: A and B on N = 2s computer words.
Ensure: R = A× B

if N = 1 then
return ( Mult64(A,B) )

else
// Split in two halves of word size N/2.

A = A0 + x64N/2A1

B = B0 + x64N/2B1

// Recursive multiplication
R0 ← KaratRec(A0, B0, N/2)
R1 ← KaratRec(A1, B1, N/2)
R2 ← KaratRec(A0 + A1, B0 + B1, N/2)
// Reconstruction

R← R0 + (R0 + R1 + R2)X
64N/2 + R1X

64N

return (R)

end if

Complexity of KaratRec Approach. We briefly compute the complexity of the
KaratRec algorithm in terms of the number of WXOR and Mult64 operations.
One single recursion of the Karatsuba formula with inputs of word sizeN requires
N WXORs for the additions A0 + A1 and B0 + B1, and 5N/2 WXORs for the
reconstruction of R. We obtain the recursive complexity given in the left side
of (2). We rewrite the complexity in the non-recursive form given in the right
side of (2).
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{
#WXOR(N)=4N + 3#WXOR(N/2),
#WXOR(1)=0.

=⇒ #WXOR(N) = 8N log2(3) − 8N{
#Mult64(N)=3#Mult64(N/2),
#Mult64(1)=1.

=⇒ #Mult64(N) = N log2(3).

(2)

3 Optimization of the Operations AB +CD and AB,AC

In this section, we present our main building blocks for the optimization of
software implementation of elliptic curve scalar multiplication. The main idea is
that the scalar multiplication involves operations of type AB +CD or AB,AC.
In such operations AB + CD and AB,AC some computations can be saved
resulting in a more efficient software implementation. This idea was previously
mentionned for example in [2] for AB,AC for the CombMul algorithm. We extend
this idea to the variants based on Karatsuba multiplication. We also study the
optimization based on the operation AB+CD in the case of CombMul algorithm
and in the case of the variants of Karatsuba multiplication.

3.1 Optimizations of AB + CD and AB,AC in the CombMul
Approach

Optimization AB,AC in the CombMul Algorithm. The fact that we have
to compute two multiplications with the same operand A, implies that the table
T in the CombMul algorithm, which contains the products T [u] = u · A, can be
computed only once for the two multiplications AB and AC. This saves 14N−7
WXORS and 14N−7 Shifts operations in the computation of AC. The resulting
complexity of the CombMul ABAC algorithm is shown in Table 3.

Optimization AB + CD in the CombMul Algorithm. We optimize the op-
eration AB + CD by performing the final addition (AB) + (CD) during the
accumulation step of the CombMul algorithm. Specifically, we keep the table
computation stage T [u] = u · A and S[u] = u · C for u of degree < 4 un-
changed. But we accumulate T [B16j+k] and S[D16j+k] in the same variable
R ← R+ (T [B16j+k] + S[B16j+k])x

64j . The shifts by 4 are then performed only
on R.

The complexity of Algorithm 3 can be easily deduced from the complexity of
the CombMul algorithm (Table 2):

• We have in the CombMul ABplusCD algorithm two table computations which
contribute to twice the complexity of the table computation in Table 2.

• The accumulations R ← R+(T [B16j+k] +S[D16j+k])x
64j also contribute to

twice the complexity of the accumulation step in Table 2.
• We have the same amount of shifts R ← R ·x4 as in the CombMul algorithm.

The resulting complexity is given in Table 3.
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Algorithm 3. CombMul ABplusCD(A,B)

Require: Four binary polynomials A,B,C and D of degree < 64N − 4, and
B(x) =

∑N−1
j=0

∑15
k=0 B16j+kx

4k+64j with degB16j+k < 4 and D(x) =∑N−1
j=0

∑15
k=0 D16j+kx

4k+64j with degD16j+k < 4
Ensure: R(x) = A(x) · B(x) + C(x) ·D(x)

// Computation of the table T and S such that T [u] = u(x) · A(x) and S[u] =
u(x) · B(x) for all deg u(x) < 4
T [0] ← 0; S[0] ← 0;
T [1] ← A; S[1] ← C;
for k from 1 to 7 do

T [2k] ← T [k] · x; S[2k] ← S[k] · x;
T [2k + 1] ← T [2k] + A; S[2k + 1] ← S[2k] + C;

end for
// right-to-left shift Comb multiplication
R ← 0
for k from 15 downto 0 do

R ← R · x4

for j from N − 1 downto 0 do
R ← R+ (T [B16j+k] + S[D16j+k ])x

64j

end for
return (R)

end for

Table 3. Complexity of the optimizations AB,AC and AB + CD on CombMul

Algorithm #WXOR #WShift #WAND

CombMul ABAC 2nN + 74N − 7 2n+ 132N − 7 2n

CombMul ABplusCD 2nN + 58N − 14 2n+ 86N − 14 2n

3.2 Optimizations AB +CD and AB,AC in the KaratRec Approach

The optimization based on AB,AC can be extended to the KaratRec algorithm.
Indeed the recursive splitting and the addition of the two halves A0 + A1 can
be performed only once for the polynomial A. This approach is described in
Algorithm 5.

We also adapt the optimization AB+CD as follows: the addition is performed
before the reconstruction of the two products AB and AC, this means that we
have only one recursive reconstruction instead of two. This approach is specified
in Algorithm 4.

Complexity of KaratRec ABAC. In the first recursion we have 3N/2 WXORs
for A0 + A1, B0 + B1 and C0 + C1 plus 5N WXORs for the reconstructions of
R and S. This leads to the following complexity:
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Algorithm 4.
KaratRec ABpCD(A,B, C,D,N)

require: A,B,C and D are polynomials of
word size N = 2s each.
ensure: R = AB + CD
if N = 1 then
return(Mul64(A, B) + Mul64(C,D))
else
// Splitting in two halves of N/2 64-bit words.

A = A0 + x64N/2A1, B = B0 + x64N/2B1,

C = C0 + x64N/2C1, D = D0 + x64N/2D1

// Additions of the halves
A2 = A0 + A1, B2 = B0 + B1

C2 = C0 + C1, D2 = D0 + D1

// Recursive multiplications/additions
R0 ← KaratRec ABpCD(A0, B0, C0, D0, N/2)
R1 ← KaratRec ABpCD(A1, B1, C1, D1, N/2)
R2 ← KaratRec ABpCD(A2, B2, C2, D2, N/2)
// Reconstruction

R← R0 + (R0 + R1 + R2)x
64N/2 + R1x

64N

return(R)
end if

Algorithm 5. KaratRec ABAC(A,B,C,N)

require: A,B and C are polynomials of
word size N = 2s each.
ensure: R = A · B and S = A · C
if N = 1 then
return(Mul64(A,B),Mul64(A,C))
else
// Splitting in two halves of N/2 64-bit words.

A = A0 + x64N/2A1, B = B0 + x64N/2B1,

C = C0 + x64N/2C1

// Additions of the halves
A2 = A0 + A1, B2 = B0 + B1, C2 = C0 + C1

// Recursive multiplications
R0, S0 ← KaratRec ABAC(A0, B0, C0, N/2)
R1, S1 ← KaratRec ABAC(A1, B1, C1, N/2)
R2, S2 ← KaratRec ABAC(A2, B2, C2, N/2)
// Reconstruction

R← R0 + (R0 + R1 + R2)x
64N/2 + R1x

64N

S ← S0 + (S0 + S1 + S2)x
64N/2 + S1x

64N

return(R,S)
end if

{
#WXOR(N)=13N/2 + 3#WXOR(N/2),
#WXOR(1)=0.

=⇒ #WXOR(N)=13N log2(3)

−13N{
#Mult64(N)=3#Mult64(N/2),
#Mult64(1)=2.

=⇒ #Mult64(N) = 2N log2(3).

Complexity of KaratRec ABpCD. In the first recursion we have 2N WXORs for
the computations A0 +A1, B0 +B1, C0 +C1 and D0 +D1 plus 5N/2 WXORs
for the reconstruction of R. The complexity for N = 1 is equal to 2Mult64 plus
one WXOR. Based on this, we derive the complexity for the KaratRec ABpCD

algorithm:

#WXOR(N) = 10N log2(3) − 9N, #Mult64(N) = 2N log2(3).

3.3 Complexity Comparison and Implementation Results

Using the complexity results determined in the former subsections, we can
compute the complexities of the multiplication algorithms and their optimized
AB,AC and AB + CD counter parts for the polynomial sizes m = 233 and
m = 409. We implemented these algorithms on the platforms Intel Core 2 and
Intel Core i5. Our implementation uses 128-bit registers and vector instructions
available on these two processors. On the Core 2 we used the modified CombMul

algorithm of [5,1] which uses mostly shifts by multiple of 8; cheaper than an
arbitrary shift for 128-bit data. On the Core i5 we implemented the KaratRec

multiplication method with the PCLMUL instruction which performs carry-less
multiplication of two 64 bit inputs contained in 128-bit registers.
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The resulting complexities and timings are reported in Table 4 and Table 5.

Table 4. Complexity/timing results of the CombMul variants on a Core 2 (2.5 GHz)

Algorithm
Overall complexity in 233 409

terms of word operations #W.Op. #CC #W.Op. #CC

CombMul nN + 2n + 117N − 14 808 336 1732 795
CombMul ABAC 2nN + 4n + 206N − 14 1511 555 3282 1597

CombMul ABplusCD 2nN + 4n + 144N − 28 1256 564 2834 1737
#W. Op. = number of word operations (WXOR, WAND, WShift).
#CC = number of clock cycles.

Table 5. Complexity/timing results of the KaratRec variants on a Core i5 (2.5 GHz)

Algorithm
Complexity for N = 2s 233 409
#WXOR #Mul64 #WXOR #Mul64 #CC #WXOR #Mul64 #CC

KaratRec 8N log2(3) − 8N N log2(3) 40 9 107 152 27 286

KaratRec ABAC 13N log2(3) − 13N 2N log2(3) 65 18 189 247 54 566

KaratRec ABpCD 10N log2(3) − 9N 2N log2(3) 54 18 182 198 54 541

Based on the results presented above, we notice that the optimization AB +
CD has always a better complexity than the optimization AB,AC and better
than two independent multiplications. Concerning the timings we note that:

– On the Core 2 the optimization ABplusCD is always slower than the op-
timization AB,AC. Moreover, the optimizations ABplusCD and AB,AC
are effective only for m = 233, since in this case they are faster than two
independent multiplications. This seems to contradict the corresponding
complexity results since the complexity differences appear quite large.

– On the Core i5 the timing results are more related to the complexity values:
for the two considered degrees ABplusCD and AB,AC are faster than two
independent multiplications and ABplusCD is always faster than AB,AC.

In the literature we can find some timing of the CombMul algorithm over a
Core 2 in [1]. The authors in [1] report implementation timings in the range
of [241, 276] clock-cycles for a polynomial multiplication of size m = 233 and
in the range of [690, 751] for m = 409, which are both better than the results
reported in Table 4. Our results on the Core i5 compares favorably with the
results reported in [16]: 128 clock-cycles for m = 233 and 345 clock-cycles for
m = 409. These reported timings may include the reduction operation (this
is not clearly specified in [16]). The same authors reported later in [17] better
timings on the same processor and compiler: 100 clock-cycles for m = 233 and
270 clock-cycles for m = 409.

4 Implementations of Scalar Multiplication Based on the
Optimizations AB,AC and AB + CD

In this section, we present our experimental results for scalar multiplication
based on the optimizations AB,AC and AB + CD presented in the previous
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section. We first review best known elliptic curve point operation formulas, and
describe how we use the optimizations AB,AC and AB + CD in these formu-
las. Then we describe the strategies we used for our implementations: scalar
multiplication algorithms and implementations of field operations (squaring, in-
version, ... ). Finally, we present the implementation results on an Intel Core 2
and an Intel Core i5.

4.1 Elliptic Curve Arithmetic

The considered curves are ordinary binary elliptic curve defined by the following
Weierstrass equation

y2 + xy = x3 + x2 + b where b ∈ F2m .

We will more specifically focused on the two NIST [14] curves B233 and B409.

Optimization AB,AC and ABplusCD in Curve Operation. We review
Kim-Kim elliptic curve operations [10] in order to describe how the optimized
operations AB,AC and AB + CD can be used in the curve operations. Kim
and Kim in [10] use a specific projective coordinates P = (X : Y : Z : T ) which
corresponds to the affine point (X/Z, Y/T ) where T = Z2. In the following
formulas we use the following notations: A · B is a non reduced polynomial
multiplication, and [R] represents the reduction of the polynomial R modulo the
irreducible polynomial defining the field F2m .

• Point doubling in Kim-Kim coordinates. We compute the doubling P1 =
(X1 : Y1 : Z1 : T1) = 2 · (X : Y : Z : T ) of a point P = (X : Y : Z : T ) by
performing the following sequence of operations

A=X2, B=[Y ]2.

and then:

Z1=[T ·A], T1=[Z2
1 ], X1=[A2 + b · T 2︸ ︷︷ ︸

AB,AC

], Y1=

ABplusCD︷ ︸︸ ︷
B · (B +X1 + Z1) + b · T1︸ ︷︷ ︸

AB,AC

+T1.

• Point addition in Kim-Kim coordinates. We review the Kim-Kim formula
for mixed point addition: we add one point P1 = (X1 : Y1 : Z1 : T1) which has
a regular Kim-Kim projective coordinates with a point P2 = (X2 : Y2 : 1 : 1)
which is in affine coordinates, i.e., Z2 = T2 = 1. The coordinates of P3 = (X3 :
Y3 : Z3 : T3) is then computed with the following sequence of operations:

A=X1 + [X2 · Z1], B=[Y1 + Y2 · T1], C=[A · Z1], D=[C · (B + C)]︸ ︷︷ ︸
AB,AC

.



Impact of Optimized Field Operations AB,AC and AB + CD 289

and then deduce Z3 = [C2], T3 = [Z2
3 ], and

X3=[B2 + C · [A2]︸ ︷︷ ︸
AB,AC

] +D, Y3=

ABplusCD︷ ︸︸ ︷
[(X3 + [X2 · Z3]) ·D + (X2 + Y2) · T3] .

In the above formulas, we indicated the operations which can be performed with
the optimization AB+CD and the operations which can be performed with the
optimization AB,AC.

• Optimization AB,AC and ABplusCD in other curve operation formulas.
We consider the following two cases: Lopez-Dahab formulas, which are variants
of the Kim-Kim formulas, and Montgomery laddering. For the Lopez-Dahab
formulas the optimizations AB,AC and ABplusCD can be applied in both
doubling and mixed addition. For the Montgomery laddering we can just apply
one optimization ABplusCD in the inner loop operation.

Another interesting operation is the point halving, but, unfortunately, we
could not apply any of the optimizations AB,AC or ABplusCD in the halving
formula of [8] (Algorithm 3.81 [8], p. 131]). Indeed, this point halving consists in
one half-trace operation, followed by one multiplication, one trace computation
and one square root, so no optimization based on combined multiplications can
be applied.

Scalar Multiplication Algorithm. The scalar multiplication on the curve
E(F2m) consists in the computation of r · P for a given point P ∈ E(F2m) and
an �-bit integer r where � is the bit length of the order of P . We implemented
the following methods for scalar multiplication:

– Double-and-add. This approach consists in a sequence of doublings and ad-
ditions on the curve. The integer r is generally recoded with the NAFw

algorithm [8] with window size w = 4 in order to reduce the number of
additions performed during the double-and-add algorithm. The scalar mul-
tiplication then requires a table precomputation T [i] = i · P for the odd
integers 0 < i < 2w−1. In our implementations we used the Kim-Kim (cf.
Subsection 4.1) and the Lopez-Dahab [8] doubling and addition formulas.

– Halve-and-add. This approach consists in a sequence of halvings and addi-
tions on the curve. The integer r is first recoded in r′ = r·2�−1 mod #<P >
since in this case we have:

r = r′2−(�−1) = (
�−1∑
i=0

r′i2
i)2−(�−1) = (

�−1∑
i=0

r′i2
i−(�−1))

and we can then compute r · P as a sequence of halvings and additions. We
use again the NAFw algorithm for w = 4 to recode r′ and the variant of
the halve-and-add approach to perform the scalar multiplication. The reader
may refer to Section 3.6 in [8] for further details on point halving approaches.
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– Parallel (Double-and-add, Halve-and-add). This approach, proposed
in [16,17], splits the computation of the scalar multiplication in two parts:
one uses double-and-add approach and the other uses halve-and-add ap-
proach. This requires some recoding of the scalar r similar to the one used
in halve-and-add approach.

– Montgomery. The last approach we considered is the Montgomery laddering
(cf. Algorithm 3.40, p.103 in [8]): it is a variant of the double-and-add
approach. The main difference is that two points are computed in the inner
for loop of the algorithm: P1 and P2 which have a constant difference P1 −
P2 = P . This approach has some nice properties as counter measure against
side channel attacks.

4.2 Implementation Aspects

We use the following strategies to implement the field operations required in
scalar multiplication algorithms:

– Multiplication. The considered multiplication strategies have already been
described in Subsection 3.3. Specifically, on the Intel Core 2 platform, we use
the version of the CombMul algorithm of [5,1] which uses 128-bit instruction
sets. On the Intel Core i5 platform we use the Karatsuba algorithm along
with vector instructions and more precisely the carry-less instruction which
performs binary polynomial multiplication of size 64 bits.

– Squaring. For the squaring we use the strategy described in [1]. Specifically,
we use a 128-bit word Sq which stores in each byte the squaring of a 4-
bit polynomial. Then for each 128-bit word A[i] of A we separate odd and
even nibbles with a masking and a shift and then apply mm shuffle epi8

intrinsinc function with left input value Sq and right input value the word
containing even or odd nibbles ofA[i]. The result is a 128-bit word containing
the squaring of each nibble. The bytes are then reordered and repacked into
two 128-bit words. The reader may refer to Algorithm 1 in [1] for further
details.

– Square-root. The square root is based on the expression
√
A =

(
∑m/2�

i=0 a2iX
i) +

√
x(

∑m/2�
i=0 a2i+1X

i). Following [1], we separate odd and
even coefficients of A using the intrinsinc function named mm shuffle epi8

and by reordering the resulting bytes. Then the multiplication by
√
x is done

through a number of shifts and additions since for m = 233 and m = 409,√
x has a sparse expression.

– Reduction. The reduction follows the strategy of [8]: the considered irre-
ducible polynomials are sparse (cf. Table 1), this makes possible to perform
a reduction with a short sequence of shifts and WXORs.

– Inversion. The inversion is computed using the Itoh-Tsujii algorithm [9].
This algorithm consists in a sequence of multiplications and multi-squarings.
This sequence of multiplication and squaring reconstructs step by step the
exponent of A−1 = A2m−2 following an addition chain in the exponent. For
example, form = 233, the inverse ofA is given by (A2232−1)2, and is obtained
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with the addition chain 1 → 2 → 3 → 6 → 7 → 14 → 28 → 29 → 58 →
116 → 232 in the exponent. For multi-squaring consisting in long sequence
of squaring we use a look-up table approach.

– Half-trace. In the halving curve operation, we have to compute half-trace

(HT ) of an element: HT (A) =
∑(m−1)/2

i=0 A22i . Our implementation is again
inspired from [16] and [7] and uses the intrinsic function mm shuffle epi8

to compute the half-trace of the even bits of A and look-up table to compute
the half-trace of the odd bits of A. For further details on this the reader
may refer to [16,17].

Lazy Reductions. An optimization called lazy-reduction can be used to opti-
mize curve operations (cf. [2,3]). This consists in removing unnecessary reduction
operations performed during the sequence of multiplications and squarings in the
curve operation formulas. Here we considered the following two lazy reduction
optimizations:

– Lazy-reduction 1 (LR1). This optimization regroups reduction operations
corresponding to distinct squarings or multiplications. For example in the
sequence of operations A2 +C ·D we can perform the addition (addition of
polynomial of degree 2m− 2) before performing the reduction. This reduces
the total number of WXORs and WShifts. In the considered elliptic curve
operation formulas (Kim-Kim, Lopez-Dahab and Montgomery) the bracket
[·] specifies the reduction operations corresponding to this LR1 optimization
(cf. Subsection 4.1).

– Lazy-reduction 2 (LR2). In this case the reduction modulo the irreducible
polynomial is partially done, this results in a polynomial with a degree larger
than m − 1. We have applied this approach for m = 233: the polynomial
is reduced to a degree 255 instead of 232. Since the KaratRec algorithm
multiplies polynomials of size 256, we don’t have to reduce the coefficients in
the range [233, 256], so we can use a lazy reduction of this kind. Figure 4.2
illustrates this strategy: we can see in this figure that the LR2 approach
saves the computations involved in the reduction of the word containing
coefficients c255, . . . , c233.
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We did not apply this strategy in the case of Intel Core 2 since the CombMul
approach multiplies polynomials of degree 232 and not 256. For the case of
degree 409, the LR2 approach does not provide any saving in the number of
words which have to be reduced, so, again, we did not implement such LR2
optimization.

4.3 Implementation Results on an Intel Core 2

The timings of our implementation are reported in Table 6. These values were
obtained on a Linux Ubuntu 11.10 platform with GCC 4.6.1. The reported clock-
cycles were obtained with the following strategy: we used the cycle counter rdtsc
attached to each core in the Intel Core 2 to get the number of clock cycles. The
reported values are average timings for randomly generated input datas.

Table 6. Timings in terms of 103 clock-cycles of scalar multiplication on an Intel Core
2 (2.50GHz)

Optimization Formulas
m = 233 m = 409

(#CC)/103 (#CC)/103

Double-and-add

none
KK 592 2125
LD 613 2192

LR1
KK 1249 2207
LD 1179 2832

AB,AC
KK 558 6217
LD 928 2917

ABplusCD
KK 542 2187
LD 553 2296

Halve-and-add

none
KK 387 1504
LD 403 1575

LR1
KK 651 1706
LD 855 1837

AB,AC
KK 858 2277
LD 887 2359

ABplusCD
KK 375 1504
LD 386 1640

Parallel(∗)

(Double-and-add
+

Halve-and-add)

none
KK 280 965
LD 295 999

LR1
KK 335 1042
LD 315 1104

AB,AC
KK 270 2311
LD 289 1362

ABplusCD
KK 273 977
LD 277 1014

Montgomery
none - 593 2190
LR1 - 637 2482

ABplusCD - 549 2289
(∗) The optimizations AB,AC and ABplusCD are applied only on the
double-and-add part.

The experimental results of the lazy-reduction optimization (LR1) do not
show the expected speed-ups: all the codes involving such lazy-reduction are
all slower than the same code running without it. Consequently, we have
not combined this optimization with the two other optimizations AB,AC and
ABplusCD.
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Table 7. Timings in terms of 103 clock-cycles of scalar multiplication on an Intel Core
i5 (2.5 GHz)

Optimizations
Curve

Formulas

m = 233 m = 409

#CC/103 #CC/103

Double-and-add

none
KK 246 917
LD 252 940

LR1 and LR2(∗∗)
KK 220 906
LD 228 959

AB,AC and KK 219 903

LR1 and LR2(∗∗) LD 226 961
ABplusCD and KK 214 877

LR1 and LR2(∗∗) LD 222 903

Halve-and-add

none
KK 165 667
LD 169 719

LR1 and LR2(∗∗)
KK 150 723
LD 155 708

AB,AC and KK 149 733

LR1 and LR2(∗∗) LD 155 720
ABplusCD and KK 150 696

LR1 and LR2(∗∗) LD 154 689

Parallel(∗)

none
KK 131 466
LD 133 478

LR1 and LR2(∗∗)
KK 116 458
LD 122 474

AB,AC and KK 117 457

LR1 and LR2(∗∗) LD 123 476
ABplusCD and KK 117 452

LR1 and LR2(∗∗) LD 118 467

Montgomery

none - 244 924

LR1 and LR2(∗∗) - 229 886
ABplusCD and - 220 883

LR1 and LR2(∗∗) -
(∗) The optimizations AB,AC and ABplusCD are applied only on the double-and-add part.
(∗∗) The optimizations LR2 is applied only for m = 233

Based on the results reported in Table 6, we remark that the proposed op-
timization AB + CD provides some significant speed-up for the field sizes 233
only. The optimization AB,AC does also provide some speed-up compared to
non-optimized results in the case of m = 233, but in some cases we obtain some
sudden loose of performance like in halve-and-add or double-and-add/LD cases.
In the case m = 409, none of the optimizations provide any improvement, this
confirms the timings we get in Table 4.

We could not find in the literature any timing on a Core 2 for the same curves
and same fields. We just mention that Aranha et al. in [1] report in the range
[785000,858000] clock-cycles over the curve NIST-B283 and [4310000,4754000]
clock-cycles over the curve NIST-B571 for double-and-add scalar multiplication
on an Intel Core 2. This means that our timings seem to be in the expected
range of values.

4.4 Implementation Results on an Intel Core i5

In Table 7 we report our timings obtained on an Intel Core i5 using implemen-
tation strategies discussed in Subsections 4.1 and 4.2. The codes were compiled
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Algorithm 6. CombMul C Code

Require: A and B two N 64-bit words polynomials of nibble length n
Ensure: R = A× B
for(i = 0; i < N ; i+ +){ ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Table: T [u] = u · A with deg u < 4
#WXOR = 7(2(N − 1) + 1) = 14N − 7
#WShift = 7(2(N − 1) + 1) = 14N − 7

T [0][i] = 0;
T [1][i] = A[i]; }

for(k = 2; k < 16; k+= 2){
T [k][0] = (T [k >> 1][0] << 1);
T [k + 1][0] = T [k][0] ∧ A[0];
for(i = 1; i < N ; i + +){

T [k][i] = (T [k >> 1][i] << 1)
∧(T [k >> 1][i− 1] >> 63);

T [k + 1][i] = T [k][i] ∧ A[i]; }}
for(k = 15; k >= n − 16(N − 1); k −−){

for(j = 0; j < N − 1; j + +){
u = (B[j] >> (4 ∗ k)) & 0xf

⎫⎪⎪⎬
⎪⎪⎭

Accumulation R ← R + x64jBk+16jA
#WXOR = N
#WShift = 1
#WAND = 1

for(i = 0; i < N ; i + +){
R[i + j] = R[i + j] ∧ T [u][i];

}
}
carry = 0
for(i = 0; i < 2 ∗N ; i + +){ ⎫⎪⎬

⎪⎭
Shift R← R << 4
#WXOR = 2N
#WShift = 4N

temp = R[i];
R[i] = (R[i] << 4) ∧ carry;
carry = temp >> 60; }

}
for(k = n− 16(N − 1)− 1; k > 0; k −−){

for(j = 0; j < N − 1; j + +){
u = (B[j] >> (4 ∗ k)) & 0xf

⎫⎪⎪⎬
⎪⎪⎭

Accumulation R ← R + x64jBk+16jA
#WXOR = N
#WShift = 1
#WAND = 1

for(i = 0; i < N ; i + +){
R[i + j] = R[i + j] ∧ T [u][i];

}
}
carry = 0
for(i = 0; i < 2 ∗N ; i + +){ ⎫⎪⎬

⎪⎭
Shift R← R << 4
#WXOR = 2N
#WShift = 4N

temp = R[i];
R[i] = (R[i] << 4) ∧ carry;
carry = temp >> 60; }

}
for(j = 0; j < N ; j + +){

u = B[j] & 0xf ;
⎫⎪⎪⎬
⎪⎪⎭

Accumulation R ← R + x64jB16j+kA
#WXOR = N
#WShift = 0
#WAND = 1

for (i = 0; i < N − 1; i+ +){
R[i+ j] = (R[i + j] << 4) ∧ T [u];}

}

with GCC 4.7.2 on a Linux Ubuntu 12.10. We also disabled the turbo mode of
the Core i5 in order to avoid miss-evaluations on the timings.

We note that, the lazy reduction optimizations provide a significant speed-up
compared to regular implementations. We also remark that, except in some rare
cases, the optimizations AB+CD and AB,AC provide a speed-up compared to
non-optimized or LR-optimized implementations. In the case of halve-and-add,
the speed-up is less than in the case of double-and-add, but this can be explained
by the fact that, in halve-and-add approach, the optimizations are only used in
the curve additions which are less frequent than the point halvings. Moreover,
the optimization AB + CD is generally more efficient than AB,AC. The only
cases in which neither AB + CD nor AB,AC provide the best timing result is
the parallel implementation for m = 233 and halve-and-add implementation for
m = 409.
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Let us briefly compare our results with the ones obtained by Aranha et al.
over an Intel Core i5 with a GCC compiler in [17]. We remark that, except
for parallel implementation when m = 409, our results are competitive with
the timings of [17]. This means that our implementations reach the level of
performance of [17] and that the proposed optimized operations are efficient
when included in the best known implementation strategies for Intel Core i5.

5 Conclusion

The goal of this paper was to study software optimizations of binary field oper-
ations AB,AC and AB+CD for scalar multiplication on binary elliptic curves.
We have established several algorithms for these optimizations and have evalu-
ated the complexity of the corresponding C-like codes of these algorithms. We
have then presented implementation results for scalar multiplication on an Intel
Core 2 and on an Intel Core i5. In our implementations of scalar multiplication
we have used best known algorithms. We have also tested lazy reduction opti-
mizations. The experimental results have shown that the proposed AB + CD
optimization improves the timing of scalar multiplication on an Intel Core 2 only
for the small field F2233 . On an Intel Core i5, the optimization provides the best
results for scalar multiplication over the two considered fields F2233 and F2409 .
For the case of Intel Core i5, we have reached the level of performance of the
best known results found in the literature [16].
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this work. This work was supported by the ANR Pavois.

References
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Abstract. Let N = pq be an RSA modulus with a public exponent e
and a private exponent d. Wiener’s famous attack on RSA with d <
N0.25 and its extension by Boneh and Durfee to d < N0.292 show that
using a small d makes RSA completely insecure. However, for larger d,
it is known that RSA can be broken in polynomial time under special
conditions. For example, various partial key exposure attacks on RSA
and some attacks using additional information encoded in the public
exponent e are efficient to factor the RSA modulus. These attacks were
later improved and extended in various ways. In this paper, we present
a new attack on RSA with a public exponent e satisfying an equation
ed−k(N+1−ap−bq) = 1 where a

b
is an unknown approximation of q

p
. We

show that RSA is insecure when certain amount of the Least Significant
Bits (LSBs) of ap and bq are known. Further, we show that the existence
of good approximations a

b
of q

p
with small a and b substantially reduces

the requirement of LSBs of ap and bq.

Keywords: RSA, Cryptanalysis, Factorization, Lattice, LLL algorithm,
Coppersmith’s method.

1 Introduction

The RSA cryptosystem was invented by Rivest, Shamir and Adleman [16] in 1977
and is today’s most important public-key cryptosystem. The standard notations
in RSA are as follows:

• p and q are two large primes of the same bit size.
• N = pq is the RSA modulus and φ(N) = (p − 1)(q − 1) is Euler’s totient
function.

• e and d are respectively the public and the private exponents and satisfy
ed− kφ(N) = 1 for some positive integer k.

There have been a large number of attacks on RSA. Some attacks, called small
private key attacks can break RSA in polynomial time when the private key is
small. For example, Wiener [17] showed that if the private key satisfies d < 1

3N
1
4 ,

then N can be factored and Boneh and Durfee [4] showed that RSA is insecure if

A. Youssef, A. Nitaj, A.E. Hassanien (Eds.): AFRICACRYPT 2013, LNCS 7918, pp. 297–310, 2013.
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d < N0.292. Some attacks, called partial key exposure attacks exploit the knowl-
edge of a portion of the private exponent or of one of the prime factors. Partial
key exposure attacks are mainly motivated by using side-channel attacks, such as
fault attacks, power analysis and timing attacks ([10], [11]). Using a side-channel,
an attacker can expose a part of one of the modulus prime factors p or q or of the
private key d. In 1998, Boneh, Durfee and Frankel [5] presented several partial
key exposure attacks on RSA with a public key e < N1/2 where the attacker re-
quires knowledge of most significant bits (MSBs) or least significant bits (LSBs)
of the private exponent d. In [2], Ernest et al. [7] proposed several partial key
exposure attacks that work for e > N1/2. Notice that Wiener’s attack[17] and
the attack of Boneh and Durfee[4] can be seen as partial key exposure attacks
because the most significant bits of the private exponent are known and are
equal to zero. Sometimes, it is possible to factor the RSA modulus even if the
private key is large and no bits are exposed. Such attacks exploit the knowledge
of special conditions verified by the modulus prime factors or by the exponents.
In 2004, Blömer and May [3] showed that RSA can be broken if the public expo-

nent e satisfies an equation ex = y+kφ(N) with x < 1
3N

1
4 and |y| < N−

3
4 ex. At

Africacrypt 2009, Nitaj [15] presented an attack when the exponent e satisfies
an equation eX − (N − (ap + bq))Y = Z with the constraints that a

b is an un-

known convergent of the continued fraction expansion of q
p , 1 ≤ Y ≤ X < 1

2
N

1
4√
a
,

gcd(X,Y ) = 1, and Z depends on the size of |ap− bq|. Nitaj’s attack combines
techniques from the theory of continued fractions, Coppersmith’s method [6]
for finding small roots of bivariate polynomial equations and the Elliptic Curve
Method [12] for integer factorization.

In this paper we revisit Nitaj’s attack by studying the generalized RSA equa-
tion ed− k(N +1− ap− bq) = 1 with different constraints using Coppersmith’s
method [6] only. We consider the situation when an amount of LSBs of ap and bq

are exposed where a
b is an unknown approximation of q

p , that is when a =
[
bq
p

]
.

More precisely, assume that ap = 2m0p1 + p0 and bq = 2m0q1 + q0 where m0, p0
and q0 are known to the attacker. We show that one can factor the RSA modulus
if the public key e satisfies an equation ed1 − k1(N + 1 − ap − bq) = 1 where
e = Nγ , d1 < N δ, 2m0 = Nβ and a < b < Nα satisfy

δ ≤
{
δ1 if γ ≥ 1

2 (1 + 2α− 2β),

δ2 if γ < 1
2 (1 + 2α− 2β).

with

δ1 =
7

6
+

1

3
(α− β)− 1

3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1,

δ2 =
1

4
(3− 2(α− β)− 2γ).
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We notice the following facts

• When a = b = 1, the equation becomes ed1 − k1(N + 1 − p − q) = 1 as in
standard RSA.

• When γ = 1 and α = β, the RSA instance is insecure if d < 7
6 −

√
7
3 ≈ 0.284.

This is a well known boundary in the cryptanalysis of RSA (see e.g. [4]).
• When γ = 1 and β = 0, that is no LSBs of ap nor of bq are known, the
RSA instance is insecure if δ < 7

6 +
1
3α− 1

3

√
α2 + 16α+ 7. This considerably

improve the bound δ < 1
4 (1− 2α) of [15].

• The ANSI X9.31 standard [1] requires that the prime factors p and q shall
not be near the ratio of two small integers. Our new attack shows that this
requirement is necessary and can be easily checked once one has generated
two primes simply by computing the convergents of the continued fraction
expansion of q

p .

The rest of the paper is organized as follows. In Section 2 we review some basic
results from lattice theory and their application to solve modular equations as
well as two useful lemmas. In Section 3 we describe the new attack on RSA.
In Section 4, we present various numerical experiments. Finally, we conclude in
Section 5.

2 Preliminaries

2.1 Lattices

Let ω and n be two positive integers with ω ≤ n. Let b1, · · · , bω ∈ Rn be ω
linearly independent vectors. A lattice L spanned by {b1, · · · , bω} is the set of
all integer linear combinations of b1, · · · , bω, that is

L =

{
ω∑

i=1

xibi | xi ∈ Z

}
.

The set 〈b1 . . . , bω〉 is called a lattice basis for L. The lattice dimension is
dim(L) = ω. We say that the lattice is full rank if ω = n. If the lattice is
full rank, then the determinant of L is equal to the absolute value of the de-
terminant of the matrix whose rows are the basis vectors b1, · · · , bω. In 1982,
Lenstra, Lenstra and Lovász [13] invented the so-called LLL algorithm to reduce
a basis and to find a short lattice vector in time polynomial in the bit-length of
the entries of the basis matrix and in the dimension of the lattice. The following
lemma, gives bounds on LLL-reduced basis vectors.

Theorem 1 (Lenstra, Lenstra, Lovász). Let L be a lattice of dimension ω.
In polynomial time, the LLL- algorithm outputs two reduced basis vectors v1 and
v2 that satisfy

v1 ≤ 2
ω
2 det(L) 1

ω , v2 ≤ 2
ω
2 det(L) 1

ω−1 .
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Using the LLL algorithm, Coppersmith [6] proposed a method to efficiently com-
pute small roots of bivariate polynomials over the integers or univariate modular
polynomials. Howgrave-Graham [8] gave a simple reformulation of Coppersmith’s
method in terms of the norm of the polynomial f(x, y) =

∑
aijx

iyj which is
defined by

‖f(x, y)‖ =
√∑

a2ij .

Theorem 2 (Howgrave-Graham). Let f(x, y) ∈ Z[x, y] be a polynomial which
is a sum of at most ω monomials. Suppose that f(x0, y0) ≡ 0 (mod em) where
|x0| < X and |y0| < Y and ‖f(xX, yY )‖ < em√

ω
. Then f(x0, y0) = 0 holds over

the integers.

2.2 Useful Lemmas

Let N = pq be an RSA modulus. The following lemma is useful to find a value
of ap− bq using a known value of ap+ bq.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q and S be a positive
integer. Suppose that ap + bq = S where a

b is an unknown approximation of q
p .

Then

ab =

⌊
S2

4N

⌋
and |ap− bq| =

√
S2 − 4

⌊
S2

4N

⌋
N.

Proof. Observe that multiplying q < p < 2q by p gives N < p2 < 2N and
consequently

√
N < p <

√
2
√
N . Suppose that a

b is an approximation of q
p , that

is a =
[
bq
p

]
. Hence

∣∣∣a− bq
p

∣∣∣ ≤ 1
2 , which gives

|ap− bq| ≤ p

2
≤

√
2
√
N

2
< 2

√
N.

Next, suppose that ap+ bq = S. We have S2 = (ap+ bq)2 = (ap− bq)2 + 4abN.
Since |ap − bq| < 2

√
N , then the quotient and the remainder in the Euclidean

division of S2 by 4N are respectively ab and (ap− bq)2. Hence

ab =

⌊
S2

4N

⌋
and |ap− bq| =

√
S2 − 4abN,

which terminates the proof. ��

The following lemma shows how to factor N = pq using a known value of ap+bq.

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q and S be a positive
integer. Suppose that ap + bq = S where a

b is an unknown approximation of q
p .

Then N can be factored.
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Proof. Suppose that a
b is an approximation of q

p and that ap + bq = S. By

Lemma 1, we get ab =
⌊

S2

4N

⌋
and |ap− bq| = D where

D =
√
S2 − 4abN.

Hence ap− bq = ±D. Combining with ap+ bq = S, we get 2ap = S ±D. Since
a < q, then gcd(N,S ± D) = gcd(N, 2ap) = p. This gives the factorization of
N . ��

3 The New Attack

Let e, d1, k1 be positive integers such that ed1− k1(N +1− ap− bq) = 1. In this
section, we consider the following parameters.

• 2m0 = Nβ where m0 is a known integer.
• a < b < Nα with α < 1

2 where a
b is an unknown approximation of q

p .
• ap = 2m0p1 + p0 where p0 is a known integer.
• bq = 2m0q1 + q0 where q0 is a known integer.
• e = Nγ .
• d1 = N δ.

The aim in this section is to prove the following result.

Theorem 3. Suppose that ap = 2m0p1 + p0 and bq = 2m0q1 + q0 where m0,
p0 and q0 are known with 2m0 = Nβ and a

b is an unknown approximation of q
p

satisfying a, b < Nα. Let e = Nγ , d1 = N δ and k1 be positive integers satisfying
an equation ed1−k1(N +1−ap− bq) = 1. Then one can factor N in polynomial
time when

δ ≤
{
δ1 if γ ≥ 1

2 (1 + 2α− 2β),

δ2 if γ ≤ 1
2 (1 + 2α− 2β),

where

δ1 =
7

6
+

1

3
(α− β)− 1

3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1,

δ2 =
1

4
(3− 2(α− β)− 2γ).

Proof. Suppose that ap = 2m0p1 + p0 and bq = 2m0q1 + q0 with known m0, p0
and q0. Then ap+ bq = 2m0(p1 + q1) + p0 + q0. Starting with the variant RSA
equation ed1 − k1(N + 1− ap− bq) = 1, we get

ed1 − k1 (N + 1− p0 − q0 − 2m0(p1 + q1)) = 1.

Reducing modulo e, we get

−2m0k1(p1 + q1) + (N + 1− p0 − q0)k1 + 1 ≡ 0 (mod e).
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Observe that gcd(2m0 , e) = 1. Then multiplying by −2−m0 (mod e), we get

k1(p1 + q1) + a1k1 + a2 ≡ 0 (mod e),

where

a1 ≡ −(N + 1− p0 − q0)2
−m0 (mod e),

a2 ≡ −2−m0 (mod e).

Consider the polynomial

f(x, y) = xy + a1x+ a2.

Then (x, y) = (k1, p1+q1) is a modular root of the equation f(x, y) ≡ 0 (mod e).
Assuming that α % 1

2 , we get

k1 =
ed1 − 1

N + 1− ap− bq
∼ Nγ+δ−1.

On the other hand, we have

p1 + q1 <
ap+ bq

2m0
< N

1
2+α−β .

Define the bounds X and Y as

X = Nγ+δ−1, Y = N
1
2+α−β.

To find the small modular roots of the equation f(x, y) ≡ 0 (mod e), we apply
the extended strategy of Jochemsz and May [9]. Let m and t be positive integers
to be specified later. For 0 ≤ k ≤ m, define the set

Mk =
⋃

0≤j≤t
{xi1yi2+j

∣∣∣ xi1yi2 monomial of fm(x, y)

and
xi1yi2

(xy)k
monomial of fm−k}.

Observe that fm(x, y) satisfies

fm(x, y) =
m∑

i1=0

(
m

i1

)
xi1 (y + a1)

i1am−i12

=

m∑
i1=0

(
m

i1

)
xi1

(
i1∑

i2=0

(
i1
i2

)
yi2ai1−i21 am−i12

)

=

m∑
i1=0

i1∑
i2=0

(
m

i1

)(
i1
i2

)
xi1yi2ai1−i21 am−i12 .
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Hence, xi1yi2 is a monomial of fm(x, y) if

i1 = 0, . . . ,m, i2 = 0, . . . , i1.

Consequently, for 0 ≤ k ≤ m, when xi1yi2 is a monomial of fm(x, y), then xi1yi2

(xy)k

is a monomial of fm−k(x, y) if

i1 = k, . . . ,m, i2 = k, . . . , i1.

Hence, for 0 ≤ k ≤ m, we obtain

xi1yi2 ∈ Mk if i1 = k, . . . ,m, i2 = k, . . . , i1 + t.

Similarly,

xi1yi2 ∈ Mk+1 if i1 = k + 1, . . . ,m, i2 = k + 1, . . . , i1 + t.

For 0 ≤ k ≤ m, define the polynomials

gk,i1,i2(x, y) =
xi1yi2

(xy)k
f(x, y)kem−k with xi1yi2 ∈ Mk

∖
Mk+1.

For 0 ≤ k ≤ m, these polynomials reduce to the following sets⎧⎨
⎩

k =0, . . . ,m,
i1=k, . . . ,m,
i2=k,

or

⎧⎨
⎩

k =0, . . . ,m,
i1=k,
i2=k + 1, . . . , i1 + t.

This gives rise to the polynomials

Gk,i1(x, y) = xi1−kf(x, y)kem−k, for k = 0, . . .m, i1 = k, . . .m,

Hk,i2(x, y) = yi2−kf(x, y)kem−k, for k = 0, . . .m, i2 = k + 1, . . . , k + t.

Let L denote the lattice spanned by the coefficient vectors of the polynomials
Gk,i1 (xX, yY ) and Hk,i2 (xX, yY ). The ordering of two monomials xi1yi2 , xi′1yi

′
2

is as in the following rule: if i1 < i′1, then xi1yi2 < xi′1yi2 and if i1 = i′1 and
i2 < i′2, then xi1yi2 < xi′1yi

′
2 . Notice that the matrix is left triangular. For

m = 2 and t = 1, the coefficient matrix for L is presented in Table 1. The
non-zero elements are marked with an ‘�’.
From the triangular form of the matrix, the � marked values do not contribute
in the calculation of the determinant. Hence, the determinant of L is

det(L) = eneXnXY nY . (1)

From the construction of the polynomials Gk,i1 (x, y) and Hk,i2 (x, y), we get

ne =

m∑
k=0

m∑
i1=k

(m− k) +

m∑
k=0

k+t∑
i2=k+1

(m− k) =
1

6
m(m+ 1)(2m+ 3t+ 4).
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Table 1. The coefficient matrix for the case m = 3, t = 1

1 x x2 x3 y xy x2y x3y xy2 x2y2 x3y2 x2y3 x3y3 x3y4

G0,0 e3 0 0 0 0 0 0 0 0 0 0 0 0 0

G0,1 0 Xe3 0 0 0 0 0 0 0 0 0 0 0 0

G0,2 0 0 X2e3 0 0 0 0 0 0 0 0 0 0 0

G0,3 0 0 0X3e3 0 0 0 0 0 0 0 0 0 0

H0,1 0 0 0 0 Y e3 0 0 0 0 0 0 0 0 0

G1,1 � � 0 0 0 XY e2 0 0 0 0 0 0 0 0

G1,2 0 � � 0 0 0 X2Y e2 0 0 0 0 0 0 0

G1,3 0 0 � � 0 0 0 X3Y e2 0 0 0 0 0 0

H1,2 0 0 0 0 � � 0 0 XY 2e2 0 0 0 0 0

G2,2 � � � 0 0 � � 0 0 X2Y 2 0 0 0 0

G2,3 0 � � � 0 0 � � 0 0 X3Y 2e 0 0 0

H2,3 0 0 0 0 � � � 0 � � 0 X2Y 3e 0 0

G3,3 � � � � 0 � � � 0 � � 0 X3Y 3 0

H3,4 0 0 0 0 � � � 0 � � � � � X3Y 4

Similarly, we have

nX =

m∑
k=0

m∑
i1=k

i1 +

m∑
k=0

k+t∑
i2=k+1

k =
1

6
m(m+ 1)(2m+ 3t+ 4),

and

nY =
m∑

k=0

m∑
i1=k

k +
m∑

k=0

k+t∑
i2=k+1

i2 =
1

6
(m+ 1)(m2 + 3mt+ 3t2 + 2m+ 3t).

Finally, we can calculate the dimension of L as

ω =

m∑
k=0

m∑
i1=k

1 +

m∑
k=0

k+t∑
i2=k+1

1 =
1

2
(m+ 1)(m+ 2t+ 2).

For the following asymptotic analysis we let t = τm. For sufficiently large m,
the exponents ne, nX , nY and the dimension ω reduce to

ne =
1

6
(3τ + 2)m3 + o(m3),

nX =
1

6
(3τ + 2)m3 + o(m3),

nY =
1

6
(3τ2 + 3τ + 1)2m3 + o(m3),

ω =
1

2
(2τ + 1)m2 + o(m2).

To apply Theorem 2 to the shortest vector in the LLL-reduced basis of L, we
have to set

2
ω
2 det(L) 1

ω−1 <
em√
ω
.
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This transforms to

det(L) < 1(
2

ω
2
√
ω
)ω em(ω−1) < emω.

Using (1), we get
eneXnXY nY < emω.

Plugging ne, nX , nY , ω as well as the values e = Nγ , X = Nγ+δ−1, and
Y = N

1
2+α−β , we get

1

6
(3τ + 2)m3γ +

1

6
(3τ + 2)m3 (γ + δ − 1) +

1

6
(3τ2 + 3τ + 1)2m3(

1

2
+ α− β)

<
1

2
(2τ + 1)m3γ,

which transforms to

6(α− β + 1)τ2 + 3(2α+ 2δ − 2β − 1)τ + (2γ + 2α+ 4δ − 2β − 3) < 0. (2)

Next, we consider the cases τ �= 0 and τ = 0 separately. First, we consider the
case τ > 0. The optimal value for τ in the left side of (2) is

τ =
1 + 2β − 2α− 2δ

2(1 + 2α− 2β)
. (3)

Observe that for α < 1
2 and β < 1

2 , we have 1 + 2α− 2β > 0. To ensure τ > 0,
δ should satisfy δ < δ0 where

δ0 =
1

2
(1− 2(α− β)) . (4)

Replacing τ by the optimal value (3) in the inequation (2), we get

−12δ2 + 4(7 + 2α− 2β)δ + 4(α− β)2 + 4(4γ − 1)(α− β) + 8γ − 15 < 0,

which will be true if δ < δ1 where

δ1 =
1

3
(α− β) +

7

6
− 1

3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1. (5)

Since δ has to satisfy both δ < δ0 and δ < δ1 according to (4) and (5), let us
find the minimum min(δ0, δ1). A straightforward calculation shows that

min(δ0, δ1) =

{
δ0 if γ ≤ 1

2 (1 + 2α− 2β),

δ1 if γ ≥ 1
2 (1 + 2α− 2β).

Now, consider the case τ = 0, that is t = 0. Then the inequation (2) becomes

2γ + 2α+ 4δ − 2β − 3 < 0,
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which leads to δ < δ2 where

δ2 =
1

4
(2β + 3− 2γ − 2α). (6)

To obtain an optimal value for δ, we compare δ2 as in (6) to min(δ0, δ1), obtained
respectively with τ > 0 and τ = 0. First suppose that γ ≤ 1

2 (1+ 2α− 2β). Then

min(δ0, δ1)− δ2 = δ0 − δ2 =
1

2

(
g − 1

2
(1 + 2α− 2β)

)
≤ 0.

Hence min(δ0, δ1) ≤ δ2. Next suppose that γ ≥ 1
2 (1 + 2(α− β)). Then

min(δ0, δ1)− δ2 = δ1 − δ2

=
5

6
(α− β) +

1

2
γ +

5

12

−1

3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1.

On the other hand, we have(
5

6
(α− β) +

1

2
γ +

5

12

)2

−
(
1

3

√
4(α− β)2 + 4(3γ + 1)(α− β) + 6γ + 1

)2

=
1

16
(1 + 2(α− β)− 2γ)2,

which implies that min(δ0, δ1) ≥ δ2.
Summarizing, the attack will succeed to find k1, p1 + q1 and d1 = N δ when
δ < δ′ with

δ′ =

{
δ1 if γ ≥ 1

2 (1 + 2α− 2β),

δ2 if γ ≤ 1
2 (1 + 2α− 2β),

where δ1 and δ2 are given by (5) and (6).
Next, using the known value of p1 + q1, we can precisely calculate the value
ap+ bq = 2m0(p1 + q1) + p0 + q0 = S. Then using Lemma 1 and Lemma 2, we
can find p and q. Since every step in the method can be done in polynomial time,
then N can be factored in polynomial time. This terminates the proof. ��

For example, consider the standard instance with the following parameters

• 2m0 = Nβ with β = 0.
• a ≤ b ≤ Nα with α = 0, that is ap+ bq = p+ q.
• ap = 2m0p1 + p0 = p1, that is p0 = 0.
• bq = 2m0q1 + q0 = q1, that is q0 = 0.
• e = Nγ with γ = 1.
• d1 = N δ.

Then γ ≥ 1
2 (1 + 2α − 2β) > 1

2 and the instance is insecure if δ < δ1, that is

if δ < 7
6 −

√
7
3 ≈ 0.284 which is the same boundary as in various cryptanalytic

approaches to RSA (see e.g. [4]).
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Now suppose that γ = 1 and that a, b are small. Then α ≈ 0 and the bound-
ary (5) becomes

δ1 <
7

6
− 1

3
β − 1

3

√
4β2 − 16β + 7,

where the right side increases from 0.284 to 1 when β ∈
[
0, 12

[
. This implies that

the existence of good approximation a
b of q

p substantially reduces the requirement
of LSBs of ap and bq for the new attack. This confirms the recommendation of
the X9.31-1997 standard for public key cryptography [1] regarding the generation
of primes, namely that q

p shall not be near the ratio of two small integers.

4 Experimental Results

We have implemented the new attack for various parameters. The machine was
with Windows 7 and Intel(R) Core(TM)2 Duo CPU, 2GHz and the
algebra system was Maple 12 [14]. For each set of parameters, we solved the
modular equation f(x, y) ≡ 0 (mod e) using the method described in Sec-
tion 3. We obtained two polynomials f1(x, y) and f2(x, y) with the expected
root (k1, p1 + q1). We then solved the equation obtained using the resultant of
f1(x, y) and f2(x, y) in one of the variables. For every instance, we could re-
cover k1 and p1 + q1 and hence factor N . The experimental results are shown in
Table 2

Table 2. Experimental results

N γ β α δ lattice parameters LLL-time (sec)

2048 0.999 0.219 0.008 0.340 m = 2, t = 1, dim=9 54

2048 0.999 0.230 0.018 0.340 m = 3, t = 2, dim=18 2818

2048 0.999 0.172 0.114 0.273 m = 2, t = 1, dim=9 22

2048 0.999 0.150 0.096 0.272 m = 2, t = 1, dim=9 20

2048 0.999 0.091 0.019 0.280 m = 2, t = 1, dim=9 16

1024 0.999 0.326 0.123 0.368 m = 3, t = 2, dim=18 429

1024 0.999 0.326 0.123 0.339 m = 2, t = 1, dim=9 7

1024 0.998 0.229 0.050 0.326 m = 2, t = 1, dim=9 7

1024 0.995 0.102 0.008 0.297 m = 2, t = 1, dim=9 4

1024 0.999 0.131 0.123 0.239 m = 2, t = 1, dim=9 4

In the rest of this section, we present a detailed numerical example. Consider
an instance of a 200-bit RSA public key with the following parameters.

• N = 2463200821438139415679553190953343235761287240746891883363309.
• e = 266625289801406462041749617541089513158406651283204161816153.
Hence e = Nγ with γ = 0.984.
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• m0 = 35. Hence 2m0 = Nβ with β = 0.174.
• a < b < N0.080. Hence α = 0.080.
• m = 4, t = 2.

Now suppose we know p0 = 28297245379 and q0 = 28341074839 such that
ap = 2m0p1 + p0 and bq = 2m0q1 + q0. The modular equation to solve is then
f(x, y) = xy + a1x+ a2 ≡ 0 (mod e), where

a1 = 39647847095344866596181159701545336706740936762997081713297,

a2 = 230870662106105785001116936880561535466903107693317985538102.

Working with m = 4 and t = 2, we get a lattice with dimension ω = 25. Using
the parameters γ = 0.984, α = 0.080, and β = 0.174, the method will succeed
with the bounds X and Y satisfying

p1 + q1 < X = Nγ+δ−1 ≈ 252,

k1 < Y = N
1
2+α−β ≈ 281,

if δ < 0.356. Applying the LLL algorithm, we find two polynomials f1(x, y) and
f2(x, y) sharing the same integer solution. Then solving the resultant equation
in y, we get x = 4535179907267444 and solving the resultant equation in x, we
get y = 3609045068101717298446784. Hence

p1 + q1 = 4535179907267444,

k1 = 3609045068101717298446784.

Next, define

S = 2m0(p1 + q1) + p0 + q0 = 124005844298295748786131327649328730.

Then S is a candidate for ap+ bq, and using Lemma 1, we get

ab =

⌊
S2

4N

⌋
= 1560718201,

|ap− bq| = D =
√
S2 − 4abN = 1089287630585421413834056059092.

Using S for ap+ bq and D for |ap− bq|, we get 2ap = S −D, and finally

p = gcd (N,S −D) = 2973592513804257910045501261169.

Hence q = N
p = 828358562917839001533347328061. This terminates the factor-

ization of the modulus N . Using the equation ed1 = k1(N + 1 − ap − bq) + 1,
we get d1 = 41897971798817657 ≈ N0.275. We notice that, with the stan-
dard RSA equation ed − kφ(N) = 1, we have d ≡ e−1 (mod φ(N)) ≈ N0.994

which is out of reach of the attack of Boneh and Durfee as well as the attack
of Blömer and May. Also, using 2ap = S − D, we get a = S−D

2p = 20851.

Similarly, using 2bq = S + D, we get b = S+D
2q = 74851. We notice that

gcd(a, b) = 1 and a
b is not among the convergents of q

p . This shows that Nitaj’s

attack as presented in [15] can not succeed to factor the RSA modulus in this
example.



An Attack on RSA Using LSBs of Multiples of the Prime Factors 309

5 Conclusion

In this paper, we propose a new polynomial time attack on RSA with a public
exponent satisfying an equation ed1 − k1(N + 1 − ap − bq) = 1 where a

b is an
unknown approximation of q

p and where certain amount of the Least Significant
Bits of ap and aq are known to the attacker. The attack is based on the method
of Coppersmith for solving modular polynomial equations. This attack can be
seen as an extension of the well known partial key attack on RSA when a = b = 1
and certain amount of the Least Significant Bits of one of the modulus prime
factors is known.
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Abstract. Among the existing PVSS schemes, a proposal by Shoemak-
ers is a very special one. It avoids a common problem in PVSS design and
costly operations by generating the secret to share in a certain way. Al-
though its special secret generation brings some limitations to its applica-
tion, its improvement in simplicity and efficiency is significant. However,
its computational cost is still linear in the square of the number of share
holders. Moreover, appropriate measures need to be taken to extend its
application. In this paper, the PVSS scheme is modified to improve its
efficiency and applicability. Firstly, a more efficient proof technique is de-
signed to reduce the computational cost of the PVSS scheme to be linear
in the number of share holders. Secondly, its secret generation procedure
is extended to achieve better flexibility and applicability.

1 Introduction

In many secure information systems, some secret information is distributed
among multiple parties to enhance security and robustness of systems. The first
secret sharing technique is Shamir’s t-out-of-n secret sharing [22]. A dealer has
a secret s and wants to share it among n share holders. The dealer builds a
polynomial f(x) =

∑t−1
j=0 αjx

j and sends si = f(i) mod q to the ith share holder
for i = 1, 2, . . . , n through a secure communication channel where α0 = s and q
is an integer larger than any possible secret to share. Any t shares can be used to
reconstruct the secret s =

∑
i∈S siui mod q where ui =

∏
j∈S,j �=i j/(j− i) mod q

and S contains the indices of the t shares. Moreover, no information about the
secret is obtained if the number of available shares is less than t. Secret sharing
is widely employed in various secure information systems like e-auction, e-voting
and multiparty computation. As most of the applications require public verifia-
bility, very often secret sharing must be publicly verifiable. Namely, it must be
publicly verified that all the n shares are consistently generated from a unique
share generating polynomial and any t of them reconstruct the same secret. As
the verification is public in those distributed systems, any wrong-doing can be
publicly detected by any one and thus is undeniable.

Publicly verifiable secret sharing is usually called PVSS. It is widely employed
in various applications like mix network [1], threshold access control [20], e-
voting [9,12,14,13], distributed encryption algorithm [6], zero knowledge proof
[7], anonymous token [11] and fair exchange [15]. In PVSS the dealer is not

A. Youssef, A. Nitaj, A.E. Hassanien (Eds.): AFRICACRYPT 2013, LNCS 7918, pp. 311–327, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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trusted and may deviate from the secret sharing protocol. He may distribute
inconsistent shares to the share holders such that some shares reconstruct a secret
while some other shares reconstruct a different secret. This cheating behaviour
compromises security of the applications of secret sharing. For example, in secret-
sharing-based multiple-tallier e-voting [9,12], it allows the talliers to tamper with
the votes. Famous PVSS schemes include [23,4,10,21], where one of the two PVSS
protocols in [23] is a development of the proposal in [8] and [17] is a revisit to [4]
with a different encryption algorithm and stronger security. Usually, PVSS is a
combination of secret sharing and publicly verifiable encryption of an encryption
algorithm, which is employed to implement the secure communication channel
for share distribution. The dealer encrypts shares for the share holders using
their public keys and publishes the ciphertexts. Each share holder can decrypt
the ciphertext for him and obtain his share, while the dealer can publicly prove
that the messages encrypted in the ciphertexts are shares for a unique secret
without revealing the secret or its shares. The following three important security
properties are desired in PVSS.

– Correctness: if the dealer is honest and does not deviate from the PVSS
protocol, he can always successfully prove validity of the shares.

– Soundness: only with an exception of a negligible probability, the shares are
guaranteed to be generated by the same secret-generating polynomial such
that any t of them reconstruct the same secret.

– Privacy: no information about the secret or any of its shares is revealed in
the proof of validity of the shares. More precisely, a private PVSS scheme
should employ zero knowledge proof techniques, which do not reveal any
secret information as their proof transcripts can be simulated without any
difference by a party without any knowledge of the secret or any of its shares.

Those security properties can be defined in a fornal way as follows.

Definition 1 There is a proof function V al(s1, s2, . . . , sn) for a dealer to prove
validity of the shares. If his proof returns V al(s1, s2, . . . , sn) = TRUE, validity
of s1, s2, . . . , sn are accepted. If it returns FALSE, the shares are regarded as
invalid.

– Correctness: an honest dealer can always achieve V al(s1, s2, . . . , sn)
= TRUE and Pr(V al(s1, s2, . . . , sn) = FALSE and ∃f(x) =∑t−1

j=0 αjx
j such that si = f(i) mod q) = 0 where Pr() stands for the proba-

bility of an event.
– Soundness: Pr(V al(s1, s2, . . . , sn) = TRUE and �f(x) =∑t−1

j=0 αjx
j such that si = f(i) mod q) is negligible.

– Privacy: suppose the transcript of V al(s1, s2, . . . , sn) is TRANS, and then
anyone without knowledge of s or any share can generate a simulating
transcript TRAN ′ such that distribution of the two transcripts is
indistinguishable.

Although public verification of some operations is discussed in a VSS (verifiable
secret sharing) scheme [18], it is not a PVSS proposal as it does not implement
publicly verifiable encryption.
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There are two basic and compulsory requirements in PVSS, security of en-
cryption algorithm and publicly verifiable encryption, which are explained as
follows.

– A secure encryption algorithm must be employed for the dealer to encrypt
the shares before distributing them to the share holders. The employed en-
cryption algorithm protect privacy of the encrypted messages such that no
polynomial adversary can obtain any information about the secret or any of
its shares from the ciphertexts of all the shares. This assumption is called
basic assumption as it is inevitable in any PVSS scheme.

– The employed encryption algorithm must support publicly verifiable encryp-
tion such that an encrypted share can be publicly proved and verified to
be generated by a secret share-generating polynomial. The existing PVSS
schemes specify the public proof and verification as follows.
1. The dealer publishes ci = Ei(si) for i = 1, 2, . . . , n where Ei() is the

encryption function of the ith share holder’s encryption algorithm.
2. An integer g with multiplicative order q is chosen.
3. Aj = gαj for j = 0, 1, . . . , t − 1 are published by the dealer as a public

commitment to the share-generating polynomial. To enhance privacy, αj

can be committed to in gαjhrj where h is in the cyclic group generated
by g, logg h is secret and rj is a random integer smaller than the order
of g. For simplicity of description, we only discuss the simpler commit-
ment algorithm, while replacing it with the more complex commitment
algorithm does not change the specification of PVSS in essence.

4. A commitment to every share si is publicly available: Ci =
∏t−1

j=0 A
ij

j .
5. The dealer has to publicly prove that the same integer is committed to

in Ci and encrypted in ci.

1.1 A Dilemma in Choosing Encryption Algorithm

Choice of encryption algorithm is a subtle question in PVSS. Most existing
PVSS schemes [4,10,17] choose RSA or Paillier encryption [16] for the share
holders. Those two encryption algorithms have a common property: suppose the
decryption function of the ith share holder’s encryption algorithm is Di() and
the modulus used in the calculations in Di() is qi and then q1, q2, . . . , qn must be
different from each other and so cannot be equal to q. More precisely, Di(Ei(m))
is the remainder of m modulo qi and is not necessary to be m mod q as at least
n − 1 of the qis cannot be equal to q. So if a dealer encrypts a message larger
than qi in ci what the ith share holder obtains through Di(ci) is not equal to
what the dealer encrypts in ci modulo q. Therefore, a malicious dealer can cheat
as follows.

1. He publishes ci = Ei(f(i)+kq) where k is an integer to satisfy f(i)+kq > qi.
2. The ith share holder obtains Di(ci) = f(i) + kq mod qi, which is not equal

to f(i) modulo q.
3. The dealer can still prove that the same integer (namely f(i) + kq) is com-

mitted to in Ci and encrypted in ci. But Di(ci) cannot be used as a share
to reconstruct s, the secret committed to in C0.
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The simplest way to prevent this attack is to set q1 = q2 = . . . = qn = q.
However this setting is impossible with RSA or Paillier encryption. So in the
PVSS schemes employing RSA or Paillier encryption [4,10,17], the dealer has to
prove that the message committed to in Ci and encrypted in ci is smaller than qi
for i = 1, 2, . . . , n. Therefore, n instances of range proof is needed where a range
proof proves that a secret integer is within a certain range without revealing
any other information about it. The most efficient general-purpose range proof
is proposed by Boudot in Section 3 of [5]. Although the range proof by Boudot
costs only a constant number of exponentiations, it is still not efficient enough.
His range proof consists of two proof operations to handle the upper bound
and lower bound of the range respectively, while each of them costs about 20
exponentiations. n instances of such range proof in PVSS is a high cost. Range
proof can be more efficient in terms of the number of exponentiations when a
secret integer is chosen from a range and then proved to be in a much larger
range. This condition is called expansion rate and explained in details in Section
1.2.3 of [5]. For range proof in a range R, a much smaller range R′ is chosen
in the middle of R. The prover chooses a message v in R′ and publishes its
monotone function z = w + cv in Z where w is randomly chosen from a set S1

and c is randomly chosen from a set S2. Then z is verified to be in a range R′′.
Of course, both v and w must be sealed in some appropriate commitments (or
ciphertexts) and satisfaction of z = w+ cv is proved by appropriately processing
the commitments without revealing v or w. More details of this efficient special
range proof (e.g. how to set the sizes of the ranges and sets) can be found in
Section 1.2.3 of [5], which calls it CFT proof and shows that when the parameters
are properly chosen v can be guaranteed to be in R with an overwhelmingly
large probability. Obviously, this range proof is a special solution instead of a
general-purpose range proof technique. Usage of this method is not easy and
liable to many limitations. So its application should be cautious. For example,
R must be at least billions of times larger than R′. Moreover, to minimize the
information about v revealed from its monotone function1 z, w must be at least
billions of times larger than cv. In addition, for soundness of range proof, the
relation between R′′ and the other parameters must be delicately designed. As a
result, R′′ is usually very large and contains extremely large integers. Extra large
integers and computation of them in Z without any modulus bring additional
cost and should be taken into account in efficiency analysis.

It is easy to notice that ElGamal encryption supports the simple solution
q1 = q2 = . . . = qn = q. However, it is not easy to prove that the message in
an ElGamal ciphertext is committed to in a commitment as the exponent to
a public base. The first PVSS scheme employing ElGamal encryption [23] uses
the cut-and-choose strategy and needs to repeat its proof quite a few times to
guarantee that the same integer is committed to in Ci and encrypted in ci with a
large enough probability. So it is inefficient. This dilemma in choice of encryption
algorithm is partially solved in [21]. On one hand it employs ElGamal encryption

1 Revealing of secret information is inevitable as z is calculated in Z as a monotone
function of v.
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and sets q1 = q2 = . . . = qn = q and so avoids range proof of the shares. On the
other hand, it generates the secret to share in a special way to avoid the cut-
and-choose proof mechanism. However, in the PVSS scheme in [21], the dealer
must know the discrete logarithm of the secret to share to a public base and
generate the secret from the discrete logarithm. As explained in section 2.1, this
special secret generation procedure limits application of the PVSS scheme (e.g.
in circumstances where the discrete logarithm of the secret to share is unknown).

1.2 Our Contribution

The analysis above has shown that the RSA and Paillier based PVSS schemes
[4,10,17] depend on n instances of range proof and ElGamal-based PVSS schemes
[23,21] have their own drawbacks like complex and costly proof mechanism and
limited application area. Another point we need to mention is that even the
PVSS scheme in [21] is not efficient enough and cost O(tn) in computation. Our
task is to overcome all those drawbacks.

In this paper, the PVSS scheme in [21] is modified and optimised to achieve
higher efficiency and better applicability. The new PVSS scheme sets q1 = q2 =
. . . = qn = q and thus is inherently free of any range proof. It not only avoids cut-
and-choose in proof of validity of secret sharing but also achieves much higher
efficiency than any existing PVSS scheme. It only costs O(n) in computation.
Moreover, it addresses the problem of limited application caused by the special
secret generation mechanism in [21] and provides an alternative solution. An-
other advantage of our new PVSS scheme over the existing PVSS schemes is that
it only needs the basic assumption and a verifier in zero knowledge proof (who
generates random challenges and can be replaced by a (pseudo)random function
in the random oracle model), both of which are inevitable in any PVSS scheme.
In comparison, the existing PVSS schemes need to publish a public commit-
ment to the share-generating polynomial as recalled earlier in this section. As
no commitment algorithm is completely assumption-free and any commitment
algorithm needs some computational assumption to guarantee that the secret
message in the commitment is private and cannot be changed, they may need
some additional computational assumption(s)2.

2 Background and Preliminaries

Background knowledge and security model are given in this section.

2.1 The PVSS Scheme by Schoenmakers

In the PVSS scheme in [21], a dealer employs a special sharing function to share
a specially-generated secret, while the other PVSS schemes employs the normal

2 Actually, most of the existing PVSS schemes do need some additional computational
assumptions.
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sharing function by Shamir [22] and can share any secret in general. Moreover,
a corresponding special secret reconstruction function is employed in [21] to
reconstruct the secret accordingly. The special sharing function reconstruction
function in [21] are described as follows while its public proof of validity of secret
sharing follows the principle recalled in Section 1, which is commitment-based
and applies to all the existing PVSS.

– Setting
p and q are large primes and q is a factor of p − 1. Gq is the cyclic group
with order q in Z∗p and g is a generator of Gq.

– Sharing
1. The dealer firstly chooses δ and then calculates the secret s = gδ.
2. He builds a polynomial f(x) =

∑t−1
j=0 ajx

j with a0 = δ and aj for j =
1, 2, . . . , t− 1 are random integers.

3. He publishes ElGamal ciphertext ci = (gri , gδiyrii ) for i = 1, 2, . . . , n
where δi = f(i), yi is Pi’s ElGamal public key.

– Reconstruction
1. Each Pi decrypt ci and obtains s′i = gδi .
2. A set with at least t sharers are put together: s =

∏
i∈I s

′ui

i where
ui =

∏
j∈I,j �=i j/(j − i) and I is the set containing the indices of the t

shares.

In the PVSS scheme in [21], a0 = δ, so actually discrete logarithm of the secret
s is shared using the share-generating polynomial. Its reconstruction function is
accordingly changed to reconstruct s using the shares of δ. So knowledge of dis-
crete logarithm of the secret is compulsory to the dealer and due to hardness of
DL problem its discrete logarithm must be fixed before the secret is generated in
the PVSS scheme in [21]. Therefore, it is not suitable for some applications. One
of the most common applications of PVSS is key sharing (or called distributed
key generation in some cryptographic schemes). A secret key is usually chosen
from a consecutive interval range instead of a cyclic group in many encryption
algorithms (e.g. AES and normal ElGamal) and many other encryption algo-
rithms (e.g. RSA and Paillier) do not first choose a discrete logarithm of the
secret key and then calculate the secret key in a cyclic group either. Another
important application of PVSS is sharing of password or accessing code in dis-
tributed access control. In most applications, a password or accessing code is
usually randomly chosen by users and very often the users would like to choose
some special password or accessing code like their birthdays or phone number.
So it is very probable that discrete logarithm of the password or accessing code
is unknown or even does not exist at all. In general, the secret to share cannot be
generated in the discrete-logarithm-fixed-first manner in many applications. To
guarantee that the secret generated in the discrete-logarithm-fixed-first manner
is distributed in a distribution in a set R required by an application, the set
R′ = {x | gx ∈ R} must be calculated and thus discrete logarithm of the secret
can be chosen from it first. However, due to hardness of DL problem, it is often
hard to calculate R′.
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In summary, although the PVSS scheme in [21] employs ElGamal encryption
to avoid range proof and other complex proof operations for the first time and
partially solved the dilemma explained in Section 1.1, it still has some drawbacks.
Firstly, it still needs O(tn) in computation and is thus not efficient enough.
Secondly, its has some limitations in practical application.

2.2 Security Model

Soundness of PVSS is defined in Definition 2, while privacy of PVSS follows
the simulation-based general definition of privacy of any proof protocol in
Definition 3.

Definition 2 (Soundness of PVSS). If the dealer’s public proof of validity of
the shares passes the public verification of a sound PVSS with a non-negligible
probability, there exist integers α0, α1, . . . , αt−1 such that si =

∑t−1
j=0 αji

j for i =

1, 2, . . . , n where si is the ith share.

Definition 3 (Privacy of a proof protocol). A proof protocol is private if its
transcript can be simulated by a party without any knowledge of any secret such
that the simulating transcript is indistinguishable from the real protocol transcript
as defined in Definition 4.

Definition 4 (Indistinguishability of distributions). Suppose a set of variables
have two transcripts respectively with two distributions T1 and T2. A random
secret bit i is generated. If i = 0, two instances of T2 are published; If i = 1, an
instance of T1 and an instance of T2 are published. An algorithm can distinguish
T1 and T2 if given the two published instances of transcripts he can calculate i
with a probability non-negligibly larger than 0.5.

3 New PVSS Based on ElGamal Encryption

Our new PVSS protocol employs ElGamal encryption algorithm to maintain
consistency of modulus and avoid range proof like in [21] but uses a completely
different proof technique. It does not employ any commitment algorithm to
avoid additional computational assumption. Of course it still needs the basic
assumption, namely semantic security of ElGamal encryption defined in the
following.

Definition 5 (Semantic security of encryption algorithm) A polynomial adver-
sary chooses two messages m0 and m1 in the message space of the encryption
algorithm in any way he likes and submits them to an encryption oracle, who
randomly chooses a bit i and returns the adversary E(mi) where E() denotes
the encryption algorithm. The encryption algorithm is semantically secure if the
probability that the adversary obtains i is not non-negligibly larger than 0.5.
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The main idea of the new PVSS technique is simple: given two sets of shares
s1, s2, . . . , sn and k1, k2, . . . , kn and a random challenge R, if k1 + Rs1, k2 +
Rs2, . . . , kn +Rsn are a set of consistent shares of the same secret, s1, s2, . . . , sn
are a set of consistent shares of the same secret with an overwhelmingly large
probability. It is described as follows where the denotations in [21] are inherited
and the share holders are P1, P2, . . . , Pn.

1. The dealer firstly chooses δ in Zq and then calculates s = gδ mod p. In this
way, he generates an s in Gq such that he knows δ = logg s.

2. He builds a polynomial f1(x) =
∑t−1

j=0 αjx
j with α0 = δ and αj for j =

1, 2, . . . , t− 1 are random integers chosen from Zq.

3. He randomly chooses ε in Zq and builds a polynomial f2(x) =
∑t−1

j=0 βjx
j

with β0 = ε where βj for j = 1, 2, . . . , t− 1 are random integers chosen from
Zq.

4. He publishes ci = (gri mod p, gδiyrii mod p) and c′i = (gr
′
i mod p, gεiy

r′i
i mod

p) for i = 1, 2, . . . , n where δi = f1(i) mod q, εi = f2(i) mod q and ri, r
′
i are

randomly chosen from Zq.
5. A random challenge R in Zq is publicly generated by one or more verifier(s)

or a (pseudo)random function like in any publicly verifiable zero knowledge
proof protocols (e.g. those zero knowledge proof primitives used in all the
existing PVSS schemes). A simple and non-interactive method to publicly
generate R is R = H(c1, c

′
1, c2, c

′
2, . . . , cn, c

′
n) where H() is a (pseudo)random

function (e.g. a hash function). As mentioned in Section 1.2, this randomness
generation procedure is the same as the randomness generation procedure
necessary in any existing PVSS scheme and needs no additional assumption
or technique.

6. He publishes γj = βj + Rαj mod q for j = 0, 1, . . . , t − 1 and Ri = Rri +
r′i mod q for i = 1, 2, . . . , n and any one can publicly verify

aRi a
′
i = gRi mod p (1)

bRi b
′
i = gSiyRi

i mod p (2)

for i = 1, 2, . . . , n where ci = (ai, bi), c
′
i = (a′i, b

′
i) and

Si =
∑t−1

j=0 γji
j mod q. (3)

7. Share decryption and secret reconstruction are as follows.

(a) Each Pi decrypts ci and obtains si = bi/a
xi

i mod p.

(b) A set with at least t sharers are put together: s =
∏

i∈S sui

i mod p where
ui =

∏
j∈S,j �=i j/(j − i) mod q and S is the set containing the indices of

the t shares.

Soundness and privacy of the new ElGamal-based PVSS protocol are proved in
Theorem 1 and Theorem 2 respectively, following Definition 2 and Definition 3
respectively.
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Theorem 1. Proof: If Equations (1), (2) and (3) hold for i = 1, 2, . . . , n with a
probability larger than 1/q, then there exists a t-out-of-n share-generating poly-
nomial f() such that logg Di(ci) = f(i) mod q for i = 1, 2, . . . , n where Di()
denotes the ElGamal decryption function of Pi.

Equations (1), (2) and (3) for i = 1, 2, . . . , n with a probability larger than 1/q
imply

Di(c
R
i c
′
i) = gSi = g

∑t−1
j=0 γji

j

mod p for i = 1, 2, . . . , n (4)

with a probability larger than 1/q. So, there must exist two different inte-
gers in Zq, R and R′, such that the dealer can produce γ0, γ1, . . . , γt−1 and
γ′0, γ

′
1, . . . , γ

′
t−1 respectively to satisfy

Di(c
R
i c
′
i) = g

∑t−1
j=0 γji

j

mod p for i = 1, 2, . . . , n (5)

Di(c
R′
i c′i) = g

∑t−1
j=0 γ′

ji
j

mod p for i = 1, 2, . . . , n. (6)

Otherwise, there is at most one R in Zq for the dealer to produce a set of integers
γ0, γ1, . . . , γt−1 to satisfy (4) and the probability that (4) is satisfied is no larger
than 1/q, which is a contradiction.

(5) divided by (6) yields

Di(ci)
R−R′

= g
∑t−1

j=0(γj−γ′
j)i

j

mod p for i = 1, 2, . . . , n.

Namely,

logg Di(ci)
(R−R′) =

∑t−1
j=0(γj − γ′j)i

j mod q for i = 1, 2, . . . , n

and thus

logg Di(ci) =

t−1∑
j=0

((γj − γ′j)/(R−R′))ij mod q for i = 1, 2, . . . , n. �

Theorem 2. Privacy of the new ElGamal-based PVSS protocol is completely
achieved, only dependent on the basic assumption and randomness of the chal-
lenge R. More precisely, their privacy is formally provable on the assumption
that the employed ElGamal encryption algorithm is semantically secure and R
is random.

Proof: Both protocols have the same PVSS transcript
R, c1, c2, . . . , cn, c

′
1, c
′
2, . . . , c

′
n, R1, R2, . . . , Rn, γ0, γ1,

. . . , γt−1. So their privacy can be universally proved in one simulation. A party
without any access to the secret or any of its shares can simulate the PVSS
transcript and generate a simulated transcript as follows.

1. R, α0, α1, . . . , αt−1, β0, β1, . . . , βt−1, r1, r2, . . . , rn, r′1, r′2, . . . , r′n are ran-
domly chosen from Zq.
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2. Ri = r′i +Rri mod q for i = 1, 2, . . . , n.
3. γj = Rαj + βj mod q for j = 0, 1, . . . , t− 1.

4. si =
∑t−1

j=0 αji
j mod q for i = 1, 2, . . . , n.

5. ki =
∑t−1

j=0 βji
j mod q for i = 1, 2, . . . , n.

6. ci = (gri mod p, gsiyrii mod p) for i = 1, 2, . . . , n.

7. c′i = (gr
′
i mod p, gkiy

r′i
i mod p) for i = 1, 2, . . . , n.

In this simulated transcript of ci, c
′
i, Ri for i = 1, 2, . . . , n, R, γ0, γ1, . . . , γt−1,

– each of ci and c′i alone is uniformly distributed in the ciphertext space of the
employed ElGamal encryption algorithm for i = 1, 2, . . . , n;

– each of R, γ0, γ1, . . . , γt−1 is uniformly distributed in Zq;
– each Ri is uniformly distributed in Zq for i = 1, 2, . . . , n;
– D1(c1), D2(c2), . . . , Dn(cn) are shares of an integer uniformly distributed in

Gq;
– D1(c

′
1), D2(c

′
2), . . . , Dn(c

′
n) are shares of an integer uniformly distributed in

Gq.

In comparison, in the real transcript of ci, c
′
i, Ri for i = 1, 2, . . . , n,

R, γ0, γ1, . . . , γt−1 published by the dealer,

– each of ci and c′i alone is uniformly distributed in the ciphertext space of the
employed ElGamal encryption algorithm for i = 1, 2, . . . , n;

– each of R, γ0, γ1, . . . , γt−1 is uniformly distributed in Zq;
– each Ri is uniformly distributed in Zq for i = 1, 2, . . . , n;
– D1(c1), D2(c2), . . . , Dn(cn) are shares of the shared secret s or gs mod p,

depending on which of the two protocols is referred to;
– D1(c

′
1), D2(c

′
2), . . . , Dn(c

′
n) are shares of an integer uniformly distributed in

Gq.

The only difference between the two transcripts lies in distribution of
c1, c2, . . . , cn, which are encrypted shares of a random integer in the simulated
transcript and encrypted shares of s or gs mod p in the real transcript. The tran-
script of c1, c2, . . . , cn in the real ElGamal-based new PVSS protocols is denoted
as T1; while the simulated transcript of c1, c2, . . . , cn is denoted as T2. If an
algorithm can compromise privacy of the ElGamal-based new PVSS protocols,
according to Definition 3, it can distinguish T1 and T2 as defined in Definition 4.
This algorithm, denoted as A, can be employed to win a game as follows.

1. An adversary sets m0 = s and randomly chooses m1 from Gq and submits
them to a dealer. The dealer randomly chooses a bit i and shares mi among
the share holders using an ElGamal-based new PVSS protocol. The party
needs to calculate i to win the game using the encrypted shares, which is
denoted as T ′1. Note that T

′
1 and T1 have the same distribution if i = 0; while

T ′1 and T2 have the same distribution if i = 1.
2. The adversary randomly chooses an integer from Gq and shares it among

the share holders using the ElGamal-based new PVSS protocol. He generates
the encrypted shares of this integer, which is denoted as T ′2. T ′2 and T2 have
the same distribution.
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3. He inputs T ′1 and T ′2 to A, which outputs i′. As A can distinguish T1 and T2

as defined in Definition 4, with a probability non-negligibly larger than 0.5,
it returns i′ = 0 if i = 1 and returns i′ = 1 if i = 0. So 1 − i′ is a correct
solution for i with a probability non-negligibly larger than 0.5.

However, to win the game with a probability non-negligibly larger than 0.5 will
leads to a contradiction as follows. For simplicity of proof, suppose 2t ≥ n + 1
and like many existing PVSS descriptions the addition modulus is not explicitly
specified. If there is an polynomial algorithm A to win the game above, it is
illustrated in the following that this algorithm can be employed to break semantic
security of the employed encryption algorithm.

1. The adversary in Definition 5 needs to obtain i where the encryption algo-
rithm is E().

2. He calculates integers α0, α1, . . . , αt−1, α′0, α
′
1, . . . , α

′
t−1 and s2, s3, . . . , sn

such that

m0 =
∑t−1

j=0 αj

m1 =
∑t−1

j=0 α
′
j

si =
∑t−1

j=0 αji
j for i = 2, 3, . . . , n

si =
∑t−1

j=0 α
′
ji

j for i = 2, 3, . . . , n.

As 2t ≥ n+ 1, he can always find such integers using efficient linear algebra
computations.

3. He inputs (α0, α
′
0) to A as the two possible secrets to share. He inputs

(c, c2, c3, . . . , cn) to A as the encrypted shares where ci = Ei(si) for i =
2, 3, . . . , n and each Ei() denotes the same type of encryption algorithm as
E() but with a different key.

4. A guesses which secret is shared in the encrypted shares. As A can break
semantic security of CCSD of the PVSS protocol, the probability that it gets
a correct guess is P , which is non-negligibly larger than 0.5.

5. If A returns 0, the adversary outputs i = 0; if A returns 1, he outputs i = 1.
Note that
– if c = E(m0), then (c, c2, c3, . . . , cn) are encrypted shares of α0;
– if c = E(m1), then (c, c2, c3, . . . , cn) are encrypted shares of α′0.

So the probability that the adversary obtains i is P and non-negligibly larger
than 0.5.

Therefore, semantic security of E() is broken. When 2t < n + 1 the proof can
work as well but in a more complex way as sometimes neither of the two possible
secrets is shared in the encrypted shares and A has to return a random output.
Due to space limit, this extension is left to interested readers.

Since a contradiction is found, T1 and T2 cannot be can distinguished in
polynomial time. Therefore, if ElGamal encryption is semantical secure, the
ElGamal-based new PVSS protocol achieve privacy. �
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4 Broader Range of Applications and Batch Verification

Application of our new PVSS technique to a broader range and its efficiency
improvement through batch verification are discussed in this section.

4.1 When the Logarithm-Known Secret Generation Mechanism
Cannot Work

If s is not a random string to be freely appointed, but a secret with real meaning
(e.g. a vote in an e-voting application or a bid in an e-auction system), the
PVSS protocol with the logarithm-known secret generation mechanism in last
section cannot work. However, a secret with real meaning is usually distributed
in a relatively small space. For example, a vote is usually the name of one of
the candidates and a bid is usually a biddable price. In this case, searching
for discrete logarithm in the small space is not too costly (e.g. using Pollard’s
Lambda method) and thus our PVSS design can be slightly modified as follows
to solve the problem.

1. To share a secret s, the dealer builds a polynomial f1(x) =
∑t−1

j=0 αjx
j with

α0 = s and αj for j = 1, 2, . . . , t− 1 are random integers chosen from Zq.

2. He randomly builds another polynomial f2(x) =
∑t−1

j=0 βjx
j where βj for

j = 0, 1, . . . , t− 1 are random integers chosen from Zq.

3. He publishes ci = (gri mod p, gsiyrii mod p) and c′i = (gr
′
i mod

p, gkiy
r′i
i mod p) where si = f1(i) mod q, ki = f2(i) mod q and ri, r

′
i are

randomly chosen from Zq.

4. A random challenge R in Zq is generated in the same way as in Section 3.

5. He publishes γj = βj + Rαj mod q for j = 0, 1, . . . , t − 1 and Ri = Rri +
r′i mod q for i = 1, 2, . . . , n and any one can check Equations (1), (2) and (3)
for i = 1, 2, . . . , n.

6. Share decryption and secret reconstruction are as follows.

(a) Each Pi decrypt ci and obtains s′i = bi/a
xi

i mod p.

(b) A set with at least t shares are put together: s′ =
∏

i∈S s′ui

i mod p where
ui =

∏
j∈S,j �=i j/(j − i) mod q and S is the set containing the indices of

the t shares.

(c) logg s
′ is searched for in the space of the secret and the found discrete

logarithm is the reconstruction result. As stated before, a space contain-
ing practical secret with real meaning is often not too large, so the search
is often affordable.

If the secret to share is chosen from a large space and its discrete logarithm is
unknown, its discrete logarithm can be calculated in advance to save real-time
cost and then the first ElGamal-based PVSS protocol is employed to share the
secret.
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4.2 PVSS with Explicit Commitment

Although we have shown that in PVSS explicit commitments can be avoided to
improve efficiency, some applications of PVSS may need an explicit commitment
to the secret, especially when the shared secret has to be processed in the ap-
plications without being revealed. In such applications, our new PVSS scheme
can be extended to support explicit commitment to the shared secret without
compromising high efficiency. It is not necessary to commit to all the coefficients
of the share-generating polynomial like in the existing PVSS schemes. Instead,
we only commit to the shared secret using a simple commitment mechanism as
follows.

1. The secret s is committed to in a public commitment C = gshσ mod p where
σ is randomly chosen from Zq and h is an integer in Gq such that logg h is
unknown.

2. When β0 is employed in PVSS, it is committed to in the same way, namely
in a public commitment C′ = gβ0hσ′

mod p where σ′ is randomly chosen in
Zq.

3. When R and γ0 are published in PVSS, the dealer publishes τ = Rσ +
σ′ mod q as well. Anyone can publicly verify CRC′ = gγ0hτ mod p to be
ensured that the secret committed in C is shared among the share holders
with an overwhelmingly large probability as illustrated in Theorem 3.

Theorem 3. If Equations (1), (2) and (3) hold for i = 1, 2, . . . , n and the dealer
can calculate logh(C

RC′/gγ0) with a probability larger than 1/q, he must have
committed to the shared secret in C.

Proof: Equations (1), (2) and (3) for i = 1, 2, . . . , n with a probability larger
than 1/q imply

Di(c
R
i c
′
i) = gSi = g

∑t−1
j=0 γji

j

mod p for i = 1, 2, . . . , n

with a probability larger than 1/q. So, there must exist two different inte-
gers in Zq, R and R′, such that the dealer can produce γ0, γ1, . . . , γt−1, τ and
γ′0, γ

′
1, . . . , γ

′
t−1, τ

′ respectively to satisfy

Di(c
R
i c
′
i) = g

∑t−1
j=0 γji

j

mod p for i = 1, 2, . . . , n (7)

Di(c
R′
i c′i) = g

∑t−1
j=0 γ′

ji
j

mod p for i = 1, 2, . . . , n (8)

CRC′ = gγ0hτ mod p (9)

CR′
C′ = gγ

′
0hτ ′

mod p. (10)

Otherwise, there is at most one R in Zq for the dealer to produce

γ0, γ1, . . . , γt−1, τ to satisfy Di(c
R
i c
′
i) = g

∑t−1
j=0 γji

j

mod p for i = 1, 2, . . . , n and
CRC′ = gγ0hτ mod p and the probability that he can produce correct responses
to satisfy the two equations is no larger than 1/q, which is a contradiction.



324 K. Peng

(7)/(8) yields

Di(ci)
R−R′

= g
∑t−1

j=0(γj−γ′
j)i

j

mod p for i = 1, 2, . . . , n

and (9)/(10) yields

CR−R′
= gγ0−γ′

0hτ−τ ′
mod p.

Note that R and R′ are different integers in Zq and q is a prime and so
(R−R′)−1 mod q exists. Therefore,

Di(ci) = g
∑t−1

j=0(γj−γ′
j)/(R−R′)ij mod p for i = 1, 2, . . . , n

C = g(γ0−γ′
0)/(R−R′)h(τ−τ ′)/(R−R′) mod p

and thus each logg Di(ci) is a share generated by polynomial f(x) =∑t−1
j=0((γj − γ′j)/(R − R′))xj where discrete logarithm of the shared secret,

(γ0 − γ′0)/(R−R′) mod N , is committed to in C. �

4.3 Further Efficiency Improvement by Batch Verification

High efficiency for the dealer is very obvious in our new PVSS scheme. His only
exponentiation computation in his proof of validity of his secret sharing includes
encryption of kis, namely n instances of ElGamal encryption, which costs 2n
exponentiations. It is a great advantage over the existing PVSS schemes as to
be detailed in Section 5. However, the computational cost for a verifier is not
so efficient. Verification of Equations (1) and (2) for i = 1, 2, . . . , n costs 5n
exponentiations, each with an exponent in Zq. Verification of the two equations
can be batched by a verifier using the idea in [3] as follows.

1. n integers t1, t2, . . . , tn are randomly chosen by the verifier from Z2L where
L is a security parameter such that 2L < q.

2. He verifies

(
∏n

i=1 a
ti
i )

R
∏n

i=1 a
′ti
i = g

∑n
i=1 Riti mod p (11)

(
∏n

i=1 b
ti
i )

R
∏n

i=1 b
′ti
i = g

∑n
i=1 Siti

∏n
i=1 y

Riti
i mod p. (12)

This batch verification is a straightforward application of the principle in Theo-
rem 4. Theorem 4 guarantees that if (11) and (12) are satisfied with a probability
larger than 2−L then (1) and (2) are satisfied. As explained in [3], the principle of
batch verification is employment of small exponents. Bellare et al notice that the
exponentiation computations in cryptographic operations usually employ very
large exponents (hundreds of bits long) and sometimes the exponents are not
necessary to be so large. Actually in many practical applications the exponents
can be much smaller (e.g. scores of bits long) but still large enough to guarantee
very strong security (e.g. to control the probability of failure under one out of
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billions). So they employ many small exponents in verification of a batch of equa-
tions and estimate the computational cost in terms of the number of separate
exponentiations with full-length exponents. More precisely, they set the compu-
tational cost of an exponentiation with a full-length exponent as the basic unit
in efficiency analysis and estimate how many basic units cost the same as their
operations3. In this way, they can clearly show advantages of batch verification
in computational efficiency. More precisely, in our batch verification, 2L can be
much smaller than the integers in Zq to improve efficiency, while correctness and
soundness of the verification can still be guaranteed except for a probability of
2−L.

Theorem 4. Suppose H, y1, y2, . . . , yn are in Gq, t1, t2, . . . , tn are randomly
chosen from {0, 1, . . . , 2L − 1}. If

∏n
i=1 y

ti
i = H

∑n
i=1 xiti mod p with a proba-

bility larger than 2−L, then yi = Hxi mod p for i = 1, 2, . . . , n.

Proof:
∏n

i=1 y
ti
i = H

∑n
i=1 xiti mod p with a probability larger than 2−L im-

plies that for any given integer v in {1, 2, . . . , n} there must exist integers
t1, t2, . . . , tn ∈ {0, 1, . . . , 2L − 1} and t′v ∈ {0, 1, . . . , 2L − 1} such that∏n

i=1 y
ti
i = H

∑n
i=1 xiti mod p (13)

(
∏v−1

i=1 ytii )y
t′v
v

∏n
i=v+1 y

ti
i = H(

∑v−1
i=1 xiti)+xvt

′
v+

∑n
i=v+1 xiti mod p. (14)

Otherwise, for any (t1, t2, . . . , tv−1, tv+1, . . . , tn) in {0, 1, . . . , 2L − 1}n−1, there
is at most one tv in {0, 1, . . . , 2L − 1} to satisfy

∏n
i=1 y

ti
i = H

∑n
i=1 xiti mod p,

which implies that among the 2nL possible choices for {t1, t2, . . . , tn} there are
at most 2(n−1)L choices to satisfy

∏n
i=1 y

ti
i = H

∑n
i=1 xiti mod p and leads to

a contradiction to the assumption that
∏n

i=1 y
ti
i = H

∑n
i=1 xiti mod p with a

probability larger than 2−L.
(13)/(14) yields

ytv−t̂vv = H(tv−t̂v)xv mod p.

Note that tv and t̂v are L-bit integers and 2L < q. So (tv − t̂v)
−1 mod q exists

and thus
yv = Hxv mod p.

Therefore, yi = Hxi for i = 1, 2, . . . , n as v can be any integer in {1, 2, . . . , n}. �

With this batch optimisation, computational efficiency of a verifier is greatly
improved. For a verifier, the total computational cost includes two full-length
exponentiation and four instances of computation of product of n exponen-
tiations with L-bit exponents and one instance of computation of product
of n exponentiations with log2 q-bit exponents. According to [2], computing
each of the four instances of product of exponentiations with L-bit expo-
nents costs about 2W−1(n + 1) + L + nL/(W + 1) multiplications and com-
puting the product of n exponentiations with log2 q-bit exponents costs about

3 Namely, multiple exponentiations with small exponents are counted as one exponen-
tiation with a full-length exponent, which has the same cost.
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2W−1(n + 1) + |q| + n|q|/(W + 1) multiplications where |q| is the bit-length of
q and W is a parameter in the W -bit-sliding-window exponentiation method
and is normally set as 3. When standard W -bit-sliding-window exponentiation
method is employed, an exponentiation with a full-length exponent in Zq costs
2W−1 + |q|+ |q|/(W +1) multiplications. So the computational cost of a verifier
is approximately equal to

(4(2W−1(n+ 1) + L+ nL/(W + 1)) + 2W−1(n+ 1) + |q|+ n|q|/(W + 1))

/(2W−1 + |q|+ |q|/(W + 1)) + 2

full-length exponentiations. When L = 40, 2−L is smaller than one out of one
trillion and thus negligible in any practical application. In this case, when W = 3
and |q|=1024, the computational cost of a verifier is very low.

5 Conclusion

As stated before, the new PVSS scheme needs no additional condition or assump-
tion as it only needs the most basic assumptions absolutely needed in any PVSS
scheme. The new PVSS scheme has advantages over the existing PVSS schemes
in both security and efficiency. The extension of applicability in Section 4 shows
that it can be widely applied to many distributed secure applications.
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Abstract. A batch proof and verification technique is employed to
design efficient range proof with practical small ranges in
AFRICACRYPT 2010. It is shown in this paper that the batch
proof and verification technique is not always sound in its application
to range proof. We demonstrate that their batch proof and verification
technique causes a concern such that in some cases a malicious prover
without the claimed knowledge may pass the verification. As a result
their range proof scheme to prove that a secret committed integer is
in an interval range is not so reliable and cannot guarantee that the
committed integer is in the range in some special cases. To ease the
concern, we employ an efficient membership proof technique to replace
the batch proof and verification technique in their range proof scheme
and re-design it to achieve the claimed high efficiency with practical
small ranges.

1 Introduction

Range proof is an applied cryptographic technique to enable a party to prove
that a secret integer is in an interval range. The party chooses an integer from
an interval range R, encrypts it or commits to it and publishes the ciphertext or
commitment. Then he has to prove that the integer encrypted in the ciphertext or
committed in the commitment is in R. The proof cannot reveal any information
about the integer except that it is in the range. This proof operation is called
range proof. The following security properties must be satisfied in a range proof
protocol, while high efficiency is very important as well.

– Correctness: if the integer is in the range and the prover knows the integer
and strictly follows the proof protocol, he can pass the verification in the
protocol.

– Soundness: if the prover passes the verification in the protocol, the integer
is guaranteed with an overwhelmingly large probability to be in the range.

– Privacy: no information about the integer is revealed in the proof except
that it is in the range.

The most straightforward range proof technique is ZK (zero knowledge) proof
of partial knowledge [6], which proves that the committed integer may be each
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integer in the range one by one and then link the multiple proofs with OR logic.
It has a drawback: the number of computations it needs is linear to the size
of the range, which leads to very low efficiency. The range proof schemes in
[2,8,7,11] improve efficiency of range proof by discarding the cyclic group with
public order in [6]. They notice that non-negativity of an integer x is binded
in gx when the order of g is unknown. So in their range proofs they employ
commitment of integers in Z instead of the traditional commitment of integers
with a modulus. This special commitment function enables them to reduce a
range proof in a range R to proof of non-negativity of integers. Although this
method improves efficiency, it has two drawbacks. Firstly, its soundness depends
on a computational assumption: when the multiplication modulus is a compos-
ite hard to factorize multiplication operation generates a large cyclic subgroup,
whose order is secret and hard to calculate. So its soundness is only computa-
tional. Secondly, it cannot achieve perfect zero knowledge or simulatability. It
reveals a statistically small (and intuitively-believed negligible) amount of infor-
mation about the secret integer and only achieves the co-called statistical zero
knowledge.

A special range proof scheme is proposed in [3]. On one hand it recognizes
that sacrifice of unconditional soundness and perfect zero knowledge is neces-
sary for high efficiency. On the other hand, it shows that asymptotical efficiency
is not always the dominating factor in efficiency analysis. Actually, asymptot-
ical efficiency in range proof is only important for large ranges. As the ranges
in most practical applications of range proof are not large, an asymptotically
higher cost may be actually lower in practice. So, the range proof scheme in [3]
ignores asymptotical efficiency but focuses on the actual cost of range proof in
practical small ranges. As a result, although its asymptotical efficiency is not the
highest, it achieves the highest actual efficiency in practical small ranges and is
more efficient in practical applications than the previous range proof solutions.
However, [3] has its drawbacks as well. Besides conditional soundness like in
[2,8,7], its has an additional limitation: its privacy depends on hardness of a
special mathematical problem called (logk)-Strong Diffie Hellman assumption.
Moreover, its efficiency advantage in practical small ranges is not great enough
to dramatically improve efficiency of many applications.

The idea of range proof with actual high efficiency in practical small ranges is
inherited by the most recent range proof scheme [10] in AFRICACRYPT 2010.
It overcomes the drawbacks of the existing range proof schemes like compu-
tational soundness, statistical privacy and additional assumption and is much
more efficient than them when applied to practical small ranges. It is based on
a new batch proof and verification technique extended from a batch proof and
verification protocol in [5]. Batch verification is first proposed by Bellare et al
[1] and then extended to batch proof and verification by Peng et al [9]. In [5],
it is further extended to batch prove and verify multiple knowledge statements
containing OR logic. The batch proof and verification protocol in [10] extends a
batch proof and verification protocol in [5] and can prove and verify in a batch
n instances of knowledge claims, each claiming knowledge of 1-out-of-k secret
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discrete logarithms. The batch proof and verification technique is claimed to
be secure and much more efficient than separately proving and verifying the n
instances of knowledge claims. In their new range proof protocol, the committed
integer is represented in a k-base coding system so that range proof in a range
with width b−a is reduced to n instances of range proof in Zk where b−a = kn.
Then their batch proof and verification technique is employed to batch the n
instances of proof, so that efficiency of range proof in practical small ranges is
greatly improved.

A concern is raised in this paper for soundness of the batch proof and verifica-
tion technique in [10]. We show that although their batch proof and verification
works in most cases, in some special cases a malicious prover without the claimed
knowledge can pass the verification. Then it is illustrated that the concern af-
fects the range proof in [10] and the range proof scheme cannot always guarantee
that the committed integer is in the range. To ease the concern, we employ the
membership proof technique in [12] to replace the batch proof and verification
technique in the range proof scheme in question. The re-designed range proof
technique can achieve the claimed high efficiency with practical small ranges in
[10] without any compromise in security.

The rest of this paper is organized as follows. In Section 2, the batch proof
and verification technique in [10] and its application to range proof are recalled.
In Section 3, an exception is found for soundness of their batch proof and verifi-
cation technique. In Section 4, the exception is shown to affect the range proof
scheme in question such that it does not always guarantee a range for the se-
cret integer. In Section 5, an efficient membership proof technique is employed
to replace their batch proof and verification technique and re-design their range
proof protocol to achieve their claimed efficiency without compromising security.
The paper is concluded in Section 6.

2 The Batch Proof Technique and Its Application to
Range Proof

In [10], a batch proof and verification protocol is proposed to batch prove and
verify n knowledge statements, each of which claims knowledge of at least one of
k discrete logarithms. Their proof protocol is recalled in Figure 1 where p, q are
primes, q|p− 1, G is the cyclic subgroup of Z∗

p with order q and g is a generator
of G.

The batch proof and verification protocol in Figure 1 actually proves and veri-
fies knowledge of logg

∏n
i=1 y

ci,1
i,1 , logg

∏n
i=1 y

ci,2
i,2 , . . . , logg

∏n
i=1 y

ci,k

i,k . It is claimed
in [10] that its proof guarantees that with an overwhelmingly large probability
the prover knows at least one of logg yi,1, logg yi,2, . . . , logg yi,k for i = 1, 2, . . . , n.

In [10], the batch proof and verification protocol in Figure 1 is employed to
design a range proof scheme. In their design, a secret integer x is represented in
a base-k coding system and then is efficiently proved to be in a range {a, a +
1, . . . , b} where k is a parameter smaller than b−a. Their main idea is to reduce
the range proof to logk(b − a) instances of proof, which show that each digit of
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Common input: (p, q, g), {(yi,1, yi,2, . . . , yi,k)}i=1,2,...,n.
Knowledge to prove: bi ∈ {1, 2, . . . , k}, vi,bi s.t. yi,bi = gvi,bi mod p for i = 1, 2, . . . , n.
Denotation: vi = {1, 2, . . . , bi − 1, bi + 1, . . . , k}.

1. The prover randomly selects r1, r2, . . . , rk from Zq and ci,j for i = 1, 2, . . . , n and
j ∈ vi from Zq. Then he computes

R1 = gr1
∏

1≤i≤n, bi=1

∏
j∈vi

y
ci,j

i,j mod p

R2 = gr2
∏

1≤i≤n, bi=2

∏
j∈vi

y
ci,j

i,j mod p

. . . . . .

. . . . . .

Rk = grk
∏

1≤i≤n, bi=k

∏
j∈vi

y
ci,j

i,j mod p

ci = H(CI ||ci−1||ci−1,1||ci−1,2|| . . . ||ci−1,k−1) for i = 1, 2, . . . , n

ci,bi = ci −∑
j∈vi

ci,j mod q for i = 1, 2, . . . , n

z1 = r1 −∑
{i|bi=1} ci,1vi,1 mod q

z2 = r2 −∑
{i|bi=2} ci,2vi,2 mod q

. . . . . .

. . . . . .

zk = rk −
∑

{i|bi=k} ci,kvi,k mod q

where CI is a bit string comprising common inputs in a certain order and

c0 = R1

c0,1 = R2

c0,2 = R3

. . . . . .

. . . . . .

c0,k−1 = Rk.

It then sends
(z1, z2, . . . , zk, c1, c1,1, c1,2 . . . , c1,k−1, c2,1, c2,2 . . . , c2,k−1, . . . . . .
cn,1, cn,2 . . . , cn,k−1) to the verifier.

2. The verifier computes

ci,k = ci −∑k−1
j=1 ci,j mod q for i = 1, 2, . . . , n

ci = H(CI ||ci−1||ci−1,1||ci−1,2|| . . . ||ci−1,k−1) for i = 1, 2, . . . , n

and verifies

c1 = H(CI ||gz1
∏n

i=1 y
ci,1
i,1 mod p||gz2

∏n
i=1 y

ci,2
i,2 mod p

|| . . . ||gzk
∏n

i=1 y
ci,k

i,k mod p)

Fig. 1. Batch Proof and Verification of knowledge of 1-out-of-k Discrete Logarithms
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the base-k representation of x−a is in Zk. Then the logk(b−a) instances of proof
can be batched using the batch proof and verification technique in Figure 1 to
improve efficiency.

In their range proof scheme, a secret integer x chosen from an interval range
{a, a + 1, . . . , b} is committed to in c = gxhr mod p where h is a generator of G,
logg h is unknown and r is a random integer in Zq. A party with knowledge of x
and r has to prove that the message committed in c is in {a, a + 1, . . . , b}. The
proof protocol and the corresponding verification are as follows.

1. c′ = c/ga mod p and the proof that the integer committed in c is in
{a, a + 1, . . . , b} is reduced to proof that the integer committed in c′ is in
{0, 1, . . . , b− a}.

2. The prover calculates representation of x − a in the base-k coding system
(x1, x2, . . . , xn) to satisfy x − a =

∑n
i=1 xik

i−1 where for simplicity of de-
scription it is assumed (b− a) = kn.

3. The prover randomly chooses r1, r2, . . . , rn in Zq and calculates and publishes
ei = gxihri mod p for i = 1, 2, . . . , n.

4. The prover publicly proves that he knows a secret integer r′ =
∑n

i=1 rik
i−1−

r mod q such that hr′
c′ =

∏n
i=1 eki−1

i mod p using zero knowledge proof of
knowledge of discrete logarithm [13].

5. The range proof is reduced to n smaller-scale range proofs: the integer com-
mitted in ei is in Zk for i = 1, 2, . . . , n. Those n instances of proof can be
implemented through n instances of proof of knowledge of 1-out-of-k discrete
logarithms

KN(logh ei) ∨KN(logh ei/g) ∨KN(logh ei/g2) ∨ . . .

∨KN(logh ei/gk−1) for i = 1, 2, . . . , n (1)

where KN(z) denotes knowledge of z.
6. Proof of (1) is implemented through batch proof and verification of knowl-

edge of 1-out-of-k discrete logarithms in Figure 1.

It is claimed in [10] that this range proof technique is correct and sound. It
achieves high efficiency when the range is not large and is suitable for applications
needing to specify range proofs in practical small ranges.

3 Concern about the Batch Proof Protocol

In this section it is illustrated that with commitment (yi,1, yi,2, . . . , yi,k)
for i = 1, 2, . . . , n, (R1, R2, . . . , Rk) and hash-function-generated challenges
c1, c2, . . . , cn knowledge of logg(Rj

∏n
i=1 y

ci,j

i,j ) for j = 1, 2, . . . , k is not al-
ways enough to guarantee knowledge of at least one integer in each set
{logg yi,1, logg yi,2, . . . , logg yi,k} for i = 1, 2, . . . , n. We show that soundness of
this proof mechanism has an exception in some special cases. Firstly, a simple
example of the exception is given as follows where n = 3 and k = 2, whose
principle and effectiveness are proved in Theorem 1.
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1. A malicious prover only knows logg y2,2 and logg y3,1.
2. The prover randomly chooses integers t1, t2 in Zq and y1,1, y1,2 in G. Then

he calculates y2,1 = yt1
1,1 mod p and y3,2 = yt2

1,2 mod p.
3. The prover publishes y1,1, y1,2, y2,1, y2,2, y3,1, y3,2 and runs the proof protocol

in Figure 1 in the case of n = 3 and k = 2.
4. In the proof protocol, the prover chooses v1 and v2 in Zq and calculates

R1 = gv1 mod p and R2 = gv2 mod p.
5. The prover must provide c1, c2, c3, c1,1, c1,2, c2,1, c2,2, c3,1, c3,2,

logg(R1y
c1,1
1,1 y

c2,1
2,1 y

c3,1
3,1 ) and logg(R2y

c1,2
1,2 y

c2,2
2,2 y

c3,2
3,2 ) such that c1 = c1,1 +

c1,2 mod q, c2 = c2,1+c2,2 mod q, c3 = c3,1+c3,2 mod q, c1 = H(CI, R1, R2),
c2 = H(CI, c1, c1,1) and c3 = H(CI, c2, c2,1) to pass the verification. This is
feasible as illustrated in Theorem 1.

Theorem 1. The malicious prover in the exception above does not need to know
any logg yi,j other than logg y2,2 and logg y3,1 to pass the verification in Figure 1
when n = 3 and k = 2.

Proof: As the prover knows logg R1 and logg y3,1 and his operations implies

logg(R1y
c1,1
1,1 y

c2,1
2,1 y

c3,1
3,1 ) = logg R1 + logg(y

c1,1
1,1 (yt1

1,1)
c2,1) + logg y

c3,1
3,1

= logg R1 + logg(y
c1,1
1,1 (yt1

1,1)
c2,1) + c3,1 logg y3,1

= logg R1 + (c1,1 + t1c2,1) logg y1,1 + c3,1 logg y3,1 mod q,

the prover knows logg(R1y
c1,1
1,1 y

c2,1
2,1 y

c3,1
3,1 ) if c1,1 + t1c2,1 = 0 mod q.

As the prover knows logg R1, logg y1 and logg y2,1 and

logg(R2y
c1,2
1,2 y

c2,2
2,2 y

c3,2
3,2 ) = logg R2 + logg y

c2,2
2,2 + logg(y

c1,2
1,2 (yt2

1,2)
c3,2)

= logg R2 + c2,2 logg y2,2 + logg(y
c1,2
1,2 (yt2

1,2)
c3,2)

= logg R2 + c2,2 logg y2,2 + +(c1,2 + t1c3,2) logg y1,2 mod q,

the prover knows logg(R2y
c1,2
1,2 y

c2,2
2,2 y

c3,2
3,2 ) if c1,2 + t2c3,2 = 0 mod q.

So the prover can pass the verification if he can calculate c1,1, c1,2, c2,1, c2,2,
c3,1 and c3,2 to satisfy

c1,1 + c1,2 = c1 mod q

c2,1 + c2,2 = c2 mod q

c3,1 + c3,2 = c3 mod q

c1,1 + t1c2,1 = 0 mod q

c1,2 + t2c3,2 = 0 mod q

c1 = H(CI||R1||R2)
c2 = H(CI||c1||c1,1)
c3 = H(CI||c2||c2,1)

where t1, t2 are chosen by him. A solution as follows can calculate such c1,1, c1,2,
c2,1, c2,2, c3,1 and c3,2 such that the exception does exist.
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1. The prover calculates c1 = H(CI||R1||R2).
2. The prover randomly chooses c1,1 in Zq and calculates c1,2 = c1−c1,1 mod q.
3. The prover calculates c2 = H(CI||c1||c1,1).
4. The prover calculates c2,1 = (−c1,1)/t1 mod q and c2,2 = c2 − c2,1 mod q.
5. The prover calculates c3 = H(CI||c2||c2,1).
6. The prover calculates c3,2 = (−c1,2)/t2 mod q and c3,1 = c3 − c3,2 mod q. �

Theorem 1 illustrates that a prover with knowledge of neither logg y1,1 nor
logg y1,2 can always pass the verification in Figure 1 when n = 3 and k = 2.
When n and k are larger, the exception is more variable and a malicious prover
has many concrete implementations to use it to pass the verification in Figure 1
without the claimed knowledge. The following algorithm is an example of the
exception as described in Figure 1 in general. It illustrates that a prover with
knowledge of only logg yn−1,1, logg yn−1,2, . . . , logg yn−1,k−1, logg yn,k and no
discrete logarithm of any other yi,j can pass the verification in Figure 1. The
algorithm is proved to be effective in Theorem 2.

1. A malicious prover only knows logg yn−1,1, logg yn−1,2, . . . , logg yn−1,k−1,
logg yn,k and no discrete logarithm of any other yi,j .

2. The prover randomly chooses integers ti,1, ti,2, . . . , ti,k for i = 2, 3, . . . , n− 2
and tn−1,k, tn,1, tn,2, . . . , tn,k−1 in Zq. He randomly chooses y1,1, y1,2, . . . , y1,k

in G. Then he calculates

yi,j = y
ti,j

1,j mod p for i = 2, 3, . . . , n− 2 and j = 1, 2, . . . , k

yn−1,k = y
tn−1,k

1,k mod p

yn,j = y
tn,j

1,j mod p for j = 1, 2, . . . , k − 1.

3. The prover publishes yi,j for i = 1, 2, . . . , n and j = 1, 2, . . . , k and runs the
proof protocol in Figure 1.

4. In the proof protocol, the prover chooses v1, v2, . . . , vk in Zq and calculates
Rj = gvj mod p for j = 1, 2, . . . , k.

5. The prover must provide c1, c2, . . . , cn and ci,j for i = 1, 2, . . . , n
and j = 1, 2, . . . , k and logg(Rj

∏n
i=1 y

ci,j

i,j ) for j = 1, 2, . . . , k

such that ci =
∑k

j=1 ci,j mod q for i = 1, 2, . . . , n, ci =
H(CI||ci−1||ci−1,1||ci−1,2|| . . . ||ci−1,k−1) for i = 1, 2, . . . , n, c0 = R1 and
c0,j = Rj+1 for j = 1, 2, . . . , k − 1 to pass the verification. This is feasi-
ble as illustrated in Theorem 2.

Theorem 2. The malicious prover in the algorithm above does not need to
know any logg yi,j for i = 1, 2, . . . , n and j = 1, 2, . . . , k other than logg yn−1,1,
logg yn−1,2, logg yn−1,k−1, logg yn,k to pass the verification in Figure 1.

Proof: As the prover knows logg Rj , logg yn−1,1, logg yn−1,2, . . . , logg yn−1,k−1,
logg yn,k and his operations implies

logg(Rj

∏n
i=1 y

ci,j

i,j )
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= logg Rj + logg(y
c1,j

1,j

∏n−2
i=2 (yti,j

1,j )ci,j ) + logg yn−1,j + logg(y
tn,j

1,j )cn,j

= logg Rj + c1,j logg y1,j + logg y
∑n−2

i=2 ti,jci,j

1,j + logg yn−1,j + cn,jtn,j logg y1,j

= logg Rj + (c1,j +
∑n−2

i=2 ti,jci,j + cn,jtn,j) logg y1,j + cn−1,j logg yn−1,j

modq for j = 1, 2, . . . , k − 1

and

logg(Rk

∏n
i=1 y

ci,k

i,k )

= logg Rk + logg(y
c1,k

1,k

∏n−1
i=2 (yti,k

1,k )ci,k) + logg y
cn,k

n,k

= logg Rk + c1,k logg y1,k + logg y
∑n−1

i=2 ti,kci,k

1,k + logg y
cn,k

n,k

= logg Rk + (c1,k +
∑n−1

i=2 ti,kci,k) logg y1,k + cn,k logg yn,k mod q,

the prover knows logg(Rj

∏n
i=1 y

ci,j

i,j ) for j = 1, 2, . . . , k if

c1,j +
∑n−2

i=2 ti,jci,j + cn,jtn,j = 0 mod q for j = 1, 2, . . . , k − 1

c1,k +
∑n−1

i=2 ti,kci,k = 0 mod q.

So the prover can pass the verification if he can calculate ci,j for i = 1, 2, . . . , n
and j = 1, 2, . . . , k to satisfy ∑k

j=1 c1,j = c1 mod q∑k
j=1 c2,j = c2 mod q

. . . . . .

. . . . . .∑k
j=1 cn,j = cn mod q

c1,j +
∑n−2

i=2 ti,jci,j + cn,jtn,j = 0 mod q for j = 1, 2, . . . , k − 1

c1,k +
∑n−1

i=2 ti,kci,k = 0 mod q.

c1 = H(CI||R1||R2|| . . . ||Rk)
c2 = H(CI||c1||c1,1||c1,2, . . . , c1,k−1)

. . . . . .

. . . . . .

cn = H(CI||cn−1||cn−1,1||cn−1,2|| . . . ||cn−1,k−1)

where ti,1, ti,2, . . . , ti,k for i = 2, 3, . . . , n − 2 and tn−1,k, tn,1, tn,2, . . . , tn,k−1

are chosen by him. A solution as follows can calculate such ci,js and thus the
algorithm can succeed.

– The prover calculates c1 = H(CI||R1||R2|| . . . ||Rk).
– The prover randomly chooses c1,1, c1,2, . . . , c1,k−1 in Zq and calculates c1,k =

c1 −
∑k−1

j=1 c1,j mod q.
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– The prover calculates c2 = H(CI||c1||c1,1||c1,2, . . . , c1,k−1).
– The prover randomly chooses c2,1, c2,2, . . . , c2,k−1 in Zq and calculates c2,k =

c2 −
∑k−1

j=1 c2,j mod q.
– The prover calculates c3 = H(CI||c2||c2,1||c2,2, . . . , c2,k−1).
– The prover randomly chooses c3,1, c3,2, . . . , c3,k−1 in Zq and calculates c3,k =

c1 −
∑k−1

j=1 c3,j mod q.
– . . . . . .
– . . . . . .
– The prover calculates cn−2 = H(CI||cn−3||cn−3,1||cn−3,2, . . . , cn−3,k−1).
– The prover randomly chooses cn−2,1, cn−2,2, . . . , cn−2,k−1 in Zq and calcu-

lates cn−2,k = cn−2 −
∑k−1

j=1 cn−2,j mod q.
– The prover calculates cn−1 = H(CI||cn−2||cn−2,1||cn−2,2, . . . , cn−2,k−1).
– The prover calculates cn−1,k = (−c1,k −

∑n−2
i=2 ti,kci,k)/tn−1,k mod q.

– The prover randomly chooses cn−1,2, cn−1,3, . . . , cn−1,k−1 in Zq and calcu-
lates cn−1,1 = cn−1 −

∑k
j=2 cn−1,j mod q.

– The prover calculates cn = H(CI||cn−1||cn−1,1||cn−1,2|| . . . ||cn−1,k−1).
– The prover calculates cn,j = (−c1,j −

∑n−2
i=2 ti,jci,j)/tn,j mod q for j =

1, 2, . . . , k − 1.
– The prover calculates cn,k = cn −

∑k−1
j=1 cn,j mod q. �

According to Theorem 2, to pass the verification in Figure 1 the prover only
needs to know k instances of logg yi,j instead of one discrete logarithm in each
of the n sets {logg yi,1, logg yi,2, . . . , logg yi,k} for i = 1, 2, . . . , n as claimed in
[10]. Actually, a malicious prover can pass the verification in Figure 1 using
knowledge of any k instances of logg yi,j on the condition that they are not in
the same set. Moreover, the malicious prover can choose more yi,j randomly
than in our example. If he likes, he can even choose yi,j for i = 1, 2, . . . , n − 2
and j = 1, 2, . . . , k randomly in G and calculate another k instances of yi,j from
more than one set as their functions to pass the verification on the condition
that he knows discrete logarithm of the left k instances of yi,j .

4 Introducing the Concern to the Range Proof Scheme

In Section 3, it has been illustrated that the batch proof and verification proto-
col in [10] is not secure and cannot guarantee that the prover has the claimed
knowledge. The exception found in Section 3 shows that the batch proof and
verification technique is not always sound, as usually the yi,js are generated
by the prover, otherwise he does not know the secret witness supposed to help
him to pass the verification. However, when injecting the exception into the
range proof scheme in [10], we need to notice a special requirement in (1):
yi,j = ei/gj−1 mod p and thus yi,j = yi,j+1g mod p. So, as logg h is secret,
any one including the prover only knows at most one logg yi,j for each i in
{1, 2, . . . , n}. So the prover cannot know logg yn−1,1, logg yn−1,2, logg yn−1,k−1

no matter whether he is malicious or not as assumed in the algorithm in Sec-
tion 3, which need to be adjusted to work in the range proof scheme as follow.
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1. For simplicity of description, suppose a malicious prover only knows
logh en−k+1, logh en−k+2/g, . . . , logh en/gk−1 instead of the knowledge state-
ment in (1).

2. The malicious prover randomly chooses e1, e2, . . . , en−k from G.
3. He needs to choose ti,j for i = 1, 2, . . . , n−k and j = n−k+1, n−k+2, . . . , n

to calculate ej =
∏n−k

i=1 e
ti,j

i mod p for j = n− k + 1, n− k + 2, . . . , n.
4. The prover publishes yi,j for i = 1, 2, . . . , n and j = 1, 2, . . . , k and runs the

proof protocol in Figure 1.
5. In the proof protocol, the prover chooses v1, v2, . . . , vk in Zq and calculates

Rj = gvj mod p for j = 1, 2, . . . , k.
6. The prover must provide c1, c2, . . . , cn and ci,j for i = 1, 2, . . . , n

and j = 1, 2, . . . , k and logg(Rj

∏n
i=1 y

ci,j

i,j ) for j = 1, 2, . . . , k

such that ci =
∑k

j=1 ci,j mod q for i = 1, 2, . . . , n, ci =
H(CI||ci−1||ci−1,1||ci−1,2|| . . . ||ci−1,k−1) for i = 1, 2, . . . , n, c0 = R1 and
c0,j = Rj+1 for j = 1, 2, . . . , k − 1 to pass the verification where yi,j =
ei/gj−1 mod p. This is feasible using the same method proposed in Theo-
rem 1 and Theorem 2 due to a simple reason: although more equations are
needed to satisfy in this algorithm to guarantee yi,j = ei/gj−1 mod p we have
(n− k)k + nk integers (including (n− k)k instances of ti,j and nk instances
of ci,j) to choose and only k +k(k−1) linear equations to satisfy. According
to the principle of linear algebra, we can always find ti,js and ci,js to pass
the batch proof and verification and lead to an exception for the range proof
scheme.

5 How to Ease the Concern in Efficient Range Proof in
Practical Small Ranges

Although the range proof scheme in [10] has an exception in soundness, its idea
of committing to the secret integer in a k-base coding system when proving it to
be in a small range is useful. We can base the idea on an efficient membership
proof technique instead of the original batch proof and verification protocol in
[10]. We commit to the secret integer in n commitments, each of which contains
an integer in Zk. Then we can prove that each commitment really contains an
integer in Zk using membership proof.

5.1 The Membership Proof Technique in [12]

Membership proof is a cryptographic primitive to prove that a secret committed
message m is in a finite set S = {s1, s2, . . . , sk}. We notice that the membership
proof technique in [12] can prove that a committed secret integer is not a member
of a set at a cost of O(

√
k) where k is the size of the set. It is recalled as follows

where for simplicity of description it is supposed that S can be divided into μ
subsets S1, S2, . . . , Sμ and each St contains ν integers st,1, st,2, . . . , st,ν .



338 K. Peng and L. Yi

1. For each St the ν-rank polynomial Ft(x) =
∏ν

i=1(x−st,i) mod q is expanded
into

Ft(x) =
∑ν

i=0 at,ix
i mod q

to obtain the ν+1 coefficients of the polynomial at,0, at,1, . . . , at,ν . Therefore,
functions Ft(x) =

∑ν
i=0 at,ix

i for t = 1, 2, . . . , μ are obtained, each to satisfy

Ft(st,i) = 0 for i = 1, 2, . . . , ν.

2. The prover calculates ci = cm
i−1h

ri mod p for i = 2, 3, . . . , ν where c1 = c
and ri is randomly chosen from Zq. The prover gives a zero knowledge proof
that he knows m, r and ri for i = 2, 3, . . . , ν such that c = gmhr mod p and
ci = cm

i−1h
ri mod p for i = 2, 3, . . . , ν using a simple combination of ZK proof

of knowledge of discrete logarithm [13] and ZK proof of equality of discrete
logarithms [4].

3. The prover proves that he knows logh u1 or logh u2 or . . . . . . or logh uμ using
ZK proof of partial knowledge [6] where ut can be publicly defined as

ut =
∏ν

i=0 c
at,i

i mod p

where c1 = c and c0 = g. Actually the prover himself can calculate ut more
efficiently:

ut =
{

h
∑ν

i=1 at,iRi mod p if m ∈ St

g
∑ν

i=0 at,im
i

h
∑ν

i=1 at,iRi mod p if m /∈ St
(2)

where Ri = mRi−1 + ri mod q for i = 2, 3, . . . , ν and R1 = r.
4. Any verifier can publicly verify the prover’s two zero knowledge proofs. He

accepts the membership proof iff they are passed.

An interesting observation is that a verifier actually does not need to calculate

ut =
∏ν

i=0 c
at,i

i mod p for t = 1, 2, . . . , μ

as it is costly. Instead, he only needs to verify validity of u1, u2, . . . , uμ calculated
by the prover (through (2)) as follows.

1. He randomly chooses integers τ1, τ2, . . . , τμ from Zq.
2. He verifies ∏μ

t=1 uτt
t =

∏ν
i=0 c

∑ μ
t=1 τtat,i

i mod p,

which only costs O(μ + ν) exponentiations.

This membership proof costs O(μ + ν) in both computation (in terms of expo-
nentiations) and communication (in terms of transfered integers). So it reduces
the cost of general membership proof to O(

√
k) as k = μν. Its soundness is

illustrated in Theorem 3.
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Theorem 3. The new membership proof is sound and the probability that the
prover can pass its verification is negligible if m �= si mod q for i = 1, 2, . . . , k.

Proof: Suppose the prover commits to m in c where m �= si mod q for i =
1, 2, . . . , n. If he passes the verification in the new membership proof with a non-
negligible probability, it is guaranteed with a non-negligible probability that

c = gmhr mod p (3)
ci = cm

i−1h
ri mod p for i = 2, 3, . . . , ν (4)

where c1 = c and c0 = g. As he passes the verification in the new membership
proof with a non-negligible probability, there exists t in {1, 2, . . . , μ} such that
the prover knows R such that

hR =
∏ν

i=0 c
at,i

i mod p (5)

with a non-negligible probability.
(3), (4) and (5) imply

hR = g
∑ν

i=0 at,im
i

h
∑ν

i=1 at,iRi mod p

where Ri = mRi−1 + ri mod q for i = 2, 3, . . . , ν and R1 = r. Namely

g
∑ ν

i=0 at,im
i

h(
∑ ν

i=1 at,iRi)−R = 1 mod p.

So ∑ν
i=0 at,im

i = 0 mod q (6)

with a non-negligible probability as the employed commitment algorithm is
binding and g0h0 = 1. Note that at,0, at,1, . . . , at,ν satisfy∑ν

i=0 at,is
t,i = 0 mod q for i = 1, 2, . . . , ν. (7)

So (6) and (7) imply⎛
⎜⎜⎜⎜⎜⎜⎝

st,1 s2
t,1 . . . sν

t,1

st,2 s2
t,2 . . . sν

t,2

. . . . . . . . . . . .

. . . . . . . . . . . .
st,ν s2

t,ν . . . sν
t,ν

m m2 . . . , mν

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

at,1

at,2

. . .

. . .
at,ν

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−at,0

−at,0

. . .

. . .
−at,0

−at,0

⎞
⎟⎟⎟⎟⎟⎟⎠ (8)

with a non-negligible probability. However, as m �= si mod q for
i = 1, 2, . . . , k and all the calculations in the matrix is performed modulo

q,

⎛
⎜⎜⎜⎜⎜⎜⎝

st,1 s2
t,1 . . . sν

t,1

st,2 s2
t,2 . . . sν

t,2

. . . . . . . . . . . .

. . . . . . . . . . . .
st,ν s2

t,ν . . . sν
t,ν

m m2 . . . , mν

⎞
⎟⎟⎟⎟⎟⎟⎠ is a non-singular matrix and thus (8) is not satisfied.
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Therefore, a contradiction is found and the probability that a prover can pass
the verification in the new membership proof must be negligible if the integer
he commits to in c is not in S. �

5.2 Range Proof Employing k-Base Coding and the Membership
Proof

With the efficient membership proof present in Section 5.1, the k-base coding
system in [10] can be inherited to design an efficient range proof protocol for
practical small ranges as follows.

1. A party commits to a secret integer x in c = gxhr mod p where h is a
generator of G, logg h is unknown and r is a random integer in Zq. He
then needs to prove that the message committed in c is in an interval range
{a, a + 1, . . . , b}.

2. c′ = c/ga mod p and the proof that the integer committed in c is in
{a, a + 1, . . . , b} is reduced to proof that the integer committed in c′ is in
{0, 1, . . . , b− a}.

3. The prover calculates representation of x − a in the base-k coding system
(x1, x2, . . . , xn) to satisfy x − a =

∑n
i=1 xik

i−1 where for simplicity of de-
scription it is assumed (b− a) = kn.

4. The prover randomly chooses r1, r2, . . . , rn in Zq and calculates and publishes
ei = gxihri mod p for i = 1, 2, . . . , n.

5. The prover publicly proves that he knows a secret integer r′ =
∑n

i=1 rik
i−1−

r mod q such that hr′
c′ =

∏n
i=1 eki−1

i mod p using zero knowledge proof of
knowledge of discrete logarithm [13].

6. The range proof is reduced to n smaller-scale membership proofs: the integer
committed in ei is in {0, 1, . . . , k − 1} for i = 1, 2, . . . , n. Those n instances
of membership proof can be implemented through proof of

OPEN(ei) = 0 ∨OPEN(ei) = 1 ∨ . . . OPEN(ei) = k − 1 (9)

for i = 1, 2, . . . , n where OPEN(z) denotes the opening to commitment z.
7. Proof of (9) is implemented through the efficient membership proof technique

present in Section 5.1.

As explained in [10], such a design is very efficient for practical small ranges.
For example, when l = 10, we can set k = 4 and n = 2 and it only costs 4

√
kn

exponentiations and achieves high efficiency in practice. Correctness of the new
range proof protocol is obvious and any reader can follow it step by step for
verification. Its soundness depends on soundness of the employed membership
proof protocol, which has been formally proved in Theorem 3. It is private as it
employs standard zero knowledge proof primitives.
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6 Conclusion

The batch proof and verification technique and its application to range proof in
[10] have an exception in soundness and cause a security concern. Fortunately,
after our modification, the range proof technique can still work securely and
achieve the claimed high efficiency with practical small ranges.
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Abstract. Trace and revoke schemes have been widely studied in theory
and implemented in practice. In the first part of the paper, we construct
a fully secure key-leakage resilient identity-based revoke scheme. In order
to achieve this goal, we first employ the dual system encryption technique
to directly prove the security of a variant of the BBG − WIBE scheme
under known assumptions (and thus avoid a loss of an exponential factor
in hierarchical depth in the classical method of reducing the adaptive
security of WIBE to the adaptive security of the underlying HIBE). We
then modify this scheme to achieve a fully secure key-leakage resilient
WIBE scheme. Finally, by using a transformation from a WIBE scheme
to a revoke scheme, we propose the first fully secure key-leakage resilient
identity-based revoke scheme.

In the classical model of traitor tracing, one assumes that a traitor
contributes its entire secret key to build a pirate decoder. However, new
practical scenarios of pirate has been considered, namely Pirate Evolu-
tion Attacks at Crypto 2007 and Pirates 2.0 at Eurocrypt 2009, in which
pirate decoders could be built from sub-keys of users. The key notion in
Pirates 2.0 is the anonymity level of traitors: they can rest assured to
remain anonymous when each of them only contributes a very small frac-
tion of its secret key by using a public extraction function. This scenario
encourages dishonest users to participate in collusion and the size of col-
lusion could become very large, possibly beyond the considered threshold
in the classical model. In the second part of the paper, we show that our
key-leakage resilient identity-based revoke scheme is immune to Pirates
2.0 in some special forms in bounded leakage model. It thus gives an
interesting and rather surprised connection between the rich domain of
key-leakage resilient cryptography and Pirates 2.0.

Keywords: Pirates 2.0, Leakage-resilience, wildcards, revocation.

1 Introduction

In a system of secure distribution of digital content, a center broadcasts encrypted
content to legitimate recipients. Broadcast encryption systems, independently in-
troduced by Berkovits [5] and Fiat-Naor [17], enable a center to encrypt a message
for any subset of legitimate users while preventing any set of revoked users from re-
covering the broadcasted information. Moreover, even if all revoked users collude,
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they are unable to obtain any information about the content sent by the center.
Traitor tracing schemes, introduced in [9], enable the center to trace users who
collude to produce pirate decoders. Trace and Revoke systems [26,25] provide the
functionalities of both broadcast encryption and traitor tracing.

In the classical model of tracing traitors, one assumes that a traitor contributes
its entire secret key to build a pirate decoder. However, new practical scenarios
of pirate has been considered, namely Pirate Evolution Attacks [21] and Pirates
2.0 [6], in which pirate decoders could be built from sub-keys of users. The notion
of anonymity has been put forth in Pirates 2.0 and it is shown that if each user
only contributes a very small fraction of its secret information by using a public
extraction function, he can rest assured to remain anonymous. This scenario
encourages dishonest users to participate in collusion and the size of collusion
could becomes very large, beyond the considered threshold in the classical model.

Leakage resilient cryptography has been a very rich domain of research in the
recent years, a non-exhaustive list of works can be found in [18,24,12,8,15,16]
[30,27,19,4,7,22]. Under this framework, in the security game the adversary
chooses an efficiently computable leakage function and learn the output of this
function applied to the secret key and possibly other internal state information
at specified moments.

1.1 Contribution

Construction. We first formalize the key-leakage resilient security for a revoke
scheme, which enhances its classical security model, we then propose a concrete
construction of key-leakage resilient revoke scheme. Our construction is based on
the identity-based encryption with wildcards (WIBE) [2,1] in the similar way to
[28], it turns out that we need to construct a key-leakage resilient WIBE which
is inspired from the work of [22], and is achieved in successive steps:

– The security of a key-leakage resilient WIBE generalizes the full security of
a WIBE by allowing the adversary to make additional leak queries. Our first
step is then to construct an efficient fully secure WIBE. Fortunately, with the
recent dual system encryption technique in [31] and changing the distribution
of exponent of Gp2 part in the semi-functional key, we can construct a variant
of the Boneh-Boyen-Goh’s WIBE (BBG − WIBE) [2] scheme that is fully
secure with a very efficient reduction that avoids a loss of an exponential
factor in hierarchical depth as in the classical method of reducing the full
security of WIBE to the full security of the underlying HIBE in [2].

– Inspired by the security proof technique of the key-leakage resilient HIBE in
[22], our second step is to transform this variant of fully secure BBG−WIBE
to a secure key-leakage resilient WIBE.

Fighting Pirates 2.0. We first define Pirates 2.0 attacks in bounded leakage
model, and show that all existed methods for fighting Pirates 2.0 [10,11,28,32]
only consider a particular form of Pirates 2.0 in bounded leakage model. We then
present a theoretical result in which any key-leakage resilient revoke scheme
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satisfying the following conditions will resist Pirates 2.0 in bounded leakage
model:

– any user’s secret key is a high independent source, i.e., it has a high entropy
even under the condition that all the keys of the others users are known.

– resilience to a sufficient high level of leakage at secret keys of users.

Intuitively, the first condition assures that the secret keys of users are sufficiently
independent each from the others and the second condition implies that the users
should contribute a high information about its key to produce an useful decoder.
Combining the two conditions, the users have to contribute high information of
their own independent sources and thus lose their anonymity.

Finally, we prove that our key-leakage resilient identity-based revoke scheme
resists Pirates 2.0 in bounded leakage model.

1.2 Related Works

Public key trace and revoke scheme [13] is the first paper which showed how
IBE/HIBE can be used for broadcast encryption. Identity-based traitor tracing
scheme was proposed by Abdalla et al [3] in which one can distribute content
to various groups of users by taking as input the identity of the targeted group.
Identity-based trace and revoke schemes (IDTR) in [28] extended this model to
allow the center to be capable of revoking any subgroup of users.

Identity-based encryption with wildcards (or WIBE for short) was proposed by
Abdalla et al [2] and can be seen as a generalization of HIBE. This primitive is
related to broadcast encryption in the sense that the encryption is targeted to a
group of users rather than to only one user. However, the targeted set of users
in WIBE follows a pre-determined structure while a broadcast encryption should
be able to target arbitrary group of users. Naturally, WIBE could then be used
as a sub-structure to construct trace and revoke systems. This approach has
been used in different ways, namely under the code-based framework [3,32], and
under the tree-based framework [28]. Our construction is under the tree-based
framework as in [28] but with a key-leakage resilient WIBE.

2 Key-Leakage Resilient Revoke Scheme

2.1 Definition

The definition of a key-leakage resilient revoke scheme is the same as a classical
revoke scheme. Formally, it consists of four polynomial-time algorithms (Setup,
Keyder, Enc, Dec):

Setup(1k, Nu): Takes as inputs the security parameter 1k and the number of
users Nu. This algorithm generates a master public key mpk and a master
secret key msk.

Keyder(msk, i): Takes as inputs an indices i of user and the master secret key
msk, the key extraction algorithm generates a user secret key SKi.
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Enc(mpk,R,M): The encryption algorithm which on inputs of the master pub-
lic keympk, a revocation listR of revoked users in the scheme, and a message
M outputs a ciphertext C.

Dec(SKi, C): The decryption algorithm which on input of a user secret key
SKi and a ciphertext C outputs a plaintext message M , or ⊥ to indicate a
decryption error.
For correctness we require that Dec(SKi,Enc(mpk,R,M)) = M with prob-

ability one for all i ∈ N \ R, M ∈ {0, 1}∗, (mpk,msk)
$← Setup(1k, Nu) and

SKi
$← Keyder(msk, i).

2.2 Security Model

We now present the security model for a (�SK)-key-leakage resilient revoke
scheme in bounded leakage model (each user leaks maximum �SK bits on his
secret key SK).

Setup: The challenger takes as inputs a parameter k, a maximum number of
users Nu and runs setup(1k, Nu) algorithm. The master public key mpk is
passed to the adversary. Also, it sets the set of revoked users R = ∅, T = ∅,
note that R ⊆ I, and T ⊆ {I ×SK×N} (users indices - secret key of users
- leaked bits).

Phase 1: The adversary can adaptively request three types of query:
– Create(i): The challenger makes a call to Keyder(msk, i) → SKi and

adds the tuple (i, SKi, 0) to the set T if the indices i does not exists in
T .

– Leak(i, f) The challenger first finds the tuple (i, SKi, L), then it checks
if L+ | f(SKi)| ≤ �SK . If true, it responds with f(SKi) and updates the
L = L+| f(SKi)|. If the checks fails, it returns ⊥ to the adversary.

– Reveal(i): The challenger first finds the tuple (i, SKi, L), then responds
with SKi and adds the indices i to the set R

Challenge: The adversary submits two equal length messages M0,M1. The
challenger picks a random bit b ∈ {0, 1} and set C = Encrypt(msk,R,Mb).
The ciphertext C is passed to the adversary.

Phase 2: This is identical to phase 1 except that the adversary is not allowed
to ask Reveal(i) query in which i /∈ R.

Guess: The adversary outputs a guess b′ and wins the game if b′ = b.

Definition 1. A revoke scheme is (�SK)-key-leakage resilient secure if all prob-
abilistic polynomial-time adversaries (called PPT adversaries for short) have at
most a negligible advantage in winning the above security game.

3 A Construction of Key-Leakage Resilient Revoke
Scheme - KIDTR

3.1 Definition And Security Model

In [28], they proposed a generic construction of identity-based trace and revoke
scheme - IDTR by integrating aWIBE scheme into a complete subtree scheme [25].
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In our construction,KIDTR is the same as IDTR in [28] except we use a key-leakage
resilient WIBE scheme instead of WIBE for encryption. Therefore, the definition
and the security model of KIDTR follow closely to the ones in IDTR in [28], note
that in the security model of KIDTR the adversary can ask leakage queries on all
secret keys. We refer the definition and the security model of KIDTR to the full
version of this paper [29].

The rest of section is now devoted to construct a key-leakage resilient revoke
scheme. The construction is achieved via the following steps:

1. we first propose a variant of BBG−WIBE scheme which is proven fully secure
by using the dual system encryption technique.

2. we then construct a key-leakage resilient BBG−WIBE scheme by employing
the proof technique in [22] to the above BBG −WIBE.

3. we finally apply the generic transformation from a WIBE to an identity based
trace and revoke scheme (denoted IDTR) in [28]. This results to a key-leakage
resilient identity-based revoke scheme (denoted KIDTR).

3.2 BBG − WIBE in Composite Order Groups

In [23], Lewko and Waters apply the dual system encryption technique to prove
the full security of the BBG − HIBE scheme. This technique first splits the se-
curity game into q + 5 games where q is the maximum number of queries that
adversary makes. The first game is the real BBG − HIBE security game and the
final game gives no advantage for the adversary. Second, based on the three
complexity assumptions 1, 2, 3 in [23], step by step they prove that these games
are indistinguishable, this automatically avoids a loss of an exponential factor in
hierarchical depth as in the classical method. This is achieved via the main con-
cept of the nominal semi-functionality, in which a semi-functional key is nominal
with a semi-functional ciphertext if the semi-functional key can decrypt the semi-
functional ciphertext. If the challenger only can create a nominal semi-functional
ciphertext with respect to the semi-functional challenge key, then he cannot
test by himself whether the challenge key is semi-functional or not because the
decryption always successes.

We follow their approach by applying the dual system encryption technique
to construct a fully secure variant of the BBG − WIBE scheme. The problem
here is that the transformation from the BBG−HIBE to the BBG−WIBE needs
to introduce additional components (C3,i) in the ciphertext, and these compo-
nents demolish the nominal property. The reason is the challenger can create
a nominal semi-functional ciphertext with respect to the semi-functional chal-
lenge key, then use (C3,i) and the components (Ei) in the challenge key to test
by himself whether the challenge key is semi-functional or not. In order to retain
the nominality, we should manage to impose the distribution of exponents of
G2 part in C3,i and in Ei in the semi-functional key and the corresponding semi-
functional ciphertext in a compatible way such that they are always nominal
with each other.
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We provide the details about our construction of BBG − WIBE scheme in
composite order groups and the proof of its full security in the full version of
this paper [29].

3.3 KWIBE: Key-Leakage Resilient WIBE

In the construction of key-leakage resilient HIBE in [22], the user’s secret key is
constructed from elements in subgroups G1 and G3. This leads to secret keys
that are relatively low independent sources because they are only in subgroups
G1 and G3. In order to enhance the independent sources of each user’s secret
key, in our construction of KWIBE, the secret keys are in the semi-functional
form and each user’s secret key is now a high independent source since the main
part of the secret key is in the whole group G = G1 ×G2×G3. Fortunately, this
slightly change doesn’t affect the functionality and the security of the scheme.

Construction from BBG−WIBE. The main point in proving the key-leakage
resilience of HIBE in [22] is to show that the adversary cannot distinguish between
two games KeyLeak0 and KeyLeak1 which are briefly described as follow. In the
game KeyLeakb game (for both b = 0 and b = 1), the adversary can choose to
receive a normal key or a semi-functional key from each leak and reveal query for
all keys except one key- called the challenge key. Concerning the challenge key, it
is set to be a normal key in the game KeyLeak0 and a semi-functional key in the
game KeyLeak1. We can realize that, in this technique of proving the security,
there is no significant difference between a HIBE attack and a WIBE attack.
Indeed, the main difference between HIBE and WIBE is that an adversary against
WIBE can ask more leak queries (for keys that match the challenge pattern) than
an adversary against HIBE (who can only ask for keys which are prefix of the
challenge identity). However, because the difference between two games KeyLeak0
and KeyLeak1 is only related to the challenge key which has the same form in
both HIBE and WIBE, the proof in HIBE is well adapted to WIBE.

In order to make BBG −WIBE resilient to key-leakage, in the following con-
struction, we first impose the distribution of exponents of G2 part in C3,i and
in Ei in a compatible way such that they are nominal with each other, then
we manage to choose compatibly some constants (as r1, r2, zk, zc) to keep the
following properties:

– if
−→
Γ is orthogonal to

−→
δ then the challenge key is nominally semi-functional

and well-distributed.
– if

−→
Γ is not orthogonal to

−→
δ , then the challenge key is truly semi-functional

and well-distributed.

The construction is detailed as follows.

Setup(1λ) → (mpk,msk) The setup algorithm chooses a bilinear group G =
G1×G2×G3 of order N = p1p2p3 (each subgroup Gi is of order pi). We will
assume that users are associated with vectors of identities whose components
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are elements of ZN . If the maximum depth of the WIBE is D, the setup al-

gorithm chooses a generator g1
$← G1, a generator g2

$← G2, and a generator

g3
$← G3. It picks b, a1, . . . , aD

$← ZD+1
N and sets h = gb1, u1 = ga1

1 , . . . , uD =

gaD
1 . It also picks n+1 random exponents 〈α, x1, x2, . . . , xn〉 $← Zn+1

N . The
secret key is msk = (α, a1, . . . , aD), and the public parameters are:

mpk = (N, g1, g3, h, u1, . . . , uD, e(g1, g1)
α, gx1

1 , gx2
1 , . . . , gxn

1 )

KeyderSF(msk, (ID1, ID2, . . . , IDj), g2,mpk) The key generation algorithm

picks n+1 random exponents 〈r, t1, t2, . . . , tn〉 $← Zn+1
N , −→ρ $← Zn+2

N

and zk, ρn+3, . . . , ρn+2+D−j
$← ZN , and −→γ = (γ1, . . . , γn+2) in which

(γ1, . . . , γn, γn+2)
$← Zn+1

N , γn+1 = γn+2(zk −
∑j

i=1 aiIDi). It outputs the

secret key SK = (
−→
K1, Ej+1, . . . , ED):

=

(〈
gt11 , gt21 , . . . , gtn1 , gα1

(
h ·

∏j
i=1 u

IDi

i

)−r ∏n
i=1 g

−xiti
1 , gr1

〉
∗ g
−→ρ
3 ∗ g

−→γ
2 ,

ur
j+1g

ρn+3

3 g
γn+2aj+1

2 , . . . , ur
Dg

ρn+2+D−j

3 g
γn+2aD

2

)
Note that, to run the KeyderSF algorithm one doesn’t need to have g2, he
only need to have X2 ∈ G2 or X2X3 in which X2 ∈ G2, X3 ∈ G3.

Delegate ((ID1, ID2, . . . , IDj),SK’,IDj+1) Given a secret key SK’ =

(
−→
K ′, E′j+1, . . . , E

′
D) for identity (ID1, ID2, . . . , IDj), this algorithm outputs

a key for (ID1, ID2, . . . , IDj+1). It works as follow:

It picks n+1 random exponents 〈r′, y1, y2, . . . , yn〉 $← Zn+1
N , −→ρ ′ $← Zn+2

N , and

ρ′n+3, . . . , ρ
′
n+1+D−j

$← ZN . It outputs the secret key SK = (
−→
K1, Ej+2, . . . ,

ED):

(−→
K ′

1 ∗
〈
gy11 , gy21 , . . . , gyn1 , h−r′(E′

j+1)
−IDj+1

(∏j+1
i=1 u

IDi
i

)−r′ ∏n
i=1 g

−xiyi
1 , gr

′
1

〉
∗ g

−→ρ ′
3 ,

E′
j+2u

r′
j+2g

ρ′n+3
3 , . . . , E′

Dur′
Dg

ρ′n+1+D−j

3

)

Enc(M, (P1, P2, . . . , Pj)) The encryption algorithm chooses s
$← ZN and out-

puts the ciphertext:

CT = (C0,
−→
C1, C2) =⎛

⎝M · e(g1, g1)α·s,

〈
(gx1

1 )s, · · · , (gxn
1 )s, gs1, (h ·

∏
i∈W (P )

uPi
i )s

〉
, (C2,i = us

i )i∈W (P )

⎞
⎠

Dec(CT, SK) Any other receiver with identity ID = (ID1, ID2, . . . , IDj)
matching the pattern P to which the ciphertext was created can decrypt

the ciphertext CT = (C0,
−→
C1, C2) as follows

First, he recovers the message by computing

−→
C′1 =

〈
(gx1

1 )s, · · · , (gxn
1 )s, gs1, (h ·

∏
i∈W (P )

uPi

i )s ·
∏

i∈W (P )

(us
i )

IDi

〉



Key-Leakage Resilient Revoke Scheme Resisting Pirates 2.0 349

Finally, compute

en+2(
−→
K1,

−→
C′1) = e(g1, g1)

αs · e(g1, uID1
1 · · ·uIDj

j h)−rs · e(g1, uID1
1 · · ·uIDj

j h)rs·

·
n∏

i=1

e(g1, g1)
−xitis ·

n∏
i=1

e(g1, g1)
xitis = e(g1, g1)

αs

Notice that the G2 and G3 parts do not contribute because they are orthogonal
to the ciphertext under e.

Security of Key-Leakage Resilient BBG − WIBE Formally, the security
model of a �SK-key-leakage resilient WIBE, we call Leak−WIBE security game,
is defined as follows: We let I∗ denote the set of all possible identity vectors, R
denote the set of all revealed identities

Setup : The challenger makes a call to Setup(1λ) and gets the master secret
key msk and the public parameters mpk. It gives mpk to the attacker. Also, it
sets R = ∅ and T = ∅, note that R ⊆ I∗, T ⊆ {I∗,SK,N} (identity vectors
- secret keys - leaked bits).

Phase 1 : The adversary can adaptively make three types of query:
– Create(

−→
I ): The challenger makes a call to KeyderSF to generate SKI

and adds the tuple (
−→
I , SKI , 0) to the set T if this identity does not

exist.
– Leak(

−→
I , f): The challenger first finds the tuple (

−→
I , SKI , L), then it

checks if L+ | f(SKI)| ≤ �SK . If true, it responds with f(SKI) and
updates the L = L+| f(SKI)|. If the checks fails, it returns ⊥ to the
adversary.

– Reveal(
−→
I ): The challenger first finds the tuple (

−→
I , SKI , L), then re-

sponds with SKI and adds the identity vector
−→
I to the set R.

Challenge : The adversary submits a challenge pattern
−→
P ∗ with the restriction

that no identity vector in R matches
−→
P ∗. It also submits two messages

M0,M1 of equal size. The challenger flips a uniform coin c
$← {0, 1} and

encrypts Mc under
−→
P ∗ with a call to Enc(Mc,

−→
P ∗). It sends the resulting

ciphertext CT ∗ to the adversary.
Phase 2 : This is the same as Phase 1, except the only allowed queries are

Create queries for all identity vector, and Reveal queries for secret keys

with identity vectors which do not matches
−→
P ∗.

Guess : The adversary outputs a bit c
′ $← {0, 1}. We say it succeeds if c

′
= c.

Definition 2. A KWIBE scheme is (�SK)-key-leakage secure if all PPT adver-
saries have at most a negligible advantage in the above security game.

Theorem 1 (Security of Key-Leakage Resilient BBG − WIBE). Under
assumptions 1, 2, 3 in [23] and for �SK = (n − 1 − 2c) log(p2), where c > 0
is any fixed positive constant, our key-leakage resilient BBG − WIBE scheme is
(�SK) - key-leakage secure.
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The condition for c is p−c2 is negligible. The length of secret key sk at level i is
(n+2+D− i)(log(p1)+ log(p2)+ log(p3)) where D is the depth of WIBE. As we
can see, the leakage fraction of secret key at leaf node is the biggest. The proof
of this theorem can be found in the full version of this paper [29].

3.4 Generic Construction of KIDTR

The construction of KIDTR closely follows to the construction of WIBE-IDTR
in [28], using the new primitive KWIBE instead of WIBE for encryption. We
integrate KWIBE into the complete subtree method: each group ID ∈ {0, 1}∗
represents a binary tree and each user id ∈ {0, 1}l (id = id1id2 · · · idl, idi ∈
{0, 1}) in a group ID is assigned to be a leaf of the binary tree rooted at ID.
For encryption, we will use a KWIBE of depth l+1, each user is associated with
a vector (ID, id1, · · · , idl).

Setup(1k, Nu): Take a security parameter k and the maximum number in each
group Nu (thus l = �log2 Nu�). Run the setup algorithm of KWIBE with the
security parameter k and the hierarchical depth L = l + 1 which returns
(mpk,msk). The setup then outputs (mpk,msk). As in the complete subtree
method, the setup also defines a data encapsulation method EK : {0, 1}∗ →
{0, 1}∗ and its corresponding decapsulation DK . The session key K used will
be chosen fresh for each message M as a random bit string. EK should be a
fast method and should not expand the plaintext.

Keyder(msk, ID, id): Run the key derivation of KWIBE for l + 1 level identity
WID = (ID, id1, . . . , idl) (the j-th component corresponds to the j-th bit
of the identity id) and get the decryption key dWID. Output dID,id = dWID.

Enc(mpk, ID,RID,M): A sender wants to send a message M to a group ID
with the revocation list RID. The revocation works as in the complete sub-
tree scheme. Considering a group ID with its revocation list RID, the users
in NID\RID are partitioned into disjoint subsets Si1 , . . . , Siw which are all
the subtrees of the original tree (rooted at ID) that hang off the Steiner tree
defined by the set RID.
Each subset Sij , 1 ≤ j ≤ w, is associated to an l+1 vector identity IDSij

=

(ID, idij ,1, . . . , idij ,k, ∗, .., ∗) where idij ,1, . . . , idij ,k is the path from the root
ID to the node Sij and the number of wildcards ∗ is l − k. The encryption
algorithm randomly chooses a session key K, encrypts M under the key K
by using a symmetric encryption, and outputs as a header the encryption of
KWIBE for each IDSi1

, . . . , IDSiw
.

C = 〈[i1, . . . , iw][KWIBE.Enc(mpk, IDSi1
,K), . . . ,KWIBE.Enc(mpk, IDSiw

,K)]

, EK(M)〉

Dec(dID,id, C): The user received the ciphertext C as above. First, find j such
that id ∈ Sij (in case id ∈ RID the result is null). Second, use private key
dID,id to decrypt KWIBE.Enc(mpk, IDSij

,K) to obtain K. Finally, compute

DK(EK(M)) to recover the message M .
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3.5 Security of KIDTR

Theorem 2 (Security of KIDTR). If the KWIBE is (�SK) - key-leakage secure
then our KIDTR is also (�SK) - key-leakage secure.

The proof of this theorem can be found in the full version of this paper [29].

4 KIDTR is Immune to Pirates 2.0 in Bounded Leakage
Model

4.1 Pirates 2.0 in Bounded Leakage Model

The basic idea behind Pirates 2.0 attacks is that traitors are free to contribute
some piece of secret key as long as several users of the system could have con-
tributed exactly the same information following the same (public) strategy: this
way, they are able to remain somewhat anonymous. The leakage information is
formalized via extraction function which is any efficiently computable function f
on the space of the secret keys and a traitor u is said to be masked by a user u′

for an extraction function f if f(sku) = f(sku′). The anonymity level is meant
to measure exactly how anonymous they remain. This is defined in [6] as follows.

Definition 3 (Anonymity Level). The level of anonymity of a traitor u after
a contribution ∪1≤i≤tfi(sku) is defined as the number α of users masking u′ for
each of the t extraction functions fi simultaneously:

α = #{u′ | ∀i, fi(sku) = fi(sku′)} .

Definition 4 (Pirates 2.0 in Bounded Leakage Model). We say that a
Pirates 2.0 attack is in bounded leakage model if for every traitor u with his
secret key sku, at each time i (i = 1, . . . , t), is free to choose any strategy fi to
contribute the bits information of sku to the public domain as long as

t∑
i=1

| fi(sku) |≤ �SK

where �SK is the threshold.

4.2 Comparison to Other Methods

Until now, there have been many methods aiming to fight against Pirates 2.0
[10,11,28,32] but all of them only consider a particular form of leakage of secret
key in bounded leakage model. In fact, it is assumed in these methods that by
using a public extraction function the dishonest users leak the entire information
of some sub-keys which could be used in the encryption procedure. Concretely,
in [11] they describe the extraction function as a projection function, and the
secret key of user SK is a vector (SK1, . . . , SKl) of elements, where each SKi,
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i = 1, . . . , l, contains k bits information. The output of extraction function, at
each time, is an i−th element of the vector. This require that a traitor, at each
time, must contribute at least k bits information of his secret key where k must
be bigger than the security parameter of the scheme. This kind of attack is thus
a particular case of Pirates 2.0 in bounded leakage model in which the strategy
of the traitor is limited: at each time each traitor has to choose a whole sub-key
to contribute.

We consider the general form of Pirates 2.0 attack in bounded leakage model,
by considering any strategy of the adversary. This generalizes thus all the previ-
ous consideration of Pirates 2.0. However, there is still a gap between the Pirates
2.0 attack in bounded leakage model and the general form of the Pirates 2.0 at-
tack where the pirate can combine the information of the bits of the secret key
and then contribute a particular form of information. This kind of attack could
be captured by considering a general form of leakage for revoke schemes and this
seems a very challenging problem.

4.3 Pirates 2.0 in Bounded Leakage Model Viewed from the
Information Theory

We aim to re-explain the way Pirates 2.0 in bounded leakage model works under
the information theory. This is also the basic starting point so that we can
establish a sufficient condition for a scheme to resist Pirates 2.0 in bounded
leakage model in the next sub-section. In a revoke scheme, when a user joins the
system, its key is generated and has some entropy. However, as keys of users could
be correlated, the user can contribute some correlated information without the
risk being identified. The user really lose its anonymity when he contributes its
independent secret information that the other users don’t have. More formally,
these are entropy conditioned on the information about the other users’ keys.
Let us first recall some classical definitions about entropy.

Definition 5. Let X be a random variable. The min-entropy of X is

H∞(X) = min
x

− log(Pr[X = x]) = − log(max
x

Pr[X = x])

We say that X is a k-source if H∞(X) ≥ k.

The high min-entropy is used rather than the Shannon entropy in cryptography
for describing good distributions for the keys. In fact, the conventional notion
in cryptography is the intuitive notion of “guessability”and a distribution X has
min-entropy of k bits if even an unbounded adversary cannot guess a sample
from X with probability greater than 2−k.

However, in context of Pirates 2.0 in bounded leakage model, a high min-
entropy is not enough because the keys could be correlated. We should thus
need to define how many information of the key a user has that is independent
to the keys of the others users. This is quantified via the conditional min-entropy.



Key-Leakage Resilient Revoke Scheme Resisting Pirates 2.0 353

Definition 6. Let X,E be a joint distribution. Then we define the min-entropy
of X conditioned on E-denoted H∞(X |E) as

H∞(X |E) = − logmax
e

[max
x

Pr[(X |E = e)]]

We say that X is a k-independent source of E if H∞(X |E) ≥ k.

We note that Dodis et. al. [14] defines the conditional min-entropy as average
entropy log E[maxx Pr[(X |E = e)]]. In our setting, we follow a conservative ap-
proach, taken in [20], and manage to deal with the above stronger notion. In
fact, we will see later in our construction that the secret keys of users are suf-
ficiently independent each from the others, the consideration of the conditional
min-entropy can be justified. We first define the independence between the secret
keys in a revoke system as follows.

Definition 7 (Independent Source). In a revoke system of Nu users, let
Xi be the distribution outputted by the key generation for a user i and let
E = (X1, . . . , Xi−1, Xi+1, . . . , XNu, pub) where pub denotes the distribution of
the public parameters in the system. Then we say that the key of user i is a
k-independent source if H∞(Xi|E) ≥ k.

The key of user i is a k-independent source if it has k-bit entropy independently
from the keys of the others users and from all the public information of the
systems.

We now review the Pirates 2.0 in bounded leakage model in the context of
Complete Subtree resumed in Figure 4.3. For a D-level tree, each user’s key
is a (D × λ)-source but only a λ-independent source because each user only
has an independent sub-key at the leaf. Therefore, even if a user contributes
((D − 1) × λ) entropy of its key, the remained information could still be a λ-
independent source. Without leaking any independent entropy, the user could
remain anonymous at a level α > 1 (because at least two different users can
have the same contributive information). In the example in Figure 4.3, the user
U is assigned 5 sub-keys corresponding to the nodes from the root to the leaf.
The user U can contribute a key S4 and specifies the target set at S4 that covers
4 users of the sub-tree rooted at S4. A pirate decoder with only one key at
S4 can decrypt the ciphertext for the chosen target set S4 with non-negligible
probability while preserving an anonymity level α = 4 for the contributor and
therefore, the scheme is vulnerable against the Pirates 2.0 in bounded leakage
model.

4.4 Key-Leakage Resilience vs. Pirates 2.0 in Bounded Leakage
Model

We are now ready to prove a sufficient condition so that a key-leakage resilient
revoke scheme is immune to Pirates 2.0 attacks in bounded leakage model. We
first use the following lemma and give the proof in the full version [29].
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Fig. 1. An example of a complete subtree scheme where the center covers all non-
revoked users with the nodes S1, . . . , S6. A user is a leaf on the binary tree where
each node is assigned to a long-lived randomly chosen key. Each user possesses all the
long-lived keys of the nodes on the path from the user’s leaf to the root.

Lemma 1. For any function f, g, and any random variable X,Y , if H∞(X |Y ) ≥
k and H∞(X |f(X), Y ) ≤ k − α then

Pr
x∈X,y∈Y

[f(x) = g(y)] ≤ 1

2α

The following theorem gives a condition on the independence of the user’s key
under which we can relate the leakage resilience to the Pirates 2.0.

Theorem 3. Let Π be a (�SK)-key-leakage resilient revoke system of Nu users
in which each user’s key has length of m bit and is a m′-independent source. If
α = Nu

2�SK+m′−m ≤ 1, then Π is immune to any Pirates 2.0 attack in bounded
leakage model.

Proof.

Proposition 1. In a Pirates 2.0 attack in bounded leakage model, if a user leaks
k bits of his secret key to the public domain then his anonymity level is at most

Nu

2k+m′−m .

Proof. Intuitively, as the key of the user u is a high independent source even
when the others users contribute their whole secret keys, if u leaks too much
information on its key then it will also leak many independent information and
loses its anonymity.

Formally, following the definition 3 of anonymity level in pirates 2.0, assume
that a user u contributes k bits information Lu of his secret key sku to the public
domain, we need to compute the probability for an user u′ to contribute exactly
the same information as the user u, at each period of time i.

– At time 0: u contributes nothing to the public domain. Let Ei = (∪w �=uskw,
pubi) where pubi denotes the public information at the time i which contains
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the publics parameters of the system plus contributed information of the
users after the time i−1. Because each user’s key is a m′-independent source:
H∞(sku|E0) ≥ m′.

– At time i: u contributes his secret informations Li
u = fi(sku, pubi) to the

public domain by leaking ki bits of his secret keys. If we denote kini the
number of independent bits that the user u losses in time i, i.e., kini =
H∞(sku|Ei) − H∞(sku|Ei−1). From the lemma 1, the probability that u′

could contribute exactly the same information Li
u is at most 1

2k
in
i
. Note that

E0 and thus Ei already contain ∪w �=uskw, i.e., all the contributed infor-
mation of the other users are already contained in Ei (for all i), the kini
independent bits are among ki bit that the user u leaks at the time i.

At the end, after the time t, the user u contributes to the public domain by
totally leaking k = k1 + · · · + kt bits of its secret information. By the above
computation, the probability that an user u′ can contribute exactly the same
total information like u is at most

∏t
j=1

1

2
kin
j
, and

t∑
j=1

kinj = H∞(sku|E0)−H∞(sku|Et)

Because the bit length of the secret key sku is m and the user u leaks k bits,
we deduce that H∞(sku|Et) ≤ m− k and therefore

∑t
j=1 k

in
j ≥ m′ − (m− k) =

k + m′ − m which implies that the probability that an user u′ can contribute
exactly the same information like u as required in Pirates 2.0 is at most 1

2k+m′−m

and the anonymity level of u cannot be assured to be higher than Nu

2k+m′−m . ��

Proposition 2. Let Π be a (�SK)-key-leakage resilient revoke scheme. If each
user leaks no more than �SK bits of his secret key to the public domain, then one
cannot produce a Pirates 2.0 decoder in bounded leakage model.

Proof. We suppose by contradiction that there is a Pirates 2.0 A in bounded
leakage model against Π in which each user leaks no more than �SK bits of his
secret key to the public domain, then we build an algorithm B that breaks the
security of Π in the context of key leakage resilience.

Algorithm B simulates A and makes use of the outputs of A to break the
security of Π . It works as follows:

– At time 0: users contribute nothing to the public domain.
– At time 1: suppose that a user u decides to contribute L1

u = f1(sku) bits
to the public domain by using a strategy f1 where f1 is a polynomial-time
computable function, B requests the leak query (u, g1 := f1) to his challenger
and forwards the result to A.

– At any time i: suppose that a user u decides to contribute Li
u = fi(sku, I)

bits to the public domain, where I is the public collected information after
the time i−1. At this stage, B defines a polynomial-time computable function
gi,I(sku) := fi(sku, I), then requests the leak query (u, gi,I) to his challenger
and forwards the result to A.
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– When A outputs a pirate decoder and a target S so that the pirate decoder
can decrypt ciphertexts for S with a non-negligible probability, B simply
outputs S∗ = S and two different messages M0,M1 to his challenger. By
using this pirate decoder, B can decrypt the challenge ciphertext with a
non-negligible probability and thus break the security of the scheme.

We note that, since each user contributes maximum �SK bits to the public do-
main, B only need to ask in total at most �SK bits to his challenger. By definition,
Π is then not �SK-key leakage resilient.

��

The theorem immediately follows from the above two propositions. ��

Proposition 3. In KIDTR scheme, if we call p1, p2, p3 are primes of λ1, λ2, λ3

bits, then each user’s secret key with length m = (n + 2)(λ1 + λ2 + λ3) is m′-
independent source where m′ = ((n+ 1)(λ1 + λ2 + λ3) + λ2 + λ3).

Proof. In our KIDTR scheme, we make use of a KWIBE scheme in which each
user’s secret key is at leaf node 3.3, therefore an user’s secret key is of the
following form:

SK =
−→
K1 =

⎛
⎝〈

gt11 , gt21 , . . . , gtn1 , gα1

(
h ·

j∏
i=1

uIDi

i

)−r
n∏

i=1

g−xiti
1 , gr1

〉
∗ g
−→ρ
3 ∗ g

−→γ
2

⎞
⎠

where r, t1, t2, . . . , tn, zk
$← ZN , −→ρ $← Zn+2

N , and −→γ = (γ1, . . . , γn+2) in which

(γ1, . . . , γn, γn+2)
$← Zn+1

N , γn+1 = γn+2(zk −
∑j

i=1 aiIDi).
We realize that in each secret key, the elements corresponding to the indices
1, . . . , n, n+2 are randomly generated in the whole group G = G1×G2×G3, the
element corresponding to the indice n+1 is not independent in G1 but randomly
generated in G2 ×G3. Therefore, it’s easy to see that each user’s secret key is of
(n+2)(λ1+λ2+λ3) bit length and is a ((n+1)(λ1+λ2+λ3)+λ2+λ3)-independent
source.

Theorem 4. The KIDTR scheme is immune to Pirates 2.0 attacks in bounded
leakage model for any choice of parameters n, c, λ1, λ2 such that 2(n−1−2c)λ2−λ1 >
Nu, where Nu is the number of subscribed users in the systems

Proof. From the theorems 1 and theorem 2, we decude that the KIDTR scheme is
�SK−leakage resilient with �SK = (n− 1− 2c)λ2 for any fixed positive constant
c > 0 (such that p−c2 is negligible). From the theorem 3, one cannot mount
a Pirates 2.0 attack with an anonymity level larger than α = Nu

2�SK+m′−m =
Nu

2(n−1−2c)λ2−λ1
< 1. ��

We note that there is no need to choose particular parameters for our system. For
example, simply with c = 1, n = 5 and λ1 = λ2 = 512 (p−c2 = 2−512 is negligible)
and suppose that there are Nu = 240 subscribed users, our system is immune to
Pirates 2.0 in bounded leakage model because 2(n−1−2c)λ2−λ1 = 2512 > Nu and
the user’s secret key contains only 7 elements in G.
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Abstract. In this work, we compare different faster than brute-force
single-key attacks on the full AES in software. Contrary to dedicated
hardware implementations, software implementations are more transpar-
ent and do not over-optimize a specific type of attack. We have analyzed
and implemented a black-box brute-force attack, an optimized brute-
force attack and a biclique attack on AES-128. Note that all attacks
perform an exhaustive key search but the latter two do not need to re-
compute the whole cipher for all keys. To provide a fair comparison, we
use CPUs with Intel AES-NI since these instructions tend to favor the
generic black-box brute-force attack. Nevertheless, we are able to show
that on Sandy Bridge the biclique attack on AES-128 is 17% faster,
and the optimized brute-force attack is 3% faster than the black-box
brute-force attack.

Keywords: fast software encryption, AES, brute-force attack, biclique
attack, Intel AES-NI.

1 Introduction

In recent years, new attacks on the full Advanced Encryption Standard (AES)
have been published [1,3]. Especially the single-key attacks are debatable due to
their marginal complexity improvement compared to a generic exhaustive key
search (brute-force). Therefore, Bogdanov et al. have implemented a variant of
the biclique attack in hardware to show that their attack is indeed faster than
brute-force [2].

However, in a dedicated hardware implementation it is less transparent how
much effort has been put on optimizing each attack type. If the difference in com-
plexity is very small, it may be possible to turn the result around by investing
more optimization effort in the slower attack. Contrary to hardware implemen-
tations, the speed of well optimized software implementations tends to be more
stable. This can also be observed when looking at different comparisons of the
NIST SHA-3 candidates in hardware and in software [5,11]. Too many parame-
ters can be optimized in hardware which can easily change a comparison in favor
of one or the other primitive or attack.

In this work, we have implemented different single-key attacks on AES-128
using Intel AES-NI [7], which is the basis for the fastest software implementations
of AES. We compare the generic black-box brute-force attack with an optimized
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brute-force attack and with the (simplified) biclique attack used in the hardware
implementation of Bogdanov et al. [2]. In the optimized brute-force attack we
choose keys such that we do not need to recompute the full cipher for every new
key guess.

Our results indicate that the biclique attack is indeed marginally faster than
a black-box brute-force attack. However, also the optimized brute-force attack
on AES is slightly faster than the black-box brute-force attack. We have con-
centrated our effort on AES-128 but the results are likely to be similar for the
other variants as well. Nevertheless, these attacks do not threaten the security
of AES since for any real world cipher, optimized brute-force attacks are most
likely faster than black-box brute-force attacks.

Outline of the paper: In Section 2, we give a brief description of AES-128 and
the implementation characteristics of Intel AES-NI. In Section 3, we describe
and evaluate the theoretical complexity of the black-box brute-force attack and
an optimized brute-force attack. Section 4 describes and analyzes the simplified
biclique attack on AES-128 of Bogdanov et al. [2]. Then, our software imple-
mentations and results of these three attacks are given in Section 5. Finally, we
conclude our work in Section 6.

2 Implementing AES in Software Using AES-NI

In this section, we briefly describe the Advanced Encryption Standard (AES) as
well as the instructions and implementation characteristics of Intel AES-NI.

2.1 Description of AES-128

The block cipher Rijndael was designed by Daemen and Rijmen and standardized
by NIST in 2000 as the Advanced Encryption Standard (AES) [9]. The AES
consists of a key schedule and state update transformation. In the following, we
give a brief description of the AES and for a more detailed description we refer
to [9].

State Update. The block size of AES is 128 bits which are organized in a
4 × 4 state of 16 bytes. This AES state is updated using the following 4 round
transformations with 10 rounds for AES-128:

– the non-linear layer SubBytes (SB) independently applies the 8-bit AES S-
box to each byte of the state

– the cyclical permutation ShiftRows (SR) rotates the bytes of row r to the
left by r positions with r = {0, ..., 3}

– the linear diffusion layer MixColumns (MC) multiplies each column of the state
by a constant MDS matrix

– in round i, AddRoundKey (AK) adds the 128-bit round key rki to the AES
state

A round key rk0 is added prior to the first round and the MixColumns transfor-
mation is omitted in the last round of AES. All 4 round transformations plus
the enumerations of individual state bytes are shown in Fig. 1



Fast Software Encryption Attacks on AES 361

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Si Si,SR Si,MC Si,ARK
rki

SB SR MC

Fig. 1. Notation for state bytes and 4 round transformations of AES

Key Schedule. The key schedule of AES recursively generates a new 128-bit
round key rki from the previous round key rki−1. In the case of AES-128, the
first round key rk0 is the 128-bit master key of AES-128. Each round of the key
schedule consists of the following 4 transformations:

– an upward rotation of 4 column bytes by one position
– the nonlinear SubWord applies the AES S-box to 4 bytes of one column
– a linear part using XOR additions of columns
– a constant addition of the round constant RCON[i]

More specifically, each column rki,c with i = 1, . . . , 10 and c = 0, . . . , 3 of round
key rki is computed as follows:

rki,0 = SubWord(rki−1,3 ≫ 1)⊕ rki−1,0 ⊕ RCON[i] for c = 0

rki,c = rki,c−1 ⊕ rki−1,c for c = 1, . . . , 3

2.2 Efficient Implementations of AES-128 Using AES-NI

For our software implementation we chose to use the Intel AES instruction set
AES-NI (AES New Instructions) [7] because it provides the fastest way to imple-
ment AES on a standard CPU and makes the implementations easier to compare.
Moreover, AES-NI gave us a fair basis for the brute-force and biclique imple-
mentations since all AES operations take exactly the same time throughout all
implementations.

For the AES-NI instruction set, Intel integrated certain operations for AES
directly into the hardware, thus, making them faster than any pure software
implementation and providing more security against timing attacks due to con-
stant time operations [7]. Overall, AES-NI adds the following operations for key
schedule, encryption and decryption and a full description of all instructions can
be found in [8]:

– aesenc, aesdec performs one full encryption or decryption round, respec-
tively.

– aesenclast, aesdeclast performs the last encryption or decryption round.
– aeskeygenassist computes the SubWord, rotation and XOR with RCON oper-

ations required for the key schedule.
– aesimc performs InvMixColumns on the given 128-bit register and stores the

result to another 128-bit register.
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Modern CPUs use multiple techniques to boost performance of applications.
Hence, creating software implementations with optimal performance requires
some background knowledge on how CPUs operate. For our software implemen-
tations we took the following approaches into account to increase the
performance:

High Pipeline Utilization: CPUs split a single instruction into multiple μops.
This enables the CPU to start processing the next instruction before the
previous has finished. Obviously, this only works if both instructions are
independent of each other.

Minimal Memory Access: Fetching data from memory (registers) outside
the CPU is slow and decreases performance. Since the attacks shown here,
have minimal memory complexities, they can be implemented without al-
most any memory access.

Parallelized Encryption: For optimal pipeline utilization it is important to
carefully utilize AES-NI and SSE instructions since they normally take more
than one CPU cycle. Therefore, we compute each encryption round for mul-
tiple keys at the same time. This results in multiple independent instructions
which are processed by the CPU. This in turn leads to higher pipeline uti-
lization. For instance, on Intel Westmere the execution of aesenc takes 6
CPU cycles and the CPU can execute an instruction every second cycle. If
we perform 4 independent instructions in parallel, it would require 6 cycles
until the first operation is finished. After that, every second cycle another
operation finishes. So, in total it requires only 12 cycles for those four oper-
ations to finish, instead of 24 cycles if we do not parallelize them. On Intel
Sandy Bridge, one execution of aesenc takes 8 CPU cycles and the CPU
can execute an instruction every cycle.

Reducing aeskeygenassist Instructions: The aeskeygenassist instruction
performs suboptimal on current Sandy Bridge CPUs. Our tests have shown
that this instruction has a latency of 8 cycles and a reciprocal throughput of
8 (independently shown in [4]). This is slower compared to the other AES-
NI instructions. Since we have to compute the key schedule very often in
all attacks, we need to compute round keys as fast as possible. Fortunately,
aeskeygenassist is able compute to SubWord and the rotation for two words
in parallel. Thus, we use a single aeskeygenassist instruction for two inde-
pendent round keys. Another solution would be to avoid aeskeygenassist

and compute SubWord using aesenclast and the rotation using an SSE byte
shuffle instruction.

3 Brute-Force Key Recovery Attacks on AES-128

In this section we describe two brute-force attacks on AES-128 and evaluate
their complexities. We show that an optimized brute-force attack which does
not recompute all state bytes is in theory (marginally) faster than a black-box
brute-force attack. A practical evaluation of these two attacks in software using
AES-NI is given in Section 5.
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3.1 Black-Box Brute-Force Attack

We call a generic key recovery attack which does not exploit any structural
properties of a cipher a black-box brute-force attack. This is the only possible
key recovery attack on an ideal cipher. For a cipher with key size n, 2n keys
have to be tested to find the unknown encryption key with probability 1. Thus,
the generic complexity is determined by 2n evaluations of the cipher. In such
an attack, the data complexity is 1 and the key complexity is 2n. Note that
time-memory trade-offs apply if more keys are attacked at the same time [6],
while the black-box brute-force attack and biclique attack need to be repeated
for each key to attack. To compare a black-box brute-force attack on AES-128
with an optimized brute-force attack or any other brute-force attack, we need to
determine its complexity in terms of AES-128 evaluations. Since most optimized
attacks compute only parts of the cipher, we evaluate the complexity in terms of
S-box computations, the most expensive part of most AES implementations. In
total, one full AES-128 encryption including key schedule computation requires
to compute 200 S-boxes.

3.2 Optimized Brute-Force Attack

Every practical cipher consists of non-ideal sub-functions or rounds. If the dif-
fusion is not ideal, a flip in a single key bit does not immediately change all
bits of the state. This effect can be exploited by an optimized brute-force at-
tack. Instead of randomly testing keys in a key recovery attack, we can iterate
the keys in a given order, such that only parts of the cipher need to be recom-
puted for each additional key. Hence, we save computations which may reduce
the overall cost of performing a brute-force key recovery attack. Note that every
optimized brute-force attack still needs to test all 2n keys, which is not the case
in a short-cut key recovery attack.

Such an optimized brute-force attack is possible for every real world cipher.
However, the complexity reduction will only be marginal. In practical implemen-
tations of an attack it can even be worse, since computing a full round is usually
more efficient than computing, extracting, restructuring and combining parts
of a computation (see Section 5). After all, the final result depends heavily on
the implementations and how well they are optimized themselves. Nevertheless,
in the case of AES we can still count and compare S-box computations as an
estimate for the optimized brute-force complexity.

In the following, we give a basic example of an optimized brute-force attack
on AES-128. Instead of trying keys randomly, we first iterate over all values of
a single key byte and fix the remaining 15 key bytes. Hence, we only compute
the whole cipher once for a base key, and recompute only those parts of the
state which change when iterating over the 28 values for a single byte. Fig. 2
shows those bytes in white, which do not need to be recomputed for every key
candidate. The number of white bytes also roughly determines the complexity
reduction compared to a black-box brute-force attack. To save additional recom-
putations on the last two rounds, we match the ciphertext only on four instead
of all 16 bytes.
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For each set of 28 keys, we save the computation of 15 S-boxes of state S1, 9
S-boxes of state S2, 12 S-boxes of state S9 and 12 S-boxes of state S10, in total
48 S-boxes. In the key schedule, we save the computation of 4 S-boxes in rk0,
3 S-boxes in rk1, rk2 and rk10, 2 S-boxes in rk3 and 1 S-box in rk4 in total 16
S-boxes. Hence, instead of 200 S-boxes we need to compute only 136 S-boxes or
0.68 full AES-128 evaluations. Therefore, the total complexity of this optimized
brute-force attack is about

2120 · (1 + 255 · 0.68) = 2127.45

full AES-128 evaluations.

4 Simplified Biclique Attack for Hardware
Implementation

To evaluate the biclique attack [3] in hardware, Bogdanov et al. have proposed
a simplified variant of the biclique attack [2] which is more suitable for practical
implementations. To verify that the attack is practically faster than a black-
box brute-force attack, they modified the biclique attack to reduce its data
complexity and simplified the matching phase, where the full key is recovered.
The main difference to the original biclique attack is that only a 2-dimensional
biclique is applied on the first two rounds instead of the last three rounds.
Furthermore, the key recovery phase matches on four bytes of the ciphertext
instead of some intermediate state. This simplifies the matching phase since it
is basically just a forward computation from state S3 to these four bytes of the
ciphertext. In this section, we briefly cover the theory of the modified attack
from [2] and give a comparison of each step to a black-box brute-force attack on
AES.

4.1 Biclique Construction

The modified biclique attack targets AES-128. The biclique originates from the
idea of initial structures [10] and is placed on the initial two rounds and the meet-
in-the-middle matching to recover the encryption key is done on the remaining
eight rounds. The key space is divided into 2124 groups of 24 keys each. These
key groups are constructed from the initial cipher key rk0 (whitening key) and
do not overlap. The partitioning of the key space defines the dimension d of the
biclique which is d = 2.

Each key group is constructed from a base key. We retrieve the base keys by
setting the two least significant bits of rk0[0] and rk0[6] to zero and iterating the
remaining bits of rk0 over all possible values. Hence, bytes 0 and 6 of the base
key have the binary value b = b0b1b2b3b4b500. To get the 16 keys within a key
group, we enumerate differences i, j ∈ {0, . . . , 3} and add them to bytes 0, 4, 6,
and 10 of the base key (see rk0 in Fig. 3). Note, that we add the same difference
i to bytes 0 and 4 as well as difference j to bytes 6 and 10. This is done to cancel
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Fig. 2. Partial states which have to be recomputed for each set of 28 keys in the
optimized brute-force attack. Only bytes + (input to S-boxes) need to be recomputed
for every key guess. All empty bytes are recomputed only once for each set of 28 keys.
In total, we save the computation of 48 S-boxes in the state update and 16 S-boxes in
the key schedule.
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Fig. 3. Partial states which have to be recomputed for each set of 216 keys in the
hardware biclique attack. Blue bytes ( + ) need to be recomputed for every key guess.

White bytes are recomputed only for each set of 216 keys. Bytes indicated by . and
× are used in the biclique structure and need to be recomputed 7 times for each set
of 216 keys.
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some differences in the following round key such that only bytes 0 and 6 of rk1
have non-zero differences.

Similar to the original biclique attack, we use these key differences to construct
two differential trails Δi and 'j . The Δi-trail is constructed from the key differ-
ence ΔK

i which covers all keys with i ∈ {1, . . . , 3} and j = 0. For the key difference
'K

j ('j-trail), we fix i = 0 and enumerate j ∈ {1, . . . , 3}. Additionally, the key
differences are also used as plaintext differences for the respective trail.

Finally, to construct the biclique, we combine both trails as shown in Fig. 3.
This yields a mapping of 16 plaintexts to 16 values for the intermediate state
S3 under the 16 keys of a group1. Since both differential trails are not fully
independent (they both have byte 12 active in S3), we have to consider and
recompute this byte separately as described below.

Until here, we have constructed the biclique from two (almost) independent
differential trails. This yields 16 values for S3 for the 16 plaintexts encrypted
under the corresponding key from a key group. Thus, for each key group, we can
retrieve a different set of 16 values for S3. This enables an effective computation
of 16 values for S3 by performing the following steps for each key group:

1. Perform the base computation by taking the all-zero plaintext and encrypt-
ing it with the base key of the group. Store the resulting value for S3 (S0

3)
and the value for rk2 (rk02).

2. Enumerate the difference i ∈ {1, 2, 3}, set j = 0 and recompute the active
byte of the combined differential trail (indicated by . in Fig. 3). This yields
three values for S3, denoted by Si

3.
3. Perform similar computations for j ∈ {1, 2, 3} and i = 0 to get three more

values for S3, denoted by Sj
3 (indicated by × ).

4. Combine the values for S0
3 from the base computation, Si

3 and Sj
3 to get the

16 values for S3
2.

5. Since S3[12] is active in both differential trails, we consider this byte sepa-
rately and retrieve its value by calculating Sj

3 [12]⊕ i or alternatively Si
3 ⊕ j.

The advantage of the biclique construction over a black-box brute-force attack
is that we save S-box computations by simply combining precomputed values for
S3. For a black-box brute-force attack, we perform 16 3-round AES computations
to get 16 values for S3. Here, we compute the full three rounds only for the base
computation and then recompute only the required bytes for each differential
trail for i, j ∈ {1, 2, 3}.

There is one possible improvement that enables us to save some S-box evalua-
tions in the matching phase: Instead of computing values for S3, we can include
the following SubBytes and ShiftRows operations and compute S3,MC (the state
after MixColumns in round 3) instead. In the base computation, we compute the

1 Note that this does not exactly match the definition of a biclique as it maps 22d

plaintexts to 22d states under 22d keys.
2 To get the values for rk2, we just add the i, j differences to the corresponding bytes
of rk0

2. This is possible because no S-box has to be computed for the active key bytes
in the key schedule.
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S-box for bytes 5,7,9,11, and for each of the differential trails we compute the
S-box for their corresponding active bytes. This leaves only byte 12, which we
have to compute for all 16 possible values of S3,MC (see also [2]).

4.2 Key Recovery

As already described, the matching phase is simplified to match on four bytes
of the ciphertexts. Thus, we first take the 16 plaintexts and retrieve the corre-
sponding ciphertexts from the encryption oracle (This has to be performed only
once for the full attack). From the output of the biclique (16 values for S3,MC),
we then compute only the required bytes to get the four ciphertext bytes. As
shown in Fig. 3, we compute the full states from S4 up to S7,MC. From this state
on until the ciphertext, we only compute reduced rounds. For the resulting four
ciphertext bytes, we check if they match the corresponding ciphertext bytes re-
trieved from the encryption oracle. If they do, we have a possible key candidate
which we have to verify with one additional plaintext-ciphertext pair. However,
we should get only about one false key candidate per 232 keys.

The advantage of this phase over a black-box brute-force attack is that we
avoid some S-box computations by matching on only four bytes of the ciphertext
instead of all 16 bytes. Note that this part is identical to the optimized brute-
force attack described in Section 3.2.

4.3 Complexity of the Attack

The data complexity is defined by the biclique and is thus 24. Concerning the
time complexity, Bogdanov et al. estimated the computation of the 16 values
for S3 using the biclique (precomputation phase) to be at most 0.3 full AES-128
encryptions. For the matching phase they estimated an effort similar to 7.12
AES-128 encryptions. Thus, the time complexity is

2124 · (0.3 + 7.12) = 2126.89

AES-128 encryptions.
However, our calculation yields a slightly higher complexity: The biclique

computation requires 8 S-boxes for key schedule up to rk2, 32 S-boxes for the
base computation and 6 S-boxes for the recomputations of both trails. Moreover,
for computing S3,MC, we have to compute 4 S-boxes for the inactive bytes, 4 ×
11 = 44 for the active bytes of both differential trails in round 3, and 16 S-
box evaluations for computing byte 12. This results in a total of 110 S-boxes.
Computing three AES rounds (incl. the key schedule) for 16 keys, as it would
be done in a brute force attack, takes 16 × 3 × 20 = 960 S-Box computations.
Thus, the precomputation phase is about the same as 0.11 3-round AES-128
encryptions or equivalently 0.55 full AES-128 executions.

The matching phase has to be performed for every one of the 16 keys in a
key group. This phase requires 80 S-boxes for computing the full rounds 4-8,
8 S-boxes for the last two rounds and 29 S-boxes for the key schedule. This
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results in a total of 16 × 117 = 1872 S-box evaluations per key group. Since a
brute-force attack for 16 keys on seven rounds requires 16× 7× 20 = 2240 S-box
computations, the matching phase is about the same as 0.84 7-round AES-128
encryptions or equivalently 9.36 full AES-128 executions. The resulting time
complexity of the full modified biclique attack is thus

2124 · (0.55 + 9.36) = 2127.31.

5 Software Implementations and Benchmark Results

To compare the two brute-force attacks with the biclique attack, we have imple-
mented all three variants in software using AES-NI. Of course, GPU or dedicated
hardware implementations of these attacks will always perform better and are
less costly than software implementations on standard CPUs. However, we use
these software implementations to provide a more transparent and fair compari-
son of the attacks. The efficiency of hardware implementations depends a lot on
the used device or underlying technology, which may be in favor of one or the
other attack. Moreover, which attack performs better also depends a lot on the
effort which has been spent in optimizing the attack.

In the case of software implementations using AES-NI all attacks have the
same precondition. If AES-NI benefits one of the attacks, it is the black-box
brute-force attack which needs to compute only complete AES rounds. In the
following, we will show that nevertheless, both the optimized brute-force attack
as well as the biclique attack are slightly faster than the generic attack.

For each attack, we have created and benchmarked a set of implementations
to rule out less optimized versions:

– assembly implementations and C implementation using intrinsics
– parallel versions using 4x and 8x independent AES-128 executions
– benchmarked on Intel Westmere and Intel Sandy Bridge CPUs

Since Intel AES-NI has different implementation characteristics on Westmere
and Sandy Bridge, we get slightly different results but the overall ranking of
attacks does not change. We have also tried to used AVX instructions to save
some mov operations. However, this has only a minor impact on the results. Note
that in the C intrinsics implementations the compiler automatically uses AVX
if it is available on the target architecture.

5.1 Black-Box Brute-Force Implementation

The implementation of the black-box brute-force attack is quite straightforward.
Nevertheless, to find the fastest implementation we have evaluated several ap-
proaches. We have implemented two main variants, which test eight or four keys
in parallel. In the 8x parallel variant, the 6-cycle (Westmere) or 8-cycles (Sandy
Bridge) latency can be hidden. However, we need more memory accesses com-
pared to the 4x variant, since we cannot store all keys, states and temporary
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values in the 16 128-bit registers. Therefore, the 4x variant may be faster in
some cases.

The main bottleneck of AES implementations using AES-NI is the rather slow
aeskeygenassist instruction. Therefore, the implementations do not reach the
speed given by common AES-NI benchmarks without key schedule recomputa-
tions. Since the throughput of the instruction aeskeygenassist is much lower
than the aesenc instruction, we compute the key schedule on-the-fly. This way,
we also avoid additional memory operations.

The full performance measurements for all implementations are shown in Ta-
ble 1. The 8x variants test eight keys in parallel but require memory access,
the 4x variants test four keys in parallel without any memory access. The table
shows nicely that the memory-less implementation can in fact be faster under
certain circumstances. Overall, the performance of an implementation depends
highly on the latency of the AES instructions. E.g. on the Sandy Bridge archi-
tecture, the instructions take longer and testing only four keys in parallel does
not utilize the CPU pipeline optimally.

Table 1. Performance measurements for the various software implementations of the
black-box brute-force attack, optimized brute-force attack and biclique attack. All values
are given in cycles/byte. Best results per architecture and implementation are written
in bold.

Approach
Black-Box Brute-F. Optimized Brute-F. Biclique (Modified)

Westmere Sandy B. Westmere Sandy B. Westmere Sandy B.

C, 4x 3.09 3.80 3.20 3.70 2.71 3.18

C, 4x, rnd 1 full 3.10 3.75

ASM, 4x 3.00 3.80 2.61 3.24

ASM-AVX, 4x 3.80 3.21

C, 8x 3.45 3.86 3.52 3.89 3.41 3.39

C, 8x, rnd 1 full 3.24 3.67

ASM, 8x 3.40 3.95

ASM-AVX, 8x 3.93

5.2 Optimized Brute-Force Attack Implementation

The idea for the optimized brute-force attack is to avoid some computations
by iterating all possible keys in a more structured way. As we have seen in
Section 3.2, this slightly reduces the time complexity of the attack. To verify
this, we implemented multiple variants of this attack (4 and 8 keys in parallel)
using AES-NI.

However, since Intel AES-NI is optimized for computing full AES rounds,
it is not possible to efficiently recompute only the required bytes and S-boxes.
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Hence, we often compute the full state although we only need some parts of it.
This is for instance the case for round 2 (see Fig. 2). The additional instructions
required to perform only a partial encryption in this round take longer than just
using aesenc to compute the full encryption round.

Table 1 lists the full measurements for this attack. We also included a com-
parison between computing the full round 1 and computing only the reduced
round as it is the idea for this attack. The results clearly show that it is also
faster (in most cases) to just compute the full round instead of a reduced round.

Nevertheless, the last 2 rounds can be computed as reduced rounds since one
round does not contain MixColumns which makes the rearrangement of states
less complex. For these last 2 reduced rounds we collect the required bytes of four
states into one 128-bit register and use one aesenc (or aesenclast) instruction
to compute the remaining bytes. In the matching phase, we save computations in
the last two rounds. For testing 4 keys, we need to compute only 2 AES rounds
and some recombinations instead of 4 · 2 AES rounds.

5.3 Biclique Attack Implementation

The modified biclique attack by Bogdanov et al. as covered in Section 4 has
several advantages when implemented in software. Most notable are the low
data complexity of only 16 plaintext-ciphertext pairs and the simple matching
phase at the end of the cipher on four ciphertext bytes. These modifications
allow us to implement the attack with almost no memory operations.

To better exploit the full-round aesenc instruction, we compute the biclique
only until state S3 and not S3,MC. Since the biclique attack considers groups of
16 keys, our main loop consists of three steps:

1. Precompute values for S0
3 , rk2 and active bytes of Si

3, S
j
3 .

2. Combine the precomputed bytes to 16 values for the full state S3.
3. Encrypt the remaining rounds and match with the ciphertexts from the

encryption oracle.

For the biclique computation we basically follow the steps given in Section 4.1.
However, to compute the differential trails, we directly compute the combined
trail for i = j ∈ {1, 2, 3}. Afterwards, we extract the values for Si

3 and Sj
3 to

construct 16 values for S3 using the base computation. Consequently, we perform
4 full computations of the first 2 rounds per key group. This phase is equal for
the 4x and 8x variants.

The 5 full-round computations of the third step are exactly the same as in
the black-box brute-force attack. The 3 round computations at the end and the
matching are the same as in the optimized brute-force attack. Similar to these
attacks, we have implemented two variants, which compute and match either 4
or 8 keys in parallel. Again, we compute the key schedule on-the-fly since this
results in faster code.

In general, our implementations of the biclique attack are quite similar to the
brute-force attacks. Similar to the optimized brute-force attack, we also compute



372 D. Gstir and M. Schläffer

full round more often than necessary. For example, in round 3 and round 8 we
compute full rounds although we would not need to. Especially computing only
SubBytes by aesenclast followed by pshufb is more expensive than computing
a whole round.

Overall, for the full matching phase (4x and 8x variants) we compute six full
rounds with aesenc and then compute the remaining two rounds as reduced
rounds. As can be seen in Fig. 2 and Fig. 3 the reduced rounds of the biclique
attack and the optimized brute-force attack are in fact equal. Consequently,
the implementation of the matching phase is equal to the last 8 rounds of the
optimized brute-force attack.

5.4 Performance Results

We have tested our implementations of all three attacks on Intel Westmere (Mac-
Book Pro with Intel Core i7 620M, running Ubuntu 11.10 and gcc 4.6.1) and Intel
Sandy Bridge (Google Chromebox with Intel Core i5 2450M, running Ubuntu
12.04 and gcc 4.6.3). For the C implementations we used the following com-
piler flags: -march=native -O3 -finline-functions -fomit-frame-pointer

-funroll-loops. All results are shown in Table 1.
Overall, the biclique attack is 13% faster on Westmere and 17% faster on

Sandy Bridge, compared to the best black-box brute force on the same architec-
ture. This clearly verifies that the biclique attack is faster than both brute-force
attacks in all scenarios, although the advantage is smaller than in theory. Note
that the Sandy Bridge implementations are slower in general but provide a larger
advantage over the black-box brute-force attack.

The performance of the optimized brute-force attack varies depending on the
CPU architecture and is actually slower than the black-box brute-force attack
on Westmere CPUs. On Sandy Bridge, the optimized brute-force attack is 3%
faster than the black-box brute-force attack. However, assembly implementations
of the optimized brute-force attack may slightly improve the results.

If we compare Sandy Bridge implementations, the biclique attack results in a
time complexity of about 2127.77 full AES-128 computations. For the optimized
brute-force attack we get a complexity of 2127.95 in the best case. In the theo-
retical evaluation of the modified biclique attack, we have estimated an average
complexity of 9.9 AES-128 encryptions to test 16 keys. However, using AES-NI
we are able to get a complexity of only 14 AES-128 encryptions to test 16 keys.

6 Conclusions

In this work, we have analyzed three different types of single-key attacks on AES-
128 in software using Intel AES-NI. The first attack is the black-box brute-force
attack with a generic exhaustive key search complexity of 2128 AES computa-
tions. We have used this implementation as the base line for a comparisons of
other attacks faster than brute-force. We get the best advantage of the faster
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than brute-force attacks on Sandy Bridge CPUs. In this case, the simplified bi-
clique attack by Bogdanov et al. is 17% faster than the black-box brute-force
attack, while our simple optimized brute-force attack is only 3% faster.

Note that we did not put much effort in the optimized brute-force attack.
More clever tricks, better implementations or using a different platform may
still improve the result. Nevertheless, neither the optimized brute-force attack
nor the biclique attack threaten the security of AES in any way, since still all 2n

keys have to be tested. In this sense, both attacks just perform an exhaustive
key search in a more or less optimized and clever way.

With this paper, we hope to provide a basis for a better comparison of close
to brute force attacks. The open problem is to distinguish between clever brute-
force attacks and worrisome structural attacks which may extend to attacks with
less than a marginal improvement over the generic complexity. Based on our
implementation and analysis, the biclique attack in its current form is probably
not such an attack. Therefore, we believe that trying to improve the biclique
attack itself is more important than merely applying it to every published cipher.
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Abstract. Lattice based cryptography is gaining more and more impor-
tance in the cryptographic community. It is a common approach to use
a special class of lattices, so-called ideal lattices, as the basis of lattice
based crypto systems. This speeds up computations and saves storage
space for cryptographic keys. The most important underlying hard prob-
lem is the shortest vector problem. So far there is no algorithm known
that solves the shortest vector problem in ideal lattices faster than in reg-
ular lattices. Therefore, crypto systems using ideal lattices are considered
to be as secure as their regular counterparts.

In this paper we present IdealListSieve, a variant of the ListSieve algo-
rithm, that is a randomized, exponential time sieving algorithm solving
the shortest vector problem in lattices. Our variant makes use of the spe-
cial structure of ideal lattices. We show that it is indeed possible to find
a shortest vector in ideal lattices faster than in regular lattices without
special structure. The practical speedup of our algorithm is linear in the
degree of the field polynomial. We also propose an ideal lattice variant
of the heuristic GaussSieve algorithm that allows for the same speedup.

Keywords: Ideal Lattices, Shortest Vector Problem, Sieving Algorithms.

1 Introduction

Lattices are discrete additive subgroups of Rm. Their elements can be considered
to be vectors in the Euclidean vector space. One of the most important com-
putational problems in lattices is the shortest vector problem (SVP). Roughly
speaking, given a representation of a lattice, it asks to output a shortest non-zero
element of the lattice.

In 2001, Ajtai, Kumar, and Sivakumar presented a randomized algorithm to
solve the shortest vector problem in lattices. Unfortunately, the space require-
ment of the AKS sieving algorithm is exponential in the lattice dimension, and
therefore the algorithm was not practical. In 2010, Micciancio and Voulgaris
presented two variants of this sieving algorithm that still require exponential
storage, but with much smaller constants. Their algorithm is the first sieving
approach considered to be competitive to enumeration algorithms that solve
SVP and only require polynomial space.

Lattices are widely used in cryptography. There, in order to save storage for
cryptographic keys, it is common to use structured lattices. The NTRU crypto
system [HPS98] for example uses so-called cyclic lattices, where for each lattice

A. Youssef, A. Nitaj, A.E. Hassanien (Eds.): AFRICACRYPT 2013, LNCS 7918, pp. 375–391, 2013.
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vector v, its rotations rot(v) consisting of the rotated lattice vectors are also
elements of the lattice. The work of [Mic07] initiated the usage of more general,
structured lattices. These are used in the signature schemes [LM08, Lyu09], for
the encryption systems [SSTX09, LPR10], the SWIFFTX hash function family
[LMPR08, ADL+08], or the fully homomorphic encryption scheme of [Gen09],
for example. They were called ideal lattices in [LM06]. The theory of ideal lattices
is based on the work of [PR06, LM06]. Cyclic lattices are a special case of ideal
lattices.

Micciancio proved a worst-case to average-case reduction for ideal lattices in
[Mic07], where he showed that inverting his one-way function is as hard as solving
ideal lattice problems in the worst case. Lattice problems are even considered
unbroken in the presence of quantum computers, and so far they withstand
sub-exponential attacks. Thus cryptographic schemes based on hard problems
in ideal lattices are good candidates for security requirements in the near and
far future.

So far there is no SVP algorithm making use of the special structure of ideal
lattices. It is widely believed that solving SVP (and all other lattice problems) in
ideal lattices is as hard as in regular lattices. Our intention is to show how sieving
algorithms can be strengthened in ideal lattices using their circular structure.
The idea was already presented in [MV10b]. There, the authors assume that the
amount of storage required by their algorithm decreases with a factor of n, where
n is the degree of the field polynomial. We show that even more not only the
storage but as well the running time of sieving algorithms decreases by a factor
of n. This is an important starting point for assessing the hardness of problems
in ideal lattices.

1.1 Related Work

There are basically three approaches to solve the SVP in lattices: Voronoi-cell
based algorithms, enumeration algorithms, and probabilistic sieving algorithms.
The Voronoi cell based algorithms were presented in [MV10a]. It is the first
deterministic single exponential algorithm for the shortest vector problem. So far,
this type of algorithms is more of theoretical interest. Enumeration algorithms
solve the SVP deterministically in asymptotic time 2O(m log(m)), where m is the
lattice dimension [HS07, PS08]. They perform exhaustive search by exploring
all lattice vectors of a bounded search region. Enumeration algorithms can be
rendered probabilistic using an extreme pruning strategy [GNR10], which allows
for an exponential speedup and makes enumeration the fastest algorithm for
solving SVP in practice. Enumeration algorithms only require polynomial space.

Sieving algorithms were first presented by Ajtai, Kumar, and Sivakumar
[AKS01] in 2001. The runtime and space requirements were proven to be in
2O(m). Nguyen and Vidick [NV08] carefully analyzed this algorithm and pre-
sented the first competitive timings and results. They show that the runtime
of AKS sieve is 25.90m+o(m) and the space required is 22.95m+o(m). The authors
also presented a heuristic variant of AKS sieve without perturbations. Their run-
time is 20.41m+o(m) and they require space 20.21m+o(m). In 2010, Micciancio and
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Voulgaris [MV10b] presented a provable sieving variant called ListSieve and
a more practical, heuristic variant called GaussSieve. ListSieve runs in time
23.199m+o(m) and requires space 21.325m+o(m). For GaussSieve, the maximum list
size can be bounded by the kissing number τm, whereas, due to collisions, a
runtime bound can not be proven. The practical runtime is 20.48m seconds, the
space requirements is expected to be less than 20.18m and turns out to be even
smaller in practice.

Pujol and Stehlé [PS09] improve the theoretical bounds of ListSieve [MV10b]
using the birthday paradox to runtime 22.465m+o(m) and space 21.233m+o(m).
Wang et at. [WLTB10] present a heuristic variant of the Nguyen-Vidick sieve
running in 20.3836m+o(m) with space complexity of 20.2557m. The work of [BN09]
deals with all �p norms, generalizing the AKS sieve. There is only one public im-
plementation of a sieving algorithm, namely gsieve [Vou10], which implements
the GaussSieve algorithm of [MV10b].

Using heuristics like extreme pruning [GNR10], enumeration algorithms out-
perform sieving algorithms, as the SVP challenge [GS10] shows. We hope that it
is possible to integrate heuristics such as extreme pruning to sieving algorithms,
which would make them competitive to enumeration techniques again.

1.2 Our Contribution

Micciancio and Voulgaris already mention the possibility to speed up the sieving
for ideal lattices [MV10b]. They propose to use the cyclic rotations of each
sampled vector to reduce the size of the vectors. For ideal lattices, the “rotation”
of each lattice vector is still an element of the lattice. Therefore, it can be used
in the sieving process. The authors of [MV10b] expect a reduction of the list
size linear in the degree of the field polynomial for ListSieve, and a substantial
impact on the practical behaviour of the GaussSieve algorithm. In this paper,
we present experimental results using this approach. We implement ListSieve
and IdealListSieve without perturbations. Our experiments show that indeed
the storage requirements decrease as expected. But even more, sieving in ideal
lattices can find a shortest lattice vector much faster, with a speedup factor
linear in the degree of the field polynomial in practice. To explain the results,
we use the assumption that the number of reductions used in the sieving process
stays the same in both the original and the ideal cases. We will show that this
assumption conforms with our experiments.

To give an example from our experiments, the measured and fitted runtime of
IdealListSieve in cyclic lattices is 20.52m−21.9 seconds, compared to 20.67m−26.3

seconds for ListSieve, wherem is the lattice dimension. In dimensionm = 60, the
runtime difference is about 4 hours, which corresponds to a time advantage of
95%. The worst-case runtime of IdealListSieve remains the same as for ListSieve,
since considering all rotations cancels out the linear factor in theory.

To our knowledge, this is the first exact SVP algorithm that can use the
special structure of ideal lattices. (For cyclic NTRU lattices, there is a LLL-
variant using the cyclic rotations [MS01], but this algorithm only finds vectors
of size exponential in m, not shortest vectors.) It is often stated that solving
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problems in ideal lattices is as hard as in the general case, among others in
[MR08, ADL+08, Lyu09]. Since the runtime of sieving algorithms is exponential,
this linear speedup does not effect the asymptotic runtime of sieving algorithms.
It only helps to speed up sieving in ideal lattices in practice noticeably. For the
fully homomorphic encryption challenges for example, n is bigger than 210, which
would result in a speedup of more than 1000 for sieving. [Lyu09] uses n ≥ 512.
These numbers show that, if one could run sieving in such high dimensions
m > 1000, even linear speedup might lead to huge improvements in practice.

1.3 Organization of This Paper

In Section 2 we present some basic notation and facts on (ideal) lattices. In Sec-
tion 3 we show the IdealListSieve algorithm. In Section 4 we give some theoretical
analysis, and Section 5 shows experimental results of our implementation. Finally
we give a conclusion, including some ideas for enumeration in ideal lattices.

2 Preliminaries

Define the index set [n] = {0, 1, . . . , n − 1}. Im is the identity matrix in di-
mension m, 0m and 1m are m-dimensional column vectors consisting of 0 and
1 entries only. The scalar product of two vector elements x and y is written
〈x | y〉. Throughout this paper, n denotes the degree of polynomials and m is
the dimension of lattices.

Let m, d ∈ N, m ≤ d, and let b1, . . . ,bm ∈ Rd be linearly independent. Then
the set L(B) = {

∑m
i=1 xibi : xi ∈ Z} is the lattice spanned by the basis column

matrix B = [b1, . . . ,bm] ∈ Zd×m. L(B) is called m-dimensional. The basis B
is not unique, unimodular transformations lead to a different basis of the same
lattice. The first successive minimum λ1(L(B)) is the length of a shortest vector
of L(B). The (search) shortest vector problem (SVP) is formulated as follows.
Given a basis B, compute a vector v ∈ L(B)\{0} subject to ‖v‖ = λ1(L). It can
be formulated in every norm, we will consider the Euclidean norm (‖·‖ = ‖·‖2)
in the remainder of this paper.

The lattice determinant det(L(B)) is defined as
√
det(BtB). It is invari-

ant under basis changes. For full-dimensional lattices, where m = d, there is
det(L(B)) = |det(B)| for every basis B. In the remainder of this paper we will
only be concerned with full-dimensional lattices (m = d).

2.1 Ideal Lattices

Ideal lattices are lattices with special structure. Let f = xn+ fnx
n−1+ . . .+ f1 ∈

Z[x] be a monic polynomial of degree n, and consider the ring R = Z[x]/〈f(x)〉.
Elements in R are polynomials of maximum degree n − 1. If I ⊆ R is an ideal
in R, each element v =

∑n
i=1 vix

i−1 ∈ I naturally corresponds to its coeffi-
cient vector (v1, . . . ,vn) ∈ Zn. Since ideals are additive subgroups, the set of all
coefficient vectors corresponding to the ideal I forms a so-called ideal lattice.
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For the sake of simplicity we can switch between the vector and the ideal
notations and use the one that is more suitable in each case.

For each v ∈ R, the elements xi · v for i ∈ [n] form a basis of an ideal
lattice. We call this multiplication with x a rotation, since for special polynomials
the vector x · v consists of the rotated coefficients of v. In vector notation, the
multiplication of an element with x can be performed by multiplication with the
matrix

rot =

(
0t
n−1 −f̄

In−1

)
, (1)

where f̄ consists of the coefficients of the polynomial f . If f ∈ R is a monic,
irreducible polynomial of degree n, then for any element v ∈ R, the elements
v,vx, . . . ,vxn−1 are linearly independent (see for example the proof of Lemma
2.12 in [Lyu08]). For f(x) = xn − 1, which is not irreducible over Z, it is easy
to see that the vectors vxi are also linearly independent, unless the vector has
very special form.

The row matrices of the bases used in practice are of the form(
qIn 0

(roti(v))i∈[n] In

)
. (2)

Here the lower part consists of the n rotations of v, which correspond to the
multiplications of the ring element v with xi for i ∈ [n]. The upper part is
necessary to make sure that every element in the lattice can be reduced modulo
q. Bases for higher dimensional lattices can be generated using multiple points
vi and their rotations. The dimension m of the lattice is then a multiple of the
field polynomial degree n.

The usage of ideal lattices reduces the storage amount for a basis matrix
from nm elements to m elements, because every block of the basis matrix is
determined by its first row. In addition, for an ideal basis B, the computation
B · y can be sped up using Fast Fourier transformation from O(mn) to Õ(m).

In this paper we are concerned with three types of ideal lattices, defined by
the choice of f :

– Cyclic lattices : Let f1(x) = xn − 1, i.e., f̄ = (−1, 0, . . . , 0). We call the
ideal lattices of the ring R1 = Z[x]/〈f1(x)〉 cyclic lattices. f1(x) is never
irreducible over Z (x − 1 is always a divisor), therefore cyclic lattices do
not guarantee worst-case collision resistance. The rotation of v is rot(v) =
(vn−1,v0, . . . ,vn−2).

– Anti-cyclic lattices : Let f2(x) = xn + 1, i.e., f̄ = (1, 0, . . . , 0). We call
the ideal lattices of the ring R2 = Z[x]/〈f2(x)〉 anti-cyclic lattices. f2(x)
is irreducible over Z if n is a power of 2. The rotation of v is rot(v) =
(−vn−1,v0, . . . ,vn−2). Anti-cyclic lattices are the ones used most in cryp-
tography.

– Prime cyclotomic lattices : Let f3(x) = xn+xn−1+ . . .+1, i.e., f̄ = (1, . . . , 1).
We call the ideal lattices of the ring R3 = Z[x]/〈f3(x)〉 prime cyclotomic
lattices. f3(x) is irreducible over Z if n + 1 is prime. The rotation of v is
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rot(v) = (−vn−1,v0 −vn−1, . . . ,vn−2−vn−1). We only consider cyclotomic
polynomials of degree n where n+ 1 is prime.1

A nice and more detailed overview about ideal lattices is shown in [Lyu08].

3 IdealListSieve Algorithm

In this section we will present the ListSieve algorithm of [MV10b] and introduce
the ideal lattice variant IdealListSieve. More details about the implementation
will follow in Section 5.

3.1 ListSieve

Recall that the goal is to solve the shortest vector problem, i.e., given a basis
B of a lattice find a non-zero vector v ∈ L(B) with norm equal to λ1(L(B)).
The idea of ListSieve is the following. A list L of lattice vectors is stored. In
each iteration of the algorithm, a new random vector p is sampled uniformly at
random from a set of bounded vectors. This vector p is then reduced using the
list L in the following manner. If a list vector l ∈ L can be subtracted from p
lowering its norm more than a factor δ < 1, p is replaced by p− l. With this, p
gets smaller every time. When the vector has passed the list it is appended to L.
It can be shown that in the end, L will contain a vector of minimal length with
high probability. When the sampled vector p is a linear combination of smaller
list vectors it will be reduced to 0 and not be appended. This rare case is called
a collision. Collisions are important for runtime proofs (they avert a runtime
proof for GaussSieve, for example). For practical issues, they are negligible, since
they occur very seldom. Algorithm 1 shows a pseudo-code of ListSieve without
perturbations.

Algorithm 1. ListSieve(B, targetNorm)

1 List L ← LLL(B) 
 Pre-reduction with the LLL algorithm
2 while currentBestNorm > targetNorm do
3 p ← sampleRandomLatticeVector(B) 
 Sampling step
4 ListReduce(p, L, δ = 1− 1/m) 
 Reduction step
5 if p = 0 then
6 L.append(p) 
 Append step
7 end

8 end
9 return lbest

Originally, ListSieve does not work with lattice points p, but with a perturbed
point p+e with a small error e. The use of perturbations is necessary in order to

1 Other cyclotomic polynomials, where n + 1 is not prime, have different structure,
the rotations are hard to implement, and they are seldom used in practice.
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upper bound the probability of collisions, which is essential for proving runtime
bounds for the algorithm. Since in practice collisions play a minor role we will
skip perturbations in our implementation. For the sampling of random vectors
in Line 3, [MV10b] use Kleins randomized rounding algorithm [Kle00], which we
will also apply for all our implementations.

3.2 IdealListSieve

One of the properties of ideal lattices is that for each lattice vector v, rotations
of this vector are also contained in the lattice. This is due to the property
of the ideal I corresponding to the ideal lattice. Ideals in R are closed under
multiplication with elements from R, and since vectors in ideal lattices are the
same as elements of the ideal, multiplications of these vectors are also elements
of the lattice.

To compute the rotation of a vector v one has to rotate each block of length n
of v. If m = 2n, the first half of v (which belongs to the qIn part in the first rows
of the basis matrix (2)) is rotated and so is the second half. So when ListSieve
tries to reduce the sample p with a vector l = (l1, . . . , ln, ln+1, . . . , lm), we can
also use the vectors

l(j) =
(
rotj((l1, . . . , ln)), rot

j((ln+1, . . . , lm))
)
, for j = 1 . . . n− 1 ,

where the first and the second half of the vector is rotated. Therefore, the sample
p can be more reduced in each iteration. Instead of reducing with one single
vector l per entry in the list L, n vectors can be used.

Function IdealListReduce shows a pseudo-code of the function that is re-
sponsible for the reduction part. Compared to the ListSieve algorithm of [MV10b],
this function replaces the ListReduce function. Unfortunately, only the case
where m is a multiple of n allows the usage of rotations of lattice vectors. For
the case where n � m, it is not possible to apply the rotation to the last block of
a lattice vector v.

Func. ListReduce(p, L, δ)

1 while
(∃l′ ∈ L : ‖p− l′‖ ≤ δ ‖p‖) do

2 p←p− round(
〈p | l′〉
〈l′ | l′〉 ) · l′

3 end
4 return p

Func. IdealListReduce(p, L, δ)

1 while (∃j ∈ [n] , l ∈ L, l′ = rotj(l) :
‖p− l′‖ ≤ δ ‖p‖) do

2 p←p− round(
〈p | l′〉
〈l′ | l′〉 ) · l′

3 end
4 return p

The while loop condition in Line 1 introduces the rotation step (for all types
of ideal lattices). The reduction step in Line 2 differs from the original ListSieve
description in [MV10b]. It uses the reduction step known from the Gauss (re-
spectively Lagrange) algorithm (an orthogonal projection), that is also used in
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the LLL algorithm [LLL82]. The step is not explained in [MV10b], whereas their
implementation [Vou10] already uses this improvement. The slackness parame-
ter δ = 1 − 1/m is used to ensure that the norm decrease is sufficient for each
reduction in order to guarantee polynomial runtime in the list size.

3.3 IdealGaussSieve

For ListSieve, when a vector joined the list once it remains unchanged forever.
GaussSieve introduces the possibility to remove vectors from the list if they can
be more reduced by a newly sampled vector. The reduction process is twofold
in GaussSieve. First, the new vector p is reduced as in ListSieve. Second, all list
vectors are reduced using p. If a vector from the list is shortened, it will leave
the list and pass it again in one of the next iterations. Therefore the list will
consist of less and shorter vectors than in the ListSieve case.

It is easy to include the rotations into GaussSieve in the same manner as
for ListSieve. We can replace the function GaussReduce of [MV10b] by a new
function IdealGaussReduce, which uses the rotations twice. First it is used for
the reduction of p, second for the reduction of list vectors. The rest of GaussSieve
remains unchanged. IdealGaussSieve is also included in our implementation.

4 Predicted Advantage of IdealListSieve

In this section we theoretically analyze the IdealSieve algorithm and try to pre-
dict the results concerning number of iterations I, the total number of reductions
R, and the maximum size L of the list L. For comparison of an algorithm and
its ideal lattice variant we will always use the quotient of a characteristic of the
non-ideal variant divided by the ideal variant. We will always denote it with
speedup. For example, the speedup in terms of reductions is Rorig/Rideal.

Recall that the only change we made in the algorithm is that in the reduction
step, all rotations rotj(l) (for j ∈ [n]) of a vector l in the list L are considered,
instead of only considering l. The runtime proof for ListSieve in [MV10b] uses the
fact that the number of vectors of bounded norm can be bounded exponentially
in the lattice dimension. Therefore, the list size L cannot grow unregulated.
All list vectors have norm less than or equal m ‖B‖. For cyclic and anti-cyclic
lattices, the norm of a vector remains unchanged when rotated. Therefore each
list vector corresponds to n vectors of the same size, which results in a proven list
size of factor n smaller. For prime cyclotomic lattices, the norm might increase
when rotated (the expansion factor is > 1 in that case), therefore it is a bit
harder to prove bounds on the size of the list.

Iterations. We assume that for finding a shortest vector in the lattice, the total
number of reductions is the same. Our experiments show that this assumption
is reasonable (cf. Section 5). In this case we predict the number of iterations
of IdealListSieve compared to ListSieve. When ListSieve performs t iterations
(sampling - reducing - appending), our assumption predicts that IdealListSieve
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takes t/n iterations, since in t/n steps it can use the same number of list vectors
for reduction, namely n · t/n. Therefore, we expect the number of iterations for
IdealListSieve to be an n-th fraction of ListSieve.

Maximum List Size. Since in every iteration one single vector is sampled and
appended to the list, the maximum list size will be in the order of magnitude as
the number of iterations.

Runtime. The runtime of the whole algorithm grows linearly in the number of
iterations. The runtime of ListReduce is quadratic in the size of the list |L|. As
the list size is smaller by factor n for IdealListReduce, the IdealSieve algorithm
saves a factor n2 in each iteration here. In each call of IdealListReduce, n ro-
tations instead of a single one are used for reduction, therefore the ideal lattice
variant is factor n slower here. In total, each run of IdealListReduce is factor n
faster than ListReduce. Overall we derive a speedup factor of n2 for the ideal
lattice variant concerning the runtime.

Recall that the speedups predicted in this section are asymptotical. They do
not necessarily hold in practice, since we can only run experiments in small
dimensions m ≤ 80. In the next section, we present experimental results com-
paring the ListSieve and IdealListSieve, in order to show if our predictions hold
in practice.

5 Experiments

The public implementation of [Vou10] (called gsieve) allows for running the
GaussSieve algorithm. Based on this, we implemented ListSieve, IdealListSieve,
and IdealGaussSieve. ListSieve is essentially the gsieve implementation without
stack functionality. IdealListSieve uses the subroutine function IdealListReduce

of Section 3 in addition. Both algorithms do not use perturbations. The Ideal-
GaussSieve implements GaussSieve with the additional function. All three im-
plemented algorithms are published online.2

Since we are using the NTL-library [Sho11], it would be possible to im-
plement a generic function IdealReduce for all polynomials f . However, spe-
cializing on a special class of polynomials allows some code improvements and
leads to a huge speed-up in practice. Therefore, we have implemented three dif-
ferent functions for reduction, namely AntiCyclicReduce, CyclicReduce, and
CyclotomicReduce. These functions can be used for sieving in anti-cyclic, cyclic,
or prime cyclotomic lattices, respectively. Here we present experimental results
for cyclic and prime cyclotomic lattices.

All experiments were performed on an AMD Opteron (2.3 GHz) quad core
processor, using one single core, with 64 GB of RAM available. We only apply
LLL as pre-reduction, not BKZ. This is due to the fact that BKZ-reduction is too
strong in small dimensions, and the sieving algorithms are not doing any work

2 https://www.cdc.informatik.tu-darmstadt.de/de/cdc/personen/

michael-schneider

https://www.cdc.informatik.tu-darmstadt.de/de/cdc/personen/michael-schneider
https://www.cdc.informatik.tu-darmstadt.de/de/cdc/personen/michael-schneider
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if BKZ already finds the shortest vector. Interestingly, we encountered in our
experiments that the effect of pre-reduction for sieving is much less noticeable
as in the enumeration case.

The results shown in this section are average values of 10 randomly generated
lattices in each dimension. Since we do not know the length of a shortest vector in
these lattices, we ran an SVP algorithm first to assess the norm. So we can stop
our sieving algorithms as soon as we have found a vector below that bound. For
cyclic and prime cyclotomic lattice we chose n ∈ {10, 12, 16, 18, 20, 22, 28, 30, 32}
and m = 2n. These are the values where n+ 1 is prime, which is important for
prime cyclotomic lattices. We chose these values for cyclic lattices as well in order
to have results for both lattice types in the same dimensions. The generator of
the ideal lattices is included in Sage [S+10] since version 4.5.2. The modulus q
was fixed as 257. Naturally, the determinant of the lattices is qn, i.e., 257n. For
a second series of experiments, we generate cyclic and prime cyclotomic lattices
with m = 4n. We choose n ∈ {6 . . .15} (cyclic) and n ∈ {6, 10, 12, 16} (prime
cyclotomic), q is again 257.
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Fig. 1. Results for cyclic lattices. Left: The number of reductions is comparable for
ListSieve and IdealListSieve, whereas the number of iterations differs. Right: The max-
imum list size as well as the runtime decrease for IdealListSieve.

Figure 1 shows the results concerning R, I, L, and the runtime for cyclic
lattices. The speedups for cyclic lattices are shown in Figure 2 and for prime
cyclotomic lattices in Figure 3. Figure 2(a) shows the speedups of IdealListSieve
compared to ListSieve. More exactly it shows the values for the number of itera-
tions I, the maximum list size L, the runtime, and the total number of reductions
R of ListSieve divided by the same values for IdealListSieve in the same lattices.
Figure 2(b) shows the same data for m = 4n. Figures 3(a) and (b) show the
same data using cyclotomic lattices. All graphs contain a line for the identity
function f(m) = m, and a line for f(m) = m/2 or f(m) = m/4, in order to ease
comparison with the prediction of Section 4.
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Fig. 2. Speedup of IdealListSieve compared to ListSieve, for cyclic lattices
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Fig. 3. Speedup of IdealListSieve compared to ListSieve, for cyclotomic lattices

5.1 Interpretation

In small dimensions, the results are kind of abnormal. Sometimes one of the ideal
lattice variants finds shortest vectors very fast, which results in speedups of more
than 100, e.g. in dimension m = 36 in Figure 2(b). Therefore, small dimensions
of (say) less than 40 should be taken into account only carefully. Testing higher
dimensions failed due to time reasons. Neither better pre-reduction nor searching
for longer vectors helped decreasing the runtime noticeably.

A first thing that is apparent is that the number of reductions R stays nearly
the same in all cases. With increasing dimension the speedup tends to 1 in all
cases. Therefore our assumption was reasonable, namely that the number of
reductions required to find a shortest vector is the same for the ideal and the
non-ideal variant of ListSieve.

The higher the dimension gets, the closer the list size L and the iteration
counter I get. Again this is how we expected the algorithms to behave. The
runtime grows slower than the number of iterations. In dimension m = 64 for
example, IdealListSieve finds a shortest vector 53 times faster than ListSieve.
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Considering the number of iterations I, we see that our prediction was not
perfect. For cyclic lattices, the speedups of IdealListSieve are higher than the
predicted factor n; the factor is between n and m (for both m = 2n and m =
4n). This implies that compared to the non-ideal variant, the same number of
reductions is reached in less iterations. In other words, rotating a list vector
l is better than sampling new vectors, for cyclic lattices. Unfortunately, it is
not possible from our experiments to predict the asymptotic behaviour. Testing
higher dimension is not possible due to time restrictions.

In case of prime cyclotomic lattices, the situation is different. The speedup of
iterations is much smaller than for cyclic lattices (≤ 10 in all dimensions). The
only difference between both experiments is the type of lattices. The rotations of
prime cyclotomic lattices are less useful than those of cyclic lattices. A possible
explanation for this is that rotating a vector of a cyclic lattice does not change
the norm of the vector, whereas the rotations of prime cyclotomic lattice vectors
have increased norms. The expansion factor of a ring R denotes the maximum
“blow up” factor of a ring element when multiplied with a second one. More
exactly, the expansion factor θ2(f) of a polynomial f ∈ R in the Euclidean norm
is defined as

θ2(f) = min
{
c :

∥∥axi
∥∥
2
≤ c ‖a‖2 ∀a ∈ Z[x]/〈f〉 for 0 ≤ i ≤ n− 1

}
.

The expansion factor in the Euclidean norm is considered in [SSTX09]. For cyclic
(and anti-cyclic) lattices it is easy to see that this factor is 1. For prime cyclotomic

lattices, it is

√
n+1
2 +

√(
n+1
2

)2 − 1 ≈
√
n (for a proof see Appendix A). So when

the norm of the rotated list vectors l increases, this lowers the probability of a
vector to be useful for reduction of the new sample. Therefore, compared to
cyclic lattices, the speedup for iterations decreases. But still, sieving in prime
cyclotomic lattices using the IdealListSieve is up to 10 times faster than in the
original case. In order to check if the expansion factor really is that crucial, it is
necessary to start experiments with different ideal lattices equipped with higher
expansion factor.

5.2 IdealGaussSieve

We also performed experiments using the GaussSieve implementation of
Voulgaris and our IdealGaussSieve version. The results are shown in Figure 4.
The speedup factors are comparable to those of IdealListSieve.

5.3 Anti-cyclic Lattices

Lattices corresponding to ideals in the ring factored with f(x) = xn + 1 behave
exactly as cyclic lattices. The algebra of both rings differs, but the algorithmic
behaviour is exactly the same. In order to have the polynomial f irreducible, we
choose n ∈ {2, 4, 8, 16, 32} and m = 2n.
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Fig. 4. Speedup of IdealGaussSieve compared to GaussSieve, for cyclic lattices

6 Conclusion and Further Work

We have shown that it is indeed possible to make use of the special structure
of ideal lattices when searching for shortest vectors. The gained speedup does
not affect the asymptotic runtime of the SVP algorithms, but it allows for some
improvements in practice. Our experiments show that runtime speedups of up
to 60 are possible in suitable lattice dimensions. With this we also propose the
fastest sieving implementation for ideal lattices.

The projection of an ideal lattice is not an ideal lattice any more. This pre-
vents the usage of IdealSieve in block-wise reduction algorithms like the BKZ
algorithm.

6.1 Ideal Enumeration

The enumeration algorithm for exhaustive search for shortest lattice vectors
can also exploit the special structure of cyclic lattices. In the enumeration tree,
linear combinations

∑n
i=1 xibi in a specified search region are considered. For

cyclic (and also anti-cyclic) lattices, a coefficient vector x = (x1, . . . ,xn) and
its rotations roti · x for i ∈ [n] specify the same vector. Therefore it is sufficient
to enumerate the subtree predefined by one of the rotations. It is for example
possible to choose only the coefficient vectors where the top coordinate xn is the
biggest entry, i.e., xn = maxi(xi). This would decrease the number of subtrees
in the enumeration tree with a factor of up to n.

Unfortunately, this approach is only applicable if the input matrix has circular
structure. When LLL-reducing the basis, usually the special structure of the
matrix is destroyed. Therefore, when applying enumeration for ideal lattices one
would lose the possibility of pre-reducing the lattice. Even the symplectic LLL
[GHGN06] does not maintain the circulant structure of the basis.

A second flaw of the ideal enumeration is that it is not applicable to ideal, non-
cyclic lattices. For cyclic lattices it is easy to specify which rotations predefine
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the same vector, which does not work in the non-cyclic case. We conclude that
ideal sieving is much more practical than ideal enumeration would be.
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θ2(f) = min
{
c :

∥∥axi
∥∥
2
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}
.

It is easy to see that θ2(x
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present the expansion factor of f = xn−1 + xn−2 + . . .+ x + 1 in the Euclidean
norm.

Let λi be the eigenvalues of the matrix M ∈ Rn×n, for i ∈ [n]. The spectral
radius of M is the maximum of the absolute values of the eigenvalues of the
matrix M, i.e. ρ(M) = maxi∈[n]{|λi|}.

The rotation matrix is A =

(
0T
n−1 −1nIn−1

)
. Lemma 1 will help us later in the

proof of the expansion factor of f .

Lemma 1. For every i ∈ [m], the spectral radius of the matrix (Ai)T (Ai) is

ρ = m+1
2 +

√(
m+1
2

)2 − 1.

Proof. We are looking for the eigenvalues of the matrix (Ai)T (Ai), i.e. the values
λ where (Ai)T (Ai) · x = λx for an x ∈ Rn. It is

Ai =

⎛
⎝ 0 Ii−1

In−i
−1n 0

⎞
⎠ ⇒ (Ai)

T · (Ai) =

⎛
⎝ In−i −1n−i 0

−1T
n−i n −1T

i−1
0 −1i−1 Ii−1

⎞
⎠ .

The equation system
(
(Ai)T (Ai)− λIn

)
· x = 0 is equal to⎛

⎝ (1 − λ)In−i −1n−i 0
−1T

n−i n− λ −1T
i−1

0 −1i−1 (1− λ)Ii−1

⎞
⎠ · x = 0 .

We consider two different cases for the value of λ.
Case 1 (λ �= 1): Dividing the first n− 1 and the last i− 1 rows by 1− λ leads to⎛

⎝ In−i −1n−i/(1− λ) 0
−1T

n−i n− λ −1T
i−1

0 −1i−1/(1− λ) Ii−1

⎞
⎠ · x = 0 .

The sum of all rows leads to 0 in the first n− i and in the last i− 1 columns. In
the (n− i+ 1)th column, we compute(

(n− 1) · (−1)

1− λ
+ n− λ

)
· xn−i+1 = 0 ⇔ λ2 − (n+ 1)λ+ 1

1− λ
= 0.

Therefore we derive the first two eigenvalues λ1,2 = n+1
2 ±

√(
n+1
2

)2 − 1 .

Case 2 (λ = 1): The equation system is in this case⎛
⎝ −1n−i

−1T
n−i n− 1 −1T

i−1
−1i−1

⎞
⎠ · x = 0

which is equivalent to xn−i+1 = 0 ∧
∑n

j=1,j �=n−i+1 xj = 0. This defines
an eigenspace of dimension n − 2. Therefore, the eigenvalue 1 has geometric
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multiplicity n − 2. Since the geometric multiplicity is smaller or equal to the
algebraic multiplicity, and we have already found 2 eigenvalues, the algebraic
multiplicity of the eigenvalue 1 is also n− 2. Since we have found all eigenvalues
we can compute the maximum max(1, λ1, λ2), which is always λ1 = n+1

2 +√(
n+1
2

)2 − 1. ��

Now we can proof the expansion factor of prime cyclotomic polynomials in
the Euclidean norm.

Lemma 2. If f = xn−1 + xn−2 + . . .+ x+ 1, then the expansion factor of f is

θ2(f) =

√
n+1
2 +

√(
n+1
2

)2 − 1.

Proof. The operator norm of an operator between normed vector spaces X and
Y over the same base field, A : X → Y , is defined as

‖A‖ = sup

{
‖Ax‖
‖x‖ : x ∈ X, ‖x‖ �= 0

}
= inf {c : ‖Ax‖ ≤ c ‖x‖ ∀x ∈ X} .

This can be defined for every norm of the base field of the vector spaces. The
expansion factor defined for the ring Z/〈f〉 is the maximum of the operator norms
of the operators that perform multiplication with xi, for i ∈ [n]. Using the usual
embedding from the ring to a vector space, the operators can be described by
the matrices Ai.

For the Euclidean norm the operator norm of a matrix M is equal to the
square root of the spectral radius of the matrix MTM. In our case, we have to
compute the spectral radius of the matrix (Ai)T (Ai). Therefore, the expansion
factor equals the square root of the value computed in Lemma 1. ��
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Abstract. A new approach to identity-based encryption (IBE), called
identity-based factors selection (IBFS), allows to build efficient and fully
collusion-resistant IBE schemes without the need for pairings or the use
of lattices. The security of these constructions (in the random oracle
model) rests on the hardness of a new problem which combines the com-
putational Diffie-Hellman problem with the fact that linear equation sys-
tems with more variables than given equations do not have unambiguous
solutions. The computational efficiency of the resulting IBE schemes is
(for values of the security parameter not smaller than 80) better than
in previous IBE schemes. The construction of these schemes may be
seen as an extension of the ElGamal public-key encryption scheme. The
sender of a message computes the ElGamal-like public key of the mes-
sage receiver by first selecting, uniquely determined by the identity of
the receiver, from a set of group elements {ge1 , ..., gez} made available as
public parameters a subset, and then multiplying the selected elements.

Keywords: Identity-based encryption, IBE, Identity-based key-encapsul-
ation mechanism, ID-KEM, Identity-based factors selection, IBFS.

1 Introduction

The identity-based encryption (IBE) schemes [25] [8] [7] [19] [12] and identity-
based key-encapsulation mechanisms (ID-KEM, [5] [13]) usually considered for
practical application today are based on pairings [17]. Their security generally
relies on the bilinear Diffie-Hellman assumption [21] [8] [26].

In order to not put all eggs in one basket concerning the dependence on one
(not yet very long-seasoned) hardness assumption, it seems prudent to have
some alternatives to pairing-based constructions for IBE and ID-KEMs ready.
Such alternatives already exist, but concerning the resources needed they may
not always fit for resource-constrained environments. Cocks’ IBE scheme [14],
based on the quadratic residuosity problem (QR), causes very high message ex-
pansion. Boneh, Gentry, and Hamburg’s space-efficient pairing-free IBE scheme
[9] (also based on QR) requires an extraordinarily high computation effort for
the encryption. Identity-based crypto schemes based on the use of discrete log

A. Youssef, A. Nitaj, A.E. Hassanien (Eds.): AFRICACRYPT 2013, LNCS 7918, pp. 392–405, 2013.
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trapdoors [24] [22] require a very high computation effort for the generation of
a user’s private key. Lattice-based IBE schemes [18] [3] have unusually large pri-
vate keys. This paper introduces a novel pairing-free construction of IBE schemes
that avoids such unfavorable characteristics. The resulting IBE schemes are very
efficient concerning all relevant aspects, except possibly one: the size of the pub-
lic parameters is, like in lattice-based IBE schemes, significantly bigger than in
other schemes.

The construction may be seen as an extension of the ElGamal public-key
encryption scheme [16]. What makes the construction identity-based is that the
sender of a message does not have to retrieve the public key of the message re-
ceiver from somewhere else. The sender himself computes the receiver’s ElGamal-
like public key. The sender first selects, uniquely determined by the identity of
the receiver, from a set of group elements {ge1 , ..., gez} (made available as pub-
lic parameters, whereas the ei’s are part of the master key) a subset, and then
multiplies1 the elements of this subset. The result is the receiver’s ElGamal-like
public key. The computation of the receiver’s ElGamal-like public key by means
of identity-based factors selection is the core idea presented in this paper how to
construct an identity-based key-encapsulation mechanism (ID-KEM). On top of
the ID-KEM, one can build complete and fully collusion-resistant IBE schemes
in well-known ways, for instance, analogously to how the public-key encryption
scheme DHIES [1] builds on the Diffie-Hellman protocol [15]. The computational
efficiency of the resulting IBE schemes is for practical values of the security pa-
rameter (i.e., not smaller than 80) better than in previous IBE schemes (native
or built on top of previous ID-KEMs). The message expansion caused by the use
of our ID-KEM is (in suitable implementation groups) at most double of what
it is in pairing based ID-KEMs and IBE schemes.

The presentation is organized as follows: Section 2 introduces the idea of
identity-based factors selection in more detail. Section 3 introduces and discusses
the foundational problem, called PX. PX combines the computational Diffie-
Hellman problem [15] with the fact that linear equation systems with more
variables than given equations do not have unambiguous solutions. Section 4
presents our ID-KEM in detail. The section shows in the random oracle model
[4] that the scheme is ID-IND-CCA2 secure under the assumption that PX is
hard. The section also discusses the efficiency of the scheme and compares it
with other ID-KEMs and IBE schemes. Finally, Section 5 summarizes the work
presented.

2 Identity-Based Factors Selection – The Idea in Detail

In discrete-logarithm based schemes for public key encryption, such as ElGamal
encryption [16] or DHIES/ECIES [1] [11], the receiver of encrypted messages
makes available for potential senders: (i) the description of a finite cyclic group
G of order q (q typically being a prime number) chosen such that the most
efficient algorithm to solve the discrete-logarithm problem (DL, see, e.g., [23])

1 In this paper, generic groups are generally written multiplicatively.
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in G has an average complexity ≥ 2l (where l is the security parameter), (ii) a
generator g of G, and (iii) another generator y of G such that the receiver (and
only the receiver) knows the a ∈ Z∗q for which ga = y. In most systems used in
practice, G and g are the same for all potential receivers of encrypted messages
in the system, so g and the parameters that define G, including the order q, are
public system parameters. The public key of a receiver is then y (= ga).

In IBE schemes and ID-KEMs, the public key of the receiver must be easily
derivable from the receiver’s identity (most generally, a bit string) and the public
system parameters. The question how a discrete-log based conventional public-
key encryption scheme, as characterized above, can be extended to become an
IBE scheme can be asked as: How can it be arranged that the sender of an
encrypted message can (easily and without any interaction with other parties)
compute the receiver’s public key y = ga from the receiver’s identity and the
public system parameters, while the receiver (and only the receiver) knows the
a (the receiver’s personal, private key) for which ga = y.

The core of our idea is the following: As is typical for identity-based
cryptography (IBC), a Trusted Authority (TA) computes the private keys (and
additional public system parameters) from the already existing public system
parameters and a master key (which only the TA knows). First, the TA defines
G of order q and a generator g of G. Second, as its master key, the TA creates
an indexed array (for short: vector) e of z different random numbers, each one
independently chosen from Z∗q . The number of elements z is at least 2l, which
means z is big enough such that the average complexity to find a collision of
a typical cryptographic hash function of output length z is not smaller than
2l. From the secret vector e, the TA computes a corresponding vector f of z
elements (as for e, the index running from 1 to z). The elements of f are in G.
The TA computes them as follows: ∀i ∈ {1...z} : f [i] ∈ G ← ge[i]. The TA
publishes z, q,G, g, and f as public system parameters. As further public system
information, the TA defines a (collision-resistant) cryptographic hash function
hid which maps an identity to a vector consisting of z bits.

From the public system parameters 〈z, q,G, g, f , hid〉 and a user Alice’s iden-
tity IDA (which, as usual for IBC, must be unique in the system), another user
Bob (who wants to encrypt a message to Alice) can now compute Alice’s pub-
lic key yA by himself. First, Bob computes a cryptographic hash of the identity
IDA: sA ∈ {0, 1}z ← hid(IDA). Using the resulting selection vector sA, Bob then

computes Alice’s public key as yA ∈ G ←
∏z

i=1 (f [i])
sA[i]. Note that the expo-

nentiations with the sA[i]’s (which can only have values 0 or 1) are practically
just a selection of actual factors for the multiplication from the set (precisely,
the vector) of potential factors, namely from f.

Alice’s personal key, i.e., the private key aA corresponding to the identity
IDA, is generated as follows: The TA first computes the selection vector sA ∈
{0, 1}z ← hid(IDA). Then, the TA computes, using its master key e, Alice’s
private key aA ∈ Zq ←

∑z
i=1 (sA[i] · e[i]) mod q. (Note that the multipli-

cations with the sA[i]’s are practically just a selection of summands from the
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vector e). The TA gives aA to Alice as her private key. For other receivers of
encrypted messages, the TA generates their private keys in the same way.

When Bob wants to encrypt a message to Alice, he first computes Alice’s
public key yA from the public system parameters and Alice’s identity IDA, as
described above. Second, Bob randomly picks an r from Z∗q . Third, Bob computes
γ ∈ G ← (yA)

r
and c ∈ G ← gr. γ is the “raw message key”, and c is

the encapsulation of the message key sent to Alice (typically along with the
encapsulated data).

Alice computes the “raw message key” as γ′ ∈ G ← caA . Looking at how aA
and c were computed, we see that γ′ = caA = gr · aA =

(
g
∑z

i=1(sA[i] · e[i])
)r

=(∏z
i=1

(
ge[i]

)sA[i])r

=
(∏z

i=1 (f [i])
sA[i]

)r

= (yA)
r
= γ. Obviously, both sides,

Alice and Bob, have finally obtained the same “raw message key”.
The scheme sketched above should introduce the core idea of building an

ID-KEM around identity-based factors selection. However, this scheme is still
rudimentary and not yet secure against collusion attacks: A group of t ≥ z
colluding users who have received their own private keys aj (1 ≤ j ≤ t) could
compute the private keys of other users, i.e., break the security of the scheme: If
the selection vector sT ∈ {0, 1}z ← hid(IDT) resulting from a target identity IDT

is a linear combination in Zq of the selection vectors resulting from the identities
IDj of the t colluders s1 ∈ {0, 1}z = hid(ID1), ..., st ∈ {0, 1}z = hid(IDt) (as is
likely for t ≥ z), then the colluders could first efficiently compute (for instance,
using Gaussian elimination in Zq), the coefficients cj ∈ Zq that satisfy the vector

equation
∑t

j=1 cjsj mod q = sT, and then compute the target identity’s private

key as aT ∈ Zq ←
∑t

j=1 (cj · aj) mod q. Alternatively, a group of t ≥ z
colluding users (having their t private keys aj) could probably solve the system
of t linear equations (in Zq) with z variables (the elements of e) given by the
private keys for the elements of e as the unknown variables, thus completely
breaking the security of the system.

In order to achieve collusion resistance, we extend the rudimentary scheme
above such that the number of unknowns in the linear equation system in Zq

resulting from the private keys of the colluders is always higher than the number
of equations given: When computing Alice’s private key aA, the TA adds a further
summand. This summand δA is randomly chosen from Z∗q and is specific for this
private key. The TA now computes aA ∈ Zq as δA +

∑z
i=1 (sA[i] · e[i]) mod q.

In order to enable Alice to ”neutralize” the “blinding addend” δ when using aA,
the TA gives Alice a second component of her private key bA, and the TA has
initially set up a second component w of the master key and an additional public
parameter x. The TA has w randomly chosen from Z∗q , has x ∈ G computed as

g(
1
w mod q), and computes bA ∈ Z∗q as −w · δ mod q.
When Bob wants to encrypt a message to Alice, he first computes Alice’s

public key yA, exactly as before. Second, Bob randomly picks an r from Z∗q , as
before. Third, Bob computes the “raw message key” γ ∈ G ← (yA)

r
and

c ∈ G ← gr (both as before), and additionally d ∈ G ← xr. 〈c, d〉 is the
encapsulated message key.
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Alice computes the “raw message key” as γ′ ∈ G ← caA · dbA . Looking at
how aA, bA, c and d were computed, we see that γ′ = caA · dbA = gr · aA · xr · bA

= gr · aA · g
(
r · bA

w mod q
)
=

(
g

(
aA +

bA
w mod q

))r

=
(
g(δA +

∑z
i=1(sA[i] · e[i]) − δA)

)r

=
(
g
∑z

i=1(sA[i] · e[i])
)r

=
(∏z

i=1 (f [i])
sA[i]

)r

= (yA)
r
= γ. Obviously, Alice and

Bob have again finally obtained the same “raw message key”.

3 The Foundational Problem

The security of ID-KEMs and IBE schemes constructed based on the idea
sketched above is determined by the hardness of a new problem, which we call
PX. PX can be seen as two interwoven problems, P0 and the problem of unam-
biguously solving a linear equation system where the number of equations is less
than the number of variables. P0 is related to the computational Diffie-Hellman
problem (CDH). First, we define P0 and show that this problem is as hard as
CDH in the same group, and can thus reasonably be assumed to be as hard as
the discrete logarithm problem (DL, see, e.g., [23]) in this group. Then, we define
problem PX and argue that also PX is as hard as CDH in the same group.

We think that problems like PX may provide the foundation for cryptographic
protocols beyond the identity-based key-encapsulation mechanism presented fur-
ther below. With the stepwise introduction of PX, we would like to encourage
the study of this kind of problems also in its own right. We believe that, just
like the bilinear Diffie-Hellman problem [21] [8] and its relatives (see, e.g., [7])
have, after extensive study, allowed to substantially extend the tool set for the
construction of cryptographic protocols by the use of pairings (although none
of these problems has ever been proved to be as hard as one of the “classical”
problems, such as the actual Diffie-Hellman problem), problems like PX may
after thorough study allow to extend the cryptographic tool set by the method
of identity-based factors selection.

Problem P0

Problem P0 is: Let G be a finite cyclic group of prime order q, and let g be
a generator of G. Given q,G, g, a set F of z different group elements {f1 =
ge1 , ..., fz = gez}, a non-empty subset S = {s1, ..., sx} of {1, ..., z}, and a group

element c = gr, find the group element γ = g(r ·
∑

∀i∈S ei).

P0 is as hard as CDH in the same group G. We recall CDH (in prime-order
groups): Let G be a finite cyclic group of prime order q, and let ϕ be a generator
of G. Given q, G, ϕ, and the two group elements μ = ϕa and ν = ϕb, find the
group element λ = ϕab.

CDH reduces to P0. From an algorithm AP0 that solves P0 in G for some 〈z, S〉
one can, adding only polynomial complexity, construct an algorithm ACDH that
solves CDH in G, as shown below.
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ACDH(q,G, ϕ, μ, ν)

1: Creates an ordered set F = {f1, ..., fz} of z group elements, each element
having an arbitrarily chosen value.

2: Splits μ arbitrarily into x factors in G and assigns for each i in S to the
element fi a new value, namely one of these factors (each time a different
one).

3: Runs AP0 with input 〈q,G, ϕ, F, S, ν〉 and returns with AP0’s result.

Problem PX

Problem PX is: Let G be a finite cyclic group of prime order q, and let g be
a generator of G. Let {e1, ..., ez} be a set of z different elements of Z∗q , and let
w be another element of Z∗q . Given are z, q,G, a set F of group elements {f1 =

ge1 , ..., fz = gez}, another group element x = g(
1
w mod q), a non-empty subset

S of {1, ..., z}, and two further group elements c = gr and d = xr. Given are
further n tuples {K1, ...,Kn} where Kj = 〈Sj , 〈aj , bj〉〉 where Sj is a non-empty
subset of {1, ..., z}, aj ∈ Z∗q = δj +

∑
∀i∈Sj

ei mod q, and bj ∈ Z∗q = −w · δj
mod q where δj ∈ Z∗q is non-repeating. No two sets in {S1, ..., Sn, S} are equal.

Find γ = g(r ·
∑

∀i∈S ei).

We conjecture that PX is not easier than CDH, based on the following ob-
servations: One may look at PX as P0 with the same 〈q,G, g, F, S, r, c〉, with
the difference that the n tuples {K1, ...,Kn} are given as additional information.

Note that γ = g(r ·
∑

∀i∈S ei) is c(
∑

∀i∈S ei mod q). Apparently, the additionally
given pairs {K1, ...,Kn} might help to solve the instance of P0 “embedded” in
PX, but only if one could deduce

∑
∀i∈S ei mod q from them. Indeed, the com-

ponents Sj and aj of the Kj’s give a linear equation system in Zq which might
raise expectations that one could learn the ei’s by solving the linear equation
system and finally compute

∑
∀i∈S ei mod q from them. The n linear equations

given by the Sj ’s and aj ’s are:

δ1 + s1,1e1 + ... + s1,zez mod q = a1
...

δn + sn,1e1 + ... + sn,zez mod q = an

where the sj,i ∈ {0, 1}, j ∈ {1, ..., n}, i ∈ {1, ..., z} and the aj ∈ Zq, j ∈ {1, ..., n}
are known and the ei ∈ Z∗q , i ∈ {1, ..., z} and δ∗j ∈ Zq, j ∈ {1, ..., n} are not.
Obviously, the number of unknowns is for all n ∈ N∗ greater than the number
of equations. Each ei can have any value in Z∗q , making each value in Zq look
equally likely to be

∑
∀i∈S ei mod q. The bj (= −w · δj mod q) given as the

third component of the Kj ’s would only be helpful if they revealed δj . However,
each δj ∈ Z∗q is multiplicatively blinded with w ∈ Z∗q so that if each value in Z∗q
looks equally likely to be w then also each value in Z∗q looks equally likely to be
δj . For w, each value in Z∗q does indeed look equally likely since the only further

information about w available is x (= g(
1
w mod q)) and learning w from x (in

order to learn δj from bj and w) means solving DL in G (which is at least as
hard as CDH in G).
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4 ID-KEM Built on Identity-based Factors Selection

Our identity-based key-encapsulation mechanism presented now completely
builds on identity-based factors selection as introduced in Section 2. Its secu-
rity (in the random oracle model) rests on the hardness of problem PX and the
collision resistance of a cryptographic hash function.

4.1 The Algorithms

According to the common definition of ID-KEM schemes (see, e.g., [5]), the
scheme consists of four algorithms. In order to set the system up, i.e., to gener-
ate the master key and to define the system parameters, the TA first executes
algorithm Setup. When requested by a user for the (long-term) private key cor-
responding to this user’s identity, the TA executes algorithm Extract to generate
this key. The algorithm Encapsulate is executed by a user who wants to generate
a message key and the encapsulation of this message key. The algorithm Decap-
sulate is executed by a user who wants to retrieve from the encapsulation of a
message key the respective message key.

Setup Algorithm. Given the security parameter l ∈ N∗ (e.g., 80, 128, or 256),
the algorithm performs the following steps:

1. Determines the potential-factors number z ∈ N∗ ← 2l.

2. Defines a cryptographic hash function (suitable to be modeled as a random
oracle [4]) hid: {0, 1}∗ −→ {0, 1}z, for instance, SHA-3/Keccak [6] with
output length z.

3. Chooses a a finite cyclic group G of prime order q such that the most efficient
algorithm for solving the discrete logarithm problem in G has an average
computational complexity not smaller than 2l. For instance, G could be
the group of points on an elliptic curve over a finite field E(Fp) (where p is
another large prime number of the same bitlength as q) that are generated by
some point P ∈ E(Fp) which is chosen such that the smallest i ∈ N∗ for which
iP = O is q (see, e.g., [20]). Another instance of G is the (multiplicative)
subgroup of order q of Z∗p where p is a sufficiently large prime number (e.g.,
of bitlength 1024, for l = 80) with p − 1 = cq where c is an even positive
integer.

4. Chooses a generator g of group G.

5. Generates the exponents vector e[1...z] ∈
(
Z∗q

)z
of z different elements ∈ Z∗q ,

each element being an independently chosen random number.

6. Generates the potential-factors vector f [1...z] ∈ Gz, its z elements being
computed:

∀i ∈ {1, ..., z} : f [i] ∈ G ← ge[i]

7. Randomly picks w from Z∗q .
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8. Computes x ∈ G ← g(
1
w

mod q)

9. Defines another cryptographic hash function (suitable to be modeled as a
random oracle) hel: G −→ {0, 1}l. For instance, if G is an elliptic-curve
group as mentioned as the first example in step 3, then hel may return the
output of a standard cryptographic hash function with output length l (such
as SHA-3/Keccak [6] with output length l) executed on a standard binary
representation of the x-coordinate of the input point. If G is, as in the other
example given in step 3, a subgroup of the multiplicative group of a num-
ber field, then hel may return the output of a standard cryptographic hash
function with output length l executed on a standard binary representation
of the input.

The identity space is {0, 1}∗. The private-key space is (Zq)
2
. The message-key

space is {0, 1}l. The encapsulated-key space is G2. The public system parameters
are: params = 〈z, q,G, g, f , x, hid, hel〉. The master key is: masterkey = 〈e, w〉.

Extract Algorithm. Given params,masterkey and an identity ID ∈ {0, 1}∗,
the algorithm performs the following steps:2

1. Randomly picks δ from Z∗q . (δ is kept secret. It can be deleted after step 5).

2. Computes the ID-specific selection vector s, a bit vector of z elements

s[1...z] ∈ {0, 1}z ← hid(ID)

where hid is the cryptographic hash function defined as a public parameter.

3. Computes a ∈ Zq ← δ +
∑z

i=1 (s[i] · e[i]) mod q where
e is from the master key, and z and q are from the public parameters.

4. Verifies that d �= δ. If the test fails, denies the generation of a private key
for identity ID.3

5. Computes b ∈ Z∗q ← −w · δ mod q where w is from the master key.

Returns ID’s private key 〈a, b〉.

2 As usual in identity-based cryptography, it is assumed that the executor of algorithm
Extract has authenticated the identity of the user that requests a private key, and
that the extracted private key is transferred to the user in a way preserving the
confidentiality and the integrity of the key.

3 Note that the probability that
∑z

i=1 (s[i] · e[i]) mod q = 0 is negligibly small.
If s = 0z , then one has accidentally found hid’s preimage for 0z, an accident of
probability 2−z = 2−2l. Otherwise, one has accidentally solved the instance of the
subset sum problem in Zq where the elements of e are the elements of the problem,
an accident also of probability 2−z = 2−2l.
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Encapsulate Algorithm. Given params and an identity ID ∈ {0, 1}∗, the
algorithm performs the following steps:

1. Computes the ID-specific selection vector s, a bit vector of z elements:

s[1...z] ∈ {0, 1}z ← hid(ID)

2. Computes ID’s public key y ∈ G ←
∏z

i=1 (f [i])
s[i]

where f is from
the public parameters.

3. Verifies that y �= 1. If the test fails, denies the key encapsulation for ID.4

4. Randomly picks r from Z∗q . (r is kept secret and shall not be reused, it can
be deleted after step 7).

5. Computes the “raw message key” γ ∈ G ← yr

(γ is kept secret; it can be deleted after step 9).

6. Computes the first part of the encapsulated key c ∈ G ← gr where g
is from the public parameters.

7. Computes the second part of the encapsulated key d ∈ G ← xr where
x is from the public parameters.

8. Verifies that c �= 1 and d �= 1. If any one of the two tests fails, repeats from
step 4.

9. Computes the message key k ∈ {0, 1}l ← hel(γ) where hel is the
cryptographic hash function defined as part of the public parameters.

Returns the message key k and its encapsulation 〈c, d〉.

Decapsulate Algorithm. Given params, a private key 〈a ∈ Zq, b ∈ Zq〉, and
an encapsulation 〈c ∈ G, d ∈ G〉 of a message key, the algorithm performs the
following steps:

1. Computes the “raw message key” γ′ ∈ G ← ca · db

2. Computes the message key k′ ∈ {0, 1}l ← hel(γ′)

Returns k′.

4.2 Consistency

The scheme is consistent if it satisfies the following constraint: ∀ID ∈ {0, 1}∗:
If, first, 〈a, b〉 is the private key generated by algorithm Extract when given
ID and, second, 〈k, c, d〉 is a tuple resulting from Encapsulate(params, ID), then
Decapsulate(params, a, b, c, d) = k. In order to see that this is indeed the case, we
look at algorithm Decapsulate’s result k′ and what it actually is, step by step.

4 Note that a private key for ID would not be issued, see footnote 3.
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As k′ is computed in step 2 of algorithm Decapsulate, as γ′ was computed in step
1, as c was computed in step 6 of algorithm Encapsulate, and as d was computed
in step 7:

k′ = hel (γ′) = hel
(
ca · db

)
= hel

(
gra · xrb

)
= hel

( (
ga · xb

)r )
As a is computed in step 3 of algorithm Extract, and as b is computed in step 5:

= hel
( (

g(δ +
∑z

i=1(s[i] · e[i]) mod q) · x(−w · δ mod q)
)r )

As x is computed in step 8 of algorithm Setup:

= hel

( (
g(δ +

∑z
i=1(s[i] · e[i]) mod q) ·

(
g(

1
w mod q)

)(−w · δ mod q)
)r )

= hel
( (

g(δ +
∑z

i=1(s[i] · e[i]) mod q) · g−δ
)r )

= hel
( (

g(
∑z

i=1(s[i] · e[i]))
)r )

= hel
( (∏z

i=1

(
ge[i]

)s[i])r )
As f is computed in step 6 of algorithm Setup, as y is computed in step 2 of
algorithm Encapsulate, as γ is computed in step 5, and k in step 9:

= hel
( (∏z

i=1 (f [i])
s[i]

)r )
= hel ( yr ) = hel ( γ ) = k

Obviously, k′ = k, which means the algorithms of the scheme are consistent.

4.3 Security

The strictest widely accepted definition of the security of ID-KEMs (ID-IND-
CCA2, see, e.g., [5]) is stated in terms of a game between an adversary A and a
challenger C. At the start, C takes as its input the security parameter l, runs algo-
rithm Setup and gives A the public parameters params = 〈z, q,G, g, f , x, hid, hel〉.
C keeps the master key masterkey = 〈e, w〉 to itself. A then makes queries of the
following three types:

Extract(IDj ∈ {0, 1}∗): C responds by running algorithm Extract with input
(params, masterkey, IDj) to generate the private key 〈aIDj , bIDj 〉. C gives
〈aIDj

, bIDj
〉 to A.

Decapsulate(IDj ∈ {0, 1}∗, 〈cj ∈ Zq, dj ∈ Z∗q〉): C responds by running algo-
rithm Extract(params, masterkey, IDj) to obtain the private key 〈aIDj , bIDj 〉
and then running algorithm Decapsulate(params, 〈aIDj

, bIDj
〉, 〈cj , dj〉) to gen-

erate the message key kj . C gives kj to A.
Test(ID ∈ {0, 1}∗): C responds by first randomly selecting ω from {0, 1}. Then

C computes 〈k, 〈c, d〉〉 ← Encapsulate(ID). If ω = 1, then C gives 〈k, 〈c, d〉〉 to
A, else C randomly picks u from {0, 1}l and gives 〈u, 〈c, d〉〉 to A.

A’s queries may be made adaptively and are arbitrary in number, except that A
is allowed only one Test query. Two further constraints are that (i) Decapsulate
queries with the tuple 〈ID, 〈c, d〉〉 from the Test query as the input tuple are not
allowed, and that (ii) the input argument of the Test query is not identical with
the input argument of any Extract query.

Finally, A outputs a bit ω′, and wins the game if ω′ = ω.
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A’s advantage in winning the game (and thus in attacking the security of the
scheme) is defined as: AdvID−IND−CCA2

ID−KEM (A) = |2·Pr[ω′ = ω]−1|. (The probability
Pr is over the random bits used by C and A). We say that the ID-KEM scheme
is secure if AdvID−IND−CCA2

ID−KEM (A) ≤ 2ε2−l with ε being negligibly small (ε << l),
say 1.

Proof that the scheme is secure as defined above under the assumption that the
hash functions hid and hel are random oracles [4] and the assumption that that
PX is not easier than CDH (see Section 3):

Assume A has, making m queries, including n Extract queries, won the game.
Two cases can be distinguished: (i) The set of selection vectors {s1, ..., st} com-
puted by A or C (using the hash function hid) from the t different identities
{IDt1, ..., IDtt} ⊆ {ID1, ..., IDm, ID} involved in the course of the game contains
at least one pair of identical elements. In this case,A has found a collision of hid.
(ii) All elements in the set {s1, ..., st} are different. In this case, A has solved for
the tuple 〈n, z, q,G, g, e〉 a randomly chosen instance of problem PX, as follows:
If hel is a random oracle, then A’s advantage AdvID−IND−CCA2

ID−KEM (A) in winning
the game above is identical with A’s advantage in finding γ. For finding γ, the
responses of the Decapsulate queries do not help since these responses are the
output of a random oracle (namely hel) and due to its random nature this out-
put cannot provide any helpful information, such as about γ, about the elements
of e, or about relations between these elements. Finding γ by playing the game
above without using the responses of Decapsulate queries (as it effectively would
have to be done then) means solving an instance of PX, namely the instance
where the 〈n, z, q,G, g〉 are the same, the ei’s are the e[i]’s (with i ∈ {1, ..., z}),
PX’s n is the number of Extract queries, PX’s Sj ’s contain exactly the i’s for
which sIDj [i] = 1 (where sIDj = hid(IDj) with IDj being the input argument
of the j-th Extract query), and S contains exactly the i’s for which sID[i] = 1
(where sID = hid(ID). If hid is a random oracle, then the 〈n, z, q,G, g, e〉-instance
of problem PX is in effect randomly chosen, having the average complexity of
〈n, z, q,G, g, e〉-instances of PX.

Obviously, A’s advantage in winning the game AdvID−IND−CCA2
ID−KEM (A) has an

upper bound in the sum of (i) the advantage of the most efficient algorithm
to break the collision-resistance of a random oracle with z bits output and (ii)
the advantage of the most efficient algorithm to solve random 〈n, z, q,G, g, e〉-
instances of problem PX. The first advantage is

√
2−z =

√
2−2l = 2−l. The

second advantage is, following the two assumptions mentioned above (according
to our conjecture about the hardness of PX in Section 3) and following also
the usual assumptions about the relation between CDH and DL (see, e.g., [23]),
≤2−l. Thus, AdvID−IND−CCA2

ID−KEM (A) ≤ 2−l + 2−l = 2 · 2−l, as required (ε << l).

4.4 Efficiency

The computational complexity of a key encapsulation is essentially the com-
plexity of three exponentiations in G (two of them with a fixed base) plus, on
average, l additional group operations (2l in the worst case). The computational
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complexity of a key decapsulation is essentially the complexity of two exponenti-
ations in G. So, when applying the usual methods for performance optimization
of fixed exponentiations, a key encapsulation costs, on average, 6l group oper-
ations (10l in the worst case). A key decapsulation costs, on average, 6l group
operations (8l in the worst case).

Compared to the pairing-based ID-KEMs (and IBE schemes) with the most
efficient key-encapsulation (most notably BB1 [7], for a comparative analysis
of their performances, see, e.g., [10]), a key encapsulation costs, on average, 2k
group operations more. However, since our ID-KEM can be fully implemented
in efficient standard elliptic-curve groups (see, e.g., [11]) so that, in contrast
to the pairing-based schemes, the performance of all exponentiations and all
group operations benefits from the efficiency of these elliptic-curve groups, the
overall computational cost for these group operations (and thus for the whole
key-encapsulation) is somewhat less than in pairing-based schemes. On the key-
decapsulation side, the computational complexity is significantly lower, because
no pairing is necessary. Both differences grow over-polynomially with the security
parameter.

Compared to Cocks’ IBE scheme [14], the complexity of the key-decapsulation
is lower as soon as 6l group operations in our scheme’s group G cost less than l
computations of the Jacobi symbol, l modular inversions, and l modular multi-
plications together (all these operations with a composite modulus that resists
factorization according to l). The complexity of the key-encapsulation is lower
as soon as 6k group operations in G cost less than l computations of the Jacobi
symbol with the same modulus. Compared to Boneh, Gentry and Hamburg’s
space-efficient pairing-free IBE scheme [9], our scheme is computationally much
less costly.

Our scheme requires the transfer of two group elements (as the encapsulated
key), i.e., typically about 4l bits (if G is a suitable elliptic-curve group and
point compression is used). Compared to expansion-efficient pairing-based IBE
schemes (see, e.g., [10]), this is at most double of what it is there. It is much less
than what is required in Cocks’ IBE scheme [14].

The complexity of the generation of a private key is essentially one multiplica-
tion plus, on average, l additions (at most about 2l), all modulo q, which means
it is very low compared to other ID-KEMs and IBE schemes.

The size of the private keys is small, about 4l bits.
The size of the public system parameters is dominated by f. It is about 2l times

q. If G is a suitable elliptic-curve group, this is about 4l2. This is in the same
range as in lattice-based ID-KEMs or IBE schemes, but significantly higher than
in schemes based on pairings (e.g., [7]) or on the quadratic-residuosity problem
[14] [9]. While this size of the system parameters should in most scenarios still
not be a problem, it must be considered in environments with tight memory
constraints.
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5 Summary

Identity-based factors selection (IBFS) enables identity-based key-encapsulation
mechanisms (ID-KEMs) and identity-based encryption schemes (IBE schemes)
where the computational complexities of all three relevant operations, i.e., key-
encapsulation, key-decapsulation, and private-key generation, are lower than in
previous ID-KEMs and IBE schemes. The only possible drawback concerning
efficiency is that the public parameters have typically a size of about 4l2 bits
(where l is the security parameter). IBFS allows the sender of an encrypted
message to compute the same type of public key as used in conventional discrete-
logarithm based public-key encryption schemes, such as ECIES [11]. The security
(ID-IND-CCA2) of these constructions (in the random oracle model) rests on the
hardness of a new problem which combines the computational Diffie-Hellman
problem with the fact that linear equation systems with more variables than
given equations do not have unambiguous solutions.
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Abstract. Introduced by Hellman, Time-Memory Trade-Off (TMTO)
attacks offer a generic technique to reverse one-way functions, where one
can trade off time and memory costs and which are especially effective
against stream ciphers. Hellman’s original idea has seen many different
improvements, notably the Distinguished Points attack and the Rain-
bow Table attack. The trade-off curves of these approaches have been
compared in literature, but never leading to a satisfying conclusion. A
new TMTO attack was devised for the A5/1 cipher used in GSM, which
combines both distinguished points and rainbow tables, which we refer
to as the Kraken attack. This paper compares these four approaches
by looking at concrete costs of these attacks instead of comparing their
trade-off curves. We found that when multiple samples are available the
Distinguished Points attack has the lowest costs. The Kraken attack is
an alternative to save more disk space at the expense of attack time.

1 Introduction

An attacker trying to break a cryptographic function can always try to either
brute force the function, or precompute all possible values beforehand and store
them in a large table, so every subsequent attack is a simple look-up. Most cryp-
tographic functions are protected from these attacks by having a large enough
key size or state size, which makes the time complexity or the storage require-
ments of such attacks too large in practice.

In 1980 Hellman caused a breakthrough by suggesting a Time-Memory Trade-
Off attack which is probabilistic and falls somewhere in between a brute force
attack and a precomputation attack. Hellman showed that using his attack he
could reverse an n-bit key cipher, in 22n/3 time complexity, by precomputing 2n

values and storing these in 22n/3 values [1]. This made ciphers using keys that
until then were thought large enough to prevent a brute-force attack suddenly
susceptible to this new Time-Memory Trade-Off attack.

Later research into TMTO attacks led to many improvements on Hellman’s
attack. First came the Distinguished Points method, which reduced the number
of disk seeks and is referenced to Rivest [2]. Later Oechslin [3] devised a compet-
ing method with a slight speed-up, called Rainbow Table. The Rainbow Table
attack seems to be better known, presumably due to its colorful name. Biryukov
and Shamir [4] found that TMTO attacks were especially useful against stream
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ciphers, since an attacker can then make generic TMTO tables for a cipher which
can be matched against any large enough sample of keystream, increasing the
success chance for every sample. This new understanding directly led to new
proposed attacks against one of the most widely deployed stream ciphers in the
world: GSM’s A5/1 cipher [5,6].

In 2010 researchers demonstrated a TMTO attack to break the A5/1 cipher of
GSM [7]. This attack uses a new, unresearched, TMTO method which combines
two important, but very different TMTO improvements; namely Distinguished
Points and Rainbow Tables [8]. This new attack is called Kraken in this paper,
after the name of the tool used to perform the actual attack.

It seems rather strange for these researchers to have chosen a new approach
for their attack, so the question arises whether this new Kraken attack improves
on the already existing attacks. This paper aims to research how much, if any,
of an improvement this Kraken attack brings to the area of TMTO attacks.

Section 2 introduces the general idea of TMTO attacks. Section 3 introduces
and analyzes the four TMTO attacks: Hellman’s original attack [1] with Biryukov
and Shamir’s improvement for stream ciphers [4], Rivest’s Distinguished Points
approach [2], Oechslin’s Rainbow Tables [3], and the first theoretical analysis of
the Kraken attack (Section 3.4). We compare the TMTO attacks in Section 4,
including an informal analysis on the chances of chain merges. Finally some ideas
for future research are given and conclusions are drawn.

Related Work. Some of the discussed TMTO methods have previously been
compared with each other. Most of these publications compare the trade-off
curves for these attacks [4,9], which give the rate at which extra memory can be
traded in for a reduced attack time. Such as M2T = N2 for both the Hellman
and Distinguished Point attack, with M the memory cost, T the time cost of
the online phase, and N the size of the state space. Our comparisons are not
based on trade-off curves, because we feel that these curves hide too much of
the real costs such attacks have, such as the seek times in the online attack,
or the precomputation effort. Biryukov and Shamir compare Hellman’s attack
with Distinguished Points [4] and Erguler et al. compare Hellman’s attack with
Rainbow Tables in [9]. Barkan et al. [10] make the most complete comparison;
within a new theoretic framework they find the Distinguished Points attack
better than the Rainbow Table attack, mainly based on the possibility to shorten
the stored values of a Distinguished Points attack. However, this comparison is
still very broad and the question on which TMTO attack has the lowest costs,
in terms of time and memory, seems to still be open to debate.

In 2008 Hong et al. [11] already combined Distinguished Points with Rainbow
Tables, but in a different way than in the Kraken approach. Their combination
does not improve on just Distinguished Points or Rainbow Table attacks.

To the best of our knowledge there has been no analysis of the Kraken ap-
proach. The attack is considered in work by Krhovjak et al. [12], where they
use it as a practical example for an attack against A5/1, but they make no
comparison with the earlier attacks.
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2 Typical TMTO

Assume a scenario in which an attacker tries to break a known cryptographic
function f for which he has obtained at least one sample of ciphertext y. His
goal is to reverse the function f , i.e. to find an input x for which y = f(x). This
model covers different scenarios:

– Finding the preimage x of a hash function f for the hash value y.
– Finding the key x used to encrypt a known plaintext p to produce y, i.e. a key

x such that y = f(x) = encryptx(p), with encrypt e.g. a DES encryption.
– Finding the internal state used to encrypt a known plaintext p with a stream

cipher. Here x is the internal state of cipher f and y is the corresponding
keystream. So f(x) = y and y is obtained by XORing cipherstream and
known plaintext.

This paper is concerned with the third scenario, finding the “internal state” x of a
stream cipher and not the key. Note that in many stream ciphers it is possible to
retrieve the key that was used from a given internal state. The essential difference
is that when reversing a stream cipher an attacker can construct tables which
are more generic, so they can accept multiple samples from different plaintexts
as explained in Section 3.1.

A typical TMTO attack consists of two phases: the first is the precomputation
phase, often called the offline phase, while the second is referred to as the real-
time, or online phase. In the offline phase, the attacker precomputes a large table
(or sets of tables) using the function f he is trying to break, while in the online
phase the attacker captures a sample of keystream and checks if this happens
to be in his tables. If this attack is successful the attacker can learn the internal
state x for which y = f(x). We can evaluate these kinds of attacks by looking
at different parameters and costs:

– N : the size of the state space.
– T (Attack time): This can be subdivided between the time for the offline

phase, Tpre, in orders of magnitude, and the time for the online phase, which
in turn can be subdivided into computation time Tc, measured in computa-
tion steps of f and seek time Ts, measured in number of disk seeks.

– M (Memory): memory cost of the attack.
– C (Coverage): the number of points from N covered by the tables.
– D (Data): number of usable data samples (y’s) during the online phase.
– P (Chance of success): the chances of a collision between the observed ci-

phertext and the precomputed tables.
– ρ (Precomputation ratio): the ratio between the number of precomputed

points from N and the total number of points N .

Intuitively, the chance of success P seems equal to the precomputation ratio,
ρ = C/N , i.e. the number of points covered by the tables divided by the number
of points in the search space. However, this is not exactly true for a number of
reasons. Firstly, the tables can contain duplicate values. A certain number of
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duplicate values is to be expected when the coverage increases, however dupli-
cates within the same table can lead to so called chain merges, which cause large
parts of table rows to overlap. These chain merges will be discussed in more de-
tail in the next section, but will for the most part be ignored in the analysis until
Section 4, which details why it is hard to give an estimate on the occurrences of
these chain merges. To stress this difference we introduce C̄ and ρ̄ as variants of
the respective variables that do take chain merges into account.

Secondly, a definition of P = ρ assumes that all outputs of the cryptographic
function f are equally likely, so all points in N have the same chance of occurring.
This difference between P and ρ does not matter for our comparisons, but we
will see in the practical example of Section 3.4 that this assumption does not
always hold in practice.

Lastly, if an attacker has multiple samples, as he might have for a stream
cipher, then the chance of success increases by a factorD, the number of samples.

3 The TMTO Attacks

This section compares the costs of the four attacks: Hellman’s original attack,
Distinguished Points, Rainbow Tables, and Kraken. For each we give a theorem
that states the cost for the general case with an arbitrary number of tables,
followed by a corollary where we align some of the parameters to allow for
an easy comparison. For these corollaries we assume an attacker abides by the
mt2 = N rule, which will be introduced in Section 3.1, and precomputes enough
points so that Dρ = 1. So, the corollaries normalize the attack costs, for easier
comparison.

3.1 Hellman’s Original TMTO Attack on Stream Ciphers

TMTO attacks were introduced by Hellman for attacking block ciphers [1]. In
Hellman’s attack the precomputation tables were created using a single piece
of known plaintext. During the online phase an attacker needs to retrieve an
encryption of that exact same piece of known plaintext in order to match it
against his precomputed tables and have a chance on a successful attack. These
precomputed tables are useless for other known plaintext/ciphertext pairs.

In 2000 Biryukov and Shamir [4] found that TMTO attacks against stream
ciphers have an extra benefit: an attacker can create tables which are more
generic, so any piece of known key stream can be matched to them. These samples
can even be overlapping. If an attacker has created TMTO tables to look for
keystream occurrences of n bits and he obtains e.g. n+ 6 consecutive bits, this
gives him 7 different keystream samples of length n to match with the results in
his tables. Since every sample of known keystream has its independent chance
of matching with the precomputed values, every sample increases the success
chance of the attack. Alternatively, an attacker can make an estimate, D, on the
expected number of samples he will be able to obtain in the real-time phase,
this enables him to save a factor D on precomputation (both time and storage)
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x0 → fi(x0) → fi(fi(x0)) → . . . → f t
i (x0)

x1 → fi(x1) → fi(fi(x1)) → . . . → f t
i (x1)

x2 → fi(x2) → fi(fi(x2)) → . . . → f t
i (x2)

...
...

...
. . .

...
xm → fi(xm) → fi(fi(xm)) → . . . → f t

i (xm)

Fig. 1. A single m× t matrix of function fi. Only the first and last points of each chain
are stored

to achieve the same success probability as that obtained with an attack on a
cipher with D = 1. This effectively transforms the time-memory trade-off into a
time-memory-‘number of data samples’ trade-off.

Hellman’s attack on stream ciphers then goes as follows. In order to reverse
the function f , a table is precomputed in the offline phase, for a single known
plaintext. In order to cover as much of the N points of the search space as
possible, an m × t matrix is computed, where the m rows consist of chains
of length t and where each point in the chain is a new iteration of f on the
result of the previous point (see Figure 1). Finally, only the begin point and end
point of each chain are stored (ordered by the endpoints) as the precomputation
table. In the rest of this article we will talk about precomputation matrices
and tables, where matrices denote the temporary m × t precomputation chains
and tables refer to the end product, essentially the compressed storage of the
matrices. During the online phase, the attacker obtains keystream samples (e.g.
by sniffing a known plaintext encryption, or because he can perform a chosen-
plaintext attack). He then makes another chain of at most t iterations of applying
the function f and for each iteration checks if the result matches one of the
endpoints stored in his table. If this happens, he recomputes the chain starting
from the corresponding begin point until the preimage of the ciphertext, thereby
reversing function f in an attack time of order t in the online phase.

Adding more rows to the matrix computed in the offline phase will eventually
cause duplicates, two duplicate points in different chains will cause the rest of
these chains to cover the exact same points: the chains merge. Merging chains
waste storage and precomputation effort on duplicate points. Hellman shows [1]
that the probability of success is bounded by:

(1/N)

m∑
i=1

t−1∑
j=0

[(N − it)/N)]j+1 ≤ P ≤ (mt/N). (1)

Hellman proves that this lower bound can be approximated to 3/4 for tables for
which mt2 = N . He argues that increasing m and t beyond mt2 = N is ineffec-
tive, since the chance of overlap only increases as m and t increase. Therefore
Hellman continues his analysis of using m× t matrices satisfying mt2 = N . Most
of the subsequent work on time-memory trade-offs copies this choice, although
there is no real reason for this.

A single m × t matrix satisfying mt2 = N covers only 1/t-th of the search
spaceN . So, in order to cover a larger part of the search space, Hellman proposed



A Comparison of Time-Memory Trade-Off Attacks on Stream Ciphers 411

to construct l different m × t matrices each using a variant of the f function,
fi. The function fi is defined as fi(x) = hi(f(x)) where hi is a simple output
modification that is different for each i. In this way, all l tables only have a small
chance of duplicate chains (only within a single table). Naturally there are still
chances of duplicate points between different tables, but these will not cause
chain merges and are thus not so costly.

Theorem 1. The general costs for Hellman’s attack adapted for stream ciphers
are:
M = 2ml entries,
Tc = tlD fi-computations,
Ts = tlD seeks in tables of m entries.

Proof. The memory costs equals the costs of one table, 2m since it only stores the
starting and endpoints, times the number of tables, l. Having l different tables
also carries additional costs in terms of attack time during the online phase,
since the attacker will now have to create l different chains of length t for every
sample, so both Tc and Ts are in the order of tlD fi-computations or seeks,
respectively.

In this general case, it might seem that the factor D only has a negative impact
on the costs, however, the value for l, the number of tables, can be reduced with
a factor D when attacking stream ciphers while the success chance remains the
same.

Corollary 1. When reversing a stream cipher, using D samples and the m× t
matrices satisfy mt2 = N and precomputing enough points to satisfy Dρ = 1,
the costs are:
Tpre = O(N/D), Tc = t2 fi-computations,
M = 2mt/D entries, Ts = t2 seeks in tables of m entries.

Proof. The attacker makes l tables, each with a different fi. Since each table
covers 1/t-th of the search space (mt2 = N) and the attacker expects D sam-
ples, he needs t/D different tables to cover an area of equal size to the search
space. So, there are l = t/D tables each covering mt points, which means the
precomputation time Tpre is in the order of N/D, since mt2 = N (assuming that
D ≤ t). The costs for M , Tc and Ts follow by simply substituting l with t/D in
Theorem 1

The memory costs M are measured in entries. We are assuming two entries are
needed per chain, which is an overestimate, since some bits can be spared by
clever storage methods. The seek time Ts is measured in the number of disk
seeks necessary for the attack. In his original analysis Hellman ignores the effect
that the size of the tables might have on the time of an individual disk seek.
In order to achieve a more accurate measure we take the size of the tables into
account, but we ignore the way the tables are organized on disk in our analysis.

Hellman’s attack provides a time-memory trade-off controlled by choice of the
chain length t. The table only stores two points for each chain, the begin and end
point. As Theorem 1 shows, increasing t reduces the memory cost, but increases



412 F. van den Broek and E. Poll

the time needed in the online phase, as more time is needed for computing the
chain. Conversely, reducing t reduces the time in the online phase at the expense
of higher memory cost. Note that if we choose t = 1 we have a dictionary attack,
while if we choose t = N we have a part of a brute-force attack.

3.2 Distinguished Points

The use of distinguished points was the first improvement on Hellman’s ap-
proach. Hellman’s analysis has a practical problem: there is a huge time differ-
ence between computing fi and a disk seek to see if any fi(x) is stored in the
precomputation table. In fact, Hellman’s t2 seeks in the precompution tables
are extremely more expensive than the t2 fi-computations [2]. Since Hellman’s
analysis counted only the computation steps (T = t2) the difference between
theory and practice is very big.

In 1982, a solution was proposed referenced to Ron Rivest [2, page 100], namely
to identify a subset of special points, called distinguished points. These points
should be easily recognized, usually by a fixed prefix, such as the first k bits being
‘0’. In the offline phase, chains are computed until such a distinguished point is
reached, and that point is then stored as the endpoint. If no distinguished point is
reached for a certain number of maximum computation steps, the entire chain is
dropped and a new one is computed. In the online phase, the attacker starts devel-
oping a chain from captured ciphertext until he reaches a distinguished point, and
only then does he need to perform an expensive disk seek. If no distinguished point
is encountered in the development of this chain after a predetermined number of
steps, than this captured piece of ciphertext is not covered by the tables.

Rivest’s approach reduces the number of disk seeks, since now only a single
disk seek is needed for every chain that is computed during the online attack,
instead of one disk seek for every link. This leads to matrices with chains of
varying length. However on average the chain length will be t = 2k.

Using distinguished points has one other benefit. When the precomputation
tables are finished it is possible to remove all chain merges from the tables,
simply by looking for identical end points. After all, if two chains within a table
merge, they will end in the same distinguished point. There is not really an easy
way to decide which chain to drop from the table, although an attacker could
record the number of points in each chain, while precomputing, in order to keep
the longest one. Alternatively, keeping both chains will increase the coverage of
the search space (assuming different start points where chosen, then a least a
single unique point is added to the coverage by keeping merging chains), at the
cost of using storage for duplicate points.

Theorem 2. The general costs for a Distinguished Points attack are:
M = 2ml entries,
Tc = tlD fi-computations,
Ts = lD seeks in tables of m entries.

Proof. The memory costs remain exactly the same as in the previous theorem.
The computation costs will also remain the same since a distinguished point will
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on average be encountered after t steps. The disk-seek cost is now lowered to one
disk seek per chain. Since the attacker needs to make l chains —one for each
table— for every data sample, the seek time is Ts = lD.

Corollary 2. For the Distinguished Points attack, where the m × t matrices
satisfy mt2 = N and precomputing enough points to satisfy Dρ = 1, the costs
are:
Tpre = O(N/D), Tc = t2 fi-computations,
M = 2mt/D entries, Ts = t seeks in tables of m entries.

Proof. The attacker again needs to create l = t/D tables, so both the precompu-
tational work and memory storage remain the same. The costs for Tc and Ts are
determined by substituting t/D for l in the preceding theorem.

This approach can actually save some memory in practice, since k bits of every
endpoint are constant and need not be stored. This makes the entries smaller,
but the number of entries remains 2mt. The time cost in the online phase also
remains t2 evaluations of an fi, but now only t disk seeks are expected, instead of
t2 for Hellman’s original attack: a disk seek is only needed when a distinguished
point is encountered, which happens once for each chain (on average after per
t = 2k computations), whereas in Hellman’s original attack it has to be done for
all points in the chain.

3.3 Rainbow Table

A different improvement on Hellman’s approach, called Rainbow Table, was
proposed by Oechslin in 2003 [3], with a factor-2 speed-up in the online phase,
for an attack with single samples. Additionally, it has none of the overhead that
Distinguished Points causes with its variable length, sometimes even unending,
chains. However, the Rainbow Table attack is mostly known for its smaller chance
of chain merge when less than N points are precomputed.

Oechslin suggested to precompute one large matrix (instead of t different ones)
with a different fi for every link in the chain. The name Rainbow Table stems
from the idea of calling each simple output modification hi a different color; each
column has its own color, so the entire table looks like a rainbow. This prevents
some chain merges, since now two chains can only merge if they reach the same
value in the same column (i.e. while applying the same fi). Duplicate points can,
of course, still occur, but the penalty for these is not as severe since the chains
will not merge if a duplicate happens in a different column.

Theorem 3. The general costs for a Rainbow Table attack are:
M = 2ml entries,

Tc = t(t+1)
2 D fi-computations,

Ts = tD seeks in a table of lm entries.

Proof. In a Rainbow Table attack there is a single rainbow table which has ml
chains, of which only the first and last point are stored, so 2ml entries. These ml
chains are for comparisons sake, so ml chains of length t have the same coverage
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x0 →1 f0(x0) →2 f1(f0(x0)) →3 . . . →t ft(ft−1(. . . f0(x0) . . . ))
x1 →1 f0(x1) →2 f1(f0(x1)) →3 . . . →t ft(ft−1(. . . f0(x1) . . . ))
x2 →1 f0(x2) →2 f1(f0(x2)) →3 . . . →t ft(ft−1(. . . f0(x2) . . . ))
...

...
...

. . .
...

xml →1 f0(xmt) →2 f1(f0(xmt)) →3 . . . →t ft(ft−1(. . . f0(xmt) . . . ))

Fig. 2. A ml × t rainbow matrix using t different fi functions. Only the first and last
points of each chain are stored

as the l m× t matrices of other attacks. The online attack time becomes t(t+1)
2 D

instead of tlD, because a different fi is used for every link in the chain. So instead
of computing a single chain (y, f(y), f2(y), ..) for every data sample an attacker
now needs to evaluate t chains of a length ascending from 1 to t fi calculations,
with a different fi for every link:

y →ft ft(y) ↑
y →ft−1 ft−1(y) →ft ft(ft−1(y)) t

. .
. ...

...
...

y →f0 . . . →ft−1 ft−1(. . .) →ft ft(ft−1(. . . (f0(y) . . .)) ↓

For each of these t chains, the end point needs to be looked up in the table, for
each of the D data samples, which results in tD disk seeks.

In order to compare this attack to the other approaches we need the matrix to
cover an equal number of points. The other approaches use t m × t matrices.
With a rainbow table there is only a single table, so this needs to cover mt2

points. Keeping the chain length t, means the attacker will need mt entries in
his table to cover mt2 points. So we assume an mt × t matrix, with t different
fi’s, as Figure 2 shows.

Corollary 3. For the Rainbow Table attack, where the ml × t matrices satisfy
mt2 = N and precomputing enough points to satisfy Dρ = 1, the costs are:

Tpre = O(N/D), Tc =
t(t+1)

2 D fi-computations,
M = 2mt/D entries, Ts = tD seeks in a table with mt/D entries.

Proof. In the Rainbow Table case there is little difference in costs between the
general case and the case where an attacker chooses m and t to satisfy mt2 = N ,
since there is only a single table and only the chain size determines the attack
time. For comparison’s sake, we use a rainbow table of dimensions (mt/D)× t,
which covers an equal number of points as the previous stream cipher TMTO
attacks, and keeps the values for Tpre and M equal. By substituting l with t/D,
the memory costs are also fixed.

Since D will generally be smaller than t, the number of disk seeks is an improve-
ment when compared to a Hellman style attack, though not as much as the use
of distinguished points. Also keep in mind that every table seek could be more
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costly when using a rainbow table, because of its larger size than the l tables
used in the other approaches.

The Rainbow Table attack is most known for a smaller chance of chain merges,
but the table defined in Corollary 3 will have a similar chance of chain merges
than the previous attacks for D = 1. Because the same amount of points are
precomputed in every fi (all the points in a single rainbow table column, or all
the points covered in 1 Hellman or distinguished point table) and a duplicate
between those points causes a chain merge. When assuming more samples, or
when precomputing fewer points, i.e. Dρ < 1, then the Rainbow Table attack
will probably have fewer chain merges than the other TMTO attacks.

The online attack time of the Rainbow Table attack is only dependent on the
chain length, ignoring the number of entries in the table, which causes the slight
speed up for attacks where D = 1.

3.4 Generalized Kraken Approach

In 2009, researchers started a project to break GSM’s standard encryption cipher
A5/1 in practice, using a combination of time-memory trade-off techniques. They
proposed the joint creation of a set of TMTO tables to which everyone could
contribute [13]. The idea was to share the intense computing burden of a TMTO’s
precomputation step by having everyone willing to participate perform a part of
the computation on modern GPUs, and share their results over the Internet. In
the end however, the project ended up using a set of tables being computed on
a single computer. This set was dubbed “The Berlin Set” and its parameters are
discussed in detail later in this section. First we focus on the general approach
that was used in this attack.

In order to find the internal state of a generic stream cipher, the Kraken
approach combines both distinguished points and rainbow tables in the table
layout. This is done by first choosing distinguished points as bit strings starting
with k zeros. Then, normal TMTO chains are computed by repeatedly applying
fi to random start points until the output is a distinguished point. The chain
is then continued but now with a different fi; in essence changing the rain-
bow color. This is repeated for a predetermined number, s, of rainbow colors
(f0 . . . fs functions), until a distinguished point is found while using the final
fs of this chain. This point is the endpoint of a chain and is stored together
with the corresponding start point in the TMTO table. Figure 3 shows such a
precomputation matrix. In order to match a sample y against a table during
the online phase, s different chains need to be developed ranging in size from
t to st fi-computations, analogously to the Rainbow Table online attack. On
average this will lead to one distinguished point per fi subchain, assuming that
each possible output of fi is equally likely. While applying fs, the attacker can
see if the resulting distinguished point matches the stored endpoint. The dis-
tinguished point found in the chain while applying fs−1, needs to be developed
further by applying fs until the last distinguished point is found. This continues
to the distinguished point found using the first f0, which should require a chain
of around st computation steps to match the final distinguished point with the
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x0 → f0(x0) → f0(f0(x0)) →∗ k||y00 → f1(k||y00) →∗ . . . → fs(. . . )→ k||y0s
x1 → f0(x1) → f0(f0(x1)) →∗ k||y10 → f1(k||y10) →∗ . . . → fs(. . . )→ k||y1s
x2 → f0(x2) → f0(f0(x2)) →∗ k||y20 → f1(k||y20) →∗ . . . → fs(. . . )→ k||y2s
...

...
xm → f0(xm)→ f0(f0(xm))→∗ k||ym0 → f1(k||ym0)→∗ . . . → fs(. . . )→ k||yms

Fig. 3. A Kraken matrix, where k||y denotes a distinguished point with the first k bits
‘0’. Only the first and last points of each chain are stored. Note that each Kraken chain
consists of s Distinguished Points chains.

stored endpoint, as Figure 4 shows. This approach can boil down to compressing
s different Distinguished Points tables into one: Each chain basically consists of
s subchains, depending on the choice of s and t. Intuitively, this means that the
memory costs will be lowered by a factor s, but the attack time will increase
by a factor s. This attack should keep all other advantages of a Distinguished
Points attack, such as the easily identifiable chain merges. When compared with
a Rainbow Table attack the number of chain merges should rise with a factor
t = t′/s, where t′ is the new total chain length, because the same fi is used for
each subchain.

The average length of each subchain, t, can be adjusted by choosing a different
length of k for the k-bit distinguished point. The length of one full chain is equal
to t′ = st.

Theorem 4. The general costs for the Generalized Kraken attack are:
M = 2ml entries,

Tc = s(s+1)
2 tlD fi-computations,

Ts = slD seeks in tables of m entries.

Proof. The costs for memory use and disk seeks remain the same as in the
Distinguished Points case. The computation costs are still based on the costs for
matching a single sample against a single table multiplied with the number of
tables and the number of samples. The attacker needs to make s chains of sizes

increasing from t to st, so in total s(s+1)
2 t fi-computations, to match a single

sample against a single table.

y →∗
fs k||x0s ↑

y →∗
fs−1

k||x1s−1 →∗
fs k||x1s

sy →∗
fs−2

k||x2s−2 →∗
fs−1

k||x2s−1 →∗
fs k||x2s

. .
. ...

...
...

y →∗
f0

. . . →∗
fs−2

k||xss−2 →∗
fs−1

k||xss−1 →∗
fs k||xss ↓

Fig. 4. The online phase of a Kraken attack. Here k||X denotes a distinguished point
with the first k bits ‘0’. Only the last point of every chain is matched against the
precomputation table.
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In the Kraken attack we are faced with an additional variable s, which introduces
a new Time-Memory Trade-Off within a TMTO attack. It also complicates mat-
ters when creating the accompanying corollary by increasing the possible choices.
Here we choose two of the most obvious scenario’s:

– the full chain length of the Kraken tables is as large as in the previous
attacks, which leads to s more tables (Corollary 4, more tables),

– the sub chain length of the Kraken tables is equal to the chain length of the
previous attacks, the full chains are s times larger than the previous attacks
(Corollary 5, bigger tables).

Of course these only show two possible choices for s, t and m, of which the first
scenario coincides with m(st)2 = N and the second with the familiar mt2 = N .

Corollary 4 (more tables). When reversing a stream cipher with the Kraken
approach, using D samples and the m × st matrices satisfy m(st)2 = N and
precomputing enough points to satisfy Dρ = 1, the costs are:

Tpre = O(N/D), Tc =
(s+1)

2 (st)2 fi-computations,
M = 2mst

D entries, Ts = s2t seeks in a tables of m entries.

Proof. A single table will cover m× st points, or 1/st of the key space N (since
m(st)2 = N), so st tables are needed to achieve enough coverage for Dρ = 1.
Given that f is a stream cipher, an attacker can reduce the number of required
tables to l = st

D . This means the memory costs will be M = 2m × st
D = 2mst

D
entries.

The attacker needs a total of s(s+1)
2 t fi-computations, to match a single sample

against a single table. Since there are D samples and st
D tables, the total attack

time Tc equals: (s+1)
2 (st)2. The attacker must create s separate chains for each

table. During the online attack this comes down to s disk seeks per table, on st
D

tables and D samples gives Ts = s2t disk seeks within tables of m value pairs.

Corollary 5 (bigger tables). When reversing a stream cipher with the Kraken
approach, using D samples and the m × st matrices satisfy mt2 = N and pre-
computing enough points to satisfy Dρ = 1, the costs are:

Tpre = O(N/D), Tc =
(s+1)

2 t2 fi-computations,
M = 2mt

sD entries, Ts = t seeks in a tables of m entries.

Proof. A single table will cover m×st points, or s/t of the key space N (assuming
s < t), so t/s tables are needed to achieve enough coverage for Dρ = 1. Given
that f is a stream cipher, an attacker can reduce the number of required tables
to l = t

sD . This means the memory costs will be M = 2m× t
sD = 2mt

sD entries.

The attacker needs a total of s(s+1)
2 t fi-computations, to match a single sample

against a single table. Since there are D samples and t
sD tables, the total attack

time Tc equals:
(s+1)

2 t2. The attacker must create s separate chains for each table.
During the online attack this comes down to s disk seeks per table, on t

sD tables
and D samples gives Ts = t disk seeks, but again disk seeks within tables of M
value pairs.
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The scenario of Corollary 4 for Kraken uses the same sized matrices as that
of Corollary 2 for the Distinguished Points. It needs s2 more tables than the
scenario of Corollary 5, which is reflected in all the costs. However, keep in
mind that the value of t in Corollary 4 is s times higher than the value of t in
Corollary 5.

The costs in Corollary 5 confirm our intuition of Kraken using s compressed
distinguished points tables. So it can reduce memory costs a factor s at the
price of increasing the computation cost in the online phase by a factor s+1

2 in
comparison with Distinguished Points approach, which is better than our initial
intuition.

Kraken in Practice. The Kraken approach was devised by researchers from
the hacker community to demonstrate the weakness of the encryption used in
GSM; the stream cipher A5/1. This stream cipher has an internal state of 64
bits, which is initiated with a 64 bit session key and a 22-bit, publicly known,
frame number. The cipher then produces 328 bits of keystream of which the
first 100 are discarded. Of the remaining 228 bits, the first half are used for the
encryption of a packet on the uplink (mobile phone to cell tower) and the second
half is used for encryption on the downlink (cell tower to mobile phone).

The natural assumption here is that the state space has size 264, but care-
ful examination of the clocking function shows that a large part of the possible
internal states are unreachable from any valid state. Several studies have mea-
sured the decline of possible states in the A5/1 cipher [14,8], and all of these find
that only around 15% of all possible states are still viable after the initial 100
clockings. This means in practice that an attacker only needs to cover around
15% of the state space: N ≈ 261.26.

In the attack against A5/1 the fi(x) is setting x in the internal state of
A5/1, clocking it a 100 steps forward and then producing 64 bits of keystream,
combined with some trivial output modification (the rainbow colors). These 64
output bits are then used to set the new internal state for the next round.

In the precomputation phase 40 independent tables (l ≈ 25.3) were created,
dubbed the Berlin set. As distinguished points were chosen those points starting
with 12 zeros (k = 12). Eight rainbow colors were used per table (s = 8) and
they differ for each table, so in total there are 320 different colors.

Every chain consists of eight subchains of average length t. Assuming each
possible outcome of an fi is equally likely: t = 212. So t′ = 8× 212 = 215.

Initially, every table was computed with 8,662,000,000, approximately 233,
rows (m = 233). After which one of every two chains with duplicate end points
was removed and the current set contains around 6,000,000,000 entries per table.

This means that for the Berlin set around 215 × 233 × 25.3 = 253.3 points
were precomputed. The set ended up covering around 215 × 232.5 × 25.3 = 252.8

distinct points, so over 29% of the chains ended up merging with an earlier chain.
This surprisingly high percentage can, in part, be explained by the state-space
collapse of A5/1. However, it still shows that chain merges can indeed have a
significant impact on a TMTO attack performance in practice.
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Table 1. Comparison of the different attacks, for Dρ = 1 and mt2 = n

TMTO technique M Tc Ts

Hellman’s attack 2mt/D t2 t2 in m entries
Distinguished Points 2mt/D t2 t in m entries

Rainbow Table 2mt/D t(t+1)
2

D tD in mt/D entries

Kraken (more tables, t′ = st) 2mt′/D (s+1)
2

t′2 st′ in m entries

Kraken (bigger tables) 2mt/sD (s+1)
2

t2 t in m entries

With N ≈ 261.26, the Berlin set has its parameters between the two discussed
options in Corollaries 4 and 5: mt2 < N < m(st)2. The tables in the Berlin
set take up around 1.6TB on disk and one attack with 51 samples (one packet
in GSM is 114 bits, so 51 samples of 64 bits) can be performed within several
seconds on high-end, but off-the-shelf hardware. Experiments with self-generated
bursts put the success chance of the attack with 51 samples to around 20%.

4 Comparison

The main idea behind Kraken is to combine the benefits of both Distinguished
Points (i.e. low number of disk seeks) and Rainbow Tables (i.e. fewer duplicates).
The question is whether this really turns out beneficial. The cost of the different
attacks are compared in Table 1, which lists the costs given in Corollaries 1 to
5. The two possible Kraken approaches are both shown, but Corollary 4 has st
substituted for t′, so its t′ is comparable to the value of t for the other attacks.

The Three Classic Attacks. Hellman’s attack (adapted for stream ciphers) is
added in this table as a baseline, since the other attacks all improve on almost all
costs. Between Distinguished Points and Rainbow Table it seems that a Rainbow
Table is the best choice for D = 1, with only the disk seeks being more expensive
due to the larger table. This makes Rainbow Tables the best choice for attacking
block ciphers.

However, when attacking stream ciphers with multiple samples, D > 1, the
comparison is not so simple. The online attack time and the number of disk seeks
for Rainbow Table, Tc and Ts, both increase beyond those of the Distinguished
Points attack. Of course increasing D also decreases the size of the rainbow table
used, making each table search cheaper, but generally seek time will be in the
order of the logarithm of the table size, so this benefit is smaller than the increase
in the number of disk seeks. Based on these calculations, the more samples are
expected during the online attack, the more attractive the Distinguished Points
approach becomes, compared to Rainbow Tables.

The Kraken Attacks. Our initial intuition that the Kraken approach is com-
parable to s Distinguished Points tables stored as one, seems validated when
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looking at the respective costs of both Kraken attacks and the Distinguished
Points attack. If we take s = 1, then the Kraken approaches are the same as
Distinguished Points, and their costs are identical. Another way to look at the
Kraken approach is as a “bloated” rainbow table, with every rainbow color ex-
panded from one column to t columns (on average). Looking at the costs for
the online attack time for the Kraken approach, if we choose t = 1 and s = t′

(essentially a rainbow table), it almost compares to the online attack costs of
a Rainbow Table attack, where the difference can be explained by a Rainbow
Table attack having a single table instead of the st

D or t
sD tables of the respective

Kraken attacks.
It is clear from this comparison that having Kraken tables of the more-tables

variant is not the best choice. It has more disk seeks than the bigger-tables
approach and the Distinguished Points attack, without the benefit of smaller
memory costs.

Kraken vs. the Classics. The Kraken attack can be tuned further by chang-
ing the s parameter. Basically, the Kraken attack moves in between the Distin-
guished Points and Rainbow Table attacks, guided by the value of s, where a
higher choice of s will save memory costs, but increase the online attack costs.

From the two realistic Kraken approaches shown in the comparison table,
only the bigger-tables approach is competitive in this analysis. If the memory
costs are the single limiting factor for using the Distinguished Points or Rainbow
Table attack, then this Kraken attack seems a good choice.

Although, with the continuous drop in the prices of memory such a scenario
seems unlikely, so depending on the number of expected samples a Rainbow
Table or a Distinguished Points attack is probably the better choice.

Comparing Chain Merges. The comparison above is based on all attacks
satisfying Dρ = 1, in other words the costs are compared when all attacks
precompute the same amount of points. However, due to duplicates and chain
merges not all precomputed points will be unique. It would be more fair if we
compared the costs of the attacks when they all satisfy Dρ̄ = 1, so the number
of precomputed unique values would be in the order of N/D.

However, it is hard to estimate the chances on chain merges in a general case
for the different approaches. In essence this problem boils down to the expected
overlap between two paths (of length t for most approaches) within a digraph
consisting of the N points of the search space as nodes and the current fi as the
edges between these nodes. This digraph is a directed pseudo forest, so every
node has out-degree 1, meaning there can exist source nodes, but no sinks and
from every node there exists a path leading to a cycle. An analysis of the number
of expected duplicates, or analogously the number of unique values for a certain
TMTO attack seems hard [15,16,17,10] and to our knowledge this is in fact an
open problem for most TMTO attacks.

We can however make some assumptions over the chain merges for the different
approaches, when they all precompute the same amount of points. We ignore
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single duplicate points and only look at chain merges, so only duplicates under
the same fi. Then by looking at the number of precomputed points per different
fi function, although ignoring many of the subtle differences between the TMTO
attacks, can give an indication on the chances of chain merges.

When we assume that the distinguished points from a Distinguished Points
attack are uniformly spread over the iterative function graph, then in general the
number of duplicates in the Distinguished Points tables will be about the same
as those in the Hellman attack. The number of duplicates in the Rainbow Table
attack will in general be smaller than for the Hellman and the Distinguished
Points attack, as long as the number of records in a rainbow table is smaller
than the m× t points in a Hellman or distinguished point table.

When we look at the two possible approaches for the Kraken attack, then they
are most easily compared to a Distinguished Points attack. The first Kraken
approach (m(st)2 = N , Corollary 4) uses s different colors inside an almost
standard Distinguished Points matrix. So, only 1/s th of the points in a single
table have the chance of leading to a chain merge, and we would therefore expect
s less chain merges in this Kraken approach than in a Distinguished Points
approach. The second Kraken approach (mt2 = N , Corollary 5) compresses s
different Distinguished Points tables into one, but because the end point of one
of those Distinguished Points tables is the start point for the next, chain merges
in one of these subchains will carry through the rest of the chain. Therefore, we
can roughly estimate that this Kraken attack has around s/2 more duplicates
due to chain merges than a Distinguished Points attack.

When we keep chain merges in mind, the comparison from Table 1 becomes
more subtle, since it seems that the factor s extra costs in memory and disk seeks
of the first Kraken approach compared to the second, is somewhat mitigated by
having less duplicates, and thus more unique points in its tables and a higher
success chance. However, since we have no hard way of quantifying the number
of chain merges in these attacks, this analysis remains very tentative.

Both Distinguished Points and Kraken have one extra benefit when comparing
chain merges. Both approaches have identifiable chain merges, which means that
every chain merge will automatically end in the same end point. So by simply
comparing end points all chain merges can be identified. With extra precomputa-
tion effort both approaches are able to replace one chain of every merging chain
pair, with a new one, thereby increasing their coverage C̄. Naturally, both the in-
crease in coverage and the amount of extra precomputation work are dependent
on the number of chain merges.

5 Conclusions and Directions for Future Research

We have presented the first analysis of the cost of the generalized form of the
TMTO attack used to break the A5/1 cipher, which we have called Kraken. We
have also given a first comparison of the costs of Kraken and three older TMTO
attacks: Hellman’s original attack, Distinguished Points, and Rainbow Tables.

Our comparison is more detailed than earlier work comparing these three older
forms of attack. Most [4,9] earlier work compared the trade-off curves of these
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well known attacks. This tells us the rate at which extra memory can be traded
in for a reduced time, but completely ignores some important costs, namely the
precomputation, seek times, and the number of unique points covered by an
attack. We do consider these costs in our comparison: for each attack we give
the memory and time costs, split into precomputation time, online computation
time, and number of disk seeks.

In our comparison in Section 4 the new Kraken attack performed fine, with the
lowest memory cost of all attacks and the ability to identify chain merges as its
major benefits. Only Distinguished Points seems a better choice in comparison,
having a higher memory cost, but the lowest online attack costs. The more well-
known Rainbow Tables are only interesting for attacks with only a single sample
of plaintext-ciphertext known, as it is outperformed by Distinguished Points for
multiple samples.

Another limitation of comparisons of trade-off curves for the different ap-
proaches is that these curves are invariably made under the assumption that the
table sizes are always chosen so that mt2 = N . We see no convincing reason
to constraint the choice in parameters in this way. Hellman used the constraint
mt2 = N to compute a nice bound for the chance of success of his attack, but
other choices for m and t that do not satisfy this constraint might perform better
in concrete instances.

One factor that we still have not been able to quantify precisely in our com-
parison is the chance of duplicates during the precomputation of the tables.

We conjecture that the effectiveness of the Kraken attack is in fact lower
than our current results suggest when this number of duplicates values is taken
into account. The informal analysis of the expected number of chain merges in
Section 4 shows that Kraken has a higher chance of chain merges than the other
attacks when the number of rainbow colors in the Kraken approach is chosen to
achieve lower memory cost.

Estimating the chance of duplicates during precomputation is the most dif-
ficult aspect in achieving a fair comparison. Over 29% of all chains created in
the Kraken tables ended up merging with existing chains, showing that chain
merges can indeed be a significant factor when comparing TMTO attacks. We
know no way to compute the expected number of chain merges for the general
case, or indeed for any non-trivial practical cipher. Since theoretical analysis
of the chance of duplicates seems very difficult, we think that further research
which collects empirical data of practical experiments in constructing TMTO
tables may be the best way to shed light on this.
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Abstract. Triple-base number systems are mainly used in elliptic curve
cryptography to speed up scalar multiplication. We give an upper bound
on the length of the canonical triple-base representation with base {2, 3,
5} of an integer x, which is O( log x

log log x
) by the greedy algorithm, and show

that there are infinitely many integers x whose shortest triple-base repre-
sentations with base {2, 3, 5} have length greater than c log x

log log x log log log x
,

where c is a positive constant, using the universal exponent method. This
analysis gives a limit how much scalar multiplication on elliptic curves
may be made faster.
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1 Introduction

Double-base number systems (DBNSs) were first introduced in [1,2] because of
their sparseness, and their main use is in cryptography and digital filter imple-
mentation. Mishra and Dimitrov [3] first introduced triple-base number systems
(TBNSs), an extension of DBNSs, for computing scalar multiplication on ellip-
tic curves more efficiently. Since then, TBNSs have been used by Longa [4] and
Purohit and Rawat [5] to speed up scalar multiplication on elliptic curves.

The theoretical analysis of a number system gives a bound on the average
Hamming weight, which provides a limit on how much the speed can be in-
creased and determines whether the system is sparse. In [6,7,8], DBNSs were an-
alyzed, leading to the wide use of DBNSs in elliptic curve cryptography (ECC)
[9,10,11,12,13,14].

Although TBNSs have been used to speed up scalar multiplication on elliptic
curves, a theoretical analysis of the expansion length has not appeared in any
literature. A theoretical analysis of the expansion length of TBNSs will give a
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limit on how much the speed of scalar multiplication on elliptic curves may be
increased, which may lead to a wider use of TBNSs in scalar multiplication for
ECC. In fact, the complexity of TBNSs is a number-theoretic question.

The span s(x) of an integer x is the smallest r such that x has a triple-
base representation of length r. In this paper, we mainly focus on the upper
bound of s(x). The big oh (O) needed in the complexity analysis is defined
as follows. Let f and g be functions from the set of natural numbers N to N.
f(n) = O(g(n)) means that there are positive integers c and n0 such that, for
all n � n0, f(n) � c · g(n). Informally, f grows as fast as g or slower.

Our contributions in this paper are:

1. The upper bound of s(x) is O( log x
log log x ), which we show using the greedy

algorithm.
2. There are infinitely many integers x whose shortest triple-base representa-

tions have length greater than c log x
log log x log log log x , where c is a positive con-

stant using the universal exponent method (that is, the upper bound of s(x)
is greater than or equal to log x

log log x log log log x ).

This paper is organized as follows. Section 2 describes some basic facts about
TBNSs. Sections 3 and 4 prove the above two results. Section 5 concludes the
paper.

2 Triple-Base Number Systems

Definition 1. An S-integer is a positive integer whose prime factors all belong
to a given set of primes S.

Following de Weger’s definition of s-integers [15], for which the largest prime
factor does not exceed the s-th prime number, {2, 3}-integers are called 2-
integers, and {2, 3, 5}-integers are called 3-integer.

A DBNS [2] is a representation scheme in which every integer x is represented
as the sum of 2-integers:

x =
l∑

i=1

2e1i3e2i , where e1i, e2i are nonnegative integers.

A TBNS, which is an extension of a DBNS, is defined as follows.

Definition 2. (TBNS). Given three relatively prime positive integers b1, b2, b3,
the TBNS is a representation scheme in which every positive integer x is repre-
sented as the sum of {b1, b2, b3}-integers, that is, numbers of the form be1

1 be2
2 be3

3 :
x =

∑l
i=1 be1i

1 be2i
2 be3i

3 , where e1i, e2i, e3i are nonnegative integers.

TBNSs mainly use bases 2, 3 and 5 in scalar multiplication on elliptic curves. In
this paper, we focus primarily on the same system. The triple-base representation
of x in this system is:

x =
l∑

i=1

2e1i3e2i5e3i , where e1i, e2i, e3i are nonnegative integers.
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In this representation, l is called the expansion length. A representation of a given
integer as the sum of the minimal number 3-integers will be called a canonical
triple-base number representation (CTBNR). Such an integer can be represented
as the sum of l 3-integers, but cannot be represented with l−1 or fewer 3-integers.
These so-called canonical representations are extremely sparse. The span s(n) is
the expansion length of a CTBNR.

We take 127 for example.
127 has six canonical DBNS representations with span 3:

127 = 2233 + 2132 + 2030

= 2233 + 2430 + 2031

= 2531 + 2033 + 2230

= 2332 + 2133 + 2030

= 2630 + 2133 + 2032

= 2630 + 2232 + 2033.

127 has two canonical TBNS representations with span 2:

127 = 2252 + 33

= 53 + 21.

Because double-base representation is a special case of triple-base representation,
a TBNS is usually more sparse than a DBNS.

For each i > 0, let S(i) denote the smallest positive integer x with canonical
span s(x) = i. Calculating the value of S(i) is useful for analyzing the properties
of TBNSs.

Dimitrov, Imbert, and Mishra [8] gave the following S(i) for the DBNS:
S(1) = 1, S(2) = 5, S(3) = 23, S(4) = 431, S(5) = 18431, S(6) = 3448733, S(7) =
1441896119.

We use an increasing search to calculate S(i) in the TBNS: S(1) = 1, S(2) =
7, S(3) = 71, S(4) = 30359.

Our increasing search runs as follows. Choose a positive integer M as a bound-
ary. Let Si denote all numbers in the interval [1, M ] with the length i of a
CTBNR. Considering Si = {a+b|a ∈ S1, b ∈ Si−1, a+b � M}−S1∪S2∪. . .∪Si−1,
the increasing search first calculates S1, which only contains all 3-integers. Based
on S1, S2 = {a + b|a, b ∈ S1, a + b � M, a + b �∈ S1}. Next we calculate S3 =
{a + b|a ∈ S1, b ∈ S2, a + b � M, a + b �∈ S1 ∪ S2}. . . . Based on S1, S2, . . . , Si−1,
Si = {a + b|a ∈ S1, b ∈ Si−1, a + b � M, a + b �∈ S1 ∪ S2 ∪ . . . ∪ Si−1}. S(i) is
equal to the smallest number in Si. If Si is empty for [1, M ], we can increase M
until we find the value of S(i). This method is very efficient when we want to
know the span and the CTBNR of all numbers in the given interval [1, M ].

3 The Upper Bound

We first give the distance between two adjacent 3-integers.
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3.1 The Distance between 3-Integers

Lemma 1. There exist two absolute constants D, N > 0 such that there is a
3-integer between x− x

(log x)D and x when x > N .

Proof. Let n1 = 1 < n2 < . . . be the sequence of all 3-integers. In [16], Tijdeman
proved that there exist efficiently computable constants 0 < D1 � 2 and N such
that

ni+1 − ni <
ni

(log ni)D1
for ni � N.

The function x
(log x)D1 is an increasing function in [e,∞) when the differential

log x−D1
(log x)D1+1 > 0, where e is the natural constant.

We deduce the following:

ni+1 < ni +
ni

(log ni)D1
< ni +

ni+1

(log ni+1)D1

⇒ ni+1 − ni+1

(log ni+1)D1
< ni < ni+1.

Because the function x − x
(log x)D1 is increasing when x > e, if we let ni < x �

ni+1, then ni > ni+1− ni+1

(log ni+1)D1 � x− x
(log x)D1 . Thus, there exists an absolute

constant 0 < D = D1 � 2 such that there is a 3-integer between x− x
(log x)D and

x for any x when x > N = max{e, eD, N1}.

3.2 Greedy Algorithm

We now use the greedy algorithm to prove that every integer x has a triple-base
representation whose length is at most C log x

log log x , where C is a positive constant.
The greedy algorithm is shown as Algorithm 1, with the input being a positive

integer x, and the output being a set of 3-integers, ai, such that
∑
i

ai = x. The

algorithm finds the largest 3-integer, z, smaller than or equal to x, and recursively
applies the same for x− z until reaching zero.

Theorem 1. The above greedy algorithm terminates after k = O( log x
log log x ) steps.

Algorithm 1. Greedy Algorithm

Input: an n-bit positive integer x

Output: x =
∑

i ai, ai is a 3-integer

1. i← 0
2. while x > 0 do
3. z, the largest 3-integer smaller than or equal to x
4. ai ← z
5. i + +
6. x← x− z
7. return x =

∑
i ai
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Proof. Lemma 1 shows that there exists an absolute constant 0 < D � 2 such
that there is always a number of the form 2e13e25e3 between x− x

(log x)D and x.
Let n0 = x. Then there exists a sequence

n0 > n1 > n2 > . . . > nl > nl+1,

such that ni = 2e13e25e3 + ni+1 and ni+1 < ni

(log ni)D for i = 0, 1, 2, . . . , l. Ob-
viously the sequence of integers ni obtained via the greedy algorithm satisfies
these conditions. Let l = l(x), so that

nl+1 � f(x) < nl

for some function f to be chosen later.
We mention that k = O(log x), simply by taking the 2-adic, 3-adic and 5-

adic expansion of x. ni can be represented as the sum of k 3-integers, where
k = l(x) +O(log f(x)).

We have to determine l(x), f(x). If i < l, then f(x) < nl < ni, thus ni+1 <
ni

(log ni)D < ni

(log f(x))D . Then the following inequality holds:

f(x) < nl <
x

(log f(x))l(x)D

⇒ (log f(x))l(x)D <
x

f(x)
.

Taking the logarithm of both sides,

l(x)D log log f(x) < log x− log f(x).

Thus l(x) < logx−logf(x)
D log log f(x) .

The function f(x) = exp log x
log log x is the largest possible (apart from constant)

such that any number in the interval [1, f(x)] can be written as the sum of
O

(
log x

log log x

)
terms that are 3-integers. We now show that l(x) = O

(
log x

log log x

)
,

that is, there is a constant C > 0 such that

l(x) < C
log x

log log x
.

It suffices to prove that

log x− log x
log log x

D log log x
log log x

< C
log x

log log x
.

Then
log log x− 1 < CD(log log x− log log log x),

and thus
log log x + CD log log log x < CD log log x + 1,

which is true if C > 1
D and x is large enough. Thus, k = O( log x

log log x ).

The length of the CTBNR s(x) is less than or equal to the expansion of the
greedy algorithm, giving an upper bound on s(x) of O

(
log x

log log x

)
.
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4 The Compactness of the Upper Bound

We next recall the notion of a universal exponent, which will be used in the fol-
lowing. Let λ(n) be the universal exponent of the multiplicative group (Z/nZ)∗.
A more explicit definition of λ is

λ(pe) = φ(pe) = pe−1 if p is an odd prime,
λ(2e) = φ(2e) if e = 0, 1, or 2,

λ(2e) =
1
2
φ(2e) if e � 3,

and λ(n) = l.c.m.(λ(pe1
1 ), . . . , λ(pev

v )) if n = pe1
1 . . . pev

v (pi are distinct primes).
This is Carmichael’s function [17].

Dimitrov and Howe [7] show that there are infinitely many integers x whose
shortest signed double-base representations have length greater than

c0 log x

log log x log log log x
, where c0 is a positive constant.

Although a TBNS has one more base than a DBNS, we can still show that there
are infinitely many integers x whose shortest unsigned triple-base representations
have length greater than

c logx

log log x log log log x
, where c is a positive constant.

For each positive integer m, let T (m) be the image in Z/mZ of the set of 3-
integers, and t(m) denote the cardinality of T (m). For every r � 2, we define
the expected degree-r density Dr(m) to be the smaller of 1 and

1
m

[(
t(m)

1

)
+

(
t(m)

2

)
+ . . . +

(
t(m)

r

)]
.

Lemma 2. Suppose that r � 2 and that m is an integer whose expected degree-r
density is less than 1. Then not every element of Z/mZ can be expressed as a
sum of r elements of T (m) or less.

Proof. There are
(

t(m)
i

)
ways of choosing i elements from T (m) without rep-

etition, so the number of sums of r or fewer elements of T (m) is at most(
t(m)

1

)
+

(
t(m)

2

)
+ . . . +

(
t(m)

r

)
. If Dr(m) is less than 1, then the number of

such sums is less than m, so some element of Z/mZ is not such a sum. That is,
not every element of Z/mZ can be represented as a sum of r or fewer elements
of T (m).

Lemma 3. Suppose that 1 � r � n. Then(
n
1

)
+

(
n
2

)
+ . . . +

(
n
r

)
�

(
n + r − 1

r

)
.
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Proof. 1. When r = 1, 2, it is easy to check that(
n
1

)
+ . . . +

(
n
r

)
=

(
n + r − 1

r

)
.

2. When 3 � r � n, (
n
1

)
+

(
n
2

)
+ . . . +

(
n
r

)

=
(

n + 1
2

)
+

(
n
3

)
+ . . . +

(
n
r

)

<

(
n + 1

2

)
+

(
n + 1

3

)
+ . . . +

(
n
r

)

=
(

n + 2
3

)
+

(
n
4

)
+ . . . +

(
n
r

)
...

<

(
n + r − 2

r − 1

)
+

(
n + r − 2

r

)

=
(

n + r − 1
r

)
.

We prove the following theorem mainly using universal exponent, then the pro-
cess is denoted by universal exponent method.

Theorem 2. There is a constant c > 0 such that, for infinitely many values of
n, we have

s(n) >
c log n

log log n log log log n

Proof. Erdös, Pomerance, and Schmutz [18] show that there is a constant d > 0
such that there are infinitely many squarefree numbers m such that

λ(m) < (log m)d log log log m. (1)

We will prove that c = 1
4d . Note that the function log x

log log x log log log x is
increasing for x � 12006 where the differential of this function is
log log x log log log x−log log log x−1

x(log log x log log log x)2 , and that every integer x < 30359 has a triple-
base representation of length 4 or less. Let m be one of the infinite number of
squarefree integers that satisfy equation (1), with λ(m) � 4 (x � 30359) and

c log m
log log m log log log m � 4.

Since m is squarefree, there are at most λ(m) + 1 distinct powers of 2 in
Z/mZ, at most λ(m) + 1 distinct powers of 3 in Z/mZ, and at most λ(m) + 1
distinct powers of 5 in Z/mZ. It follows that

t(m) � (λ(m) + 1)3 < λ(m)4.
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Let r = � c log m
log log m log log log m�, so that r � 4. Then

Dr(m) =
1
m

[(
t(m)

1

)
+

(
t(m)

2

)
+ . . . +

(
t(m)

r

)]

� 1
m

(
t(m) + r − 1

r

)
by Lemma 3

<
t(m)r

m

< λ(m)4r/m

< e4rd log log m log log log m/m

� elog m/m

= 1,

so by Lemma 2, there is a nonnegative integer n < m such that the image of n
in Z/mZ cannot be written as the sum of r elements of T (m). It follows that

s(n) � r + 1 >
c log m

log log m log log log m
>

c log n

log log n log log log n
.

The final inequality depends on the fact that n � 12006, but we know that
n � 30359 because the span of n is at least r + 1 � 5.

There are infinitely many integers x whose shortest unsigned triple-base
representations have length greater than

c logx

log log x log log log x
, where c is a positive constant.

Therefore, the upper bound is greater than or equal to c log x
log log x log log log x and less

than or equal to C log x
log log x . Because the difference between these two numbers is

small, the presented upper bound on s(x) is meaningful.

5 Conclusion

In this paper, we have shown that an integer x can be represented using at most
k = O( log x

log log x ) 3-integers. We have also shown that there are infinitely many
integers x whose shortest triple-base representations have length greater than

c log x
log log x log log log x , where c is a positive constant.

Acknowledgments. We are very grateful to anonymous reviewers for their
helpful comments.
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Abstract. The triple-base number system is used to speed up scalar
multiplication. At present, the main methods to calculate a triple-base
chain are greedy algorithms. We propose a new method, called the
add/sub algorithm, to calculate scalar multiplication. The density of
such chains gained by this algorithm with base {2, 3, 5} is 1

5.61426
. It

saves 22% additions compared with the binary/ternary method; 22.1%
additions compared with the multibase non-adjacent form with base {2,
3, 5}; 13.7% additions compared with the greedy algorithm with base
{2, 3, 5}; 20.9% compared with the tree approach with base {2, 3}; and
saves 4.1% additions compared with the add/sub algorithm with base
{2, 3, 7}, which is the same algorithm with different parameters. To
our knowledge, the add/sub algorithm with base {2, 3, 5} is the fastest
among the existing algorithms. Also, recoding is very easy and efficient
and together with the add/sub algorithm are very suitable for software
implementation. In addition, we improve the greedy algorithm by plane
search which searches for the best approximation with a time complexity
of O(log3 k) compared with that of the original of O(log4 k).
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1 Introduction

Because there are no general-purpose sub-exponential algorithms known for the
elliptic curve discrete logarithm problem, greater attention have focused on
elliptic curves in the public key cryptography, for which speeding up scalar
multiplications is significant.

The double-base number system (DBNS) was first introduced in [1,2] for its
inherent sparseness in representing binary integers. M. Ciet, M. Joye, K. Lauter
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and P. L. Montgomery [3] first used this system in elliptic curve cryptogra-
phy (ECC). They gave a binary/ternary method to calculate scalar multipli-
cations with a chain of density 1

4.3774 . Following B.M.M.de Weger’s definition
of s-integers [4], for which the largest prime factor does not exceed the s-th
prime number, the integer of the form 2b3t is called a 2-integer. In 2005, V.
Dimitrov, L. Imbert and P. K. Mishra [5] introduced the concept of a double-
base chain for computing scalar multiplication. They used a greedy algorithm
to calculate double-base chains; the objective is to find the best approximation
with a 2-integer at each step. Several methods exist [6,7,8]. Later, C. Doche and
L. Imbert [9] used extended DBNS to perform scalar multiplications that also
uses the greedy algorithm. C. Doche and L. Habsieger [10] proposed a tree-based
approach for computing double-base chains. The density of the result is 1

4.6419 .
N. Méloni and M. A. Hasan [11] introduced an algorithm combining Yao’s algo-
rithm and double bases to calculate scalar multiplication. V. Suppakitpaisarn,
M. Edahiro, and H. Imai [12] proposed a method to calculate optimal double-
base chains although recoding is time consuming. For more about DBNS, we
refer readers to [13].

To compute scalar multiplications efficiently, the triple-base number system
(TBNS) was first introduced by P. K. Mishra and V. S. Dimitrov [14]. This
system is even more sparse than DBNS. P. Longa and A. Miri [15] proposed
a multibase non-adjacent form (mbNAF) to compute scalar multiplication. Re-
cently, G. N. Purohit and A. S. Rawat [16] calculated scalar multiplication with
base {2, 3, 7}.

In this paper, we improve the implementation of the greedy algorithm using
plane search to speed up the recoding process. We present an add/sub algorithm,
a new method to compute triple-base chains (TBCs) that is suitable for software
implementation. Theoretical analysis of the add/sub algorithm reveals that the
recoding time is very quick and the TBC density returned by the add/sub algo-
rithm with base {2, 3, 5} is 1

5.61426 . The average values of the biggest powers of
2, 3, and 5 in the corresponding chain are approximately equal to 0.454 log2 k,
0.216 log2 k and 0.0876 log2 k respectively for any given scalar k. The density of
the add/sub algorithm using base {2, 3, 7} is 1

5.38543 . The average values of the
biggest powers of 2, 3, and 7 in the corresponding chain are approximately equal
to 0.4702 log2 k, 0.2264 log2 k and 0.0609 log2 k respectively for given scalar k.

In calculating scalar multiplication, the TBC obtained by the add/sub al-
gorithm with base {2, 3, 5} has the smallest Hamming weight among existing
algorithms. Add/sub algorithm with base {2, 3, 5} saves 22% additions com-
pared with binary/ternary method; 22.1% additions compared to mbNAF with
base {2, 3, 5}; 13.7% additions compared to greedy algorithms with restriction
0.5 log k, 0.3 log k, 0.2 logk with base {2, 3, 5}; 20.9% compared to tree approach
using base {2, 3}; and saves 4.1% additions compared to add/sub algorithm
with base {2, 3, 7} which is the same algorithm with different parameters. To
our knowledge, the algorithm add/sub algorithm with base {2, 3, 5} is the fastest
among the existing algorithms.

The paper is organized as follows: In the next section, we recall some basic
facts about double-base number systems, multi-base number systems, and some
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algorithms to compute TBCs. In section 3, we introduce the greedy algorithm
and give plane search to implement the greedy algorithm efficiently. In section 4,
we introduce the add/sub algorithm to compute TBCs. In section 5, we give the
algorithm using TBCs to compute scalar multiplication and give the add/sub
recursive algorithm to recode and calculate scalar multiplication simultaneously.
In section 6, we provide a theoretical analysis of the add/sub algorithm with
base {2, 3, 5} and with base {2, 3, 7}. In section 7, we compare the add/sub
algorithm with other methods from different aspects such as Hamming weight,
bit cost, and recoding time. Finally, we conclude the paper.

2 Preliminary

2.1 Double-Base Chain

An important result of DBNS is that every integer k can be represented as at

most O
(

log k
log log k

)
2-integers [13]:

k =

m∑
i

si2
bi3ti , where si ∈ {−1, 1}. (1)

Scalar multiplication in ECC using double-base integers requires constructing
the double-base chain [5]. The concept of double-base chain is a special type
of DBNS where bi, ti in equation (1) satisfy b1 � b2 � . . . � bm � 0, t1 �
t2 � . . . � tm � 0. This representation is not unique and highly redundant.
The average length of double-base chains generated by existing algorithms are

all O(log k) [10], not O
(

log k
log log k

)
.

2.2 Multibase Non-adjacent Form

P. Longa and A. Miri [15] proposed the mbNAF, the window multibase
non-adjacent form (wmbNAF) and the extended wmbNAF to compute scalar
multiplications. The respective average densities of mbNAF, wmbNAF, and
extended wmbNAF are 1

2 log2 a1+
∑J

i=1
1

ai−1 log2 ai
, 1

w log2 a1+
∑J

i=1
1

ai−1 log2 ai
, and

1∑J
i=1

(
wi+

1
ai−1

)
log2 ai

, where ai, 1 � i � J are the bases, and {wi, 1 � i � J} the

corresponding window widths [17].

The precomputed table for the mbNAF consists of
a2
1−a1−2

2 points. If a1 = 2,
the requirement of mbNAF’s precomputations is 0. If a2 = 3, a3 = 5, the average
density is 1

3+ 1
2 log2 3+ 1

4 log2 5
= 1

4.3730 = 0.2287, whereas if a2 = 3, a3 = 7, the

average density is 1
3+ 1

2 log2 3+ 1
6 log2 7

= 1
4.2604 = 0.2347.

2.3 Triple-Base Chains

Any integer k can be represented as a TBC with base {a1, a2, a3}:

k =

m∑
i=1

sia
e1i
1 ae2i2 ae3i3 ,
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where si ∈ {−1, 1}, e11 � e12 � e13 � . . . � e1m � 0, e21 � e22 � e23 � . . . �
e2m � 0, e31 � e32 � e33 � . . . � e3m � 0. In the following, we assume that
a1, a2, a3 are three prime numbers and a1 < a2 < a3. For example, with base
{2, 3, 5}, k is represented as

k =

m∑
i=1

si2
bi3ti5qi ,

where si ∈ {−1, 1}, b1 � b2 � b3 � . . . � bm � 0, t1 � t2 � t3 � . . . � tm � 0,
q1 � q2 � q3 � . . . � qm � 0.

P. K. Mishra, V. S. Dimitrov [14] used the greedy algorithm to calculate a TBC
by finding the best approximation of a 3-integer at each step. They mentioned
that one can generate a random integer directly in a TBC given an arbitrary
scalar. In this instance, the TBC may not be the shortest. In other situations, if
the scalar is known beforehand, the conversion can be done offline. G. N. Purohit
and A. S. Rawat [16] performed efficient scalar multiplications using base {2, 3,
7}. They also used the greedy method finding the best approximation for a
{2, 3, 7}-base integer at each step.

3 Plane Search

W. Yu, K. Wang, and B. Li [8] proposed a line algorithm to compute the best
approximation of a {a, b}-integers. They calculated the {a, b}-integers near the
line x log2 a+y log2 b = log2 k where k is the scalar at each step. We generalize the
line algorithm to find the TBC representation of a {a1, a2, a3}-integer. In this
way, the line becomes a plane described by x log2 a1+y log2 a2+z log2 a3 = log2 k.
The greedy algorithm [14,16], which is outlined in Table 1, works by finding the
best approximation with a {a1, a2, a3}-integer at each step. We give the plane
search method for finding the best approximation faster.

The plane search method scans all the points with integer coordinates near
the plane x log2 a1+y log2 a2+z log2 a3 = log2 k and keeps only the best approxi-
mation. It returns the same {a1, a2, a3}-integers as the method in [14] searching
the best approximation in cube [0, e1max] × [0, e2max] × [0, e3max]. The com-
plexity [14] of searching the best approximation in this cube is O(log3 k). The
complexity of a plane search is O(log2 k) where k is the scalar.

4 Add/Sub Algorithm

In this section, we propose a new method to compute scalar multiplications that
is more efficient than the greedy algorithm. Let vp(n) denote the p-adic valuation
of the integer n.

Definition 1. The gather C(a1, a2, a3) denotes the set of all positive integers
x such that va1(x) = va2(x) = va3(x) = 0. We simplify the symbol as C if
a1, a2, a3 are known.
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Table 1. Greedy Algorithm

Input: a n-bit positive integer k; three bases a1, a2, a3;
the largest allowed a1, a2 and a3 exponents e1max, e2max, e3max

Output: The sequence (si, e1i, e2i, e3i)i>0,
such that k =

∑
i sia

e1i
1 ae2i

2 ae3i
3 , with e11 � e12 � · · · � e1m � 0,

e21 � e22 � · · · � e2m � 0, e31 � e32 � · · · � e3m � 0

1. s1 ← 1, i← 1
2. while k > 0 do
3. z ← ae1i

1 ae2i
2 ae3i

3 , the best approximation of k with
0 � e1i � e1max, 0 � e2i � e2max, 0 � e3i � e3max

4. e1max ← e1i
5. e2max ← e2i
6. e3max ← e3i
7. i++
8. if k < z then
9. si ← −si−1

10. else
11. si ← si−1

12. k ← |k − z|
13. return k =

∑
i sia

e1i
1 ae2i

2 ae3i
3

Table 2. Plane Search

Input: a positive integer k; three bases a1, a2, a3;
the largest allowed a1, a2 and a3 exponents e1max, e2max, e3max � 0

Output: (e1, e2, e3), e1 � e1max, e2 � e2max, e3 � e3max

such that z = ae1
1 ae2

2 ae3
3 the best approximation of k

1. spare ← k, j ← 0
2. for r from 0 to e3max

3. z ← ae1max
1 · ar

3, i ← e1max

4. while z < k
5. z ← z ∗ a2, j ← j + 1.
6. while(i � 0)
7. if(|k − z| < spare)
8. spare ← |k − z|
9. e1 ← i, e2 ← j, e3 ← r
10. if(z < k)
11. z ← z ∗ a2, j ← j + 1
12. if(j > e2max) break
13. else z ← z

a1
, i ← i− 1

14. return (e1, e2, e3)

The main method, the add/sub algorithm, is a generalization of the binary/
ternary approach [3]. The main operations in this algorithm are add and sub.
At each iteration of the add/sub algorithm, for a given positive integer k ∈ C,
remove the powers of a1, a2, a3 from k− 1, k+ 1; select the smaller one as the
initial k of the next iteration; repeat the iteration until k = 1. The algorithm is
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Table 3. Add/Sub Triple Base Chain Algorithm

Input: scalar k > 0; three bases a1, a2, a3

Output: A triple base chain

1. i ← 1
2. e1i ← va1(k), e2i ← va2(k), e3i ← va3(k)
3. k ← k

a
e1i
1 a

e2i
2 a

e3i
3

4. while k > 1 do
5. g1 ← va1(k − 1), g2 ← va2(k − 1), g3 ← va3(k − 1)
6. h1 ← va1(k + 1), h2 ← va2(k + 1), h3 ← va3(k + 1)

7. if(ag1
1 ag2

2 ag3
3 > ah1

1 ah2
2 ah3

3 )
8. si ← 1, i ← i+ 1, e1i ← e1(i−1) + g1, e2i ← e2(i−1) + g2,

e3i ← e3(i−1) + g3
9. k = k−1

a
g1
1 a

g2
2 a

g3
3

10. else
11. si ← −1, i ← i+ 1, e1i ← e1(i−1) + h1, e2i ← e2(i−1) + h2,

e3i ← e3(i−1) + h3

12. k ← k+1

a
h1
1 a

h2
2 a

h3
3

13. si ← k, e1i ← 0, e2i ← 0, e3i ← 0

14. return
∑

i(sia
e1i
1 ae2i

2 ae3i
3 )

shown in Table 3. In the application of the add/sub algorithm for this paper, we
mainly focus on bases {2, 3, 5} and base {2, 3, 7}. An example is presented in
section 4.1.

4.1 An Example of Add/Sub Algorithm

Let k = 895712 the same number as in [16]. We show the output of Add/Sub
algorithm when the base is {2, 3, 5} and {2, 3, 7}.

Base {2, 3, 5}
The processes of add/sub algorithm are run as:
e11 = 5, e21 = 0, e31 = 0, s1 = 1,
e12 = 5 + 1 = 6, e22 = 2, e32 = 1, s2 = −1,
e13 = 6 + 3 = 9, e23 = 2+ 1 = 3, e33 = 1, s3 = 1,
e14 = 9 + 2 = 11, e24 = 3 + 1 = 4, e34 = 1, s4 = 1.
895712 is then represented as:

895712 =25 − 263251 + 293351 + 2113451

=2113451 + 293351 − 263251 + 25.

In the add/sub algorithm, we produce sequences k =
∑m

i=1 sia
e1i
1 ae2i2 ae3i3 , where

si ∈ ±1, e11 � e12 � e13 � . . . � e1m, e21 � e22 � e23 � . . . � e2m, e31 � e32 �
e33 � . . . � e3m. The chain gained by Add/Sub Triple Base Chain is a Non-
decreasing sequence. Let s′i = sm+1−i, e′1i = e1(m+1−i), e′2i = e2(m+1−i), e′3i =



Triple-Base Number System for Scalar Multiplication 439

e3(m+1−i), 1 � i � m, i.e. Reversing the sequence, k can be rewritten as k =∑m
i=1 s

′
ia

e′1i
1 a

e′2i
2 a

e′3i
3 , which is a TBC.

Remark: Using the greedy algorithm, 895712 has representation

895712 = 253255 − 223253 − 223253 + 3252 − 3151 + 3− 1,

which is 3 terms longer than that given by the add/sub algorithm, whereas using
mbNAF, 895712 is represented as

895712 = 21253 − 2953 − 28 − 25.

Base {2, 3, 7}
Similarly, the processes of the add/sub algorithm are run with:
e11 = 5, e21 = 0, e31 = 0, s1 = 1,
e12 = 5 + 1 = 6, e22 = 2, e32 = 0, s2 = 1,
e13 = 6 + 1 = 7, e23 = 2+ 1 = 3, e33 = 1, s3 = 1,
e14 = 7 + 2 = 9, e24 = 3+ 2 = 5, e34 = 1, s4 = 1.
895712 is with {2,3,7}-integer representations:

895712 =25 + 2632 + 273371 + 293571

=293571 + 273371 + 2632 + 25.

4.2 The Correctness of Add/Sub Algorithm

For the two bases focused on, a1 is equal to 2 in both. In every iteration of
add/sub algorithm, v2(k) = 0, i.e. ki is an odd number. Then ki − 1, ki + 1
are even numbers. In every iteration of the add/sub algorithm, ki+1 is at most
ki+1
2 . Then, the add/sub algorithm requires at most log2(k) iterations. Thus,

the correction of add/sub algorithm is proved when a1 = 2.
If a1 = 3, the add/sub algorithm can also process successfully. Notice that

one of k + 1, k − 1 can be divided by 3. In the same way as analyzing a1 = 2,
the add/sub algorithm can process at most log3(k) iterations.

Thus, the correction of the add/sub algorithm is demonstrated if a1 = 2 or
a1 = 3.

Not all bases can use the add/sub algorithm to compute the TBC. For exam-
ple, take a1 = 7, a2 = 11, a3 = 17, if k = 5, the add/sub algorithm to find the
TBC does not work.

5 Scalar Multiplication

5.1 Triple Base Chain Method to Calculate Scalar Multiplication

In Table 4, we show how to calculate scalar multiplication using a TBC. The
implementation is easy to understand and perform.
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Table 4. TBC to Calculate Scalar Multiplication

Input: scalar k =
∑

i(sia
e1i
1 ae2i

2 ae3i
3 ), such that a1, a2, a3 are three bases,

si ∈ {±1}, e11 � e12 � e13 � . . . e1m � 0, e21 � e22 � e23 � . . . e2m � 0,
e31 � e32 � e33 � . . . e3m � 0; a point P

Output: kP

1. i ← 1, Q ← 0
2. while(i<m)

3. Q ← (Q+ siP )a
e1i−e1(i+1)

1 a
e2i−e2(i+1)

2 a
e3i−e3(i+1)

3

4. i++
5. Q ← (Q+ smP )ae1m

1 ae2m
2 ae3m

3

6. return Q

Table 5. Recursive TBC to Calculate Scalar Multiplication

Input: scalar k; a point P ; three bases a1, a2, a3

Output: kP

1. e11 ← va1(k), e21 ← va2(k), e31 ← va3(k)
2. k ← k

a
e11
1 a

e21
2 a

e31
3

3. return ae11
1 ae21

2 ae31
3 (Recursive(k,P, a1, a2, a3))

Table 6. Recursive algorithm

Input: scalar k; a point P ; three bases a1, a2, a3

Output: kP

1. if k = 1
2. return P
3. else
4. g1 ← va1(k − 1), g2 ← va2(k − 1), g3 ← va3(k − 1)
5. h1 ← va1(k + 1), h2 ← va2(k + 1), h3 ← va3(k + 1)

6. if(ag1
1 ag2

2 ag3
3 > ah1

1 ah2
2 ah3

3 )
7. k ← k−1

a
g1
1 a

g2
2 a

g3
3

8. return ag1
1 ag2

2 ag3
3 (Recursive(k,P, a1, a2, a3) + P )

9. else
10. k ← k+1

a
h1
1 a

h2
2 a

h3
3

11. return ah1
1 ah2

2 ah3
3 (Recursive(k, P, a1, a2, a3)− P )

5.2 Recursive Algorithm

In Table 5, we give the algorithm using recursive algorithm, given in Table 6,
to calculate scalar multiplication. This recursive algorithm is a method that
performs recoding and calculating scalar multiplication simultaneously.
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6 Complexity Analysis

Lemma 1. Given three integers α1, α2, α3, the cardinality of C∩[1, aα1
1 aα2

2 aα3
3 ]

is equal to (a1 − 1)(a2 − 1)(a3 − 1)aα1−1
1 aα2−1

2 aα3−1
3 .

Proof. The cardinality of [1, aα1
1 aα2

2 aα3
3 ] is aα1

1 aα2
2 aα3

3 . The cardinality of C ∩
[1, aα1

1 aα2
2 aα3

3 ] is equal to aα1
1 aα2

2 aα3
3 × (1 − 1

a1
) × (1 − 1

a2
) × (1 − 1

a3
) = (a1 −

1)(a2 − 1)(a3 − 1)aα1−1
1 aα2−1

2 aα3−1
3 .

The cardinalities of the two bases of focus, {2, 3, 5} and {2, 3, 7}, are
2α1+23α2−15α3−1 and 2α1+13α27α3−1 respectively.

Lemma 2. Suppose that k is an integer satisfying va1(k) = 0, va2(k) = 0 and
va3(k) = 0. Let g1 = va1(k−1), g2 = va2(k−1), g3 = va3(k−1), h1 = va1(k+1),
h2 = va2(k+1), h3 = va3(k+1). Let x1 = g1+h1, x2 = g2+h2 and x3 = g3+h3.
Then

x1 = va1(k − 1 + iax1+1
1 ax2+1

2 ax3+1
3 ) + va1(k + 1 + iax1+1

1 ax2+1
2 ax3+1

3 ),

x2 = va2(k − 1 + iax1+1
1 ax2+1

2 ax3+1
3 ) + va2(k + 1 + iax1+1

1 ax2+1
2 ax3+1

3 ), ∀ i ∈ Z

x3 = va3(k − 1 + iax1+1
1 ax2+1

2 ax3+1
3 ) + va3(k + 1 + iax1+1

1 ax2+1
2 ax3+1

3 ),

Proof. Let k − 1 be equal to ag11 ag22 ag33 × y, where y ∈ C. Then

k − 1 + i · ax1+1
1 ax2+1

2 ax3+1
3

=ag11 ag22 ag33 (y + ax1−g1+1
1 ax2−g2+1

2 ax3−g3+1
3 ),

va1(k − 1 + i · ax1+1
1 ax2+1

2 ax3+1
3 ) = g1,

va2(k − 1 + i · ax1+1
1 ax2+1

2 ax3+1
3 ) = g2,

va3(k − 1 + i · ax1+1
1 ax2+1

2 ax3+1
3 ) = g3.

In the same way, let k + 1 be equal to ah1
1 ah2

2 ah3
3 × z, where z ∈ C. Then

k + 1+ i · ax1+1
1 ax2+1

2 ax3+1
3

=ag11 ag22 ag33 (z + ax1−h1+1
1 ax2−h2+1

2 ax3−h3+1
3 ),

va1(k + 1 + i · ax1+1
1 ax2+1

2 ax3+1
3 ) = h1,

va2(k + 1 + i · ax1+1
1 ax2+1

2 ax3+1
3 ) = h2,

va3(k + 1 + i · ax1+1
1 ax2+1

2 ax3+1
3 ) = h3.

Thus,

x1 = va1(k − 1 + iax1+1
1 ax2+1

2 ax3+1
3 ) + va1(k + 1 + iax1+1

1 ax2+1
2 ax3+1

3 ),

x2 = va2(k − 1 + iax1+1
1 ax2+1

2 ax3+1
3 ) + va2(k + 1 + iax1+1

1 ax2+1
2 ax3+1

3 ), ∀ i ∈ Z

x3 = va3(k − 1 + iax1+1
1 ax2+1

2 ax3+1
3 ) + va3(k + 1 + iax1+1

1 ax2+1
2 ax3+1

3 ),
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If a1 = 2, a2 = 3, a3 = 5, v2(k) = 0, thus v2(k + 1) � 1, v2(k − 1) � 1.
As one of the numbers for two adjacent even numbers must be divisible by
4, then x1 = v2(k + 1) + v2(k − 1) � 3. With v3(k) = 0, one of the three
k − 1, k, k + 1 is divisible by 3, then v3(k − 1) + v3(k) + v3(k + 1) � 1, i.e.
x2 = v3(k − 1) + v3(k + 1) � 1. Then x3 = v5(k − 1) + v5(k + 1) � 0 + 0 = 0.

In the same way, x1 � 3, x2 � 1, x3 � 0 if a1 = 2, a2 = 3, a3 = 7.

6.1 With Base {2, 3, 5}
Definition 2. The probability associated with x1, x2, x3 is lim

n→∞
|T (n)|

n where

T (n) = {k|k ∈ Z+, k < n and k satisfies equation (2) }

x1 = va1(k − 1) + va1(k + 1),

x2 = va2(k − 1) + va2(k + 1), ∀ i ∈ Z

x3 = va3(k − 1) + va3(k + 1),

(2)

Lemma 3. For every x1 � 3, x2 � 1, x3 > 0, there are eight cases, listed in
Table 7, for the values of g1, g2, g3, h1, h2, h3 (defined in Table 6); each case
gives the same probability 2−x1+13−x25−x3.

Table 7. Relationship between xi and gi, hi, 1 � i � 3, x3 = 0

case g1 g2 g3 h1 h2 h3 probability

1 x1 − 1 x2 x3 1 0 0 2−x1+13−x25−x3

2 1 0 0 x1 − 1 x2 x3 2−x1+13−x25−x3

3 x1 − 1 x2 0 1 0 x3 2−x1+13−x25−x3

4 1 0 x3 x1 − 1 x2 0 2−x1+13−x25−x3

5 x1 − 1 0 x3 1 x2 0 2−x1+13−x25−x3

6 1 x2 0 x1 − 1 0 x3 2−x1+13−x25−x3

7 x1 − 1 0 0 1 x2 x3 2−x1+13−x25−x3

8 1 x2 x3 x1 − 1 0 0 2−x1+13−x25−x3

Lemma 4. For every x1 � 3, x2 � 1, x3 = 0, there are four cases (listed in
Table 8) for the values of g1, g2, g3, h1, h2, h3. The probability associated with
each case is 2−x13−x2.

Table 8. Relationship between xi and gi, hi, 1 � i � 3, x3 = 0

case g1 g2 g3 h1 h2 h3 probability

1 x1 − 1 x2 0 1 0 0 2−x13−x2

2 1 0 0 x1 − 1 x2 0 2−x13−x2

3 x1 − 1 0 0 1 x2 0 2−x13−x2

4 1 x2 0 x1 − 1 0 0 2−x13−x2
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The proofs of lemma 3, 4 are given in appendix A and B respectively.

Theorem 1. Given base {2, 3, 5}, the TBC returned by add/sub algorithm ex-
hibit the following features:

1. The average density is 5.61426.
2. The average decreasing number of powers of 2, 3, 5 are 2.54888, 1.21364,

0.491749 respectively.
3. The average values of the biggest powers of 2, 3, 5 in the corresponding

chain are approximately equal to 0.454 log2 k, 0.216 log2 k and 0.0876 log2 k
respectively.

Proof. Let K denote the average number of bits eliminated at each step in the
add/sub algorithm.

K =2

∞∑
x1=3

∞∑
x2=1

2−x13−x2[(x1 − 1 + x2 log2 3 + max{(x1 − 1), 1 + x2 log2 3}]

+ 2
∞∑

x1=3

∞∑
x2=1

∞∑
x3=1

2−x1+13−x25−x3 [(x1 − 1 + x2 log2 3 + x3 log2 5)

+ max{(x1 − 1) + x2 log2 3, 1 + x3 log2 5}
+max{(x1 − 1) + x3 log2 5, 1 + x2 log2 3}
+max{(x1 − 1), 1 + x2 log2 3 + x3 log2 5}]

≈2

200∑
x1=3

100∑
x2=1

2−x13−x2[(x1 − 1 + x2 log2 3 + max{(x1 − 1), 1 + x2 log2 3}]

+ 2

200∑
x1=3

100∑
x2=1

100∑
x3=1

2−x1+13−x25−x3 [(x1 − 1 + x2 log2 3 + x3 log2 5)

+ max{(x1 − 1) + x2 log2 3, 1 + x3 log2 5}
+max{(x1 − 1) + x3 log2 5, 1 + x2 log2 3}
+max{(x1 − 1), 1 + x2 log2 3 + x3 log2 5}]

=2.54888 + 1.21364 log2 3 + 0.491749 log2 5

=5.61426.

Then the average values of the biggest powers of 2, 3, 5 in the corresponding
chain are approximately equal to 2.54888

5.61426 log2 k = 0.454 log2 k,
1.21364
5.61426 log2 k =

0.216 log2 k and 0.491749
5.61426 log2 k = 0.0876 log2 k respectively.

6.2 With Base {2, 3, 7}
Theorem 2. With base {2, 3, 7}, the probability of x1, x2, x3 is 2−x1+13−x2

7−x3 for x3 �= 0 and 22−x13−1−x2 if x3 = 0. The TBC returned by the add/
subtraction algorithm with base {2, 3, 7} has the following features:
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1. The average density is 5.38543.
2. The average decreasing number of powers of 2, 3, 7 are 2.53212, 1.21944,

0.327904 respectively.
3. The average values of the biggest powers of 2, 3, 7 in the corresponding

chain are approximately equal to 0.4702 log2 k, 0.2264 log2 k and 0.0609 log2 k
respectively.

Proof. Let K ′ denote the average number of bits eliminated at each step of
add/sub algorithm using base {2, 3, 7}.

K ′ ≈2

200∑
x1=3

100∑
x2=1

22−x13−1−x2 [(x1 − 1 + x2 log2 3 + max{(x1 − 1), 1 + x2 log2 3}]

+ 2
200∑
x1=3

100∑
x2=1

100∑
x3=1

2−x1+13−x27−x3 [(x1 − 1 + x2 log2 3 + x3 log2 7)

+ max{(x1 − 1) + x2 log2 3, 1 + x3 log2 7}
+max{(x1 − 1) + x3 log2 7, 1 + x2 log2 3}
+max{(x1 − 1), 1 + x2 log2 3 + x3 log2 7}]

=2.53212+ 1.21944 log2 3 + 0.327904 log2 7

=5.38543.

7 Comparison

In appendix C, the computation cost associated elliptic curve point operations
is given for Weierstrass forms using Jacobian coordinates (Jacobian), Jacobi
quartic forms using extended coordinates (JQuartic), and binary fields (Bfield).

Definition 3. The bit cost is the time cost per bit to perform a scalar mul-
tiplication, i.e. the total scalar multiplication cost divided by the length of the
scalar.

If this cost estimate is not a constant number, then the bit cost does not exist.
In the algorithms we are analyzing, the bit cost always exists.

In Table 9, method binary/ternary, tree(2,3), mbNAF(2,3,5), Add/Sub(2,3,5),
Add/Sub(2,3,7) refer respectively to the binary/ternary method [3], tree-based
approach [10], mbNAF with base {2, 3, 5}, add/sub algorithm with base {2,
3, 5}, add/sub algorithm with base {2, 3, 7}. The average density of these five
algorithms are 1

4.3774 ,
1

4.6419 ,
1

4.373 ,
1

5.61426 ,
1

5.38543 which are the values in column
mA in Table 9. For the greedy algorithms, we mainly focus on the algorithm
with base {2, 3, 5}. In fact, the greedy algorithm with base {2, 3, 7} will be
slightly slower than that with base {2, 3, 5}. Greedy(c1, c2, c3) refers to the
greedy algorithm for which the initial refinements of e1max, e2max, e3max in
Table 1 are c1 log2 k, c2 log2 k, c3 log2 k.
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Table 9. Theoretical time cost of different methods with base {2,3,5} or base {2,3,7}
for per bit

Method D T Q ST mA Jacobian JQuartic Bfield

binary/ternary 0.4569 0.3427 - - 0.2284 9.846 8.498 11.99

tree(2,3) 0.5569 0.2795 - - 0.2154 9.617 8.281 11.92

mbNAF(2,3,5) 0.686 0.1143 0.0572 - 0.2287 9.696 8.301 11.89

Add/Sub(2,3,5) 0.454 0.216 0.0876 - 0.1781 9.433 8.146 11.14

Add/Sub(2,3,7) 0.4702 0.2264 - 0.0609 0.1857 9.622 8.281 -

Table 10. Experimental time cost of different Greedy methods using base {2,3,5} for
per bit

Method D T Q mA Jacobian JQuartic Bfield

Greedy(1,1,1) 0.32826 0.20188 0.15031 0.26228 10.4627 9.019 11.639

Greedy(0.4,0.3,0.25) 0.24947 0.202666 0.183702 0.240612 10.3547 8.94751 11.2475

Greedy(0.3,0.3,0.25) 0.22166 0.25302 0.161307 0.22803 10.2272 8.85374 11.1958

Greedy(0.5,1/3,0.2) 0.3348 0.227156 0.130238 0.209412 9.89441 8.55208 11.1937

Greedy(0.5,0.3,0.2) 0.3518 0.206854 0.136776 0.206456 9.85558 8.51431 11.1473

Because the greedy algorithm is hard to analyze, we ran every greedy algo-
rithm 100,000 times for 160 bits, obtaining the averaged data shown in Table
10. Greedy(0.4,0.3,0.25) and Greedy(0.3,0.3,0.25) were selected by [14]. They did
not find better refinements of the greedy algorithm. Greedy(0.5,0.3,0.2) is the
fastest among these algorithms with the chosen refinements we have made. In
the following, we use specifically Greedy(0.5,0.3,0.2) as representative of greedy
algorithms.

7.1 Hamming Weight Comparison

The Hamming weight, listed in Table 11 for different algorithms, is one of the
most important factors influencing the speed of scalar multiplications.

From Table 11, the add/sub algorithm with base {2, 3, 5} is seen to have
the smallest Hamming weight. The Hamming weight is the addition number

Table 11. Hamming Weight of different methods

Method Hamming Weight

binary/ternary 1
4.3774

≈ 0.2284

tree(2,3) 1
4.6419

≈ 0.2154

mbNAF(2,3,5) 1
4.373

≈ 0.2287

Add/Sub(2,3,5) 1
5.61426

≈ 0.1781

Add/Sub(2,3,7) 1
5.38543

≈ 0.1857

Greedy(0.5,0.3,0.2) 0.206456
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in the scalar multiplication. Add/Sub(2,3,5) saves 22% in additions compared
with binary/ternary; 22.1% in additions compared to mbNAF(2,3,5); 13.7% in
additions compared to Greedy(0.5,0.3,0.2) with base {2,3,5}; 20.9% compared
to tree(2,3); and saves 4.1% in additions compared to Add/Sub(2,3,7) which is
also proposed in this paper.

7.2 Bit Cost Comparison

The total cost for scalar multiplications kP is equal to the bit cost multiplied by
the length of scalar k. The bit cost comparison is rational, i.e., bit cost reflects
the total cost in performing scalar multiplication.

The National Institute of Standards and Technology suggests that elliptic
curves over prime fields are suitable for implementation using Jacobian coordi-
nates. Jquartic is the fastest among the different forms for the elliptic curves,
with Bfield being the more suitable for hardware implementation. We then an-
alyzed different algorithms for scalar multiplication using these typical forms of
the elliptic curves. Add/Sub(2, 3, 5) is the fastest among these algorithms for
Jacobian, JQuartic, and Bfield.

In Tables 9 and 10, D + T log2 3 + Q log2 5 + ST log2 7 ≈ 1. The Hamming
weight is very significant in the performance of multi-scalar multiplications.
When we used the Jacobian coordinates, the cost of a doubling is only 7M
which is effective, but a quintupling needs 19.6M > log2 5×the cost of double =
7 log2 5M . The time cost reduction for scalar multiplication with the multi-base
method is slower than that for the Hamming weight. Thus, the Hamming weight
is not the only factor that influences scalar multiplication. In single-base meth-
ods, such as the binary method and the NAF, the Hamming weight is the only
factor influencing the speed of scalar multiplication.

From Tables 9 and 10, the Hamming weight still plays a significant role in the
scalar multiplication.

7.3 Recoding Time Comparison

Although our plain search, used in the greedy algorithm at each step, has tremen-
dously sped up the recoding time, the recoding time needed is O(log q)3. The
recoding time of the add/sub algorithm is O(log q) which is very efficient on
software implementation.

8 Conclusions

With a focus on TBC, we proposed a new method, called add/sub algorithm,
to compute scalar multiplication. According with a comparison of the Hamming
weight, bit cost, and recoding time, the add/sub algorithm is very efficient. Also
this algorithm is very suitable for software implementation. To our knowledge,
the algorithm add/sub algorithm with base {2, 3, 5} is fastest among the exist-
ing algorithms.



Triple-Base Number System for Scalar Multiplication 447

Acknowledgments. We are very grateful to anonymous reviewers for their
helpful comments.

References

1. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Theory and applications for a double-
base number system. In: IEEE Symposium on Computer Arithmetic, pp. 44–53
(1997)

2. Dimitrov, V.S., Jullien, G.A.: Loading the bases: A new number representation
with applications. IEEE Circuits and Systems Magazine 3(2), 6–23 (2003)

3. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading inversions for multi-
plications in elliptic curve cryptography. Designs, Codes and Cryptography 39(6),
189–206 (2006)

4. de Weger, B.M.M.: Algorithms for Diophantine equations. CWI Tracts, vol. 65.
Centrum voor Wiskunde en Informatica, Amsterdam (1989)

5. Dimitrov, V.S., Imbert, L., Mishra, P.K.: Efficient and Secure Elliptic Curve Point
Multiplication Using Double-Base Chains. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)

6. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: An algorithm for modular exponenti-
ation. Information Processing Letters 66(3), 155–159 (1998)
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Appendix A: Proof of Lemma 3

Proof. In the add/sub algorithm, one of the pair g1, h1 is 1 whereas the other
is greater than 1; one of the pair g2, h2 is 0 and one of the pair g3, h3 is 0. The
lowest common multiple (lcm) of 2g13g25g3 and 2h13h25h3 is 2x1−13x25x3 .

In the interval [1, 2x1+13x2+15x3+1], if k, k′ in the case g1, g2, g3, h1, h2, h3,
then k, k′ satisfy k − 1 = 2g13g25g3 × y, k + 1 = 2h13h25h3 × z, k′ − 1 =
2g13g25g3 × y′, k′ + 1 = 2h13h25h3 × z′, where y, z, y′, z′ ∈ Z. Then k′ − k0 =
2g13g25g3×(y′−y) = 2h13h25h3×(z−z′) where k0 satisfies k0−1 = 2g13g25g3×y0,
k0 + 1 = 2h13h25h3 × z0, y0, z0 ∈ Z, 0 � k0 < 2x1−13x25x3 .

Thus k′ − k0 is exactly divisible by lcm(2g13g25g3 , 2h13h25h3), ki = k0 + i ·
lcm(2g13g25g3 , 2h13h25h3) = k0 + i · 2x1−13x25x3 satisfy ki − 1 = 2g13g25g3 × (y+
i · 2x1−g1−13x2−g25x3−g3), ki + 1 = 2h13h25h3 × (z + i · 2x1−h1−13x2−h25x3−h3),
where 0 � i < 60.

1. g1 = x1 − 1, g2 = x2, g3 = x3; h1 = 1, h2 = 0, h3 = 0. k0 = 1, ki =
i · 2x1−13x25x3 + 1, 0 � i < 60, there exist 60− 60

2 − 60
3 − 60

5 + 60
2×3 + 60

2×5 +
60
3×5 − 60

2×3×5 = 16 numbers i coprime to 30.

According to Lemma 1, the cardinality of C ∩ [1, 2x1+13x2+15x3+1] is
2x1+33x25x3 . Thus the probability of case 1 in Table 7 is 16

2x1+33x25x3
=

2−x1+13−x25−x3 .

2. g1 = 1, g2 = 0, g3 = 0; h1 = x1−1, h2 = x2, h3 = x3. k0 = 2x1−13x25x3−1,
ki = (i+1) · 2x1−13x25x3 − 1, 0 � i < 60, there are then 60− 60

2 − 60
3 − 60

5 +
60
2×3 + 60

2×5 + 60
3×5 − 60

2×3×5 = 16 numbers i+ 1 coprime to 30.

According to Lemma 1, the cardinality of C ∩ [1, 2x1+13x2+15x3+1] is
2x1+33x25x3 . Thus the probability of case 2 in Table 7 is 16

2x1+33x25x3
=

2−x1+13−x25−x3 .

3. In the same way as items 1 and 2, the probability for cases 3 through 6 in
Table 7 is 16

2x1+33x25x3
= 2−x1+13−x25−x3 .

http://eprint.iacr.org/2011/569.pdf
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4. g1 = x1 − 1, g2 = 0, g3 = 0, h1 = 1, h2 = x2, h3 = x3. k0 = m · 2x1−1 + 1 =
n · 2 · 3x2 · 5x3 − 1. ki = k0 + i · 2x1−13x25x3 where k0 < 2x1−13x25x3 .
ki − 1 = 2x1−1(m+ i · 3x25x3) requires that i is even.
ki + 1 = 2 · 3x2 · 5x3(n + i · 2x1−2) requires that v3(n + i · 2x1−2) = 0 and
v5(n+ i · 2x1−2) = 0.
Then there exist 60× 1

2 × 2
3 × 4

5 = 16 items.
According to Lemma 1, the cardinality of C ∩ [1, 2x1+13x2+15x3+1] is
2x1+33x25x3 . Thus the probability of case 7 in Table 7 is 16

2x1+33x25x3
=

2−x1+13−x25−x3 .
5. Similar to the previous item, there are 60× 1

2 × 2
3 × 4

5 = 16 items.
According to Lemma 1, the cardinality of C ∩ [1, 2x1+13x2+15x3+1] is
2x1+33x25x3 . Thus the probability of case 8 in Table 7 is 16

2x1+33x25x3
=

2−x1+13−x25−x3 .

Appendix B: Proof of Lemma 4

Proof. In the interval [1, 2x1+13x2+15x3+1], if k, k′ in the case g1, g2, g3, h1,
h2, h3, then k, k′ satisfy k− 1 = 2g13g25g3 × y, k+1 = 2h13h25h3 × z, k′ − 1 =
2g13g25g3 × y′, k′ + 1 = 2h13h25h3 × z′, where y, z, y′, z′ ∈ Z. Then k′ − k0 =
2g13g25g3×(y′−y) = 2h13h25h3×(z−z′) where k0 satisfies k0−1 = 2g13g25g3×y0,
k0 + 1 = 2h13h25h3 × z0, y0, z0 ∈ Z, 0 � k0 < 2x1−13x2.

Then k′ − k0 is exactly divisible by lcm(2g13g25g3 , 2h13h25h3), ki = k0 + i ·
lcm(2g13g25g3 , 2h13h25h3) = k0 + i · 2x1−13x25x3 satisfy ki − 1 = 2g13g25g3 × (y+
i · 2x1−g1−13x2−g25x3−g3), ki + 1 = 2h13h25h3 × (z + i · 2x1−h1−13x2−h25x3−h3),
where 0 � i < 60.

1. k0 = 1, ki = i ·2x1−13x2 +1, gcd(i, 30) = 1, 0 � i < 60, there are 16 numbers
satisfy gcd(i, 30) = 1 such as 1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 49, 53, 59. Among these ki, there are 4 items which are not relatively
prime to 5. ki + 1 = i · 2x1−13x2 + 2 = 2(i · 2x1−23x2 + 1) have another four
items which is not relatively prime to 5. There are 16 − 4 − 4 = 8 items
satisfying g1 = x1 − 1, g2 = x2, g3 = 0, h1 = 1, h2 = 0, h3 = 0. According
to Lemma 1, the cardinality of C ∩ [1, 2x1+13x2+151] is 2x1+33x2 . Thus the
probability for case 1 of Table 8 is 8

2x1+33x2
= 2−x13−x2 .

2. k0 = 2x1−13x2 − 1, ki = (i+1) · 2x1−13x2 − 1, gcd(i+1, 30) = 1, 0 � i < 60,
there are 16 numbers i+1 such as 1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 49, 53, 59. ki has four items which are not relatively prime to 5.
ki − 1 = (i + 1) · 2x1−13x2 − 2 = 2((i + 1) · 2x1−23x2 − 1) have another four
items which are not relatively prime to 5. There are eight items satisfying
g1 = x1 − 1, g2 = x2, g3 = 0, h1 = 1, h2 = 0, h3 = 0, According to Lemma
1, the cardinality of C ∩ [1, 2x1+13x2+151] is 2x1+33x2 . Thus the probability
for case 2 of Table 8 is 8

2x1+33x2
= 2−x13−x2.

3. g1 = x1 − 1, g2 = 0, g3 = 0, h1 = 1, h2 = 0, h3 = 0; k0 = 2x1 · m + 1 =
2 · 3x2 · n− 1. 0 � m < 3x2 , 0 < j � 2x1−2, k0 < 2x1−13x2 .
ki = k0 + i · 2x1−13x2,
ki − 1 = 2x1−1[m+ i · 3x2 ],
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ki + 1 = 2 · 3x2 [n+ i · 2x1−2],
After a long and interesting analysis, there are total eight items satisfying
the conditions v5(ki) = 0, v2(m+ i · 3x2) = 0, v5(m+ i · 3x2) = 0, v3(n+ i ·
2x1−2) = 0 and v5(n+ i · 2x1−2) = 0. According to Lemma 1, the cardinality
of C ∩ [1, 2x1+13x2+151] is 2x1+33x2 . Thus the probability for case 3 of Table
8 is 8

2x1+33x2
= 2−x13−x2.

4. Similar to case 3, the probability for case 4 of Table 8 is 8
2x1+33x2

=
2−x13−x2.

Appendix C: Cost of Elliptic Curve Point Operations

C.1: Elliptic Curve of Weierstrass Form over Prime Fields

We first consider the standard elliptic curves E over a prime field Fq, (denoted
by E(Fq)), where q = pn, p is a prime, and p > 3. These are defined by the
Weierstrass equation [18]:

y2 = x3 + ax+ b,

where a, b ∈ Fq and Δ = 4a3 + 27b2 �= 0.
We set a = −3 and choose Jacobian coordinates. The point representation

using (x, y) determines the affine coordinates introduced by Jacobian. Another
point representation with the form (X : Y : Z) defines the projective coordi-
nates which has very efficient point operations that is inversion-free. Jacobian
coordinates are a special case of projective coordinates. where the equivalence
class of a Jacobian projective point (X : Y : Z) is

(X : Y : Z) = {(λ2X,λ3Y, λZ) : λ ∈ F∗p}

Table 12 shows the cost, as summarized by P. Longa and C. Gebotys [19], as-
sociated with elliptic curve point operations using Jacobian coordinates with no
stored values. For the remaindering, doubling (2P), tripling (3P), quintupling
(5P), septupling(7P), addition (P+Q) and mixed addition (P+Q) are denoted
by D, T, Q, ST, A and mA respectively, where mixed addition means that one
of the addends is given in affine coordinates [20]. Explicit formulae for these
point operations can be found in [19]. Costs are expressed in terms of field mul-
tiplication (M) and field squaring (S). In the prime fields, we make the usual
assumption that 1S = 0.8M and for purposes of simplification disregard field
additions/subtractions and discard multiplications/divisions by small constants.

C.2: Elliptic Curve of Jacobi Quartic Form over Prime Fields

The elliptic curve in the Jacobi quartic form is another form of elliptic curve
which is defined by the projective curve

Y 2 = X4 + 2aX2Z2 + Z4,

where a ∈ Fq and a2 �= 1. The projective point (X : Y : Z) corresponds to the
affine point (X/Z, Y/Z2).
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Table 12. Cost of Jacobian operations over prime fields

computation cost M

A 11M+5S 15

mA 7M+4S 10.2

D 3M+5S 7

T 7M+7S 12.6

Q 10M+12S 19.6

ST 14M+15S 26

Table 13 shows a similar cost assessment for point operations on the Jacobi
quartic curve with no stored values using an extended coordinate system of the
form (X : Y : Z : X2 : Z2) called a JQuartic. We refer to [21,22] for the explicit
formulae for JQuartics.

Table 13. Cost of JQuartic over prime fields

computation cost M

A 7M+4S 10.2

mA 6M+3S 8.4

D 2M+5S 6

T 8M+4S 11.2

Q 14M+4S 17.2

ST 16M+8S 22.4

C.3: Cost of Elliptic Curve Point Operations over Binary Fields

G. N. Purohit and A. S. Rawat [16] have given formulae and cost associated with
elliptic curve point operations over the binary field, denoted Bfield (see Table 14).
Nevertheless, theST formulaedonot speedup,becausewe cancalculate 7P = 5P+
2P that needs 1A+1D+1Q=3[i]+7[s]+17[m]which is faster than the ST formulae
in [16].As thenew formulae arenot faster,wedonotanalysis the add/subalgorithm
with bases containing 7 in binary fields. Generally, I = 3 ∼ 10M,S = 0M in
Bfields. For this study, we assume I = 8M which is the same as [14].

Table 14. Cost of elliptic curve point operations over binary fields

computation cost M

A 1[i]+1[s]+2[m] 10

D 1[i]+1[s]+2[m] 10

T 1[i]+4[s]+7[m] 15

Q 1[i]+5[s]+13[m] 18

ST 3[i]+7[s]+18[m] 42
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Schläffer, Martin 359
Schneider, Michael 375
Schwabe, Peter 156
Staamann, Sebastian 392

Tewari, Hitesh 61
Tian, Song 424, 433
Trinh, Viet Cuong 140, 342

van den Broek, Fabian 406
Vaudenay, Serge 107

Walle, Matthieu 240
Wang, Kunpeng 424, 433

Yu, Wei 424, 433


	Preface
	Organization
	Table of Contents
	Adapting Lyubashevsky's Signature Schemes to the Ring Signature Setting
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Collision-Resistant Hash Functions
	2.3 Statistical Distance
	2.4 Ring Signature Schemes: Definitions and Properties

	3 Our Scheme
	3.1 Informal Description
	3.2 A More Formal Description
	3.3 Correctness and Convergence of the Algorithms

	4 Security of the Proposed Scheme
	4.1 Anonymity 
	4.2 Unforgeability Against Chosen Subring Attacks
	4.3 Unforgeability Against Insider Corruption Attacks

	References

	GPU-Based Implementation of 128-Bit Secure Eta Pairing over a Binary Field
	1 Introduction
	2 NVIDIA Graphics Processing Units
	2.1 GPU Architecture
	2.2 GPU Programing Model
	2.3 GPU Memory Architecture

	3 Eta Pairing in a Field of Characteristic Two
	4 Arithmetic of the Binary Field
	4.1 Addition
	4.2 Multiplication
	4.3 Square
	4.4 Square-Root
	4.5 Inverse

	5 Parallel Implementations of Eta Pairing
	6 Experimental Results
	7 Conclusion
	References

	On Constructions of Involutory MDS Matrices
	1 Introduction
	2 Definition and Preliminaries
	3 Construction of MDS and Involutory MDS Matrices
	3.1 Construction of Some Additive Subgroup G of F2n
	3.2 An Algorithm to Construct MDS Matrix 
	3.3 An Algorithm to Construct Low Hamming Weight Involutory MDS Matrix

	4 FFHadamard MDS Matrices from Cauchy Based Construction and Vandermonde Based Constructions
	4.1 Equivalence of Cauchy Based Construction and Vandermonde Based Construction of Involutory MDS FFHadamard Matrices
	4.2 Comparison of Algorithm 1 Based on Cauchy Based Construction, and Vandermonde Based Construction of VMDS to Construct FFHadamard Involutory MDS Matrices

	5 The Matrix M1616 Used in MDS-AES of JORGE Is Not MDS
	6 Conclusion
	References

	Homomorphic Encryption with Access Policies: Characterization and New Constructions
	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 Preliminaries
	3 Homomorphic Predicate Encryption
	3.1 Syntax
	3.2 Security Notions
	3.3 Attribute Operations

	4 Constructions with Attribute Aggregation
	5 Main Construction: XOR-Homomorphic IBE 
	5.1 Background
	5.2 Original Cocks IBE Scheme�
	5.3 XOR-Homomorphic Construction

	6 Anonymity
	6.1 Non-Universal HPE
	6.2 Universal Anonymizers 
	6.3 Applications (Brief Overview)

	7 Conclusions and Future Work
	References

	Brandt's Fully Private Auction Protocol Revisited
	1 Introduction
	2 The Protocol
	2.1 Informal Description
	2.2 Mathematical Description (Brandt Brandt[4])
	2.3 Malleable Proofs of Knowledge and Discrete Logarithms 

	3 Attacking the Fully Private Computations
	3.1 Analysis of the Outcome Computation
	3.2 Linear Algebra Toolbox
	3.3 How to Recover the Bids When Knowing the lij's
	3.4 Attack on the Random Noise: How to Obtain the lij's
	3.5 Proof of Equality of the Presented Outcomes
	3.6 The Complete Attack and Countermeasures

	4 Attacking Verifiability
	4.1 Exceptional Values
	4.2 Different Private Keys

	5 Attacks Using the Lack of Authentication
	5.1 Another Attack on Privacy
	5.2 Attacking Fairness, Non-repudiation and Verifiability
	5.3 Countermeasures

	6 Conclusion
	References

	HELEN: A Public-Key CryptosystemBased on the LPN and the Decisional Minimal Distance Problems
	1 Introduction
	2 Preliminaries
	2.1 Security Notions
	2.2 The Learning from Parity with Noise Problem
	2.3 Finding a Low-weight Codeword in a Random Linear Code

	3 The Cryptosystem
	3.1 Encryption
	3.2 Decryption
	3.3 Key Generation

	4 Security Analysis
	4.1 Link to Random Codes
	4.2 Semantic Security

	5 Selection of Parameters
	6 Encrypting More than One Bit
	7 Conclusion
	References

	Attacking AES Using Bernstein's Attack  on Modern Processors
	1 Introduction
	2 AES Implementation Background
	3 Cache Based Side Channel Attacks Background
	4 Related Work
	5 Bernstein's Attack on AES
	6 Our Work
	7 Future Work
	8 Conclusion
	References

	Optimal Public Key Traitor Tracing Scheme in Non-Black Box Model
	1 Introduction
	1.1 Non-Black-Box Tracing vs. General Black Box Tracing
	1.2 Our Contributions

	2 Preliminaries
	2.1 Traitor Tracing Scheme
	2.2 Bilinear Maps

	3 Construction
	4 Security
	5 Traitor Tracing
	5.1 Non-Black-Box Tracing
	5.2 Single-Key Black Box Tracing

	6 Conclusion
	References

	NaCl on 8-Bit AVR Microcontrollers
	1 Introduction
	2 The 8-Bit Family of AVR Microcontrollers
	3 The NaCl Library
	3.1 Porting NaCl to AVRs

	4 Implementation of Salsa20
	4.1 High-Speed Implementation
	4.2 Low-Area Implementation

	5 Implementation of Poly1305
	5.1 High-Speed Implementation
	5.2 Low-Area Implementation

	6 Curve25519 and Ed25519
	6.1 High-Speed Implementation
	6.2 Low-Area Implementation

	7 Results
	References

	W-OTS+– Shorter Signatures for Hash-Based Signature Schemes
	1 Introduction
	2 The Winternitz One-Time Signature Scheme
	2.1 Signature Schemes
	2.2 W-OTS+

	3 Security of W-OTS+
	3.1 Preliminaries
	3.2 Security Proof
	3.3 Security Level of W-OTS+

	4 W-OTS+ in Practice
	4.1 Instantiations
	4.2 Performance Comparison
	4.3 Impact on XMSS and XMSS+

	5 Conclusion
	References

	New Speed Records for Salsa20 Stream Cipher Using an Autotuning Framework on GPUs
	1 Introduction and Motivation
	1.1 Why Salsa20?
	1.2 Why Autotuning?
	1.3 Our Contributions

	2 Parallelism Opportunities of Salsa20 in GPUs
	2.1 Description of Salsa20
	2.2 CUDA Programming Model Overview
	2.3 Analyzing Parallelism Opportunities of Salsa20

	3 Batch Processing Framework
	3.1 CPU-GPU Interaction
	3.2 The CUDA Kernel
	3.3 Programming Recommendations
	3.4 Optimization for Salsa20

	4 Autotuning Framework for Performance Optimizations
	4.1 Device-Specific Optimizations
	4.2 Compiler-Specific Optimizations

	5 Results and Discussion
	5.1 Experimental Setup
	5.2 Search Space Generation and Pruning
	5.3 Compile Time Optimization of Register Pressure
	5.4 Register Unroll vs. Throughput
	5.5 Workload vs. Performance
	5.6 Comparison with Other Works

	6 Conclusion
	References

	Cryptanalysis of AES and Camellia with Related S-boxes
	1 Introduction
	2 The Related S-box Attack
	2.1 Overview and Assumptions
	2.2 First Phase
	2.3 Second Phase

	3 Discussion and Conclusions
	References

	New Results on Generalization of Roos-Type Biases and Related Keystreams of RC4
	1 Introduction
	2 Extension of Roos Biases
	2.1 Generalizing Nested Biases of maitra of [6]

	3 Near-Colliding States and Related Keystreams
	3.1 Analysis for Key-Pairs with One Key-Byte Difference
	3.2 Analysis of Key-Pairs with Two Key-Byte Differences
	3.3 Near-Collision Search Algorithm
	3.4 Related Keystream Distinguisher

	4 Conclusion
	References

	Impact of Sboxes Size upon Side Channel Resistance and Block Cipher Design
	1 Introduction
	2 Impact of Sboxes Size upon Side Channel Resistance
	2.1 Security Against HO-DPA
	2.2 Information Theoretic Analysis

	3 Design of the Sboxes
	3.1 The Advanced Encryption Standard
	3.2 4-Bit Variation 
	3.3 16-Bit Variation

	4 Complexity
	4.1 Overall Complexity
	4.2 Complexity of Chosen Hardware Implementations

	5 Attack Simulations
	6 Conclusion
	References

	Efficient Multiparty Computation for Arithmetic Circuits against a Covert Majority
	1 Introduction
	2 Background
	2.1 Covert Adversary Model
	2.2 Homomorphic Encryption Scheme
	2.3 Lossy Encryption

	3 Problem Description and Useful Subprotocols
	4 Protocol for Secure Computation
	5 Security of Protocol Circuit
	5.1 Achieving a Higher Deterrence Factor

	6 Efficiency and Applications
	6.1 Application 1: AES Cipher
	6.2 Application 2: Matrix Multiplication

	References

	Impact of Optimized Field Operations AB,AC and AB+CD in Scalar Multiplication over Binary Elliptic Curve
	1 Introduction
	2 Review of Multiplication Algorithms
	2.1 Comb Multiplication
	2.2 Karatsuba Multiplication

	3 Optimization of the Operations AB+CD and AB,AC
	3.1 Optimizations of AB+CD and AB,AC in the CombMul Approach
	3.2 Optimizations AB+CD and AB,AC in the KaratRec Approach
	3.3 Complexity Comparison and Implementation Results

	4 Implementations of Scalar Multiplication Based on the Optimizations AB,AC and AB+CD
	4.1 Elliptic Curve Arithmetic
	4.2 Implementation Aspects
	4.3 Implementation Results on an Intel Core 2
	4.4 Implementation Results on an Intel Core i5

	5 Conclusion
	References

	An Attack on RSA Using LSBs of Multiples of the Prime Factors
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Useful Lemmas

	3 The New Attack
	4 Experimental Results
	5 Conclusion
	References

	Modification and Optimisation  of an ElGamal-Based PVSS Scheme
	1 Introduction
	1.1 A Dilemma in Choosing Encryption Algorithm
	1.2 Our Contribution

	2 Background and Preliminaries
	2.1 The PVSS Scheme by Schoenmakers
	2.2 Security Model

	3 New PVSS Based on ElGamal Encryption
	4 Broader Range of Applications and Batch Verification
	4.1 When the Logarithm-Known Secret Generation Mechanism Cannot Work
	4.2 PVSS with Explicit Commitment
	4.3 Further Efficiency Improvement by Batch Verification

	5 Conclusion
	References

	Studying a Range Proof Technique — Exception and Optimisation
	1 Introduction
	2 The Batch Proof Technique and Its Application toRange Proof
	3 Concern about the Batch Proof Protocol
	4 Introducing the Concern to the Range Proof Scheme
	5 How to Ease the Concern in Efficient Range Proof inPractical Small Ranges
	5.1 The Membership Proof Technique in [12]
	5.2 Range Proof Employing k-Base Coding and the MembershipProof

	6 Conclusion
	References

	Key-Leakage Resilient Revoke Scheme Resisting Pirates 2.0 in Bounded Leakage Model
	1 Introduction
	1.1 Contribution
	1.2 Related Works

	2 Key-Leakage Resilient Revoke Scheme
	2.1 Definition
	2.2 Security Model

	3 A Construction of Key-Leakage Resilient Revoke Scheme - KIDTR
	3.1 Definition And Security Model
	3.2 BBG-WIBE in Composite Order Groups
	3.3 KWIBE: Key-Leakage Resilient WIBE
	3.4 Generic Construction of KIDTR
	3.5 Security of KIDTR

	4 KIDTR is Immune to Pirates 2.0 in Bounded Leakage Model
	4.1 Pirates 2.0 in Bounded Leakage Model
	4.2 Comparison to Other Methods
	4.3 Pirates 2.0 in Bounded Leakage Model Viewed from the Information Theory
	4.4 Key-Leakage Resilience vs. Pirates 2.0 in Bounded Leakage Model

	References

	Fast Software Encryption Attacks on AES
	1 Introduction
	2 Implementing AES in Software Using AES-NI
	2.1 Description of AES-128
	2.2 Efficient Implementations of AES-128 Using AES-NI

	3 Brute-Force Key Recovery Attacks on AES-128
	3.1 Black-Box Brute-Force Attack
	3.2 Optimized Brute-Force Attack

	4 Simplified Biclique Attack for Hardware Implementation
	4.1 Biclique Construction
	4.2 Key Recovery
	4.3 Complexity of the Attack

	5 Software Implementations and Benchmark Results
	5.1 Black-Box Brute-Force Implementation
	5.2 Optimized Brute-Force Attack Implementation
	5.3 Biclique Attack Implementation
	5.4 Performance Results

	6 Conclusions
	References

	Sieving for Shortest Vectors in Ideal Lattices
	1 Introduction
	1.1Related Work
	1.2 Our Contribution
	1.3 Organization of This Paper

	2 Preliminaries
	2.1 Ideal Lattices

	3 IdealListSieve Algorithm
	3.1 ListSieve
	3.2 IdealListSieve
	3.3 IdealGaussSieve

	4 Predicted Advantage of IdealListSieve
	5 Experiments
	5.1 Interpretation
	5.2 IdealGaussSieve
	5.3 Anti-cyclic Lattices

	6 Conclusion and Further Work
	6.1 Ideal Enumeration

	References

	An Identity-Based Key-Encapsulation Mechanism Built on Identity-Based Factors Selection
	1 Introduction
	2 Identity-Based Factors Selection – The Idea in Detail
	3 The Foundational Problem
	4 ID-KEM Built on Identity-based Factors Selection
	4.1 The Algorithms
	4.2 Consistency
	4.3 Security
	4.4 Efficiency

	5 Summary
	References

	A Comparison of Time-Memory Trade-Off Attacks on Stream Ciphers
	1 Introduction
	2 Typical TMTO
	3 The TMTO Attacks
	3.1 Hellman's Original TMTO Attack on Stream Ciphers
	3.2 Distinguished Points
	3.3 Rainbow Table
	3.4 Generalized Kraken Approach

	4 Comparison
	5 Conclusions and Directions for Future Research
	References

	On the Expansion Length of Triple-Base Number Systems
	1 Introduction
	2 Triple-Base Number Systems
	3 The Upper Bound
	3.1 The Distance between 3-Integers
	3.2 Greedy Algorithm

	4 The Compactness of the Upper Bound
	5 Conclusion
	References

	Triple-Base Number System for Scalar Multiplication
	1 Introduction
	2 Preliminary
	2.1 Double-Base Chain
	2.2 Multibase Non-adjacent Form
	2.3 Triple-Base Chains

	3 Plane Search
	4 Add/Sub Algorithm
	4.1 An Example of Add/Sub Algorithm
	4.2 The Correctness of Add/Sub Algorithm

	5 Scalar Multiplication
	5.1 Triple Base Chain Method to Calculate Scalar Multiplication
	5.2 Recursive Algorithm

	6 Complexity Analysis
	6.1 With Base {2, 3, 5}
	6.2 With Base {2, 3, 7}

	7 Comparison
	7.1 Hamming Weight Comparison
	7.2  Bit Cost Comparison
	7.3 Recoding Time Comparison

	8 Conclusions
	References

	Author Index



