
Chapter 7
Generating Explanations from Support
Vector Machines for Psychological
Classifications

Insu Song and Joachim Diederich

7.1 Introduction

In recent years, machine learning techniques, such as support vector machines
(SVMs), have shown significant potential as aids to the practice of medicine and to
psychiatric classification [1]. The application of machine learning techniques in
psychiatric diagnosis has significant merit, because of the lack of standardized
biological diagnostic tests. Conventionally, expert psychiatrists, consciously and
unconsciously analyze the language of their patients for assessment purposes using
diagnostic classification systems, such as DSM IV [9] and ICD-10 [12]. To provide
a more objective clinical diagnosis, SVMs have been applied to conversations of
patients and clinicians [1].

However, an explanation capability is crucial in security-sensitive domains,
such as medical applications. Although support vector machines (SVMs) have
shown superior performance in a range of classification and regression tasks,
SVMs, like artificial neural networks (ANNs), lack an explanatory capability.
There is a significant literature on obtaining human-comprehensible rules from
SVMs and ANNs in order to explain how a decision was made or why a certain
result was achieved [8].This chapter proposes a novel approach for SVM
classifiers.

The experiments reported below describe a first attempt at generating textual
and visual summaries for classification results. Learned model parameters are
analyzed to select informative features, and filtering is applied to generate
explanation terms by selecting subsets of more relevant and reliable features for
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each case. We show that this approach is applicable to both linear and non-linear
SVM classifiers.

To generate textual explanations (a set of sentences), a natural language parser
is used to convert each text sample into a set of basic concept-constructs called
basic-sentences (verb-subject-object tuples) that make up the sentences. For
example, a sentence ‘‘I have a dog that is 9 years old’’ can be decomposed into two
basic-sentences: ‘‘I have a dog’’ and ‘‘The dog is 9 years old’’ In some literatures,
such basic-sentences are also referred to as grounded predicates. Generated
explanation terms are used to rank relevant basic-sentences using a similarity
measure function, which is based on a common sense database called ConceptNet.
The ranked basic-sentences are used to generate textual explanations of SVM
classifications. Unlike previous text summarization approaches, the generated text
summaries explain why the particular sample is classified as positive or negative.

The generated explanations (informative features) are consistent in the sense
that an explanation term does not appear in two separate explanations which are
used to explain inconsistent samples. We define the accuracy of the explanation
terms and show that the accuracy of an SVM model is bounded by the accuracy of
explanation terms. That is, the accuracy of an explanation term is always greater or
equal to the accuracy of an SVM model.

7.2 Background

The following section provides a brief overview of the core techniques, focusing
on support vector machines (SVMs), the significance of generating human-com-
prehensible explanations from SVMs, and what it means to explain the decision-
making process of a machine learning system to a human user who may not be a
domain expert or familiar with methods in information technology.

7.2.1 Support Vector Machines

Cortes and Vapnik [7] introduce Support Vector Machines (SVMs) which are a
novel approach to machine learning. SVMs are based on the structural risk min-
imization principle in order to overcome the overfitting problems. SVMs generate
the hypotheses out of the hypothesis space H of a learning system which
approximately minimizes the bound on the actual error by controlling the
empirical error using training samples and the complexity of the model using the
VC-dimension of H. SVMs are universal learning systems [13]. In their basic
form, SVMs learn maximal margin hyperplanes (linear threshold functions). A
hyperplane can be defined by a weight vector w and a bias b:

w � xþ b ¼ 0 ð7:1Þ
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The corresponding threshold function for an input vector x is then given by:

f ðxÞ ¼ signðw � xþ bÞ ð7:2Þ

However, it is possible to learn polynomial classifiers, radial basis function
(RBF) networks, and three or more layered neural networks by mapping input data
x to some other (possibly infinite dimensional) feature space / xð Þ and using kernel
functions K(xi, xj) to obtain dot products, / xið Þ� / xj

� �
, of feature vectors.

7.2.2 Explanations: The Foundation

To illustrate why it is important to add an explanation capability to SVMs, let us
consider the case where medical doctors tell patients a diagnosis by use of test
results or descriptions of symptoms. It is essential that doctors also use compre-
hensible explanations. The explanations may be via deductive arguments which
include a list of patients’ observed symptoms, a list of possible causes, and modus
ponens (the rule of inference) for deriving the conclusion.

Thagard and Litt [19] illustrate several major approaches to generating expla-
nations. The classical view is that explanations are deductive arguments that
include background knowledge and inference rules, such as modus ponens. The
inference rules allow the sequential application of if–then-else statements in order
to justify explanatory targets. Whenever no precise knowledge is available,
explanatory schemas or probabilistic rules can be used.

Cawsey [6] used a very simple definition of explanation: In general, explana-
tions make knowledge clear to the hearers. Explanations is complete when the
hearers are satisfied with the reply and understand the piece of knowledge. Hence,
explanation is based on an information need.

7.2.3 Generating Explanations from SVMs

Much of the work that aims at providing an explanation capability to SVMs has
focused on rule extraction techniques [8], following in the footsteps of efforts to
obtain human-comprehensible rules from artificial neural networks (ANNs). One
approach to classifying rule extraction methods is the translucency dimension
which includes decompositional and pedagogical (or learning based) techniques as
extremes [3].

The decompositional approach relies on the degree to which the internal rep-
resentation of the ANN is accessible to the rule extraction technique. The basic
strategy of decompositional techniques is to extract rules at the level of each
individual hidden and output unit within the trained ANN. In general, decompo-
sitional rule extraction techniques incorporate some form of analysis of the weight
vector and associated bias (threshold) of each unit in the trained ANN. Then, by
treating each unit in the ANN as an isolated entity, decompositional techniques
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initially generate rules in which the antecedents and consequents are expressed in
terms which are local to the unit from which they are derived.

In contrast to the decompositional approaches, the strategy of the pedagogical
approaches is to view the trained ANN at the minimum possible level of granu-
larity, i.e., as a single entity or alternatively as a black box. The focus is on finding
rules that map the ANN inputs (i.e., the attribute-value pairs from the problem
domain) directly to outputs [22]. In addition to these two main categories,
Andrews et al. [3] also proposed a third category which they labeled as eclectic to
accommodate those rule extraction techniques which incorporate elements of both
the decompositional and pedagogical approaches.

7.2.4 Translucency and Explanation Quality Applied
to Explanation Extraction from SVMs

It is very easy to illustrate the limitations of current studies on rule extraction from
SVMs by use of an example: text classification. SVMs can achieve good perfor-
mance with very simple text representation formats such as the ‘‘bag-of words’’
(BOW) technique. BOW methods use a document-term matrix such that rows are
indexed by the documents and columns by the terms (e.g. words). SVMs allow the
classification of texts of differing lengths; hence, document vectors may differ
greatly in the number of elements.

A disadvantage of the BOW representation is that after successful classification,
it may not be obvious what has been learned. For instance, an author or speaker
may have a preference for certain topics and, as a result, an SVM trained on an
authorship identification problem may, in reality, perform topic detection. In the
case of author or speaker verification, this problem has led to various techniques to
eliminate content from the BOW input, for instance, by replacing content words
with lexical tags (categories).

Given the fact that it is not at all obvious what contributes to classification in
the case of a BOW input representation, rule extraction from support vector
machines is presented with a special opportunity. However, the number of features
in input or support vectors can be very large given, the number of words that exist
in a given natural language. While a combination of words constitutes meaning in
a natural language, a BOW representation is based on words in isolation. This is a
significant problem for rule quality: The antecedents in a rule include individual
words completely out of context. As the set of antecedents includes completely
unrelated words, human or semantic comprehensibility is low.

7.2.5 Evaluation of the Quality of Extracted Explanations

Rule extraction from neural networks adopted criteria for the quality of the
extracted rules. The set of criteria for evaluating rule quality includes [3]:
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1. accuracy
2. fidelity
3. consistency, and
4. comprehensibility of the extracted rules.

A rule set is considered to be accurate if it can correctly classify a set of
previously unseen examples from the problem domain [22]. Similarly, a rule set is
considered to display a high level of fidelity if it can mimic the behavior of the
neural network from which it was extracted by capturing all of the information
represented in the ANN. An extracted rule set is deemed to be consistent if, under
differing training sessions, the neural network generates rule sets which produce
the same classification of unseen examples. Finally, the comprehensibility of a rule
set is determined by measuring the size of the rule set (in terms of the number of
rules) and the number of antecedents per rule [22].

7.2.6 Overview

The reminder of this chapter summarizes experiments and their results: classifi-
cation of text and image data, explanation generation for classification results, and
technical details of methods with statistical analysis on the model parameters that
are generated for depression poems. Then, in Sect. 7.5, we show how explanation
terms can be used to generate textual summaries of the classification results.

7.3 Experimental Evaluation

Figure 7.1b shows how our method can be used to provide explanation assisted
Fig. 7.1a illustrates an overview of our approach of generating explanations for
psychological assessments using Support Vector Machines (SVMs). Explanation
terms are extracted from assessment documents using both SVM models and
classification results. Figassessment of autism and other mental health issues. For
example, the explanations can highlight the main issues that were used to differ-
entiate autism cases from normal cases.

7.3.1 Methodology: Explanation Term Generation

A preliminary study was undertaken on generating explanations of classification
results of depression poems, online text messages, autism descriptions, facial
expressions, and facial palsy. Poems were obtained from the Internet (Poetry-
America.com) and comprise a total of 76 poems: 56 depression poems and 20
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funny poems. The online text messages were obtained from Usenet news groups
and comprise a total of 350 sentences: 297 open questions and 53 closed questions.
The autism descriptions were obtained from autism forums (http://www.autism-
pdd.net) and ADHD (Attention Deficit Hyperactivity Disorder) forums (http://
www.addforums.com) where parents discuss problems of their children. The
autism data comprise a total of 200 descriptions: 100 autism descriptions and 100
ADHD descriptions.

For the text data sets, the resulting text documents are represented as attribute-
value vectors (bag of words representation) where each distinct word corresponds
to a feature whose value is the frequency of the word in the text sample: a text
document is represented as a feature vector x = (x1,., xj, …, xL) where xj is the jth
feature. Values were transformed with regard to the length of the sample. For the
poem and autism data sets, functional words were removed, and each word was
converted into its lemma form (its base form without inflections). In addition,
words that were not present in ConceptNet [16]1 were removed. For the question
data set, all words were used. In summary, input vectors for machine learning
consist of attributes (the words used in the sample) and values (the transformed
frequency of the words). Outputs are depression versus funny, open question
versus closed question, and autism versus ADHD, that is, binary decision tasks
were learned. Clearly, the expressive power of the resulting explanations is limited
by this bag-of-words representation.

For LOO (leave-one-out) cross validation, 76, 350, and 200 SVM models were
generated using the linear kernel for the poem, online message, and autism text
data sets, respectively. Thus, each model was used to classify one document. An
SVM model is defined by support vectors xi and associated parameters. The
decision value of a text sample (represented as a feature vector x) is then obtained
as follows:

Fig. 7.1 a Illustrates the overall process of generating textual explanations to classification
results. b Shows an example use of the explanation method, where a clinician make use of textual
explanations to previous or current mental assessments, such as Autism. Mobile devices, such as
smart phones, can be used to record interview questions and provide on the spot classification and
explanations, resulting in more objective mental health assessments

1 Used ConceptNet v2.1 from the Common Sense Computing Initiative at the MIT Media Lab
(http://csc.media.mit.edu).
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dðxÞ ¼ w � /ðxÞ þ b ¼
X

i2SV

aiyiKðxi; xÞ þ b ð7:3Þ

where xi are support vectors and x is the feature vector, ai are Lagrangian mul-
tipliers, yi are the labels (+1, -1) of the support vectors, and b is the offset. The
support vectors and the Lagrangian multipliers can be found by solving a quadratic
programming problem. A popular setup of an SVM quadratic programming
problem that allows some classification errors in the solution [7] is shown below:

min 1
2 wT wþ C

Pl

i¼1
ni

� �

subject to: yiðwT/ðxiÞ þ bÞ� 1� ni; ni� 0
ð7:4Þ

where C is the penalty for errors and ni are slack variables for allowing errors. This
particular formula isn’t important here. The important thing is that the antecedent
of the rule of inference is d(x) C 0. That is, if d(x) C 0, then the feature vector x is
positive or else negative. Unlike previous rule extraction approaches, for each
sample x, we formulate textual summaries to explain why d(x) C 0 or d(x) \ 0.
We start with generating an explanation (a set of explanation terms) for each
classification result. An explanation term is a selected feature that is considered to
be informative in explaining why d(x) C 0 or d(x) \ 0. For text documents, an
explanation term can be a word. For image data, an explanation term can be a
region in the image. In Sect. 7.5, we extend this method to generate textual
summaries. Features are filtered according to their sensitivity and contributions to
the decision value d(x) with respect to a reference point C = (c1, c2, …, cL) in the
input space. We define three types of explanations for a classification result of a
feature vector x, where each explanations comprise a subset of features xj of the
feature vector x = (x1, x2, …, xL):

1. Explanation A comprising all the features xj contributing to the decision value
d(x) with its feature value xj greater than a reference point cj:

• For d(x) [ 0, this includes all the features xj with positive contribution values
d(x)j [ 0 and a feature value xj greater than a reference point cj.

• For d(x) [ 0, this includes all the features xj with negative contribution values
d(x)j [ 0 and afeature value xj greater than a reference point cj.

2. Explanation B comprising top-N contributing features that are sufficient to
classify the feature vector:

• For d(x) [ 0, the sum of contributions of the features included in B is greater
than the absolute value of the sum of all the negative contributions from the
other features of the feature vector x:

X

xi2B

dðxÞi þ
X

dðxÞj\0

dðxÞj [ 0 ð7:5Þ
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where d(x)i [ 0 are the positive contributions of the ith features that are included
in B and d(x)j \ 0 are the negative contributions.

3. Explanation C comprising top-N contributing features that also have their
sensitivity values, |qd(x)/qxj|, greater than a threshold value c.

Technical details on generating each explanation types are described in Sect.
7.4. This approach is clearly decompositional in nature: analysis of the model
parameters to select informative features and selecting subsets of more relevant
features. Figure 7.2 summaries the significance of each type of explanation. It
plots sensitivity, contribution, and word rank of all features of the depression poem
and autism-ADHD text data sets. It shows that sample features having higher
ranking order (more frequent words in the text corpus) and higher sensitivity
values tend to have larger absolute contribution values. This suggests that features
having higher sensitivity values and higher ranking orders provide greater infor-
mation in decision making than other features. It also shows that most of large
contributions are made by more frequent words (high rank words).

In Sect. 7.4, we show that the accuracy of explanation terms is positively
correlated with the accuracy of the SVM model: the accuracy of explanation terms
increases as the accuracy of the SVM model increases.

Fig. 7.2 Relationship between sensitivity, contribution (deviation), and word ranks. Each point
is a feature that contributes to the decision of a feature vector. If a feature vector is a positive
(negative) case, only the features having positive (negative) contributions are plotted. Rank 1
represents the most frequent feature (vocabulary term)
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7.3.2 Results of Explanation Generation

7.3.2.1 Explanations of Text Classifications

Support vector machines trained on the poem and online text message data sets
achieved accuracies of 94 and 98 %, respectively. The sensitivity values were
adjusted manually to obtain reasonable numbers of explanation terms for Expla-
nation type C. Sample explanations of a depressive poem are provided below:

1. Explanation A: dont (56 53), call (23 44), tear (21 50), know (17 18), fall (16
37), leave (16 35), cut (16 27), dark (14 24), sad (10 17), cold (10 16), face (10
20), smile (8 13), belong (5 7), letter (4 7), star (4 7), say (4 9), grave (2 3), shell
(2 3), mold (1 2), useless (1 1).

2. Explanation B: dont (56 53), call (23 44), tear (21 50), know (17 18), fall (16
37), leave (16 35), cut (16 27), dark (14 24), sad (10 17), cold (10 16), face (10
20).

3. Explanation C: dont (56 53), call (23 44), tear (21 50), fall (16 37), leave (16
35), cut (16 27).

The numbers (d, q) in the brackets indicate relative contribution values d to the
decision value d(x) and sensitivity values q, respectively. For positive cases, if the
sensitivity value of a feature is positive, an increase in the frequency of the feature
contributes to the decision value. Sensitivity filtering (Explanation C) eliminates
some of less sensitive terms (bold-faced terms) from Explanation B. Sample
explanations of a funny poem are provided below:

1. Explanation A: always (-45 -25), food (-34 -38), guy (-34 -38), come
(-23 -32), name (-22 -24), good (-18 -21), im (-18 -25), same (-11 -14),
best (-10 -11), go (-9 -13), mouth (-7 -8), true (-5 -5), happy (-2 -2), bad
(-2 -2)

2. Explanation B: always (-45 -25), food (-34 -38), guy (-34 -38), come
(-23 -32), name (-22 -24)

3. Explanation C: always (-45 -25), food (-34 -38), guy (-34 -38), come
(-23 -32)

Explanation terms for negative cases have negative contribution values to
derive d(x) below zero. For negative cases, the sensitivity values of features must
be negative. That is, the increase in the frequency of a feature contributes to
deriving a decision value d(x) below zero.

The explanations of the question data sets are much shorter (please note that
this is a binary decision problem, that is, the task is to decide whether this is an
open or closed question). Explanations for open questions (e.g., What is the dol-
phin species seen in most of Oceania?) are provided below:

1. Explanation A: what (539 166), species (34 8), most (15 3), in (7 2).
2. Explanation B: what (539 166)
3. Explanation C: what (539 166)
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The corresponding explanations of a closed question (Do dolphins live shorter
lives in captivity?) are provided here:

1. Explanation A: dolphins (-156 -35), live (-73 -15)
2. Explanation B: dolphins (-156 -35)
3. Explanation C: {empty}

As expected, questions are explained by the presence or absence of question
words, such as what, why, or how.

Support vector machines trained on the autism description data set achieved an
accuracy of 93 %. Sample explanations of the autism data are shown below with
the sample sentences from the descriptions:

1. Explanation A for Autism description: speech (97 23), boy (91 45), begin (90
42), month (64 33), old (61 45), therapy (51 24), issue (50 23), train (48 22),
school (39 25), year (38 26), soon (23 11), good (23 11), cream (10 4), improve
(8 4), receive (4 1)

– ‘‘…receives speech therapy in…. In recent months, his speech has
improved greatly…. we will begin the… process very soon.’’

2. Explanation A for ADHD description: entire (-74 -24), sit (-60 -20), still
(-52 -19), wall (-33 -11), pen (-26 -8), crayon (-21 -6), use (-11 -4),
hour (-8 -2)

– ‘‘…uses all the handwash to wash his hands, has drawn over his entire wall
with pen and crayon…… and can sit still for hours.’’

The explanation terms are highlighted on the descriptions to provide contexts.
This can assist clinicians to better understand their assessments more quickly
during consultations as illustrated in Fig. 7.1b.

7.3.2.2 MPEG-7 Annotations for Explaining Facial Expressions
and Facial Palsy

Figure 7.3 shows preliminary results of generating MPEG-7 annotations for
explaining why a face image in a video frame is smiling or classified as facial
palsy. The experiments shown here are to highlight that our method can be used to
understand and verify learned classifier models. For example, in one attempt, we
observed from the visual explanations that our classifier achieved good accuracy
simply by learning different lightning conditions in the forehead facial regions.
After equalizing image histograms, the SVM classifier learned more relevant
features as shown in Fig. 7.3a, b, where it now highlights facial expression
regions. For the expression classification task, we utilized facial expressions of one
of the authors. The facial palsy images were obtained from Mater Misericordiae
Health Services in Brisbane, which was previously used in [1]. Support vector
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machines trained on the facial palsy images achieved an accuracy of 78 % and
AUC of 0.84. For the facial expression classification task, the images were down
sampled to 30 by 30 gray scale image features. For the facial palsy classification
task, we used hamming distances between the right and left halves of each face
image. Similarly to the method of generating textual explanations, learned SVM
model parameters were analyzed to select informative features (pixels for facial
expressions and hamming distances for facial palsy) and filtering was applied to
select subsets of more relevant and reliable features. Further, the selected features
were clustered to form explanation regions, which were then used to explain the
classification of a region of interest in a video frame as shown in Fig. 7.3.

7.4 Generating Explanations from SVM Models

In order to calculate the contribution values of each feature of a feature vector x,
we use the centroid C of the population as the reference point, which is estimated
using the centroid Csv of the support vectors:

Csv ¼
1

Nsv

X

i2SV

/ðxiÞ ð7:6Þ

where Nsv is the number of support vectors. We use the estimated centroid as the
neutral point where no clear decisions can be made. When the classifier is a non-
linear classifier, we can identify K nearest support vectors in the input space and
use them to form a centroid and a linear SVM model as shown in Fig. 7.9. Using
the centroid, we can calculate the deviation of a feature vector x from the esti-
mated population-centroid:

Fig. 7.3 Explaining image classification: (a) is a normal expression and (b) is a smiling
expression. The dots represent explanation points. The last picture (c) shows explanation points
of a facial palsy patient, highlighting the parts of face with deformities (the patient’s face image
removed for privacy reasons)
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DðxÞ ¼ /ðxÞ � Csv ð7:7Þ

The deviation vector D(x) represents how much the feature vector deviates
from the center of the population. We use this deviation to calculate how each
feature deviates from the centroid to contribute to the decision value d(x). The
contributions are obtained by projecting the deviation to the normal vector w of the
hyperplane.

Corollary 1 Let D(x) = /(x)-C be the deviation of a feature vector from a
centroid C of the population which is on an SVM hyperplane: w � / xð Þ þ b ¼ 0.
Then, the decision value of a feature vector is proportional to the projection of the
deviation to a normal vector of the hyperplane:

dðxÞ ¼ w � DðxÞ ¼ a
w

jjwjj � DðxÞ ð7:8Þ

where a is a positive constant.

Proof Since C is on the hyperplane, we have w � C = -b. Then, we can obtain
the decision value d(x) using the deviation D(x) as follows:

dðxÞ ¼ w � ðDðxÞ þ CÞ þ b ¼ w � DðxÞ

¼ a
w

jjwjj � DðxÞ

where a = || w ||.

For linear SVMs, we can obtain the contributions of the j th feature as shown
below:

Corollary 2 Let D(x) = x - C be the deviation of a feature vector from a cen-
troid C of the population which is on a linear SVM hyperplane: w � x ? b = 0.
Then, the deviation D(x)j of the jth feature xj of the feature vector x is proportional
to the contribution d(x)j of the jth feature to the decision value d(x) = w � x ? b:

dðxÞj ¼ wjDðxÞj ð7:9Þ

where wj is the jth component of the weight vector w.

Proof According to Corollary 1, the decision value of the feature vector is pro-
portional to the projection of the deviation to a normal vector of the hyperplane:

dðxÞ ¼ w � DðxÞ

If K is the linear kernel, we can estimate the contribution of each jth feature xj as
follows:
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dðxÞj ¼
X

i2SV

aiyixi; jðxj � CjÞ

¼ ðxj � CjÞ
X

i2SV

aiyixi; j

¼ wjDðxÞj

ð7:10Þ

where wj ¼
P

i2SV aiyixi;j is the jth component of the weight vector w.

For linear SVMs, we can directly use Corollary 2 to generate explanations. For
non-linear classifiers with a convex hull, such as the elliptical decision boundary
shown in Fig. 7.9, we can identify a subset of support vectors as reference points,
which form both a centroid C0 and a linear hyperplane with weight vector w0 in the
input space. The weight vector w0 of the reference hyperplane can then be used with
Corollary 2 to generate explanations for non-linear classifiers. The explanations will
then be with respect to the reference point C0. Figure 7.9 illustrates this procedure.

7.4.1 Consistency of Explanations

By the definition of Explanation A, if a sample is classified as positive (negative),
a feature xj is included in Explanation A as an explanation term only if d(x)j [ 0
(d(x)j \ 0), respectively. If a feature xj is included in an explanation with
D(x)j [ 0 for a sample, it means that the feature is included as an explanation term
because the feature appears more frequently in the sample than the centroid Cj of
the corresponding feature. Naturally then, for our explanations to be consistent, the
same feature should not be included in an explanation to explain an opposite class.
We now show that Explanations A, B, and C are consistent. Consistency is one of
the criteria for evaluating rule quality [3].

Theorem 1 Explanations A, B, and C are consistent: Given a feature vector x and
its classification, let A(x) be its Explanation A. For Explanations A, B, and C, the
following holds:

1. If a feature vector x is classified as positive and xj 2 A xð Þ, then xj 62 Aðx0Þ for
all feature vectors x0 that are classified as negative.

2. If a feature vector x is classified as negative and xj 2 A xð Þ, then xj 62 Aðx0Þ for
all feature vectors x0 that are classified as positive.

Proof We first show that condition (1) holds. Suppose a sample x is classified as
positive and xj is included in Explanation A. By the definition of Explanation A,
d(x)j = wj D(x)j [ 0 and D(x)j [ 0. Thus, wj [ 0. Now, we also suppose that the
same feature xj is included in Explanation A for a negative sample x0, then by the
definition of Explanation A d(x0)j = wj D(x0)j \ 0 and D(x0)j [ 0. This means that
wj \ 0. Contradiction! Therefore, condition (1) must hold. Condition (2) can be
proved similarly. B and C are subsets of A, and thus B and C are consistent as well.
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The above theorem is applicable to certain non-linear SVM models by defining
a reference point and a new linear hyperplane in the input space as shown in
Fig. 7.9.

7.4.2 Accuracy of Explanation Terms

Another important criterion for evaluating rule quality is accuracy [3]. Conven-
tionally, the accuracy of a binary classifier is defined as follows:

AM ¼
TPþ TN

N
ð7:11Þ

where N is the total number of samples, TP is the number of true-positive clas-
sification results, and TN is the number of true-negative classification results.
Unfortunately, it is not that straightforward to define accuracy of explanation
terms. However, we find that the following definition is the most natural way of
defining the concept of accuracy of explanation terms. We start by defining the
error rate of an explanation term.

Definition 1 The error rate of an explanation term xj is the number of times that
the term xj is used incorrectly in an explanation divided by the number of
explanations generated.

For Explanations A, B, and C, the number of times that xj is used incorrectly in
an explanation is the sum of the number of times that xj is used for explaining
negative samples with d(x)j [ 0 and the number of times that xj is used for
explaining positive samples with d(x)j [ 0.

Definition 2 Let M be a linear SVM model. Then, the empirical error rate Ej,M of
an explanation term xj for Explanation A of the SVM model is

Ej;M ¼
FPdðxÞj [ 0 þ FNdðxÞj\0

N
ð7:12Þ

where N is the total number of samples, FPd(x)j[0 is the number of explanations
containing xj for false-positive classification results, and FNd(x)j\0 is the number of
explanations containing xj for false-negative classification results. The accuracy of
an explanation term xj is Aj,M = 1 - Ej,M.

With these definitions, we can now show that the accuracy of an SVM model is
bounded by the accuracy of the explanation terms.

Theorem 2 Let M be a linear SVM model. Then, the accuracy AM of the SVM
model M is bounded by the accuracy Aj,M of explanation terms xj:
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AM �Aj;M ð7:13Þ

Proof The accuracy of an explanation term xj is defined as follows:

Aj;M ¼ 1� Ej;M

¼ 1�
FPdðxÞj [ 0 þ FNdðxÞj\0

N

By definition, the accuracy of the SVM model M is:

AM ¼
TPþ TN

N

¼ 1� FPþ FN

N

where FP is the number of false-positive classification results and FN is the
number of false-negative results. By definition, the set of elements included in
FPd(x)j[0 (FNd(x)j\0) is a subset of the set of elements included in FP (FN),
respectively. Thus, FPd(x)j[0 B FP and FNd(x)j\0 B FN. Furthermore, the fol-
lowing holds for any explanation term xj:

FPdðxÞj [ 0 þ FNdðxÞj\0

N
� FPþ FN

N

Therefore, AM B Aj,M for any explanation term xj.

7.4.2.1 Experimental Results of Accuracy of Explanation Terms

Figure 7.4 shows the distribution of the explanation term accuracy with the poem
text data. As shown in Theorem 2, the minimum accuracy value is 0.94, which is
the accuracy of the SVM model for the poem text data.

7.4.3 Fidelity of Explanations

In order to test the explanation capability of the explanation terms, we used all
entries in Explanation A to generate a new feature set for the poem text data. By
using explanation terms only for generating the new feature set, the vocabulary
size was reduced from 1410 to 554. The ROC (Receiver Operating Curve) of the
classification is shown in Fig. 7.5. Support vector machines trained on the new
feature set achieved accuracy of 87 % and AUC (Area Under the Curve) of 0.89.
The corresponding ROC (Receiver Operating Curve) is shown in Fig. 7.5.
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The ROC curve for the SVM model using the full vocabulary is shown in
Fig. 7.6. This clearly shows that the explanation terms are representative. That is,
the explanations display a high level of fidelity because the explanation term set
can mimic the behavior of the SVM model from which the explanation terms are
extracted. According to Theorem 2, the explanation terms are also consistent. That
is, if an explanation term is used to explain a positive case, then the same
explanation term is not used to explain a negative case.

Fig. 7.4 Accuracy
distribution of the
explanation terms of the
poem text data. The
minimum accuracy value of
the explanation terms is 0.94,
which is the accuracy of the
corresponding SVM model

Fig. 7.5 True-positive rate
versus false-positive rate of a
linear support vector machine
using an explanation-term
vocabulary
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7.4.4 Optimization for Imbalanced Data

SVMs have been successfully applied to many text classification tasks, for
example, to determine mental health problems using transcribed speech samples
[1]. However, very few data sets are balanced: often the numbers of positive and
negative samples are very different. This is particularly true for medical data,
where few positive samples may be available, because positive cases are rare or
there are a few negative examples only. For example, Autism assessment records
contain very few negative cases, because most of the patients have been referred to
Autism specialists by medical practitioners who have provided a first assessment.
This imbalance can have a significant impact on the performance of machine
learning algorithms. Furthermore, this imbalance in data can affect the accuracy of
the estimated population-centroid. Thus explanations can become unreliable.

Various adjustments to SVMs have been proposed to improve the performance
of SVMs with imbalanced data [14, 24]. Most of these approaches are based on the
idea that the locations of the SVM hyperplanes can be adjusted to account for
imbalanced data. One approach is to use separate cost factor measures C+ and C-

for positive and negative samples, respectively [14]. Another approach is to adjust
the bias term b [24] after n-fold cross validation to find optimal performance
indicators.

In our experiments, we used the approach of adjusting the bias term b after n-
fold cross validation. We used receiver-operating-curve (ROC) and balanced
accuracy (BAC) as the heuristics for finding the optimal adjustment amount of the
bias term.

Fig. 7.6 ROC curve of the SVM model of the depression poem data. This illustrates that
performance indicators can be adjusted by moving the threshold of the decision value. Specificity
(recall) rate is increased from 0.549 to 0.85 by moving the decision threshold from 0 to 0.162.
This effectively moves the estimated centroid of the population to produce more accurate
explanations for imbalanced data
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BAC ¼ specificityþ sensitivity

2
specificity ¼ true negative rate ¼ PðO�jL�Þ
sensitivity ¼ true positive rate ¼ PðOþjLþÞ

Figure 7.6 shows the ROC curve of the LOO (leave-one-out) cross validation
results for the depression poem data. Using the default bias, the model had a
specificity value of 0.59. By adjusting the bias to b -0.17628 (i.e., a sample is
classified as positive if d(x) [ 0.17628), we obtained specificity and sensitivity
values of 0.8 and 0.96, respectively.

Adjusting the bias term moves the hyperplane along the weight vector w. This
movement has to be considered in calculating the deviation.

D0ðxÞ ¼ /ðxÞ � ðCsv þ CÞ ð7:14Þ

where C is the adjustment to the centroid. If the adjustment value to the bias term
is d (i.e., a sample is classified as positive if d(x) [ d), C is defined as follows:

C ¼ d
w

jjwjj2
¼ dnw ð7:15Þ

where dn = d/||w||2 is the normalized adjustment of the hyperplane. For a hyper-
plane in the input space w � x ? b = d, we can estimate the contribution of each
jth feature xj as follows:

d0ðxÞj ¼
X

i2SV

aiyixi; jðxj � Csv; j � dnxi; jÞ ð7:16Þ

7.4.5 Filtering Explanations with Sensitivity

Training a support vector machine for a data set of interest generates a hyperplane,
which can be used to obtain the distance of a feature vector to the hyperplane. The
distance is normal to the hyperplane. Thus, the importance of a feature can be
measured as the rate of change of the distance with respect to the feature. This can
be easily obtained for linear classifiers as follows:

odðxÞ
oxj

¼
X

i2SV

aiyixi; j ¼ wj ð7:17Þ

where d(x) is the distance of a feature vector x to the hyperplane, xj is the jth
feature, xi is the jth feature value of a support vector xi, and wj is the jth component
of the weight vector w.

Figure 7.7 shows a histogram of sensitivity and contribution values of features
for the poem text data set. Greater population is centered at sensitivity value 0 and
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contribution value 0. This suggests that features having higher sensitivity and
contribution values will provide more information on the decisions. It is also
suggested in Fig. 7.2 that most of the contributions are made by terms with higher
sensitivity values.

Figure 7.8 shows the relationship between word ranks and sensitivity values of
sample features. Those with higher sensitivity values tend to have higher ranking
order. The relationship between the word rank and sensitivity for the poem text
data set can be summarized as follows:

rank� a
1

jsensitivityj ð7:18Þ

Fig. 7.7 Distribution of sensitivity and contribution values of the poem text data set

Fig. 7.8 Feature components with higher sensitivity values tend to have higher ranking orders
(rank 1 is the highest rank and the most frequent term in the text corpus)
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for some positive constant a[ 0. A similar relationship is also observed between
the word rank and contribution across different text data sets (b[ 0):

rank� b
1

jcontributionj ð7:19Þ

Whereas the contribution and sensitivity are proportional

contributionj j � c sensitivityj j ð7:20Þ

which strongly suggests the two-step filtering (Explanation type B and Explanation
type C).

7.4.6 Non-Linear SVMs

For non-linear cases, we have to obtain partial derivatives of kernels to obtain
contribution and sensitivity values. As an example, let us consider the polynomial
kernel: K(xi � x)c,d = (cxi � x ? r)d. The sensitivity of a feature xj can be obtained
as follows:

odðxÞ
oxj

¼
X

i2SV

aiyidcxi; jðcxi � xþ rÞd�1

¼ dc
X

i2SV

aiyixi; jKðxi � xÞc; d�1

ð7:21Þ

This shows that the importance of the jth input feature for the hyperplane is a
combination of other input features weighted by support vector elements. To avoid
this, we can form a new hyperplane in the input space by identifying a subset of
support vectors as shown in Fig. 7.9. The straight line in the figure is a newly
formed hyperplane in the input space that separates the positive cases on the upper
right side from the negative cases at the centre. The generated explanations are
then, with respect to the new reference point, the centroid of the identified support
vectors. This is similar to a decision tree algorithm in the sense that it divides the
input space into subspaces, but using support vectors of an SVM model.

7.5 Contextual Text Summarization: Application
of Explanation Generation

The explanations generated provide the relevance of each feature for a particular
case. We can use this information to measure the relevance of each part of the text
data to generate a textual summary with regard to a classification result. Unlike
previous text summarization approaches, the textual summaries generated by the
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approach explained in this chapter aims at explaining why the particular sample is
classified as positive or negative.

We start with a simple approach to generating a textual summary. The first
method is scoring each sentence in a sample, using the explanation terms gener-
ated for the sample. In this approach, each sentence is given a score by deter-
mining contributions made by parts of the sentences. The score for the kth sentence
in a sample text is defined as follows:

sk ¼
1

jSkjjEj
X

j2X

X

t2Sk\E

ujðtÞdðxÞjqðxÞj ð7:22Þ

where j is a term included in explanation X, Sk is a set of terms in the kth sentence,
E is the set of all explanation terms for the model, uj(t) is the utility function that
measures how close the term t in Sk\E is to term j, d(x) is the amount of con-
tribution of the feature j, and q(x)j is the sensitivity of the feature j. The text
summary is then generated by selecting a subset of sentences from the text using
the scores as relevance measures. The ConceptNet analogy space [16] is used as
the utility function. The following example shows similarity values for
j = ‘frustration’:

• uj (end) = 0.269967456035
• uj (miss) = 0.75678954875
• uj (cry) = 0.599278222108
• uj (tear) = 0.168901775853

Fig. 7.9 K-NN (nearest neighbour) method of identifying a subset of support vectors (square
points) to generate explanations for a convex non-linear decision boundary. In the figure, a
positive data point at the upper right hand side is associated with the three nearest support vectors,
and its distance to the centroid of the support vectors is used as an explanation. The support
vectors form both a centroid and a new hyperplane in the input space
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The second method we developed uses more basic elements of text. Each
sentence is parsed into a set of basic-sentences (verb-subject-object tuples).
Antecedents of pronouns are identified by using ConceptNet and the pronouns are
replaced with their corresponding antecedents to improve readability of basic-
sentences. For example, sentence I have a dog that is 9 years old’’ is decomposed
into two basic sentences: p1 = ‘‘I have a dog’’ and p2 = ‘‘That is 9 years old’’.
The pronoun ‘that’ is then replaced with its antecedent ‘dog’. We then calculate
scores of the basic-sentences. The score of the kth basic-sentence in a sample is
defined as follows:

pk ¼
1

jPkjjEj
X

j2X

X

t2Pk\E

ujðtÞdðxÞjqðxÞj ð7:23Þ

where uj(t) is the utility function that measures how close the term t in the basic-
sentence qk is to the feature j in an explanation X. Similarly, with the sentence-
based summarization, the text summary is generate0d by selecting a subset of the
basic-sentences using the scores as relevance measures.

7.5.1 Result of Text Summarization

The following is an example sentence-based text summary that is generated for a
depression poem by selecting the top-5 most relevant sentences out of a total of 28
sentences:

Time is the only one who can really tell us.
Then soon enough it will be the end I cry almost every minute.
So much pain so much hurt.
You may ask and look concerned wanting to know why I cry.

The following is a sample basic-sentence-based text summary generated for the
same depression poem by selecting the top-5 most relevant basic-sentences:

It seem death. Death be me. You see. Who tell us

To evaluate the effectiveness of our approach, we measure similarities between
each explanations and sentences of the poem text files. An explanation selects the
top- K sentences that are most similar to the explanation. The error rate of this
evaluation method is defined as follows:

error ¼ # of Incorrect Sentences selected in K

K
ð7:24Þ

For an explanation of a depression (funny) poem, a sentence is incorrectly
selected if the sentence is from a funny (depression) poem, respectively. This
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measures the degree to which an explanation of a depressing (funny) poem prefers
sentences of depressing (funny) poems, respectively. This is an extrinsic method of
measuring text summaries based on relevance prediction [5], which is shown to be
less sensitive than and positively correlated with ROUGE scores [15]. This is also
a multi-document summarization task, but significantly different from existing
approaches, such as clustering based approaches [2]. Our approach automatically
extracts key words that are relevant to a given classification task and uses the set of
key words to measure similarities.

Figure 7.10 shows the average error rates of 18 explanations when the top-
K most similar sentences were selected out of 90 sentences (45 sentences from
depression poems and 45 sentences from funny poems). The left figure (the unit of
K is 5) shows that the average error rate was below 35 % when fewer than the top
15 most similar sentences were selected using top 3 most contributing explanation
terms. Figure 7.11 shows that within-class similarities (the average similarity
between explanations and sentences of the same classes) are consistently better
than between-class similarities (the average similarity between explanations and
sentences of the different classes).

Similar performance is achieved by selecting the top-K documents that are most
similar to an explanation: a below 35 % error rate when selecting fewer than 35 %
of the total documents. This method can be used to recommend patients with
similar assessments to specific doctors or social networking communities.

Fig. 7.10 Average error rates of text summaries are plotted against the K most similar sentences
that were selected for each explanation. The figure on the left shows the average error rate when
the top-3 most contributing terms are used to measure similarities. The figure on the right shows
the average error rates for each of the top-N most contributing terms used ranging from 1 to 6
terms
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7.6 Discussion and Future Work

Although feature selection and sensitivity analysis methods have been explored
extensively in previous studies as to their ability to improve performance of
machine learning algorithms [4, 11, 23, 25], the problem of generating explana-
tions for each case has received much less attention. Decision tree classifiers [20]
and other rule extraction methods [10, 17, 18, 21] can generate an explanation for
each case, similar to our method, but do not have the explanation-term consistency
or the explanation-term accuracy properties of our method. Similar rule extraction
methods also are lacking in that no feature relevance information (e.g., contri-
butions of each explanation terms) is provided.

This is the first report of a novel approach to generating consistent informative
features for each separate case directly from SVM models and input data: con-
sistent top-N features for each case as an explanation. This is also the first report of
a novel approach to generating high-quality textual explanation for psychological
classification: the selected features are used to generate textual explanations (sets
of basic sentences) using semantic similarity measures. Other novel features
include: (1) dynamic centroid identification in the context of SVM to identify
reference points; and (2) selecting informative features for each case by combining
both contributions and sensitivity.

We have shown that the explanations are consistent, accurate, display a high
level of fidelity, and can generate text summaries with error rates below 35 %.

Fig. 7.11 Average similarity measures between explanations and poem sentences when the top-
N most contributing terms are used to measure the similarities
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Furthermore, we have shown that the approach can be applied to imbalanced data
by adjusting SVM hyperplanes and centroids using ROC curves. This approach
can be easily extended to non-linear classifiers, for example, by combining with K-
NN to identify support vectors that can be used as explanation reference points.

To improve the comprehensibility of explanations, the input text is parsed into
basic-sentences and scored using a common sense database called ConceptNet. We
believe that this approach overcomes the subjective nature of measuring com-
prehensibility. Considerable further research is required. The approach of
extracting pieces of knowledge using machine learning in explaining psychiatric
assessments has the potential to improve the usability of machine learning tech-
niques in the medical and security domains. This approach can be further
expanded by using alternative feature representations of text data sets, such as
concept terms or semantic terms. There is massive potential for incorporating these
sophisticated information extraction technologies within psychiatry and in medi-
cine more generally.
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