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Foreword

In 2013 the 8th International Federated Conference on Distributed Comput- ing
Techniques (DisCoTec) took place in Florence, Italy, during June 3–6. It was
hosted and organized by Università di Firenze. The DisCoTec series of federated
conferences, one of the major events sponsored by the International Federation
for Information processing (IFIP), included three conferences:

– The 15th International Conference on Coordination Models and Languages
(Coordination)

– The 13th IFIP International Conference on Distributed Applications and
Interoperable Systems (DAIS)

– The 2013 IFIP Joint International Conference on Formal Techniques for
Distributed Systems (33rd FORTE/15th FMOODS)

Together, these conferences cover the complete spectrum of distributed comput-
ing subjects ranging from theoretical foundations to formal specification tech-
niques to systems research issues.

Each of the first three days of the federated event began with a plenary
speaker nominated by one of the conferences. The three invited speakers were:
Tevfik Bultan, Department of Computer Science at the University of California,
Santa Barbara, UCSB; Gian Pietro Picco, Department of Information Engineer-
ing and Computer Science at the University of Trento, Italy; and Roberto Bal-
doni, Department of Computer, Control and Management Engineering“Antonio
Ruberti”, Università degli Studi di Roma “La Sapienza”, Italy. In addition, on
the second day, there was a joint technical session consisting of one paper from
each of the conferences. There were also three satellite events:

1. The 4th International Workshop on Interactions Between Computer Science
and Biology (CS2BIO) with keynote talks by Giuseppe Longo (ENS Paris,
France) and Mario Rasetti (ISI Foundation, Italy)

2. The 6th Workshop on Interaction and Concurrency Experience (ICE) with
keynote lectures by Davide Sangiorgi (Università di Bologna, Italy) and
Damien Pous (ENS Lyon, France)

3. The 9th International Workshop on Automated Specification and Verifica-
tion of Web Systems (WWV) with keynote talks by Gerhard Friedrich (Uni-
versität Klagenfurt, Austria) and François Täıani (Université de Rennes 1,
France)

I believe that this program offered each participant an interesting and stim-
ulating event. I would like to thank the Program Committee Chairs of each
conference and workshop for their effort. Moreover, organizing DisCoTec 2013
was only possible thanks to the dedicated work of the Publicity Chair Francesco
Tiezzi (IMT Lucca, Italy), the Workshop Chair Rosario Pugliese (Università
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di Firenze, Italy), and members of the Organizing Committee from Università
di Firenze: Luca Cesari, Andrea Margheri, Massimiliano Masi, Simona Rinaldi
and Betti Venneri. To conclude I want to thank the International Federation for
Information Processing (IFIP) and Università di Firenze for their sponsorship.

June 2013 Michele Loreti



Preface

This volume contains the proceedings of DAIS 2013, the 13th IFIP International
Conference on Distributed Applications and Interoperable Systems, sponsored
by IFIP (International Federation for Information Processing) and organized by
the IFIP Working Group 6.1.

DAIS was held during June 3–5, 2013 in Florence, Italy, as part of the
DisCoTec (Distributed Computing Techniques) federated conference, together
with the International Conference on Formal Techniques for Distributed Systems
(FMOODS & FORTE) and the International Conference on Coordination Mod-
els and Languages (COORDINATION). There were 42 submissions for DAIS.
Each submission was reviewed by at least 3, and on average 3.9, Program Com-
mittee members. The committee decided to accept 12 full papers and six short
papers, giving an acceptance rate of 28% for full research papers.

The conference program presented state-of-the-art research results and case
studies in the area of distributed applications and interoperable systems. The
main themes of this year’s conference were cloud computing, replicated storage,
and peer-to-peer computing.

In the area of cloud computing, there are papers on security, adaptive repli-
cated services, network forensics for the cloud, autnomously adapting applica-
tions, a benchmark-as-a-service, and building an ambient cloud for mobile ad-hoc
networks. A significant number of the papers cover replicated storage, including
providing SQL support for NoSQL databases, strengthening consistency for the
Cassandra key-value store, using application-level knowledge to improve repli-
cation consistency models, improving transaction processing throughput for op-
timistic concurrency control through adaptive scheduling, and a study of the
cost of consistency models in distributed filesystems. Two papers are on peer-to-
peer computing, including algorithms for generating scale-free overlay topologies,
and a model for a peer-to-peer-based virtual microscope. We also had papers
on deploying experiments on smartphones, bandwidth prediction, asynchronous
protocol gateways, and decentralized workflow scheduling.

Finally, we would like to take this opportunity to thank the many people
whose work made this conference possible. We wish to express our deepest grat-
itude to the authors of submitted papers, to all PC members for their active
participation in the paper review process, and to all external reviewers for their
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help in evaluating submissions. We would like to thank the Steering Committee
of DAIS, and in particular the Chair Rui Oliviera, for their advice and help. We
would also like to thank Roberto Baldoni, our invited keynote speaker. Further
thanks go to the University of Florence for hosting the event in Florence, to
the past DAIS Chairs Karl Göschka and Seif Haridi for their useful advice and
documentation, and to Michele Loreti for acting as a General Chair of the joint
event.

April 2013 Jim Dowling
François Täıani
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Lúıs Veiga Instituto Superior Técnico - UTL/INESC-ID
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Sven Schober, Stefan Brenner, Rüdiger Kapitza, and Franz J. Hauck

A Scalable Benchmark as a Service Platform . . . . . . . . . . . . . . . . . . . . . . . . 113
Alain Tchana, Noel De Palma, Ahmed El-Rheddane,
Bruno Dillenseger, Xavier Etchevers, and Ibrahim Safieddine

Failure Analysis and Modeling in Large Multi-site Infrastructures . . . . . . 127
Tran Ngoc Minh and Guillaume Pierre

Evaluating the Price of Consistency in Distributed File Storage
Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
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Semantically Aware Contention Management  
for Distributed Applications 

Matthew Brook, Craig Sharp, and Graham Morgan 

School of Computing Science, Newcastle University 
{m.j.brook1,craig.sharp,graham.morgan}@ncl.ac.uk 

Abstract. Distributed applications that allow replicated state to deviate in  
favour of increasing throughput still need to ensure such state achieves 
consistency at some point. This is achieved via compensating conflicting 
updates or undoing some updates to resolve conflicts. When causal 
relationships exist across updates that must be maintained then conflicts may 
result in previous updates also needing to be undone or compensated for. 
Therefore, an ability to manage contention across the distributed domain to pre-
emptively lower conflicts as a result of causal infringements without hindering 
the throughput achieved from weaker consistency is desirable. In this paper we 
present such a system. We exploit the causality inherent in the application 
domain to improve overall system performance. We demonstrate the 
effectiveness of our approach with simulated benchmarked performance results. 

Keywords: replication, contention management, causal ordering. 

1 Introduction 

A popular technique to reduce shared data access latency across computer networks 
requires clients to replicate state locally; data access actions (reads and/or writes) 
become quicker as no network latency will be involved. An added benefit of such an 
approach is the ability to allow clients to continue processing when disconnected from 
a server. This is of importance in the domains of mobile networks and rich Internet 
clients where lack of connectivity may otherwise inhibit progress. 

State shared at the client side still requires a level of consistency to ensure correct 
execution. This level is usually guaranteed by protocols implementing eventual 
consistency. In such protocols, reconciling conflicting actions that are a result of 
clients operating on out-of-date replicas must be achieved. In this paper we assume a 
strict case of conflict that includes out-of-date reads. Such scenarios are typical for 
rich Internet clients where eventual agreement regarding data provenance during 
runtime can be important.  

Common approaches to reconciliation advocate compensation or undoing previous 
actions. Unfortunately, the impact of either of these reconciliation techniques has the 
potential to invalidate the causality at the application level within clients (semantic 
causality): all tentative actions not yet committed to shared state but carried out on the  
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local replica may have assumed previous actions were successful, but now require 
reconciliation. This requires tentative actions to be rolled back. For applications 
requiring this level of client-local causality, the impact of rolling back tentative 
actions has a significant impact on performance; they must rollback execution to 
where the conflict was discovered. 

Eventually consistent applications exhibiting strong semantic causality that need to 
rollback in the presence of conflicts are similar in nature to transactions. Transactions, 
although offering stronger guarantees, abort (rollback state changes) if they can’t be 
committed. In recent years transactional approaches have been used for regulating 
multi-threaded accesses to shared data objects. A contention manager has been shown 
to improve performance in the presence of semantic causality across a multi-threaded 
execution. A contention manager determines which transactions should abort based 
on some defined strategy relating to the execution environment. 

In this paper we present a contention management scheme for distributed 
applications where maintaining semantic causality is important. We extend our initial 
idea [10] by dynamically adapting to possible changes in semantic causality at the 
application layer. In addition, we extend our initial idea of a single server based 
approach to encompass n-tier architectures more typical of current server side 
architectures. 

In section 2 we describe background and related work, highlighting the notion of 
borrowing techniques from transactional memory to benefit distributed applications. 
In section 3 we describe the design of our client/server interaction scenario. In section 
4 we describe our contention management approach with enhanced configurability 
properties. In section 5 we present results from our simulation demonstrating the 
benefits our approach can bring to the system described in section 3. 

2 Background and Related Work 

Our target application is typically a rich Internet client that maintains replicas of 
shared states at the client side and wishes to maintain semantic causality. Such an 
application could relate to e-commerce, collaborative document editing or any 
application where the provenance of interaction must be accurately captured. 

2.1 Optimistic Replication 

Optimistic protocols allow for a deviation in replica state to promote overall system 
throughput. They are ideal for those applications that can tolerate inconsistent state in 
favour of instant information retrieval (e.g., search engines, messaging services). The 
guarantee afforded to the shared state is eventual consistency [3], [4].  

Popular optimistic solutions such as Cassandra [5] and Dynamo [6] may be capable of 
recognising causal infringement, but do not provision rollback schemes to enforce 
semantic causality requirements at the application layer within their design. They are 
primarily designed, and work best, for scalable deployment over large clusters of servers. 
They are not designed for distributed clients to maintain replication of shared state. 
However, earlier academic work did consider client-based replication. Bayou [7]  
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and Icecube [8] [9] do attempt to maintain a degree of causality, but only at the 
application programmer’s discretion. In such systems the application programmer 
may specify the extent of causality, preventing a total rollback and restart. This has 
the advantage of exploiting application domains to improve availability and 
timeliness, but does complicate the programming of such systems as the boundary 
between protocol and application overlap. In addition, the programmer may not be 
able to predict the semantic causality accurately. 

2.2 Transactions 

Transactions offer a general platform to build techniques for maintaining causality 
within replication accesses at the client side that does not require tailoring based on 
application semantics. Unfortunately, they impose a high overhead to an application 
that negates the scalable performance expected from optimistic replication: maintain 
ordering guarantees for accesses at the server and clients complete with persistent 
fault-tolerance.  

Transactional memory [12] approaches found in multi-threaded programming 
demonstrate fewer of such guarantees (e.g., persistence). In addition, unlike typical 
transactions in database processing multi-threaded programs present a high degree of 
semantic causality (threads executing and repeatedly sharing state). Therefore, it is no 
surprise to learn that they have been shown to help improve overall system throughput 
by judicial use of a contention manager [1] [2] [13]. Although no single contention 
manager works for all application types [14], dynamism can be used to vary the 
contention strategy. 

2.3 Contribution 

In our previous work we successfully borrowed the concept of contention 
management from transactional memory and described a contention manager that 
may satisfy our rich Internet client setting [10]. We derived our own approach based 
on probability of data object accesses by clients. Unfortunately, the approach had 
limitations: (1) it was static and could not react to changes in application behaviour 
(i.e., probability of object accesses changing); (2) it worked on a centralised server 
(i.e., we could not utilise scalability at the server side). In this paper we propose 
solutions to both these problems and present a complete description of our eventually 
consistent protocol (which we didn’t present earlier) with the dynamic version of our 
semantically aware contention manager. 

3 System Design 

Our contention management protocol is deployed within a three-tier server side 
architecture as illustrated in Fig. 1. The load balancer initially determines which 
application server to direct client requests to. A sticky session is then established such 
that all messages from one client are always directed to the same application server. 
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Communication channels exhibit FIFO qualities but message loss is possible. We 
model this type of communication channel to reflect a typical TCP connection with 
the possibility of transient connectivity of clients, a requirement in many rich Internet 
client applications. 

Data accesses are performed locally on a replication of the database state at the 
client side. In our evaluation we used a complete replica, but this could be partial 
based on a client’s ability to gain replica state on initialisation of a client. Periodically 
clients inform the application server of these data accesses. An application server 
receives these access notifications and determines whether these accesses are valid 
given the current state as maintained at the database. Should the updates be valid, the 
database state is updated to reflect the changes the client has made locally. However, 
if the update results in an irreconcilable conflict then the client is notified. When the 
client learns that a previous action was not successful, the client rolls back to the point 
of execution where this action took place and resumes execution from this point.  

 

Fig. 1. System Design 

3.1 Clients 

Each client maintains a local replica of the data set maintained by the database. All 
client actions enacted on the shared data are directed to their local replica. The client 
uses a number of logical clocks to aid in managing their execution and rollback: 

• Client data item clock (CDI) – exists for each data item and identifies the current 
version of the data item’s state held by a client. The value is used to identify when 
a client’s view of the data item is out-of-date. This value is incremented by the 
client when updating a data item locally or when a message is received from an 
application server informing the client of a conflict. 

• Client session clock (CSC) – this value is attached to every request sent to an 
application server. When a client rolls back this value is incremented. This allows 
the application server to ignore messages belonging to out of date sessions.  

• Client action clock (CAC) – this value is incremented each time a message is sent 
to an application server. This allows the application servers to recognize missing 
messages from clients. 
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The result of an action that modifies a data item in the local replicated state results in 
a message being sent to the application servers. This message contains the data item 
state, the CDI of the data item, the CSC and the CAC. An execution log is maintained 
and each client message is added to it. This execution log allows client rollback. 

A message arriving from the application server indicates that a previous action, say 
An, was not possible or client messages are missing. All application server messages 
contain a session identifier. If this identifier is the same or lower than the client’s CSC 
then the application server message is ignored (as the client has already rolled back – 
the application server may send out multiple copies of the rollback message). 
However, if the session identifier is higher than the client’s CSC the client must 
update their own CSC to match the new value and rollback. 

If the message from the application server was sent due to missing client messages 
then only an action clock and session identifier will be present (we call this the missed 
message request). On receiving this message type, the client should rollback to the 
action point using their execution log. However, if the application server sent the 
message because of a conflicting action then this message will contain the latest state 
of the data that An operated on and the new logical clock value (we call this the 
irreconcilable message request). On receiving such a message the client halts 
execution and rolls back to attempt execution from An. 

Although a client will have to rollback when requested by the application server, 
the receiving of an application server message also informs the client that all their 
actions prior to An were successful. As such, the client can reduce the size of their 
execution log to reflect this.  

3.2 Application Server 

The role of an application server is to manage the causal relationship between a 
client’s actions and ensure a client’s local replica is eventually consistent. The 
application server manages three types of logical clock to inform the client when to 
rollback: 

• Session identifier (SI) – this is the application server’s view of a client’s CSC. 
Therefore, the application server maintains an SI for each client. This is used to 
disregard messages from out of date sessions from clients. The SI is incremented 
by one each time a client is requested to rollback.  

• Action clock (AC) – this is the application server’s view of client’s CAC. 
Therefore, the application server maintains an AC for each client. This is used to 
identify missing messages from a client. Every action honoured by the application 
server on behalf of the client results in the AC for that client being set to the CAC  
belonging to the client.  

• Logical clock (LC) – this value is stored with the data item state at the database. 
The value is requested by the application sever when an update message is 
received from a client. The application server determines if a client has operated on 
an out-of-date version using this value. If the action from the client was valid then 
the application server updates the value at the database. Requests made to the 
database are considered transactional; handling transactional failure is beyond the 
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scope of this paper (we propose the use of the technique described in [11] to handle 
such issues).  

A message from a client, say C1, may not be able to be honoured by the application 
server due to one of the following reasons: 

• Stale session – the application server’s SI belonging to C1 is less than the CSC in 
C1’s message. 

• Lost message – the CAC in C1’s message is two or more greater than the 
application server’s AC for C1. 

• Stale data – the LC for the data item the client has updated is greater than the CDI 
in C1’s message. 

When the application server has to rebut a client’s access, a rollback message is sent 
to that client. Preparation of the rollback message depends on the state of the client as 
perceived by the application server. An application server can recognize a client (C1) 
in one of two modes: 

• Progress – the last message received from C1 could be honoured. 
• Stalled – the last message received from C1 could not be honoured or was ignored. 

If C1 is in the progress state then the application server will create a new rollback 
message and increment the SI for C1 by one. If the problem was due to a lost message 
then the AC value for C1 is incremented by one (to indicate that rollback is required to 
just after the last successful action) and is sent together with C1’s updated SI value 
(this is the missed message request mentioned in section 3.1). If the problem was due 
to an irreconcilable action the message sent to the client will contain the latest LC for 
the data item the action attempted to access (retrieved from the database), and the 
application server’s SI value for C1 (this is the irreconcilable message request 
mentioned in section 3.1). The application server moves C1 to the stalled state and 
records the rollback message sent to C1 (this is called the authoritative rollback 
message). 

If C1 is in the stalled state all the client’s messages are responded to with C1’s 
current authoritative rollback message. The exception is if the received message 
contains a CSC value equal to C1’s SI value held by the application server. If such a 
message is received then the CAC value contained in the message is compared with 
the AC value of C1 held by the application server. If it is greater (i.e., the required 
message from C1 is missing) the application server increments C1’s SI by one and 
constructs a new authoritative rollback message to be used in response to C1. If the 
CAC value in the message is equivalent to the AC value of C1 as held by the 
application server, and the application server can honour this message (logical clock 
values are valid), then C1’s state is moved to progress and the authoritative rollback 
message is discarded. If the message cannot be honoured (it is irreconcilable), then 
the application server increments the SI for C1 by one and uses this together with the 
contents of the received message to create a fresh authoritative rollback message, 
sending this to the client.  
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3.3 Database  

The database manages the master copy of the shared data set. The data set comprises 
of data items and their associated logical clock values. The data item reflects the state 
while the logical clock indicates versioning information. The logical clock value is 
requested by application servers to be used in determining when a client’s update 
message is irreconcilable. The database accepts requests to retrieve logical clock 
values for data items or to update the state and logical clock values (as a result of a 
successful action as determined by an application server). We assume application 
servers and databases interact in standard transactional ways. 

3.4 System Properties 

The system design described so far can be reasoned about in the following manner: 

• Liveness – Clients progress until an application server informs them that they must 
rollback (via an authoritative rollback message). If this message is lost in transit the 
client will continue execution, sending further access notification to the application 
server. The application server will continue to send the rollback message in 
response until the client responds appropriately. If the client message that is a 
direct response to the authoritative rollback message goes missing the application 
server will eventually realize this due to receiving client messages with the 
appropriate SI values but with CAC values that are too high. This will cause the 
application server to respond with an authoritative rollback message. 

• Causality – A client always rolls back to where an irreconcilable action (or missing 
action due to message loss) was discovered by the application server. Therefore, all 
actions that are reconciled at the application server and removed from a client’s 
execution log maintain the required causality. Those tentative actions in the 
execution log are in a state of reconciliation and may require rolling back. 

• Eventually Consistent – If a client never receives a message from an application 
server then either: (i) all client requests are honoured and states are mutually 
consistent; or (ii) all application server or client messages are lost. Therefore, as 
long as sufficient connectivity between client and application servers exists, the 
shared data will become eventually consistent.   

The system design provides opportunity for clients to progress independently of the 
application server in the presence of no message loss and no irreconcilable issues on 
the shared data. In reality, there will be a number of irreconcilable actions and as such 
the burden of rolling back is much more substantial than other eventually consistent 
optimistic approaches. This does, however, provide the benefit of not requiring any 
application level dependencies in the protocol itself; the application developer does 
not need to specify any exception handling facility to satisfy rollback. 
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4 Semantic Contention Management 

We now describe our contention management scheme and how it is applied to the 
system design presented in the previous section. The aim of the contention 
management scheme is to attain a greater performance in the form of fewer 
irreconcilable differences without hindering overall throughput.  

Like all contention management schemes, we exploit a degree of predictability to 
achieve improved performance. We assume that causality across actions is reflected 
in the order in which a client accesses shared data items. The diagram in Fig. 2  
illustrates this assumption. 

 

 

Fig. 2. Relating client actions progressing to data items 

In the simple graph shown in Figure 2 we represent three data items (a, b and c) as 
vertices with two edges connecting a to b and c. The edges of the graph represent the 
causal relationship between the two connected data items. So if a client performs a 
successful action on data item a there is a higher than average probability that the 
focus of the next action from the same client will be either data item b or c. 

Each application server manages their own graph configuration representing the 
data items stored within the database. Because of this graphs will diverge across 
application servers. This is of no concern, as an application server must reflect the in-
session causality of its own clients, not the clients of others. We extend the system 
design described in the previous section by adding the following constructs to support 
the contention management framework: 

• Volatility value (VV) – a value associated to each vertex of the graph indicating the 
relative popularity for the given data item. The volatility for a data item in the 
graph is incremented when a client’s action is successful. The volatility for the data 
item that was the focus of the action is incremented by one and the neighbouring 
data items (those that are connected by outgoing arcs of the original data item) 
volatilities are incremented by one. Periodically, the application server will 
decrement these values to reflect the deterioration of the volatility for nodes that 
are no longer experiencing regular data access.  

• Delta queue (DQ) – for those actions that could not be honoured by the application 
server due to irreconcilable conflicts (out-of-date logical clock values) a backoff 
period is generated as the sum of the volatility for the related data. These related 
data items include the original data item for which the conflict occurred along with  
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the data items with the highest volatilities up to three hops away in the graph.  
This client is now considered to be in a stalled state and is placed in the delta queue 
for the generated backoff period. The backoff period is measured in milliseconds 
given a value generated from the volatility values.  

• Enhanced authoritative rollback message – when a backoff period expires for a 
client residing in the delta queue, an enhanced authoritative rollback message is 
sent to the client. This is an extension of the authoritative rollback message 
described in the system design that includes a partial state update for the client. 
This partial state update includes the latest state and logical clock values for the 
conflicting data item and the data items causally related to the original conflicting 
access. Based on the assumption of causality as reflected in the graph 
configuration, the aim here to pre-emptively update the client. As a result, future 
update messages will have a higher chance of being valid (this cannot be 
guaranteed due to simultaneous accesses made by other clients).  

The approach we have taken is a server side enhancement. This decision was taken to 
alleviate clients from active participation in the contention management framework. 
The client needs only to be able to handle the enhanced authoritative rollback  
message that requires additional state updates to the client’s local replica.  

As each application server manages their graph structure representing the data 
items, should a single application server crash, client requests can be directed to 
another working application server will little loss. Clients that originally had sessions 
belonging to the crashed application server will require directing to a different 
application server and there will be some additional conflicts and overhead due to the 
lost session data.  

4.1 Graph Reconfiguration 

To satisfy the changing probabilities of causal data access over time our static graph 
approach requires only minor modifications. 

We introduce two new values that an application server maintains for each client: 
 

• Happens Before Value (HBV) – the vertex representing a data item a client last 
successfully accessed. 

• Happens After Value (HAV) – the vertex representing a data item a client 
successfully accessed directly after HBV. 

 
If there does not exist a link between HBV and HAV then one is created. 
Unfortunately, if we were to continue in this manner we may well end up with a fully 
connected graph, unnecessarily increasing the load in the overall system (e.g., 
increased sized enhanced authoritative rollback message).  Therefore, to allow for the 
deletion of edges as well as the creation of edges we make use of an additional value 
to record the popularity of traversal associated to each edge in the graph: 

• Edge Popularity Value (EPV) – The cumulative number of times, across all 
clients, a causal occurrence has occurred between a HBV and HAV. 
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If there already exists a link between HBV and HAV then the associated edge’s EPV 
is incremented by one. This provides a scheme within which the most popular edges 
will maintain the highest values. However, this may not reflect the current popularity 
of the causal relations, therefore, the EPVs purpose is to prune the graph. Periodically, 
the graph is searched and EPVs below a certain threshold result in the removal of 
their edges. After pruning the graph all remaining edges are reset to the value 0. 

Periodic pruning and resetting of EPVs provides our scheme with a basic 
reconfiguration process to more appropriately reflect current semantic causal 
popularity. We acknowledge that this process of reconfiguration will incur a 
performance cost relative to the number of data items (vertices) and edges present in 
the graph. The decision on the time between periodic reconfiguration will be based on 
a number of factors: (i) the relative performance cost of the reconfiguration; (ii) the 
number of client requests within the period. If the number of requests is low but 
reconfiguration too frequent then edges may be removed that are still popular. 
Therefore, we dynamically base our reconfiguration timings on changes in load. 

An interesting observation of reconfiguration is it also presents a window of 
opportunity to alter the data items present. If this was a typical e-commerce site with 
items for sale then they may be introduced as graph reconfiguration occurs. This has 
two benefits: (i) introduction of items may well alter the causal relationships 
dramatically (e.g., timed flash sales) and so waiting for reconfiguration would not 
result in unnecessary overhead as graph values change significantly; (ii) one can 
apply some application level analysis on the effect new items have on existing data 
items. 

5 Evaluation 

Three approaches were evaluated to determine performance in terms of server side 
conflicts and throughput: (1) the basic protocol as described in the system design with 
no contention management; (2) the enhanced protocol with contention management 
but without graph reconfigurations; (3) the enhanced protocol with both contention 
management and graph reconfiguration. To create an appropriate simulation scenario 
we rely on a pattern of execution for rich Internet clients similar to that described in 
[16] (ecommerce end client sales).  

5.1 Simulation Environment 

We produced a discrete event simulation using the SimJava [15] framework. We 
modeled variable client numbers, a load balancer, three application servers and a  
database as processes.  

Graph layouts are randomly created and client accesses are pre-generated. The 
initial graph layouts include vertices with and without edges. In the dynamic scenario 
such a vertex may at some point become connected, but not in the static graph.  

In the dynamic graph periodic reconfiguration occurred every thirty seconds with a 
relaxed threshold of one. This period was determined over experimentation and was 
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found to provide reasonable balance between accurate causality representation and 
overhead induced by reconfiguration. The relaxed threshold simply indicated edges 
that had shown any causal interest would be guaranteed a starting presence in the 
graph after reconfiguration.  

We simulated message delay between client and application servers (load balancer) 
as a random variable with a normal distribution between 1 - 50 milliseconds. Each 
client performs 200 data accesses then leaves the system. Each experiment was run 
five times to generate the average figures presented. The arrival rate of client 
messages to the application server was set as ten messages per second for each client 
process. The simulation was modeled with a 2% message loss probability. Database 
read and writes were 3 and 6 microseconds respectively. 

5.2 Evaluation 1 – Irreconcilable Client Updates (Conflicts) 

 

Fig. 3. Irreconcilable conflicts for varying graph sizes 
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The graphs in figure 3 show that the inclusion of contention management lowers 
conflicts. The results also show the added benefit of graph reconfiguration over a 
static graph. In addition, reconfiguration appears to approach a stable state as the 
contention increases. Reconfiguration allows for the system to adapt to the changing 
client interactions resulting in the graph more accurately reflecting semantic causality 
over time. Without reconfiguration the conflicts continue to rise rather than stabilize. 
What has little impact on the results is the number of data items represented in the 
graph. This is due to the predictability exhibited in the client accesses: if clients 
accessed data at random we would expect that graph size mattered, as there would 
naturally be less conflicts.  

5.3 Evaluation 2 – Throughput of Successful Client Actions (Commits) 

 

Fig. 4. Throughput measured as commits per second for varying graph sizes 

Similar to the previous set of the results, the graph size plays little role given the 
predictive behaviour of the clients. The results show our backoff contention 
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management providing the best throughput. Interestingly, without reconfiguration the 
system appears to reach saturation point early. With reconfiguration we still have 
improvement occurring, although it is tailoring off towards 100 clients.  

The results presented here indicate that backing off clients and updating their 
replicas in a predictive manner actually improves performance: conflicts lowered and 
throughput is increased. In terms of throughput alone, this is seen as a significant 30% 
improvement when combined with reconfiguration. Therefore, we conclude that 
causality at the application layer can be exploited to improve performance for those  
applications where causality infringement requires rollback of local replica state. 

6 Conclusion 

We have described an optimistic replication scheme that makes use of dynamic 
contention management. We base our contention manager on the popularity of data 
accesses and the possible semantic causal relation this may hint at within the 
application layer. Our approach is wholly server based, requiring no responsibility for 
managing contention from the client side (apart from affording rollback). Our 
approach suits applications where causality is important and irreconcilable accesses of 
shared state may cause a client to rollback accesses tentatively carried out on a local 
replica. Such scenarios occur in rich Internet clients where provenance of data access 
is to be maintained or where actions of a client’s progress must be rolled back in the 
context of achieving a successful client session. We describe our approach in the 
context of n-tier architectures, typical in application server scenarios.  

Our evaluation, via simulation, demonstrates how overall throughput is improved 
by reducing irreconcilable actions on shared state. In particular, we show how 
adapting to changes in causal relationships during runtime based solely on access 
patterns of clients provide greatest improvements in throughput.  

This is the first time runtime adaptability of causality informed contention 
management has been demonstrated in a complete solution exhibiting eventual 
synchronous guarantees. As such, we believe that this is not only a useful contribution 
to the literature, but opens new avenues of research by bringing the notion of 
contention management to replication protocols. 

We acknowledge that our approach is focussed on a particular application type: 
applications that always rollback to where conflict was detected. However, we believe 
that advocating contention management as an aid to performance for eventually 
consistent replicated state in general would be beneficial and worthy of future 
exploration.  

Future work will focus on peer-to-peer based evaluation and creating contention 
management schemes suitable for mobile environments (where epidemic models of 
communication are favoured). A further opportunity of exploration will be in taking 
the semantic awareness properties of this work back to transactional memory systems 
themselves. 



14 M. Brook, C. Sharp, and G. Morgan 

References 

1. Scherer III, W N., Scott M.L.: Contention Management in Dynamic Software 
Transactional Memory. In: PODC Workshop on Concurrency and Synchronization in Java 
Programs, pp. 70–79 (2004)  

2. Scherer III, W.N., Scott, M.L.: Advanced Contention Management for Dynamic Software 
Transactional Memory. In: Proceedings of the 24th Annual ACM Symposium on  
Principles of Distributed Computing, pp. 240–248. ACM, New York (2005) 

3. Saito, Y., Shapiro, M.: Optimistic Replication. ACM Computing Surveys 37, 42–81 
(2005) 

4. Vogels, W.: Eventually Consistent. Communications of the ACM 52, 40–44 (2009) 
5. Lakshman, A., Malik, P.: Cassandra: A Decentralized Structured Storage System. ACM 

SIGOPS Operating Systems Review 44, 35–40 (2010) 
6. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,  

Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s Highly Available 
Key-Value Store. In: 21st ACM SIGOPS Symposium on Operating Systems Principles,  
pp. 205–220. ACM, New York (2007) 

7. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser, C.H.: 
Managing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System. In: 
15th ACM Symposium on Operating Systems Principles, pp. 172–182. ACM, New York 
(1995) 

8. Kermarrec, A., Rowstron, A., Shapiro, M., Druschel, P.: The IceCube Approach to the  
Reconciliation of Divergent Replicas. In: 20th Annual ACM Symposium on Principles of 
Distributed Computing, pp. 210–218. ACM, New York (2001) 

9. Preguiça, N., Shapiro, M., Matheson, C.: Semantics-Based Reconciliation for Collaborative 
and Mobile Environments. In: Meersman, R., Schmidt, D.C. (eds.) CoopIS 2003, DOA 2003, 
and ODBASE 2003. LNCS, vol. 2888, pp. 38–55. Springer, Heidelberg (2003) 

10. Abushnagh, Y., Brook, M., Sharp, C., Ushaw, G., Morgan, G.: Liana: A Framework that 
Utilizes Causality to Schedule Contention Management across Networked Systems. In: 
Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., 
Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part II. LNCS, vol. 7566,  
pp. 871–878. Springer, Heidelberg (2012) 

11. Kistijantoro, A.I., Morgan, G., Shrivastava, S.K., Little, M.C.: Enhancing an Application 
Server to Support Available Components. IEEE Transactions on Software 
Engineering 34(4), 531–545 (2008) 

12. Herlihy, M., Moss, J.E.B.: Transactional Memory: Architectural Support for Lock-free  
Data Structures. In: Proceedings of the 20th Annual International Symposium on 
Computer Architecture, vol. 21(2), pp. 289–300. ACM, New York (1993) 

13. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software Transactional Memory 
for Dynamic-sized Data Structures. In: Proceedings of the 22nd Annual Symposium on 
Principles of Distributed Computing, pp. 92–101. ACM, New York (2003) 

14. Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic Contention Management. In: Fraigniaud, 
P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 303–323. Springer, Heidelberg (2005) 

15. University of Edinburgh, SimJava, http://www.dcs.ed.ac.uk/home/hase/ 
simjava/ (accessed: February 16, 2013)  

16. Clarke, D., Morgan, G.: E-Commerce with Rich Clients and Flexible Transactions. In: 
First International Workshop on Software Technologies for Future Dependable Distributed 
Systems, pp. 73–77. IEEE (2009) 



FITCH: Supporting Adaptive Replicated Services
in the Cloud
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Abstract. Despite the fact that cloud computing offers a high degree of dy-
namism on resource provisioning, there is a general lack of support for managing
dynamic adaptations of replicated services in the cloud, and, even when such sup-
port exists, it is focused mainly on elasticity by means of horizontal scalability.
We analyse the benefits a replicated service may obtain from dynamic adapta-
tions in the cloud and the requirements on the replication system. For example,
adaptation can be done to increase and decrease the capacity of a service, move
service replicas closer to their clients, obtain diversity in the replication (for re-
silience), recover compromised replicas, or rejuvenate ageing replicas. We intro-
duce FITCH, a novel infrastructure to support dynamic adaptation of replicated
services in cloud environments. Two prototype services validate this architecture:
a crash fault-tolerant Web service and a Byzantine fault-tolerant key-value store
based on state machine replication.

1 Introduction

Dynamic resource provisioning is one of the most significant advantages of cloud com-
puting. Elasticity is the property of adapting the amount and capacity of resources,
which makes it possible to optimize performance and minimize costs under highly vari-
able demands. While there is widespread support for dynamic resource provisioning
in cloud management infrastructures, adequate support is generally missing for service
replication, in particular for systems based on state machine replication [8,23].

Replication infrastructures typically use a static configuration of replicas. While this
is adequate for replicas hosted on dedicated servers, the deployment of replicas on
cloud providers creates novel opportunities. Replicated services can benefit from dy-
namic adaptation as replica instances can be added or removed dynamically, the size
and capacity of the resources available to replicas can be changed, and replica in-
stances may be migrated or replaced by different instances. These operations can lead
to benefits such as increased performance, increased security, reduced costs, and im-
proved legal conformity. Managing cloud resources for a replication group creates ad-
ditional requirements for resource management and demands a coherent coordination of
adaptations with the replication mechanism.

In this paper we present FITCH (Fault- and Intrusion-Tolerant Cloud computing
Hardpan), a novel infrastructure to support dynamic adaptation of replicated services
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in cloud environments. FITCH aggregates several components found in cloud infras-
tructures and some new ones in a hybrid architecture [27] that supports fundamental
operations required for adapting replicated services considering dependability, perfor-
mance and cost requirements. A key characteristic of this architecture is that it can be
easily deployed in current data centres [3] and cloud platforms.

We validate FITCH with two representative replicated services: a crash-tolerant web
service providing static content and a Byzantine fault-tolerant (BFT) key-value store
based on state machine replication. When deployed in our FITCH infrastructure, we
were able to easily extend both services for improved dependability through proactive
recovery [8,24] and rejuvenation [18] with minimal overhead. Moreover, we also show
that both services can reconfigure and adapt to varying workloads, through horizontal
(adding/removing replicas) and vertical (upgrading/downgrading replicas) scalability.

FITCH fills a gap between works that propose either (a) protocols for reconfiguring
replicated services [20,21] or (b) techniques for deciding when and how much to adapt
a service based on its observed workload and predefined SLA [6,14,17]. Our work
defines a system architecture that can receive adaptation commands provided by (b)
and leverages cloud computing flexibility in providing resources by orchestrating the
required reconfiguration actions. FITCH provides a basic interface for adding, removing
and replacing replicas, coordinating all low level actions mentioned providing end-to-
end service adaptability. The main novel contributions of this paper are:

– A systematic analysis of the motivations and technical solutions for dynamic adap-
tation of replicated services deployed the cloud (§2);

– The FITCH architecture, which provides generic support for dynamic adaptation of
replicated services running in cloud environments (§3 and §4);

– An experimental demonstration that efficient dynamic adaptation of replicated ser-
vices can be easily achieved with FITCH for two representative services and the
implementation of proactive recovery, and horizontal and vertical scalability (§5).

2 Adapting Cloud Services

We review several technical solutions regarding dynamic service adaptation and cor-
relate them with motivations to adapt found in production systems, which we want to
satisfy with FITCH.

Horizontal scalability is the ability of increasing or reducing the number of com-
puting instances responsible for providing a service. An increase – scale-out – is an
action to deal with peaks of client requests and to increase the number of faults the
system can tolerate. A decrease – scale-in – can save resources and money. Vertical
scalability is achieved through upgrade and downgrade procedures that respectively in-
crease and reduce the size or capacity of resources allocated to service instances
(e.g., Amazon EC2 offers predefined categories for VMs – small, medium, large, and
extra large – that differ in CPU and memory resources [2]). Upgrades – scale-up –
can improve service capacity while maintaining the number of replicas. Downgrades –
scale-down – can release over-provisioned allocated resources and save money.

Moving replicas to different cloud providers can result in performance improve-
ments due to different resource configurations, or financial gains due to different prices
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and policies on billing services, and is beneficial to prevent vendor lock-in [4]. Mov-
ing service instances close to clients can bring relevant performance benefits. More
specifically, logical proximity to the clients can reduce service access latency. Moving
replicas logically away from attackers can increase the network latency experienced
by the attacker, reducing the impact of its attacks on the number of requests processed
(this can be especially efficient for denial-of-service attacks).

Replacing faulty replicas (crashed, buggy or compromised) is a reactive process
following fault detections, which replaces faulty instances by new, correct ones [25].
It decreases the costs for the service owner, since he still has to pay for faulty repli-
cas, removing also a potential performance degradation caused by them, and restores
the service fault tolerance. Software replacement is an operation where software such
as operating systems and web servers are replaced in all service instances at run-time.
Different implementations might differ on performance aspects, licensing costs or se-
curity mechanisms. Software update is the process of replacing software in all replicas
by up-to-date versions. Vulnerable software, for instance, must be replaced as soon as
patches are available. New software versions may also increase performance by intro-
ducing optimized algorithms. In systems running for long periods, long running effects
can cause performance degradation. Software rejuvenation can be employed to avoid
such ageing problems [18].

3 The FITCH Architecture

In this section, we present the architecture of the FITCH infrastructure for replicated
services adaptation.

3.1 System and Threat Models

Our system model considers a usual cloud-based Infrastructure-as-a-Service (IaaS) with
a large pool of physical machines hosting user-created virtual machines (VMs) and
some trusted infrastructure for controlling the cloud resources [3]. We assume a hybrid
distributed system model [27], in which different components of the system follow dif-
ferent fault and synchrony models. Each machine that hosts VMs may fail arbitrarily,
but it is equipped with a trusted subsystem that can fail only by crashing (i.e., cannot be
intruded or corrupted). Some machines used to control the infrastructure are trusted and
can only fail by crashing. In addition, the network interconnecting the system is split
into two isolated networks, here referred to as data plane and control plane.

User VMs employ the data plane to communicate internally and externally with the
internet. All components connected to this network are untrusted, i.e., can be subject
to Byzantine faults [8] (except the service gateway, see §3.3). We assume this network
and the user VMs follow a partially synchronous system model [16]. The control plane
connects all trusted components in the system. Moreover, we assume that this network
and the trusted components follow a synchronous system model with bounded com-
putations and communications. Notice that although clouds do not employ real-time
software and hardware, in practice the over provision of the control network associated
with the use of dedicated machines, together with over provisioned VMs running with
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high priorities, makes the control plane a “de facto” synchronous system (assuming
sufficiently large time bounds) [22,25].

3.2 Service Model

FITCH supports replicated services running on the untrusted domain (as user VMs) that
may follow different replication strategies. In this paper, we focus on two extremes of a
large spectrum of replication solutions.

The first extreme is represented by stateless services in which the replicas rely on a
shared storage component (e.g., a database) to store their state. Notice that these ser-
vices do have a state, but they do not need to maintain it coherently. Service replicas
can process requests without contacting other replicas. A server can fetch the state from
the shared storage after recovering from a failure, and resume processing. Classical
examples of stateless replicated services are web server clusters in which requests are
distributed following a load balancing policy, and the content served is fetched from a
shared distributed file system.

The other extreme is represented by consistent stateful services in which the replicas
coordinate request execution following the state machine replication model [8,23]. In
this model, an arbitrary number of client processes issue commands to a set of replica
processes. These replicas implement a stateful service that changes its state after pro-
cessing client commands, and sends replies to the issuing clients. All replicas have to
execute the same sequence of commands, which requires the use of an agreement pro-
tocol to establish a total order before request execution. The Paxos-based coordination
and storage systems used by Google [9] are examples of services that follow this model.

One can fit most popular replication models between these two extreme choices,
such as the ones providing eventual consistency, used, for example, in Amazon’s Dy-
namo [13]. Moreover, the strategies we consider can be used together to create a de-
pendable multi-tier architecture. Its clients connect to a stateless tier (e.g., web servers)
that executes operations and, when persistent state access is required, they access a
stateful tier (e.g., database or file system) to read or modify the state.

3.3 Architecture

The FITCH architecture, as shown in Fig. 1, comprises two subsystems, one for con-
trolling the infrastructure and one for client service provisioning. All components are
connected either with the control plane or the data plane. In the following we describe
the main architectural components deployed on these domains.

The trusted domain contains the components used to control the infrastructure. The
core of our architecture is the adaptation manager, a component responsible to per-
form the requested dynamic adaptations in the cloud-hosted replicated services. This
component is capable of inserting, removing and replacing replicas of a service run-
ning over FITCH. It provides public interfaces to be used by the adaptation heuristic.
Such heuristic defines when and plans how adaptations must be performed, and is deter-
mined by human administrators, reactive decision engines, security information event
managers and other systems that may demand some dynamic adaptation on services.
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Fig. 1. The FITCH architecture

The service gateway maintains the group membership of each service and supports
pluggable functionalities such as proxy and load balancing. It works like a lookup ser-
vice, where new clients and instances request the most up-to-date group of replicas of a
given service through the data plane. The adaptation manager informs the service gate-
way about each modification in the service membership through the control plane. The
service gateway thus is a special component connected to both networks. This is a rea-
sonable assumption as all state updates happen via the trusted control plane, whereas
clients have read-only access. Moreover, having a trusted point of contact for fetching
membership data is a common assumption in dynamic distributed systems [20].

Cloud resource managers (RM) provide resource allocation capabilities based on
requests from the adaptation manager in order to deploy or destroy service replicas. The
adaptation manager provides information about the amount of resources to be allocated
for a specific service instance and the VM image that contains all required software
for the new replica. The cloud RM chooses the best combination of resources for that
instance based on requested properties. This component belongs to the trusted domain,
and the control plane carries out all communication involving the cloud RM.

The deployment agent is a small trusted component, located inside cloud physical
hosts, which is responsible to guarantee the deployment of service instances. It belongs
to the trusted domain and receives deployment requests from cloud RM through the con-
trol plane. The existence of this component follows the paradigm of hybrid nodes [27],
previously used in several other works (e.g., [15,22,24,25]).

The untrusted domain contains the components that provide the adaptive replicated
service. Application servers are virtual machines used to provide the replicated services
deployed on the cloud. Each of these user-created VMs contains all software needed
by its service replica. Servers receive, process and answer client requests directly or
through the service gateway depending on the configuration employed.

Cloud physical hosts are physical machines that support a virtualization environment
for server consolidation. These components host VMs containing the replicas of ser-
vices running over FITCH. They contain a hypervisor that controls the local resources
and provides strong isolation between hosted VMs. A cloud RM orchestrates such
environment through the control plane.
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Application clients are processes that perform requests to service instances in order
to interact with the replicated service. They connect to the service gateway component
to discover the list of available replicas for a given service (and later access them di-
rectly) or send requests directly to the service gateway, which will forward them to
the respective service instances. The application clients can be located anywhere in the
internet. They belong to the untrusted domain and communicate with the application
servers and gateway through the data plane.

3.4 Service Adaptation

The FITCH architecture described in the previous section supports adaptation on de-
ployed replicated services as long as the adaptation manager, the gateway and some
cloud resource managers are available. This means that during unavailability of these
components (due to an unexpected crash, for instance), the replicated service can still
be available, but adaptation operations are not. Since these services are deployed on a
trusted and synchronous subsystem, it is relatively simple to implement fault tolerance
for them, even transparently using VM-based technology [12].

The FITCH infrastructure supports three basic adaptation operations for a replicated
service: add, remove and replace a replica. All adaptation solutions defined in §2 can be
implemented by using these three operations. When the request to adapt some service
arrives at the adaptation manager, it triggers the following sequence of operations (we
assume a single replica is changed, for simplicity):

1. If adding or replacing:
1.1. The adaptation manager contacts the cloud RM responsible for the physical host that

matches the requested criteria for the new replica. The cloud RM informs the deployment
agent on the chosen physical host asking it to create a new VM with a given image
(containing the new replica software). When the VM is launched, and the replica process
is started, the deployment agent informs the cloud RM, which informs the adaptation
manager that a new replica is ready to be added to the service.

1.2. The adaptation manager informs the gateway that it needs to reconfigure the replicated
service to add the newly created replica for the service. The gateway invokes a recon-
figuration command on the service to add the new replica.1 When the reconfiguration
completes, the gateway updates the current group membership information of the ser-
vice.

2. If removing or replacing:
2.1. The adaptation manager informs the gateway that it needs to reconfigure the replicated

service to remove a service replica. The gateway invokes a reconfiguration command on
the service to remove the old replica.1 When the reconfiguration completes, the gateway
updates the group membership of the service.

2.2. The adaptation manager contacts the cloud RM responsible for the replica being removed
or replaced. The cloud RM asks the deployment agent of the physical host in which the
replica is running to destroy the corresponding VM. At the end of this operation, the
cloud RM is informed and then it passes this information to the adaptation manager.

1 The specific command depends on the replication technique and middleware being used by
the service. We assume that the replication middleware implements a mechanism that ensures
a consistent reconfiguration (e.g., [20,21]).
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Notice that, for a replica replacement, the membership needs to be updated twice, first
adding the new replica and then removing the old one. We intentionally use this two-
step approach for all replacements, because it simplifies the architecture and is neces-
sary to guarantee services’ liveness and fault tolerance.

4 Implementation

We implemented the FITCH architecture and two representative services to validate it.
The services are a crash fault-tolerant (CFT) web service and a consistent BFT key-
value store.

FITCH. Cloud resource managers are the components responsible for deploying and
destroying service VMs, following requests from the adaptation manager. Our prototype
uses OpenNebula, an open source system for managing virtual storage, network and
processing resources in cloud environments. We decided to use Xen as a virtualization
environment that controls the physical resources of the service replicas. The deployment
agent is implemented as a set of scripts that runs on a separated privileged VM, which
has no interface with the untrusted domain.

A service gateway maintains information about the service group. In the stateless
service, the service gateway is a load balancer based on Linux Virtual Server [29], which
redirects client requests to application servers. In our stateful service implementation,
an Apache Tomcat web server provides a basic service lookup.

Our adaptation manager is a Java application that processes adaptation requests and
communicates with cloud RMs and the service gateway to address those requests. The
communication between the adaptation manager and cloud resource managers is done
through OpenNebula API for Java. Additionally, the communication between the adap-
tation manager and the service gateway is done through secure sockets (SSL).

In our implementation, each application server is a virtual machine running Linux.
All software needed to run the service is present in the VM image deployed at each ser-
vice instance. Different VLANs, in a Gigabit Ethernet switch, isolate data and control
planes.

Stateless service. In the replicated stateless web service, each client request is processed
independently, unrelated to any other requests previously sent to any replica. It is com-
posed of some number of replicas, which have exactly the same service implementation,
and are orchestrated by a load balancer in the service gateway, which forwards clients
requests to be processed by one of the replicas.

Stateful service. In the key-value store based on BFT state machine replication [8], each
request is processed in parallel by all service replicas and a correct answer is obtained
by voting on replicas replies. To obtain such replication, we developed our key-value
store over a Byzantine state machine replication library called BFT-SMaRt [5]. For
the purpose of this paper, it is enough to know that BFT-SMaRt employs a leader-
based total order protocol similar to PBFT [8] and that it implements a reconfiguration
protocol following the ideas presented by Lamport et al. [20].

Adaptations. We implemented three adaptation solutions using the FITCH infrastruc-
ture. Both services employ proactive recovery [8,24] by periodically replacing a replica
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by a new and correct instance. This approach allows a fault-tolerant system to tolerate
an arbitrary number of faults in the entire service life span. The window of vulnerability
in which faults in more than f replicas can disrupt a service is reduced to the time it
takes all hosts to finish a recovery round. We use horizontal scalability (adding and re-
moving replicas) for the stateless service, and we analyse vertical scalability (upgrading
and downgrading the replicas) of the stateful service.

5 Experimental Evaluation

We evaluate our implementation in order to quantify the benefits and the impact caused
by employing dynamic adaptation in replicated services running in cloud environments.
We first present the experimental environment and tools, followed by experiments to
measure the impact of proactive recovery, and horizontal and vertical scalability.

5.1 Experimental Environment and Tools

Our experimental environment uses 17 physical machines that host all FITCH compo-
nents (see Table 1). This cloud environment provides three types of virtual machines
– small (1 CPU, 2GB RAM), medium (2 CPU, 4GB RAM) or large (4 CPU, 8GB
RAM). Our experiments use two benchmarks. The stateless service is evaluated using
the WS-Test [26] web services microbenchmark. We executed the echoList application
within this benchmark, which sends and receives linked lists of twenty 1KB elements.
The stateful service is evaluated using YCSB [11], a benchmark for cloud-serving data
stores. We implemented a wrapper to translate YCSB calls to requests in our BFT key-
value store and used three workloads: a read-heavy workload (95% of GET and 5% of
PUT [11]), a pure-read (100% GET) and a pure-write workload (100% PUT). We used
OpenNebula version 2.0.1, Xen 3.2-1, Apache Tomcat 6.0.35 and VM images with
Linux Ubuntu Intrepid and kernel version 2.6.27-7-server for x86 64 architectures.

5.2 Proactive Recovery

Our first experiment consists in replacing the entire set of service replicas as if imple-
menting software rejuvenation or proactive/reactive recovery [8,18,22,25]. The former
is important to avoid software ageing problems, whereas the latter enforces service’s
fault tolerance properties (for instance, the ability to tolerate f faults) [24].

Table 1. Hardware environment

Component Qty. Description Component Qty. Description

Adaptation Manager 1
Dell PowerEdge 850

Client (YCSB) 1
Dell PowerEdge R410

Intel Pentium 4 CPU 2.80GHz Intel Xeon E5520

Client (WS-Test) 5
1 single-core, HT

Service Gateway 1
2 quad-core, HT

2.8 GHz / 1 MB L2 2.27 GHz / 1 MB L2 / 8 MB L3
2 GB RAM / DIMM 533MHz 32 GB / DIMM 1066 MHz

Cloud RM 3
2 x Gigabit Eth.

Physical Cloud Host 6
2 x Gigabit Eth.

Hard disk 80 GB / SCSI Hard disk 146 GB / SCSI
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Fig. 2. Impact on a CFT stateless service. Note that the y-axis is in logarithmic scale.

The idea of this experiment is to recover all n replicas from the service group, one-
by-one, as early as possible, without disrupting the service availability (i.e., maintaining
n − f active replicas). Each recovery consists of creating and adding a new replica to
the group and removing an old replica from it. We perform n recoveries per experiment,
where n is the number of service replicas, which depends on the type and number of
faults to be tolerated, and on the protocol used to replace all replicas. The time needed
to completely recover a replica can also vary for each reconfiguration protocol.

Impact on a CFT stateless web service. Our first application in this experiment is a state-
less web service that is initially composed of 4 large (L) replicas (which can tolerate 3
crash faults). The resulting latencies (in ms) are presented in Fig. 2, with and without
the recovering operations in an experiment that took 400 s to finish. In this graph, each
replica recovery is marked with a “R” symbol and has two lines representing the begin-
ning and the end of replacements, respectively. The average of service latency without
recovery was 5.60 ms, whereas with recovery was 8.96 ms. This means that the overall
difference in the execution with and without recoveries is equivalent to 60% (repre-
sented in the filled area of Fig. 2). However, such difference is mostly caused during
replacements, which only happens during 7.6% of the execution time.

We draw attention to three aspects of the graph. First, the service has an initial warm-
up phase that is independent of the recovery mechanism, and the inserted replica will
also endure such phase. This warm-up phase occurs during the first 30 s of the experi-
ment as presented in Fig. 2. Second, only a small interval is needed between insertions
and removals, since the service reconfigures quickly. Third, the service latency increases
20- to 30-fold during recoveries, but throughput (operations/s) never falls to zero.

Impact on a BFT stateful key-value store. Our second test considers a BFT key-value
store based on state machine replication. The service group is also composed of 4 large
replicas, but it tolerates only 1 arbitrary fault, respecting the 3f + 1 minimum required
by BFT-SMaRt. Fig. 3 shows the resulting latencies with and without recovery, regard-
ing (a) PUT and (b) GET operations. The entire experiment took 800 s to finish.

We are able to show the impact of a recovery round on service latency by keeping
the rate of requests constant at 1000 operations/s. In this graph, each replica recov-
ery is divided into the insertion of a new replica (marked with “+R”) and the removal
of an old replica (marked with “-R”). Removing the group leader is marked with “-
L”. The average latency of PUT operations without recovery was 3.69 ms, whereas
with recovery it was 4.15 ms (a difference of 12.52%). Regarding GET operations,
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(a) PUT operations (b) GET operations

Fig. 3. Impact on a BFT stateful key-value store. Note that the y-axis is in logarithmic scale.

the average latency without recovery was 0.79 ms, whereas with recovery was 0.82 ms
(a difference of 3.33%).

We draw attention to six aspects of these results. First, the service in question also
goes through a warm-up phase during the first 45 s of the experiment. Second, the
service needs a bigger interval between insertion and removal than the previous case
because a state transfer occurs when inserting a new replica. Third, the service loses
almost one third of its capacity on each insertion, which takes more time than in the
stateless case. Fourth, the service stops processing during a few seconds (starting at
760 s in Fig. 3(a)) when the leader leaves the group. This unavailability while electing a
new leader cannot be avoided, since the system is unable to order requests during leader
changes. Fifth, client requests sent during this period are queued and answered as soon
as the new leader is elected. Finally, GET operations do not suffer the same impact on
recovering replicas as PUT operations do because GET operations are executed without
being totally ordered across replicas, whereas PUT operations are ordered by BFT-
SMaRt’s protocol.

5.3 Scale-Out and Scale-In

Horizontal scalability is the ability of increasing or reducing the number of service
instances to follow demands of clients. In this experiment, we insert and remove replicas
from a stateless service group to adapt the service capacity. The resulting latencies are
presented in Fig. 4. The entire experiment took 1800 s to finish, and the stateless service
processed almost 4 million client requests, resulting in an average of 2220 operations/s.
Each adaptation is either composed of a replica insertion (“+R”) or removal (“-R”).

Since all replicas are identical, we consider that each replica insertion/removal in the
group can theoretically improve/reduce the service throughput by 1/n, where n is the
number of replicas running the service before the adaptation request.

The service group was initially composed of 2 small (S) replicas, which means a ca-
pacity of processing 1500 operations/s. Near the 100 s mark, the first adaptation was
performed, a replica insertion, which decreased the service latency from 30 ms to 18 ms.
Other replica insertions were performed near the 400 s and 700 s marks, increasing the
service group to 4, and to 5 replicas, and decreasing the service latency to 13 ms, and to
10 ms, respectively. The service achieved its peak performance with 5 replicas near the
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Fig. 4. Horizontal scalability test

900 s mark, and started decreasing the number of replicas with removals near the 1000 s,
1240 s and 1480 s, until when increases the service latency to 25 ms using 2 replicas.

Dynamically adapting the number of replicas can be performed reactively. A compar-
ison between the service capacity and the current rate of client requests can determine if
the service needs more or fewer replicas. In case of large differences, the system could
insert or remove multiple replicas in the same adaptation request. Such rapid elastic-
ity can adapt better to large peaks and troughs of client requests. We maintained the
client request rate above the service capacity to obtain the highest number of processed
operations on each second.

The entire experiment would cost $0.200 on Amazon EC2 [2] considering a static ap-
proach (using 5 small replicas), while with the dynamic approach it would cost $0.136.
Thus, if this workload is repeated continuously, the dynamic approach could provide a
monetary gain of 53%, which is equivalent to $1120 per year.

5.4 Scale-Up and Scale-Down

Vertical scalability is achieved through upgrade and downgrade procedures to adjust the
service capacity to client’s demands. It avoids the disadvantages of increasing the num-
ber of replicas [1], since it maintains the number of replicas after a service adaptation.

In this experiment, we scale-up and -down the replicas of our BFT key-value store,
during 8000 s. Each upgrade or downgrade operation is composed of 4 replica replace-
ments in a chain. The service group comprises 4 initially small replicas (4S mark).
Fig. 5 shows the resulting latencies during the entire experiment, where each “Upgrad-
ing” and “Downgrading” mark indicates a scale-up and scale-down, respectively. We
also present on top of this figure the “(4S)”, “(4M)” and “(4L)” marks, indicating the
quantity and type of VMs used on the entire service group between the previous and
the next marks, as well as the average latency and number of operations per second that
each configuration is able to process.

The first adaptation was an upgrade from small (S) to medium (M) VMs, which
reduced PUT latency from near 6 ms to 4 ms and GET latency from almost 0.9 ms to
0.82 ms. The second round was an upgrade to large (L) VMs. This reduced the PUT
latency from 4 ms to 3.5 ms and the GET latency from 0.82 ms to 0.75 ms. Later,
we performed downgrades to the service (from large to medium and from medium to
small), which reduced the performance and increased the PUT latency to almost 5 ms
and the GET latency to 0.87 ms.
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Fig. 5. Vertical scalability test. Note that y-axis is in logarithmic scale.

The entire experiment would cost $2.84 on Amazon EC2 [2] considering the static
approach (using 4 large replicas), while the dynamic approach would cost $1.68. This
can be translated into an economical gain of 32%, the equivalent to $4559 per year.

6 Related Work

Dynamic resource provisioning is a core functionality in cloud environments. Previous
work [7] has studied the basic mechanisms to provide resources given a set of SLAs that
define the user’s requirements. In our work, cloud managers provide resources based on
requests sent by the adaptation manager, for allocating and releasing resources.

The adaptation manager is responsible for performing dynamic adaptations in ar-
bitrary service components. These adaptations are defined by an adaptation heuristic.
There are several proposals for this kind of component [6,14,17], which normally fol-
low the “monitor-analyse-plan-execute” adaptation loop [19]. Their focus is mostly on
preparing decision heuristics, not on executing the dynamic adaptations. Such heuris-
tics are based mainly on performance aspects, whereas our work is concerned with
performance and dependability aspects. One of our main goals is to maintain the ser-
vice trustworthiness level during the entire mission time, even in the presence of faults.
As none of the aforementioned papers was concerned about economy aspects, none of
them releases or migrate over-provisioned resources to save money [28].

Regarding the results presented in these works, only Rainbow [17] demonstrates the
throughput of a stateless web service running over their adaptation system. However,
it does not discuss the impact caused by adaptations in the service provisioning. In our
evaluation, we demonstrate the impact of replacing an entire group of service replicas,
in a stateless web service, and additionally, in a stateful BFT key-value store.

Regarding the execution step of dynamic adaptation, only Dynaco [6] describes the
resource allocation process and executes it using grid resource managers. FITCH is
prepared to allow the execution of dynamic adaptations using multiple cloud resource
managers. As adaptation heuristics is not the focus of this paper, we discussed some
reactive opportunities, but implemented only time-based proactive heuristics. In the
same way, proactive recovery is essential in order to maintain availability of replicated



FITCH: Supporting Adaptive Replicated Services in the Cloud 27

systems in the presence of faults [8,15,22,24,25]. An important difference to our work
is that these systems do not consider the opportunities for dynamic management and
elasticity as given in cloud environments.

Dynamic reconfiguration has been considered in previous work on group commu-
nication systems [10] and reconfigurable replicated state machines [20,21]. These ap-
proaches are orthogonal to our contribution, which is a system architecture that allows
taking advantage of a dynamic cloud infrastructure for such reconfigurations.

7 Conclusions

Replicated services do not take advantage from the dynamism of cloud resource pro-
visioning to adapt to real-world changing conditions. However, there are opportunities
to improve these services in terms of performance, dependability and cost-efficiency if
such cloud capabilities are used.

In this paper, we presented and evaluated FITCH, a novel infrastructure to support
the dynamic adaptation of replicated services in cloud environments. Our architecture
is based on well-understood architectural principles [27] and can be implemented in
current data centre architectures [3] and cloud platforms with minimal changes. The
three basic adaptation operations supported by FITCH – add, remove and replace a
replica – were enough to perform all adaptation of interest.

We validated FITCH by implementing two representative services: a crash fault-
tolerant web service and a BFT key-value store. We show that it is possible to augment
the dependability of such services through proactive recovery with minimal impact on
their performance. Moreover, the use of FITCH allows both services to adapt to differ-
ent workloads through scale-up/down and scale-out/in techniques.
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Abstract. Computer forensics involves the collection, analysis, and
reporting of information about security incidents and computer-based
criminal activity. Cloud computing causes new challenges for the foren-
sics process. This paper addresses three challenges for network foren-
sics in an Infrastructure-as-a-Service (IaaS) environment: First, network
forensics needs a mechanism for analysing network traffic remotely in
the cloud. This task is complicated by dynamic migration of virtual ma-
chines. Second, forensics needs to be targeted at the virtual resources
of a specific cloud user. In a multi-tenancy environment, in which mul-
tiple cloud clients share physical resources, forensics must not infringe
the privacy and security of other users. Third, forensic data should be
processed directly in the cloud to avoid a costly transfer of huge amounts
of data to external investigators. This paper presents a generic model for
network forensics in the cloud and defines an architecture that addresses
above challenges. We validate this architecture with a prototype imple-
mentation based on the OpenNebula platform and the Xplico analysis
tool.

Keywords: Cloud Computing, Network Forensics, Incident Investiga-
tion.

1 Motivation

Cloud computing has become highly popular over the past decade. Many organi-
zations nowadays use virtual resources offered by external cloud providers as part
of their IT infrastructure. As a second significant trend, IT-based services are
getting more and more into the focus of criminal activities [11,24]. As a result,
technology for computer forensics has become increasingly important. Cloud
computing imposes new challenges for this technology. This paper addresses
some of these challenges that concern network forensics in an Infrastructure-as-
a-Service (IaaS) model.

Computer forensics is the science of collecting evidence on computer systems
regarding incidents such as malicious criminal activities. Noblett et al. define it
as “the science of acquiring, preserving, retrieving, and presenting data that has
been processed electronically and stored on computer media” [16]. Traditionally,
forensics has been associated with the collection of evidence for supporting or
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refuting a hypothesis before the court. In this paper, we use the term in its
broader sense, which includes collecting information for purposes such as internal
incident investigation and intrusion analysis.

Network forensics is the investigation of network traffic of a live system. This
means that for network forensics it is necessary to capture and analyse the net-
work traffic of the system under investigation. If an organization runs a service
on its own local IT infrastructure, the responsible administrator (or any investi-
gator with physical access to the infrastructure) can easily apply local forensics
measures. Today, a great variety of forensics frameworks are available for this
purpose [9].

With cloud computing, a paradigm shift takes place. Virtualization and multi-
tenancy create novel challenges. If a cloud user wants to investigate an incident
on a virtual resource, it is usually not possible for him to use traditional forensics
tools that require direct access to networks and physical machines [13]. Even
if such tools can be used at the physical facilities of the cloud provider, this
easily creates privacy and security issues: Investigations typically target a specific
system, which might be running in a virtual machine on a physical host shared
with other completely unrelated systems. These other systems should not be
affected by the investigation. As an additional complication, due to dynamic
elasticity and migration of virtual resources, the geographical location of systems
under investigation is no longer constant [15]. These issues create a new research
field called cloud forensics [3,4].

The aim of this work is to propose a solution for some of these challenges. Its
focus is on network forensics for the Infrastructure-as-a-Service (IaaS) model.
Specifically, this paper makes the following contributions:

– It defines a generic model for network forensics in IaaS.
– It defines an architecture for “Forensics-as-a-Service” in a cloud management

infrastructure. This architecture offers an API that authorized subjects can
use to remotely control the forensics process at the cloud provider. Both data
acquisition and data analysis can be handled directly at the cloud provider.

– It describes and evaluates a prototype implementation of this architecture for
the OpenNebula cloud management infrastructure. The prototype includes
a daemon running on all cloud hosts for collecting network traffic, filtered
for a specific system under observation, and the integration of an existing
network forensics analysis tool as a cloud-based service.

The paper is structured as follows. The next section discusses related work on
computer forensics. Section 3 describes the system model and security assump-
tions in our approach. Section 4 presents our generic forensics model. Section 5
focuses on the forensics architecture and describes details of the prototype for
OpenNebula. Section 6 evaluates this prototype, and finally Section 7 presents
our conclusions.
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2 Related Work

Computer forensics is a field that has undergone thorough investigation in vari-
ous directions over the past decades. Within the scope of this paper, we discuss
related work in the areas of network forensics and cloud computing forensics.

2.1 Network Forensics

The term network forensics was coined by Ranum [18]. In his paper, the author
describes a forensics system called “Network Flight Recorder”. This system offers
functionality similar to an Intrusion Detection System (IDS), but it makes it
possible to analyse data from the past.

Some existing approaches cover only parts of the forensics process. For exam-
ple, practical tools such as WireShark1 and tcpdump2 support only the acquisi-
tion of data, without providing mechanisms for further analysis and reporting.
These tools assume that you can run them on the host under investigation and
have no dedicated support for remote forensics in the cloud.

Similarly, intrusion detection systems focus on the detection and reporting of
attacks as they happen, without providing specific evidence gathering function-
ality [21]. In the context of network forensics, intrusion detection systems can
be used as a trigger point for forensic investigations, as they create events upon
the detection of suspicious behaviour.

Several publications in the area of network forensics target the question of how
to manage and store forensic data efficiently. For example, Pilli et al. [17] focus
on reducing the file size of captured data. They consider only TCP/IP headers
and additionally reduce file size with a filter. Other publications focus on the
analysis step of the forensics process. For example, Haggerty et al. [12] describe a
service that helps to identify malicious digital pictures with a file fingerprinting
service. Such research is orthogonal to the contribution of our paper.

Some existing approaches address the full forensics process. For example, Al-
mulhem et al. [1] describe the architecture of a network forensics system that
captures, records and analyses network packets. The system combines network-
based modules for identifying and marking suspect packets, host-based capturing
modules installed on the hosts under observation, and a network-based logging
module for archiving data. A disadvantage of this approach is that the host-
based capturing module cannot be trusted after an attack has compromised the
host. Shanmugasundaram et al. [23] have proposed a similar approach that suf-
fers from the same disadvantage. Wang et al. [25] propose an approach that adds
a capturing tool on a host at the moment it should be inspected. Again, this
approach suffers from the same integrity weakness, as data is captured by tools
running on a possibly compromised system.

All of these approaches imply the assumption that there is a single entity that
has permission to perform forensic investigations over all data. While this is not

1 http://www.wireshark.org
2 http://www.tcpdump.org

http://www.wireshark.org
http://www.tcpdump.org
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a problem if all data is owned by a single entity, this model is not appropriate
for a multi-tenancy cloud architecture.

2.2 Cloud Forensics

Cloud forensics is defined as a junction of the research areas of cloud computing
and digital forensics [19]. In the recent years, cloud forensics has been identified
as an area that is still faced with important open research problems [2,5].

Zafarullah et al. [26] proposed an approach to analyse log files in an IaaS
environment. They use a centralized approach in which the cloud service provider
is responsible for forensic investigations. In contrast, in our approach we want
to offer forensics services to cloud users to investigate problems and incidents in
their own virtual resources.

The works of Birk et al. [4] and Grobauer et al. [10] share same aspects of
our approach, as they propose a cloud API for forensics data. However, both
publications list this idea together with other high level approaches, without
presenting many details. Our forensics model is a more specific approach that
also discusses aspects of a real prototype implementation.

3 System Model and Security Assumptions

This paper considers an IaaS model in which a cloud provider executes virtual
machines on behalf of a cloud client. The client has full control over the software
running within the virtual machines. The cloud provider manages the physical
machines, and the client has no direct access to them. Multiple clients can share
a single physical machine.

Client virtual machines can be compromised by malicious attacks. This work
proposes an architecture in which cloud clients (or authorized third parties) can
autonomously perform forensic investigations targeted at cloud-based virtual
machines, based on support provided by the cloud provider. For this purpose,
we assume that only the cloud provider and the cloud infrastructure are trusted,
whereas client virtual machines are untrusted.

Having untrusted client virtual machines means that we make no assumptions
on their behaviour. An attacker that compromises a virtual machine can fully
modify the virtual machine’s behaviour. We therefore do not want to collect
forensic data with the help of processes running within the client virtual ma-
chine, as an attacker can manipulate these. We make no assumptions on how
the attacker gains access to the client virtual machine. For example, the attacker
might use access credentials he obtained from the cloud user by some means, or
he might be able to completely take over the virtual machine by exploiting some
vulnerability of the software running within the virtual machine.

Even if the adversary has full control over an arbitrary number of client virtual
machines, we assume that the virtualization infrastructure guarantees isolation
of virtual machines. This means that the attacker has no access to the virtual
machine monitor (VMM) itself or to other VMs running on the same physical
host.
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We assume that the cloud provider and the cloud infrastructure can justifiably
be trusted. This means that they always behave according to their specification.
Under this model, the possibility that an attacker compromises the cloud infra-
structure (i.e., the VMM and the cloud management system) is not considered.
This might be regarded as a strong assumption, but it is the usual assumption
that is made by practically all cloud users.

In addition, several research projects have shown that the trust into the cloud
infrastructure can be further justified by technical mechanisms. For example,
Garfinkel et al. [8] introduce a trusted virtual machine monitor (TVMM). Santos
et al. [20] address the problem of creating a trustworthy cloud infrastructure by
giving the cloud user an opportunity to verify the confidentiality and integrity
of his own data and VMs. Doelitzscher et al. [7] designed a security audit system
for IaaS. This means that trust into a cloud infrastructure can be enforced not
only by contracts (SLAs), but also by technical mechanisms. The exact details
of such mechanisms are beyond the scope of this paper.

4 Network Forensics Architecture for the Cloud

In this chapter we define our model for network forensics in IaaS environments
and describe a generic network forensics architecture.

4.1 Forensics Process Model

The model for our forensics process is shown in Fig. 1. Five horizontal layers
interact with a management component, which is needed as central point of con-
trol. The layers of the model are adopted from the process flow of the NIST
forensics model [14]. The layers represent independent tasks regarding the in-
vestigation of an incident. The tasks are executed in a distributed multi-tenant
environment, as described before in Section 3.

The first layer is the Data Collection layer. All network data can be captured
at this point. The management component interactions with the data collection
layer for starting and stopping the capture of network traffic. The data col-
lection also needs to be coordinated with migration of virtual machines in the
IaaS environment. For this purpose, the management component coordinates a
continuous capture of network traffic for a migrating virtual machine.

On top of the data collection layer resides the Separation layer. The task
of this layer is to separate data by cloud users. At the output of the separation
layer, each data set must contain data of only a single cloud client. Optionally, the
separation layer can additionally provide client-specific compression and filtering
of network traffic to reduce the size of the collected forensics data.

The third layer is called Aggregation layer. It combines data from multiple
sources belonging to the same cloud client. Data is collected at multiple physical
locations if a cloud client uses multiple virtual machines (e.g., for replication or
load balancing), or if a virtual machine migrates between multiple locations. All
network data is combined into a single data set at this layer.
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Fig. 1. The forensics process for the cloud is modelled by five basic layers, controlled
by a central management block

The next layer is the Analysis layer. This layer receives pre-processed data sets
from the aggregation layer and starts the analysis starts of the investigation. The
management layer configures the transmission of collected data from aggregation
to analysis. Typically, the analysis is run as a service within the same cloud.

The top layer is the Reporting layer in which the analysis results and conse-
quences are presented.

4.2 Network Forensics Architecture

Our network forensics architecture directly translates the conceptional blocks of
the model into separate services.

– The management layer is realized as part of the cloud management infra-
structure. This infrastructure typically offers a central point of access for
cloud clients. The infrastructure is augmented with an interface for config-
uring and controlling the forensics process. This component also handles
authorization of forensics requests. A cloud client can control forensic mech-
anisms targeted at his own virtual machines, and this control privilege can
also be delegated to a third party.

– The data collection layer is realized in the architecture by a process that
executes on the local virtual machine monitor of each physical host. In a
typical virtualization infrastructure, all network traffic is accessible at the
VMM level. For example, if using the Xen hypervisor, all network traffic is
typically handled by the Dom0 system, and thus all traffic can be captured
at this place. The management layer needs to determine (and dynamically
update upon reconfigurations) the physical hosts on which virtual machines
of a specific client are running, and start/stop the data collection on the
corresponding hosts.

– The separation layer is responsible for filtering data per cloud user. It is
possible to investigate multiple clients on the same physical hosts, but all
investigations must be kept independent. This layer separates network traffic
into data sets each belonging to a single cloud client, and drops all traffic not
pertaining to a client under investigation. To monitor the network data of
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a specific cloud client, a means of identification of the corresponding traffic
is required. In our architecture, we use a lookup table from virtual machine
ID to MAC address and use this address for filtering.

– The aggregation layer is realized by a simple component that can collect and
combine data from the separation layer at multiple locations.

– For analysis layer, our architecture potentially supports multiple possibili-
ties. A simple approach is to transfer the output of the aggregation layer
to the investigator, who then can locally use any existing analysis tools.
In practice, the disadvantage of such approach is the high transfer cost (in
terms of time and money). A better option is to run the analysis within the
cloud. For this purpose, the cloud user can deploy the analysis software as a
service within the cloud.

– The task of the reporting layer is to produce reports on the analysis re-
sults that are suitable for further distribution. This step is identical to other
forensics frameworks.

5 Prototype Implementation

We have implemented a prototype according to the architecture described in
the previous section. As a basis for this implementation, we have selected and
extended existing projects in order to create a prototype system that is usable
for network forensics in IaaS clouds. The basic idea of the prototype is the
following: A cloud user has an account at a cloud provider to manage VMs. This
user should be able to start and to stop the forensics process for his VMs and
access analysis results using a web-based system inside the cloud.

The user’s central point of interaction is the management software for IaaS.
The user is able to work with the VMs he owns, to monitor or to change their
status and parameters. We extend the management software by adding API
commands for controlling network forensics actions. Two established systems
for cloud management are Eucalyptus3 and OpenNebula4 [22]. Both are open
source systems and have an active community. We have chosen OpenNebula for
our prototype, as it supports more different VMMs and we want our prototype
to be usable independent of specific VMM products.

Our goal is not to develop new analysis tools, but instead make existing tools
and approaches applicable to cloud-based systems. Because of this, we did not
want to implement a custom integration of the analysis part into OpenNebula.
Instead, the idea is to create an interface for existing analysis software and run
it as a service in the cloud. With this approach it is easy to replace it by another
software if requirements changed for the analysis steps. PyFlag5 and Xplico6

are both network forensics analysis frameworks that could be used for analysis
within our work. Cohen et al. have presented PyFlag in 2008 [6], but apparently

3 http://www.eucalyptus.com
4 http://www.opennebula.org
5 http://code.google.com/p/pyflag/
6 http://www.xplico.org

http://www.eucalyptus.com
http://www.opennebula.org
http://code.google.com/p/pyflag/
http://www.xplico.org
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Fig. 2. In an OpenNebula-based IaaS environment, the user interacts with a central
OpenNebula management instance, which in turn controls the execution of user VMs
on various physical hosts

it is not being maintained any more. Xplico has a more active community and
thanks to the helpful author Gianluca Costa, a developer version of Xplico is
available.

In the prototype, we have implemented the Management layer of our archi-
tecture as an extension to the OpenNebula API. The Aggregation and Analysis
layers have been implemented by a cloud-based service running Xplico, and cur-
rently the Reporting functionality is limited to the visualization of the Xplico
output. The Data Collection and Separation layers have been realized by a cus-
tom implementation called nfdaemon.

The original cloud environment as provided by OpenNebula is shown in Fig. 2.
Our modified environment with additional forensics components is shown in
Fig. 3. The cloud user is interacting with OpenNebula, e.g. through the Open-
Nebula CLI. Actions to start, stop or restart virtual machines are examples for
actions that are already implemented by the OpenNebula project.

Beside these actions we added the actions startnf and stopnf. The first one,
startnf, triggers the process of starting a network forensics session. The VM-ID
from OpenNebula is used as a parameter for the action to identify a particular
VM. stopnf is doing the opposite and stops the process.
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Fig. 3. The user controls forensics processes via our extended OpenNebula management
component. The analysis software (Xplico) runs as a service within the cloud and offers
the user a direct interface for accessing the analysis results.

A nfdaemon (network forensics daemon) needs to be running an each VMM
(see Fig. 3). The main tasks of nfdaemon are collecting data, separating data
per VM, and transferring it to the aggregation and analysis system. The com-
munication interfaces are shown in Fig. 4.

The control FIFO channel is the interface for interaction between nfdaemon
and the OpenNebula management system. The nfdaemon waits for input on
this channel. Each command sent by the management system triggers actions of
nfdaemon.

For filtering network data pertaining to a specific virtual machine, a mech-
anism for translating the VM-ID (which is used for identifying VMs by Open-
Nebula) to MAC network address is needed. The information about the corre-
sponding MAC address is obtained from OpenNebula.

The Data Collection internally uses tcpdump to capture data. The Separa-
tion layer is realized on the tcpdump output on the basis of filtering by MAC
addresses. The monitored data is periodically written into PCAP files (“Packet
CAPture”, a widely used format for network traffic dumps).

The nfdaemon periodically transfers PCAP files to the aggregation and anal-
ysis system. In our prototype, Xplico handles all analysis. This tool already
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Fig. 4. The nfdaemon receives command via the command FIFO. It stores its state in
a local database, manages tcpdump processes, and interacts with remote OpenNebula
and Xplico components.

contains an interface for receiving PCAP files over the network (PCAP-over-
IP). This standard interface, however, is insufficient for our prototype, as it ac-
cepts connections from any source. We wanted to make sure that the only data
used for analysis is traffic collected by nfdaemon. Therefore, we implemented a
date source authentication mechanism based on TLS, using a private key stored
within nfdaemon. PCAP files from multiple virtual machines of the same cloud
users can be aggregated within the same Xplico analysis.

6 Evaluation

As a first step for evaluating our approach, we have performed basic functionality
tests using a vulnerable web application running within an OpenNebula-based
cloud environment. The web application was vulnerable for remote code execu-
tion due to inappropriate input validation of a CGI script. Using our architecture,
we could analyse attacks targeted at this web application using Xplico in the
same way as we were able to analyse the same attack on a local system.

These basic tests convinced us that we can use our approach for forensic inves-
tigations in the cloud. For a real-world deployment of our approach, however, we
wanted to analyse two additional questions: What is the performance impact of
such analysis, and what are over-all benefits and implications of our approach?

6.1 Performance Evaluation

The purpose of the following performance evaluation is to verify whether our
modified cloud system suffers from significant performance degradations if the
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Fig. 5. Measurements show that ongoing data acquisition (NF) has an only minor
impact on the running system

network forensics functionality is activated. The setup for measuring the perfor-
mance impact uses a running nfdaemon on each VMM in a cloud environment.
This process consumes computation and communication resources when cap-
turing, processing, and transferring network traffic. The following experiment
intends to quantify this performance impact by comparing two configurations
with and without nfdaemon.

The measurements have been done on hosts with 2.8 GHz Opteron 4280 CPUs
and 32 GB RAM, connected via switched Gigabit Ethernet. 15 VMs are used
in parallel on one VMM for each scenario. Each VM hosts a web service that
executes a computationally intensive task. The web service chooses two random
values, calculates the greatest common divisor of the two values is calculated,
and shows the result on its output. The calculation is repeated 1000 times for
each client request. Clients iteratively call functions of this web service. Client
and Xplico analysis is running on a separate host.

Clients and the service calls are realized with the tool ab7. For each VM,
the web service is called 2,500 times with 25 concurrent requests. The time for
each request and a summary of every 2500 calls are stored in text files. This
procedure is repeated 60 times every two minutes. 150,000 measurement values
are collected for each VM.

Fig. 5 shows the results of these measurements, with network forensics turned
on and off. The results show a measurable but insignificant impact on the per-
formance of the VMs. The average performance reduction between the two runs
is between 2% to 17%. On average, the difference between active and inactive
forensic data collection is 9%. The measurement shows that it is possible to
transfer the concept of the network forensics service to a real life scenario.

7 http://httpd.apache.org/docs/2.0/programs/ab.html

http://httpd.apache.org/docs/2.0/programs/ab.html
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6.2 Discussion of Results

The measurements show the overhead for monitoring a single physical host. For
a real cloud deployment, the question of scalability to a large number of hosts
arises. Furthermore, the business model for the cloud provider and benefits for
the cloud client need to be discussed.

Regarding the scalability of our approach we note that the observed overhead
does not depend on the number of physical machines of the cloud provider.
If a cloud client uses a single virtual machine in a large cloud, the previously
shown overhead exists only on the physical machine hosting the client VM. Our
approach can, however, be used to observe multiple client VMs simultaneously. In
this case, a single analysis VM can become a bottleneck. A distributed approach
in which multiple VMs are used to analyse forensic data could be used to leverage
this problem, but this is beyond the scope of this paper.

For cloud providers, offering Forensics-as-a-Service is a business model. On
the one hand, the client uses additional virtual resources for the analysis of
forensics data. This utilization can easily be measured by existing accounting
mechanisms. On the other hand, the overhead caused by the nfdaemon cannot
be accounted by existing means. Therefore, we propose to estimate this overhead
by measuring the amount of forensic data transferred to the aggregation and
analysis component.

For the cloud user, the benefits of our approach are two-fold: Most impor-
tantly, the user re-gains the possibility to perform network-based forensic inves-
tigations on his services, even if they are running on a remote cloud. This way,
the lack of control caused by cloud computing is reduced. Second, the client
needs resources for performing the analysis of forensic data. With our approach,
he can dynamically allocate cloud resources for the duration of the analysis.

7 Conclusion

The growing use of cloud-based infrastructure creates new challenges for com-
puter forensics. Efficient means for remote forensics in the cloud are needed. The
location of a virtual resource is often hard to determine and may even change
over time. Furthermore, forensics needs to be limited to the specific system under
observation in multi-tenant environments.

In this paper, we have analysed these problems with a special focus on network
forensics for the Infrastructure-as-a-Service (IaaS) model in the cloud. We have
defined a generic model for network forensics in the cloud. Based on this model,
we have developed a system architecture for network forensics and developed a
prototype implementation of this architecture. The implementation integrates
forensics support into the OpenNebula cloud management infrastructure. Our
approach solves three basic issues:

– It provides a remote network forensics mechanism to cloud clients. Network
data acquisition and processing can be controlled remotely, independent of
the physical location of virtual machines. If virtual machines migrate, the
data acquisition transparently follows the location of the migrating VM.
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– It ensures separation of users in a multi-tenant environment. The mechanism
of acquiring data is limited to network traffic of the user’s virtual machines,
without infringing the privacy and security of others.

– It avoids the cost of transferring captured network data to external inves-
tigation tools by implementing the analysis step by a cloud-internal service
under to control of the investigator.

An evaluation shows that the additionally needed computing power for running
our data collection and processing service in parallel to an existing service is at
an acceptable level. All in all, with the results of this work an organization will
be able to use network forensics for a service hosted on an IaaS cloud infrastruc-
ture. This contribution eliminates a disadvantage that cloud-based services have
compared to traditional services running locally on the organization’s internal
IT-infrastructure.
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Abstract. While scientific communities extensively exploit simulations to vali-
date their theories, the relevance of their results strongly depends on the realism
of the dataset they use as an input. This statement is particularly true when consid-
ering human activity traces, which tend to be highly unpredictable. In this paper,
we therefore introduce APISENSE, a distributed crowdsensing platform for col-
lecting realistic activity traces. In particular, APISENSE provides to scientists a
participative platform to help them to easily deploy their sensing experiments in
the wild. Beyond the scientific contributions of this platform, the technical orig-
inality of APISENSE lies in its Cloud orientation and the dynamic deployment
of scripts within the mobile devices of the participants.We validate this platform
by reporting on various crowdsensing experiments we deployed using Android
smartphones and comparing our solution to existing crowdsensing platforms.

1 Introduction

For years, the analysis of activity traces has contributed to better understand crowd
behaviors and habits [13]. For example, the Urban Mobs initiative1 visualizes SMS or
call activities in a city upon the occurrence of major public events. These activity traces
are typically generated from GSM traces collected by the cellphone providers [21].
However, access to these GSM traces is often subject to constraining agreements with
the mobile network operators, which restrict their publication, and have a scope limited
to telecom data.

In addition to that, activity traces are also used as a critical input to assess the quality
of scientific models and algorithms. As an example, the Reality Mining activity traces2

collected by the MIT Media Lab or the Stanford University Mobile Activity TRAces
(SUMATRA)3 have become a reference testbed to validate mobile algorithms in ad
hoc settings [18]. The Community Resource for Archiving Wireless Data At Dartmouth
(CRAWDAD)4 is another initiative from the Dartmouth College aiming at building a
repository of wireless network traces. Nonetheless, the diversity of the activity traces

1 http://www.urbanmobs.fr
2 http://reality.media.mit.edu
3 http://infolab.stanford.edu/pleiades/SUMATRA.html
4 http://crawdad.cs.dartmouth.edu
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available in these repositories remains limited and thus often constrains scientists to
tune inadequate traces by mapping some of the parameters to their requirements. More
recently, some approaches have mined the data exposed by location-based social net-
work like Gowalla or Foursquare, but the content of these activity traces remains limited
to coarse-grained locations collected from users check-ins.

In this context, we believe that cellphones represent a great opportunity to collect
a wide range of crowd activity traces. Largely adopted by populations, with more than
472 millions sold in 2011 (against 297 millions in 2010) according to Gartner institute5,
smartphones have become a key companion in people’s dailylife. Not only focusing on
computing or communication capabilities, modern mobile devices are now equipped of
a wide range of sensors enabling scientist to build a new class of datasets. Furthermore,
the generalization of app stores or markets on many mobile phone platforms leverages
the enrollment of participants to a larger scale than it was possible previously.

Using cellphones to collect user activity traces is reported in the literature either as
participatory sensing [4], which requires explicit user actions to share sensors data, or
as opportunistic sensing where the mobile sensing application collect and share data
without user involvement. These approaches have been largely used in the multiples
research studies including traffic and road monitoring [2], social networking [15] or
environmental monitoring [16]. However, developing a sensing application to collect a
specific dataset over a given population in not trivial. Indeed, a participatory and oppor-
tunistic sensing application needs to cope with a set of key challenges [6,12], including
energy limitation, privacy concern and needs to provide incentive mechanisms in order
to attract participants.

These constraints are making difficult, for scientists non expert in this field, to easily
collect realistic datasets for their studies. But more importantly, the developed ad hoc
applications may neglect privacy and security concerns, resulting in the disclosure of
sensible user information. With regards to the state-of-the-art in this field, we therefore
observe that current solutions lack of reusable approaches for collecting and exploiting
crowd activity traces, which are usually difficult to setup and tied to specific data repre-
sentations and device configurations. We therefore believe that crowdsensing platforms
require to evolve in order to become more open and widely accessible to scientific com-
munities. In this context, we introduce APISENSE, an open platform targeting multiple
research communities, and providing a lightweight way to build and deploy opportunis-
tic sensing applications in order to collect dedicated datasets.

This paper does not focus on user incentive challenges, which we already addressed
in [10] to provide an overview of appropriate levers to encourage scientists and partici-
pants to contribute to such sensing experiments.

The remainder of this paper is organized as follows. We provide an overview of the
APISENSE platform by detailling the server-side infrastructure as well as the client-
side application (cf. Section 2). Then, we report on the case studies we deployed in the
wild using APISENSE (cf. Section 3) before comparing our solution to the state-of-the-
art approaches (cf. Section 4). Finally, we discuss the related work in this domain (cf.
Section 5) before concluding (cf. Section 6).

5 http://www.gartner.com/it/page.jsp?id=1924314

http://www.gartner.com/it/page.jsp?id=1924314
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2 Distributed Crowdsensing Platform

The APISENSE platform distinguishes between two roles. The former, called scientist,
can be a researcher who wants to define and deploy an experiment over a large popu-
lation of mobile users. The platform therefore provides a set of services allowing her
to describe experimental requirements in a scripting language, deploying experiment
scripts over a subset of participants and connect other services to the platform in order
to extract and reuse dataset collected in other contexts (e.g., visualization, analysis, re-
play). Technically, the server-side infrastructure of APISENSE is built on the principles
of Cloud computing in order to offer a modular service-oriented architecture, which can
be customized upon scientist requirements. The latter is the mobile phone user, identi-
fied as a participant. The APISENSE platform provides a mobile application allowing to
download experiments, execute them in a dedicated sandbox and automatically upload
the collected datasets on the APISENSE server.

2.1 Server-Side Infrastructure

The main objective of APISENSE is to provide to scientist a platform, which is open,
easily extensible and configurable in order to be reused in various contexts. To achieve
this goal, we designed the server-side infrastructure of APISENSE as an SCA distributed
system (cf. Figure 1). The Service Component Architecture (SCA)6 standard is a set of
specifications for building distributed application based on Service-Oriented Architec-
tures (SOA) and Component-Based Software Engineering (CBSE) principles.

Fig. 1. Architecture of the APISENSE Web Infrastructure

All the components building the server-side infrastructure of APISENSE are hosted
by a Cloud computing infrastructure [17]. The Scientist Frontend and Participant Fron-
tend components are the endpoints for the two categories of users involved in the plat-
form. Both components define all the services that can be remotely invoked by the
scientists or the participants. For example, once authenticated, the scientist can create
new experiments, follow their progression, and exploit the collected dataset directly
from this web interface.

6 http://www.osoa.org

http://www.osoa.org
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Crowdsensing Library. To reduce the learning curve, we decided to adopt standard
scripting languages in order to ease the description of experiments by the scientists. We
therefore propose the APISENSE crowdsensing library as an extension of the JavaScript,
CoffeeScript, and Python languages, which provides an efficient mean to describe an
experiment without any specific knowledge of mobile device programming technolo-
gies (e.g., Android SDK). The choice of these host languages was mainly motivated
by their native support for JSON (JavaScript Object Notation), which is a lightweight
data-interchange format reducing the communication overhead.

The APISENSE crowdsensing library adopts a reactive programming model based on
the enlistment of handlers, which are triggered upon the occurence of specific events (cf.
Section 3). In addition to that, the API of APISENSE defines a set of sensing functions,
which can be used to retrieve specific contextual data form sensors. The library supports
a wide range of features to build dataset from built-in sensors proposed by smartphones
technologies, such as GPS, compass, accelerometers, bluetooth, phone call, applica-
tion status (installed, running) in the context of opportunistic crowdsensing, but also to
specify participatory sensing experiments (e.g., surveys).

Privacy Filters. In addition to this script, the scientist can configure some privacy fil-
ters to limit the volume of collected data and enforce the privacy of the participants. In
particular, APISENSE currently supports two types of filters. Area filter allows the sci-
entist to specify a geographic area where the data requires to be collected. For example,
this area can be the place where the scientist is interested in collecting a GSM signal
(e.g., campus area). This filter guarantees the participants that no data is collected and
sent to the APISENSE server outside of this area. Period filter allows the scientist to
define a time period during which the experiment should be active and collect data. For
example, this period can be specified as the working hours in order to automatically
discard data collected during the night, while the participant is expected to be at home.

By combining these filters, the scientist preserves the privacy of participants, reduces
the volume of collected data, and improves the energy efficiency of the mobile applica-
tion (cf. Section 4).

Deployment Model. Once an experiment is defined with the crowdsensing library,
the scientist can publish it into the Experiment Store component in order to make it
available to participants. Once published, two deployment strategies can be considered
for deploying experiments. The former, called pull-based approach, is a proactive de-
ployment strategy where participants download the list of experiments from the remote
server. The latter, known as push-based approach, propagates the experiments list up-
dates to the mobiles devices of participants. In the case of APISENSE, the push-based
strategy would induce a communication and energy overhead and, in order to leave the
choice to participants to select the experiments they are interested in, we adopted the
pull-based approach as a deployment strategy. Therefore, when the mobile device of
a participant connects to the Experiment Store, it sends its characteristics (including
hardware, current location, sensor available and sensors that participants want to share)
and receives the list of experiments that are compatible with the profile of the partici-
pant. The scientists can therefore configure the Experiment Store to limit the visibility
of their experiments according the characteristics of participants. In order to reduce the
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privacy risk, the device characteristics sent by the participants are not stored by the
infrastructure and scientist cannot access to this information.

Additionally, the Experiment Store component is also used to update the behavior of
the experiment once deployed in the wild. When an opportunistic connection is estab-
lished between the mobile device and the APISENSE server, the version of the experi-
ment deployed in the mobile device is compared to the latest version published in the
server. The installed crowdsensing experiment is automatically updated with the latest
version of the experiment without imposing participants to re-download manually the
experiment. In order to avoid any versioning problem, each dataset uploaded automat-
ically includes the version of the experiment used to build the dataset. Thus, scientists
can configure the Experiment Store component in order to keep or discard datasets col-
lected by older versions of the experiment.

2.2 Client-Side Library

Although our solution could be extended to other Operating Systems, the APISENSE
mobile application is currently based on the Android operating system for the follow-
ing reasons. First, the Android operating system is popular and largely adopted by the
population, unit sales for Android OS smartphones were ranked first among all smart-
phone OS handsets sold worldwide during 2011 with a market share of 50.9% according
to Gartner. Secondly, Android is an open platform supporting all the requirements for
continuous sensing applications (e.g., multitasking, background processing and ability
to develop an application with continuous access to all the sensors), while for example,
iOS 6 does no permit a continuous accelerometer sampling.

A participant willing to be involved in one or more crowdsensing experiments pro-
posed by a scientist can download the APISENSE mobile application by flashing the QR
code published on APISENSE website, install it, and quickly create an account on the
remote server infrastructure. Once registered, the HTTP communications between the
mobile device of the participant and the remote server infrastructure are authenticated
and encrypted in order to reduce potential privacy leaks when transferring the collected
datasets to the APISENSE server. From there, the participant can connect to the Exper-
iment Store, download and execute one or several crowdsensing experiments proposed
by scientists.

Figure 2 depicts the APISENSE software architecture. Building on the top of Android
SDK, this architecture is mainly composed of four main parts allowing i) to interpret ex-
periment scripts (Facades, Scripting engine) ii) to establish connection with the remote
server infrastructure (Network Manager), iii) to control the privacy parameters of the
user (Privacy Manager), and iv) to control power saving strategies (Battery Manager).

Scripting Engine. Sensor Facades bridge the Android SDK with the Scripting Engine,
which integrates scripting engines based on the JSR 223 specification. We build a mid-
dleware layer Bee.sense Scripting, which exposes the sensors that can be accessed from
the experiment scripts. This layer covers three roles: a security role to prevent malicious
calls of critical code for the mobile device, a efficiency role by including a cache mech-
anism to limit system calls and preserve the battery, and an accessibility role to leverage
the development of crowdsensing experiments, as illustrated in Section 3.
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Fig. 2. Architecture of the APISENSE Mobile Application

Battery Manager. Although the latest generations of smartphones provides very power-
ful computing capabilities, the major obstacle to enable continuous sensing application
refers to their energy restrictions. Therefore, in order to reduce the communication over-
head with the remote server, which tends to be energy consuming, datasets are uploaded
only when the mobile phone is charging. In particular, the battery manager component
monitors the battery state and triggers the network manager component when the battery
starts charging in order to send all the collected datasets to the remote server. Addition-
ally, this component monitors the current battery level and suspends the scripting engine
component when the battery level goes below a specific threshold (20% by default) in
order to stop all running experiments. This threshold can be configured by the participant
to decide the critical level of battery she wants to preserve to keep using her smartphone.

Privacy Manager. In order to cope with the ethical issues related to crowdsensing activi-
ties, the APISENSE mobile application allows participants to adjust their privacy prefer-
ences in order to constrain the conditions under which the experiments can collect data.
As depicted in Figure 3, three categories of privacy rules are currently defined. Rules
related to location and time specify geographical zone and time intervals conditions un-
der which experiments are authorized to collect data, respectively. All the privacy rules
defined by the participant are interpreted by the Privacy Manager component, which
suspends the scripting engine component when one these rules is triggered. The last cat-
egory of privacy rules refers to authorization rules, which prevent sensors activation or
access to raw sensor data if the participant does not want to share this information. Ad-
ditionally, a built-in component uses cryptography hashing to prevent experiments from
collecting sensitive raw data, such as phone numbers, SMS text, or address book.

3 Crowdsensing Experiments

This section reports on four experiments that have been deployed in the wild using our
platform. These examples demonstrate the variety of crowdsensing experimentations
that are covered by the APISENSE infrastructre.

3.1 Revealing Users’ Identity from Mobility Traces

This first experiment aimed at identifying the potential privacy leaks related to the
sporadic disclosure of user’s locations. To support this experiment, we developed a
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APISENSE script, which reports every hour the location of a participant, known as Al-
ice. Listing 1.1 describes the Python script we used to realize this experiment. This
script subscribes to the periodic scheduler provided by the time facade in order to
trigger the associated lambda function every hour. This function dumps a timestamped
longitude/latitude position of Alice, which is automatically forwarded to the server.

Fig. 3. Participant Privacy Preferences

1 time.schedule({’period’: ’1h’},
2 lambda t: trace.add({ ’time’: t.timestamp,
3 ’lon’: gps.longitude(), ’lat’: gps.latitude() }))

Listing 1.1. Identifying GeoPrivacy Leaks (Python)

While this periodic report can be considered as anonymous since no identifier is in-
cluded in the dataset, this study has shown that the identity of Alice can be semi-automatically
be inferred from her mobility traces. To do so, we built a mobility model from the dataset
we collected in order to identify clusters of Alice’s locations as her points of interest
(POI). By analyzing the size of the clusters and their relative timestamps, we can guess
that the largest POI in the night relates to the house of Alice. Invoking a geocoding ser-
vice with the center of this POI provides us a postal address, which can be used as an
input to the yellow pages in order to retrieve a list of candidate names. In parallel, we
can identify the places associated to the other POIs by using the Foursquare API, which
provides a list of potential places where Alice is used to go. From there, we evaluate the
results of search queries made on Google by combining candidate names and places and
we rank the names based on the number of pertinent results obtained for each name. This
heuristic has demonstrated that the identity of a large population of participants can be
easily revealed by sporadically monitoring her location [11].

3.2 Building WiFi/GSM Signal Open Data Maps

This second experiment illustrates the benefits of using APISENSE to automatically
build two open data maps from datasets collected in the wild. Listing 1.2 is a JavaScript
script, which is triggered whenever the location of a participant changes by a distance
of 10 meters in a period of 5 minutes. When these conditions are met, the script builds
a trace which contains the location of the participant and attaches WiFi and GSM
networks characteristics.
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1 trace.setHeader(’gsm_operator’, gsm.operator());
2 location.onLocationChanged({ period: ’5min’,
3 distance: ’10m’ }, function(loc) {
4 return trace.add({
5 time: loc.timestamp,
6 lat: loc.latitude, lon: loc.longitude,
7 wifi: { network_id: wifi.bssid(),
8 signal_strength: wifi.rssi() },
9 gsm: { cell_id: gsm.cellId(),

10 signal_strength: gsm.dbm() } });
11 });

Listing 1.2. Building an Open Data Map (JavaScript)

From the dataset, collected by three participants over one week, we build an QuadTree
geospatial index to identify the minimum bounding rectangles that contain at least a given
number of signal measures. These rectangles are then automatically colored based on the
median signal value observed in this rectangle (cf. Figure 4). This map has been assessed
by comparing it with a ground truth map locating the GSM antennas and WiFi routers7.

3.3 Detecting Exceptions Raised by User Applications

The third experiment highlights that APISENSE does not impose to collect geolocated
dataset and can also be used to build realistic dataset focusing on the exceptions that are
raised by the participants’ applications. To build such a dataset, Listing 1.3 describes a
CoffeeScript script that uses the Android logging system (logCat) and subscribes to
error logs (’*:E’). Whenever, the reported log refers to an exception, the script builds
a new trace that contains the details of the log and retrieves the name of the application
reporting this exception.

1 logcat.onLog {filter: ’*:E’},
2 (log) -> if log.message contains ’Exception’
3 trace.save
4 message: log.message,
5 time: log.timestamp,
6 application: apps.process(log.pid).applicationName,
7 topTask: apps.topTask().applicationName

Listing 1.3. Catching Mobile Applications’ Exceptions (CoffeeScript)

Once deployed in the wild, the exceptions reported by the participants can be used to
build a taxonomy of exceptions raised by mobile applications. The Figure 5, depicts the
results of this experiment based on a dataset collected from three participants over one
month. In particular, one can observe that a large majority of errors reported by the par-
ticipant’s applications are related to permission or database accesses, which can usually
be fixed by checking that the application is granted an access prior to any invocation of
a sensor or the database. This experiment is a preliminary step in order to better identify
bugs raised by applications once they are deployed in the wild as we believe that the
diversity of mobile devices and operating conditions makes difficult the application of
traditional in vitro testing techniques.

7 http://www.cartoradio.fr

http://www.cartoradio.fr
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Fig. 4. GSM Open Data Map Fig. 5. Exceptions Taxonomy

3.4 Experimenting Machine Learning Models

The fourth experiment does not only collect user-contributed datasets, but also deals
with the empirical validation of models on a population of participants. In this scenario,
the scientist wanted to assess the machine learning model she defined for detecting the
activity of the users: walking, sitting, standing, running, or climbing and down stairs. To
assess this model, she deployed a script that integrates two phases: an exploration phase
and an exploitation one. To set up this experiment, we extended the scripting library by
integrating a popular machine learning [14] and adding a new facade to use its features
from script. The script (cf. Listing 1.4) therefore starts with an exploration phase in
order to learn a specific user model. During this phase, APISENSE generates some
dialogs to interact with the participant and ask her to repeat some specific movements.
The script automatically switches to the next movement when the model has recorded
enough raw data from the accelerometer to provide an accurate estimation. Once the
model is considered as complete, the script dynamically replace the timer handler to
switch into the exploration phase. The dataset collected by the server-side infrastructure
of APISENSE contain the model statisitcs observed for each participant contributing to
the experiment.

Figure 6 reports on the collected statistics of this experiment and shows that the pre-
diction model developed by the scientist matches quite accurately the targeted classes.

Predicted class
Acc (%)

Walk Jog Stand Sit Up Down
Walk 66 0 4 0 0 0 94,3
Jog 0 21 0 0 0 0 100
Stand 4 0 40 0 0 0 90,9
Sit 0 0 2 83 0 0 97,6
Up stair 0 0 0 0 22 0 100
Down stair 0 0 0 0 0 11 100

Fig. 6. Representative Confusion Matrix
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1 var classes = ["walk","jog","stand", "sit", "up", "down"];
2 var current = 0; var buffer = new Array();
3 var model = weka.newModel(["avrX","avrY",...], classes);
4 var filter = "|(dx>"+delta+")(dy>"+delta+")(dz>"+delta+")";

6 var input = accelerometer.onChange(filter,
7 function(acc) { buffer.push(acc) });

9 var learn = time.schedule({ period: ’5s’ }, function(t) {
10 if (model.learn(classes[current]) >= threshold) {
11 current++;
12 }
13 if (current < classes.length) { // Learning phase
14 input.suspend();
15 var output = dialog.display({ message: "Select movement", spinner: classes });
16 model.record(attributes(buffer), output);
17 sleep(’2s’);
18 buffer = new Array();
19 input.resume();
20 } else { // Exploitation phase
21 dialog.display({message: "Learning phase completed"});
22 learn.cancel();
23 model.setClassifier(weka.NAIVE_BAYES);
24 time.schedule({ period: ’5s’ }, function(t) {
25 trace.add({
26 position: model.evaluate(attributes(buffer)),
27 stats: model.statistics() });
28 buffer = new Array();
29 } } });

Listing 1.4. Assessing Machine Learning Models (JavaScript)

4 Empirical Validations

Evaluating the Programming Models. In this section, we compare the APISENSE
crowdsensing library to two state-of-the-art approaches: ANONYSENSE [20] and POGO

[3]. We use the RogueFinder case study, which has been introduced by AnonySense and
recently evaluated by POGO. Listings 1.5 and 1.6 therefore reports on the implementa-
tion of this case study in ANONYSENSE and POGO, as decribed in the literature, while
Listing 1.7 describes the implementation of this case study in APISENSE.

1 (Task 25043) (Expires 1196728453)
2 (Accept (= @carrier ’professor’))
3 (Report (location SSIDs) (Every 1 Minute)
4 (In location
5 (Polygon (Point 1 1) (Point 2 2)
6 (Point 3 0))))

Listing 1.5. Implementing RogueFinder in ANONYSENSE

One can observe that APISENSE provides a more concise notation to describe crowd-
sensing experiments than the state-of-the-art approaches. This concisition is partly due
to the fact that APISENSE encourages the separation of concerns by externalizing the
management of time and space filters in the configuration of the experiment. A direct
impact of this property is that the execution of APISENSE scripts better preserves the
battery of the mobile device compared to POGO, as it does not keep triggering the script
when the user leaves the assigned polygon. Nonetheless, this statement is only based
on an observation of POGO as the library is not made freely available to confirm this
empirically.
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1 function start() {
2 var polygon = [{x:1, y:1}, {x:2, y:2}, {x:3, y:0}];
3 var subscription = subscribe(’wifi-scan’, function(msg){
4 publish(msg, ’filtered-scans’);
5 }, { interval: 60 * 1000 });
6 subscription.release();
7 subscribe(’location’, function(msg) {
8 if (locationInPolygon(msg, polygon))
9 subscription.renew();

10 else
11 subscription.release();
12 });
13 }

Listing 1.6. Implementing RogueFinder in POGO (JavaScript)

1 time.schedule { period: ’1min’ },
2 (t) -> trace.add { location: wifi.bssid() }

Listing 1.7. Implementing RogueFinder in APISENSE (CoffeeScript)

Evaluating the Energy Consumption. In this section, we compare the energy con-
sumption of APISENSE to a native Android application and another state-of-the-art
crowdsensing solution: FUNF [1]. FUNF provides an Android toolkit to build custom
crowdsensing applications à la carte. For each technology, we developed a sensing ap-
plication, which collects the battery level every 10 minutes. We observed the energy
consumption of these applications and we report their consumption in Figure 7.

Compared to the baseline, which corresponds to the native Android application, one
can observe that the overhead induced by our solution is lower than the one imposed by
the FUNF toolkit. This efficiency can be explained by the various optimizations included
in our crowdsensing library. Although more energyvorous than a native application, our
solution does not require advanced skills of the Android development framework and
covers the deployment and reporting phases on behalf of the developer.

As the energy consumption strongly depends on i) the nature of the experiment, ii)
the types of sensors accessed, and iii) the volume of produced data, we conducted a
second experiment in order to quantify the impact of sensors (cf. Figure 8). For this ex-
periment, we developed three scripts, which we deployed separately. The first script,
labelled Bee.sense + Bluetooth, triggers a Bluetooth scan every minute and col-
lects both the battery level as well as the resulting Bluetooth scan. The second script,
Bee.sense + GPS, records every minute the current location collected from the GPS
sensor, while the third script, Bee.sense + WiFi, collects a WiFi scan every minute.
These experiments demonstrate that, even when stressing sensors, it is still possible to
collect data during a working day without charging the mobile phone (40% of battery
left after 10 hours of pulling the GPS sensor).

5 Related Work

A limited number of data collection tools are freely available on the market. SYSTEM-
SENS [8], a system based on Android, focuses on collecting usage context (e.g., CPU,
memory, network info, battery) of smartphones in order to better understand the battery
consumption of installed applications. Similarly, LIVELABS [19] is a tool to measure
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wireless networks in the field with the principal objective to generate a complete net-
work coverage map in order to help client to select network interface or network opera-
tors to identify blind spots in the network. However, all these tools are closed solutions,
designed for collecting specific datasets and cannot be reused in unforeseen contexts
in contrast to APISENSE. Furthermore, these projects are typical experiments deployed
on mobile devices, without providing any privacy guarantee.

FUNF [1] is an Android toolkit focusing on the development of sensing applications.
FUNF in a box is a service provided by FUNF to easily build a dedicated sensing applica-
tion from a web interface, while data is periodically published via the Dropbox service.
As demonstrated in Section 4, the current version of FUNF does not provide any support
for saving energy nor preserving user privacy. Furthermore, the current solution does
not support the dynamic re-deployment of experiments once deployed in the wild.

More interestingly, MYEXPERIENCE [9] is a system proposed for Windows mobile
smartphones, tackling the learning curve issue by providing a lightweight configuration
language based on XML in order to control the features of the application without
writing C# code. MYEXPERIENCE collects data using a participatory approach—i.e.,
by interacting with users when a specific event occurs (e.g., asking to report on the
quality of the conversation after a phone call ends). However, MYEXPERIENCE does
not consider severals critical issues, such as maintaining the privacy of participants or
the strategic deployment of experiments. Even if an experiment can be modified in the
wild, each experiment still requires a physical access to the mobile device in order to
be installed, thus making it difficult to be applied on a large population of participants.

In the literature, severals deployment of crowdsensing applications strategies have
been studied. For example, ANONYSENSE [20] uses—as APISENSE—a pull-based ap-
proach where mobile nodes periodically download all sensing experiments available on
the server. A crowdsensing experiment is written in a domain-specific language and de-
fines when a mobile node should sense and under which conditions the report should
be submitted to the server. However, ANONYSENSE does not provide any mechanism
to filter the mobile nodes able to download sensing experiments, thus introducing a
communication overhead if the node does not match the experiment requirements.

On the contrary, PRISM [7] and POGO [3] adopts a push-based approach to de-
ploy sensing experiments over mobile nodes. PRISM is a mobile platform, running on
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Microsoft Windows Mobile 5.0, and supporting the execution of generic binary code in
a secure way to develop real-time participatory sensing applications. To support real-
time sensing, PRISM server needs to keep track of each mobile node and the report
they periodically send (e.g., current location, battery left) before selecting the appro-
priate mobile phones to push application binaries. POGO proposes a middleware for
building crowdsensing applications and using the XMPP protocol to disseminate the
datasets. Nonetheless, POGO does not implement any client-side optimizations to save
the mobile device battery (e.g., area and period filters) as it systematically forwards the
collected data to the server.

SensorSafe [5] is another participatory platform, which allows users to share data
with privacy guaranties. As our platform, SensorSafe provides fine-grained temporal
and location access control mechanisms to keep the control of data collected by sensors
on mobile phone. However, participants have to define their privacy rules from a web
interface while in APISENSE these rules are defined directly from the mobile phone.

6 Conclusion

While it has been generally acknowledged as a keystone for the mobile computing
community, the development of crowdsensing platforms remains a sensitive and crit-
ical task, which requires to take into account a variety of requirements covering both
technical and ethical issues.

To address these challenges, we report in this paper on the design and the imple-
mentation of the APISENSE distributed platform. This platform distinguishes between
two roles: scientists requiring a sustainable environment to deploy sensing experiments
and participants using their own mobile device to contribute to scientific experiments.
On the server-side, APISENSE is built on the principles of Cloud computing and offers
to scientists a modular service-oriented architecture, which can be customized upon
their requirements. On the client-side, the APISENSE platform provides a mobile appli-
cation allowing to download experiments, executing them in a dedicated sandbox and
uploading datasets to the APISENSE server. Based on the principle of only collect what
you need, the APISENSE platform delivers an efficient yet flexible solution to ease the
retrieval of realistic datasets.
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Abstract. Distributed transaction processing has benefited greatly from
optimistic concurrency control protocols thus avoiding costly fine-grained
synchronization. However, the performance of these protocols degrades
significantly when the workload increases, namely, by leading to a sub-
stantial amount of aborted transactions due to concurrency conflicts.

Our approach stems from the observation that when the abort rate
increases with the load as already executed transactions queue for longer
periods of time waiting for their turn to be certified and committed. We
thus propose an adaptive algorithm for judiciously scheduling transac-
tions to minimize the time during which these are vulnerable to being
aborted by concurrent transactions, thereby reducing the overall abort
rate. We do so by throttling transaction execution using an adaptive
mechanism based on the locally known state of globally executing trans-
actions, that includes out-of-order execution.

Our evaluation using traces from the industry standard TPC-E work-
load shows that the amount of aborted transactions can be kept bounded
as system load increases, while at the same time fully utilizing system
resources and thus scaling transaction processing throughput.

Keywords: Optimistic concurrency control, adaptive scheduling.

1 Introduction

Optimistic concurrency control in distributed data processing systems is in-
creasingly popular. In replicated database systems [1–3], it allows concurrent
transactions to execute at different sites regardless of possible conflicts. Conflict
detection and resolution are performed at commit time, before the changes are
applied to the database. In large scale, high throughput transactional systems
such as Google Percolator [4] and OMID [5], implementations of optimistic con-
currency control with different isolation levels and locking policies are key to
achieving radical scalability.

While optimistic concurrency control allows more concurrency and thus better
use of resources than its counterpart, transactions that are later found to conflict
are aborted and must be re-executed. Notice that the more transactions are
allowed to execute concurrently, the more likely it is for conflicts to arise. Also,
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any transaction is vulnerable to being aborted by other transactions from the
moment it starts to execute until is is certified: the longer it takes to execute
and certify a given transaction, the more vulnerable it is. This is the caveat of
most optimistic concurrency control strategies: when loaded, latency increases
and fairness is compromised, particularly for long-running transactions [1].

In contrast, conservative concurrency control is implemented by subjecting
transactions to a priori conflict detection. In some of these protocols, conflict
detection is done by associating queues to data partitions [3, 6–8]. The queues
are used to serialize transactions that access the same data partitions. The per-
formance penalty imposed by the conservative strategy depends on the grain
considered for concurrency control: if the grain is too fine, conflict detection will
result in a delay before transaction execution; on the other hand, if the grain
is too coarse, transactions that would not otherwise conflict are unnecessarily
prevented from executing concurrently [1].

It has been proposed that both approaches be combined by conservatively re-
executing previously aborted transactions, which mitigates this issue. However,
if appropriate conflict classes cannot be used to ensure no conflicts occur during
re-execution, the system will quickly be prevented from exploting optimism [1].
Moreover, although most optimistic concurrency control protocols execute trans-
actions as soon as these are submitted [2, 3], it has been pointed out that the
worst scenarios for optimistic concurrency control can be mitigated by limiting
the number of transactions executing concurrently [1]. Transaction scheduling
on non-distributed settings using queue-theoretic models for automatically ad-
justing the maximum parallelism level has been studied [9]. However, selecting
the correct level of parallelism is not straightforward and can result in a severe
limitation to maximum throughput.

In this paper we solve this problem with AJITTS, an adaptive just-in-time
transaction scheduler. This mechanism minimize aborts while maximizing trans-
action throughput by computing the appropriate start time for each transaction.
The intuition behind this proposal is simple: If a transaction must wait to be
certified in the correct order, to ensure consistency in a distributed system, it is
better that it waits prior to execution, as it is not susceptible to being aborted
by conflicts with concurrent transactions. The implementation of this simple in-
tuition does however imply that the system is continually monitored and that
an appropriate execution start time is computed for each transaction.

The rest of this paper is structured as follows. In Section 2 we show that there
is an ideal configuration for each workload, that improves performance regarding
the basic optimistic protocol, introducing then the mechanism used to dynami-
cally compute such configuration. In Section 3 we use traces obtained from the
TPC-E workload running on a MySQL database server to simulate different
workload scenarios and evaluate our proposal. Finally, Section 4 concludes the
paper.
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2 Approach

The main insight leading to our proposal is as follows: Since transactions are
vulnerable to being aborted from the time execution starts until certification,
in order to minimize the number of aborts, execution should start as late as
possible. On the other hand, if certification goes idle because transactions at the
head of the queue have not been completely executed, the throughput decreases.
Our approach is thus based on reaching and maintaining the optimal level of
queuing in the system: As low as possible to minimize aborts but as high as
needed to ensure that certification doesn’t go idle, to maximize throughput.

2.1 System Model

To test this hypothesis, we assume an abstract model that captures key aspects of
a distributed transaction processing system. First, we assume that transactions
submitted to the system are totally ordered and placed at the tail of a queue in
the not executed state. This models either a centralized queue at the transaction
manager server [5] or local replicas of a queue built by a group communication
system [2]. Because transactions must be certified in a conflict-equivalent order
to the total order on which replicas agreed, the system can be modelled as a
single queue in which transactions go through several states.

We then introduce a line in the queue that determines which transactions
should start execution: all transactions before the line are not eligible to start
executing, while all transactions between the line and the head of the queue that
are in the not executed state are to be executed. Simply put, transactions are
evaluated for execution whenever a transaction arrives to (i.e. is submitted) or
leaves the queue (i.e. committed or aborted). Transactions can only be certified
upon reaching the head of the queue and having completed execution, entering
the certification state.

Conflict detection ensues: if the transaction was in the executed state, con-
flicting transactions in either executing or executed states are aborted and the
transaction is immediately certified; if it was in the aborted state, the outcome
is an abort. For certification, we assume snapshot isolation, which differs from
serializability by considering only write/write conflicts [10]. This is used in the
overwhelming majority of current RDBMSs and has also been favored in dis-
tributed transaction processing systems.

2.2 Impact of Scheduling

Ideally, the line would be placed at such a position that each transaction com-
pletes execution just as it arrives at the head of the queue, minimizing the time
spent in the executed state before reaching certification, thus minimizing its vul-
nerability to being aborted by others. However if the transaction reaches the
head of the queue in either not executed or executing states, it cannot be cer-
tified until it finishes. Certification must occur in a conflict-equivalent order to
the previously established total order, which is key to guaranteeing determinism
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in a distributed setting. As such, transactions running late cannot be overtaken
by others, leaving certification idle.

Transactions can have widely varying execution times (i.e. duration), which
should be considered when scheduling them. Let dt be the estimate of the dura-
tion of transaction t, which can be easily obtained from a database planner.

Assuming that the head of the queue corresponds to position 1, let

post = input · dt (1)

be the position in the queue after which transaction t will be executed. This
means that transaction t will be executed when there are post − 1 or less trans-
actions ahead of it in the queue, which is the same as placing a line in the queue.
Notice that transaction t is not scheduled for a particular instant in absolute
time: it is relative to the current inter-arrival rate of transactions at the head
of the queue. This enables out-of-order execution: a small transaction will begin
execution near the head of the queue, while a very large transaction will begin
execution as soon as it is submitted.

The input parameter provides a simple way to adjust how early transactions
should be executed: for the same estimated duration, a higher value of input
means that the transaction will be executed earlier than with a lower value.

We then built an event-driven simulation of the abstract system model with
the adjustable executuon start line. This simulation allows the position of the
line that triggers execution to be adjusted, as well as to use different workloads,
further described in Section 3. From this simulation we collect a number of
statistics, namely: usable throughput, considering transactions that can be com-
mitted; share of transactions aborted due to concurrency conflicts; and latency
at each state, from which we derive also end-to-end latency.

Figure 1 shows the latency breakdown for a particular workload (400 clients)
while varying the input parameter. On the right hand, transactions are sched-
uled early, thus reducing the amount of time in the not executed state, shown in
blue. In fact, an extreme setting of the parameter is equivalent to the baseline
optimistic protocol, meaning that transactions are immediatly scheduled for ex-
ection and the entire impact of synchronization happens in the executed state.
On the left, transactions are scheduled later, thus waiting an increased amount
of time before execution, but waiting very little as executed (in brown). As ex-
pected, varying this parameter does not have an impact in execution duration
(in red). As expected, we observe that overly delaying transaction execution has
an impact in total latency.

Figure 2 shows a complete set of statistics for three different workloads. These
workloads differ only in the number of concurrent clients submitting transactions.
First, we observe that besides impacting end-to-end latency, the input parameter
that determines when execution is started also impacts throughput and the abort
rate leading to the following trade off:

– On the left, with a larger delay before execution, transactions arrive at the
head of the queue but are not yet fully executed, thus stalling certification
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Fig. 1. Average latency breakdown with a varying scheduler parameter: Pre-execution
delay (blue), execution latency (red), and queueing for certification (brown)

and leading to reduced throughput. However, the small delay to certification
leads to a reduced number of concurrency aborts.

– On the right, transactions are executed fairly ahead of time, thus avoiding
stalling the queue. On the other hand, by having started early they become
concurrent with a larger number of transactions and thus lead to an increased
amount of rollbacks due to conflicts.

Notice that, for example, if input is between 0.4 · 10−3 and 0.9 · 10−3 for 800
clients, throughput is sub-optimal because transactions are being executed too
late. This can be confirmed by analyzing the transaction latency in the same
interval. Also, for example for 200 clients, the abort rate steadily rises as input
increases, but when input becomes larger than 1, the abort rate stabilizes at
around 5%. This happens because after this point roughly all transactions are
being executed as soon as they are submitted, equivalent to using DBSM [2].
This effect occurs for any number of clients, it is just a question of using a large
enough input.

Figure 3 shows similar results when, instead of varying the workload, we vary
the resources available for execution. This leads to the time spent in the executing
state growing. However, the same trade off holds. In short, we observe that there
is an intermediate configuration that provides the best usable throughput with
moderate latency. This is true regardless of the number of concurrent clients
or the resources available to execute transactions. This optimal configuration
is however different for different settings, which makes its configuration by the
system developer unfeasible. As it varies with the workload, it is also impractical
as a configuration parameter.
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Fig. 2. Effect of the input value on throughput, the abort rate, transaction latency and
on the ratio between average transaction queueing and average duration for different
numbers of clients

2.3 Adapting the Workload

The question becomes how to determine an appropriate input value that provides
optimal throughput without resorting to trial and error.

A simple adaptation mechanism would be to simply start execution one po-
sition sooner whenever a transaction reaches the head of the queue in the
not executed or executing states or one position later whenever it has to wait in
the executed state or has been aborted. This approach was tested, but such an
adaptation mechanism, while simple, causes oscillation, since such changes are
too abrupt [11].

Let tstate be the instant in which transaction t reaches state state. For any
transaction t,

st = tnot executed − texecuting
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Fig. 3. Effect of the input value on throughput, the abort rate, transaction latency and
on the ratio between average transaction queueing and average duration for different
distributions of transaction duration

measures how long transaction t had to wait to begin to execute since it was
submitted, and

qt = tcertification − texecuted

measures how long transaction t had to wait after its execution was complete
before reaching the head of the queue to be certified, henceforth simply referred
to as pre-execution delay and queuing, respectively. Queuing is directly affected
by whether transactions are executed sooner or later: on average, the former
increases queuing while the latter decreases it. Let Q be a weighted cumulative
rolling average of q and Qopt the optimal level of queuing for a system. An
adaptive mechanism that reacts to the state of the queue can be defined using a
proportional-integral-derivative controller[11] with Q as the sensor, Qopt as the
set point and input as the system input [11] such that:
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error = setpoint− sensor

Pvalue = Kp ∗ error
input+ = Pvalue

Simply put, the error of the measured value (sensor) relatively to the desired
value (setpoint) is used to update an input to the system (input) which will in
turn impact the measured value, constituting the control feedback loop.

Kp is referred to as proportional gain, a tuning parameter that adjusts how
the sensitivity of the controller, i.e., the magnitude of the adaptation relatively
to the magnitude of the error. Several methods exist for selecting an appropriate
value for Kp, from manual tuning to methods based on heuristics[12].

Because computing the position of the line relies on an estimated value for
transaction duration, for which the expected value is the mean, depending on
the variance of the population, selecting a set point of 0 would mean that sev-
eral transactions would not finish its execution in time, leaving certification
idle.

The key to finding Qopt is in comparing the bottom-right chart of Figure 2
which shows the ratio between the average queuing and the average duration
of all transactions with the top-left chart showing throughput. Notice that the
input values that achieve optimal throughput in the top-left chart match those
for which the ratio in the bottom-right chart is roughly 1. Intuitively, selecting
the set point to target average duration would mean that certification does not
go idle and, consequently, that the rate at which transactions are certified is the
same as the rate at which transactions arrive at the head of the queue which
corresponds to optimal throughput but minimizing the size of the queue meaning
a minimal abort rate. If deemed necessary, due to high variance in transaction
duration, from the cumulative distribution function of transaction duration one
can choose a value for the set point corresponding to a desired percentile: the
higher the percentile of the chosen value, the higher the number of transactions
that will have completed execution as expected.

3 Evaluation

3.1 Workload

TPC-E [13] is a benchmark that simulates the activities of a brokerage firm
which handles customer account management, trade order execution on be-
half of customers and the interaction with financial markets. This analysis was
based on tpce-mysql,1 an open-source implementation of the TPC-E benchmark.
This benchmark defines 33 tables across four domains: customer, broker, market
and dimension and 10 main transaction types that operate across the domains.

1 https://code.launchpad.net/perconadev/perconatools/tpcemysql

https://code.launchpad.net/perconadev/perconatools/tpcemysql
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TPC-E’s read/write transactions are: Market Feed (MF), Trade Order (TO),
Trade Result (TR), Trade Update (TU) and Data Maintenance (DM).2

AJITTS was evaluated using a simple event-driven simulator that enables a
profound analysis of each aspect of scheduling and concurrency control of repli-
cation protocols. The simulator processes execution traces obtained by running
TPC-E like benchmark on a centralized MySQL3 database and then parsing the
resulting binlog to generate the workload to test replication protocols. In essence,
the simulator uses the following information from the binlog: the timestamps at
which each transaction started, how long it took to execute each transaction and
transaction write sets.

Another relevant feature of the simulator is that it allows the parallelization of
the load generated by serial runs of TPC-E over the same database. In short, it
does so by creating unique identifiers for each transaction and by manipulating
timestamps making these relative to a reference instant. As a result, the load
applied to the protocol under test can be easily scaled. Also, the applied load is
not limited by resource constraints on the original MySQL database: there is no
limit on the number of load units that can be applied in parallel.

The values of transaction duration extracted from the binlog reflect the penalty
introduced by synchronization and locking in the MySQL engine when the bench-
mark is executed. A correction factor (β) can be calibrated by running the traces
through the simulator with optimistic scheduling, without admission restriction
and without re-execution, chosen such that the abort rate is close to 1%. The
reason for this is that the sequence of transactions in the binlog has implicitly
been proved to be conflict-free with the original values for transaction duration.

Let dur′t be the duration extracted from the binlog for transaction t. The
respective value to be used in the simulation is durt = β ∗ dur′t.

The value of the correction factor depends on the benchmark load induced on
MySQL. Therefore, the β used in the simulation is independent of the number
of parallel traces used to fuel the simulator, as long as the load induced by each
benchmark run was about the same. If using another set of traces, the beta must
be recalculated. β is 0.2 for the traces used to evaluate AJITTS.

As discussed in Section 2, the set point should be chosen taking into consid-
eration the distribution of transaction duration. In the results presented here,
the set point used in AJITTS is the same as the average transaction duration of
the given workload.

In order to simplify the implementation of AJITTS, instead of estimating
the duration of each transaction, a line is placed on the queue for each type of
transaction. The position of the line for a transaction of type MF, for example,
is calculated as

lineMF = input ∗ dMF

2 The Data Maintenance transaction type operates exclusively on a separate group of
tables. As such, it is not relevant for this analysis and is essentially omitted from
the discussion that follows.

3 http://www.mysql.com

http://www.mysql.com


66 A. Nunes, R. Oliveira, and J. Pereira

200 400 600 800
0

100

200

300

400

number of clients

th
ro
u
g
h
p
u
t
(t
p
s)

200 400 600 800
0

5

10

15

20

number of clients

a
b
o
rt

ra
te
(%

)

OPT AJITTS

Fig. 4. Throughput and abort rates using OPT and AJITTS for different numbers of
clients

where dMF is an online estimate of the duration of MF transactions using a
cumulative rolling average.

While TPC-E already provides strictly defined transaction types, one could
classify transactions in generic workloads by either considering the similarity in
execution plans or, for example, the conflict classes accessed by transactions.
Still, AJITTS can be implemented without this simplification, computing a line
for each individual transaction.

3.2 Results

We compare AJITTS with OPT, a protocol with a standard optimistic scheduler.
Simply put, OPT schedules each execution as soon as it is submitted. Using the
TPC-E based workload described in Section 3.1, this is simulated by admitting
at most one transaction per client, since clients are single-threaded. Notice that
without this restriction, the number of concurrent transactions would be higher
than allowed in the original benchmark.

Figure 4 compares OPT and AJITTS in terms of throughput and aborts for
three workloads that differ only on the number of concurrent clients submitting
transactions. Notice that even though AJITTS introduces delays on transaction
executions, throughput is not only not adversely affected, but actually improved.
Also, AJITTS clearly succeeds in significantly reducing the abort rate. In fact,
a clear trend of further improvement can be observed in both charts as the load
increases.

Figure 5 shows how the line positions per transaction type evolve during a
run with a particular workload. Line positions are updated whenever the esti-
mates for execution duration change or whenever the adaptation input parameter
changes. The position of the line for each transaction type converges quickly: the
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amplitude of the variation stabilizes after considerably few updates. In particu-
lar, TU transactions actually consist of three different types of subtransactions:
the variability of the duration of trade update transactions is mirrored in the
variation of the position of the line for this type of transaction. Notice that TU
transactions are scheduled much earlier than other types of transactions. Fig-
ure 5 also shows the cumulative distribution function of the measured queueing
(q) aggregated by transaction type, which is a result of the position of the lines.

Figure 6 shows how the different average durations (in red) influence the pre-
execution delay (in blue) when using AJITTS: again, TU transactions (TUa) are
scheduled much earlier than others, while MF transactions (MFa), for instance,
are only executed nearer the head of the queue. When compairing the results
regarding, for example, MF transactions, the average time during which these
are vulnerable to being aborted much smaller using AJITTS (110 ms) than us-
ing OPT (562 ms). This is also the case for TR and TO transactions. However,
for TU transactions queueing actually increases using AJITTS. This is a conse-
quence of ensuring that certification does not go idle. As expected, the net effect
is still a reduced abort rate.

Considering different values of β shapes the workload: higher βs simulate
less available resources and vice-versa. Figure 7 shows how AJITTS leverages
available resources significantly better than OPT. In particular, the less available
resources, the more OPT’s throughput decreases relatively to AJITTS.
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Fig. 7. Throughput and abort rates for OPT and AJITTS for different βs

4 Conclusion

Although increasingly popular and often used, optimistic concurrency control
may lead, with more demanding workloads, to a large number of conflicts and
aborted transactions. This endangers fairness and reduces usable throughput.
Previous attempts at tackling this problem required workload-specific configu-
ration and would still impact peak throughput [1].
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With AJITTS, the adaptive just-in-time transaction scheduler, we provide a
solution that does not require workload specific configuration and adapts in run-
time to current workload and resource availability conditions. This is achieved
by delaying transaction execution, for each transaction individually based on the
estimated time to complete and current queueing within the system.

AJITTS was then evaluated using a simulation model driven by traces from
TPC-E running on MySQL, demonstrating that it clearly outperforms the base-
line protocol. In fact, in addition to reduced aborts, it actually improves peak
throughput even if it throttles transaction execution. This is the consequence of
using available resources better.
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7. Jiménez-Peris, R., Patiño-Mart́ınez, M., Kemme, B., Alonso, G.: Improving the
scalability of fault-tolerant database clusters. In: Proceedings of IEEE 22nd Inter-
national Conference on Distributed Computing Systems, pp. 477–484 (2002)

8. Kemme, B., Pedone, F., Alonso, G., Schiper, A.: Processing transactions over op-
timistic atomic broadcast protocols. In: Proceedings of 19th IEEE International
Conference on Distributed Computing Systems, pp. 424–431 (1999)

9. Schroeder, B., Harchol-Balter, M., Iyengar, A., Nahum, E., Wierman, A.: How to
determine a good multi-programming level for external scheduling. In: Proceed-
ings of the 22nd International Conference on Data Engineering, ICDE 2006, p. 60
(April 2006)



70 A. Nunes, R. Oliveira, and J. Pereira

10. Lin, Y., Kemme, B., Patiño-Mart́ınez, M., Jiménez-Peris, R.: Middleware based
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12. Aström, K., Hägglund, T.: Automatic tuning of simple regulators with specifica-
tions on phase and amplitude margins. Automatica 20(5), 645–651 (1984)

13. Transaction Processing Performance Council (TPC): TPC Benchmark E - Stan-
dard Specification. Revision 1.12.0 edn. (June 2010)



Strategies for Generating and Evaluating

Large-Scale Powerlaw-Distributed P2P Overlays

Ana-Maria Oprescu1, Spyros Voulgaris2, and Haralambie Leahu2

1 Universiteit van Amsterdam
a.m.oprescu@uva.nl

2 VU University
spyros@cs.vu.nl, h.leahu@vu.nl

Abstract. A very wide variety of physical, demographic, biological and
man-made phenomena have been observed to exhibit powerlaw behav-
ior, including the population of cities and villages, sizes of lakes, etc. The
Internet is no exception to this. The connectivity of routers, the popu-
larity of web sites, and the degrees of World Wide Web pages are only
a few examples of measurements governed by powerlaw. The study of
powerlaw networks has strong implications on the design and function
of the Internet.

Nevertheless, it is still uncertain how to explicitly generate such topolo-
gies at a very large scale. In this paper, we investigate the generation of
P2P overlays following a powerlaw degree distribution. We revisit and
identify weaknesses of existing strategies. We propose a new methodol-
ogy for generating powerlaw topologies with predictable characteristics,
in a completely decentralized, emerging way. We provide analytical sup-
port of our methodology and we validate it by large-scale (simulated)
experiments.

1 Introduction

Many real-world large-scale networks demonstrate a power-law degree distribu-
tion, that is, a very small fraction of the nodes has a high degree (i.e., number
of neighbors), while the vast majority of nodes has a small degree. In nature,
such networks typically emerge over time, rather than being instantiated on the
spot based on a blueprint. Providing researchers from different disciplines with
a framework that allows them to control the self-emerging process of power-law
networks, could substantially help them in studying and better understanding
such networks, as well as deploying them at will to serve new applications (e.g.,
bio-inspired algorithms for peer-to-peer systems).

There are several algorithms to generate power-law networks, however little
has been done for a self-emerging method for building such networks [3,5,6,4].
In this work, we first investigate existing research with an emphasis on the de-
centralization properties of proposed algorithms. Next, we select one approach
that looks promising for straightforward decentralization. We identify several
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limitations within the existing approach and we present a novel algorithm that
has been tailored specifically to the needs of a large P2P network. Starting from
a given, static distribution of random values among the P2P network nodes, we
control the emerging power-law overlay .

We summarize related research conducted on power-law generation in
Section 2, where we assess the degree to which such approaches may be de-
centralized. In Section 3.1 we identify several limitations (both theoretical and
empirical) with an existing sequential approach and proceed to present a novel
algorithm to alleviate the respective issues. In Section 4 we show how the de-
centralized algorithm may be implemented in a P2P network and present our
evaluation results. We summarize our findings in Section 5.

2 Related Work

There is a vast literature on properties and characteristics of scale-free and small-
world networks. The research behind such literature is focused on the observation
of aforementioned topologies and their behavior (like finding the λ value) rather
than construction methodologies. However, there are several important genera-
tive mechanisms which produce specific models of power-law networks. It started
with the Erdös and Rényi random-graph theory and continued with the Watts
and Strogatz model, which was the first to generate a small-world topology from
a regular graph, by random rewiring of edges. Drawbacks of this initial model
are its degree homogeneity and static number of nodes. These limitations can
be addressed by scale-free networks, but the clustering coefficient becomes an
issue. In turn, the clustering coefficient can be controlled through the employed
generative mechanism. However, generating a random scale-free network having
a specific λ value is not trivial. Moreover, most existing algorithms to generate
scale-free networks are centralized and their decentralization, again, far from
trivial. We present several types of generative models.

Preferential Attachment. This model, also known as the “rich-get-richer”
model, combines preferential attachment and growth. It assumes a small initial
set of m0 nodes, with m0 > 2, forming a connected network. The remaining
nodes are added one at a time. Each new node is attached to m existing nodes,
chosen with probabilities proportional to their degrees. This model is referred to
as the Barabási-Albert (BA) model [2], though it was proposed by Derek J. de
Solla Price [7] in 1965 and Yule in 1925 [12]. The degree distribution is proven
to be P (k) ∼ k−3. Dorogovtsev and Mendes [11] have extended the model to a
linear preference function, i.e., instead of a preference function fBA(i) = ki they
use fDM (i) = ki + D,D ≥ 0. Dangalchev [6] introduced the two-level network
model, by considering the neighbor connectivity as a second “attractiveness”
discriminator, fDa(i) = ki+c×∑

j kj , where c ∈ [0, 1]. The global view required
at each node attachment renders this algorithm difficult to decentralize.

Preferential Attachment with Accelerated Growth. This model [10] ex-
tends the previous model with a separate mechanism to add new links between
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existing nodes, hence accelerating the growth of the number of links in the net-
work (much like the Internet). This algorithm inherits the difficulties of the basic
preferential attachment with respect to decentralization.

Non-linear Preferential Attachment. Krapivsky, Redner, and Leyvraz pro-
pose a model [14] that produces scale-free networks as long as fKRL(i) ∼ ki; k →
∞, where fKRL(i) = kγi . This algorithm inherits the difficulties of the basic pref-
erential attachment with respect to decentralization.

Deterministic Static Models. Dangalchev proposed two such networks, the
k-control and the k-pyramid, where the latter can be extended to a growth
model. Ravasz and Barabási [1] explored hierarchical (fractal-like) networks in
an effort to meet both the power-law degree distribution of scale-free networks
and the high clustering coefficient of many real networks. Their model starts
with a complete q-node graph which is copied q − 1 times (q > 2); the root of
the initial graph (selected arbitrarily from the q nodes) is connected with all the
leaves at the lowest level; these copy-connect steps can be repeated indefinitely.

Such networks have degree distribution P (k) ∼ k
ln q

ln(q−1) . Cohen and Havlin [5]
use a very simple model which delivers an ultra-small world for λ > 2; it assumes
an origin node (the highest degree site) and connects it to next highest degree
sites until the expected number of links is reached. Since loops occur only in
the last layer, the clustering coefficient is intuitively high for a large number of
nodes. According to [9], some deterministic scale-free networks have a clustering
coefficient distribution C(q) ∼ q−1, where q is the degree. This implies well-
connected neighborhoods of small degree nodes. This algorithm seems promising
with respect to decentralization, except for the initial phase of complete q-node
connectedness.

Fitness-Driven Model. This was introduced by Caldarelli [4] and proves how
scale-free networks can be constructed using a power-law fitness function and
an attaching rule which is a probability function depending on the fitness of
both vertices. Moreover, it shows that even non-scale-free fitness distributions
can generate scale-free networks. Recently, the same type of model with infinite
mean fitness-distribution was treated in [13]. This power-law network generative
algorithm seems the most promising with respect to decentralization.

3 Decentralizable Algorithms for Building Scale-Free
Networks

We are interested in analyzing approaches that are feasible to decentralize. We
first look at an existing model, presented by Caldarelli in [4], for which we
introduce an analytical and empirical verification. We then present an improved
model to build scale-free networks, which we also analyze and verify empirically.
Our model maintains the property of easy decentralization.
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3.1 Caldarelli’s Fitness-Driven Model

In this model, power-law networks are generated using a “recipe” that consists
of two main ingredients: a fitness density, ρ(x), and a vicinity function, f(xi, xj).
The fitness density is used to assign each node a fitness value, while the vicinity
function is used to decide, based on the fitness values, whether a link should be
placed between two nodes.

One instance of this model assumes each node to have a fitness value xi drawn
from a Pareto distribution with density ρ(x) ∼ x−γ . For each node i, a link to
another node j is drawn with probability f(xi, xj) =

xixj

x2
M

, where xM is the

maximum fitness value currently in the network.
This model looks very appealing for a self-emerging approach to power-law

network generation, since it requires very little information to be globally avail-
able. Using epidemic dissemination techniques [8], the maximum fitness value
currently existing in the network, xM , may be easily propagated throughout the
network.

According to [4], this approach leads to a network with a power-law degree
distribution, that should have the same exponent as the non-truncated Pareto
distribution of the fitness values. However, our initial set of experiments show
that Caldarelli’s approach rarely converges for very large networks. Figure 1
presents the data collected from four different experiments. Each experiment
corresponds to a different degree distribution exponent and was repeated for
two network sizes: 10,000 nodes and 100,000 nodes. For each experiment we
constructed 100 different graphs, each with the same fitness distribution and
different random seeds for the neighbor selection. We remark that for a de-
sired power-law degree distribution with exponent γ �= 3 and larger values of
N (100K), the obtained degree distribution exponent does not converge to its
desired value. Also, for γ = 4 and a network of 10K nodes, the general ap-
proximation function used to determine the degree distribution exponent could
not be applied here. We investigated the issue further, by constructing the his-
togram corresponding to the degree distribution. Figure 5 shows the histograms
obtained for each experiment. We remark that the histograms do not coincide
with a power-law distribution.

A second set of experiments evaluated how well the algorithm controlled the
emerging degree distribution exponent, γ. We increased the control γ in steps of
0.1 and ran the algorithm ten times for each value on a network of 100,000 nodes.
We collected the estimated value of the emerging degree distribution exponent
and the percentage of isolated nodes (i.e., nodes of degree zero). Both types of
results are plotted in Figures 3a and 3b. We note that in the Caldarelli model a
large number of nodes remain isolated.

We verified the empirical results by revisiting the assumptions made in [4].
We localized a possible problem with the way the vicinity function is integrated.
Intuitively, the problem is that while the X’s (fitnesses) are independent r.v. (by
assumption), their maximum (xM ) is dependent on all of them, hence can not
be pulled out of the integral. To explain this formally, using the Law of Large
Numbers we obtain the estimation
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Fig. 1. Caldarelli’s model
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Fig. 2. Improved model

Vk =
Number of nodes of degree k

n
≈ 1

n

ρ
(
P−1(k/n)

)
P ′ (P−1(k/n))

,

where P−1 denotes the inverse of P , which is the probability that a node u with
fitness x will be linked with any other node v (P (x) := E[p(Xu, Xv)|Xu = x]).
This approximation, in conjunction with the assumption ρ(x) ∼ x−γ would pro-
vide the power-law behavior Vk ∼ k−γ , as claimed in [4]. However, this is not
the case since xM is a random variable dependent on all fitnesses (thus, also on
Xu and Xv). Hence P (x) is not linear, but is a rather intricate expression of
x and an analytical expression for the inverse of P is infeasible. Even worse, if
ρ(x) ∼ x−γ , the squared-maximum x2

M will grow to infinity at rate n2/(γ−1) (by
Fisher-Tippet-Gnedenko Theorem), so that D = (n − 1)E[p(X1, X2)], will tend
to 0 when γ < 3 (the resulting graph will have a very large fraction of isolated
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Fig. 3. Caldarelli’s fitness-driven model
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Fig. 4. Our model

nodes) and will grow to infinity for n → ∞, when γ > 3; however, as explained
before, this last fact is impossible in a power-law graph in which all nodes are
linked with the same probability; see equation (3).

3.2 Improved Model

Here we present a novel model for a power-law graph with n nodes. It addresses
the limitations found with the Caldarelli model by avoiding certain mathematical
pitfalls. Our assumptions differ from the Caldarelli model in that we consider a
truncated Pareto distribution, with density function ρ(x) ∼ x−2, for x ∈ (l, bn).
We emphasize that, unlike Caldarelli, we start with a fixed distribution exponent.

Another considerable difference is the truncation and its upper bound bn →
∞. The upper bound will depend on the density ρ(x) and on the desired outcome
graph degree distribution exponent, denoted by γ in Caldarelli’s model. The
global variable xM from Caldarelli’s model will be replaced in our model by bn.

We summarize the mathematical model below:
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(I) The fitnesses X1, . . . , Xn are drawn from a truncated Pareto distribution,
with lower bound l = 1, upper bound bn → ∞ (it will depend on the desired
outcome) and density ρ(x) ∼ x−2, for x ∈ (l, bn).

(II) Every pair of nodes (u, v) will be linked with a probability given by
p(Xu, Xv), where we define

p(x1, x2) :=

(
x1x2

b2n

)η

, (1)

with η > 0 depending (again) on the desired outcome.

For appropriate choices of the upper-bound bn (see details below), performing
steps (I) and (II) will result in a power-law graph with index γ := 1 + (1/η),
satisfying (for large k ≤ n)

Vk :=
Number of nodes of degree k

n
≈ γ − 1

kγ
;

in other words, if a power-law degree-distribution with exponent γ > 1 is desired,
then one must choose η = (γ− 1)−1 in step (II), while the upper-bound bn must
be chosen according to the following rules:

(i) For γ ∈ (1, 2) we choose bn :=
[(

γ−1
2−γ

)
n
] γ−1

γ

, which gives an expected

degree

D ≈
(
γ − 1

2− γ

) 2
γ

n
2−γ
γ .

(ii) For γ = 2 we choose bn :=
√
(n/2) log(n) and obtain for the expected

degree

D ≈ log(n)

2
.
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(iii) For γ > 2 we choose bn :=
[(

γ−1
γ−2

)
n
] γ−1

2

which yields

D ≈ γ − 1

γ − 2
.

In the model described by steps (I) and (II), the probability that a node u,
having fitness x, will be linked with any other node v is given by

P (x) := E[p(Xu, Xv)|Xu = x] =
xη

b2ηn

∫ ∞

0

zηρ(z) dz. (2)

The expected degree of a node of fitness x is (n − 1)P (x). The (unconditional)
probability of having the edge (u, v) is πn := E[p(Xu, Xv)] = E[P (Xu)] and the
expected degree of a node isD := (n−1)πn. For the choices (i)–(iii), the expected
degree of a node of fitness x will be approximately xη, for large enough n.

At this point, it should be noted that power-law graphs with index γ > 1
(regardless of how they are generated) in which every two nodes are linked with
the same probability πn, enjoy the following property: If γ > 2 then the expected
degreeD must remain bounded as the number of nodes n grows arbitrarily large.
When γ = 2 the expected degree D may grow to infinity with the number of
nodes, but no faster than log(n). Finally, when γ ∈ (1, 2) the expected degree D
may again grow to infinity with the number of nodes, but no faster than n2−γ . To
justify the above claims, one may express the total expected number N of edges
in the graph in two ways: first, since any two nodes are linked with the same
probability πn, the expected number of edges E[N ] is given by n(n−1)πn/2. On
the other hand, N is half of the sum of all degrees in the graph, hence

D = (n− 1)πn =
2E[N ]

n
=

n−1∑
k=1

kE[Vk] ≤ c

n−1∑
k=1

1

kγ−1
, (3)

where Vk denotes the number of nodes of degree k and c > 0 is some finite
constant. Since the r.h.s. in (3) is bounded for γ > 2 and using the estimates

n−1∑
k=1

1

kγ−1
∼

{
n2−γ , γ ∈ (1, 2),

log(n), γ = 2,

hence our claims are justified. The conclusion is that the power-law structure of
a graph, in which every two nodes interact with the same probability, induces an
upper-bound on the magnitude of the expected degree of the nodes. Comparing
the expected degree estimates in (i)–(iii) with the maximal rates imposed by (3)
reveals that our method maximizes the expected degree when γ ≥ 2.

We also remark that the graph resulted at step (II) will have a certain frac-
tion of isolated nodes which increases with γ. More precisely, for γ close to 1
this fraction will be very small (close to 0), while for very large γ it will ap-
proach 1/e � 37%; when γ ∈ (2, 3) this fraction will stay between 14 − 22%.



Strategies for Powerlaw-Distributed P2P Overlays 79

The existence of these isolated nodes in our model is a consequence of the upper-
bound established by (3) since, in general, by Jensen’s Inequality it holds that

E[deg(v) = 0] ≈ E[exp(−(n− 1)P (X))] ≥ exp[−(n− 1)πn] = exp(−D),

so whenever the expected degree D is bounded (recall that this is necessarily the
case when γ > 2) the expected fraction of isolated nodes will be strictly positive.

Similarly to the experiments conducted on the Caldarelli model, we also per-
formed a set of extensive tests on our novel model. Results from the set of 100
experiments are collected in Figure 2. We remark that our model performs in a
more stable fashion with respect to the emerging degree distribution exponent.
We also notice that our model provides a better convergence with respect to the
size of the network.

Next, we analyzed how well our model controlled the emerging degree dis-
tribution exponent, γ, by performing the same set of averaging experiments as
in Caldarelli’s case. All results are collected in Figures 4a and 4b. Our model
outperforms Caldarelli’s model both in terms of control over the emerging degree
distribution exponent, γ, and in terms of the number of isolated nodes. Finally,
we notice that the theoretically proven discontinuity at γ = 2 is illustrated by
the experimental results.

In this section, we have presented and experimentally evaluated a novel method
for generating connected power-law graphs with any index γ > 1. In our pro-
posed model, we correct the issues in [4], by considering truncated (bounded)
fitness-values and use a deterministic bound bn instead of a random one. While
the lower bound (l = 1) is included in the model for technical purposes only,
the upper bound bn is crucial and plays the role of a tuning parameter which
allows one to obtain the desired power-law index γ as well as the correct be-
havior for the expected degree. In fact, the upper-bound bn is strongly related
to the number of edges in the graph by means of the vicinity function defined
in (1); namely, the larger the bn the smaller the number of edges in the graph.
In general, increasing the magnitude of bn will damage the power-law behav-
ior, while for γ > 2 decreasing bn will result in an asymptotically empty (still
power-law) graph. Therefore, the model is extremely sensitive to the choice of
the upper-bound bn when γ > 2.

4 Building Power-Law Overlays

4.1 Algorithm

Building power-law overlays in the real world is a nontrivial task. Following
the standard methodology, that is, applying the vicinity function on all possible
pairs of nodes to decide which edges to place is impractical: It assumes either
centralized membership management, or complete membership knowledge by
each node. Neither of these scales well with the size of the overlay.

Instead, we explicitly designed a solution in which nodes are not required to
traverse the whole network to determine their links. They form links by con-
sidering a small partial view of the network. The key point, however, in this
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Active Thread (on node p)

while true do
// wait T time units
S ← r random peers from Cyclon
foreach q in S do

v = VicinityFunc(fitness(p), fitness(q))
with prob v

Send (q, “INVITE”)

function TerminationCondition()

if degree ≥ expected degree then
return true

else
return false

Passive Thread (on node q)

while true do
Receive msg from p
if msg ==“INVITE” then

if not TerminationCondition()

then
Send(p, ”ACCEPT”)
AddLink(p)

else if msg ==“ACCEPT” then
AddLink(p)

if TerminationCondition() then
Cease(Active Thread)
Cease(Cyclon)

Fig. 6. The generic gossiping skeleton for building power-law overlays

approach is the termination condition, that is, a criterion that lets a node decide
when to stop looking for additional links.

Our method exploits the analytic findings of the previous section. In a nutshell,
each node periodically picks a few random other nodes, and feeds the two fitness
values into the vicinity function to determine whether to set up a link or not.
A node performs this repeatedly until it has satisfied its termination condition,
that is, it has established a number of links equal to its expected degree, as
computed by the respective formula.

In more detail, our protocol works as follows. Nodes run an instance of Cy-

clon [15], a peer sampling service that provides each node with a regularly
refreshed list of pointers to random other peers, in a fully decentralized manner
and at negligible bandwidth cost. Upon being handed a number of random other
peers, a node applies the vicinity function and decides if it wants to set up a link
with one or more of them. It sends an Invite message to the respective peers,
and awaits their responses. Upon receiving an Invite, a node checks if its degree
has already reached its expected degree value. If not, it sends back an Accept

message as a response to the invitation, and the two nodes establish a link with
each other on behalf of the power-law overlay.

When a node’s termination condition is met, that is, the number of established
links of that node has reached its expected degree, it refrains from further gossip-
ing. That is, it stops considering new neighbors to send Invite messages to, and
it responds to other nodes’ invitations by a Reject message. Notably, a node
also refrains from all Cyclon communication. This is particularly important
for letting the network converge fast. By ceasing its Cyclon communication, a
node is prompty and conveniently “forgotten” by the Cyclon overlay, letting
the latter be populated exclusively by nodes that are still in search of additional
links. Thus, Cyclon constitutes a good source of random other peers, as it picks
random nodes out of a pool of peers that are willing to form additional links.
Even in a network of hundreds of thousands of nodes, when a small number of
nodes are left searching for additional links,they quickly discover each other and
decide what links to establish.
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Fig. 7. Statistics collected for different γ values and different random views

Figure 6 shows the programming model of our protocol, without including
Cyclon. As most gossiping protocols, it is modelled by two threads. An active
thread, taking care of all periodic behavior and sending invitations, and a passive
thread receiving messages (invitations or responses to invitations) and reacting
accordingly.

4.2 Evaluation

We implemented our algorithm in PeerNet, a branch of the popular PeerSim
simulator written in Java.

We consider a network consisting of a fixed set of N nodes. We assume that
communication is reliable. Links are persistent and bidirectional (i.e., when x
establishes a link to y, y gets a message to establish a link to x). A node’s active
thread operates in a periodic manner, and all nodes’ periods are the same, yet
they are triggered completely asynchronously with respect to each other.
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Fig. 8. Statistics collected for different γ values and different random views

The behavior of the protocol depends on three main parameters. First, the
target γ; second, the number of nodes in the network; and third, the random
view size, that is, the number of random links a node is handed by Cyclon in
each round.

Figures 7 and 8 show the results of our experiments for 10,000 and 100,000
nodes, respectively. The first row in each figure (i.e., Figure 7(a-c) and Fig-
ure 8(a-c)) shows the observed γ of the emerged overlay, as a function of the
number of rounds elapsed since the beginning of the experiment, for three sam-
ple values of γ, namely, 1.4, 1.8, and 2.6. The four different lines in each plot
correspond to four different random view sizes. In the case of 10K nodes, all
four lines converge equally fast to the (approximate) target γ. For the larger
network of 100K nodes, checking out more random nodes per round provides
some advantage with respect to convergence time.

Note that each graph shows a different target value of γ and the corresponding
approximate value. Our formula for a node’s expected degree is derived from
the mathematical model presented in Section 3.2. However, it is based on the
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assumption of a large enough number of nodes and therefore we evaluate the error
introduced by this approximation. We construct the histogram of all expected
degrees (i.e., the expected degree distribution) and we use it to compute an
approximate γ. In each Figure 7a–7c and 8a–8c we compare the target γ, the
approximate γ and the γ values of the self-emerging overlays.

The second row of the figures (i.e, Figure 7(d-f) and Figure 8(d-f)) shows the
percentage of nodes that have not yet established as many links as their expected
degree mandates, and are, therefore, still gossiping in search of new connections.
We see that, particularly for the 10K network, the most of the nodes meet their
termination criterion within the first few hundred rounds, which means they do
not spend any network resources thereafter.

Our formula for a node’s expected degree is derived from the mathematical
model presented in Section 3.2. However, it is based on the assumption of a large
enough number of nodes and therefore we evaluate the error introduced by this
approximation. We construct the histogram of all expected degrees, which corre-
sponds to the expected degree distribution and use it to compute an approximate
γ. In each Figure 7a–7c and 8a–8c we compare the target γ, the approximate γ
and the γ values of the self-emerging overlays.

Most importantly, though, the graphs of the second row show that the vast
majority of the nodes reach their exact expected degree, contributing to the
excellent γ approximation observed in the first row graphs.

Finally, the third row graphs (i.e, Figure 7(g-i) and Figure 8(g-i)) show the
number of nodes not contained in the largest cluster. For low values of γ the
largest cluster is massive, containing virtually the whole set of nodes. This is
expected, as nodes tend to have high degrees. For higher values of γ, though,
which experience long tails of nodes with very low degrees, we see that the
resulting overlay is split in many disconnected components. This does not mean
that nodes are isolated at an individual level (as confirmed by the graphs of the
second rows), but that nodes are connected according to their expected degrees
in smaller components. Making sure of connecting all these components in a
single connected overlay is the subject of future work.

5 Conclusions

Self-emerging power-law networks are an important area of research. However,
algorithms that generate such topologies in a controlled manner are still scarce.

In this work, we investigated existing approaches to sequential power-law
graphs generation and selected a model that allowed for straightforward de-
centralization. We then experimentally identified limitations with the selected
model which have been supported by our theoretical findings. We presented a
novel model, built on a thorough mathematical support, that addressed the lim-
itations found with previous models. Under the same experimental settings, our
results show that our proposed model significantly outperforms the initial one
in different convergence aspects.

Next, we implemented a prototype self-emerging power-law network based on
our model and gossiping protocols. We show that the theoretical and
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sequential implementations of the novel model are closely followed in perfor-
mance by the decentralized prototype. Furthermore, the theoretical bounds are
observed throughout an extensive set of experiments. Such a result encourages
us to consider the theoretical model already robust with respect to implemen-
tation approximations and to continue our research efforts having this model
as a foundation. One interesting future research question, identified by our de-
centralized prototype evaluation, is how to alleviate the the problem of (many)
disconnected components.
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Abstract. In MANET applications, a common pattern is to maintain
and query time-varying collections of remote objects. Traditional ap-
proaches require programmers to manually track the connectivity state
of these remote objects and adding or removing them from local col-
lections on a per-object basis. Queries over these collections have to be
manually recomputed whenever the collection or its elements change.

The code for maintaining these ad-hoc collections is scattered across
the application code and leads to bugs hindering the application devel-
opment process. In this paper, we propose an object-oriented abstraction
called ambient clouds: a collection of objects whose contents are implic-
itly updated when changes occur. Ambient clouds can be queried and
composed using reactive standard query operators. We show how ambi-
ent clouds ease the development of a collaborative peer-to-peer drawing
application.

Keywords: collection, mobile ad hoc network, peer-to-peer application,
language abstraction.

1 Introduction

The steep increase in popularity of mobile devices has yielded a market for appli-
cations running on mobile ad hoc networks (MANETs). MANET applications
assume no fixed infrastructure and spontaneously engage in interaction when
the devices they run on are in communication range. These applications com-
municate over wireless networks, for example Wi-Fi Direct or Bluetooth. Using
mainstream programming languages such applications are usually conceived as
distributed object-oriented applications, coordinating their actions by exchang-
ing objects.

In MANETs, the number of devices participating in an interaction is not
known a priori, but it varies as devices join and leave the network as they move
about. Typically, applications are interested in communicating only with a spe-
cific group of those remote objects which are discovered at runtime. For example,
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in a chat application, users can join or leave a chat room at any moment in time.
In order to reflect the communication state of the users in the chat room and
to allow communication with them, the programmer has to manually maintain
a collection of remote objects. In MANETs, the nature of the connection to the
devices hosting these objects is volatile. Such a collection of remote objects is
continuously fluctuating because of the volatile nature of the connections to the
devices hosting these objects.

At the software level, we can identify two ad hoc ways commonly used to
implement such collections. A first approach when using a distributed object-
oriented programming language is to discover and store the remote objects in
a local collection. Once discovered, the programmer must manually iterate over
the collection’s content and communicate with the stored remote objects by
means of remote method invocations or asynchronous message passing. It is the
programmer’s responsibility to make sure that these objects are still connected
by making use of try-catch blocks or other failure handling mechanisms.

A second strategy is to employ an event-based distributed model such as a
publish/subscribe architecture. In this case, the collections become groups of ob-
jects classified under a topic and potentially filtered on their content using pred-
icates [1]. However, publish/subscribe middlewares abstract the network connec-
tivity between the publisher and subscriber. This obliges programmers to bypass
the middleware periodically to detect whether the publishers are still connected
and verify that their published objects are still “alive” (i.e., in case of a crash).
Additionally, the events signalled by the publish/subscribe middleware must still
be manually converted to additions and removals on local collections. This hinders
straightforward and efficient querying and composition of such collections.

None of both solutions provides adequate means to create, maintain and query
collections of remote objects. This leads the programmer to write boilerplate
code that is scattered throughout the actual application code. In this paper,
we propose ambient clouds : a reactive asynchronous collection abstraction to
maintain and query collections of remote objects in MANET applications. Ad-
ditionally, ambient clouds provide reactive standard query operators. Querying
or composing ambient clouds using these operators constructs a chain of depen-
dent result collections. The operators observe the collections they were applied
to. Changes in either the composition of the constituent elements are implicitly
and incrementally reflected throughout the chain of dependent result collections.

In the remainder of this paper, we show the problems that led us to ex-
plore ambient clouds (section 2), how ambient clouds tackle these problems
at a high level, and how programmers can use ambient clouds to quickly de-
velop mobile applications (section 3). We explain how ambient clouds are imple-
mented (section 4) and how they are used in the collaborative drawing
application, called weScribble (section 5). Subsequently, we discuss related work
(section 6) and, finally, conclude this paper and suggest how we intend to
improve ambient clouds in the future (section 7).
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2 Problem Statement

In what follows, we detail the issues that can be identified when developing appli-
cations that deal with collections of remote objects. We illustrate the problems
using a chat application as a running example.

The chat application presents the user with the option to create a chatroom
or join an existing one. When the user enters a chatroom, he or she is presented
with a list of users that joined this room and are currently in communication
range. The application also shows the messages that belong to the chatroom and
users can choose to ignore messages from certain other users.

P1. Volatile Collections. MANET applications discover other applications
and services running in the environment to interact with them. The applications
typically maintain a collection of “currently available” objects in which the ap-
plication is interested. Since devices hosting MANET applications can appear
and disappear at any moment in time, we regard these collections of remote
objects as highly volatile. Therefore, specifying the contents of the collection
extensionally (i.e., on a per-element basis) is problematic as the contents of the
collections can change at any point in time. With current techniques, the pro-
grammer is left to manually synchronise the contents of these volatile collections
of remote objects.

To interact with these collections, the programmer typically uses constructs
such as indices and iterators. These constructs do not map well to volatile col-
lections of remote objects because the collection changes underneath them. For
example, the chat application maintains a list of currently co-located users. As
users move about, the composition of this list changes dynamically.

P2. Querying and Composing Collections. A natural operation on collec-
tions of objects is to apply operators to compose them with other collections or
query them. For example, the chat application applies a filter operation on the
list of users to display only those that reside in the chosen chatroom.

Querying and composing volatile collections is not an atomic action: collec-
tions can grow or shrink several times while a composition or query is being
computed. Furthermore, when employing asynchronous method invocation to
communicate with remote objects, the results of a query over the elements of a
collection may not be available instantaneously.

As the composition of a collection evolves, the initial result of applying an
operator diverges from the current state. This means that programmers have to
write additional code to ensure results from applying operators remain synchro-
nised with the collection they were applied to. It also implies that compositions
of collections resulting from queries over such volatile collections are themselves
volatile. This requirement is a serious deviation from the traditional notion of
querying collections, where the result of a query does not bear any relationship
to the target collection.
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P3. Propagating State Changes. When employing a distributed object-
oriented model objects are either exchanged “by copy” or “by reference”. This
results in a collection of respectively local copies of the objects published by a re-
mote device, or remote references to these objects. In the former case, whenever
the owner changes an object, the changes should be propagated to all the copies
spread across the network. In the latter case, whenever an object is changed, col-
lections containing a reference to this object should be notified of this change.
For example, when a user changes his nickname in the chat application, this
should be reflected in the buddy list on the applications of other users.

This propagation of state changes can be accomplished through, for example,
a publish/subscribe framework. However, changes made to an object can result
in it being removed from or added to the result of a certain operation on the
collection. In the chat application, a user that decides to move to another chat
room changes the “current chat room” property. This change causes some collec-
tions to remove this user object from the old chat room, while other collections
add the user to the new chat room. Thus, collections containing remote objects
should have a means to subscribe to changes on properties of their constituent
objects.

3 Ambient Clouds

In this section, we introduce a novel abstraction representing collections of
remote objects named ambient clouds. Ambient clouds are an object-oriented
abstraction that tackles the issues outlined above by combining event-driven
interaction, based on a publish/subscribe model, and reactive programming.

We solve problem P1 by allowing developers to specify an ambient cloud of
a certain type of objects they want to interact with. The type of the objects
acts as an initial filter in order to collect objects of interest. An event-driven
API signals events whenever an object is added to or removed from the ambient
cloud. To address problem P2 we provide reactive standard query operators to
query and compose ambient clouds. Any computation performed using such an
operator is re-executed as the collection changes. The operators automatically
handle asynchronous operations. This does not require breaking the abstraction
of the collections by looking at their contents at a certain moment in time. To
tackle P3 we model object pass-by-copy and pass-by-reference semantics using
reactive objects and reactive isolates. These are object-oriented reactive values
of which the state changes over time. These changes are observed and the event-
driven API signals state modification events to the collections in which they are
contained.

3.1 AmbientClouds at Work

We have prototyped ambient clouds in the distributed programming language
AmbientTalk [2]. AmbientTalk is an experimental programming language tai-
lored towards developing peer-to-peer applications that operate in MANETs.
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We now describe the language constructs provided to create and interact with
ambient clouds in the context of the chat application.

Ambient clouds coarsely collect objects related to the application using a type
tag. Type tags are a lightweight classification mechanism to categorise remote
objects explicitly by means of a nominal type. They can best be compared to a
topic in publish/subscribe terminology or marker interfaces in Java. Below we
create the ambient cloud of all co-located users using the cloudOf: construct
and passing it the ChatUser type tag as argument.

deftype ChatUser;
def users := cloudOf: ChatUser

We define an object representing a user of the chat application by means of
the object: construct. A user has an identifier, a nickname and an attribute
containing the name of the selected chatroom. To publish this object in the
network as a ChatUser we use the export:as: construct of AmbientTalk.

def me := object: {
def id := 123;
def nickname := "Kevin";
def currentChatroom := "purple" };

export: me as: ChatUser

Ambient clouds continuously synchronise their composition as devices move in
and out of range. Users that leave communication range are automatically re-
moved from the collection, users that appear in range are added automatically.

Note that users are represented as regular objects, they are published in the
network by reference. The ambient cloud of users thus contains remote objects
references that can be contacted by sending it asynchronous messages. Later we
will show an example of an ambient cloud of remote objects passed by copy.

We further refine the ambient cloud of users using the reactive standard query
operators we provide for ambient clouds:

def usersInRoom := users.where: { |user|
equals(user←currentChatroom(), me.currentChatroom) };

def nicknames := usersInRoom.select: { |user| user←nickname() }

In this example we first filter the ambient cloud of users, selecting only users that
reside in the same chatroom. To this end we use the where: method that takes
a predicate as argument. After the filter operation we select the nicknames of
the users using the select: operator, for example to display them in the GUI.

In both query operations, we send an asynchronous message to the remote
user object (expressed by the ← operator in AmbientTalk). An asynchronous
message send immediately returns a future, which is a placeholder for the actual
return value of the message. In the above example the equals function waits
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for the result of the message1 to be available before computing the equality and
in turn immediately returns a future. The where: and select: operators will
automatically wait for futures to resolve with their values and process the results
of asynchronous operations as they become available. If an element was removed
before an asynchronous operation on that element was completed, the operation
is cancelled and the result ignored.

The collections that result from applying operators to an ambient cloud trans-
parently maintain a dependency relation to that ambient cloud. Any time the
composition of the ambient cloud is changed or any time one of its constituents
is changed, the operation incrementally updates the result collection. The re-
sult collection is never totally recomputed, rather dependent elements are either
added to the result collection, removed from it or updated. Figure 1 shows the
dependency chain that corresponds to the above code snippet.

users

usersInRoom

nicknames
Kevin

Elisa

where: {…}

select: {…}

Kevin
Elisa

Kevin
Elisa

Kevin
Elisa Wolf

T0 T1 T2 T3
time

Fig. 1. Dependency tree of the ambient clouds in the chat application

Figure 1 shows the progression of events when the users ambient cloud
changes. First, in step T1, a new user is discovered and added to the users

ambient cloud. In step T2, the filter operation that generated the usersInRoom
ambient cloud is then applied to this user object. Since the user has also joined
the “purple” chatroom, the user is added to the resulting collection. In step T3,
the dependent nicknames ambient cloud is extended with the nickname of the
user by applying the select operator to the added user object.

Aside from addition, two more events cause the operators to update their
results. Figure 2 depicts the progression of events when a user is removed from
the users ambient cloud in step T4 to T6. The user and nickname are subse-
quently removed from the dependent result collections. Starting from step T7 a
user switches from the “purple” to the “orange” chatroom. The filter operation
is reapplied and causes the user and nickname to be automatically removed from
the resulting collections.

1 By annotating the message send with Due(t), a timeout t (in milliseconds) can be
specified for the resulting future.
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where: {…}

select: {…}

time

Fig. 2. Removing a user from the ambient cloud and changing the chatroom attribute
of a user

3.2 Reactive Standard Query Operators

Our ambient clouds support over 20 operators, including the operators defined
by the Standard Query Operation (SQO) [3] API of the Language Integrated
Query (LINQ) framework for .NET [4].

The reactive standard query operators are defined as methods on ambient
clouds. We also provide a language extension that provides syntactic sugar for
writing queries and turns them into first-class language constructs. In the exam-
ple below we illustrate how to group chat messages with their authors.

1 deftype ChatMessage;
2 def messages := cloudOf: ChatMessage
3 groupBy: { |msg| msg.userId }
4 join: usersInRoom
5 on: { |msg, user|
6 equals(msg.userId, user←id()) }

In the example above we define the ambient cloud of chat messages starting from
line 2. In line 3 we group the ambient cloud based on a userId attribute using
the groupBy: operator. This results in an ambient cloud of groups of messages
identified by the userId. These groups of messages are again ambient clouds
which in turn can be queried. Starting from line 4 we associate users with a
group of messages using the join:on: operator. The join is performed based on
matching the user’s identifier with the identifier attribute in the message. This
can be used to ignore the messages of a certain user in the chatroom.

4 Implementation

As mentioned before, ambient clouds are implemented in AmbientTalk and avail-
able to the programmer as a library. Ambient clouds are built on top of the Java
Collections Framework2 and combineAmbientTalk’s service discoverymechanism

2 AmbientTalk is entirely implemented in Java and runs on top of the JVM. Java classes
and objects can be accessed from within AmbientTalk and vice versa [5].
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(based on IP multicasting) with reactive sets containing reactive values. Note that
AmbientTalk is an actor-based language. Execution (e.g., updating ambient
clouds) within an actor is sequential and actors communicate by sending asyn-
chronous messages that are processed in sequence by the receiving actor.

4.1 Reactive Asynchronous Collections

The implementation of ambient clouds is based on an reactive asynchronous col-
lection framework that employs local Java collections. Reactive asynchronous col-
lections are conceived as the combination of observable collections with reactive
asynchronous operators. Our model consists out of the following collection types:

– set: no ordering, no duplicates (similar to Java HashSet)
– list: ordering, duplicates allowed (similar to Java ArrayList)
– sorted set: sorting, no duplicates (similar to Java TreeSet)

The programmer uses an event-driven API to install event handlers in order to
observe a collection. These event handlers are executed when elements are either
added or removed from the collection.

1 def s := ObservableSet.new();
2 whenever: s extended: { |el| system.println("added " + el) };
3 whenever: s reduced: { |el| system.println("removed " + el) }

This example creates a new reactive set and registers two event handlers that
write a message to the standard output every time an element is added (line 2)
or removed (line 3) from the collection.

Additionally, the collections can be observed for changes to their constituents.
When a reactive value is added to a collection, the collection installs an event
handler to observe the state of the value. When the state of the reactive value
changes, the collection in turn notifies its own observers. The example below
shows an event handler that writes a message to the standard output whenever
the state of a constituent reactive value changes.

whenever: s changed: { |el| system.println("changed " + el) }

Ambient clouds are created by connecting the AmbientTalk discovery protocol
to reactive sets. Below we show the skeleton code to manually construct the
ambient cloud of users in the chat application.

1 def users := ReactiveSet.new();
2 whenever: ChatUser discovered: { |user|
3 users.add(user);
4 whenever: user disconnected: { users.remove(user) };
5 whenever: user changed: { users.notifyChangeObservers(user) }}
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In line 1 we first create an empty reactive set. In line 2 we install an event handler
to discover objects of type ChatUser, using the built-in whenever:discovered:

construct of AmbientTalk. When an object of this type is discovered, it is added
to the set in line 3. Two more event handlers are installed in lines 4 and 5. The
first event handler is installed using AmbientTalk’s built-in when:disconnected:
construct and removes the element from the set when a disconnection occurs.
The last event handler is executed when the state of the user object is altered
and notifies the set of this change.

4.2 Reactive Objects and Isolates

In the implementation of ambient clouds we modelled objects as reactive values.
A reactive value (also behavior) is a value that changes over time [6]. We regard
objects as composite values of which the state can be altered over time using
field assignment.

Programmers can publish objects in the network either by reference or by
copy, as reactive objects or as reactive isolates. Reactive objects are transferred
by reference, remote peers obtain an observable remote object reference. An ob-
servable remote object reference consists of a proxy object and a reference to
the remote object. Reactive collections can install observers on the proxy object
which are notified when the state of the object is modified locally. This causes
operations applied on the object to be recomputed. Reactive isolates are special
objects that have no surrounding lexical scope (i.e., similar to structs, but they
can have methods defined on them). This way, they can be easily copied over the
network and cached in the ambient clouds of remote peers. The underlying im-
plementation locally observes the state of an isolate and implicitly synchronises
state across the copies on different devices. Note that race conditions are pre-
vented by the actor system of AmbientTalk, as explained in section 4. Of course,
the programmer should bear in mind that the remote peer may be disconnected
and that the copy is temporary out of sync. Any time the state is synchronised,
the observers registered by reactive collections are notified.

In subsection 3.1 we showed an example of a user represented by a regular
object. The example below shows the creation of a chat message represented by
an isolate.

def aMessage := isolate: {
def text := "Hello!"
def userId := 123 }

Reactive objects and isolates are key in the design of ambient clouds since
changes to their state triggers re-computation of dependent results.

4.3 Reactive Standard Query Operators

The reactive standard query operators rely heavily on the observable features
of the collections to incrementally update their results. They update their re-
sults based on three kinds of events: the insertion and removal of elements in
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a collection and state changes in the elements. When an operator is applied to
a collection, the necessary observers are installed and the operator is applied
on all elements already contained in the collection. For example, consider the
implementation of the where: operator below.

1 def where: predicate {
2 def result := self.new(); // self refers to the current object
3 self.each: { |e|
4 if: (predicate(e)) then: { result.add(e) } };
5 whenever: self extended: { |e|
6 if: (predicate(e)) then: { result.add(e) } };
7 whenever: self reduced: { |e| result.remove(e) };
8 whenever: self changed: { |e|
9 if: (!predicate(e)) then: { result.remove(e) } };

10 result.parent := self;
11 result };

The operator takes a predicate as argument. In line 2 we create a new collection
that contains the results of applying the operator. In lines 3 and 4 we first apply
the predicate to all elements already contained in the collection and add them
if that application succeeds. In lines 5 and 6 we install a handler that applies
the predicate to elements added to the collection and add them to the result
collection if necessary. In line 7 we install a handler that removes elements from
the result as they are removed from the collection. The handler in lines 8 and 9
reapplies the predicate to an element if its state was changed, possibly removing
the element from the result if applying the predicate no longer succeeds.

This code clearly shows that the automatic updates of the result are incremen-
tal. The execution of the event handlers in lines 5, 7 and 8 concern the addition,
removal or update of a single element in the result. In line 10 we register the
parent of the result to be the collection over which we applied the operator. In
line 11 we finally return the resulting collection.

Note that this code was was simplified for demonstration purposes. It does
not deal with the possibility that an asynchronous operation is performed in the
predicate application.

5 The weScribble Application

In this section, we validate ambient clouds in the implementation of a collabo-
rative drawing application for the Android platform, called weScribble3. The
application allows users to dynamically participate in drawing sessions with
other people co-located. Aside from mobile Android devices and wireless ad hoc
connections between these devices, no other infrastructure is assumed.

At startup, weScribble presents the user with a list of drawing sessions avail-
able in the environment with an indication of the amount of people drawing
in each session. The user can either join a session or choose to create a new

3 WeScribble is available from Google Play at http://bit.ly/eOxpLg.

http://bit.ly/eOxpLg
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one. A drawing session consists of a number of participants and a shared canvas
on which they can draw. When a user joins a drawing session, the application
synchronises the canvas with the existing participants to fetch the shapes that
were already drawn and displays them on the screen. The user can then draw on
the canvas of that session and the changes to the canvas are propagated to the
other participants of the session whose canvas is updated accordingly. If a user
temporarily disconnects from the network, he or she can keep drawing. Upon
reconnection, those changes are synchronised with the other users in the session.

Fig. 3. The weScribble Android application

5.1 Ambient Clouds in weScribble

In this section, we illustrate the use of ambient clouds in the implementation of
weScribble. weScribble uses ambient clouds for two different purposes: A drawing
session consists of an ambient cloud that contains the shapes drawn by users.
The users themselves are also contained in an ambient cloud.

First we collect the users that participate in our drawing session and extract
their user names:

deftype Painter;
def painters := cloudOf: Painter

where: {|p| equals(p←session, currentSession)};
names := painters.select: { |p| p←name }

We display the names of all discovered users in the GUI. Using the event-driven
API we install two event handlers to show and hide names as they are added to
or removed from the ambient cloud.

names.each: { |n| GUI.showInList(n) };
whenever: names extended: { |n| GUI.showInList(n) };
whenever: names reduced: { |n| GUI.removeFromList(n) }
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Users can choose to ignore shapes from other users by enabling a toggle in the
GUI. We continue by defining an observable set containing the users that we
choose to ignore.

def ignoredPainters := ObservableSet.new();
def ignore(painter) { ignoredPainters.add(painter) }

We now obtain the ambient cloud of shapes (represented by isolates) to display
by joining the ambient cloud of all shapes with the difference of the ambient
cloud of users and the users to ignore.

deftype Shapes;
def shapes := cloudOf: Shapes

join: (painters.except: ignoredPainters)
on: { |shape, painter| s.painterId == p.id }

Note here that adding users to the ignoredPainters set causes its shapes to
disappear from the shapes ambient cloud. Finally we draw the relevant shapes
and install event handlers to draw and hide shapes as the ambient cloud is
updated.

shapes.each: { |s| GUI.draw(s) };
whenever: shapes extended: { |s| GUI.drawShape(s) };
whenever: shapes reduced: { |s| GUI.removeShape(s) };
whenever: shapes changed: { |s| GUI.redrawShape(s) };

5.2 Discussion

In the implementation of weScribble ambient clouds tackle the issues outlined
in section 2 as follows.

– P1: Ambient clouds automatically maintain collections of co-located users
and the shapes they created. The programmer is relieved from manually
synchronising the contents of these collections with the network situation.

– P2: We used reactive standard query operators over ambient clouds to filter
users based on the drawing session. We also associate users with their shapes,
filtering out shapes of users we wish to ignore without having to manually
update these results when users appear or disappear.

– P3: When users change the colour of their shapes, these changes are auto-
matically propagated to the applications of other users by means of reactive
isolates. If users change their nickname this is automatically reflected in the
user lists of the other users using reactive objects.

6 Related Work

The problems around group abstractions for mobile applications is well estab-
lished. However, most of the research focuses on group communication which is
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not the focus of this work. In this section, we discuss related work that focuses on
organising remote objects in intermittently connected peer-to-peer applications.

Distributed Asynchronous Collections (DACs) [7] were originally devised as
a way to marry publish/subscribe systems to traditional collection frameworks.
They allow developers to subscribe to additions and removals that occur in
the collections. However, DACs offer no support for tracking the connectivity
of publishers that publish objects, so the programmer still has to track this
manually.

Tuple spaces [8] allow distributed parties to publish tuples to a conceptually
shared memory. LIME [9] even allows distinct tuple spaces to merge if users are
close to each other and allows programmers to define reactions on the appearance
or disappearance of tuples. Tuple spaces do not support the direct modification
of tuples: tuples have to be removed first and new versions reinserted later.
This requires application developers to write additional code to watch these
remove/insert event pairs individually. Additionally, there is no support for cre-
ating a data structure from a tuple space, which forces programmers to update
the derived collections manually.

Ambient references [10] allow discovering and communicating with homoge-
nous groups of references to objects in the environment that change over time.
This abstraction takes care of monitoring any disconnections and reconnections
in the environment and even allows developers to take a snapshot of the current
state. Ambient references do not allow programmers to react on objects, joining,
leaving or being modified in the group. Additionally, they can not be composed,
nor queried.

M2MI [11] introduces handles that denote a dynamic group of remote Java
objects of the same interface and omnihandles that refer to all proximate objects
of a certain interface. However, is not possible to react to state changes in the
objects referred to by an omnihandle, nor is there support for querying.

Microsoft’s Reactive Extensions for .NET [12] allows processing events by
modelling them as streams of values on which standard query operators are
defined. The difference with our work is that we define these standard query
operators on object-oriented collections instead of event streams.

Reactive programming [6] is a paradigm that represents a program as a data
flow graph based on the notion of time-varying values, which form nodes in the
graph. If an operation is applied to a time-varying value, the operation is inserted
as a node in the graph with a dependency edge to the time-varying value. When
a time-varying value changes, dependent computations are automatically re-
executed by propagating the change through the graph. We discuss the relation
between reactive programming and our work in section 7.

7 Conclusion and Future Work

In this paper, we introduced ambient clouds: an object-oriented abstraction that
automatically maintains collections of remote objects. These ambient clouds
support reactive standard query operators that implicitly update their results
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as changes in the underlying ambient clouds occur. Together they relieve the
programmer from re-implementing the common patterns when dealing with
(1) volatile collections of remote objects, (2) querying and composing these
collections and (3) propagating state changes to derived collections.

We have implemented a MANET application called weScribble using ambient
clouds to illustrate how ambient clouds circumvent these problems in a fully
functional collaborative drawing application.

As possible avenues for future work, we wish to further extend our reactive
collection framework with other collection types such as a hash map or tree
structures. Additionally, unlike our model, in reactive programming languages,
there are no special reactive operations. Every operation that depends on a
reactive value is implicitly lifted to the reactive level. Currently, on our reactive
asynchronous collections, special query operators are used to process changes.We
are integrating our collections into a reactive programming language to reduce
manual lifting.
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Abstract. An increasing number of networked applications, like video
conference and video-on-demand, benefit from knowledge about Internet
path measures like available bandwidth. Server selection and placement
of infrastructure nodes based on accurate information about network
conditions help to improve the quality-of-service of these systems. Ac-
quiring this knowledge usually requires fully-meshed ad-hoc measure-
ments. These, however, introduce a large overhead and a possible delay
in communication establishment. Thus, prediction-based approaches like
Sequoia have been proposed, which treat path properties as a semimet-
ric and embed them onto trees, leveraging labelling schemes to predict
distances between hosts not measured before. In this paper, we identify
asymmetry as a cause of serious distortion in these systems causing in-
accurate prediction. We study the impact of asymmetric network condi-
tions on the accuracy of existing tree-embedding approaches, and present
direction-aware embedding, a novel scheme that separates upstream from
downstream properties of hosts and significantly improves the prediction
accuracy for highly asymmetric datasets. This is achieved by embedding
nodes for each direction separately and constraining the distance cal-
culation to inversely labelled nodes. We evaluate the effectiveness and
trade-offs of our approach using synthetic as well as real-world datasets.

Keywords: Asymmetric bandwidth prediction, tree embedding.

1 Introduction

The performance of distributed multimedia applications largely depends on path
properties like latency, packet-loss and bandwidth. A priori knowledge of these
helps to improve the user-perceived quality of service by the adaption of appli-
cation-specific variation points, like video resolution and codec, or modifying the
communication structure by placing infrastructure nodes at beneficial locations
in the network.

A näıve approach for acquiring path-property knowledge is to perform ad-hoc
measurements. However, this has several disadvantages. First, it creates a huge
overhead, as the required measurements grow quadratically with the node count.
Second, it introduces delay as measurements cannot be performed in parallel,
but have to be performed sequentially to avoid interferences.
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Therefore, multiple prediction-based approaches have been proposed
[1,4,5,8,10,16,18,21,25] which reduce the amount of required measurements by
embedding hosts into a metric space and predicting unknown inter-host path
properties using a distance function on the host’s coordinates. Although pre-
dicting latency has been well studied in the literature, fewer approaches exist
which are able to predict path bandwidth [8,10,16].1 Tree metric spaces also have
been proposed as targets for embedding network path metrics [1,21,25].

Most of these approaches require a symmetric distribution of the metric un-
der consideration. However, this assumption is often violated [11,19], the most
obvious example being the last-mile link of an endhost, often implemented with
access technologies like ADSL2 and DOCSIS3 (Cable). Consequently, matrix fac-
torization has been proposed to cope with asymmetry but needs clustering of
nodes to reduce the rank of the distance matrices. The model proposed by Beau-
mont et al. [2] is also able to cope with asymmetry, but assumes the access link
to determine the bottleneck bandwidth of each path. Xing et al. [27] propose
embedding bandwidth in a set of ultrametric spaces, but their system is based
on landmarks, and thus, not fully decentralizable.

To further motivate the need to cope with path asymmetry consider a peer
assisted streaming system [14]. These systems try to minimize server load by
selecting “close-by” peers as streaming sources. Figure 1a depicts a session be-
tween a server s and two clients c1 and c2 (active sources are rendered bold).
Consider a scenario where c1 has a highly asymmetric access link of 50 Mbit/s
downstream and 2.5 Mbit/s upstream, common values for cable Internet, and
c2 has a symmetric though lower bandwidth link of 16 Mbit/s in each direction.
We further assume for simplicity, that there is no bottleneck on the path be-
tween s and the clients. A new client c3 joining this session has three choices s,
c1 and c2 as its streaming source. Assuming s is already highly loaded, joining
clients are forced to select other sources for streaming. In a system leveraging
a symmetric bandwidth prediction component the choice will be node c1 as
this system averages up- and downstream in its prediction (cf. Figure 1b black
arrows). However, c2 obviously would be a better choice. Moreover, assuming
the stream consumes bandwidth greater than 2.5 Mbit/s, selecting c2 would
lead to unacceptable performance of the streaming system. An asymmetry-
aware streaming system would be able to select a peer based on its upstream
bandwidth and in the presented case, select c2 as its stream source (cf. Fig-
ure 1c).

In this paper we extensively study the impact of asymmetry on existing pre-
diction approaches and present a technique, direction-aware embedding (DAE),
effectively mitigating the negative effects of asymmetry on the prediction ac-
curacy. By separating the upstream and downstream path characteristics and

1 Note that this dicussion is independent of the type of bandwidth under consideration:
capacity or available bandwidth.

2 ITU-T G.992.5.
3 ITU-T J.222.
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Fig. 1. Peer Selection Alternatives c1 and c2 in a Peer-assisted Streaming Scenario

embedding direction-labelled nodes onto prediction trees, we are able to signifi-
cantly improve the prediction performance of previously presented tree-embed-
ding schemes.

The rest of this paper is organized as follows. First, we present existing tree-
embedding schemes in Section 2. Next, we present our approach in Section 3,
which tackles this problem by applying our direction-aware embedding scheme.
In Section 4 we evaluate the negative impact asymmetry has on the prediction
accuracy of previous systems and the effectiveness of our novel approach. Finally,
we discuss related work in Section 5 and conclude in the last section.

2 Background

Before we can present our contribution we first discuss the basic concepts of tree
metrics, distance labeling and how both are applied in the two existing systems
Sequoia [21] and its improved version by Song et al. [25].

In the scope of this paper, a host refers to a computer or Internet host, while
a node denotes the respective entry on a tree. We also differentiate estimation
and prediction. While we use the term estimation for sophisticated measure-
ment techniques like pathChirp [22], the term prediction refers to reading tree
distances off an existing prediction tree without further measurements.

2.1 Tree Metrics and Bandwidth

Following Ramasubramanian et al. [21] we understand a set of pairwise band-
width measurements M as a tree metric, if there exists a tree T representing the
measurements as distances between tree nodes with non-negative edge-weights
such that M ⊆ T and dM (a, b) = dT (a, b) for all a, b ∈ M . While dM (a, b) repre-
sents the measured bandwidth from host a to b, dT (a, b) denotes the predicted
bandwidth and accordingly the distance between the nodes on the tree.

In analogy to the triangle inequality, a necessary condition for a metric to
be embeddable on a tree is the four-points condition (4PC): d(w, y) + d(x, z) =
d(w, z) + d(x, y) for the distances between four nodes w, x, y, z ordered by



102 S. Schober et al.

renaming such that d(w, x) + d(y, z) ≤ d(w, y) + d(x, z) ≤ d(w, z)+ d(x, y). Said
in words, the two greater sums of distances between the nodes have to be equal,
to embed them on a tree without distortion.

The key observation the authors of Sequoia make is that distance matrices as
perceived in the Internet display a certain treeness. More formally, they satisfy
a relaxed form of the 4PC, the so called ε-four-points condition (ε-4PC) for
relatively small ε-values:

d(w, z) + d(x, y) ≤ d(w, y) + d(x, z) + 2ε ·min{d(w, x), d(y, z)} (1)

Here, ε ∈ [0, 1] characterizes how close a given metric is to a tree-metric (ε = 0
is absolute treeness). Ramasubramanian et al. depict that bandwidth measure-
ments on PlanetLab [3] show a high degree of treeness, with 80% of ε-values
being less than 0.2.

The basic assumption of previous embedding approaches is that the source
metric is at least a semimetric, i.e. it is assumed to be symmetric. However, in
real-world network topologies this assumption is often violated [19,11]. Follow-
ing Xing et al. [27], we define an asymmetry coefficient ζab, which denotes the
bandwidth asymmetry between two nodes a and b as follows:

ζab =
|(d(a, b)− d(b, a)|
d(a, b) + d(b, a)

(2)

2.2 Sequoia

Ramasubramanian et al. present Sequoia [21], a system which is able to predict
latency and bandwidth between its participants. It reduces the total number
of measurements by embedding hosts on an edge-weighted tree, called predic-
tion tree. Then, distances between arbitrary hosts can be read off that tree, by
summing up the weight of the shortest path between them.

As bandwidth is not an additive but a concave metric,4 a transformation has
to be applied to the measured values. This is done for Sequoia in a linear fashion
by subtracting the measured values from a large constant.

The prediction tree is constructed using an embedding procedure that selects
two nodes (anchor and lever) from the existing tree by maximizing the so called
Gromov product individually for each joining host. Concrete, the Gromov prod-
uct (b|c)a allows the calculation of the intersection points of the incircle with the
edges of a triangle Δabc:

(b|c)a =
1

2
(d(b, a) + d(c, a)− d(b, c)) (3)

In the context of prediction trees, b depicts the anchor, a the lever or “base
node” and c the host to be embedded. Note, that the distances involving c have

4 Path-bandwidth is defined by the weakest link of a path, while path-latency is the
sum of individual link latency.
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to be measured, whereas d(b, a) can be read off the tree. Once anchor and base
have been found, a virtual node tc is inserted along the path pba at distance
(b|c)a from the base node. Figure 2a displays a sample prediction tree after four
node insertions.

A special distance-labelling scheme [20] for the nodes of a prediction tree
allows the encoding of distances between any two hosts of an edge-weighted tree
inside their respective labels. This enables the computation of distances between
two hosts without knowledge of the complete prediction tree. In the context of
this work, we follow the labelling scheme used by Song et al., where labels consist
of a list of 3-tuples representing the anchor hierarchy and the distances between
the nodes:

lv = (a0, d(a0, tv), d(tv , v)), ... (4)

Following this scheme we get the following distance labels for the nodes in the
example tree depicted in Figure 2a: la = (a, 0, 0), lb = (a, 0, 41)(b, 0, 0), lc =
(a, 0, 41)(b, 3, 4)(c, 0, 0) and ld = (a, 0, 41)(b, 16, 13)(d, 0, 0). Node c for example
is embedded on the tree using b as its anchor and its virtual node being at offset
3 on the path from b to a. Then, c is connected to its virtual node at distance 4.

The first node of a tree can easily be identified by a label consisting of only
one 3-tuple. For the other nodes the last tuple represents the node itself (with
offset and distance = 0 because there is no distance to itself) while the other
tuples represent distances to its anchor, its anchor’s anchor and so forth. Given
their labels, the tree distance between two hosts can be calculated easily [24].
Basically, considering dT (c, d) we get: 16− 3 + 4 + 13 = 30 for example.

In order to reduce the amount of conducted measurements the authors in-
troduce an abstraction called anchor tree, wherein they capture the anchor re-
lationships of joining nodes (which are also manifested in the distance labels).
Figure 2b shows the anchor tree corresponding to the presented prediction tree.
Since anchor trees must contain distance labels, an anchor tree can be trans-
formed to a prediction tree and vice versa. Instead of searching the complete
prediction tree for a node maximizing the Gromov product, the anchor search
is guided by the anchor tree starting with the lever. A greedy search algorithm
stops once no more progress can be made. Note, that this can result in a sub-
optimal anchor selection, as only a subset of anchor candidates is considered
depending on the algorithm’s chosen path through the anchor tree.

The embedding order of hosts influences the overall distortion er, defined as
the mean value of the relative prediction error for each path on the tree. The
relative prediction error itself is defined as follows:

ep =
|dT (a, b)− dM (a, b)|

dM (a, b)
(5)

The problem of prediction accuracy being influenced by the order of embedding
the hosts has been addressed by the authors of Sequoia by constructing multi-
ple prediction trees in parallel using different insertion orders. This way, when
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Fig. 2. Sample Instances of Core Sequoia Concepts

predicting distances they are able to remove outliers by choosing the median of
distances predicted by the constructed trees.

2.3 Optimizations

Song et al. [25] improve on Sequoia basically in two ways: First, they decen-
tralize the tree construction algorithm. To achieve this, they discard the idea
of using multiple trees and use the structure of a single anchor tree to form an
overlay network between the participating nodes. Afterwards, decentralization
of the embedding algorithm is done by allowing the use of a random base node
and starting the anchor search at the chosen base node. Second, they improve
tolerance for datasets with less than perfect treeness which is true for most
real-world datasets. To this end they modify the anchor selection algorithm to
minimize the overall prediction error instead of maximizing the Gromov prod-
uct, extend the search space on the anchor tree and modify the transformation
to a rational function to avoid negative values when prediction values exceed
the transformation constant. Furthermore, Song et al. propose an anchor search
optimization which optimizes the chosen base and anchor by another pass of
error minimization based on measurements that have already been taken.

3 Direction-Aware Embedding (DAE)

Obviously, Sequoia and Song’s approach both are not designed to cope with
asymmetric links. As these are a common phenomenon in the Internet,
we identified them as a challenge for prediction accuracy. In order to cope with
asymmetry, the key idea of our approach is to reflect the varying bandwidth
properties of an asymmetric host by embedding it twice on the prediction tree.
Once for its upstream and once for the downstream properties (cf. Figure 3). Dis-
tance computation then is only performed and valid between inversely directed
representative nodes of two hosts.
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Algorithm 1. DAE Embedding Procedure

Input: j: joiner, d: direction
Output: lj : distance-label of joiner
1: b ← random node with direction −d
2: a ← null, emin ← ∞, vbase ← b
3: while a �= vbase do
4: C ← getCandidates(vbase, d)
5: for all c ← C do
6: la−tmp ← position(j, c, b)
7: ep ← relativeError(la−tmp)
8: if ep < emin then
9: emin ← ep, a ← c
10: end if
11: end for
12: vbase ← a
13: end while
14: return la−tmp

Algorithm 2. DAE Positioning

Input: j: joiner, a: anchor, b: base
Output: lj : new distance-label
1: δo ← dT (a, b)− (a|j)b
2: δd ← d(j, b)− (a|j)b
3: return appendLabel(a, δo, δd)

a−d

b−d

tcd

cd

Fig. 3. Embedding Visualization

In order to embed a node on a DAE prediction tree, we modified the tree
construction algorithm by first assigning a direction-label d ∈ {↑, ↓} to the host
name. The embedding procedure itself then is executed twice in a similar way
as Sequoia for upstream and downstream properties individually. However, in
contrast to the existing approaches, the chosen base node and the anchor both
have to be of inverse direction −d to the joining node (cf. Figure 3 and Algo-
rithm 1). Hence, a single host is represented by two nodes on the tree making
use of a total of four different reference nodes (an anchor and a base node for
each direction). For the upstream base and anchor, the corresponding upstream
bandwidth starting from the joiner is measured and used as a distance for the
embedding algorithm. The same is done for the opposite direction using the
appropriate downstream measurements from the base and anchor to the joiner.
This may result in the two nodes of a single host residing in totally different
sections of the tree.

Our embedding procedure is depicted in Algorithm 1. Here, j denotes a join-
ing node, a an anchor candidate, b the base node and d a direction-label. We
choose a base node randomly and select an anchor using the anchor tree. Due to
the inverse direction constraint, the anchor tree is a bipartite graph consisting
of alternating up- and downstream nodes. Consequently, inappropriate nodes
(wrong direction) have to be skipped during the anchor search. This is done by
getCandidates (Line 4) which only selects valid nodes of the two-hop neigh-
borhood5 of the given vbase-node which is the starting point for each anchor
search iteration. Following Song’s approach, we choose a node minimizing the

5 Two hops are needed because of the alternating directions on the anchor tree.
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relative prediction error ep (Lines 5-11), as defined in Equation 5. When no an-
chor can be found for a given base node because of non-available measurements,
we choose another base node as a fallback. We also use the optimization pro-
cedure based on already measured links as proposed by Song et al. Note that
nodes of the anchor tree might also have multiple children alike Song’s approach.

a
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(a) Join b↑

a

tb↓

b↑

5
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4

5

(b) Join b↓
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b↓

c↑

(d) Anchor Tree

Fig. 4. DAE Example Tree Construction

Positioning of hosts on the tree is done similar to Sequoia (c.f. Algorithm
2). The Gromov product is used to calculate the position of a node with re-
spect to its anchor. The distances needed for this calculation are measured
(dM (j, b), dM (j, a)) and read off the tree (dT (a, b)).

6 Then, the according off-
set δo and distance δd values are calculated and the node is embedded on the
tree. This is done by copying the distance label of the anchor and altering it,
appending a new 3-tuple containing offset and distance with respect to the an-
chor. A step-wise sample prediction tree construction using our DAE approach is
depicted in Figure 4 with the corresponding anchor tree presented in Figure 4d.

Special care has to be taken when embedding the first node, as it is represented
only by a single node. Since it bears no direction-label, it can act as a base node
for both up- and downstream representative nodes. Also the second node, which
will be one direction-labelled representative of the second host, has to be treated
specially. This is due to the fact that there is no node in the tree, which could
act as anchor, as the first cannot be base and anchor at the same time. Thus,
the weight of the edge to the first node simply represents the measured distance
in the corresponding direction (c.f. Figure 4a). Afterwards, the third node (the
second representative of the second host) is embedded on the edge between the
two existing nodes at the measured distance (c.f. Figure 4b). For the second host
one can decide whether to embed its upstream or its downstream node first. We
embed the node with the longer distance to the first node before the other one,
as this avoids negative distances δd.

6 Note that we also use the rational transformation introduced by Song et al. in order
to transform bandwidth measurements.
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In order to predict the path bandwidth from host a to b in our scheme, we
first assign the implied direction-labels, a↑ and b↓ and then calculate the tree
distance. Note that the tree distance between two nodes of the same direction
(e.g. d(a↑, b↑)) is meaningless as is the distance between the two representatives
of a single host (e.g. d(a↑, a↓)).

4 Evaluation

In the following, the benefit and properties of DAE especially in presence of
asymmetric links are shown and evaluated. First, we describe our methodology,
topologies and algorithm configuration. Then, we proceed to quantify the im-
provement of prediction accuracy achievable by DAE. We used two different
topologies described below. We embed these using the three embedding ap-
proaches Sequoia, its enhancement by Song et al. (denoted as “Song” in the
figures) and our DAE algorithm. Since there were no publicly available imple-
mentations of Sequoia and Song’s approach, we implemented them based on the
respective papers [21,25]7.

4.1 Methodology

When a dataset has been embedded, we calculate the relative embedding error
for the complete prediction tree as the average value of individual link prediction
errors. In this evaluation, the relative prediction error ep of the path between
two nodes a and b is calculated according to Equation 5. Note that the error
calculation is also direction-aware.

It is also vital to define how the amount of executed measurements is counted
for this evaluation. Since Sequoia and Song’s approach both take the average
value of the bidirectional measurements a → b and b → a between the hosts a
and b, we count two measurements for each measured link. For DAE it is possible
to make use of a measurement only for one direction of a link. Hence, counting
both link directions individually is also appropriate for DAE.

4.2 Topologies

PlanetLab Topology: In order to compare our approach against the two exist-
ing tree-based approaches (Sequoia and Song’s approach) we created this topol-
ogy based on a measurement dataset between about 385 PlanetLab hosts. The
snapshot8 we used contained about 130,000 measurements acquired by the band-
width estimation tools PathRate [6], PathChirp [22] and Spruce [26].

7 Our implementations are available at http://www.uni-ulm.de/en/in/vs/proj/ic2
8 Acquired 2010-08-28 at 4:57:51PT using S3; http://networking.hpl.hp.com/s-cube

http://www.uni-ulm.de/en/in/vs/proj/ic2
http://networking.hpl.hp.com/s-cube
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Synthetic Topology: We investigate the impact of asymmetry on the pre-
diction accuracy of Sequoia, Song and DAE using a synthetic dataset, which
allows the definition of a particular asymmetry ratio rζ . It is generated by cre-
ating a certain amount of hosts, defined by two parameters: “upstream” and
“downstream”. The downstream value for a node is set randomly, while the cor-
responding upstream value is calculated based on the downstream bandwidth as
rζ · bw↓ for an asymmetry factor rζ ∈ (0, 1). The synthetic scenario is based on
the assumption that link bandwidth only depends on the last mile of a particular
path. Thus, the bandwidth between two hosts is given by the minimum value of
the upstream of the sender and the downstream of the receiver of a transmission
as bw(a, b) = min (a↑, b↓). Note, that as a consequence of our derivation scheme
of a distance matrix from our model, we need to contaminate our synthetic
topology with hosts of high and symmetric bandwidth, too.9 Otherwise, high
downstream bandwidth would not be noticeable since no upstream bandwidth
is high enough. We call this “pseudo-symmetry.”

4.3 Prediction Tree Algorithms

Recall, that Sequoia constructs multiple (k) trees to mitigate distortion due to
insertion order.10 Furthermore, when embedding the dataset using Sequoia, the
bandwidth between two nodes is defined as the average value of the bidirectional
measurements. In case a measurement is only available for one direction of a link
we assume the other direction to be equal. Following the authors of Sequoia, we
set the Gromov product to negative infinity if one of the measurements is still
not available.

In our evaluation of Song, we only use a single tree as proposed in the corre-
sponding paper to generate our error analysis. Furthermore, symmetrisation of
measurements is also done for Song’s approach.

When embedding the dataset using DAE, bidirectional measurements are not
averaged and, in contrast to the other approaches, missing measurements for only
one direction are not replaced by the other direction but implicitly tolerated by
our algorithm by using another anchor. Our algorithm also might make use of a
unidirectional measurement value although the other direction is missing.

4.4 Accuracy of Prediction

Figure 5a depicts the cumulative distribution of ζ-values in the PlanetLab topol-
ogy. It is obvious that while roughly one third of hosts feature largely symmetric
link conditions (small values on the x-axis), the other two thirds exhibit high
values of asymmetry. Such a strong asymmetry on PlanetLab is surprising, as we
expected hosts from research institutions to have good and symmetric connec-
tions. Asymmetry might be partially explained by varying points in time when
the measurements were performed. Nevertheless, we conclude that asymmetry
will be even stronger in settings comprising private Internet access links.

9 We doted our topology with 33% high-bandwith, symmetric hosts.
10 We set k = 15, as this provides 15% higher accuracy than k = 10.
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Fig. 6. Synthetic Dataset

When we feed this dataset to Sequoia and compare the predicted to the mea-
sured bandwidth, instead of the bidirectionally averaged values, we get the dis-
tribution depicted in Figure 5b. We see a heavy tail of huge prediction errors for
ep > 1. These would render the system practically unusable for peer selection
purposes as motivated in the introduction.

As the PlanetLab dataset only represents a single mean ζpl-value, we studied
the prediction performance with respect to varying ζ-values ∈ [0, 1] using our
synthetic topology. Figure 6a shows that increasing asymmetry has a severely
negative impact on Sequoia’s prediction performance. The advantage of DAE is
proportional to the ratio and amount of asymmetry present in the dataset. There
is no big advantage over Sequoia and Song for symmetric network conditions. In
the presence of asymmetry, DAE explicitly takes this into account and allows a
more accurate prediction.

In Figure 6a the error for various ζ-values is shown for each of the three tree al-
gorithms. As can be seen, DAE significantly improves the accuracy of bandwidth
prediction compared to Sequoia and Song. Song performs worse than Sequoia
in this scenario, as it only constructs a single tree. We explain the increasing
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accuracy of Sequoia and Song’s approach in Figure 6a for ζ-values above 0.7 by
the measurement phenomenon pseudo-symmetry described in Chapter 4.2.

Considering the amount of measurements needed to construct the prediction
trees, we found that Sequoia performed 84% of all n(n − 1) possible measure-
ments for PlanetLab,11 Song 13% and DAE 44%. We argue that DAE strikes a
reasonable balance between accuracy and measurement traffic.

5 Related Work

Prediction of Internet path properties has been extensively studied. Especially
the prediction of latency has been the focus of much attention in the past. Ng
et al. [18] were the first to implement the idea of embedding inter-host latencies
in an Euclidian space by assigning a coordinate to them, forming the research
field of network coordinate systems. Their system is based on central landmark
nodes to which common nodes measure their latency and use trilateration to
locate themselves in the coordinate space. This approach has been decentral-
ized in the widely known Vivaldi system [4], where Dabek et al. use a system
of interconnected springs to model the location process of each node. Vivaldi’s
performance has been further improved by Elser at al. [7]. Common to these
approaches is that the accuracy is highly susceptible to triangle inequality viola-
tions (TIVs). To tackle this problem embeddings into hyperbolic spaces [23] have
been proposed. Furthermore, there is a line of research, which takes occurrences
of TIVs as a hint for optimization potential, leveraging detour routing [15,9].

Embedding latencies is straightforward as this is an additive metric. Band-
width on the other hand is a concave metric, and thus, does not lend itself
for easy embedding in Euclidean spaces, as was shown by the authors of Se-
quoia [21]. Thus, systems have been devised to address this problem [8,10,16].
As bandwidth prediction under asymmetric bandwidth distributions is an even
more challenging problem, Xing et al. [27] propose PathGuru, which embeds
distance matrices in several ultra-metric spaces formed by pre-deployed land-
marks. Maintaining incoming and outgoing bandwidth vectors, this system can
predict asymmetric bandwidth distributions. However, the need for pre-deployed
landmarks is a clear disadvantage.

There is a line of research based on matrix factorization, which was proposed
to tackle the problem of triangle inequality violations. Mao et al. present the
IDES system [17], a landmark-based approach which assigns each host an incom-
ing and an outgoing vector. The distance between two hosts then is calculated
by the scalar product of these vectors. The approach has later been decentral-
ized by Liao et al. [13,12]. The core assumption common to these systems is
that the distance matrix is of low rank and can be represented as the product of
smaller matrices. In our problem domain, small rank corresponds to clustering of

11 The relatively high amount of measurements results from using k = 15, as we get
only about 25% of measurements when we use k = 1. Furthermore, as described in
Section 4.1 we count measurements for both directions of a link individually.
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nodes as nodes in a cluster will yield highly similar rows in the distance matrix.
Though, tree-based approaches do not require such clustering.

Beaumont et al. study the “last-mile” model [2] first proposed by Liu et al. [14]
and assume that perceived path bandwidth between hosts is solely determined
by their access links. The authors consider scenarios where this is not the case
as outliers, and cut them off using a percentile. Thus, they reduce potentially
diverse path properties to single values for up- and downstream, which fails to
capture situations where multiple hosts share a common bottleneck. In contrast,
DAE allows bottlenecks to reside anywhere in the network.

6 Conclusion

In this paper, we presented direction-aware embedding (DAE), our approach for
bandwidth prediction which is capable to cope with highly asymmetric band-
width distributions. To the best of our knowledge, our approach is the only one
simultaneously being fully decentralizable, independent of clustering and not
assuming the bottleneck to reside on the last link. Opposed to existing tree-
embedding approaches our scheme is able to maintain high prediction accuracy
faced with asymmetric bandwidth distributions.
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Abstract. Load testing has always been a crucial and expensive activ-
ity for software companies. Classical solutions are a real burden to setup
statically and their cost are prohibitive in terms of human and hardware
resources. Cloud computing brings new opportunities to stress applica-
tion scalability as load testing solutions can be provided on demand by
the cloud. This paper describes a Benchmark-as-a-Service solution that
scales automatically the load injection platform and eases its setup ac-
cording to load profiles. Our approach is based on: (i) the virtualization of
the Benchmarking platform to enable the injector’s self-scalability, (ii)
an online calibration mechanism to characterize injector capacity and
impact on the benched application, (iii) a provisioning solution to scale
the load injection platform sufficiently ahead of time. We also report ex-
periments on a benchmark that shows the benefits in terms of cost and
resources savings.

Keywords: Benchmarking as a service, Cloud.

1 Introduction

Load testing has always been a very crucial and expensive activity for Inter-
net companies. Traditionally, it leverages a load injection platform capable of
generating traffic according to load profiles to stress an application, a system
under test or SUT for short, to its limits. Such solutions are a real burden to
setup statically and their costs are prohibitive in terms of human and hardware
resources.

Cloud computing brings new opportunities and challenges to test applications’
scalability since it provides the capacity to deliver IT resources and services
automatically on a per-demand, self-service (APIs) basis over the network. One
characteristic is its high degree of automation for provisioning and on-demand
management of IT resources (computation, storage and network resources) and
services. IT resources can be provisioned in a matter of minutes rather than days
or weeks.

Opportunities lay in the fact that load testing solution can be provided on
demand as a service on the cloud. Such Benchmark-as-a-Service (BaaS) solution
enables quite a number of benefits in terms of cost and resources. The cost of
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c© IFIP International Federation for Information Processing 2013



114 A. Tchana et al.

hardware, software and tools is charged on usage basis. The platform setup for
the tests is also greatly simplified so that the testers can focus on their load
injection campaign.

The challenge of Performance as a Service is to provide test teams with on-
demand computing and networking resources, able to generate traffic on a SUT.
Such test campaigns typically require more than a single load injection machine,
to generate sufficient traffic (see Fig. 1). The issue is that the number of neces-
sary load injection machines is not known in advance. It depends on the amount
of resources consumed for generating and managing the requests and their re-
sponses, as well as on the target’s global workload. The tester must empirically
cope with these two risks:

– overloading the load injectors, causing scenarios not to behave as specified,
and measures to be biased;

– wasting unnecessary resources.

For these reasons, we need a self-scalable load injection software making it pos-
sible to automatically adjust the number of load injection machines.

The contribution of this paper precisely addresses this challenge:We describe a
BaaS solution (Section 3) which scales automatically the load injection platform.
Besides the re-engineering of a load injection (Section 2) tool to enable self-
scalability, the main concerns are (i) the injector’s online calibration, (ii) the
computation, based on from the load profile and the injector characterization,
of the right amount of VMs and (iii) the control of their provisioning sufficiently
ahead of time (Section 4 details these concerns). We also report experiments
on the RUBiS [4] benchmark that shows the benefits in terms of self-scalability,
including the cost reduction for long hours campaign (Section 5).

Section 6 and 7 present respectively the related work and the conclusion of
this paper.

2 The CLIF Load Injection Framework

This work has been achieved in the context of the CLIF load injection framework
which is a versatile load testing, open source software [2]. It is generic and
extensible, in terms of target SUT protocols as well as resources to monitor. A
workload scenario combines the definition of one or several virtual user (vUsers)
behaviors, with the specification of the number of active vUsers as a function
of time, called the load profile. A behavior is basically a sequence of requests
interlaced with think times (i.e. periods of pause), enriched with conditional and
loop statements, as well as probabilistic branches. These behaviors make use
of plug-ins to support a variety of features, mainly injection protocols (HTTP,
FTP, SIP. . . ) and external data provisioning for request parameters variability.

As described in details in [1], CLIF’s architecture is based on the Fractal
component model [3], which easies its adaptation. Load injector and probe com-
ponents are distributed through the network. The formers are responsible for
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Fig. 1. The big picture of a load testing infrastructure

generating the workload and measuring response times, while the latter mea-
sure the usage of given resources: CPU, memory, network adapter or equipment,
database, middleware, etc.

Load injectors and probes are bound to a central control and monitoring
component, namely the Supervisor, and a central Storage component that will
collect all measures once a test execution is complete (Fig. 1). They are deployed
on local or remote hosts. All these components are contained in the top-level,
distributed Clif Application (ClifApp) composite component. The component
based developement of CLIF facilitates its adaptation. We present in the nexts
sections the implementation a scalable load testing framework based on CLIF.

3 BaaS Overview

This section describes the main components and design principles of our self-
scalable Benchmarking-as-a-Service Platform (BaaSP) based on CLIF. The main
purpose of the BaaSP is to minimize the cost of achieving the test in a cloud
environment. This cost mainly depends on the number of virtual machines (VMs)
used and their up time throughout the test. Since each CLIF injector is running
on a separate VM, BaaSP proposes a testing protocol which attempts to reduce
both the number of VMs used and their execution time. This protocol relies on
dynamic addition/removal of CLIF injectors according to the variation of the
submitted load profile. Roughly, instead of statically using an over sized number
of VM injectors, the BaaSP dynamically adds or removes injectors during the
test as needed by the workload. Besides, the BaaSP attempts to use an injector
up to its maximum capacity before adding another one. Let us now present the
self-scaling protocol we implement in the BaaSP:

1. Initial VMs allocation and systems deployment in the cloud: The first step
is the deployment and the configuration of the CLIF benchmarking system,
possibly including the system we want to test (the SUT). This latter is
optional since the SUT can be deployed and configured a long time before
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the BaaSP, with another deployment system. This phase includes the VMs
allocation in the cloud. Note that the cloud platfom which runs the BaaSP
can be different from the one, if any, running the SUT.

2. Calibration and planning. The calibration phase aims at knowing the max-
imum capacity of an injector VM. This knowledge will then allow to plan
when to add/remove injectors during the test.

3. Test execution and injectors provisioning. The actual test starts with a min-
imal number of injectors. The execution of these latter (request injection)
should follow the submitted load profile. The BaaSP adds/removes injector
VMs according to the planning done in the previous stage.

4. Systems undeployment and VM deallocation. This phase is opposite to the
first one. At the end of the test, the BaaSP automatically undeploys and
frees all the VMs it has instantiated in the cloud.

Figure 2 presents the BaaSP architecture. It is organized as follows. A VM
(called BaaSPCore) is responsible of orchestrating the test: initialization of each
test phase (deployment, calibration, test launching and undeployment). The Cal-
ibrator component is responsible for evaluating the capacity of an injector, while
the Planner plans when to add/remove injectors VM during benchmarking.

Fig. 2. Self-Scaling BaaS Architecture

4 Self-scaling Protocol

4.1 Calibrating with CLIF Selfbench

This phase aims at evaluating the load injection capacity of an injector VM, in
terms of greatest number of clients it is able to emulate (vUsers).

In order to evaluate the capacity of an injector, the Calibrator uses a CLIF
extension module called Selfbench [5]. Selfbench results from research work on
automating performance modelling of black boxes. Part of this work consists in
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a self-driven workload ramp-up, looking for the maximum number of vUsers a
SUT can serve until its resources are considered as insufficient.

Since Selfbench makes no assumption about the SUT capacity, it starts with
a single vUser. From the response times and throughput the load injector gets,
Selfbench computes the SUT’s theoretical maximum capacity, with minimal as-
sumptions in terms of parallel processing capability (single-threaded). Then,
Selfbench increases the number of vUsers step-by-step, until reaching either the
theoretical maximum capacity, or the SUT saturation limit. The number of steps
is defined as a parameter. If the SUT is saturated, then the maximum number
of vUsers it can serve has been reached. Otherwise, Selfbench makes a more op-
timistic assumption about the SUT’s capacity, with a greater parallel processing
capability, and runs a new step-by-step workload increase. The determination
of steps duration combines theoretical results on queuing modeling and statis-
tical considerations about the number of samples and their stability. The SUT
saturation is defined as maximum or minimum thresholds on a number of load
metrics, such as CPU usage, free memory or any other resource usage that a
CLIF probe may monitor.

For the work we are presenting here, we use Selfbench in a slightly different way.
The injector VM calibration is not based on detecting the SUT saturation but on
detecting the injector VM saturation. Thus, the CLIF probes must be deployed at
the injector VMs rather at the SUT side (even though it should be checked that
the SUT is not saturating). At the end of its execution, Selfbench gives the number
of vUsers reached before injector VM saturation (which represents the capacity of
an injector).

4.2 Planning

Assuming that all injector VMs in the BaaSP have the same quantity of re-
sources, then all injectors will have the same capacity (called InjMaxCapacity
in the rest of this paper) as evaluated by the Calibrator. Based on this assump-
tion and the time required to deploy injector VMs, the Planner is then able to
plan injectors provisioning ahead of time for the given load profile. Let TTSVM
be the deployment time function, which gives for a given number of VMs, the
deployment time needed to start them in the cloud. This function is given by
the operator of the BaaSP platform and depends on the cloud infrastructure
utilized (In our case, we profiled our private cloud to configure this parameter as
reported Section 4.3). The load profile (W) can be expressed as a discrete func-
tion of number of vUsers over the time: vUsers = W(t), means that the load
profile requires “vUsers” to emulated the required workload at time t. Thus, the
planning process can be expressed as a function: f(W,InjMaxCapacity,TTSVM).
The Planner parses the load profile (W) and produces the provisioning rate
(taking into account the deployment time TTSVM), according to the capac-
ity of an injector VM (InjMaxCapacity). Thus, we are able to start injectors
just ahead of time. In fact, instead of adding an injector at time t, the Plan-
ner will fire at time t - TTSVM. The planning algorithm returns a hash table
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VMAt (key,value) where each “key” represents a time when the Planner should
add/remove injectors.

Let VMAt[t1] = InjAtt1 and VMAt[t2] = InjAtt2, with t2 be the next key in
VMAt following t1. If InjAtt1 < InjAtt2, the Planner will add InjAtt2 - InjAtt1
injectors at time t2. Else, the Planner will remove InjAtt1 - InjAtt2 injectors.
The algorithm we propose groups at a unique time, all injectors that will start
in the same time frame. The time frame is defined as follows.

Another role of the Planner is to prepare the load profile which will be exe-
cuted by added injectors during the benchmark. Alg. 1 is the algorithm used by
the Planner to generate these load profiles. If Inj Max represents the max-
imum number of injectors that can be simultaneously used during the test,
the Planner generates Inj Max of load profiles: Wi, 1 ≤ i ≤ InjMax. The pur-
pose of Alg. 1 is to generate all Wi. Then, when an injector “i” is added, it
is configured to use a corresponding Wi. How a load profile is assigned to an
injector is given by the algorithm. During the test, injectors which are run-
ning are ordered from 1 to currentNbInj, where currentNbInj is the current
number of injectors. Thus, each injector i, 1 ≤ i ≤ CurrentNbInj, runs the
load profile Wi. When the Planner wants to add nbAdd of injectors, it sorts
them from currentNbInj + 1 to currentNbInj + nbAdd. Each new injector j,
CurrentNbInj + 1 ≤ j ≤ CurrentNbInj + nbAdd, will run the load profileWj .

Finally, the Planner is implemented as a control loop. If “Timers” represents
the set of keys (which are dates) of the hash table VMAT, then the Planner wakes
up at each element in “Timers” and adjusts the number of injectors. The first
entry of VMAt (VMAt[0]) represents the initial number of injectors, deployed
before the beginning of the benchmarking process.

4.3 Injector Dynamic Provisioning

Injector Addition Protocol. The Planner initiates the addition of new injec-
tors. Fig. 3 (1) summarizes the protocol we implement:

(a) The Planner asks the Deployer to create a number of new injector VM re-
quired at a given time in the existing environment. This request contains the
load profile that the injectors will run.

(b) The Deployer asks the IaaS to start each new required VM in parallel.

(c) Each new VM is equipped with a deployment agent which informs the De-
ployer that it is up.

(d) The Deployer sends to each new injector its configuration, including the load
profile it will run.

(e) Each new injector registers its configuration by contacting the ClifApp.

(f) ClifApp integrates the new injector configuration in its injector list and for-
wards this configuration to its inner component (supervisor...). After this,
the ClifApp requests the added injectors to start their load injection accord-
ing to the profile.
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Algorithm 1. Injectors Workloads Planning

In
- VMAt[e]: Provisioning hash table
- W[t]: The benchmark workload

Out
- Wi[t]: Generated workloads, similar to W[t]

Begin

1: ForEach key e of VMAt do
2: If (e is the last key of VMAt)
3: exit
4: End If
5: next e := next key of VMAt after e
6: For i from e to next e do
7: For j from 1 to VMAt[e] do
8: Wj [i] := W[i]/VMAt[e]
9: End For
10: End For
11: End For

End

Injector Removal Protocol. Like with the previous protocol, the Planner ini-
tiates the removal of injectors. The removal protocol we implement is presented
in Fig. 3(2):

(a) The Planner asks the Deployer to stop the execution of a number of injector
VMs.

(b) The Deployer asks the ClifApp to unregister the injectors from the ClifApp
injector list. The ClifApp forwards this reconfiguration to its inner compo-
nents (supervisor...) and requests the corresponding injectors to stop their
load injection.

(e) Once the injector has been unregistered from the ClifApp, the Deployer is
notified by the ClifApp that the corresponding VMs are no longer taken into
account.

(f) Finally, the Deployer asks the IaaS to turn off the VM hosting the injector.

After the calibration and the planning phases, there are two ways to go on
with the test. If the SUT needs to be stabilized before being in a usable state,
then the calibration phase is considered as the stabilizer phase. Thus, the real
test will go on immediately after calibration. Otherwise, the SUT is restarted
before launching the test. In both cases, the Planner adapts the initial number
of injectors according to the load profile and the injector VM capacity. The next
section is dedicated to the evaluation of this protocol.
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Fig. 3. (1) Example of adding an injector (initiated by the Planner); (2) Example of
removing an injector (initiated by the injector itself)

5 Evaluation

5.1 Evaluation Context

The System under Test. The SUT is provided by RUBiS [4] (1.4.3 applica-
tion version), a JEE benchmark based on servlets. RUBiS implements an auc-
tion web site modeled over eBay. It defines interactions such as registering new
users, browsing, buying or selling items. For this evaluation, we submitted only
browsing requests to the RUBiS application. We deploy the RUBiS open source
middleware solution composed of: one Apache (2.2.14) web server (with Mod JK
2 to connect to the application server), a Jakarta Tomcat (6.0.20) for servlets
container (with AJP 13 as the connector), and a MySQL server (5.1.36) to host
auction items (about 48 000 of items).

Cloud Environment. Our experiments were carried out using the Grid’5000
[10] experimental testbed (the French national grid). Grid’5000 is organized in
“sites” (a site represents a city), which in turn are organized in clusters. For
our experiments, we configure two Grid’5000’s clusters (Chicon at Lille, north of
France; and Pastel at Toulouse, south of France) to provide separately the SUT
cloud and the Injector Cloud (as shown in the BaaSP architecture in Figure 2).
The two clusters run OpenStack [9] in order to provide virtualized cloud. The
virtualization system is KVM version 2.0.0. We start each RUBiS VMs with 1GB
of memory while injectors and the others BaaSP VMs used 256MB of memory.
Each VM is pinned to one processor. They run the same operating system as the
nodes which host them, which is Linux Ubuntu 10.04 distribution with a 2.6.30
kernel, over a gigabit connection. In this environment, we have calibrated the
deployment time TTSVM. This time has an asymptotic behavior. For example,
the deployment time of 1 VM until 10 VMs is the same (100s) while it grows up
from 11VMs to 20VMs (with a difference of 75s). For readability, we use in this
section TTSVM instead of TTSVM[i] for 1 < i < 10.
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5.2 Evaluation Scenarios and Metrics

Workload Scenarios. Two workload scenarios have been experimented. These
two workload scenarios summarize two situations corresponding to the worst case
and a better case for our BaaSP system. Theoretically, each workload is designed
to run in 1200 seconds.

The first workload scenario (Figure 4) represents a “simple” test work-
load Ws(t). This workload is composed of two phases: a ramp-up phase

(Ws(nt)=nWs(t)) followed by a ramp-down phase (Ws(nt)=
Ws(t)

n ), forming to-
gether a pyramidal workload. It needs addition/removal of single injector.

The second workload scenario (Figure 5) is more complex. It is composed of
several kind of phases: gentler upward load, constant load, steep ramp-up load,
steep ramp-down load, and gentle ramp-down load. This kind of workload
scenario shows how the BaaSP becomes more beneficial. In fact, un-
like the first workload scenario, this second workload scenario needs
sometime the addition/removal of more than one injector at once.

The ultimate goal of our BaaSP is to minimize the cost of benchmarking an
application in a cloud environment. Naturally, the main metric used in the eval-
uation is the cost of the test. We compare the cost of the test in two situations:
static injectors deployment (called Policy0) vs self-scaling injectors provisioning
through our BaaSP. This second case was evaluated according to the following
policies:

– Policy1: injectors are dynamically added/removed without “just ahead time”
provisioning.

– Policy2: injectors are dynamically added/removed using a “just ahead time”
provisioning strategy.

The cost of running the test in the cloud depends on both the duration of the
test and the number of VM used during the test. In this three situations, the
duration of the test includes: SUT and BaaSP startup, and the real test per-
forming time. Calibrating time and injector addition/removal time are included
when evaluating Policy1 and Policy2.

5.3 Evaluation Results

The evaluation results we describe in this section are classified in two categories:
quantitative and qualitative. Quantitative evaluation depicts the actual results
we obtained regarding SUT and cloud test bed environment behaviors’ during
the test. Besides, we analyze the behavior of each provisioning policy during the
test. Regarding qualitative evaluation, it concerns the formalization of observa-
tions coming from the quantitative evaluation. Before describing these results,
let us present the variables on which the qualitative evaluation is based:

Let Costtu be the cost of running a VM (as described earlier) in the cloud,
during a time unit TU. Let TTS be the time to start both the SUT and BaaSP
VM. Let TTT be the theoretical time to run the benchmark workload (20 min-
utes in our case). Let nbVMRubis be the number of VM used to run RUBiS.
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Let nbVMBaaSP be the number of VM used to run BaaSP components. Let
nbInj be the maximum number of injectors used during the test (5 in our case).
The cost of running the test in the cloud without dynamic provisioning (Policy0),
noted Cost0, is given by the following formula:

Cost0 = [nbInj∗TTT+(nbVMRubis+nbVMBaaSP )∗(TTT+TTS)]∗Costtu

Workload Scenario 1. We compare the cost of Policy0 to the two others
policies: Policy1 (injectors addition is done without a “just ahead of time” pro-
visioning), and Policy2 (injectors addition is done in a “just ahead of time”
provisioning).

Figure 4(1) presents actual results of the execution of this first workload
scenario. It shows two types of curves: (a) the variation of the CPU load of
the RUBiS database tier (remember that it is the bottleneck of our RUBiS
configuration), and (b) the injector provisioning rate during the test. These
curves are interpreted as follows:

– The behavior of the SUT follows the specified workload (pyramidal). We
observe that this workload saturates the MySQL node in term of CPU con-
sumption (100%) at the middle of the load profile.

– The execution of the test with Policy1 has a wrong behavior while Policy0
and Policy2 follow the same behavior, which corresponds to what we ex-
pected (according to the workload scenario). In fact, Policy1 extends the
test duration more than the theoretical duration specified in the workload
scenario: about 400s, corresponding to range (c) shown in Figure4(1).

– We observe long stairs during the upward phase with Policy1 compared
Policy2 because the deployment time of a new injector is not anticipated by
Policy1 as it is with Policy2. We don’t observe the same phenomenon in the
lowering phase because injectors’ removal is immediate.

– As shown in the curves (b) in Figure4(1), we use up to five injectors VM for
each workload scenario.

Remember that TTSVM is the time used by the BaaSP to add an injector
(about 100s in our experiment). Let TTCal be the time used by the Calibrator
to calibrate an injector (60s in our experiment) and InjMaxCapacity be the
maximum capacity of an injector (40 vuser in our experiment). With Policy1, as
we said that the test runs more than the theoretical time. This time corresponds
to the sum of the deployment time of all injectors added by the Planner during
the test, (nbInj-1)*TTSVM.

Let TTSI be the time needed to saturate an injector during the ramp-up phase
(120s in our experiment). With Policy1, TTSI+TTSVM is the provisioning pe-
riod during the ramp-up phase whereas it is TTSVM in the ramp-down phase.
On the other hand, TTSVM is the provisioning period with Policy2 in both
ramp-up phase and ramp-down phase. Figure 4(2) shows the execution time of
each injector using Policy0, Policy1 and Policy2. Here are the formulas used
to evaluate the cost of these different cases. Let ExecT imei be the execution
time of injector i, and ExecT imeRubisBaaSP be the execution time of RUBiS
and BaaSP VM.
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– Cost1 = Cost0+(nbInj(nbj−1)
2 (TTSVM−2TTSI)+TTCal+(nbVMRubis+

nbVMBaaSP )[TTCal+ (nbj − 1)TTSVM ]) ∗ Costtu (E1)
– Cost2 = Cost0 + [(nbVMRubis + nbVMBaaSP + 1)TTCal + nbInj ∗

TTSVM − 2 ∗ nbInj(nbj − 1)TTSI] ∗ Costtu (E2)

Regarding equations (E1) and (E2), dynamic provisioning is less expensive than
static execution when:

– Policy1: TTSI ≥ (nbV MRubis+nbV MBaaSP+1)TTCal
nbInj(nbInj−1) +

(nbInj/2+nbV MRubis+nbV MBaaSP )(nbInj−1)TTSV M
nbInj(nbInj−1) (C1)

– Policy2: TTSI ≥ (nbV MRubis+nbV MBaaSP+1)TTCal
2∗nbInj(nbInj−1) + TTSV M

2(nbInj−1) (C2)

When conditions (C1) and (C2) are respected, Cost0 ≤ Cost1 ≤ Cost2. In our
experimental environment, we have: nbInj=5, nbVMRubis=3, nbVMBaaSP=2,
TTS=250s, TTCal=60s, TTSVM=100s, and TTSI=120s. In this context, (C1) is
not met whereas (C2) is. Then, Cost0 = 13250∗Costtu, Cost1 = 14210∗Costtu,
and Cost2 = 9310 ∗ Costtu.

Workload Scenario 2. Fig.5 shows results for the second workload scenario.
The interpretation of these results is similar to the previous workload scenario.
Unlike the first scenario, we only evaluate the BaaSP when the “just ahead of
time” provisioning is activated. Looking at the workload of this scenario, curve
(a) of Fig. 5(1) shows injectors provisioning:

– An injector is added at time T1.
– Three injectors are simultaneously added at time T2. This is done according

to the steep ramp-up phase occurs for a short time (from time 550s to 600s),
which is less than TTSVM (refer to the planning algorithm).

Fig. 5(2) shows the execution time of this experiment (Fig. 5(2)(b)) in compar-
ison to the static execution (Fig. 5(2)(a)). From the same variables we used in
the previous section, the cost of this experiment (Cost3) is evaluated as follows:

Cost3 = [(nbVMRubis+ nbVMBaaSP ) ∗ (TTT + TTS+ TTCal)+
∑nbInj

i=1

ExecT imei] ∗ Costtu
Cost3 = 10570 ∗ Costtu

The value of Cost3, in comparison to Cost0 (which is always fix), shows that
for some scenarios (long test campaign in preference), the gain of using dynamic
injector provisioning becomes more interesting.

6 Related Work

Very few works are interesting on adaptive benchmarking tools. However, we
study some work situated around this topic. Unibench [12] is an automated
benchmarking tool. As our BaaSP, Unibench is able to deploy remotely both the
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Fig. 4. Injectors provisioning in the BaaSP when running the first scenario

Fig. 5. Injectors provisioning in the BaaSP when running the second scenario

SUT and benchmarking components in a cluster. It is adaptive in the way that
it is able to identify a modification in the SUT and then achieve another bench-
marking process related to this modification. To do this, Unibench is supposed
to know the source code and the programing language of the SUT. Unlike our
BaaSP, the SUT is not considered as a black box. [13] presents research chal-
lenges for implementing benchmarking tools for self-adaptative systems. Except
the definition of metrics and some principles to be considered when defining
workload, it does not care about the self-adaptation of the benchmarking tool
itself.

CloudGauge [14] is an open source framework similar to ours. It uses the cloud
environment as the benchmarking context. Unlike our BaaSP which evaluate a
SUT running in the cloud, CloudGauge SUTs’ is the cloud and its capabil-
ity for VM consolidation. It dynamically injects workloads to the cloud VM
and adds/removes/migrate VM according to the fluctuation of the workload.
As Selfbench [5] (the calibration system we used), it is able to adjust itself the
workload during the benchmarking process. Indeed, like our BaaSP, users can
define a set of workloads for benchmarking. Since the SUT is the cloud, injectors
are deployed into VM. There is no separation between injectors nodes and SUT
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nodes. Thus, unlike our BaaSP, there is no need to dynamically create injectors
node as injectors and SUT share the same VMs. Regarding the architecture of
CloudGauge, we observe some similarity with ours. For example, CloudGauge
defines an orchestrator called Test Provisioning which is responsible to orches-
trate the benchmarking process. Other tools such as VSCBenchmark [15] and
VMark [16] are comparable to CloudGauge. They allow the definition of dynamic
workload for VM consolidation benchmarking in a cloud environment.

As far as we know, there is no open source benchmarking framework with
comparable characteristic as ours. However, there is some proprietary and com-
mercial tools. Looking at the marketing speech of BlazeMeter [17], it provides
same features as ours (except SUT deployment): dynamic injectors allocation
and de-allocation in the cloud in order to reduce test cost. It is an evolution
of the JMeter [11] tool for cloud platform. Since it is proprietary, there is no
technical and scientific description of BlazeMeter. Therefore, it becomes difficult
to really compare its functionalities to ours. NeoLoad [18] is another tool simi-
lar to BlazeMeter. It allows deployment of injectors in a cloud environment for
benchmarking an application. It is able to integrate new injectors throughout
the benchmarking process. However, this integration should be initiated by the
administrator by planning. NeoLoad does not implement itself an automated
planning component, as we did.

7 Conclusion

This paper explores Cloud Computing features to ease application benchmarking
and to stress their scalability. Load testing solution can be provided on demand
in the cloud and can benefit from self-scalability.

We describe a Benchmark-as-a-Service solution that provides a number of
benefits in terms of cost and resources savings. The cost of hardware, software
and tools is charged on a pay-per-use basis and platform setup is also greatly
simplified. The self-scalability property of the platform eases the benchmarking
process and lower the cost for long hours campaign since it does not require to
statically provision the platform which is prohibitive in terms of human and hard-
ware resources. Resource provisioning is minimized while ensuring load injection
according to a given profile. Our experiments based on the RUBiS benchmark
show the benefits in terms of cost reduction for long hours testing campaigns.
As for as we know, our Benchmark-as-a-Service platform is the only one that
scales automatically the resources used for load injection.

As a future work we plan to add a new mode to our platform. With this mode,
load profiles are not required any more. It aims at automatically provisioning
and controlling load injection resources until saturating the SUT. The difficulty
here is to stress progressively an application near its limits while preventing
thrashing. This requires a fine grain load injection control and provisioning.
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la Societe Numerique (FSN) and Poles Minalogic, Systematic and SCS, through
the FSN Open Cloudware project.
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Abstract. Every large multi-site infrastructure such as Grids and Clouds
must implement fault-tolerance mechanisms and smart schedulers to en-
able continuous operation even when resource failures occur. Evaluating
the efficiency of such mechanisms and schedulers requires representative
failure models that are able to capture realistic properties of real world
failure data. This paper shows that failures in multi-site infrastructures
are far from being randomly distributed. We propose a failure model that
captures features observed in real failure traces.

1 Introduction

Large computing infrastructures such as Grids and Clouds have become indis-
pensable to provide the computing industry with high-quality resources on de-
mand. However, failures of computing resources create an important challenge
that these infrastructures must address. Failures cause a reduction of the total
system capacity, and they also negatively impact the reliability of applications
making use of the resources. Understanding failures from a statistical point of
view is therefore essential to design efficient mechanisms such as checkpointing
and scheduling in Grids and Clouds.

This paper presents a comprehensive analysis of failure traces from five large
multi-site infrastructures [10]. We focus on simultaneity, dependence and multi-
plication features. Simultaneity measures the extent to which multiple failures
or multiple recoveries happen at the same time. Dependence means that times
between failures have short- and long-term autocorrelations. Finally, multiplica-
tion captures the fact the times between failures are not smoothly distributed
but rather occur at multiples of specific durations. Similar features were not
present in previous studies of clusters, peer-to-peers and web/dns servers. We
therefore believe that they are characteristic of large multi-site systems. This
analysis enables us to model failures and generate realistic synthetic failure sce-
narios that can be used for further studies of fault-tolerance mechanisms. The
advantage of a failure model is that it enables us to tune parameters as we wish,
which is not possible when replaying a trace.

This analysis is based on five traces of node-level failures from the Failure
Trace Archive [10]. These traces, described in Table 1, can be considered as
representative of both Grid and Cloud infrastructures. For example, GRID’5000
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which is currently used to serve Cloud users is a good representative of low-level
Cloud infrastructures. However, since these traces were collected when serving
Grid jobs, obviously virtualization is another source of failures in Clouds that
we do not consider.

This paper is organized as follows. Sections 2, 3 and 4 respectively analyse
the simultaneity, dependence and multiplication properties in failure traces. Sec-
tion 5 proposes a failure model that Section 6 validates with real world data.
Finally, Section 7 discusses related work and Section 8 concludes the paper.

Table 1. Details of failure traces used in our study

ID System Nodes Period, Year Res.1 #(Un)availability Events

MSI1 CONDOR-CAE 686 35 days, 2006 300 7,899

MSI2 CONDOR-CS 725 35 days, 2006 300 4,543

MSI3 CONDOR-GLOW 715 35 days, 2006 300 1,001

MSI4 TERAGRID 1,001 8 months, 2006-2007 300 1,999

MSI5 GRID’5000 1,288 11 months, 2006 5 419,808

2 Simultaneity of Failures and Recoveries

Let T be a set of N ordered failures: T = {Fi|i = 1 . . .N and Fi ≤ Fj if i < j},
where Fi denotes the time when a failure i occurs. Each failure i is associated
with an unavailability interval Ui, which refers to the continuous period of a
service outage due to the failure, and the time Ri = Fi + Ui indicates the
recovery time of the failure. For a group of failures T ′ that is a subset of T , we
consider a failure i as a simultaneous failure (SF) if there exists in T ′ any failure
j �= i such that j and i happen at the same time, otherwise we call i a single
failure. Similarly, we also consider i as possessing a simultaneous recovery (SR)
if there exists in T ′ any failure k �= i such that k and i recover at the same time,
otherwise i possesses a single recovery.

Assigning T ′ as a whole failure trace, we calculate the fractions of SFs and
SRs in real multi-site systems, which are shown in the first and second rows of
Table 2. As we can see, simultaneous failures and recoveries are dominant in all
cases. We do a further analysis to check how many simultaneous failures possess
SRs. This is done by determining all groups of SFs, i.e. all failures that occur at
the same time are gathered into one group, and calculating the number of SRs
for each group. We then average and show the result in the third row of Table 2.
We conclude that most of the simultaneous failures recover simultaneously.

Considering each trace separately, failures of MSI1 and MSI2 almost occur
and reoperate concurrently, so it is not surprising when most of the simultane-
ous recoveries belong to SFs. But this does not apply for MSI5, where only 69%

1 Res. is the trace resolution. For instance, a node failure at time t with resolution 5
seconds means that the actual failure time was between t− 5 and t.
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Table 2. Fractions of SFs (R1) and SRs (R2) in real systems, calculated for the whole
trace. The third row (R3) shows fractions of SRs, calculated for groups of SFs.

MSI1 MSI2 MSI3 MSI4 MSI5

R1 97% 93% 75% 73% 95%

R2 98% 97% 81% 75% 95%

R3 97% 98% 94% 93% 69%

resources with SF become available simultaneously despite of a large number
of SFs and SRs (95%). This is due to failures that occur but do not recover at
the same time with some failures, instead they recover concurrently with other
failures. In contrast with MSI5, MSI3 and MSI4 only exhibit around 70%-80%
SFs and SRs but a large number of SRs are from SFs. One can think of the
resolution of the traces as the reason that causes SFs and SRs. However, we
argue that the resolution is not necessarily a source of the simultaneity feature
since the resolution is relatively small and cannot cause such a large number of
SFs and SRs. A more plausible reason that causes a group of nodes to fail at
the same time is that the nodes share a certain device/software whose failure
can disable the nodes. For example, the failure of a network switch will isolate
all nodes connected to it. Its recovery will obviously lead to the concurrent
availability of the nodes.

We believe that the simultaneity feature is common in data-center-based sys-
tems. We therefore argue that fault-tolerant mechanisms or failure-aware re-
source provisioning strategies should be designed not only to tolerate single node
failures, but also massive simultaneous failures of part of the infrastructure.

3 Dependence Structure of Failures

We now deal with a set of times between failures {Ii}, whose definition is based
on the set of ordered failures T = {Fi} in Section 2. We determine a time between
failures (TBF) as Ii = Fi−Fi−1 and hence it is easy to represent {Fi} by {Ii} or
convert {Ii} to {Fi}. This section examines the dependence structure of {Ii}2.
The term “dependence” of a stochastic process means that successive samples
of the process are not independent of each other, instead they are correlated. A
stochastic process can exhibit either short or long range dependence (SRD/LRD)
as shown by its autocorrelation function (ACF). A process is called SRD if its
ACF decays exponentially fast and is called LRD if the ACF has a much slower
decay such as a power law [3]. Alternatively, the Hurst parameter H [7], which
takes values from 0.5 to 1, can be used to quantitatively examine the degree of
dependence of a stochastic process. A value of 0.5 suggests that the process is
either independent [1] or SRD [11]. If H > 0.5, the process is considered as LRD,
where the closer H is to 1, the greater the degree of LRD.

2 In terms of statistics, we consider {Ii} as a stochastic process.
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Fig. 1. Hurst parameter and autocorrelation functions of TBFs in real traces

Figure 1 shows the dependence feature. To quantitatively measure how TBFs
are autocorrelated, we estimate the Hurst parameter of real TBF processes. The
estimation is done with the SELFIS tool [9]. As there are several available heuris-
tic estimators that each has its own bias and may produce a different estimated
result, we chose five estimators (Aggregate Variance, R/S Statistic, Periodogram,
Abry-Veitch and Whittle) and computed the mean and the standard deviation
of their estimates. For all cases real TBFs are indeed LRD because all Hurst
estimates are larger than 0.5. The most noticable point focuses on MSI2, MSI3
and MSI4, which result in H around 0.7 to 0.8. It shows that the TBFs of these
traces are largely autocorrelated. This is confirmed by observing their ACFs in
Figure 1, which decay slowly and determine their LRD feature. The LRD of
MSI1 and MSI5 are not very strong since their estimated Hurst parameters are
larger but not very far from 0.5. In particular, the ACF of MSI1 decays though
not exponentially but quickly to 0, thus one can also consider it as SRD or in
our case, we call it as exhibiting weak LRD.

It is important to capture the LRD feature in modeling because it may signif-
icantly decrease the computing power of a system by the consecutive occurrence
of resource failures. In particular, if simultaneous failures happen with LRD, a
system will become unstable and it is hard to guarantee quality-of-service re-
quirements. Fault-tolerant algorithms should therefore be designed for correlated
failures to increase the reliability.

4 Multiplication Feature of Failures

An interesting feature of failure traces is the distribution of times between fail-
ures. However, we have seen that the vast majority of failures are simultaneous.
This would result in several TBFs with value 0 as shown in Table 3. The oc-
curence of a large number of zeroes in a TBF process makes it difficult to fit
TBFs to well-known probability distributions. Therefore, instead of finding a
best fit for the whole TBF process, we remove zeroes out of the process and only
try to fit TBFs that are larger than 0, so-called positive TBFs or PTBFs.
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Table 3. The fraction of zero values in TBF processes

MSI1 MSI2 MSI3 MSI4 MSI5

93% 91% 71% 65% 90%
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Fig. 2. Cumulative distribution functions of real PTBFs

Figure 2 shows cumulative distribution functions (CDFs) of PTBFs of all fail-
ure traces. For each trace, the PTBFs are fitted to the following five distributions:
Generalized Pareto (GP), Weibull (Wbl), Lognormal (LogN), Gamma (Gam)
and Exponential (Exp). The maximum likelihood estimation method [12] is used
to estimate parameters for those distributions in the fitting process, which is done
with a confidence level γ = 0.95 or a significance level α = 1−γ = 0.05. For each
distribution with the estimated parameters in Table 4, we use a goodness-of-fit
test, called Kolmogorov-Smirnov (KS test) [3], to assess the quality of the fitting
process. The null hypothesis of the KS test is that the fitted data are actually
generated from the fitted distribution. The KS test produces a p-value that is
used to reject or confirm the null hypothesis. If the p-value is smaller than the
significance level α, the null hypothesis is rejected, i.e. the fitted data are not
from the fitted distribution. Otherwise, we can neither reject nor ensure the null
hypothesis.

Table 5 shows that PTBFs of MSI1 and MSI5 cannot be fitted well to any dis-
tribution candidate since all p-values are equal to 0. The reason lies in Figure 2,
where we can easily observe staircase-like CDFs in the two traces. This shape
indicates that the data tend to distribute around some specific values. Further
analysing PTBFs of MSI1 and MSI5, we find that most of them are multiples
of so-called basic values. As shown in Table 6, MSI1 has a basic value of 1200
seconds as 100% of its PTBFs are multiples of 12004. We refer to this property
as the multiplication feature of failures. Other traces show similar behavior.

Although MSI2, MSI3 and MSI4 exhibit this feature and their CDFs also
have staircase-like shapes, their PTBFs still can be fitted to some distribu-
tions. Table 5 indicates that Gam and Exp are suitable for MSI2 where Exp
is the best. Though GP is the best for MSI3, its PTBFs can be fitted to any

4 We consider a as being a multiple of b if |a/b − round(a/b)| < 0.005.
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Table 4. Parameters of distributions estimated during the fitting process. a, b, μ, σ
indicate shape, scale, mean and standard deviation, respectively.

GP(a, b) Wbl(a, b) LogN(μ, σ) Gam(a, b) Exp(μ)

MSI1 0.7 4653 0.8 8548 8.4 1.3 0.7 15415 10490

MSI2 0.2 11546 0.9 13540 9 1.2 1 14596 14034

MSI3 0.3 14028 0.9 17272 9.2 1.2 0.9 21013 18420

MSI4 0.5 72854 0.7 97029 10.6 2 0.5 235811 126615

MSI5 0.7 445 0.7 838 6 1.3 0.6 2112 1227

Table 5. P-values of fitting PTBFs, obtained from the KS test. Those larger than the
significance level α = 0.05 are in gray boxes.

GP Wbl LogN Gam Exp

MSI1 0 0 0 0 0

MSI2 0.03 0.03 0.04 0.07 0.08

MSI3 0.29 0.19 0.17 0.26 0.09

MSI4 0 0.08 0 0.29 0

MSI5 0 0 0 0 0

distribution candidate. Finally, Gam should be the best choice for MSI4 besides
Wbl. Different from MSI1 and MSI5, the staircases in the CDFs of MSI2, MSI3
and MSI4 are relatively small, so have the CDFs be possible to fit the distribu-
tion candidates. In contrast, MSI1 and MSI5 focus their PTBFs on their basic
value (see Figure 2) and hence the PTBFs are hard to fit the tested distribu-
tions. As there is a consensus among MSI2, MSI3 and MSI4, we suggest that
the Gamma distribution can be used as a marginal distribution-based model for
PTBFs, where zeroes can be added to form a complete TBF process. However,
this would be a simple model that is able to capture neither the dependence nor
the multiplication feature and hence its representativeness is limited.

It is hard to explain why PTBFs exhibit the multiplication feature. One possi-
ble cause is that this is an artifact of the trace resolution. For example, MSI4 has
a resolution of 300 seconds so all TBFs in the trace are multiples of 5 minutes
even if the actual failures did not exhibit this property. However, this explana-
tion does not fully explain the phenomenon in the other four traces since their
resolutions are different from their basic values. Therefore in addition to the
resolution, there may be other causes that we did not discover due to limited
available information in each trace. We argue that this would be an interesting
information to be added in the Failure Trace Archive [10]. Since almost PTBFs
in all five traces are multiples of a basic value, it is essential to take this feature
into account in our failure models.

5 Failure Modeling

This section presents a model for times between failures that is able to capture all
the practical features analysed in previous sections, including the simultaneity,
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Table 6. Basic values and fractions of PTBFs that are multiples of a basic value

MSI1 MSI2 MSI3 MSI4 MSI5

Basic value (s) 1200 1200 1200 300 100

Fraction 100% 99% 99% 100% 100%

Fig. 3. Illustration of how the model gathers information from its input

the dependence and the multiplication. The model described in Algorithm 1
receives a TBF process {Ii} as its input and produces a synthetic TBF process
{Si} with those three features, which can be converted into a sequence of failure
events used in performance study.

5.1 General Model

Our failure model in Algorithm 1 consists of three steps. Firstly, we extract
necessary information from the TBF process input {Ii}, where the extraction is
explained in Figure 3. As we indicated in Table 3, the TBF process of a failure
trace contains a large number of zeroes due to the simultaneity feature, it is
reasonable to set up a 2-state model: {Ii} goes to state-0 if its value is zero,
otherwise it is with state-1. Once {Ii} falls into a state, we will determine how
long it remains in the state before switching to the other state. For example
with a TBF process in Figure 3, we form for state-0 a set Z that contains the
lengths of all zero sequences. With respect to state-1, we produce a similar set
P with the lengths of all PTBF sequences. We also determine the basis value
B of the TBF process that will be used later for the multiplication feature.
Furthermore, all PTBFs are collected, divided by B and stored into a set V .
With Z, P, V,B, we gather enough information and finish the first step of the
model. As the second step, we find the best fitted marginal distribution for
Z, P and V , denoted by DistZ, DistP and DistV , respectively. The fitting
methodology will be presented later in Section 5.2.

As the last step, we generate {Si} through a main loop. We initialize by
randomly picking a state. Then, we sample a value r, which indicates how many
TBFs should be created in this state, by using DistZ or DistP , depending on
the state. With r, the dependence structure of {Si} can be controlled as similar
as that of {Ii}. If the state is state-0, we generate a sequence of r zero values and
switch to state-1. The zero sequence helps to create simultaneous failures and
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Algorithm 1. The failure model

Input: a TBF process {Ii}.
Output: a synthetic TBF process {Si}.

[Z,P, V,B] = ExtractInfo({Ii}); // Extract necessary information from input
DistZ = Fit(Z); DistP = Fit(P ); DistV = Fit(V ); // Find fitted distributions
state = random({0, 1}); N = 0; // Initialize

repeat
if state = 0 then

r = round(Sampling(DistZ));
SN+1 . . . SN+r = 0;

else
r = round(Sampling(DistP ));
for j = 1 to r do

SN+j = round(Sampling(DistV )) ∗B
+[−Res ∗ UniF ]; // Optional

end for
end if
N = N + r;
state = 1− state;

until N + 1 ≥ desired number of failures;

hence helps to capture the simultaneity feature for {Si}. If the state is state-1,
we generate a sequence of r PTBFs, each is formed by sampling DistV and
multiplying with B to obtain the multiplication feature5. Then, we switch to
state-0 and continue the loop until the desired number of failures is achieved.
Indeed, the model operates similarly as a 2-state Markov chain [4], where there
is no probability for a state to switch to itself.

5.2 Fitting Methodology

In order to find the best fits for Z, P and V sets, we also apply the max-
imum likelihood estimation method and the KS test on the five well-known
distribution candidates as described in Section 4. Since data are hard to fit any
distribution if they contain some specific values that are dominant over other
values, as illustrated when we fit PTBFs of MSI1 and MSI5 in Section 4, we
carefully check if this happens with the Z, P and V sets. In Table 7, we list top
four values that appear in the sets with their frequency. As we can see in most

5 Since failures are reported with a resolution, our model also allows to generate “ac-
tual” failure times if one needs by subtracting each generated PTBF an amount of
Res ∗ UniF , where Res is the resolution and UniF is the uniform distribution in
the range [0, 1].
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cases, values 1 and 2 are dominant over other values. Therefore, we remove values
1 and 2 out of the fitting process. Furthermore since the applied distribution
candidates support a non-negative value domain and we already remove the two
smallest values out of the sets, which results in 3 as the new smallest value,
we decide to shift all remaining values of the sets by 3 units to ease the fitting
process. In summary, let X be any from the Z, P and V sets, we will find the
best fit for the set Y = {y = x− 3|x ∈ X \ {1, 2}}.

Table 7. Top four values (ordered) appear in the Z, P and V sets. Reading format: a
value above and a frequency in percentage below, correspondingly.

Z P V

MSI1 (1 2 8 6) (1 2 3 4) (1 2 3 4)
(17 8 6 5) (60 21 6 5) (40 11 5 4)

MSI2 (1 2 3 25) (1 2 4 3) (1 2 3 4)
(30 14 7 5) (37 12 9 7) (15 9 7 7)

MSI3 (1 2 9 3) (1 3 10 2) (1 2 5 3)
(45 9 9 5) (26 17 13 4) (12 10 6 6)

MSI4 (1 2 3 6) (1 2 3 6) (1 2 3 5)
(43 13 5 5) (28 15 10 10) (4 3 2 1)

MSI5 (1 2 3 4) (1 2 3 4) (1 2 3 4)
(24 12 9 6) (63 19 8 4) (26 16 10 6)

Table 8. P-values of fitting Y sets, obtained from the KS test. Those larger than the
significance level α = 0.05 are in gray boxes.

Trace/Set GP Wbl LogN Gam Exp

MSI1/Z 0.06 0.01 0.00 0.00 0.00
MSI1/P 0.00 0.00 0.00 0.00 0.00
MSI1/V 0.06 0.00 0.00 0.00 0.03

MSI2/Z 0.56 0.02 0.00 0.01 0.20
MSI2/P 0.59 0.01 0.00 0.00 0.67
MSI2/V 0.11 0.00 0.00 0.00 0.07

MSI3/Z 0.50 0.41 0.06 0.34 0.20
MSI3/P 0.23 0.03 0.01 0.02 0.23
MSI3/V 0.59 0.00 0.00 0.00 0.23

MSI4/Z 0.06 0.12 0.01 0.07 0.20
MSI4/P 0.41 0.00 0.00 0.00 0.41
MSI4/V 0.05 0.00 0.00 0.00 0.00

MSI5/Z 0.00 0.00 0.00 0.00 0.00
MSI5/P 0.00 0.00 0.00 0.00 0.00
MSI5/V 0.00 0.00 0.00 0.00 0.00

Table 8 shows the results of fitting Y sets, which indicate that GP seems to
be the best fitting candidate. In 11/15 cases, GP results in p-values larger than
the significance level α = 0.05. Therefore in these cases, the null hypothesis that
Y sets are from the GP distribution cannot be rejected. In addition, though Exp
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can also be a good candidate, its p-values are smaller than those of GP in most
cases. Hence, we suggest that GP should be the best choice for fitting Y sets. As
all distribution candidates result in p-values equal to 0 in the other four cases,
we additionally use the KS statistic, also produced by the KS test, to select the
best distribution. From Table 9, we again confirm that GP should be a suitable
choice for fitting Y sets since its KS statistics are smallest, except for the P set
of MSI5. Hence for generality of the model, we propose and use GP as the fitting
distribution for Y sets in our study, where the estimated parameters of GP are
shown in Table 10.

In conclusion, let X be any from the Z, P and V sets, the fitted distribution
DistX of X is determined by the following parameters: percentage of value 1 in
X (p1), percentage of value 2 in X (p2) and GP parameters (a, b). To sample a
value x from DistX , we first sample a value pr from the uniform distribution
over the range [0, 1]. If pr ≤ p1, we assign x = 1, else if p1 < pr ≤ p1 + p2,
x = 2. Otherwise, x = g + 3, where g is sampled from the GP distribution with
parameters (a, b).

Table 9. KS statistics of fitting Y sets, obtained from the KS test

Trace/Set GP Wbl LogN Gam Exp

MSI1/P 0.32 0.40 0.41 0.44 0.32

MSI5/Z 0.14 0.27 0.39 0.28 0.22

MSI5/P 0.36 0.33 0.35 0.33 0.44

MSI5/V 0.17 0.32 0.40 0.31 0.28

Table 10. Estimated parameters of GP(a, b), where a and b indicate shape and scale

MSI1 MSI2 MSI3 MSI4 MSI5

Z 0.33 20.82 0.45 46.35 0.45 19.19 -0.75 27.87 0.87 8.04

P -0.17 1.82 -0.08 5.77 0.02 5.31 0.10 3.87 12.54 0.00

V 0.11 12.10 0.23 9.21 0.24 12.53 0.35 302.96 1.07 3.97

6 Validation of the Model

We present in this section our experiments to validate our model. We apply the
model to all the traces in Table 1 to generate synthetic failures. The quality
of these synthetic failures is evaluated by comparing with the real data. Our
evaluation focuses on the simultaneity feature, the dependence structure and
the marginal distribution of TBFs. Evaluating the multiplication feature is not
necessary because it is guaranteed when we generate PTBFs by sampling the
distribution DistV and multiplying with the basic value B (see Algorithm 1).
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6.1 Simultaneous Failures

Table 11 describes fractions of simultaneous failures produced by the model.
It can be seen that our model controls well this feature since the fractions are
close to those of the real data. The quality of generating this feature depends
on fitting the Z sets. Successfully fitting the sets, as shown in Tables 8 and 9,
helps to control well the number of zeros generated in a TBF process. In case of
MSI5, though the p-value of fitting the Z set to GP is 0, its KS statistic is small.
Thus, the fitting is acceptable, resulting in a good control of the simultaneity.

Table 11. Fractions of simultaneous failures produced by the model

MSI1 MSI2 MSI3 MSI4 MSI5

Data 97% 93% 75% 73% 95%

Model 96% 90% 79% 70% 97%

Table 12. Compare the Hurst parameter between the model and the data, presented
as mean± standard deviation of the five estimators

MSI1 MSI2 MSI3 MSI4 MSI5

Data 0.60 ± 0.06 0.74± 0.14 0.78 ± 0.20 0.70± 0.08 0.62 ± 0.08

Model 0.62 ± 0.05 0.76± 0.06 0.76 ± 0.18 0.68± 0.06 0.54 ± 0.04

6.2 Dependence Structure

We evaluate the long range dependence feature both via observing an autocor-
relation function and estimating the Hurst parameter. The estimation is done
similarly as presented in Section 3, i.e. using the SELFIS tool with the five es-
timators, namely Aggregate Variance, R/S Statistic, Periodogram, Abry-Veitch
and Whittle [9]. As we can see in Figure 4, the autocorrelation of the model fits
well to that of the real data, except for the case of MSI5. This is in accordance
with the quantitative results of estimating the Hurst parameter in Table 12. It
is not strange when the model does not fit MSI5 since we cannot find good fit-
ting distributions for the Z, P and V sets of MSI5 as shown in Section 5.2. In
contrast for the other cases, the fitting step of the model is well done and thus,
the model is able to generate autocorrelated failures.

6.3 Marginal Distribution

One of the first aspects often received the attention of researchers when they
analyse or model failures is the marginal distribution. It can be seen that our
model is highly representative since it can capture realistic observed features of
failures, namely the simultaneity, the dependence and the multiplication. How-
ever, its representativeness is even better if it can fit the marginal distributions of
real times between failures. Indeed, this is confirmed in Figure 4 where we draw
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Fig. 4. Fitting autocorrelation functions and marginal distributions of TBFs

the complementary cumulative distribution functions (CCDFs) of synthetic and
real TBFs. The figure shows that our model fits the marginal distribution feature
well in four cases. For MSI5, the fitting step does not work finely, which makes
the generated TBFs not able to fit the real TBFs well. Nevertheless, the fitting
quality of MSI5 is acceptable since the ugly fitting part only occurs when TBFs
are larger than 10,000 seconds, which just occupy ∼ 0.2% number of TBFs.

7 Discussion and Related Work

Our study demonstrates that Grid and Cloud infrastructures exhibit proper-
ties of simultaneity, dependence and multiplication that must be modeled to
accurately capture the characteristics of such systems. Interestingly, the same
features are not necessarily present in other types of large-scale systems such as
desktop grids and P2P systems. Table 13 measures the occurence of these fea-
tures in a number of systems, and highlights systems which clearly exhibit them.
Only 2/14 systems exhibit all three features. We so argue that it is essential to
develop a specific failure model for systems such as Grids and Clouds.

Many studies have been dedicated to analysing and modeling failures [2, 5, 6,
8, 13–19]. However, most of them focus on servers, high performance clusters,
peer-to-peer systems, etc. The few studies dedicated to multi-site systems [6, 8,
18] did not concentrate on modeling the observed features. In [8], a failure model
is developed based on fitting real data to distribution candidates, but none of
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Table 13. The simultaneity (S), the dependence (D) and the multiplication (M) fea-
tures in other systems, expressed by the fraction of simultaneous failures, the Hurst
parameter and the basic value, respectively. Grey boxes indicate systems which exhibit
the corresponding feature clearly (S <50% and D < 0.6 are not considered).

System Type S D M

UCB Desktop Grid 5% 0.47 No

MICROSOFT Desktop Grid 100% 0.52 3600

LRI Desktop Grid 31% 0.56 No

DEUG Desktop Grid 5% 0.70 No

NOTRE-DAME (host availability) Desktop Grid 90% 0.69 960

NOTRE-DAME (CPU availability) Desktop Grid 99% 0.58 960

PLANETLAB P2P 67% 0.65 900

OVERNET P2P 100% 0.50 1200

SKYPE P2P 100% 0.48 1800

SDSC HPC Cluster 18% 0.53 No

LANL HPC Cluster 15% 0.76 60

PNNL HPC Cluster 42% 0.55 100

WEBSITES Web Server 1% 0.63 No

LDNS DNS Server 10% 0.56 No

the features observed in this study is captured. Moreover, this model is designed
specifically only for GRID’5000 and it is not clear whether it would work for
other systems. The model proposed by Yigitbasi et al. [18] studies peaks of
failures but not times between failures. Although it studies autocorrelation, it is
in terms of failure rates and is not taken into account in their model. Finally, the
authors of [6] showed that failures often occur closely in time, in so-called group
of failures. The concept of group of failures is close to the simultaneity feature in
this paper, and we believe that groups of failures occur due to the vast majority
of simultaneous failures as shown in Table 2. Hence, modeling simultaneous
failures is more accurate than modeling groups of failures since the information
about the times between failures in a group could not be recovered once they are
grouped for modeling. Furthermore, the dependence and multiplication features
are not taken into account by [6], possibly because it aims at other large-scale
systems than multi-site infrastructures.

8 Conclusions and Future Work

This paper demonstrated that failures exhibit simultaneity, dependence and mul-
tiplication features, which can have a significant impact on system performance.
We proposed a failure model that can capture these features and help research
on fault-tolerance mechanisms. The Gamma distribution alone may be used
as a marginal distribution-based model for PTBFs. However, the model from
Section 5 offers much more precision with respect to these three features. It is
also flexible as the parameters of GP distributions can easily be tuned. Finally,
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it addresses the issue of trace resolution and generates “actual” failure times
that are not affected by the resolution. Our future work includes adding the
unavailability attribute and using the model to associate failure-awareness for
enhancing scheduling performance or resource provisioning in Clouds.

Acknowledgements. This work was partially funded by the Harness project
of the Seventh European Framework Programme (FP7/2007-2013) under grant
agreement number 318521 and by the Netherlands Organization for Scientific
Research (NWO) in the context of the Guaranteed Delivery in Grids project.

We would like to acknowledge Lex Wolters for his initial contribution to this
work. We regret that he passed away on March 2012.

References

1. Beran, J.: Statistics for Long-Memory Processes. Chapman & Hall (1994)
2. Chu, J., Labonte, K., Levine, B.N.: Availability and Locality Measurements of

Peer-to-Peer File Systems. In: ITCom (2002)
3. Feitelson, D.G.: Workload Modeling for Computer Systems Performance Evalua-

tion., Book Draft, Version 0.32 (2011)
4. Feller, W.: An Introduction to Probability Theory and Its Applications (1950)
5. Gainaru, A., Cappello, F., Snir, M., Kramer, W.: Fault Prediction under the Mi-

croscope: a Closer Look into HPC Systems. In: SC (2012)
6. Gallet, M., Yigitbasi, N., Javadi, B., Kondo, D., Iosup, A., Epema, D.: A Model

for Space-Correlated Failures in Large-Scale Distributed Systems. In: D’Ambra,
P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271, pp.
88–100. Springer, Heidelberg (2010)

7. Hurst, H.E.: Long Term Storage Capacity of Reservoirs., Trans. ASCE (1951)
8. Iosup, A., et al.: On the Dynamic Resource Availability in Grids. In: GRID (2007)
9. Karagiannis, T., et al.: A User-Friendly Self-Similarity Analysis Tool (2003)

10. Kondo, D., et al.: The Failure Trace Archive: Enabling Comparative Analysis of
Failures in Diverse Distributed Systems. In: CCGRID (2010)

11. Lillo, F., Farmer, J.: The Long Memory of the Efficient Market (2004)
12. Myung, J.: Tutorial on Maximum Likelihood Estimation. J. Math Psy. (2003)
13. Nurmi, D., Brevik, J., Wolski, R.: Modeling Machine Availability in Enterprise and

Wide-Area Distributed Computing Environments. In: Cunha, J.C., Medeiros, P.D.
(eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 432–441. Springer, Heidelberg (2005)

14. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do Internet Services Fail,
and What Can Be Done about It? In: USITS (2003)

15. Pecchia, A., Cotroneo, D., Kalbarczyk, Z., Iyer, R.K.: Improving Log-Based Field
Failure Data Analysis of Multi-Node Computing Systems. In: DSN (2011)

16. Sahoo, R.K., Squillante, M.S., Sivasubramaniam, A., Zhang, Y.: Failure Data Anal-
ysis of a Large-Scale Heterogeneous Server Environment. In: DSN (2004)

17. Schroeder, B., Gibson, G.A.: A Large-Scale Study of Failures in High-Performance-
Computing Systems. In: DSN (2006)

18. Yigitbasi, N., Gallet, M., Kondo, D., Iosup, A., Epema, D.: Analysis and Modeling
of Time-Correlated Failures in Large-Scale Distributed Systems. In: GRID (2010)

19. Zheng, Z., et al.: 3-Dimensional Root Cause Diagnosis via Co-Analysis (2012)



Evaluating the Price of Consistency
in Distributed File Storage Services

José Valerio, Pierre Sutra, Étienne Rivière, and Pascal Felber

University of Neuchâtel,
Switzerland

Abstract. Distributed file storage services (DFSS) such as Dropbox,
iCloud, SkyDrive, or Google Drive, offer a filesystem interface to a dis-
tributed data store. DFSS usually differ in the consistency level they
provide for concurrent accesses: a client might access a cached version of
a file, see the immediate results of all prior operations, or temporarily
observe an inconsistent state. The selection of a consistency level has
a strong impact on performance. It is the result of an inherent tradeoff
between three properties: consistency, availability, and partition-tolerance.
Isolating and identifying the exact impact on performance is a difficult
task, because DFSS are complex designs with multiple components and
dependencies. Furthermore, each system has a different range of features,
its own design and implementation, and various optimizations that do
not allow for a fair comparison. In this paper, we make a step towards a
principled comparison of DFSS components, focusing on the evaluation
of consistency mechanisms. We propose a novel modular DFSS testbed
named FlexiFS, which implements a range of state-of-the-art techniques
for the distribution, replication, routing, and indexing of data. Using
FlexiFS, we survey six consistency levels: linearizability, sequential con-
sistency, and eventual consistency, each operating with and without close-
to-open semantics. Our evaluation shows that: (i) as expected, POSIX
semantics (i.e., linearizability without close-to-open semantics) harm per-
formance; and (ii) when close-to-open semantics is in use, linearizability
delivers performance similar to sequential or eventual consistency.

1 Introduction

Distributed file storage services (DFSS) offer a unified filesystem view of unstruc-
tured distributed data stores. As for any distributed storage service, the expected
properties of a DFSS are consistency, availability, and tolerance to partitions.
The CAP theorem [1] states that a distributed storage system can fully sup-
port at most two of these three properties simultaneously. Partition tolerance
is usually considered essential for a DFSS, as data centers may be temporarily
disconnected in a large-scale distributed setting and such events must be sup-
ported. As a result, developers of DFSS usually decide on a tradeoffs between
availability and consistency.

Historically, DFSS designs have focused on providing the POSIX strong model
of consistency [2]. The need for planetary-scale and always available services,
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and thus the shift to geographically distributed platforms and cloud architec-
tures, has led DFSS designs to focus more heavily on availability and weaker
consistency levels. By introducing caching mechanisms and the close-to-open se-
mantics, the Andrew filesystem (AFS) [3] was one of the first systems to offer
a consistency level weaker than POSIX. Most operations in systems such as
HDFS [4] or GoogleFS [5] are sequentially consistent. However, both systems
are built around a central metadata server. Schvachko [6] recently pointed out
that this approach is inherently not scalable because the metadata server can-
not handle massive parallel writes and the physical limits of a central metadata
server design hits the petabyte barrier, i.e., the system cannot address more
than 1015 bytes. On the other hand, flat storage systems like Cassandra or Dy-
namo [7, 8] propose an even weaker consistency level: eventual consistency. This
relieves designers from the need for a central metadata server. Some systems
[9–11] implement a filesystem interface on top of an eventually consistent storage
system. However, to the best of our knowledge, none has gained wide acceptance.

Enabling further research on DFSS to scale and break the petabyte barrier
requires developers to understand and be able to compare systematically the
multiple components of a design. These components include data distribution
and replication (and associated consistency guarantees), request routing, data
indexing and querying, or access control. Performing a fair comparison of these
aspects as supported by existing DFSS implementations is difficult because of
their inherent differences. Indeed, these systems propose not only different filesys-
tem consistency levels (FSCLs), but they also feature different base performance
and optimization levels, which largely depend on the programming language,
environment, runtime, etc.

In this paper, we make a step toward allowing the systematic comparison
of DFSS designs. We instantiate our approach by isolating and evaluating the
impact of the FSCL on performance. We make the following contributions:

– We depict the construction of a filesystem on top of a regular key/value store
with the simple addition of the compare-and-swap primitive.

– We present a clear typology of the different FSCLs and categorize existing
implementations accordingly.

– We compare empirically FSCLs by instantiating them into a novel DFSS
testbed named FlexiFS. Our testbed is modular and implements a range
of state-of-the-art techniques for the distribution, replication, routing, and
indexing of data.

Our main findings are the following: (i) as expected, POSIX semantics (i.e.,
atomicity without close-to-open semantics) harms performance; and (ii) when
close-to-open semantics is in use, atomicity delivers performance similar to se-
quential or eventual consistency.

The remainder of this paper is organized as follows: We describe the design
of FlexiFS in Section 2. Section 3 introduces FSCLs and their corresponding
implementations in FlexiFS. We present several benchmark results that evaluate
each level in Section 4. Section 5 surveys related work. We close in Section 6.
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Fig. 1. General Architecture of FlexiFS

2 Testbed Design

FlexiFS is a distributed file storage service (DFSS) offering a transparent filesys-
tem interface. Figure 1 illustrates its general architecture. FlexiFS has been built
in a modular way to allow evaluation of different choices of DFSS designs. A typi-
cal deployment contains two sets of nodes: storage nodes implement a distributed
flat storage layer, while client nodes present a filesystem abstraction to the users,
and store files and folders hierarchies on the storage nodes.

A client node accesses the filesystem through a filesystem in user space (FUSE)
implementation [12]. FUSE is a loadable kernel module that provides a filesystem
API to the user space. It lets non-privileged users create a filesystem without
writing any kernel code. In FlexiFS, each access to the filesystem is transformed
into a Web service request and routed toward a proxy node that acts as an entry
point to the distributed storage. The proxy redirects requests to the adequate
storage node(s), which store or return data blocks.

2.1 Proxy

The role of the proxy is to hide both the topology of the distributed storage and
the operation logic from the client. In FlexiFS, any storage node can act as a
proxy. When a client executes an operation and contacts a proxy via its Web
service interface, the proxy accesses the underlying storage system, executes the
operation, and returns the result to the client.

The storage layer is essentially a key/value store extended with a compare-and-
swap primitive. Devising a filesystem on top of this interface is a contribution
of our work. The operations of the interface are as follows:

– put(k, v): writes the value v for key k,
– get(k): returns the data stored for key k,
– C&S (k, u, v): executes a compare-and-swap on key k with old value u and

new value v.1

Depending on the FSCL in use in FlexiFS, the semantics of the above interface
may change. For instance, C&S () is not atomic under eventual consistency. We
detail how FlexiFS implements this interface in Section 3.

1 C&S(k, u, v) checks whether the stored value is still u, and if so, replaces u by v; in
any case the old value is returned.
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2.2 Distributed Storage Layer

FlexiFS is modular and decouples the filesystem logic from the actual storage.
The storage layer supports data indexing and provides the API described in
the previous section. Due to its modular design, FlexiFS is able to use different
indexing and storage layers, such as a multi-hop DHT or a central server. Below,
we detail the design common in flat storage layers [7, 8] that we use in this paper.

FlexiFS’s indexing and storage layer is a simple yet efficient one-hop DHT
structured as a ring that relies on consistent hashing to store and locate data.
Figure 1 presents its general architecture. It supports the following features:

Routing. For performance reasons and in order to reduce noise in our experi-
ments, we have chosen a one-hop routing design, i.e., every node knows all
other nodes in the ring.

Elasticity. Upon joining, a node chooses a random identifier along the ring and
fetches the ring structure from some other DHT node. It then informs its
two direct neighbors that it is joining.

Storage. FlexiFS uses consistent hashing to assign blocks to nodes [13] with
replication factor r: a block with a key k is stored at the r nodes whose
identifiers follows k on the ring.

Failure Detection. Each node periodically checks the availability of its closest
successor on the ring, and repair mechanisms are triggered upon a lack of
response within a timeout.

A gossiping mechanism spreads topological changes throughout the ring. Each
node notifies its closest neighbor whenever it learns about a leave/join event. If
the time to spread a message along the ring is shorter than the time between two
leave/join events, this mechanism is guaranteed to maintain the ring topology.
In our experience, such an assumption is reasonable for a deployment size of less
than a few hundred storage nodes (our typical testbed size).2

2.3 Filesystem

Like most contemporary DFSS, FlexiFS decouples metadata from data storage.
For each file, an inode block (iblock hereafter) contains the metadata informa-
tion about the file, e.g., size and user/group ownership. One or more data blocks
(dblock) hold the content of the file.

FlexiFS provides several hooks to tune how files are stored. Figure 2 illustrates
our current design: dblocks are of constant and configurable size. The current
size of dblocks is 128 kB, corresponding to the default maximal block size for
the FUSE interface. iblocks simply list the dblocks of the corresponding files.
Compared to the typical redirection-based architecture of Unix, the two above
mechanisms help in reducing the network overhead [5].

Both iblocks and dblocks are represented as elements of the same key/value
store, where they get replicated according to the different consistency models.
2 The probability that faults partition the ring is small. Indeed, we note that at the

considered scale, the mean time between failures divided by the number of nodes is
orders of magnitude smaller than the time to spread a message throughout the ring.
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Fig. 2. Example of a filesystem structure stored in FlexiFS

int(∗ create )(const char ∗, mode_t, struct fuse_file_info ∗);
int(∗ open )(const char ∗, struct feuse_file_info ∗);
int(∗ read )(const char ∗, char ∗, size_t, off_t, struct fuse_file_info ∗);
int(∗ write )(const char ∗, const char ∗, size_t, off_t, struct fuse_file_info ∗);
int(∗ close)(const char ∗);
int(∗ rename )(const char ∗, const char ∗);
int(∗ statfs )(const char ∗, struct statvfs ∗);

Fig. 3. Excerpt of the FUSE interface implemented by FlexiFS

Only iblocks are mutable. The key of a dblock is equal to the hash of its
content. This ensures good balancing of the data across storage nodes in order
to deliver aggregate performance and increased fault tolerance. In case of an
iblock, the proxy generates a unique key at creation time.

2.4 File Operations
FlexiFS implements the complete FUSE interface. We present an excerpt in
Figure 3 and detail below the most important operations.3

Create. Upon the creation of a file (or directory), the proxy first stores a cor-
responding iblock in the distributed storage. Then, it executes C&S () on the
parent directory to add the file. Performing a C&S () operation ensures that no
two clients create the same file concurrently. If the file was concurrently created,
the proxy returns an error to the client.
Open. To open an existing file (or directory), the proxy follows the graph struc-
ture of the filesystem and invokes the get() operation to retrieve the corresponding
iblock from the storage interface. Once the iblock is fetched, the proxy checks
that permissions are correct and returns an appropriate value to the client.
Read. The proxy first retrieves the iblock from the storage system. Once the
iblock is known, the proxy also knows all the dblocks attached to it. Hence, to
retrieve the content of the file, the proxy fetches the dblocks from the storage
system by invoking the get() operation in parallel.

3 Because an open file may acquire multiple reference (e.g., after a fork()), there is
no close() operation in the FUSE interface, but instead flush() and release(). The
former is called every time a descriptor referencing the file is closed; the latter once
all file descriptors are closed and all memory mappings are unmapped. To simplify
exposition, we shall consider in this paper that close() is part of the FUSE interface.
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Write. The proxy first retrieves the iblock of the file and produces the
new dblocks. It uses the storage layer’s put() operation to insert (in parallel) the
new dblocks in the distributed storage. Notice that because dblocks are content-
addressed and immutable, every modification that produces a dblock leads to the
creation of a new dblock with a different key. Then, the proxy uses C&S () to up-
date the iblock corresponding to a file. If the iblock changed meanwhile, the
proxy has to recompute (if necessary) the dblocks, as well as an updated version
of the iblock; then it re-executes C&S (). This last sequence of operations is exe-
cuted until the C&S () succeeds. Since a write() operation may access any offset of
the file, the above mechanism is necessary to avoid a lost update phenomena when
two clients concurrently write the file.

Close. Upon the closing of a file, the proxy checks that the file still exists. If
the file does not exist, the proxy returns an error to the client.

Rename. If the source and target parent directories are the same, the proxy
attempts updating the iblock of the parent directory. In case they are different,
the proxy first tries adding the file to the target directory, then it attempts re-
moving the file from the source directory. All attempts are perform with C&S ().
If C&S () fails at some point, the proxy returns an error to the client.4

3 Consistency

An important design aspect for a DFSS is defining the semantics of sharing,
i.e., how clients accessing simultaneously the same file observe modifications by
other clients. FlexiFS has several built-in sharing semantics and corresponding
implementations, which we describe in the remainder of this section. Additional
semantics can be easily added thanks to FlexiFS’s modular design.

3.1 Overview

FlexiFS classifies the semantics of sharing with (i) the consistency level that
governs the FUSE interface; and (ii) the use (or not) of the close-to-open seman-
tics. The combination of these two parameters defines a filesystem consistency
level (FSCL). In what follows, we list the various consistency levels FlexiFS sup-
ports at the FUSE interface and their respective implementation. Further, we
introduce the close-to-open semantics.

3.2 Consistency of the FUSE Interface

The three operations available at the storage layer implement accesses to the
filesystem. As a consequence, the consistency of the distributed storage governs
consistency of the FUSE interface. The FUSE interface is linearizable (resp.
sequentially, eventually consistent) when operations at the storage level are lin-
earizable (resp. sequentially, eventually consistent).

4 Even if C&S() is atomic, the renamed file might end up in both source and target
directories. Renaming is strictly atomic in POSIX semantics. We note however that
such a behavior is admissible in certain systems (e.g., Win32).
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Fig. 4. Filesystem Consistency Levels. (operation w(f, v) means a write to file f with
value v; r(f) is a read on f ; o and c respectively opens and closes all files accessed
during the session).

Linearizability. The most powerful synchronization level for processes in a
distributed environment is obtained through the use of atomic, or linearizable,
objects [18]. A linearizable object is a shared object that provides the illusion
of being accessed locally. More precisely, this consistency level states that each
operation takes effect instantaneously at some point in real time, between its
invocation and response.

Figure 4(a) presents an execution of linearizable operations. The blue (b) client
renames file f to f ′. Concurrently, the red (r) client renames file f to f ′′. Since
operations are linearizable, one of the two accesses must fail.

To implement linearizability in FlexiFS, we use Paxos [19], which provides a con-
sensus primitive for unreliable nodes. On top of consensus, we implement a repli-
cated state machine executing the three operations listed in Section 2.1. Notice
that, because dblocks are immutable, they are trivially linearizable. Hence, to im-
prove performance, we execute a simpler algorithm in that case: operations put()
and get() access amajority of replicas, respectively storing and fetching the content
from it.
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Sequential Consistency. Under sequential consistency, “the result of any ex-
ecution is the same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program” [20]. Sequential consistency
is weaker than linearizability. In particular, this consistency level is not compos-
able [18]: even if each file is sequentially consistent, the filesystem as a whole is
not sequentially consistent (this is also called the hidden channel problem). We
illustrate this issue in Figure 4(b) (middle). In this figure, accesses with respect
to file f are sequentially consistency, and similarly this property holds for g.
However, the execution (i.e., when we consider both f and g as a whole) is not
sequentially consistent.

FlexiFS implements sequential consistency using primary replication. For each
iblock, a primary replica is elected. Upon a put(k, v) call, the primary for key
k sends to all replicas the value v and then waits until a majority of replicas
acknowledges the reception before returning to the proxy. To execute a get(k)
call, the proxy accesses any replica of k that contains the version it previously
read, or a newer version (this applies only to iblocks). To execute C&S (k, u, v),
the primary tests locally if the old value equals u. If it is the case, it executes a
put(k, v) and returns the old value to the proxy. A perfect failure detector [21]
ensures the safety and liveness of the above mechanisms.

Eventual Consistency. Under eventual consistency [22], there must exist a
monotonically growing prefix of updates on which correct replicas agree. Since
there is no assumption on the time of convergence, eventual consistency does
not offer any guarantee on the return value of non-stable operations (that do
not belong to the common prefix).

Figure 4(b) (bottom) depicts a run under eventual consistency. In this figure,
both b and r clients write then read file f . Because the r client reads version f2
while the b client reads version f1, no linearization of the four operations can
satisfy the returned values.

We implement eventual consistency in FlexiFS using version vectors and the
“last writer wins” approach [23]. This optimistic replication schema works as
follows: Each version of the iblock is timestamped with a version vector. Upon
updating the value of an iblock (via put() or C&S ()), the proxy contacts one
of the iblock replicas. This replica atomically increments its local vector clock,
timestamps the iblock with it, and returns to the proxy. Replicas then converge
using an anti-entropy protocol. If two versions of some iblock are concurrent, we
apply the “last writer wins” approach. Concurrent operations are totally ordered
according to the identifier of the replicas that emitted them. Upon a read access,
a proxy simply returns a version stored at some replica.

3.3 Close-to-Open Semantics

Under POSIX semantics, almost all file operations shall be linearizable [2, page
58]. In particular, a read shall see the effects of all previous writes performed on
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the same file. The CAP impossibility result [1] tells us that such a constraint
hinders the scalability of a DFSS.

By introducing the notion of file session, close-to-open semantics [24] aim at
reducing the amount of synchrony required to access a shared file. A file session
is a sequence of read and/or write operations enclosed between an open and a
close invocation. It has the following properties [25]:

(1) Writes to an open file are visible to the client but are invisible to remote
clients having the same file opened concurrently.

(2) Once the file is closed, changes are immediately visible to sessions that are
starting afterwards.

Since operations execute in isolation and either all writes or none execute, these
sharing semantics are close to the familiar notion of transaction. Notice, however,
that close-to-open semantics apply the last writer wins rule: two concurrent
updates do not abort, one of them is simply overwritten.

The above definition of close-to-open consistency has been formulated with
atomicity in mind. One can actually combine close-to-open semantics with se-
quential consistency and eventual consistency as well. For sequential consistency,
rule (2) is replaced by:

(2a) There exists a sequential ordering of the sessions such that (i) for every
read in a session, there exists a matching write prior to it, and (ii) reads are
causally ordered on the same client.

For eventual consistency, rule (2) is replaced by:

(2b) If at some point in time no more changes occurs, then eventually all sessions
observe the same state of the file.

Figure 4(b) illustrates the combination of close-to-open semantics with lineariz-
ability, sequential, and eventual consistency. Obviously, if a single read or write
operation is executed per session, the consistency level per operation defines how
sessions behave. In other words, close-to-open semantics have no effect (e.g., mid-
dle row in Figure 4(b)). Now, when a client executes multiple operations or opens
multiple files at the same time, the filesystem is neither linearizable nor sequen-
tially consistent. For instance, execution depicted at the top row in Figure 4(b)
is admissible. Under close-to-open semantics, linearizability is stricter than se-
quential consistency, which is itself stricter than eventual consistency (last two
rows in Figure 4(b)).

When FlexiFS implements the close-to-open semantics, the proxy is stateful
and keeps track of the files opened by each of its clients. Therefore, a client has
to access the same proxy during a file session. In more details, upon a successful
call to open(f) the proxy records the iblock of f . This iblock is used for all the
operations during a file session: a read() operation accesses the dblocks indexed
by the iblock, and a write operation changes only the cached version. When
the client closes file f , the proxy stores the iblock of f using put(). It can then
forget that f was opened by the client.
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3.4 Consistency of the Filesystem

A filesystem consistency level (FSCL) is obtained by the combination of a con-
sistency level governing file operations and the use or not of the close-to-open
semantics. This leads to six different FSCLs. In Figure 4, we list in the last
column one or more matching implementations for each level.

POSIX semantics is obtained when file operations are atomic and close-to-open
is not supported. To implement sequential consistency, Sprite [14] relies on a cache
consistency manager while GoogleFS [5] and HDFS [4] make use of a leasing mech-
anism. NFS [15] implements the consistency level offered in Andrew Filesystem [3]:
the close-to-open semantics is respected and metadata operations are atomic. Sin-
fonia [16] supports mini-transactions, a generalized form of compare-and-swap
operation. To advocate for this paradigm, the authors of Sinfonia built a filesys-
tem: SinfoniaFS. This filesystem implements sequential consistency with close-to-
open semantics. Ivy [10] and Pastis [11] implement an eventually consistent DFSS,
respectively, with and without close-to-open semantics.

4 Evaluation

In this section, we present experimental results obtained using FlexiFS, where
we observe empirically and in isolation the tradeoffs between sharing semantics
and performance in DFSS designs.

4.1 Experimental Settings

All tests were performed on a cluster of 8-core virtualized Xeon 2.5 Ghz servers
running Ubuntu 12.04 GNU/Linux and connected by a 1 Gbps switched network.
We use 3 to 7 servers for the storage layer and one client. Our implementation
uses the Lua programming language (http://www.lua.org/) and leverages the
Splay framework and libraries [26]. Bindings to the FUSE C APIs employ the
luafuse library (http://code.google.com/p/luafuse/). The FlexiFS imple-
mentation is modular and easy to modify. The conciseness of Lua and the use
of Splay allow the whole implementation to be less then 2,000 lines of code
(LOC). In particular, the code to support each FSCL is very concise and easy
to extend, e.g., 62 LOC for sequential consistency, and 160 LOC for eventual
consistency.

In what follows, we explore the impact of each FSCL on the cost of iblock
operations, and file operations. We also investigate the impact of the replication
factor on performance. All experimental results are averaged over 103 operations,
and we present standard deviations when appropriate.

4.2 Benchmarks

Metadata Operations. In Figure 5(a), we experiment the insertion of a novel
iblock in the storage system when both the FSCL and the size of the inserted
block vary. For the sake of comparison, results are normalized by the time re-
quired for executing a noop() RPC operation carrying a payload that equals the
size of the block.

http://www.lua.org/
http://code.google.com/p/luafuse/
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(a) Creation of an iblock
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(d) Varying the Replication Factor
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Fig. 5. Evaluating the Price of Consistency. (LIN, SC and EC stand for Linearizable,
Strong Consistency and Eventual Consistency FSCL models, respectively. CTO stands
for close-to-open semantics).

We observe in Figure 5(a) that eventual consistency is the cheapest FSCL as
it costs around 2 times more than the baseline RPC call. This is expected since
a call to C&S () under eventual consistency requires 2 roundtrips: one to go from
the client to the proxy, then one to go from the proxy to a replica. Sequential con-
sistency costs 4 roundtrips: once the primary is reached, the update must reach a
quorum of replicas. For linearizability, 2 more roundtrips for the “propose” phase
of the Paxos algorithm are executed, leading to 6 times the baseline cost.

Our second experiment evaluates the cost of fetching an iblock from the file
storage. We report the results in Figure 5(b). Under linearizability, a get() opera-
tion has an identical cost to a C&S () operation, since both operations go through
the replicated state machine. On the other hand, the cost of sequential consistency
is reduced because the proxy can access any replica to fetch the iblock content.
Therefore, performance is in that case identical to eventual consistency.

FileOperations. Figure 5(c) depicts the time required to write a complete file at
the client side using the FUSE interface. Both scales in this figure are logarithmic.
Eventual consistency is the fastest FSCL when either (i) close-to-open semantics
is not used, or (ii) there is a single dblock to write, i.e., less than 128 kB in our set-
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tings. The POSIX semantics of sharing (i.e., linearizability without close-to-open
semantics) performs the worst in this respect. When the size of the file reaches
128 kB, the use of close-to-open semantics leads to better performance (between
2 and 3 times faster). Below 128 kB, close-to-open semantics pays the cost of the
necessary open() and close() operations. All FSCLs offering close-to-open seman-
tics reach similar performance when more than 4 MB of data are written. Read
operations over a file (not reported here) follow a similar pattern.

Impact of the Replication Factor. Our last experiment measures the impact
of the replication factor on performance. In this experiment, a client writes a file
of 4 MB under linearizability. We vary both the replication factor of FlexiFS, and
the use or not of the close-to-open semantics. Figure 5(d) depicts our results. In
this figure, we observe that increasing the replication factor has a small impact on
performance: below 3% without close-to-open semantics, and 7% with. Paxos is
the most demanding consistency control algorithm we have implemented. Thus,
this result shows that the filesystem consistency level is contributing more than
the replication factor to DFSS performance.

5 Related Work

Several papers discuss the performance, consistency, and semantics tradeoffs in
DFSS designs. The Andrew file system (AFS) [3] introduced caching mechanisms
and the close-to-open semantics for both files and directories. This was inspired
by earlier designs such as Locus [27], which relied on a strict—but costly and
inefficient—POSIX semantics. Since its second version, the Network File System
(NFS) [15] also implements the close-to-open semantics; its fourth version dis-
tinguishes data from metadata management, a separation that has been adopted
by all DFSS designs since then.

OceanStore [28] is a flat data storage system that provides both eventually
consistent and atomic operations. OceanStore follows a design close to the even-
tually serializable data storage [22]: an application may emit two types of file
operations, weak and strong. A weak operation is tentative and executes on any
replica; a strong operation waits until replicas agree on some total ordering of
the operations. GoogleFS [5] uses a central server for storing metadata. CFS [9]
builds a single-user file system by storing content-addressable blocks in the Chord
DHT [29]. Ivy [10] extends this design by allowing a predefined group of users
to access a shared file system. Content blocks are stored in the Chord DHT and
each writer maintains its own modification log, implementing read-your-write
semantics and eventual consistency. In [30], the authors propose to build cen-
tralized metadata storage services for DFSS, providing linearizability guarantees
using the Paxos [19] consensus algorithm while maintaining high availability.

The authors of Pastis [11] compare close-to-open against read-your-write se-
mantics. Levy [25] surveys DFS designs and four different types of file sharing
semantics: POSIX, close-to-open, immutable files, fully transactional semantics,
and survey corresponding implementations. The use of a modular framework
for evaluating design choices and establishing performance/tradeoffs in systems
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software design has been successfully used in various domains. Examples include
virtual machines construction [31] or CORBA-based Middleware [32].

6 Conclusion

This paper depicts a study of the impact of a filesystem consistency level (FSCL)
on the performance of a distributed filesystem service (DFSS). While the FSCL
offered by a DFSS has fundamental impact on performance, it is difficult to sys-
tematically evaluate this impact in isolation from other design aspects, due to
the design and implementation diversity of existing systems. This paper presents
FlexiFS, a framework for the systematic evaluation of DFSS aspects. In more
details, we depict a filesystem interface to users and leverage a set of servers
implementing a fully distributed storage layer for both data and metadata. We
implement three forms of consistency: linearizability, sequential consistency and
eventual consistency, together with and without close-to-open semantics. Re-
markably, a DFSS providing all these FSCLs can be supported with the simple
addition of a compare-and-swap primitive to a regular key/value store. Our ex-
perimental results establish that linearizability under the close-to-open semantics
is a sound design choice and a good compromise between operational semantics
and performance, while illustrating the tradeoffs offered by the other design op-
tions. FlexiFS has a modular design and we plan on investigating further aspects
of DFSS pertaining to indexing, client interaction, and semantics. We also plan
on releasing FlexiFS as a part of the open-source Splay framework [26].
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sion’s Seventh Framework Program (FP7) under grant agreement No. 318809
(LEADS), and the Swiss National Foundation under agreements No. 200021-
127271/1 and CRSII2-136318/1.
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Abstract. NoSQL databases were initially devised to support a few
concrete extreme scale applications. Since the specificity and scale of the
target systems justified the investment of manually crafting application
code their limited query and indexing capabilities were not a major im-
pediment. However, with a considerable number of mature alternatives
now available there is an increasing willingness to use NoSQL databases
in a wider and more diverse spectrum of applications and, to most of
them, hand-crafted query code is not an enticing trade-off.

In this paper we address this shortcoming of current NoSQL databases
with an effective approach for executing SQL queries while preserving
their scalability and schema flexibility. We show how a full-fledged SQL
engine can be integrated atop of HBase leading to an ANSI SQL compli-
ant database. Under a standard TPC-C workload our prototype scales
linearly with the number of nodes in the system and outperforms a
NoSQL TPC-C implementation optimized for HBase.

Keywords: SQL, NoSQL, Cloud Computing, Middleware.

1 Introduction

With cloud-based databases as part of platform-as-a-service offerings, such as
Google’s BigTable [7], Amazon’s DynamoDB [10], and Yahoo!’s PNUTS [8],
HBase [12] and Cassandra [19], NoSQL databases become attractive for a larger
and more diverse set of applications.

However, their lack of SQL support represents a major hurdle for a wider
adoption. This arises at different levels due to the prevalence of SQL as the
standard, widely mastered and efficient query language for databases. Most web
scale applications are purposely kept SQL-based for their core data management
[23]. Any application at least two, three years old is directly or indirectly (e.g. on
top of an object-relational mapping) based on an SQL interface and its migration
is usually not straightforward. A large number of tools and middleware coupled
to SQL have been developed and matured over the years and are currently at
the basis of most application development frameworks.
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It is therefore not surprising that SQL compliance has been one of the most
requested additions to the Google App Engine platform [15].

This state of affairs has sparked a number of proposals for middleware that
exposes higher-level query interfaces on top of the barebones key-value primitives
of NoSQL databases. Many of these aim at approximating the traditional SQL
abstraction, ranging from shallow SQL-like syntax for simple key-value queries
(e.g. CQL for Cassandra, Phoenix [24], PIQL [4]) to the translation of analytical
queries into map-reduce jobs [1–3, 20]. However, due to the complexity of SQL
existing solutions are limited to a subset of the language, thus not allowing to
leverage exiting SQL applications and tools.

In this paper, we present a distributed query engine (DQE) for running SQL
queries on top of a NoSQL database, while preserving its scalability and schema
flexibility. The DQE allows to combine the expressiveness and performance of
a Relational Database Management System (RDBMS) with the scalability and
schema flexibility of a NoSQL database. DQE is a transaction-less database [17],
preserving the isolation semantics provided by the underlying NoSQL database.

Enabling scalable SQL processing atop of a NoSQL database poses several
architectural challenges to the query engine [26, 27]. On one hand, traditional
RDBMS architectures include several legacy components such as on-disk data
structures, log-based recovery, and buffer management, that were developed
years ago but are not suited to modern hardware. Those components impose
an huge overhead to transaction processing [17] limiting its scalability. On the
other, large scale NoSQL databases have a simple data model, using a simple
key-value store or at most variants of the entity-attribute-value (EAV) model [22]
which strongly limit the expressiveness of data representation. Therefore, a first
challenge consists in addressing the impedance mismatches [21] while support-
ing SQL queries. Moreover, it implies mapping relational tables and indexes
to the NoSQL database tables in such way that the processing capabilities of
the database are fully exploited. The other major challenge regards the basic
key-value store interface of NoSQL databases which only allows applications to
insert, query, and remove individual tuples or, at most, issue range queries based
on the primary key of the tuple. These range queries allow for fast iteration over
ranges of rows and also allow to limit the number and what columns are re-
turned. However, NoSQL databases do not support partial key scans, but SQL
index scans must perform equality and range queries on all or part of the fields
of the index.

Contributions. This paper makes the following three contributions. First, we
propose an architecture that allows to combine the expressiveness and perfor-
mance of RDBMS with the scalability of a NoSQL database. The resulting query
processing component is stateless regarding application data and can thus be
seamlessly replicated and embedded in the client application. Then, we show
how the basic key-value operations and data models can be mapped to scan op-
erators within a traditional (SQL enabled) RDBMS. And finally, we describe a
complete implementation of DQE with full SQL support, using Apache Derby’s
[11] query engine and HBase as the NoSQL database.
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Roadmap. The remainder of the paper is structured as follows. Section 2 in-
troduces the proposed architecture of the DQE. Section 3 describes how it is
implemented using Apache Derby components and HBase. Section 4 presents
the experimental evaluation. Section 5 compares our approach to other propos-
als for query processing on a NoSQL database, and Section 6 concludes the
paper.

2 Architecture

The proposed architecture is shown in Figure 1(c), in the context of a scalable
NoSQL and a traditional RDBMS. A major motivation for a NoSQL database
is scalability. As depicted in Figure 1(a), a typical NoSQL database builds on a
distributed setting with multiple nodes of commodity hardware. By adding more
nodes to the system we can increase both the overall performance and capacity
of the system and also its resilience through data replication. By allowing clients
to directly contact multiple fragments and replicas, the system can scale also
in terms of clients connected. To make this possible, NoSQL databases provide
a simple data model as well as basic querying and searching capabilities, that
allow applications to insert, query, and remove individual items or, at most, issue
range queries based on the primary key of the item [28].
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gine (DQE).

Fig. 1. Data management architectures

In sharp contrast, a RDBMS is organized as tables (also called relations). We
seldom are concerned with the storage structure but instead express queries in
a high-level language, invariably SQL. SQL allows applications to realize com-
plex operations and processing capabilities, such as filtering, joining, grouping,
ordering and counting.
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Our current proposal builds on rewriting the internal architecture of a typical
RDBMS, by reusing some of its components and adding new components atop of
a NoSQL database. To understand how components can be reused we examine
the internals of a RDBMS roughly splitting it in a query processor block and a
storage manager block (Figure 1(b)).

The query processor is responsible for offering an SQL based API to appli-
cations, and for translating the application queries, through compilation and
execution, to the underlying storage manager.

The architecture proposed in Figure 1(c) reuses a number of components
from the SQL query processor (shown in light gray). In detail, these are: the
JDBC driver and client connection handler; the compiler and the optimizer,
and a set of generic relational operator implementations. These components
can be shielded from changes, as they depend only on components that are re-
implemented (shown in medium gray) providing the same interfaces as those
that, in the RDBMS, embody the centralized storage functionality (shown in
dark gray) and that is removed from our architecture. The components to be
reimplemented are the following:

– Amapping from the relational model to the data model of a NoSQL database.
This includes: atomic data types and their representation, representation of
rows and tables, and representation of indexes.

– A mapping from the relational schema to that of the NoSQL database, which
allows data to be interpreted as relational tables (see Section 3);

– Implementation of sequential and index scan operators. This includes: match-
ing the interface and data representation of the database and leveraging the
indexing and filtering capabilities in the NoSQL database to minimize data
network traffic;

The proposed architecture has the key advantage of being stateless regarding
application data. Data manipulation language (DML) statements (SELECT,
INSERT, UPDATE and DELETE) can be executed without any coordination
among different DQE instances. As a result, the system should retain the scale-
out capabilities of the supporting NoSQL database.

In addition, this architecture also offers the possibility to take advantage of
the flexible schema exposed by the underlying NoSQL database. That is, each
application applies its own view of the schema over the NoSQL database.

3 Implementation

The current DQE prototype was built by reusing Apache Derby components and
uses HBase as the NoSQL database. In the following, we start with an overview
of both systems.

HBase is a key-value based distributed data storage system based on Bigtable
[7]. In HBase, data is stored in the form of HBase tables (HTable) that are multi-
dimensional sorted maps. The index of the map is the row’s key, column’s name,
and a timestamp. Columns are grouped into column families. Column families
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must be created before data can be stored under any column key in that family.
Data is maintained in lexicographic order by row key. Finally, each column can
have multiple versions of the same data indexed by their timestamp.

A read or write operation is performed on a row using the row-key and one or
more column-keys. Update operations on a single row are atomic, i.e. concurrent
writes on a single row are serialized. Any update performed is immediately visible
to any subsequent reads. HBase exports a non-blocking key-value interface on
the data: put, get, delete, and scan operations.

HBase closely matches the scale-out properties assumed for NoSQL databases.
HTables are horizontally partitioned in regions that are assigned to RegionServers
nodes. In turn, each region is stored as an appendable file in the distributed file
system, Hadoop File System (HDFS) [25] based on GFS [13]. By default, HBase
uniformly distributes data among all available nodes in the systems.

Apache Derby is an open source relational database implemented entirely in
Java. Derby has a small footprint, about 2.6 megabytes for the base engine and
an embedded JDBC driver. In addition, it is easy to install, deploy and use.

Besides providing a complete implementation of SQL and JDBC, Derby has
the advantage of already providing an embedded mode, which eases its use as a
middleware layer.

The store layer of Derby is split into two main areas, access and raw. The
access layer presents a conglomerate (table or index)/row based interface to the
SQL layer. It handles table scans, index scans, index lookups, indexing, sorting,
locking policies, transactions, isolation levels. The access layer sits on top of the
raw store, which provides the raw storage of rows in pages in files, transaction
logging, transaction management. Following the architecture proposed in the
previous chapter, the raw store layer was removed in our prototype and some
components of the access layer were replaced.

3.1 Prototype Components

The system is composed of the following layers: (i) query engine, (ii) storage
and (iii) file system. Applications issue SQL requests to any query engine node.
The query engine node communicates with storage nodes, executes queries and
returns the results to applications. We use Derby components to implement the
query engine. We reuse its query processing sub-system, both the compiler and
the optimizer components. Two new operators for index and sequential data
scans have been added to the set of Derby’s generic relational operators. These
operators leverage HBase’s indexing and filtering capabilities to minimize the
amount of data that needs to be fetched. The SQL advanced operators such
as JOIN and aggregations are not supported by HBase and are implemented
at the query engine. The query engine translates the user queries into some
appropriate put, get, delete, and scan operations to be invoked on HBase. Each
HBase region is stored as an appendable file in the distributed file system. The
distributed file system could be implemented using any scalable file system that
supports append-only files such as HDFS.
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Fig. 2. Data Model Mapping

3.2 Relational-Tuple Store Mapping

Relational tables and secondary indexes are mapped to the HBase’s data model.
We have adopted a simple mapping from a relational table to a HTable. There
is a one-to-one mapping where the HBase row’s key is the relational primary
key (simple or compound) and all relational columns are mapped into a single
column family. Since relational columns are not multi-valued, each relational
column is mapped to a HTable column. The schema of relational tables is rigid,
i.e., every row in the same table must have the same set of columns. However,
the value for some relational columns can be NULL and thus an HTable column
for a given row exists only if its original relational column for that row is not
NULL.

A secondary index of the relational model is mapped into an additional
HTable. The additional table is necessary so that data is ordered by the in-
dexed attributes. For each indexed attribute a HTable row is added and its
row’s key is the indexed attribute. For unique indexes the row has a single col-
umn with its value being the key of the matching indexed row in the primary
key table. For non-unique indexes there is one column per matching indexed
row with the name of the column being the matching row’s key. Figure 2(a)
depicts a relational table example. The column Number is the primary key and
the table has two additional indexes: one unique index on attribute Telephone
and a non-unique index on column Address. Therefore, the mapping will have
three HTables: base data — Figure 2(b), unique index on column Telephone —
Figure 2(c), and non-unique index on column Address — Figure 2(d).

Due to the simple mapping from the relational data model to HBase, the user
can take advantage of the flexible schema exposed by the underlying NoSQL
database and directly use its data in HBase for simple queries or complex
map-reduce jobs.

3.3 Reducing Data Transfer

In order to reduce network traffic between the query engine and HBase, the
implementation of sequential and index scan operators takes advantage of the
indexing and filtering capabilities of HBase.

For index scans data is maintained ordered by one or more columns. This
allows to restrict the desired rows for a given scan by optionally specifying the
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start and the stop keys. In a relational table each column is typed (e.g., char,
date, integer, decimal, varchar) and data is ordered according to the natural
order of the indexed column data type. However, row keys in HBase are plain
byte arrays and neither Derby or HBase byte encoding preserve the data type’s
natural order. In order to build and store indexes in HBase maintaining the data
type’s order we need to map row keys into plain bytes in such a way that when
HBase compares them the order of the data type is preserved. This mapping has
been implemented for integer, decimal, char, varchar and date types. As indexes
may be composite, besides each specific data type encoding, we also needed to
define a way to encode multiple indexed columns in the same byte array. We do
so by simply concatenating them from left to right, according to the order they
are defined in the index using a pre-defined separator.

In HBase the start and stop keys of a scan must always refer to all the columns
defined in the index. However, when using compound indexes the DQEmay gener-
ate scans using subsets of the index columns. Indeed, an index scan can use equal-
ity conditions on any prefix of the indexed columns (from left to right) and at most
one range condition on the rightmost queried column. In order to map these par-
tial scans, the default start and stop keys in HBase are not used but instead the
scan expression is run through HBase’s BinaryPrefixComparator filter.

The aforementioned mechanisms reduce the traffic between the query engine
and HBase by only retrieving the rows that match the range of the index scan.
However, a scan can also select non-indexed columns. A naive implementation
of this selection would fetch all rows from the index scan and test the relevant
columns row by row. In detail, doing so on top of HBase would require a full
table scan, which means fetching all the table rows from the different regions
and possible different RegionServers. The full table would therefore be brought
to the query engine instance and only then discard those rows not selected by
the filter. To mitigate this performance overhead, particularly for low selective
queries, that this approach may incur, the whole selection is pushed down into
HBase. This is done by using the SingleColumnValueFilter filter to test a single
column and, to combine them respecting the conjunctive normal form, using the
FilterList filter. The latter represents an ordered list of filters that are evaluated
with a specified boolean operator FilterList.Operator.MUST PASS ALL (AND)
or FilterList.Operator.MUST PASS ONE (OR).

3.4 Metadata

Derby must also store information about the in-memory representation of tables
and index, conglomerates, in a persistent manner.

For this we use a special HBase table, ConglomerateInfo, with information
for all available conglomerates. ConglomerateInfo has a single column family,
MetaInfo, and data for each conglomerate is stored in a row whose key is the
conglomerate’s identifier. Three columns are used to save information: value, a
byte array with the encoding of all information; name, the name of the index or
table to which this conglomerate matches; and size, to store the estimate of the
current size (number of rows) of the conglomerate.
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The information stored in ConglomerateInfo is mainly modified by Data Def-
inition Language (DDL) statements. However, the size attribute is modified by
any update DML statement (INSERT, UPDATE or DELETE) and therefore
this attribute may change frequently. Thus, we used a simple mechanism to up-
date the value in a distributed and efficient manner. The size of the table/index
is used only for the query optimizer to decide the best query plan and there-
fore don’t need to be the most recent value. In most RDBMS, this value is
maintained probabilistically manner and thus we update its value in each query
engine instance asynchronously.

Each query engine instance maintains the last estimate it has for the global
size (shared by all instances), updates it accordingly to the local changes (when
some update DML statement occurs), and periodically updates the value stored
in ConglomerateInfo (shared by all instances) and refresh its local estimate.
For, this it maintains the delta of the size after the last update to Conglomer-
ateInfo, and in the next update it increments or decrements the size stored in
ConglomerateInfo with the delta value, using a special HBase method for this
purpose (incrementColumnValue ). Then, it resets the delta value for the next
time window.

4 Evaluation

The evaluation of our prototype addresses two performance aspects: the overhead
imposed by the DQE in terms of added latency, and the system scale-out in terms
of the achieved throughput by increasing the number of nodes.

4.1 Overhead

We measure the increased latency of the system resulting from using the DQE
instead of a standard HBase client.

Test Workload. We used a workload typical of NoSQL databases, Yahoo!
Cloud Serving Benchmark [9]. YCSB was designed to benchmark the perfor-
mance of NoSQL databases under different workloads. It has client implemen-
tations for several NoSQL databases and a JDBC client for RDBMS. We have
used the HBase and JDBC clients without any modifications.

Experimental Setting. The machines used for the experiments had a 2.4 GHz
Dual-Core AMD Opteron(tm) Processor, with 4GB of RAM and a local SATA
hard-disk. The machines were interconnected by a switched Gigabit local area
network.

For the experiments 2 machines were used: one to run the workload genera-
tor, using an embedded connection to the modified Derby; and another running
HBase. HBase was run in standalone mode, meaning that the HBase master
and HBase RegionServer were collocated in the same machine using the local
filesystem.
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Table 1. Overhead results (ms)

Workload 1 thread, 100 tps 50 threads, 100 tps

Operation HBase DQE HBase DQE

Insert 0.58 0.93 1.04 1.98

Update 0.51 1.3 2.66 3.1

Read 0.53 0.79 1.63 1.7

Scan 1.43 2.9 4.64 6.1

The YCSB database was populated with 100,000 rows (185MB) and the work-
load consisted of 1,000,000 operations. The proportion for the different types of
operations was 60% reads, 20% updates and 20% scans. The operations were
distributed uniformly over the database rows. The size of the scan operator was
also a uniform random number between 1 and 10. We measured two runs where
each client had 1 and 50 threads, respectively. In both, the target throughput
was 100 operations per second.

Results. The average latency (in milliseconds) for the YCSB workload is shown
in Table 1, for the standard HBase client and DQE.

The results for the insert operations correspond to the loading of the database
while other operations are due to the mix of operations generated by the work-
load itself.

The results show that for all types of operations the query engine can be
embedded in the application with an overhead totally in line with the base
figures. The additional latency is due to the SQL processing and required mar-
shalling/unmarshaling. Moreover, the overhead of DQE decreases with the in-
creasing number of concurrent clients (threads).

4.2 Scale-Out

We measured the increased throughput of the system when varying the number
RegionServer nodes from 1 to 30.

Test Workload. For the evaluation of the scale-out we used the load of an
industry standard on-line transaction processing SQL benchmark, TPC-C.1 It
mimics a wholesale supplier with a number of geographically distributed sales
districts and associated warehouses. The warehouses are hotspots of the system
and the benchmark defines 10 client per warehouse.

TPC-C specifies five transactions: NewOrder with 44% of the occurrences;
Payment with 44%; OrderStatus with 4%; Delivery with 4%; and StockLevel
with 4%. The NewOrder, Payment and Delivery are update transactions while
the others are read-only. The traffic is a mixture of 8% read-only and 92% update
transactions and therefore is a write intensive workload.

1 Since the current system does not include a transaction manager, all transactional
contexts of the benchmark are simply discarded.
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Fig. 3. TPC-C results

We have used both an existing SQL implementation,2 without modifications,
to drive the DQE, and an existing NoSQL implementation optimized for HBase.3

Briefly, in the NoSQL implementation, TPC-C columns are grouped into column
families, named differently for optimization, and the data storage layout has been
optimized.

Experimental Setting. We ran all the experiments on a cluster of 42 machines
with 3.10GHz GHz Dual-Core i3-2100 CPU, with 4GB of RAM and a local SATA
hard-disk. The machines were interconnected by a switched Gigabit local area
network.

The TPC-C workload has run from a varying number of machines. For our
proposal, we varied the number of client machines from 1 to 10, each running
150 client threads. Each client machine as also running a DQE instance as a
middleware layer.

One machine was used to run the HDFS namenode, HBase Master and
Zookeper [18]. The remaining machines were RegionServers, each configured with
a heap of 3GB, and also running a HDFS DataNode instance.

The TPC-C database was populated according to the number of Region-
Servers, ranging from 5 warehouses, for a single RegionServer, to 150 warehouses,
for 30 RegionServers. All TPC-C tables, were partitioned and distributed so there
were 5 warehouses per RegionServer each handling a total of 50 clients. With
150 warehouses, the size of the database was about 75GB.

Results. The system throughput for a varying configuration of 1, 6, 12, 18, 24,
and 30 RegionServers is depicted in Figure 3(a). The results show that DQE
presents linear scalability. This is mainly due to the scale independence of the
query processing layer and the scalability of the NoSQL database layer.

Furthermore, while with the DQE the system has a slightly lower through-
put up tp 6 RegionServers its scalability is better than that of HBase under
the NoSQL TPC-C load generator. This can be mainly attributed to the opti-
mizations achieved by Derby’s query engine that take advantage of relational

2 BenchmarkSQL - http://sourceforge.net/projects/benchmarksql/
3 https://github.com/apavlo/py-tpcc/wiki/HBase-Driver

http://sourceforge.net/projects/benchmarksql/
https://github.com/apavlo/py-tpcc/wiki/HBase-Driver
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operators, filtering and secondary indexes, while manual optimizations and de-
normalization still incur on greater complexity resulting in a greater overhead
and worse scalability.

In this specific case, the query engine can greatly restrict the amount of
data retrieved from HBase by, as previously explained, also taking advantage
of HBase filters to select non-indexed columns. As a matter of fact, the net-
work traffic when using the DQE is much lower than using the NoSQL TPC-C
implementation. In fact, this prevented us from getting results for PyTPCC,
the implementation optimized for HBase, with more than 18 RegionServers due
to the saturation of the network. The latency figures in Figure 3(b) reflect the
problem very clearly.

5 Related Work

Existing NoSQL databases rely on simplified and heterogenous query interfaces,
that constitute a barrier on their adoption. Projects like BigQuery [1], Hive [2]
or Tenzing [20] try to mitigate this constraint by providing an interface based
on SQL over a MapReduce framework and a key/value store, but are mainly
intended for data warehousing and analytical purposes.

BigQuery is a Google web service, built on top of BigTable. As query lan-
guage, it uses a SQL dialect, that is a variation of the standard. It only offers a
subset of the standard operators like selection, projection, aggregation and or-
dering. Joins and other more complex operators are not supported. In addition,
data is immutable once uploaded to BigTable. Hive is built on top of Hadoop,
a project that encompasses HDFS and the MapReduce framework. Hive also
defines a simple SQL-like query language to query data but it offers more com-
plex operators such as equi-joins, which are converted into MapReduce jobs,
and unions. Likewise, Tenzing relies on a MapReduce framework to provide a
SQL query execution engine, offering a mostly complete SQL implementation.
The Hadapt commercial system4 (previously HadoopDB [3]) is also an analyt-
ical driven database, but it takes a slightly different approach by providing a
hybrid system. Like Hive, it uses an SQL interface over the MapReduce frame-
work from Hadoop, but replaces the HDFS layer with a cluster of single-node
relational databases.

Like Hadapt, the CloudDB [16] project is a hybrid system. However, it sup-
ports both OLAP and OLTP by providing three types of data storage systems:
a relational database, a NoSQL database and a database oriented for OLAP.
Data is stored in the database, according to the guarantees of data consistency
required by the user.

Similarly to our approach, PIQL [4] and Megastore [5] propose an architecture
with higher-level processing functionality via a database library.

In PIQL, the application issues queries in a new declarative language that is
based on a subset of SQL, but extended with new statements and some new
operators to always achieve a predictable performance independently of the

4 http://www.hadapt.com/

http://www.hadapt.com/
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database size (i.e. scale-independence). However, there are several restrictions
on the supported operations. For instance, a table scan is not scale-independent
and has to be appended with a limit statement to bound the results. While this is
done to achieve predictable performance it is a major impediment to run legacy
applications.

MegaStore is built on top of BigTable and implements some of the features
of RDBMS, such as secondary indexing. Nonetheless, join operations must be
implemented at the application side. Therefore, applications must be written
specifically for MegaStore using its data model and queries are restricted to
scans and lookups.

The use of a library-centric component to offer higher-level processing func-
tionality in our prototype is similar to the architecture of PIQL, Megastore, as
well as that by Brantner et al. [6]. However, our architecture allows to combine
the expressiveness and performance of RDBMS, taking advantage of its query
optimizer and full SQL support. This allows our proposal to run existing SQL
applications and tools while retaining the scale-out capabilities of the NoSQL
database.

On a different perspective, other approaches make use of object mapping tools
that allow to bypass the database lower level interfaces. By using [14], the user
has at her disposal the generic object interfaces like JPA and JDO that allow her
to use NoSQL databases in an almost transparent way, leveraging the knowledge
already existent in the area. These solutions have also the advantage of aiding
the migration of existent solutions based on object to relation mappers allowing
the mix of different types of databases under the same code base.

6 Conclusions and Future Work

We presented a distributed query engine allowing to execute ANSI compliant
SQL queries on top of a NoSQL database. The query engine allows to combine the
expressiveness and performance of a Relational Database Management System
with the scalability and schema flexibility of a NoSQL database.

The developed prototype offers a standard JDBC client interface and can be
embedded in the client application as a middleware layer. It is stateless with
respect to application data making its replication straightforward. For the ex-
ecution of data management language statements it does not require any kind
of coordination which prevents any undesirable impact on the scalability of the
underlying NoSQL database. The feasibility of the approach is demonstrated by
the performance results obtained with the YCSB and TPC-C benchmarks.

Moreover, the comparison with a NoSQL TPC-C implementation optimized
for HBase shows that the presented prototype, through the use of the full-fledged
query engine from Apache Derby achieves impressive performance.
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Abstract. Over the past decade, we have witnessed the emergence of
a bulk set of devices, from very different application domains intercon-
nected via Internet to form what is commonly named Internet of Things
(IoT). The IoT vision is grounded in the belief that all devices are able to
interact seamlessly with each other anytime, anyplace, anywhere. How-
ever, devices communicate via a multitude of incompatible protocols, and
consequently drastically slow down the IoT vision adoption. Gateways,
that are able to translate one protocol to another, appear to be a key en-
abler of the future of IoT but present a cumbersome challenge for many
developers. In this paper, we are providing a framework called EZ that
enables to generate gateways for either C or Java platform without re-
quiring from developers any substantial understanding of either relevant
protocols or low-level network programming.

1 Introduction

In the new era of the Internet Of Thing (IoT), interoperability is a key challenge.
Over the last years, a promising solution that gained success to address interop-
erability issues is to use gateways that translate back and forth messages among
heterogeneous protocols [1–5]. The design of such gateways [1–5] does not take
as a first class priority the specific needs of the IoT context. First, gateways must
scale in the large, i.e., they must efficiently manage both bulk sets of messages
and simultaneous message translation processes. Second, gateways need to be as
pervasive as possible: they must run on highly heterogeneous software environ-
ments. Current gateways only target low-level C code and are not adequate in
the IoT context where Java is also a mainstream language.

In this paper, we propose EZ a new gateway compiler for the z2z language [2]
that relies on the event paradigm. We choose the z2z language as it has already
proven to be adequate to describe gateways. To solve performance issues EZ

defines a workflow of handlers, which communicate with events. Further, to take
into account software heterogeneity, EZ is able to compile the z2z language to
both C and Java code, ready to be plugged into respective runtimes.

The remainder of this paper is structured as follows. Section 2 introduces our
approach to generate from high level specifications our next generation gateways
for either C or Java environment. Section 2.2 is focused on the internal design of
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our next generation gateways. In particular, it presents our new asynchronous
runtime system for building scalable gateways in either C or Java along with
EZ. Section 3 presents the performance evaluation of our asynchronous gateways.
Finally, Section 4 reviews related research works and Section 5 concludes the
paper with a discussion of future research directions.

2 EZ Approach

In a way similar to z2z, zebu [2,6], our approach is based on generative program-
ming. More specifically, EZ reuses the z2z domain specific language to specify
generated gateways (Figure 1, ❶). However, EZ introduces a new compiler en-
abling the generation of asynchronous code in either C or Java to be linked into
an adequate and efficient event-based oriented runtime system (Figure 1, ❷, ❸)
that fulfills the requirements of IoT. In other terms, developers only have to
replace the z2z compiler by the EZ one to generate event-based gateways. These
gateways use exclusively non-blocking system calls to perform asynchronous I/O
network operations.

z2z
spec

EZ compiler

.C

#include<stdio.h>

void main(int argc, 
char** argv){

}

.java

Developer

C EZ-gateway over libasync

Java EZ-gateway over JVM

C asynchronous runtime

Message 
Extraction

(Protocol A)
Message 

Processing

Message 
Generation
(Protocol B)

Message 
Extraction

(Protocol B)

Message 
Generation
(Protocol A)

Java asynchronous runtime

Message 
Extraction

(Protocol A)
Message 

Processing

Message 
Generation
(Protocol B)

Message 
Extraction

(Protocol B)

Message 
Generation
(Protocol A)

1 2

3

Fig. 1. EZ approach to generate asynchronous multi-platform gateway

2.1 Z2z Domain Specific Language

Our EZ approach has been design especially to be fully compliant with the z2z

language that has been proved to be adequate to describe gateways in high level
manner by hiding to developers low-level network and system codes.

Z2z Language. The z2z language provides facilities for defining three types of
modules: the Protocol Specification (PS) modules used to describe the network
protocol behaviors, the Message Specification (MS) modules used to describe
message structures, and the Message Translation (MT) modules used to de-
scribe the message translation logic. More precisely, a PS module provides infor-
mation about various properties of the interaction with the network, such as the
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transport protocol used, whether requests are sent in unicast or multicast, and
whether responses are received synchronously or asynchronously. It also speci-
fies how to dispatch a received request to a specific handler for processing. A
MS module defines the useful information to be extracted from incoming mes-
sages, i.e., message views. It also defines the structure of new messages to be
created, i.e., message templates. A template contains a message view that de-
scribes “holes” to be filled by the translation logic when creating a new message.
Finally, a MT module is specified using a dedicated C-like syntax and consists
of a set of handlers, one for each kind of relevant incoming requests, as indicated
by the protocol specification. It provides domain-specific operators for manipu-
lating and constructing messages, for sending requests and returning responses,
and for managing session state across requests.

Z2z Front-End Compiler. Our new EZ compiler reuses the z2z front-end that
deals with the scanning and the parsing of the language and performs consistency
checks across the PS, MS and MT modules. For instance, the front-end checks
that the MT module defines a handler for each kind of message that should
be handled by the gateway and that each handler has an appropriate return
type according to the PS module. It guaranties that all fields and values have
been appropriately initialized and used across the different modules. Further,
the front-end compiler performs as well a data-flow analysis of the message
translation code to detect erroneous specifications and ensure the generation
of safe code.

2.2 Asynchronous EZ Runtime

One key contribution of the EZ approach is to be able to generate in a transparent
manner either C or Java gateways. Specifically, both C and Java based gateways
use runtimes implemented with an event-based programming paradigm built on
top of the libasync [7] event-driven library for the C version and the new NIO.2
API provided by the JDK7 for the Java version.

Message
Generation
(Protocol A)

Message
Processing

Message
Extraction
(Protocol B)

Message
Extraction

(Protocol A)

Message
Generation
(Protocol B)

Event bus

Main thread loop

1 2 3 21

Fig. 2. Event-based processing chain

Gateways are decomposed into key functional building blocks, such as message
extraction, processing, and generation. Each of these building blocks registers
their interests into network I/O events (See Figure 2,❶,❷,❸). Further, each build-
ing block may additionally interact with each other via the use of events that
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they can generate by themselves. For instance, events for either notifying the ar-
rival of a recognized and fully parsed message, for indicating that no data can be
read anymore, or for notifying network I/O error, are asynchronously dispatch
to the building blocks that have declared their interest in these events. Incoming
messages that traverse the event-based processing chain are then decomposed
into multiple events that are serially dispatched one at a time by a main thread
loop. As a consequence, the pipeline, contrary to our previous work [1–5], is not
anymore shared among a pool of threads avoiding so mutex lock contentions and
increasing inherently performances.

Event-Based Message Processing. As opposed to z2z for instance, EZ treats each
operation performed by the translation logic, that leads to an I/O access, as an
asynchronous call and thus is compiled by the EZ compiler so as to produce a con-
tinuation. When the operation is completed, an event is generated and caught by
the runtime system that resumes the associated continuation to resume the pro-
cessing. This strategy results in the creation of many continuations for a handler.

Event-Based Message Extraction. In contrast to the thread model that accumu-
late data to reconstruct the corresponding message before processing it, EZ pro-
cesses messages even if there are not yet fully parsed. When no more data can be
read, because of message fragmentation for example, the parser is paused, the cur-
rent state is saved and a callback is attached to the availability of new data. When
the associated event occurs, the callback is invoked and execution continues in the
previously saved state. A soon as a fragment or a message field is recognized by the
parser an event is immediately triggered. This event is then stored in the message
view to be processed by the other building blocks such as the message processing
one. With EZ, message parsing drastically limits memory consumption because a
message does not need to be entirely saved in memory before starting its parsing.
Instead, in C based version of the runtime, two contiguous memory pages are used
as a circular buffer, accounting for about 8KB of memory, whereas in the Java ver-
sion of the runtime two buffers are used and flipped when the first one is exhausted.
This only works thanks to the scattered read facility of Java network API. In the
either C or Java runtimes, dynamic memory allocation is only required for filling
values of the message view when fields are recognized.

Event Based Error Management. When an event occurs, the associated callback
function is executed by the runtime system. However, events corresponding to
I/O operations may never occur if the underlying operation fails to complete,
leading thus to memory leaks difficult to address. To overcome this issue, C
and Java EZ runtimes attach timeout on each event. If the corresponding timer
expires before the occurrence of the event, the runtime frees associated resources
to prevent memory leaks.

3 Evaluation

To assess the scalability of z2z and EZ gateways, we have implemented the
SMTP/HTTP and HTTP/STMP gateways described previously. Our perfor-
mance experiments are carried out on a Dell Intel R© Xeon R© server powered
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by 4 processors of 8 hyper-threaded cores clocked at 2.2 GHz. We use the
multi-threaded SMTP test client and server distributed with Postfix to stress the
generated gateways. C code is compiled using gcc 4.7.2 and Java code executes on
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Fig. 3. Time to send 1000 message of 10kB
by N clients

HotSpot server 1.7. For our exper-
iments, a given number of simulta-
neous clients (up to 30) send 1000
messages of 10KB in a closed loop1

to a SMTP server through a tunnel-
ing application. Figure 3 shows the
response time for each gateway, as
well as the native protocol communi-
cation costs (direct). Since gateways
are I/O intensive, a certain amount
of clients are required to get sat-
isfying throughput. The event-based
gateways (EZ-C and EZ-Java) clearly
outperform the thread-based gate-
ways (z2z).

4 Related Work

There have been a bulk set of different approaches to protocol interoperability,
for instance to name a few, ReMMoC [8], RUNES [9], MUSDAC [10], BASE [11],
INDISS [1], Starlink [3] and Enterprise Service Buses [12]. Compared to EZ, these
approaches have three major weak points: neither they address the difficulty of
gateway development nor they tackle the scalability issue, and nor they target
both C and Java environment. The closest approach to ours is z2z [2], which
constitutes the first generative approach for building gateways. However, z2z
generated gateways exhibit poor scalability in the face of the increasing load
generated by clients and the increasing size of messages. Furthermore, z2z only
targets C environment and is therefore less pervasive than a Java based version.

Scalability has been a major concern in the field of Web servers as these
systems must efficiently operate on thousands of files and connections. However,
Web servers are CPU intensive oriented while gateways are I/O intensive. Thus
experiences on Web server architecture should not be granted for gateways.

5 Conclusion and Future Work

Network protocol gateways are a key enabler of the future of IoT but present
a cumbersome challenge for developers. In particular there are three main chal-
lenges that need to be overcome to build gateways: (i) providing an easy way
to build gateways by hiding to developers intricacies of low-level network and

1 A client sends a new message only when it receives an acknowledgement from the
server for the reception of the previous message.
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system code, (ii) tackling the scalability issue,(iii) beeing pervasive, i.e. multi-
platform compliant (i.e. C or Java based). As a future direction, multicore ar-
chitectures are today a reality in all kinds of computing systems, ranging from
powerful servers to desktop environments and embedded systems. However cur-
rent systems and applications are unable to fully exploit these new architectures.
Taking advantage of multicore hardware is thus today one of the most important
scientific challenges in the systems domain. We are investigating the extension
of EZ to support multicore architectures. Another potential research direction is
to raise on our ongoing research work on hardware accelerated parsers to speed
up drastically messages processing in embedded platforms [13].
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Abstract. Cloud-based applications are built from services offered by
distinct third-party cloud providers. Most cloud-related information (ser-
vice properties such as price, availability, response time, etc.) can change
at any time during application execution. Therefore, it is essential to sup-
port the adaptation of applications in such dynamic conditions in order
to ensure that the cloud services currently provided to deployed appli-
cations adhere to the established requirements. In this paper we present
an autonomous adaptation process for cloud-based applications by re-
placing a service by an alternative one that fulfills the application needs.
We discuss the factors that trigger an adaptation in a Cloud Computing
scenario and describe the adaptation process within Cloud Integrator,
a service-oriented middleware platform for composing, executing, and
managing services provided by different cloud platforms.

Keywords: Cloud Computing, Cloud services, Cloud Integrator, Se-
mantic workflows, Autonomous adaptation.

1 Introduction

The growing interest in the Cloud Computing paradigm is grounded on its utility
model in which computing services are delivered through a pay-per-use model.
By exploiting this model, applications can be composed of services provided by
distinct third-party cloud providers. The selection of the proper cloud services
that fit the application needs is based on non-functional information, i.e. proper-
ties of the services such as price, availability, response time, etc., and applications
can rely on a middleware that abstracts away the burden of directly dealing with
underlying mechanisms for service selection and communication with the cloud
providers.

In this context, our previous work introduced Cloud Integrator [1–3], a service-
oriented middleware platform for composing, executing, and managing services
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provided by different Cloud Computing platforms, so that Cloud Integrator
works as a mediator between the service providers and the applications (clients).
Moreover, it provides an environment that facilitates the development and execu-
tion of fault-tolerant applications that use such services by composing semantic
Web services [4] in a semantic workflow [5] composed of a sequence of abstract
activities that must be performed by concrete cloud services in order to achieve
the application’s business goal. In order to execute such semantic workflow, it is
necessary to create at least one execution plan containing a set of concrete Web
services that perform each one of the activities specified in the workflow.

By using Cloud Integrator, an application can specify the set of cloud services
that it needs as well as the properties of each service, and the selection mecha-
nism provided by the middleware platform is able to choose the cloud services
provided by the integrated platforms that fulfill the application requirements.
However, most cloud-related information (service properties) can change at any
time during application execution, so that it is essential to support the adapta-
tion of applications in such dynamic conditions to ensure that the cloud services
currently provided to the applications adhere to the established requirements.

In this paper we present an adaptation process to coordinate the autonomous
adaptation of cloud applications based on the replacement of services by alter-
native ones that fulfill the application requirements, in case of service failure or
when any change in the properties of a cloud service (e.g. quality parameters)
can potentially affect the running application(s). Section 2 details our adapta-
tion process, which is evaluated in Section 3. Finally, Section 4 presents final
remarks.

2 Adaptation of Cloud Applications

The service composition model adopted by Cloud Integrator is based both on
the functionality of each service and on its metadata (such as QoS parameters
and prices), thus enabling a better choice of the available services. Moreover,
this composition mechanism enables Cloud Integrator to deal with situations
in which a service that is available at composition time becomes unavailable at
runtime or in case of quality degradation of any service that is included in the
composition. If two or more services with similar functionality are available, then
Cloud Integrator builds different execution plans for the current workflow, each
of them using one of these alternative services. Thus, in case of service failure or
quality degradation, another execution plan that contains the service with similar
functionality can replace the current one in order to ensure the quality and
availability of the running application. In this section we describe the adaptation
process that supports this capability. Herein, an adaptation of an application
means to replace a running execution plan by another one that performs the
same activities. The adaptation process performed by Cloud Integrator currently
addresses the replacement of application services, which may be SaaS and/or
PaaS cloud services or even other traditional (non-cloud) services.
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2.1 Factors That Trigger an Adaptation

There are three classes of changes in cloud environments that may trigger the
adaptation process. The first one is the failure of one or more services due to
loss of connection between Cloud Integrator and a service provider or internal
service errors. In both cases, the service provider becomes unable to respond to
requests and then the current execution plan that contains such service must be
immediately replaced by an alternative execution plan that contains a service
with similar functionality, when possible. For instance, suppose that the execu-
tion plan A → B → C1 → D is being executed and the service C1 becomes
unavailable. In this case, the adaptation mechanism must select an alternative
execution plan with the equivalent service C2 (for instance, the execution plan
A → B → C2 → D), thus avoiding the failure of the whole application.

The second class of events that may trigger an adaptation is the quality degra-
dation of one or more services. Cloud environments can present highly dynamic
execution conditions in which fluctuations in the network and high service usage
may affect the quality of executing services. In this case, an alternative execu-
tion plan containing a service that provides similar functionality to the degraded
service can be adopted if its utility1[3] is significantly higher than the utility of
the current execution plan. Finally, the third case is the arising of new services,
which can be dynamically discovered. Since these new services may provide more
advantageous alternative execution plans for running applications, it is necessary
to analyze the need and convenience of replacing a current execution plan with
an alternative one that contains one or more new services. Similarly to quality
degradation, it is also important to consider the utility gains and the impact
regarding the replacement of the current execution plan. In the current develop-
ment state of Cloud Integrator, the adaptation process is only triggered in case
of service failures. Adaptation triggered by quality degradation or discovery of
new services will be addressed in future works.

2.2 Factors That Affect the Adaptation Process

When the adaptation process replaces an execution plan regarding an applica-
tion, its major concern is to ensure that the application requirements continue
to be satisfied. Although the quality of alternative execution plans is an essen-
tial factor to be considered, it is not sufficient to ensure an efficient adaptation.
Moreover, since replacing an execution plan may lead to the re-execution of
services or other costly actions, the decision about such possible replacement
must consider the adaptation cost, which is the overhead imposed by actions
that must be performed in order to resume the application after replacing the
current execution plan with an alternative one. As an example, when some of
the services included in the current execution plan have already been executed,
it may be advantageous to select the alternative execution plan that has more

1 As presented in our previous work [3], the computation of the utility of an execution
plan takes into account both QoS parameters and the monetary costs of the services
that compose it.
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services in common with the current one. Therefore, such similar plan can offer a
lower adaptation cost by reusing the outputs produced by the executed services,
thus avoiding the need of actions that may have considerable impact.

The computation of the adaptation cost regarding alternative execution plans
must consider the following factors: (i) reuse of executed services ; (ii) the roll-
backs required to return services that have already been executed to a previous
execution state, and; (iii) compensatory actions taken in order to restore an pre-
vious execution state when a service needs to return to a previous state and it
does not support rollbacking. In this perspective, the computation of the adap-
tation cost of an execution plan p starts with the computation of its absolute
adaptation cost cabs(p) (Eq. 1), which is defined as the sum of the number of
services to be executed after the replacement of the current execution plan (e),
the number of services that require rollbacks (r), and the number of services
that require compensatory actions (a):

cabs(p) = e+ r + a (1)

In turn, the adaptation cost c(p) regarding an execution plan p is calculated
through a vector normalization of its absolute adaptation cost cabs(p) (Eq. 2):

c(p) = 1−
1

cabs(p)√∑
r∈EP

(
1

cabs(r)2

) (2)

in which cabs(r) is the absolute adaptation cost of each execution plan r in the
set of available execution plans EP .

2.3 The Adaptation Process

The adaptation process performed by Cloud Integrator was inspired in Adapt-
UbiFlow [6], an adaptation mechanism proposed in the context of ubiquitous
applications. The selection of an alternative execution plan considers two essen-
tial parameters: (i) the initial utility (u) of the candidate execution plans, which
expresses their properties in terms of price and quality parameters, and; (ii) the
adaptation cost (c), which weights the actions that must be performed when
replacing the application’s execution plan. When the adaptation process is trig-
gered, the initial utility of the alternative plans is computed by using the same
criteria (QoS parameters and prices) that were originally used for selecting the
application’s current execution plan [3]. Next, the adaptation cost is computed
for each alternative plan, as shown in Equation 2. In the adaptation process,
the selection of an execution plan is based on the computation of the adapta-
tion utility μ(p) of each alternative execution plan p defined as a weighted sum
of the initial utility u(p) and the adaptation cost c(p). Equation 3 shows how
the adaptation process computes the adaptation utility μ(p) for each alternative
execution plan p, so that the alternative plan with maximum adaptation utility
is selected to replace the current execution plan. If two or more execution plans
have maximum utility, the adaptation process selects one of them at random.



Autonomous Adaptation of Cloud Applications 179

μ(p) = [u(p) ∗ wEP ] + [c(p) ∗wAC ] (3)

The weights wEP and wAC in Equation 3 are respectively assigned by the user
to the initial utility and the adaptation cost, with wEP , wAC ∈ [0, 1] and wEP +
wAC = 1. The values assigned to these weights are defined in terms of five
different configurations called adaptation profiles, as shown in Table 1.

Table 1. Adaptation profiles for the definition of the weights assigned to initial utility
and adaptation cost

Adaptation profile Description
Assigned weights

wEP wAC

maximum initial utility exclusive priority to the initial util-
ity of the execution plan

1.00 0.00

high initial utility prioritizes the initial utility of the
execution plan while considering
the adaptation cost

0.75 0.25

balanced default configuration, with equal
weights

0.50 0.50

low adaptation cost prioritizes the adaptation cost,
while also considering the initial
utility of the execution plan

0.25 0.75

minimum adaptation cost exclusive priority to the adaptation
cost

0.00 1.00

After selecting an alternative execution plan, the required rollbacks and com-
pensatory actions are transparently performed in order to replace the current
execution plan and resume the execution of the application.

3 Evaluation

A preliminary evaluation was performed aiming to assess the time spent by
the adaptation process triggered in case of failure of a service involved in the
execution plan that is being executed, so that such failure is detected when
a timeout in which the service does not respond to the request is reached. In
this perspective, services involved in the selected execution plan for executing
the application were forced to fail in order to trigger the adaptation process.
As shown in Table 2, the time spent in milliseconds to perform the adaptation
process (and that covers the selection of an alternative execution plan to replace
the current one) is significantly small, thus not significantly impacting on the
application execution. More details about the performed evaluation can be found
at http://consiste.dimap.ufrn.br/projects/cloudintegrator/dais2013.

http://consiste.dimap.ufrn.br/projects/cloudintegrator/dais2013
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Table 2. Minimum and maximum values, average and standard deviation regarding
the time (in milliseconds) spent by the adaptation process

Execution plans Minimum Maximum Average Standard deviation

2 0.2754 0.5950 0.4694 0.0708

4 0.4598 0.9522 1.2352 0.1626

8 0.7716 1.9416 1.7846 0.2574

12 1.4680 3.7006 3.2596 0.5168

18 4.0158 11.7134 7.2724 1.7644

4 Final Remarks

In this work we discussed the events that can trigger the need for adaptation
in a cloud-based environment, as well as the factors that should be taken into
consideration when choosing the best way to react to changes in the runtime
environment in order to ensure the quality and availability of the application.
We described the adaptation support designed for Cloud Integrator in which
service failures and quality degradation are addressed with an algorithm that
takes the adaptation cost (incurred in the replacement of services) into account.
A preliminary evaluation of such adaptation process in case of service failures
has shown that the adaptation process does not significantly impact in the ap-
plication execution. In addition, the proposed adaptation process works with
minimal user awareness, thus promoting the autonomy of the application in case
of failures or other conditions that may trigger an adaptation.
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Abstract. Security engineering for any given application can usually be done
in many different ways. There is often a tradeoff between usability (including
efficiency) and the level of protection offered. Typically the risks are assessed
by developers, and a particular approach is chosen, with the assumption that the
design can stay fixed for some time.

Adoption of Cloud computing will challenge the viability of this approach.
Beyond the extra difficulties faced when doing security engineering within
distributed systems, Cloud providers require a different threat model from self-
hosted resources. They are best considered “trusted but curious” even if the cu-
riosity is accidental on the Cloud provider’s part. Some threats from such Cloud
providers can be confounded through the use of cryptography, but doing so is
overkill in terms of the performance penalty for many applications.

To acquire the benefits of Cloud computing while minimising security risks,
we believe that application developers should be provided with the ability to dy-
namically change the security enforcement technology in use by their software,
balancing performance and security as they see fit. Recent cryptography research
will significantly increase our ability to offer a runtime choice of contrasting se-
curity enforcement approaches without needing to modify the security policy. We
present our initial research into this area, and outline our vision for the future.

1 Introduction

Application developers need to carefully consider the security engineering of their soft-
ware. This is particularly true today, as so many devices are network accessible—and
indeed need network functionality in order to operate at all—their exposed security
surface area is larger than in the past days of isolated microcomputers.

Even software on single machines needs to interact with a number of local software
components (broadly defined), simply due to the need to build on top of existing oper-
ating system and language runtime codebases.

Two broad types of data security model are Discretionary Access Control (DAC) and
Mandatory Access Control (MAC)—see [1] for details. In DAC systems, the owners of
protected resources are empowered to change the permissions of those objects, e.g., in
Access control lists, capabilities and role-based access control (RBAC).

In MAC models, access control policy is enforced regardless of the desires of the
owners of a protected resource. A common illustration is multi-level security models
used in the military and other government organisations: data and principals are given

J. Dowling and F. Taı̈ani (Eds.): DAIS 2013, LNCS 7891, pp. 181–186, 2013.
c© IFIP International Federation for Information Processing 2013



182 D. Eyers and G. Russello

security labels, and policy determines for any data access whether that access will be
permitted as a function of the type of access and the labels of the principal and the data,
e.g., policy may prevent a principal writing ‘top secret’ data into a ‘classified’ resource.

DAC schemes are often enforced by ensuring that code execution paths that access
protected resources do permission checking before allowing such access. A risk of this
approach is that it relates more to software code than the data it is trying to protect: in
some cases access control checks may be accidentally omitted. In other cases this is due
to control flow paths allowing implicit access to protected data.

MAC schemes are frequently implemented in a more directly data-centric manner.
Since no code path should be able to circumvent the label-based protection, it is appro-
priate to use techniques to protect the data that may have higher run-time overheads,
such as hardware-assisted memory protection. It is impractical to avoid having some
trusted computing base (TCB) even in the strictest MAC schemes, but the TCB is ide-
ally isolated entirely from the applications and data it is protecting (often it would be
part of the operating system).

One potential approach to ensuring mandatory, data-linked protection against infor-
mation leakage is to maintain the data in encrypted form, if the TCB is the only part of
the code that possesses the decryption keys. Implementing MAC this way may allow
for less effort being required to protect the target data: some application-level function-
ality, such as writing data into a database, might be able to be permitted, despite the
data storage functionality not actually being contained within the TCB. This may lead
to a more practical system than approaches that require expensive runtime interception
of all protected data access.

Regardless of the mechanism used to enforce policy, generally accepted best prac-
tice is to abstract security policy away from application-specific implementation code.
Widely available implementations of access control technologies such as XACML have
helped make it easier to achieve this practice. Maintaining this sort of policy abstraction
simplifies making access control policy modifications after software has been deployed.

Security engineering in distributed systems is significantly more complex than for
software running on single hosts. However, widespread adoption of Cloud computing
will cause distributed security engineering to be required within a growing proportion
of applications. The terminology of IETF RFC 2904 [2] includes separate notions of
a policy decision point (PDP) and a policy enforcement point (PEP), which highlights
the possibility to perform expensive policy checking in a different part of the distributed
system than the software component that mediates access to a protected resource.

1.1 Enter Cloud Computing

Cloud computing provides a challenging type of distributed system in which to deploy
security-sensitive software. The challenge stems from the Cloud provider being a dif-
ferent organisation from the Cloud tenant, combined with the requirement that Cloud
resources need to be accessed across a network. Beyond the need to run above a hy-
pervisor in the first place, Infrastructure as a Service (IaaS) Cloud offerings need to
manage the data travelling in a Cloud provider’s network between instances of virtual
machines, e.g., that host parts of a typical three-tier web application. Then, as Cloud de-
ployment increasingly uses Platform as a Service (PaaS) offerings, a growing number



Toward Unified and Flexible Security Policies Enforceable within the Cloud 183

of application components will be distributed in a way that exposes previously internal
security considerations.

Cloud computing providers are most safely treated as “trusted but curious”. The
curiosity might well be accidental—a provider may leak data from the processes that
they use to achieve data backups, for example. However the Cloud provider is clearly
“trusted” in that outsourcing to an overtly malicious organisation makes no sense at all.

Put another way, if the primary objectives of computer security are to effect confi-
dentiality, integrity, availability, then we are targeting systems that can provide integrity
and availability, but through software or working practice errors, may fail to maintain
complete confidentiality.

In this respect, Fully Homomorphic Encryption (FHE) represents the holy grail in
Cloud security: FHE allows computers to perform arbitrary computation on encrypted
data. FHE protects users’ privacy from curious Cloud providers since they are unable to
view the users’ data. However, the first solution to FHE presented by Gentry [3] is very
inefficient. Partially Homomorphic Encryption (PHE) schemes exist supporting lim-
ited computations on the encrypted data but in a more efficient way. PHE schemes have
been used extensively for supporting search operations over encrypted databases in out-
sourced settings [4,5,6,7,8,9,10,11,12,13,14,15]. The main issue of these approaches is
that they enforce a very basic access control policy: if a user has a decryption key then
she is allowed to access the whole database. We argue that more flexible security poli-
cies can be enforced if the mechanism for protecting the data from the Cloud provider
is separated from the mechanism for controlling access to the data.

1.2 Contribution

This position paper describes our work to increase the flexibility of security in out-
sourced systems, by proposing a distributed architecture where data protection mech-
anisms are orthogonal to the security policy enforcement. We aim to allow developers
to flexibly tradeoff between speed, simplicity and security for different parts of their
applications without needing to rewrite their access control policy.

In particular, application developers can choose between enforcing security using
access control barriers, or through the use of encryption. Using barriers will process
data more quickly, but the policy enforcement infrastructure must be trusted to see the
data that it is releasing to the principals. In the latter case, we extend how cryptographic
protection is implemented, by utilising PHE algorithms to allow the policy enforce-
ment point to remain oblivious to the content of the data being released, avoiding an
undesired, additional TCB point within the overall distributed system.

2 Encrypted Policy Enforcement

There are several PHE-based solutions that offer encrypted storage of data while allow-
ing basic search capabilities to be performed on the server side without the server learn-
ing anything about the plaintext data [4,5,6,7,8,9,10,11,12,13,14,15]. However, these
solutions assume all users have the same right to access data. Basically, these solutions
lack access control mechanisms to enforce access policies for regulating the access of a



184 D. Eyers and G. Russello

user (or a group of users) to a particular subset of the stored data. To partially alleviate
this problem, solutions such as the one described in [16] have been proposed where
access policies are encoded as a set of encryption keys. Only users possessing a key
are authorised to access the data. The main drawback of this approach is that security
policies are tightly coupled with the security mechanism. Therefore, any changes in the
security policies require to generate new keys and to redistribute them to the users.

In our research, we argue that the security model used for controlling access to the
data should be made disjoint from the mechanism used for protecting the data from the
Cloud provider. For instance, most companies use as a security model for protecting
their IT infrastructure variations of Role-Based Access Control (RBAC) [17]. In the
RBAC model, access decisions are based on the role of the user making a access request.
However, typical implementations of this model cannot be deployed on an infrastructure
that is not fully trusted, such as Cloud environments because the information they deal
with may leak information on the data they are protecting and the internal structure of
the organisation. Similar considerations can be made for other MAC and DAC access
control models—but for lack of space we focus on the RBAC model here.

We consider an Cloud scenario with outsourced security management involving two
service providers: the Data Service Provider is responsible for storing the data; the
AC Service Provider is responsible for the enforcement of access control policies. For
reliability, the two services might be provided by different Cloud providers (although
this is not a strict requirement for our approach). It is assumed that the Cloud providers
are honest-but-curious, that is, they allow the components to follow the protocol to
perform the required actions but curious to deduce information about the exchanged and
stored data. Figure 1 provides an overview of our distributed architecture for separating
policy enforcement from data protection mechanisms.

The responsibility of specifying policies and updating them is that of the Admin
User. The Requester requests access to the data residing in the outsourced environ-
ment. The Company RBAC Manager is responsible for assigning a role to the re-
quested user (that is, an Admin User or a Requester). The Server RBAC Manager is
responsible for managing the encrypted role hierarchy graph. The Trusted Key Man-
agement Authority (KMA) generates and securely transmits the secret keys to the key
store. An Admin User (i) gets a role from the Company RBAC Manager and then (ii)
deploys the access policies to the Administration Point that (iii) stores the policies in
the Policy Store. Meanwhile, the Company RBAC Manager sends the role hierarchy
graph that is stored by the Server RBAC Manager (iv).

To request data, a query needs to be encrypted first (0). The Requester then (1) gets
a role assigned by the Company RBAC Manager. Next, the Requester (2) sends the
request to the Policy Enforcement Point (PEP) which (3) forwards the request to the
Policy Decision Point (PDP). The PDP (4) fetches matching policies against the re-
quest, (5) collects the contextual information from the Policy Information Point (PIP),
and (6) the role information. The PDP evaluates the access request and the contextual
information against policies and sends the policy decision to the PEP (7). If the decision
is a deny, then PEP usually drops communication or replies to the Requester with an
error.If the decision is permit, the PEP (8) forwards the encrypted query to the Data
Store. Finally, the PEP (9) forwards the query results to the Requester.
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Fig. 1. Our distributed architecture for enforcing RBAC in outsourced environments

The enforcement of encrypted RBAC policies is based on the ESPOONERBAC system
[18]. However, the idea presented in this position paper is to extend the functionality
of the PEP to support communication with external service providers where the data is
stored. The storage service can use several different types of data protection, indepen-
dently of the access control model implemented in the AC Service Provider.

The degree of decoupling can be selected by the system designer, depending on their
view of the security risk posed by the various different hosting organisations in use
within the distributed system. If the trusted/untrusted environment division shown in
figure 1 is too conservative for some parts of the application, ‘untrusted’ components
can be moved to the ‘trusted’ side. Crucially, for the RBAC policies discussed here, this
change in trust does not require the access control policy to be rewritten.

3 Future Work and Conclusion

In this paper we have discussed how Cloud computing environments have increased
the number of participants in distributed access control applications, and how this can
negatively impact security. Nonetheless, highest-grade encryption may be overkill for
some parts of an application, where the security risks do not justify its use.

Our goal is to develop security technologies for Cloud computing that can flexibly
change between software-based protection (i.e., access control monitors) and stronger
protection encoded using encryption, without requiring the policy to be rewritten. We
have presented an implementation of RBAC that uses the ESPOONERBAC system, and
illustrated how PHE solutions can provide a cryptography-based distributed RBAC en-
forcement environment. The same RBAC can be checked more cheaply using conven-
tional access control monitors, working from an equivalent policy implementation. Our
future work will increase the coverage of policy features that can be implemented using
encryption, and to improve the performance of our techniques. We believe our notion
of decoupling access control enforcement from the policy specification will be crucial
to effect comprehensive security within Cloud computing.
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Héctor Fernández1, Marko Obrovac2, and Cédric Tedeschi2

1 VU University Amsterdam, The Netherlands
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Abstract. This paper addresses decentralised workflow scheduling,
which calls for fulfilling two seemingly contradictory requirements: de-
centralisation and efficiency. We describe a two-layer architecture that
allows decentralisation while making it possible for each scheduling de-
cision to be taken based on a global perspective of the current state of
resources. The first layer expresses the scheduling strategy on a global
perspective, relying on a coordination space where workflows are first
decomposed in tasks, and then tasks mapped onto resources. The sec-
ond layer allows this global policy to be enacted in a fully-decentralised
manner, based on a distributed hash table indexing resources, enhanced
with advanced discovery mechanisms. Thus, in spite of decentralisation,
the system is able to select the momentarily most appropriate resource
for a given task, independently of the location of the provider of the re-
source. The framework’s expectations in terms of scalability and network
overhead are studied through simulation experiments.

1 Introduction

With the rise of Service Computing, a growing number of scientific applications
are defined as workflows of services, i.e. temporal compositions thereof, which
in turns intensifies the usage of distributed computing infrastructures, which
consequently suffer from their centralisation, leading to reliability, privacy, and
sustainability [1,2]. These situations led to the advocation of decentralised way of
building these infrastructures, based on the federation of distributed computing
resources [2]. Unfortunately, decentralisation and efficiency may be contradictory
objectives. As described in [2], some coordination between participants/nodes of
the federation is required to provide some efficiency in spite of decentralisation.
In this position paper, we focus on workflow scheduling, i.e., the process
deciding which resource each task of some workflow has to be run on, and how
to provide this coordination specifically for scheduling. Coordination is needed in
order to ensure the consistency of the scheduling decisions taken independently
by distinct nodes scheduling different tasks.

Let us briefly review few recent approaches for fully decentralised schedulers.
Works such as [3] motivate the need for interlinking computing platforms through
peering arrangements enabling resource sharing. Local schedulers are connected
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through gateways used to serve locally-unsatisfied requests. However, preferring
locality might lead to an inefficient scheduling. Ranjan et al. [4] proposed a
decentralised scheduler using a distributed hash table (DHT) split in regions
through a P2P coordination space. The DHT acts as a distributed blackboard
containing requests. Each region is managed by one peer, responsible for finding
suitable resources in its part of the platform. Finally, works such as [5] propose
gossip-based schemes to schedule computation-intensive jobs, where there are
no predefined schedulers — any entity can schedule a job. However, the un-
structured nature of gossiping protocols leads to only weak guarantees when
searching a suitable resource for a task. The presented framework intends not
only to decentralise the scheduling process, but also targets the possibility to
support efficient scheduling algorithms through a coordination layer, built on
top of the network, enabling a global knowledge of available resources.

Decentralisation and coordination cannot be tackled at once. We separate two
concerns: (i) the specification of scheduling’s logic; and (ii) its decentralised im-
plementation. For the first problem, we need some high-level abstractions able
to express these rules naturally. Rule-based programming, and in particular, the
chemical programming model, offers adequate abstractions to specify coordina-
tion in distributed systems [6]. This model envisions a computation as a set of
concurrent reactions between molecules of data. Formally speaking, the data is
a multiset rewritten by a set of rules to be applied concurrently by distributed
processes. Then, the second problem – the distributed implementation – can be
refined as, how to distribute this multiset while being able to read and write
it concurrently, so that the coordination is decentralised in its entirety. In this
paper, we rely on HOCL (Higher-Order Chemical Language) [7], a rule-based lan-
guage, enhanced with a chemistry-inspired execution model. According to the
metaphor, molecules of data float in a solution, and, on collision, react according
to reaction rules (the program) producing new molecules (the resulting data). In
HOCL, the solution is a multiset containing molecules, and rewriting rules define
reactions. The reactions take place in an implicitly parallel and non-deterministic
way until no more reactions are possible — a stable state referred to as inertia.
Let us consider the following chemical program which extracts the maximum
value from a set of integers : replace x, y by x if x ≥ y in 〈2, 4, 5, 7, 9〉. The
rule specifies that any pair of integers inside the solution can react, consum-
ing these two molecules and creating a new one with the highest value of the
two. The HOCL execution model simply assumes reactants are captured atom-
ically, so each molecule reacts only once. The exact degree of parallelism and
the order in which the rule is applied is left to the implementor of a runtime
supporting the language. Thus, one of the possible execution is the following:
〈2, 4, 5, 7, 9〉 →∗ 〈4, 5, 9〉 → 〈5, 9〉 → 〈9〉. In case new molecules (here, integers)
are dynamically inserted into the multiset, an imbalance may arise, triggering
new reactions. Enabling persistent coordination amongst scheduling entities re-
quests for such a concept. We here use HOCL to express the scheduling process.

In the following, we present a two-layered, fully-decentralised workflow
scheduling framework. The top layer is a chemically-coordinated shared space
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where workflows are decomposed into tasks, which are mapped to resources. The
bottom layer implements this shared space in a fully decentralised way, based
on a peer-to-peer overlay network allowing the efficient storage and retrieval of
molecules. The system proposed allows for a dynamic multiple-workflow schedul-
ing. The conducted simulations allow to describe more precisely the scalability
and overhead of such a platform. Section 2 describes our decentralised workflow
scheduling system and its coordination model. Section 3 evaluates the perfor-
mance and network overhead of the framework. Section 4 concludes.

2 A Distributed Shared Space for Workflow Scheduling

We now present a fully-decentralised, just-in-time, multiple-workflow scheduler,
where the scheduling process is shared by a set of chemical engines running
on every resource machine. As illustrated by Figure 1, the proposed system
comprises a communication layer and a coordination layers.

Fig. 1. Two-layer architecture Fig. 2. Workflow decomposition

Abstracting out the underlying network topology and dealing with the large
number of resources, chemical engines, referred to as nodes in the remainder,
are connected through a DHT [8], constituting the communication layer, and
illustrated in the lower part of Figure 1. The DHT handles the dynamic nature
of the platform while preserving a uniform and efficient communication pattern.

The DHT allowing chemical engines to share data (molecules) in a scalable
fashion, a distributed shared multiset will be created on top of it, to which nodes
expose their molecules representing workflow tasks and resources, as shown in the
upper side of Figure 1. Thus, nodes can use molecules they do not hold, making
it possible to build a coordination layer based on a distributed scheduling
space. Each chemical engine is provided with rules to decompose the workflow
and schedule the tasks, acting by consuming and producing molecules within
the shared multiset.

2.1 Molecule Types

There are three types of molecules in our system: molecules representing work-
flow levels, task molecules and resource molecules, respectively. Each molecule
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is assigned a unique identifier using the DHT’s hash function. The molecule
is then placed in the shared multiset (as depicted in Figure 2), by routing
it to the appropriate node based on its identifier. Upon its entry in the sys-
tem, a workflow is decomposed into levels by the entry node, producing level
molecules (small white circles in Figure 2). Level molecules take the form
Level:idLevel:〈task1, . . . , taskn〉, where idLevel identifies this level in the work-
flow, and task1, . . . , taskn are the tasks the level comprises. Once it is the turn
of a level to be processed, the node storing its molecule splits it into a set of
task molecules (black circles in Figure 2), one per task. A task molecule takes
the form Task:idTask:〈cmd:res desc〉:〈Dest:destTaskId, . . . 〉, where idTask
is the task’s identifier, cmd denotes the actual service to invoke, res desc is
the description of the resource requirements, and the 〈Dest:destTaskId, . . . 〉
sub-solution specifies to which tasks the output of this task has to be
sent. Physical resources are represented by resource molecules of the form
Res:idRes:〈feature1, . . . , featuren〉, where idRes is the identifier of the re-
source and feature1, . . . , featuren are its current characteristics, such as the
number of processors, the CPU load, or the memory usage. Unlike level and
task molecules, resource molecules are not uniformly hashed. Instead, they are
kept on the originating node (as suggested in Figure 2). Doing so keeps the
network cost of updating a resource molecule at zero.

2.2 Workflow Scheduling Process

The framework proposed aims at providing a decentralised just-in-time task-to-
resource mapping, on top of which more complex workflow scheduling heuristics
can be implemented. It follows a rule-based (event-driven) execution model, in
which a rule is triggered when a node receives a molecule or a new workflow. Three
entities can trigger a rule: a workflow, a level molecule and a task molecule. The
chemical rules used for the scheduling process are given in Algorithm 1(down).
A workflow initially enters the platform by being sent to a given node, its entry
point, which receives the workflow and decomposes it in levels, producing level
molecules. Workflows are described using the chemical workflow definition illus-
trated in Algorithm 1(up), where the main solution is composed of as many task
molecules as there are tasks participating in the workflow.

Upon the receipt of a workflow, a node triggers the workflowDecomp rule
which reorganises the tasks represented as sub-solutions of the workflow repre-
sentation into levels. To distinguish between levels which can be scheduled and
those which have to wait, we use two types of molecules: Level:num:READY
and Level:num. The initial workflow decomposition, through the activation
of the rule workflowDecomp, produces only Level:num molecules to indicate
that none of the levels can be scheduled. However, as the scheduling goes on,
these molecules will, one by one, turn into Level:num:READY molecules, in-
dicating that the tasks of the previous levels have been completed and that the
tasks of the next level can be scheduled for execution. To extract tasks from
level molecules, a node uses the levelDecomp rule. This rule consumes a level
molecule with its state set to READY , and produces as many task molecules
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Algorithm 1. Chemical workflow representation (up); and Generic rules (down).

1.01 〈 Task : 1 : 〈cmd1 : res desc1〉 : 〈Dest : 2,Dest : 3, . . . 〉,
1.02 Task : 2 : 〈cmd2 : res desc2〉 : 〈Dest : 4, . . . 〉,
1.03 Task : 3 : 〈cmd3 : res desc3〉 : 〈Dest : 4, . . . 〉,
1.04 Task : 4 : 〈cmd4 : res desc4〉 : 〈〉 〉
2.01 let workflowDecomp = replace 〈 Task1, ..., Taskn 〉
2.02 by Level:1:〈 Task1 〉, ..., Level:L:〈 Taskn 〉
2.03 let levelDecomp = replace-one Level:num:READY:〈 Task1, ... ,Taskn 〉
2.04 by Task1, ... ,Taskn

2.05 let mapTaskRes = replace Taski, Resj by system.deploy(Taski, Resj )

2.06 if (Taski.isCompatibleWith(Resj))

as there are tasks in the given level (Algorithm 1, line 2.03). Upon the receipt
of a task molecule, a node uses the mapTaskRes rule to map the task to the
best resource it can find (Algorithm 1, line 2.05). For this purpose, we use a
second, order-preserving DHT layer, physically matching the first one, to store
meta-molecules — pointers to resource molecules. A meta-molecule is placed in
this layer according to its value, i.e. cpu usage. When a node looks for a re-
source to execute its task on, it sends a request in this second layer. Using the
resources’ requirements indicated in the task molecule, the second DHT layer is
scanned by a range query (whose complexity is typically in O(log2(n))) [9], such
as cpu < 80%, reflecting the if -clause of the mapTaskRes rule. If a matching
resource molecule is found, the rule produces a molecule that deploys the given
task onto the resource thus found (denoted by the system.deploy() molecule in
Algorithm 1). When all of its tasks have been completed, the node holding the
(currently active) level molecule retrieves the inactive molecule of the next level,
to allow the next level to be processed. Once the tasks of the last level have
completed, its responsible node collects all of the results and transfers them to
the entry node, which delivers them to the client that submitted the workflow for
execution. Note that, due to decentralisation, multiple workflows can be sched-
uled at the same time. They can be processed in parallel, each being managed
by a different set of nodes, while the final scheduling decisions are still taken on
a global perspective. They are independently decomposed, each on a different
entry-point node, but their tasks compete collectively for resources.

3 Preliminary Evaluation

We built a discrete-time simulator in Python to simulate the framework when
multiple randomly-generated workflows are executed. As shown by Figure 3,
increasing the number of nodes has an impact on the time taken to schedule
workflows which is limited, as the routing’s cost grows logarithmically with the
number of nodes. Also, thanks to decentralisation, increasing the number of
workflows does not augment much the time to solve them, as it enables a high
degree of parallelism. Figure 4 shows that the logarithmic nature of the routing
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limits the impact of increasing the number of nodes on the network congestion.
The number of messages naturally increases proportionally with the number of
workflows, as the scheduling of a task relies on resource retrieval, which needs
O(log2(n)) messages to complete. Finally, Figure 5 suggests that the number of
messages sent per node drastically reduces when more nodes take part in the
scheduling process, even when an elevated number of workflows is present.
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4 Conclusion

To address the contradictory objectives of decentralisation and efficiency of
scheduling, we have proposed a high-level coordination mechanism relying on
a chemistry-inspired, rule-based programming model, and supported by a DHT-
based decentralised architecture to retrieve and match tasks and resources effi-
ciently. This DHT-driven coordination enables just-in-time scheduling, allowing
to match each task to the momentarily best resource available. Simulations were
conducted, showing further the feasibility and scalability of the approach.
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Abstract. Distributed highly-available key-value stores have emerged
as important building blocks for applications handling large amounts
of data. The Apache Cassandra system is one such popular store com-
bining a key distribution mechanism based on consistent hashing with
eventually-consistent data replication and membership mechanisms. Cas-
sandra fits well applications that share its semantics but is a poor choice
for traditional applications that require strong data consistency. In this
work we strengthen the consistency of Cassandra through the use of ap-
propriate components: the Oracle Berkeley DB Java Edition High Avail-
ability storage engine for data replication and a replicated directory for
maintaining membership information. The first component ensures that
data replicas remain consistent despite failures. The second component
simplifies Cassandra’s membership, improving its consistency and avail-
ability. In this short note we argue that the resulting system fits a wider
range of applications, and is more robust and easier to reason about.

1 Introduction

The ability to perform large-scale data analytics over huge data sets has in the
past decade proved to be a competitive advantage in a wide range of industries
(retail, telecom, defence, etc.). In response to this trend, the research community
and the IT industry have proposed a number of platforms to facilitate large-
scale data analytics. Such platforms include a new class of databases, often
referred to as NoSQL data stores, which trade the expressive power and strong
semantics of long established SQL databases for the specialization, scalability,
high availability, and often relaxed consistency of their simpler designs.

Companies such as Amazon [1] and Google [2] and open-source communities
such as Apache [3] have adopted and advanced this trend. Many of these sys-
tems achieve availability and fault-tolerance through data replication. Google’s
BigTable [2] is an early approach that helped define the space of NoSQL key-value
data stores. Amazon’s Dynamo [1] is another approach that offered an eventu-
ally consistent replication mechanism with tunable consistency levels. Dynamo’s
open-source variant Cassandra [3] combined Dynamo’s consistency mechanisms
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Fig. 1. System architecture

with a BigTable-like data schema. Cassandra uses consistent hashing to ensure
a good distribution of key ranges (data partitions, or shards) to storage nodes.

Cassandra works well with applications that share its relaxed semantics (such
as maintaining customer carts in online stores [1]) but is not a good fit for more
traditional applications requiring strong consistency. We recently decided to em-
bark on a re-design of Cassandra that preserves some of its features (such as its
data partitioning based on consistent hashing) but replaces others with the aim
of strengthening consistency. Our design does not utilize multiple masters on con-
current updates to a shard or techniques such as hinted handoff [1]. Instead, ser-
vice availability requires that a single master per shard (part of a self-organized
replication group) be available and its identity known to I/O coordinators. We
reduce intervals of unavailability by aggressively publishing configuration up-
dates. Furthermore we improve performance by using client-coordinated I/O,
avoiding a forwarding step in Cassandra’s original I/O path. In summary, our
re-design centers on:

– Replacing Cassandra’s data replication mechanism with the highly available
Oracle Berkeley DB Java Edition (JE) High Availability (HA) key-value stor-
age engine (hereafter abbreviated as BDB). Our design simplifies Cassandra
while at the same time it strengthens its data consistency guarantees.

– Enhancing Cassandra’s membership protocol with a highly available Paxos-
based directory accessible to clients. In this way, replica group reconfigura-
tions are rapidly propagated to clients, reducing periods of unavailability.

The resulting system is simpler to reason about and backwards-compatible with
original Cassandra applications. While we expect that dropping the eventual
consistency model may result in reduced availability in certain cases, we try to
make up by focusing on reducing recovery time of the I/O path after a failure.
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Fig. 2. System components and their interactions

The rest of the paper is organized as follows: In Section 2 we describe the
overall design and in Section 3 we provide details of our implementation and
preliminary results. In Section 4 we describe related work and in Section 5 di-
rections of ongoing and future work. Finally in section 6 we conclude.

2 Design

Our system architecture is depicted in Figure 1. We preserve the Thrift-based
client API for compatibility with existing Cassandra applications. We also main-
tain Cassandra’s ring-based consistent hashing mechanism (where keys and stor-
age nodes both map onto a circular ring [1]) but modify it to map each key to a
BDB replication group (RG) instead of a single node. BDB implements a B+-
tree indexed key-value store via master-based replication of a transaction log,
using Paxos for reconfiguration. In our setup, all accesses go through the mas-
ter (ensuring order) while writes are considered durable when in memory and
acknowledged by all replicas. Periodically, replicas flush their memory buffers
to disk. These settings offer a strong level of consistency with a slightly weaker
(but sufficient for practical purposes) notion of durability [4].

Each node in an RG runs a software stack comprising a modified Cassandra
with an embedded BDB (left of Figure 2). On a master, Cassandra is active
and serves read/write requests; on a follower, Cassandra is inactive until elected
master (election is performed by BDB and its result communicated to Cassandra
via an upcall). The ring state is stored on a Configuration Manager (or CM, right
of Figure 2). The CM complements Cassandra’s original metadata service which
uses a gossip-based protocol [3]. It combines a partitioner (a module that chooses
tokens for new RGs on the ring) with a primary-backup viewstamp replication [5]
scheme where a group of nodes (termed cohorts) exchange state updates over
the network. The CM can be thought of as a highly-available alternative to
Cassandra’s seed nodes. It contains information about all RGs, such as addresses
and status (master or follower), and corresponding tokens. Any change in the
status of RGs (new RG inserted in the ring or existing RG changes master)
is reported to the CM via RPC. The CM is queried by clients to identify the
current master of an RG (by token).

We improve data consistency over original Cassandra by prohibiting multi-
master updates. For a client to successfully issue an I/O operation, it must have
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access to the master node of the corresponding RG. Causes of unavailability
include RG reconfiguration actions after failures and delays in the new ring
state propagating to clients. Our implementation supports faster client updates
by either eager notifications by the CM [6] or by integrating with the CM.
Additionally, clients can explicitly request RG reconfiguration actions if they
suspect partial failure (i.e., a master visible to the RG but not to the client).

Our partitioner subdivides the ring to a fixed number of key ranges and assigns
node tokens to key-range boundaries. This method has previously been shown
to exhibit advantages over alternative approaches [1]. Each key range in our
system corresponds to a different BDB database, the total number of key ranges
on the ring being a configuration parameter. Finally, data movement (streaming)
between storage nodes takes place when bootstrapping a new RG.

3 Implementation and Preliminary Results

Our implementation replaces the original Cassandra storage backend with Ora-
cle Berkeley DB JE HA. One of the challenges we faced was bridging Cassandra’s
rich data model (involving column families, column qualifiers, and versions [3])
with BDB’s simple key-value get/put interface where both key and value are
opaque one-dimensional entities. Our first approach mapped each Cassandra
cell (row key, column family, column qualifier) to a separate BDB entry by con-
catenating all row attributes into a larger unique key. The problem we faced with
this model was the explosion in the number of BDB entries and the associated
(indexing, lookup, etc.) overhead. Our second approach maps the Cassandra
row-key to a BDB key (one-to-one) and stores in the BDB value a serialized
HashMap of the column structure. Accessing a row requires a lookup for the row
and subsequent lookup in the HashMap structure to locate the appropriate data
cell. Our current implementation following this approach performs well in the
general case, with the exception of frequent updates/appends to large rows (the
entire row has to be retrieved, modified, then written back to BDB). This is a
case where Cassandra’s native no-overwrite storage backend is more efficient by
writing the update directly to storage, avoiding the read-modify-write cycle.

Our Configuration Manager (CM) uses a specially developed Cassandra par-
titioner to maintain RG identities, master and follower IPs, RG tokens, and the
key ranges on the ring. We decided to use actual rather than elastic IP addresses
due to the long reassignment delays we observed with the latter on certain Cloud
environments. Each RG stores its identifier and token in a special BDB table
so that a newly elected RG master can retrieve it and identify itself to the CM.
The CM exports two RPC APIs to storage nodes: register/deregister RG, new
master for RG; and one to both storage nodes and clients: get ring info. The
CM achieves high availability of the ring state via viewstamp replication [5, 7].

Preliminary results with the Yahoo Cloud Serving Benchmark (YCSB) over
a cluster of six Cassandra nodes (single-replica RGs) on Flexiant VMs with 2
CPUs, 2GB memory, and a 20GB remotely-mounted disk indicate improvement
by 26% and 30% in average response time and throughput respectively, compared
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Table 1. YCSB read-only workload

Throughput Read latency Read latency

(ops/sec) (average, ms) (99 percentile, ms)

Original Cassandra 317 3.1 4
Client-coordinated I/O 412 2.3 3

to original Cassandra (Table 1 summarizes our results). This benefit is primarily
due to client-coordination of requests. Our ongoing evaluation will further focus
on system availability under failures and scalability with larger configurations.

4 Related Work

Our system is related to several existing distributed NoSQL key-vale stores [1–3]
implementing a wide range of semantics, some of them using the Paxos algo-
rithm [8] as a building block [6, 9, 10]. Most NoSQL systems rely on some form
of relaxed consistency to maintain data replicas and reserve Paxos to the im-
plementation of a global state module [9, 10] for storing infrequently updated
configuration metadata or to provide a distributed lock service [6]. Exposing
storage metadata information to clients has been proposed in the past [1, 9, 11],
although the scalability of updates to that state has been a challenge.

Perhaps the closest approaches to ours are Scatter [12], ID-Replication [13], and
Oracle’s NoSQL database [11]. All these systems use consistent hashing and self-
managing replication groups. Scatter and ID-Replication target planetary-scale
rather than enterprise data services and thus focus more on system behavior under
high churn than speed at which clients are notified of configuration changes. Just
as we do, Oracle NoSQL leverages the Oracle Berkeley DB (BDB) JE HA stor-
age engine and maintains information about data partitions and replica groups
across all clients. A key difference with our system is that whereas Oracle NoSQL
piggybacks state updates in response to data operations, our clients have direct
access to ring state in the CM, receive immediate notification after failures, and
can request reconfiguration actions if they suspect a partial failure. We are aware
of an HA monitor component that helps Oracle NoSQL clients locate RG masters
after a failure, but were unable to find detailed information on how it operates.

5 Future Work

Integrating the CM service into Cassandra clients (making each client a partic-
ipant in the viewstamp replication protocol) raises scalability issues. We plan
to investigate the scalability of our approach as well as the availability of the
resulting system under a variety of scenarios. Another research challenge is in
provisioning storage nodes for replication groups to be added to a growing clus-
ter. Assuming that storage nodes come in the form of virtual machines (VMs)
with local or remote storage on Cloud infrastructure, we need to ensure that
nodes in an RG fail independently (easier to reason about in a private rather
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than a public Cloud setting). Elasticity is another area we plan to focus on. A
brute force approach of streaming a number of key ranges (databases) to a newly
joining RG is a starting point but our focus will be on alternatives that exploit
replication mechanisms [14].

6 Conclusions

In this short note we described a re-design of the Apache Cassandra NoSQL
system aiming to strengthen its consistency while preserving its key distribu-
tion mechanism. Replacing its eventually-consistent replication protocol by the
Oracle Berkeley DB JE HA component simplifies the system while making it
applicable to a wider range of applications. A new membership protocol fur-
ther increases system robustness. A first prototype of the system is ready for
evaluation while the development of more advanced functionality is currently
underway. This work was supported by the CumuloNimbo (FP7-257993) and
PaaSage (FP7-317715) EU projects.
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Abstract. Virtual microscopes are commonly used in medical educa-
tion. They provide a platform for distributing whole slide images (WSI)
with several GB size to exploring students. Even in courses with a few
hundred students and dozens of WSI the network traffic may be high,
but it will vastly increase, when the system is opened to access from
the Internet. The same applies to user-generated content like interac-
tive annotations (each student generates approx. 200 labels per term).
In a collection that consists of several thousand WSI, which need to be
annotated for training or quiz-based purposes, there will be millions of
user contributions. In an abstract view users navigate through a universe
of WSI and annotations and may meet other users watching the same
or related WSI. This paper presents a distributed architecture build on
PathFinder for Internet-based virtual microscopy addressing the chal-
lenges of distributing tightly connected data chunks on an overlay net-
work consisting of random graphs.

1 Introduction

A virtual microscope is a system, which provides digitalized slides for a large
number of simultaneously accessing clients, similar to geographic applications
like Google Maps. Slide scanners are used to digitize glass slides and create
proprietary slide file formats depending on the scanners’ manufacturer [6]. The
file size varies with the dimensions of the scanned specimen and ranges from a
few MB to several GB. Virtual microscopes have been developed more than a
decade ago to fit the needs of pathologists and have been adopted for educa-
tional purposes in microscopic anatomy in the last few years [5]. As the typical
setup consists of a server accessing the file resources and delivering them on de-
mand to any connected client via either proprietary communication protocols or
http/ftp, the system’s transmission capacity is obviously limited by the server’s
network connection. Usually, all systems are designed to work with classroom-
sized courses and some are capable of handling up to a few hundred clients con-
necting simultaneously. The number of virtual microscopes increased steadily,
but nearly every solution suffers from one main disadvantage: if the number of
histological slides in a collection exceeds a few hundred, the labeling process to
provide students with detailed, qualified information about different structures
is extremely time consuming for lecturers. However, the annotations created in a
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slide are essential to virtual microscopes because they extend the virtual micro-
scope far beyond the capabilities of a real light microscope. Single cells, strata
or complex tissue formations are examples of structures to be labeled. Not only
are these annotations some explanations in an otherwise silent image, but rather
do they provide a feedback on the personal learning progress for students. On
the other hand, an increasing number of already validated annotations will help
to evaluate new and varying annotations. Additionally, annotations can be used
in online exams for automated evaluation.

In a common client/server setup the number of connecting clients is limited to
a few hundred at maximum due to the hardware and connection requirements.
Meeting more substantial requirements often leads to disproportional costs. To
address these challenges we develop a system that supports a distributed archi-
tecture for transmitting digitized slides as well as a context-based user platform
for real-time interaction.

To improve the scalability of virtual microscopes accompanied by an elevation
of interactivity between users among themselves and the network, we transformed
the typical client/server setup into a (managed) peer-to-peer architecture. Our so-
lution is based on PathFinder, a peer-to-peer overlay network that relies on ran-
dom graphs and provides an efficient combination of long range queries and single
key-value lookups [4].

This paper is organized as follows. In Sect. 2 we present an overview of our
distributed virtual microscope (DVM). Section 3 catches up with related work in
the field of peer-to-peer systems. In Sect. 4 the advantages of PathFinder for our
approach and the necessary adaptions are explained. Conclusions are presented
in Sect. 5.

2 Architecture of the Distributed Virtual Microscope

The WSI are stored in tiles and a fully digitalized slide with a decent Z-stack
in the highest magnification can easily produce up to 0.5 million tiles. A whole
collection of a few thousand slides will lead to billions of images that need to
be transmitted across the DVM along with corresponding annotations, messages
and status information.

New WSI can only be stored in the network by selected nodes to ensure proper
quality and compliant preparation.

Each node participating in the DVM has a standardized architecture and pro-
vides different services to the user and/or the network itself. It has to contribute
a variable amount of storage capacity to be used by the DVM for the distribution
of WSI. Additionally the user can store needed (or predictably needed) data. To
assure data integrity the storage container acts like a black box and no standard
user is allowed to modify any stored objects or store new objects.

The bottom most layer of a node (see Fig. 1) contains the overlay network
responsible for handling joins and deletions of nodes. Additionally it detects and
handles crashes as well as it adapts the network size. It manages the queries to
physically locate data, nodes and users.



Distributed Architecture for a Peer-to-Peer-Based Virtual Microscope 201

Fig. 1. Modular layered architecture of node in the DVM

The message service layer uses the overlay network to transmit messages be-
tween different users, users and nodes and among nodes themselves. Messages
are generated in upper layers and may contain different types of information
or requests. This service uses fingerprints and checkpointing to recover from a
partial or complete loss of messages.

As the heart of a node the content management controller decides upon locally
observed and from the neighborhood acquired data, what objects should be
moved to or from the local storage container. By calculating performance values
from network and storage parameters it can decide to ask neighbors for help
while processing complex requests. In addition it is responsible for generating
requests to increase the size of the immediate neighborhood if too much load is
generated on the node and its existing neighbors.

The authentication service is tightly controlling user access and responsible
for distributed authentication in case the authentication server is not available.
Therefore signed key pairs from a trusted resource are created for each node.
For distributed authentication each participating peer can check the certificate
chain to decide if single requests should be executed or declined. As this is a only
fallback mechanism to keep the network operational in case of a server failure
no new accounts can be created at that time.

The next higher authority for each node is the sanity controller that has to
make sure all needed local services are running and that the node has a working
connection to a sane neighborhood.

On top there is just a graphical user interface to allow users to interact with
the DVM. Slides can be selected, annotations can be created and messages can
be send to other users.
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3 Searchable Peer-to-Peer Overlay Network

Multicast protocols to transmit a tiled WSI were discarded as the data in DVM
is no longer located at a single source and the complete transmission of a single
WSI is, due to regions of interest, commonly not needed.

As we designed DVM to be a peer-to-peer (P2P) system build on hundreds of
thousands of heterogeneously distributed nodes of varying performance, we were
in need of a search that can be used to locate specific tiles of a WSI (a specific
hash can be assigned to each tile) as well as processing exhaustive searches e.g.
to find WSIs matching given criteria.

The decision to create a structured or an unstructured network while design-
ing DVM was strengthened by the benefits of distributed hash tables (DHT).
DHTs offer some advantages over unstructured P2P system (like Gnutella or
Napster) as they include load balancing, efficient routing and resilience against
node failures.

Although the scientific community has seen many implementations and en-
hancements to DHTs [8,7] all designs rely on randomizing hash functions for
inserting and searching keys in the hash table. This hashing is the main advan-
tage for the efficient value retrievals of DHTs for a given key.

Other systems on unstructured networks like SkipGraphs [1], Mercury [3] and
VoroNet [2] provide multiple-attribute range queries. Compared to DHTs they
are less fault tolerant (or require more effort to equalize) and are not as scalable
(concerning the search performance for known hashes).

BubbleStorm [9] is an overlay network capable of exhaustive searches in large-
scale heterogeneous environments with adjustable probabilistic guarantees. The
underlying structure of a well connected multigraph where each node has an even
degree is extremely resilient to node crashes, as they do not destroy the search
paths, and highly efficient concerning multiple-attribute queries. The only thing
missing is the efficiency of a value lookup (like in a DHT) if the hash is known.
PathFinder [4] fills this spot by augmenting BubbleStorms random graphs with
a deterministic lookup mechanism.

4 Distributed Slides

After thoroughly comparing different approaches of overlay networks and DHT
augmentations regarding query performance, routing and traffic overhead, we
considered PathFinder to be a good starting point. The heterogeneous context
of DVM regarding hardware, operating systems and network connections is in-
corporated into the topology of PathFinder. Designed as a connected multigraph
PathFinder models this structure as a circular permutation only modified by
JOIN, LEAVE and CRASH events of nodes and uses subgraphs of controlled
size for data retrieval by solving the rendezvous problem. The proportionality of
each nodes degree and its capacity leads to fixed size routing tables and locally
controlled workload, which is highly appreciated. If a nodes workload increases,
the DVM’s content management service can simply request to add more nodes
to the neighborhood.
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The DHT-like hash lookups of PathFinder are realized by using two pseudo-
random number generators (PRNG) that produce a deterministic sequence of
numbers when initialized with a specific number. The first PRNG is used to
calculate the number of neighbors each virtual node has by producing Poisson
distributed numbers. The second one generates numbers that are treated as the
node IDs of the neighbors for the current virtual node. This procedure enables
each node to determine the neighbors for any node in the network without net-
work communication. To find a path from the seeker u to node v containing the
required information, the physical node responsible for u computes the neigh-
bors of u (what is already accomplished, since they are contained in the routing
table) and v, looking for matching neighbors while increasing the distance to u
and v in each step by 1 if no match is found.

One key point in distributing slides is the connection between its tiles and the
consequences this implies for the computed hash of the tiles. It is necessary that
the hash for a tile can be calculated from the WSI it belongs to and its position
therein (see Tab. 1).

Table 1. Definition for Naming Tiles in DVM

WSI Identifier Magfication Layer Z-Stack Layer Tile Position X Tile Position Y

32 Bit 8 Bit 8 Bit 16 Bit 16 Bit

Additionally, we necessarily want to store multiple copies of a tile in the DVM
to reduce the load on single nodes containing some or many popular tiles. To
achieve this, we change the definition of a virtual node. In PathFinder a virtual
nodes is located on exactly one physical peer. We augment the definition in a
way that a virtual node can be spared over one or more physical nodes.

What needs to be changed in the original concept is that a virtual node
has to keep track of the physical nodes it relies on. Therefore each physical
node maintains a list of physical nodes sharing a virtual node with it. Incoming
requests for an object can be passed from one physical node to his equally
responsible neighbor if allowed by performance information from the content
management service.

Further, a virtual node must be able to acquire more capacities as new physical
nodes join the system or at least move some of its content to adjacent virtual
nodes. The former is possible only if a new node joins as a direct neighbor and
the latter is already implemented in PathFinder as this is just the creating of a
new virtual node resulting in a modification of the hash space. The new virtual
node can be moved to other physical nodes if required by means of performance.

5 Conclusion

In this paper we have presented DVM, a distributed virtual microscope based
on the PathFinder overlay network. We showed that the combined strengths of
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efficient hash value lookups as well as efficient long range queries in a single
overlay network made PathFinder the superior starting point for DVM. The
integrated possibility to locally manage any nodes workload with respect to
asynchronous connection bandwidths was a major argument, too. We have also
presented DVM-specific extensions to PathFinders structure definition by aug-
menting the distribution of virtual nodes across physical nodes and choosing a
proper basis for the hash function to reflect the correlation between different
tiles and their position in a WSI. The random graph based overlay network con-
structed by PathFinder will provide optimized search results in the application
scope of a distributed virtual microscope. Another advantage of our structure
enhancement is that many operations can be implemented using parallel algo-
rithms what will most probably lead to at least slightly increased performance.
The development process of the distributed architecture will be finished shortly
and practical testing will allow further evaluation, adaption and optimization
from the gained experiences.
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De Palma, Noel 113
Dillenseger, Bruno 113

El-Rheddane, Ahmed 113
Etchevers, Xavier 113
Eyers, David 181

Felber, Pascal 141
Fernández, Héctor 187
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