
Boolean Language Operations

on Nondeterministic Automata
with a Pushdown of Constant Height

Viliam Geffert1,�, Zuzana Bednárová1,�,
Carlo Mereghetti2, and Beatrice Palano2

1 Dep.Computer Sci., P. J. Šafárik Univ., Jesenná 5, 04154 Košice, Slovakia
viliam.geffert@upjs.sk, ivazuzu@eriv.sk

2 Dip. Informatica, Univ. degli Studi di Milano, v. Comelico 39, 20135Milano, Italy
mereghetti@di.unimi.it, palano@di.unimi.it

Abstract. We study the size-cost of Boolean operations on constant
height nondeterministic pushdown automata, i.e. on pushdown automata
with a constant limit on the size of the pushdown. For intersection, we
show an exponential simulation and prove that the exponential blow-
up is necessary. For union, instead, we provide a linear trade-off while,
for complement, we show a double-exponential simulation and prove a
single-exponential lower bound.

Keywords: descriptional complexity, finite state automata, regular lan-
guages, nondeterministic pushdown automata.

1 Introduction

A primary task in the area of descriptional complexity is the analysis of how suc-
cinctly a given device is able to describe a certain class of languages. Quite often,
languages that are more “complex” are obtained from “simpler” ones by the use
of some “standard” language operations in the class, which requires evaluating
the cost of implementing these language operations by the given device.

The largest amount of results devoted to descriptional complexity is related
to regular languages . Among others, these languages are representable by reg-
ular grammars, expressions, and several variants of automata, starting from
the original model of a deterministic finite state automaton (dfa) and ranging
over enhanced models with additional features, like nondeterminism, alternation,
probabilism, quantum or two-way versions. . . For a brief survey, see, e.g., [6,12].

In this paper, we study the descriptional power of a constant height nondeter-
ministic pushdown automaton (constant height npda). Such machine is a tradi-
tional pushdown automaton (see, e.g., [7]) with a constant limit on the height of
the pushdown, not depending on the input length. This model was introduced
in [4], together with its deterministic version (constant height dpda). It is easy
to see that such devices accept regular languages. However, a representation by

� Supported by the Slovak grant contracts VEGA 1/0479/12 and APVV-0035-10.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 100–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Nondeterministic Automata with a Pushdown of Constant Height 101

constant height pushdown automata can be more succinct. In [4], an optimal
exponential gap was shown between the sizes of npdas and of nondeterministic
finite state automata (nfas). The same gap was found for the deterministic case,
between dpdas and dfas. Converting a constant height npda into an equivalent
dpda uses, and also requires, a double-exponential blow-up [1].

Here we concentrate on a classical problem, the cost of Boolean operations, on
constant height npdas. There exists a wide literature on this issue with respect
to, e.g., finite state automata [6,13], regular expressions [3,5], or grammars [8,9].
The cost of these operations for constant height dpdas was also investigated,
in [2] (see also Tab. 1 in Sect. 5).

First, we analyze the cost of intersection. Given two constant height npdas
A and B with respective sets of states QA, QB, pushdown alphabets ΓA, ΓB, and
pushdown heights hA, hB, we design an npda for L(A)∩L(B) with at most ‖QA‖·
‖Γ≤hA

A ‖ · ‖QB‖, states, ‖ΓB‖ pushdown symbols, and the pushdown height hB.
Since the roles of A and B can be swapped, the number of states is actually
exponential in h = min{hA, hB}. In the worst case, an exponential blow-up is
necessary: for each fixed c ≥ 2, we exhibit {L′

n}n≥1 and {L′′
n}n≥1, two families

of languages over a (c+1)-letter alphabet, such that: (i) both L′
n and L′′

n are
accepted by npdas with O(c) states, c pushdown symbols, and the pushdown
height n, but (ii) their intersection cannot be accepted by an npda in which
both the number of states and the pushdown height are below cn/3−O(logn).

The union operation, instead, turns out to be easy. We propose an npda for
L(A)∪L(B) with a linear trade-off, namely, with at most max{1, |hA−hB|} +
‖QA‖+‖QB‖ states, 1+max{‖ΓA‖, ‖ΓB‖} pushdown symbols, and the pushdown
height bounded by max{hA, hB}.

Finally, for the complement L(A)c, we provide an npda with 2‖QA‖·‖Γ≤hA
A ‖

many states, actually a dfa with the pushdown height equal to zero. Although we
leave as open the problem of showing the optimality of such double-exponential
blow-up, we prove a single-exponential lower bound for the cost, by providing
{L̃n}n≥1, a family of languages over a (c+1)-letter alphabet, such that: (i) L̃n is
accepted by an npda with n+O(c) states, c+1 pushdown symbols, and the
pushdown height n+1, but (ii) its complement cannot be accepted by an npda in
which both the number of states and the pushdown height are below cn/3−O(logn).

These lower bounds required some new techniques, for several reasons: (i) Al-
ready a deterministic machine with a polynomial pushdown height can use expo-
nentially many different pushdown contents and hence exponential lower bounds
cannot be obtained directly, by standard pigeonhole arguments. (ii) Moreover,
our machines are nondeterministic and hence, after reading the first i symbols
of an input a1 · · ·a�, the state and the pushdown content do not depend only on
a1 · · · ai, but, using a guess-and-verify fashion, on the entire input.

2 Preliminaries

We assume the reader is familiar with the standard models of deterministic and
nondeterministic finite state automata (dfa and nfa, for short) and pushdown

102 V. Geffert et al.

automata (dpda and npda, see, e.g., [7]). Here we briefly recall these models.
By Σ∗, we denote the set of words over an alphabet Σ. For a word ϕ = a1 · · · a� ∈
Σ∗, let ϕR = a� · · · a1 denote its reversal and |ϕ| = � its length. The set of words

of length i is denoted by Σi, with Σ≤h =
⋃h

i=0 Σ
i. By ‖S‖, we denote the

cardinality of a set S and by Sc its complement.
For technical reasons, the npdas are introduced here in the form that clearly

distinguishes instructions manipulating the pushdown store from those reading
the input tape [4]. An npda is a sextuplet A = 〈Q,Σ, Γ,H, qI, F 〉, where Q is
the finite set of states, Σ the input alphabet, Γ the pushdown alphabet, qI ∈ Q
the initial state, F ⊆ Q the set of accepting (final) states, and H ⊆ Q × ({ε} ∪
Σ ∪ {−,+}·Γ)×Q the transition relation, with the following meaning:

(i) (q, ε, q′) ∈ H : A gets from the state q to the state q′ without using the
input tape or the pushdown store.

(ii) (q, a, q′) ∈ H : if the next input symbol is a, A gets from q to q′ by reading
the symbol a, not using the pushdown store.

(iii) (q,−X, q′) ∈ H : if the symbol on top of the pushdown is X , A gets from q
to q′ by popping X , not using the input tape.

(iv) (q,+X, q′) ∈ H : A gets from q to q′ by pushing the symbol X onto the
pushdown, not using the input tape.

An accepting computation begins in the state qI with the empty pushdown store,
and ends in an accepting state q′ ∈ F after reading the entire input. As usual,
L(A) denotes the language accepted by the npda A. A deterministic pushdown
automaton (dpda) is obtained by claiming that the transition relation does not
allow executing more than one transition at a time. (See [2] for a more formal
definition.) The following “normal form” of npdas will be required later.

Lemma 1 ([4, Lem. 1]). For any npda A = 〈Q,Σ, Γ,H, qI, F 〉, there exists
an equivalent npda A′ = 〈Q ∪ {qF}, Σ, Γ,H ′, qI, {qF}〉, such that A′ accepts by
entering the unique qF with empty pushdown store at the end of the input.

Given a constant h ≥ 0, the npda A is of pushdown height h if, for any ϕ ∈ L(A),
there exists an accepting computation along which the pushdown store never
contains more than h symbols. Such a machine will be denoted by a septuplet
A = 〈Q,Σ, Γ,H, qI, F, h〉, where h ≥ 0 is a constant denoting the pushdown
height, and all other elements are defined as above. By definition, the meaning
of the transitions in the form (iv) is modified as follows:

(iv’) (q,+X, q′) ∈ H : if the current pushdown store height is smaller than h,
then A gets from the state q to the state q′ by pushing the symbol X onto
the pushdown, not using the input tape; otherwise A aborts and rejects.

A fair descriptional complexity measure takes into account all the components
the device consists of, i.e., (i) the number of finite control states, (ii) the size of
the pushdown alphabet, and (iii) the height of the pushdown store [4].

Lemma 2 ([2, Lem. 2]). For each constant height npda A = 〈Q,Σ, Γ,H,
qI, F, h〉, there exists an equivalent nfa A′ = 〈Q′, Σ,H ′, q′I, F ′〉 with ‖Q′‖ ≤
‖Q‖·‖Γ≤h‖ states.

Nondeterministic Automata with a Pushdown of Constant Height 103

We conclude this section by a combinatorial lemma required later. The lemma
says that each sufficiently large subset of A×B (where A and B are some finite
sets) must contain a trio of elements forming a “rectangular triangle”.

Lemma 3. Let A and B be arbitrary two finite sets satisfying ‖A‖ ≥ 2 and
‖B‖ ≥ 2, and let C be a subset of A×B satisfying ‖C‖ ≥ ‖A‖+ ‖B‖− 1. Then
there must exist some elements ȧ, ä ∈ A and ḃ, b̈ ∈ B, with ȧ �= ä and ḃ �= b̈,
such that [ȧ, ḃ], [ȧ, b̈], [ä, ḃ] are all in C.

3 Intersection for Constant Height NPDAs

Here we consider the amount of computational resources that are sufficient and
necessary for a constant height npda accepting the intersection L(A)∩L(B), for
the given constant height npdas A and B. After transforming both A and B into
the equivalent nfas, such machine can be built easily. However, by exploiting
the power of pushdown storage, we obtain a better construction:1

Theorem 1. Given two constant height npdas A = 〈QA, Σ, ΓA, HA, qA, FA, hA〉
and B = 〈QB, Σ, ΓB, HB, qB, FB, hB〉, there exists a constant height npda C
accepting the intersection L(A) ∩ L(B) with the number of states bounded by

‖QC‖ ≤ ‖QA‖ · ‖Γ≤hA
A ‖ · ‖QB‖, using ‖ΓC‖ = ‖ΓB‖ pushdown symbols and the

pushdown height hC = hB.

The main idea is to turn the machine A into an nfa A′ (by Lem. 2) and then
construct C simulating A′ and B simultaneously, using the pushdown store for
the simulation of B. Final states are chosen so that C accepts if and only if the
input is accepted by both machines. Since the roles of A and B can be swapped,
the number of states is actually exponential in h = min{hA, hB}.
We shall now show that the exponential cost cannot be avoided. To this pur-
pose, for arbitrary fixed input alphabet Σ, we define two families of languages
{L′

n}n≥1 and {L′′
n}n≥1 accepted by constant height npdas with O(‖Σ‖) states,

‖Σ‖ pushdown symbols, and the pushdown height hn = n, but with a lower
bound ‖Σ‖Ω(n) for accepting {L′

n ∩ L′′
n}n≥1. First, fix a special symbol $ /∈ Σ.

Then, for each n ≥ 1, define the following two languages:

L′
n = {u1$v1$u

R
2$v

R
2 : u1, v1, u2, v2 ∈ Σ∗, |u1|≤n, u2 is a suffix of u1},

L′′
n = {u1$v1$u

R
2$v

R
2 : u1, v1, u2, v2 ∈ Σ∗, |v1|≤n, v2 is a suffix of v1} . (1)

Lemma 4. For any given Σ and n ≥ 1, the languages L′
n and L′′

n can be accepted
by dpdas (hence, also by npdas) A′

n and A′′
n, respectively, with 2 ·‖Σ‖ + 4 ≤

O(‖Σ‖) states, ‖Σ‖ pushdown symbols, and the pushdown height hn = n.

1 Using the transition function in a form introduced in standard textbooks, only a
single state would be required, since the language L(A)∩L(B) is regular, and hence
context free. (See e.g. [7, Sect. 6.3.1].) This indicates that the “traditional” transition
function δ : Q× (Σ∪{ε})×Γ → 2Q×Γ∗

(combining input and pushdown operations
into a single step) is not realistic if the state-set size is at stake.

104 V. Geffert et al.

Proof. On input u1$v1$u
R
2$v

R
2 , the dpda A′

n compares the pushdown content
filled while reading u1 with uR

2 in order to check whether v2 is a suffix of v1,
which leaves the first |u1| − |uR

2 | symbols of u1 in the pushdown. (The machine
A′′

n runs in a similar way.) The tricky detail is that, to reduce the number of
states from Ω(n·‖Σ‖) to O(‖Σ‖), we do allow both A′

n and A′′
n to reject in the

middle of the input by pushdown overflow. �
Denote now the intersection of L′

n and L′′
n as

Ln = L′
n ∩ L′′

n = {u1$v1$u
R
2$v

R
2 : u1, v1, u2, v2 ∈ Σ∗, |u1|≤n, |v1|≤n,

u2 is a suffix of u1 and v2 is a suffix of v1} .
Clearly, if |u1| = |v1| = |u2| = |v2| ≤ n, the conditions for membership are
simplified: u1$v1$u

R
2$v

R
2 is in Ln if and only if u2 = u1 and v2 = v1.

Theorem 2. Let {An}n≥1 be constant height npdas accepting the languages
{Ln}n≥1, for some non-unary alphabet Σ, and let Qn and hn be, respectively,
the number of states and the pushdown height in An. Then (‖Qn‖+1)2·(hn+1) >
‖Σ‖n/(4n2+6n), for each n ≥ 1. Consequently, in {An}n≥1, the number of
states and the pushdown height cannot be both polynomial in n; either ‖Qn‖+1
or hn + 1 (or both values) are above ‖Σ‖n/3/ 3

√
4n2+6n ≥ ‖Σ‖n/3−O(logn).

Proof. Let An = 〈Qn, Σ, Γn, Hn, qI,n, Fn, hn〉 be a constant height npda accept-
ing Ln. For contradiction, assume first that the npda An is in the “normal form”
of Lem. 1, that is, it accepts each input by entering the unique final state qF,n

with empty pushdown store at the end of the input (hence, Fn = {qF,n}), and
that pn = ‖Qn‖2·(hn+1) ≤ ‖Σ‖n/(4n2 + 6n), for some n. From now on, for the
sake of readability, we simply write p instead of pn, as well as A,Q, Γ,H, qI, qF, h
instead of An, Qn, Γn, Hn, qI,n, qF,n, hn. From these assumptions we get that

p = ‖Q‖2 ·(h+ 1) ≤ ‖Σ‖n/(4n2 + 6n) . (2)

Next, define the following set of pairs:

V0 = Σn×Σn = {[u, v] : u, v ∈ Σ∗, |u| = |v| = n} .
Consider now the computation on the input z = uvuR$vR, for each [u, v] ∈ V0.
It is clear that z ∈ Ln, and hence there must exist at least one accepting compu-
tation of A on this input. From among all possible accepting computations for
this input, let us fix the “leftmost” accepting computation path. (That is, each
time the machine gets into a configuration from which several nondeterministic
choices lead to successful acceptance, take the leftmost choice, using some lexico-
graphical ordering on H , the transition relation.) Now, let us fix some significant
parameters for this leftmost path (see either side of Fig. 1):

– y� ∈ {0, . . . , h}, the lowest height of pushdown store in the course of reading
the substring vuR$,

– q� ∈ Q, the state in which the height y� is attained for the last time, along
vuR$,

Nondeterministic Automata with a Pushdown of Constant Height 105

�

��

� �
�

��
x� xk

y�
qkq�

u v uR$ vR

γu,v
�� �

� �

� �
�

x�xk

y�
qk q�

u v uR$ vR

γu,v
��� �

Fig. 1. Parameters y�, q�, x� and the pushdown content γu,v along the computation
(either side). Parameters qk, xk depend on whether q� is reached in the course of read-
ing v (shown on the left), or in the course of reading uR$ (shown on the right).

– x� ∈ {1, . . . , |vuR$|} = {1, . . . , 2n+ 3}, the distance from the beginning of
vuR$ to the input position in which q� is entered, and

– γu,v, the pushdown content at this moment.

The values for the next two parameters, namely, for qk ∈ Q and xk ∈ {1, . . . , n},
depend on whether x� ≤ |v| = n+2 or x� > n+2:

If x� ≤ |v| = n+2, that is, if the computation reaches the state q� in the
course of reading v (see the left part of Fig. 1), then

– qk ∈ Q is the state at the moment when the machine is going to decrease,
for the first time, the pushdown height from y� to y�−1, in the course of
reading vR (because our automaton always accepts with empty pushdown
store—by Lem. 1, such situation must happen), and

– xk ∈ {1, . . . , |vR|} = {1, . . . , n} is the distance from the beginning of vR to
the input position in which qk is entered.

If x� > |v| = n+2, that is, if the computation reaches the state q� in the course
of reading uR$ (see the right part of Fig. 1), then

– qk ∈ Q is the state at the moment when the machine has just increased, for
the last time, the pushdown height from y�−1 to y�, in the course of reading u
(because our automaton always starts with empty pushdown store—by def-
inition, such situation must happen), and

– xk ∈ {1, . . . , |u|} = {1, . . . , n} is the distance from the beginning of u to the
input position in which qk is entered.

It is easy to see that, independent of whether x� ≤ |v| = n+2 or x� > n+2, we
have y� ∈ {0, . . . , h}, q� ∈ Q, x� ∈ {1, . . . , 2n+ 3}, qk ∈ Q, and xk ∈ {1, . . . , n}.
Therefore, the number of different quintuples [y�, q�, x�, qk, xk] is bounded by
‖Q‖2 ·(h + 1) ·(2n+3) ·n = ‖Q‖2 ·(h + 1) ·(2n2+3n). Thus, by using also (2),
the number of such quintuples can be bounded by ‖Q‖2 ·(h + 1) ·(2n2+3n) ≤
‖Σ‖n/(4n2+6n)·(2n2+3n) = ‖Σ‖n/2.

In conclusion, for each [u, v] ∈ V0, we took the input uvuR$vR, and fixed the
unique leftmost accepting computation path, which gives the unique quintuple of
parameters [y�, q�, x�, qk, xk]. Thus, each pair [u, v] ∈ V0 can be associated with
exactly one quintuple [y�, q�, x�, qk, xk]. Hence, a simple pigeonhole argument

106 V. Geffert et al.

�

��

� �
�

��
x� xk

y�

qkq�

u̇ or ü $v̇$ u̇R$ or üR$ v̇R

γu̇,v̇ or γü,v̇

��

Fig. 2. Computation paths for the inputs ż = u̇$v̇$u̇R$v̇R, z̈u = ü$v̇$üR$v̇R, and δu =
u̇$v̇$üR$v̇R /∈ Ln, for the case of x� ≤ |$v̇$| = n+2

proves the existence of a set V1 ⊆ V0, such that all [u, v] ∈ V1 share the same
[y�, q�, x�, qk, xk] and, moreover, the cardinality of such set is

‖V1‖ ≥ ‖V0‖
‖Q‖2 ·(h+ 1)·(2n2+3n)

≥ ‖Σ‖2n
‖Σ‖n/2 = 2·‖Σ‖n > 2·‖Σ‖n − 1 . (3)

Realize that V1 ⊆ Σn× Σn and ‖Σn‖ = ‖Σ‖n ≥ 2, for each ‖Σ‖ ≥ 2 and
n ≥ 1. Hence, taking into account (3), the sets A = Σn, B = Σn, and C = V1

satisfy the assumptions of Lem. 3. Therefore, there must exist some strings
u̇, ü, v̇, v̈ ∈ Σn, with u̇ �= ü, v̇ �= v̈, such that [u̇, v̇], [u̇, v̈], and [ü, v̇] are all
in V1. Consequently, they all share the same parameters [y�, q�, x�, qk, xk] on the
corresponding accepting paths. Now we have to distinguish between the two
cases, depending on the value x�.

Case i: x� ≤ n+2 = |$v̇$|. This means that, for [u, v] ∈ {[u̇, v̇], [u̇, v̈], [ü, v̇]}, all
fixed leftmost computations for the inputs uvuR$vR visit the same state q� ∈ Q,
with the same pushdown height y�, and at the same position x�, in the course of
reading v. Thus, for all these inputs, the parameter qk ∈ Q is taken as the state
at the moment when the height is going to be decreased below y� for the first
time, along vR, at a position xk. Also the values qk and xk are the same for all
these inputs. This situation is depicted in Fig. 2. Consider now ż = u̇$v̇$u̇R$v̇R

and z̈u = ü$v̇$üR$v̇R, together with their crossbreed δu = u̇$v̇$üR$v̇R /∈ Ln.
First, on the inputs ż and z̈u, at the moment when the machine A reaches the

state q� at the position x�, the pushdown store contains, respectively, the string
γu̇,v̇ or γü,v̇, consisting of y� symbols loaded in the course of reading u̇ (or ü,
respectively). On both ż and z̈u, these deepest y� symbols will stay unchanged in
the pushdown until the moment when A reaches the same state qk at the same
position xk, along v̇R.

Now, for the input δu, one of the possible computations can start by following
the trajectory for ż, reading u̇ and the first x� symbols of $v̇$, until it reaches
the state q�. At this moment, the pushdown store contains the string γu̇,v̇. Now
the machine switches to the computation path for z̈u, until it gets into the
state qk. Along this path, the computation does not visit the deepest y� symbols
in the pushdown store, reading the remaining |$v̇$| − x� symbols of $v̇$, the
entire block üR$, and the first xk symbols of v̇R. From this point forward, the

Nondeterministic Automata with a Pushdown of Constant Height 107

�

� �

� �
�

x�xk

y�

qk q�

u̇ $v̇$ or $v̈$ u̇R$ v̇R or v̈R

γu̇,v̇ or γu̇,v̈

��� �

Fig. 3. Computation paths for the inputs ż = u̇$v̇$u̇R$v̇R, z̈v = u̇$v̈$u̇R$v̈R, and δv =
u̇$v̈$u̇R$v̇R /∈ Ln, for the case of x� > |$v̇$| = n+2

computation on δu can switch back to the trajectory for ż, working with the same
content in the pushdown store and reading the remaining |v̇R|−xk symbols of v̇R.
Clearly, such computation path stops with the empty pushdown in the accepting
state qF. Thus, A accepts δu = u̇$v̇$üR$v̇R /∈ Lh, which is a contradiction.

Case ii: x� > n+2 = |$v̇$|. Again, the three leftmost computations on the
inputs uvuR$vR, for [u, v] ∈ {[u̇, v̇], [u̇, v̈], [ü, v̇]}, visit the same state q� ∈ Q,
with the same pushdown height y�, and at the same position x�, this time in
the course of reading uR$. For all of them, the parameter qk ∈ Q is now taken
as the state reached at the moment when the height has been increased to y�

for the last time, along u, at a position xk, but also here the values qk and xk

are the same for all these inputs. This situation is depicted in Fig. 3. This time
we consider the inputs ż = u̇$v̇$u̇R$v̇R and z̈v = u̇$v̈$u̇R$v̈R, together with their
crossbreed δv = u̇$v̈$u̇R$v̇R /∈ Ln.

First, on the inputs ż and z̈v, at the moment when A gets to the state qk at
the position xk, the pushdown store contains, respectively, the string γu̇,v̇ or γu̇,v̈,
consisting of y� pushdown symbols loaded in the course of reading the first xk

symbols of u̇. On both ż and z̈v, these deepest y� symbols will stay unchanged in
the pushdown until the moment when A reaches the same state q� at the same
position x�, along u̇R$.

Now, for the input δv, one of the possible computations can start by following
the trajectory for ż, reading first xk symbols of u̇, until it reaches the state qk.
At this moment, the pushdown store contains the string γu̇,v̇. Here A switches
to the computation path for z̈v, until it gets into the state q�. Along this path,
the computation does not visit the deepest y� symbols in the pushdown store,
reading the remaining |u̇| − xk symbols of u̇ and the first x� symbols of $v̈$u̇R$
(which includes, among others, traversing across the entire block $v̈$). From this
point forward, the computation on δv can switch back to the trajectory for ż,
working with the same content in the pushdown store and reading the remaining
|$v̈$u̇R$| − x� symbols of u̇R$ and the entire block v̇R. Again, such path stops
in qF. Thus, A accepts δv = u̇$v̈$u̇R$v̇R /∈ Ln, which is a contradiction.

In conclusion, if A = An accepts Ln, the inequality (2) must be reversed.
Thus, the value p = pn must satisfy pn = ‖Qn‖2 ·(hn+1) > ‖Σ‖n/(4n2 + 6n).
However, recall that we have derived this lower bound for the npda An in the

108 V. Geffert et al.

“normal form” of Lem. 1. For unrestricted npdas (not assuming this form), the
lower bound changes to (‖Qn‖+1)2·(hn+1) > ‖Σ‖n/(4n2+6n), since converting
a general npda into the normal form does not cost more than one state, keeping
the same pushdown height. Consequently, either ‖Qn‖+1 > ‖Σ‖n/3/ 3

√
4n2 + 6n,

or else hn+1 > ‖Σ‖n/3/ 3
√
4n2 + 6n ≥ ‖Σ‖n/3−O(logn). �

By combining Lem. 4 with Thm. 2, we get the following blow-up:

Theorem 3. For each fixed constant c ≥ 2, there exist {L′
n}n≥1 and {L′′

n}n≥1,
some families of regular languages built over a (c+1)-letter alphabet, such that:

(i) there exist, respectively, {A′
n}n≥1 and {A′′

n}n≥1, sequences of constant height
npdas accepting these languages with O(c) states, c pushdown symbols, and
the pushdown height hn = n, but

(ii) for any constant height npdas {An}n≥1 accepting the family of their in-
tersections {Ln}n≥1 = {L′

n ∩L′′
n}n≥1, either the number of states in An or

else the pushdown height must be above cn/3−O(logn), independently of the
size of the used pushdown alphabet.

For comparison, by the use of Thm. 1 for npdas from Lem. 4, we get that
{L′

n ∩ L′′
n}n≥1 can be accepted2 by npdas with ‖QA‖ · ‖Γ≤hA

A ‖ · ‖QB‖ ≤ O(cn)
states, ‖ΓB‖ = c pushdown symbols, and the pushdown height hB = n.

4 Union and Complement for Constant Height NPDAs

Now we shall deal with another two basic Boolean operations, union and comple-
ment. First, given two constant height npdas A and B, we construct a constant
height npda C accepting the union L(A) ∪ L(B). The size of C is linear in all
“reasonable” complexity measures. This allows us to derive an exponential lower
bound for the complement L(A)c.

An npda C accepting L(A)∪L(B) is simple: C nondeterministically chooses
which of the given two machines it will simulate. However, the pushdown heights
hA, hB may be different. If the chosen machine uses a lower pushdown height than
the other one, the difference in the pushdown limit must be repaired, by filling
|hA−hB| copies of some extra symbol at the bottom of the pushdown.

Theorem 4. Given two constant height npdas A = 〈QA, Σ, ΓA, HA, qA, FA, hA〉
and B = 〈QB, Σ, ΓB, HB, qB, FB, hB〉, there exists a constant height npda C
accepting the union L(A) ∪ L(B) with the number of states bounded by ‖QC‖ ≤
max{1, |hA−hB|}+ ‖QA‖+ ‖QB‖, using ‖ΓC‖ ≤ 1+max{‖ΓA‖, ‖ΓB‖} pushdown
symbols and the pushdown height hC = max{hA, hB}.
2 Alternatively, one can get a different npda for {L′

n ∩ L′′
n}n≥1, using only O(cn/2)

states, with a pushdown of height 3/2 ·n. The idea is to load the first half of u1 and
the entire v1 in the pushdown, but to store the second half of u1 in the finite state
control. After checking the second half of u1 against the first half of uR

2 , we store the
second half of uR

2 in the finite state control, to be checked later, after comparing vR
2

with v1. This indicates that—without using a different witness language— the gap
from Thm. 3 cannot be raised higher than to Ω(cn/2).

Nondeterministic Automata with a Pushdown of Constant Height 109

The last operation is complement. A trivial double-exponential upper bound
is obtained by the use of Lem. 2, coding the pushdown content of the given
npda A in the finite state control, which gives a classical nfa with at most
‖QA‖·‖Γ≤hA

A ‖ states. Then we make this machine deterministic, by the standard

power set construction [7,11], with 2‖QA‖·‖Γ≤hA
A ‖ states. Finally, we obtain a

dfa B for L(A)c by swapping the roles of accepting and rejecting states.

Theorem 5. Given a constant height npda A = 〈QA, Σ, ΓA, HA, qA, FA, hA〉,
there exists a dfa B (hence, also a constant height npda) accepting the comple-

ment L(A)c with the number of states bounded by ‖QB‖ ≤ 2‖QA‖·‖Γ≤hA
A ‖ (hence,

using no pushdown symbols and the pushdown height equal to zero).

At this point, one can easily combine the exponential lower bound obtained for
intersection with the linear upper bound for union and conclude that the lower
bound for complementing is at least exponential, by application of De Morgan’s
laws. Nevertheless, to see some growth rate for the gap, we shall consider a
specific witness language. For this purposes, recall the languages L′

n and L′′
n,

introduced by (1). For the fixed alphabet Σ and each n ≥ 1, let

L̃n = L′
n
c ∪ L′′

n
c
. (4)

Lemma 5. For any given Σ and n ≥ 1, the language L̃n can be accepted by an
npda Ãn with ‖Qn‖ = n+4·‖Σ‖+11 ≤ n+O(‖Σ‖) states, ‖Σ‖+1 pushdown
symbols, and the pushdown height hn = n+ 1.

Proof. Recall that, by Lem. 4, both L′
n and L′′

n are accepted by the respec-
tive dpdas A′

n and A′′
n using 2·‖Σ‖+4 states, ‖Σ‖ pushdown symbols, and the

pushdown height n. Since both A′
n and A′′

n are deterministic, an npda Ãn for L̃n

can nondeterministically choose which of these two machines it will simulate, to
verify that its unique computation rejects . The tricky detail is that, to reduce
the number of states from Ω(n ·‖Σ‖) to n + O(‖Σ‖), we do not keep track of
the current pushdown height during the simulation, and hence we do not detect
pushdown overflows . However, A′

n and A′′
n from Lem. 4 reject by pushdown over-

flows only if the length of some block (u1 or v1, respectively) exceeds n, that is,
only if the input contains a substring of length n+1 not containing any $-symbols.
Therefore, Ãn proceeds as follows. First, Ãn stores some new initial symbol XI

at the bottom of the pushdown (to detect pushdown underflows during the sim-
ulation), and then nondeterministically chooses from among (i) testing whether
A′

n rejects by a computation not blocked by a pushdown overflow, (ii) testing
whether A′′

n rejects by a computation not blocked by a pushdown overflow, and
(iii) testing whether the input contains a substring ϕ of length n+1 without any
$-symbol, the starting position of ϕ is established nondeterministically. �

Conversely, by De Morgan’s laws, the complement of the language introduced
by (4) is L̃c

n = (L′
n
c ∪ L′′

n
c
)
c
= L′

n ∩ L′′
n = Ln. Recall that the lower bound

derived for Ln in Thm. 2 is exponential. Combined with Lem. 5, this gives:

110 V. Geffert et al.

Theorem 6. For each fixed constant c ≥ 2, there exists {L̃n}n≥1, a family of
regular languages built over a (c+1)-letter alphabet, such that:

(i) there exists {Ãn}n≥1, a sequence of constant height npdas accepting these
languages with Qn ≤ n+O(c) states, c+1 pushdown symbols, and the push-
down height hn = n+ 1, but

(ii) for any constant height npdas {Ãc
n}n≥1 accepting the family of their com-

plements {L̃c
n}n≥1, either the number of states in Ãc

n or else the pushdown
height must be above cn/3−O(log n), independently of the size of the used push-
down alphabet.

The above lower bound is far below the known conversion for complement-

ing, presented in Thm. 5, using 2‖QA‖·‖Γ≤hA
A ‖ states. It should also be pointed

out that, in the case of our witness languages {L̃n}n≥1, their complements

{L̃c
n}n≥1 = {Ln}n≥1 can be accepted by npdas with only a single-exponential

blow-up, namely, with O(cn) states, c pushdown symbols, and the pushdown
height n, which is obtained by combining Lem. 4 with Thm. 1.

5 Concluding Remarks

We have analyzed the size cost of basic Boolean operations for nondetermin-
istic automata with a pushdown of constant height . For intersection, a single-
exponential cost is sufficient and, in the worst case, also necessary. On the other
hand, the cost of union is only linear. Combining these results, we have shown
that the lower bound for complement is single-exponential, but we have derived
only a double-exponential upper bound, which leaves a large gap.

It was conjectured that the lower bound for the intersection from Thm. 3 can
be improved to an exponential lower bound on the number of states, indepen-
dently of the pushdown height. This would give two witness regular languages
the intersection of which would be “expensive” with respect to the number of
states even for an npda with unrestricted pushdown. However, using the “tradi-
tional” transition function, we can reduce the number of states in such a machine
to one, with a large pushdown alphabet. (See also Ft. 1.)

The corresponding costs for constant height dpdas, deterministic versions
of npdas, are [2]: single-exponential for intersection and union, but polynomial
for complement. These results are compared in Tab. 1. It turns out that the
cost of studied Boolean operations, both for dpdas and npdas with a constant
height pushdown, reflects the closure properties for the corresponding machines
with an unrestricted pushdown (hence, for deterministic and general context-free
languages): the unrestricted version of the pushdown machine is closed under the
given operation (see e.g. [7]) if and only if the cost of the same operation for the
constant height version is at most polynomial. Therefore, it could be interesting
to investigate the complexity of other language operations for constant height
pushdown automata and compare them with unrestricted versions.

Nondeterministic Automata with a Pushdown of Constant Height 111

Table 1. Size-cost of Boolean operations on constant height dpdas [2] and constant
height npdas, studied in this paper.

Operation constant height DPDAs constant height NPDAs

Intersection exponential exponential
Union exponential linear

Complement polynomial exponential ... double-exponential

Similarly, we would like to emphasize the interest in two-way versions of these
machines, and in some more restricted versions . For instance, one could study
the cost for unary languages: the same investigation on unary nfas [10] shows
interesting differences from the general case.

References

1. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: Removing nondeterminism
in constant height pushdown automata. In: Kutrib, M., Moreira, N., Reis, R. (eds.)
DCFS 2012. LNCS, vol. 7386, pp. 76–88. Springer, Heidelberg (2012)

2. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The size-cost of Boolean op-
erations on constant height deterministic pushdown automata. Theoret. Comput.
Sci. 449, 23–36 (2012)

3. Ehrenfeucht, A., Zieger, P.: Complexity measures for regular expressions. J. Com-
put. System Sci. 12, 134–146 (1976)

4. Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular
languages by automata and regular expressions. Inf. & Comp. 208, 385–394 (2010)

5. Gruber, H., Holzer, M.: Language operations with regular expressions of polyno-
mial size. Theoret. Comput. Sci. 410, 3281–3289 (2009)

6. Holzer, M., Kutrib, M.: Descriptional complexity — an introductory survey. In:
Mart́ın-Vide, C. (ed.) Scientific Applications of Language Methods, pp. 1–58. Im-
perial College Press (2010)

7. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley (2001)

8. Kutrib, M., Malcher, A., Wotschke, D.: The Boolean closure of linear context-free
languages. Acta Inform. 45, 177–191 (2008)

9. Meyer, A., Fischer, M.: Economy of description by automata, grammars, and for-
mal systems. In: Proc. IEEE Symp. Switching & Automata Th., pp. 188–191 (1971)

10. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Internat. J. Found. Comput. Sci. 13, 145–159 (2002)

11. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3, 114–125 (1959)

12. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. I, pp. 41–110. Springer (1997)

13. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

	Boolean Language Operations on Nondeterministic Automata with a Pushdown of Constant Height
	1 Introduction
	2 Preliminaries
	3 Intersection for Constant Height NPDAs
	4 Union and Complement for Constant Height NPDAs
	5 Concluding Remarks
	References

