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Abstract. In this talk I will report on some recent results concerning
decidability and enumeration for properties of automatic sequences. This
is work with Jean-Paul Allouche, Émilie Charlier, Narad Rampersad,
Dane Henshall, Luke Schaeffer, Eric Rowland, Daniel Goč, and Hamoon
Mousavi.

1 Introduction

An infinite sequence a = (an)n≥0 over a finite alphabet is said to be k-automatic
if there exists a deterministic finite automaton (with outputs associated with
the states) such that after completely processing the input n expressed in base
k, the automaton reaches some state q with output an [17,5]. A typical example
of such a sequence is the Thue-Morse sequence

t = t0t1t2 · · · = 011010011001 · · · ,
which is generated by the automaton in Figure 1. Here the input is n, expressed
in base 2.
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Fig. 1. Finite automaton generating the Thue-Morse sequence t

The Thue-Morse sequence is named after the Norwegian mathematician Axel
Thue [45,46,6], who discovered it in 1912, although it also appears if one reads
“between the lines” in an 1851 paper of Prouhet [39], and it has since been
rediscovered many times (e.g., [34,22]). For more information about t, see the
survey [4].
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Below we list just a few of the properties of t that people have studied. By a
factor we mean a contiguous block of symbols inside another word.

1. t is not ultimately periodic.
2. t contains no factor that is an overlap, that is, a word of the form axaxa,

where a is a single letter and x is an arbitrary finite word [45,46,6].
3. t has infinitely many distinct palindromic factors and infinitely many distinct

antipalindromic factors. (A palindrome is a word equal to its reverse; an
example of a palindrome in Russian is dohod (“income”). An antipalindrome

is a word of the form xxR, where xR denotes the reverse of x and 0 = 1,
1 = 0.)

4. The number p(n) of distinct palindromic factors of length n in t is given by

p(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if n odd and n ≥ 5;

1, if n = 0;

2, if 1 ≤ n ≤ 4, or n even and 3 · 4k + 2 ≤ n ≤ 4k+1 for k ≥ 1;

4, if n even and 4k + 2 ≤ n ≤ 3 · 4k for k ≥ 1;

see [7]. A similar expression exists for the number p′(n) of distinct antipalin-
dromic factors of length n.

5. t contains infinitely many distinct square factors xx, but for each such factor
we have |x| = 2n or 3 · 2n, for n ≥ 1. Examples of squares in Russian include
d�d� (“uncle”) and kuskus (“couscous”).

6. t is mirror-invariant: if x is a finite factor of t, then so is its reverse xR.
7. t is recurrent, that is, every factor that occurs, occurs infinitely often [34].
8. t is uniformly recurrent, that is, for all factors x occurring in t, there is a

constant c(x) such that two consecutive occurrences of x are separated by
at most c(x) symbols [35, pp. 834 et seq.].

9. t is linearly recurrent, that is, it is uniformly recurrent and furthermore there
is a constant C such that c(x) ≤ C|x| for all factors x [35, pp. 834 et seq.].
In fact, the optimal bound is given by c(1) = 3, c(2) = 8, and c(n) = 9 · 2e
for n ≥ 3, where e = �log2(n− 2)�.

10. The lexicographically least sequence in the orbit closure of t is t1 t2 t3 · · · ,
which is also 2-automatic [2].

11. The subword complexity ρ(n) of t, which is the function counting the number
of distinct factors of t, is given by

ρ(n) =

⎧
⎪⎨

⎪⎩

2n, if 0 ≤ n ≤ 2;

2n+ 2t+2 − 2, if 3 · 2t ≤ n ≤ 2t+2 + 1;

4n− 2t − 4, if 2t + 1 ≤ n ≤ 3 · 2t−1;

see [8,32].
12. t has an unbordered factor of length n if n �≡ 1 (mod 6) [19]. (Here by an

unbordered word y we mean one with no expression in the form y = uvu for
words u, v with u nonempty.)
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Recently I and my co-authors J.-P. Allouche, E. Charlier, D. Goč, D. Henshall,
N. Rampersad, E. Rowland, and L. Schaeffer, have developed and implemented
a decision procedure by which all these assertions, and many others, can be
feasibly verified and/or generated in a purely mechanical fashion. In this talk I
will explain how our method works, what has been done so far, and what remains
to be done.

2 Logic

By Th(N,+, 0, 1, <) I mean the set of all true first-order sentences in the logical
theory of the natural numbers with addition. In such a theory, for example,
we can express the so-called “Chicken McNuggets” theorem [47, Lesson 5.8,
Problem 1] to the effect that 43 is the largest integer that cannot be represented
as a non-negative integer linear combination of 6, 9, and 20, as follows:

(∀n > 43 ∃x, y, z ≥ 0 such that n = 6x+ 9y + 20z) ∧
¬(∃x, y, z ≥ 0 such that 43 = 6x+ 9y + 20z). (1)

Here, of course, “6x” is shorthand for the expression “x + x + x + x + x + x”,
and similarly for 9y and 20z.

Thanks to the work of Presburger [37,38] we know that Th(N,+, 0, 1, <) is
decidable: that is, there exists an algorithm that, given a sentence in the theory,
will decide its truth.

In fact, there is a relatively simple proof of this fact, based on finite automata,
and due to Büchi [11,12], Elgot [21], and Hodgson [27]. More recently it has
appeared (without attribution) in the textbook of Sipser [44, §6.2] and progress
has been made on its complexity (e.g., [29]). The idea is to represent integers
in a integer base k ≥ 2 using the alphabet Σk = {0, 1, . . . , k − 1}. We can
then represent n-tuples of integers as words over the alphabet Σn

k , padding with
leading zeroes, if necessary. Thus, for example, the pair (21, 7) can be represented
in base 2 by the word

[1, 0][0, 0][1, 1][0, 1][1, 1].

Then the relation x + y = z can be checked by a simple 2-state automaton
depicted in Figure 2, where transitions not depicted lead to a nonaccepting
“dead state”.

Fig. 2. Checking addition in base k
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Relations like x = y and x < y can be checked similarly.
Given a formula with free variables x1, x2, . . . , xn, we construct an automa-

ton accepting the base-k expansion of those n-tuples (x1, . . . , xn) for which the
proposition holds. If a formula is of the form ∃x1, x2, . . . xn p(x1, . . . , xn), then
we use nondeterminism to “guess” the xi and check them. If the formula is of
the form ∀p, we use the equivalence ∀p ≡ ¬∃¬p; this may require using the
subset construction to convert an NFA to a DFA and then flipping the “final-
ity” of states. Finally, the truth of a formula can be checked by using the usual
depth-first search techniques to see if any final state is reachable from the start
state.

However, even more is true. If we add the function Vk : N → N to our logical
theory, where Vk(x) = kn, and kn is the largest power of k dividing x, it is still
decidable by a similar automaton-based technique [10]. By doing so, we gain the
capability of deciding many questions about automatic sequences. Thus we have

Theorem 1. There is an algorithm that, given a predicate phrased using only
the universal and existential quantifiers, indexing into a given automatic se-
quence a, addition, subtraction, logical operations, and comparisons, will decide
the truth of that proposition.

We call such a predicate an automatic predicate.
Although the worst-case running time of our algorithm is bounded above by

22
. .
.2p(N)

,

where the number of 2’s in the exponent is equal to the number of quantifiers, p is
a polynomial, and N is the number of states needed to describe the underlying
automatic sequence, it turns out that in practice, significantly better running
times are usually achieved.

3 Periodicity

An infinite word a is periodic if it is of the form xω = xxx · · · for a finite
nonempty word x. It is ultimately periodic if it is of the form yxω for a (possibly
empty) finite word y.

Honkala [28] was the first to prove that ultimate periodicity is decidable
for automatic sequences. Later, Leroux [31], and, more recently, Marsault and
Sakarovitch [33] gave efficient algorithms for the problem.

Using our approach, we can easily see that periodicity is decidable for k-
automatic sequences [3]. It suffices to express ultimately periodicity as an auto-
matic predicate:

∃p ≥ 1, N ≥ 0 ∀i ≥ N a[i] = a[i+ p].

When we run this on the Thue-Morse sequence, we discover (as expected) that
t is not ultimately periodic.
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4 Repetitions

Repetitions in sequences have been studied for over a hundred years. We defined
overlaps above in § 1. Other classic repetitions include squares (factors of the
form xx, where x is nonempty) and cubes (factors of the form xxx).

Thue [46] proved that t contains no overlaps; that is, t is overlap-free. Using
our technique, we can express the property of having an overlap axaxa beginning
at position N with |ax| = p, as follows: a[N..N + p] = a[N + p..N + 2p]. So the
corresponding automatic predicate for t is

∃p ≥ 1, N ≥ 0 t[N..N + p] = t[N + p..N + 2p],

or, in other words,

∃p ≥ 1, N ≥ 0 ∀i, 0 ≤ i ≤ p t[N + i] = t[N + p+ i].

From now on, we will abbreviate predicates like the one above by writing the
first form only.

We programmed up our decision procedure and verified that indeed t is
overlap-free [3].

We can also ask about the lengths and positions of squares in the Thue-Morse
sequence. Here we can create an automaton to accept

{(N, p)2 : p ≥ 1 and N ≥ 0 and t[N..N + p− 1] = t[N + p..N + 2p− 1]}.
When we do so, we get the automaton depicted below in Figure 3 (computed by
Daniel Goč).

Fig. 3. Positions and lengths of squares in Thue-Morse
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From this automaton, we easily recover the results of [36,8] that the only
squares xx that occur have |x| = 2n or |x| = 3 · 2n for n ≥ 0, and all those
lengths occur. The positions where these squares occur were previously given by
Brown et al. [9].

5 Critical Exponent

We can define more general repetitions as follows: a word x is an α-power for
α ≥ 1 if we can write x = yey′ where e = �α� and y′ is a prefix of y and
|x| = α|y|. Thus, for example, abracadabra is an 11

7 -power and the Russian
word l�bl� (“love”) is a 5

3 -power. The techniques above suffice to check if a
k-automatic sequence has α-powers, using the following predicate:

∃N ≥ 0, p, q ≥ 1 a[N..N + p− q − 1] = a[N + q..N + p− 1] and p = αq.

However, this observation alone does not suffice to compute the so-called critical
exponent of a, which is the supremum over all rational α such that a has α-power
factors.

It turns out that the critical exponent is also computable for automatic se-
quences [43,42]. More generally, we can extend the concept of k-automatic sets
of natural numbers to k-automatic sets of non-negative rational numbers, as
follows. Given a word x ∈ (Σk ×Σk)

∗, define

quok(x) =
[π1(x)]k
[π2(x)]k

,

where πi(x) is the projection of x onto its i’th coordinate (i = 1, 2), and [x]k is
the integer represented by the word x in base k. This is extended to languages
L in the usual way:

quok(L) = {quok(x) : x ∈ L}.
Then we have

Theorem 2. If M is a DFA, then sup quok(L(M)) is either rational or infinite,
and it is computable.

We can now apply this theorem to our problem. Let a be a k-automatic sequence.
Using the techniques above, we can compute a DFA M accepting the language

L = {(p, q) : ∃N a[N..N + p− q − 1] = a[N + q..N + p− 1]},
which represents all fractional powers p/q occurring in a. Now, applying Theo-
rem 2, we get the desired result.

As an application, we considered an old construction of Leech [30] for square-
free words: consider the fixed point L of the 13-uniform morphism ϕ given by

0 → 0121021201210

1 → 1202102012021

2 → 2010210120102
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Using our method, we proved that the critical exponent of L is actually 15
8 .

Furthermore, if x is a 15
8 power occurring in L, then |x| = 15 ·13i for some i ≥ 0.

See [23].

6 Mirror Invariance

We can express the property that a is mirror-invariant as follows:

∀N ≥ 0, � ≥ 1 ∃N ′ ≥ 0 a[N..N + �− 1] = a[N ′..N ′ + �− 1]R,

which is the same as

∀N ≥ 0, � ≥ 1 ∃N ′ ≥ 0 ∀i, 0 ≤ i < � a[N + i] = a[N ′ + �− i− 1],

which can be easily checked by our method.

7 Recurrence

We can express the property that a is recurrent by saying that for each factor,
and each integer M there exists a copy of that factor occurring at a position
after M in a. This corresponds to the following predicate:

∀N,M ≥ 0, � ≥ 1 ∃M ′ ≥ M a[N..N + �− 1] = a[M ′..M ′ + �− 1].

An easy argument shows that an infinite word a is recurrent if and only if each
finite factor occurs at least twice. This means that the following simpler predicate
suffices:

∀N ≥ 0, � ≥ 1 ∃M �= N a[N..N + �− 1] = a[M..M + �− 1].

For uniform recurrence, we need to express the fact that two consecutive occur-
rences of each factor are separated by no more than C positions. Since there are
only finitely many factors of each length, we can take C to be the maximum
of the constants corresponding to each factor of that length. Thus we get the
following predicate:

∀� ≥ 1 ∃C ≥ 1 ∀N ≥ 0 ∃M with N < M ≤ N+C a[N..N+�−1] = a[M..M+�−1].

For linear recurrence, we have to work harder, since at first glance knowing if
there is a factor at distance C� seems to require multiplication, which we cannot
perform. Instead, we construct a DFA accepting the language

L = {(n, �)k : ∃ i ≥ 0 s. t. ∀ j, 0 ≤ j < � we have a[i+ j] = a[i+ n+ j] and

� ∃ t, 0 < t < n s. t. ∀ j, 0 ≤ j < � we have a[i+ j] = a[i+ t+ j] }.
Note that (n, �)k ∈ L iff there exists some factor of length � for which the next
occurrence is at distance n. Then linear recurrence corresponds to quok(L) < ∞,
which we can test using Theorem 2.
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8 Orbit Closure

The orbit of a sequence a = a0a1a2 · · · is the set of all sequences under the shift,
that is, the set S = {aiai+1ai+2 · · · : i ≥ 0}. The orbit closure is the topological
closure S under the usual topology. In other words, a sequence b = b0b1b2 · · · is
in S if and only if, for each j ≥ 0, the prefix b0 · · · bj is a factor of a.

In general, the cardinality of the orbit closure is uncountable. On the other
hand, the k-automatic sequences are countable. Hence most sequences in the
orbit closure of a k-automatic sequence are not automatic themselves. However,
we can use our method to show that two distinguished sequences, the lexico-
graphically least and lexicographically greatest sequences in the orbit closure,
are indeed k-automatic.

For example, Currie [18] showed that the lexicographically least sequence in
the orbit closure of the Rudin-Shapiro sequence

r = r0r1r2 · · · = 000100100001110100010010111000 · · ·

is 0r, thus confirming a conjecture in [3].

9 Unbordered Factors

Recall that a word is bordered if it can be expressed as uvu for words u, v with
u nonempty, and otherwise it is unbordered. Currie and Saari [19] proved that
t has an unbordered factor of length n if n �≡ 1 (mod 6). However, these are not
the only lengths with an unbordered factor; for example,

0011010010110100110010110100101

is an unbordered factor of length 31. We can express the property that t has an
unbordered factor of length � as follows:

∃N ≥ 0 ∀j, 1 ≤ j ≤ �/2 t[N..N + j − 1] �= t[N + �− j..N + �− 1].

Using our technique, we can create a DFA to accept the base-2 representations
of all such �. Using our method, we were able to prove [23]

Theorem 3. There is an unbordered factor of length � in t if and only iff (�)2 �∈
1(01∗0)∗10∗1.

10 Enumeration

Up to now we have focused on deciding properties of automatic sequences. In
many cases, however, we can actually count the number T (n) of length-n factors
of an automatic sequence having a particular property P . Here by “count” we
mean, give an algorithm A to compute T (n) efficiently, that is, in time bounded
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by a polynomial in logn. Although finding the algorithm A may not be partic-
ularly efficient (and indeed, has a “tower-of-2’s” running time depending on the
predicate to express P ), but once we have it, we can compute T (n) quickly.

One example is subword complexity, the number of distinct length-n factors
of a sequence. To count these factors, we create a DFA M accepting the language

{(n, �)k : a[n..n+ �− 1] is the first occurrence of the given factor}
= {(n, �)k : ∀n′ < n a[n..n+ �− 1] �= a[n′..n′ + �− 1]}.

Once we have M , the number of � corresponding to a given n is just the subword
complexity. It then turns out [16] that this number can be expressed as the
product

vMa1 · · ·Maiw

for suitable vectors v, w and matrices M0, . . . ,Mk−1, where a1 · · ·ai is the base-k
representation of n, thus giving an efficient algorithm to compute it.

In a similar way, we can handle

– palindrome complexity (the number of distinct length-n palindromic factors)
[1];

– the number of words whose reversals are also factors;
– the number of squares of a given length;
– the number of unbordered factors [24];

and so forth.
For this last example, the number f(n) of unbordered factors of length n, we

carried out an explicit computation for the Thue-Morse sequence. The resulting
computation allowed us to prove that f(n) ≤ n for n ≥ 4 and f(n) = n infinitely
often [24].

11 Synchronization

Sometimes even more is true: we can build a DFA to accept the language

{(n, T (n))k : n ≥ 0},

where T (n) counts some interesting property about an automatic sequence. In
this case we say, following Carpi [15,13,14], that the function T is k-synchronized.
When a function T is k-synchronized, we have T (n) = O(n) and further, we can
compute it in O(log n) time [25].

Many enumerations about automatic sequences are now known to be k-
synchronized. These include

– the separator sequence [15];
– the repetitivity index [13];
– the recurrence function [16];
– the appearance function [16];
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– the subword complexity function [25];
– the number of factors of length n that are primitive [25].

Here is a novel example of synchronization. Blondin-Massé et al. studied the
longest palindromic suffix of a finite word w, defined to be the unique longest
word x such that x = xR and there exists y such that w = yx; it is denoted
LPS(w). Given an infinite word a = a0a1 · · · , they defined the related function
LLPSa(n) = |LPS(a[0..n])|, which measures the length of the longest palin-
dromic suffix of each prefix.

We can see that LLPSa(n) is k-synchronized, as we can build an automaton
to accept

{(n, i)k : a[n− i+ 1..n] = a[n− i+ 1..n]R and

∃j, 0 ≤ j ≤ n− i a[j..n] �= a[j..n]R}.
Blondin-Massé et al. also studied a related function, given by

Ha(n) =

{
LLPSa(n), if LPS(a[0..n]) does not occur in a[0..n− 1] ;

0, otherwise.

This sequence Ha is also k-synchronized, as we can express it as

{(n, i)k : a[n− i+ 1..n] = a[n− i+ 1..n]R and

∃j, 0 ≤ j ≤ n− i a[j..n] �= a[j..n]R and

∀�, 0 ≤ � ≤ n− i a[�..�+ i− 1] �= a[n− i+ 1..n]}
∪ {(n, 0)k : a[n− i+ 1..n] = a[n− i+ 1..n]R and

∃j, 0 ≤ j ≤ n− i a[j..n] �= a[j..n]R and

∃�, 0 ≤ � ≤ n− i a[�..�+ i− 1] = a[n− i+ 1..n]}.

12 Paperfolding

Up to now we have only applied our decision procedure to a single automatic
sequence. Sometimes, however, it is desirable to talk about the properties of
a family of such sequences. A famous example of such a family is the set of
paperfolding sequences. Given a sequence of unfolding instructions f = f0f1f2 · · ·
over the alphabet {0, 1}, the paperfolding sequence Pf = p1p2p3 · · · is defined
as the limit of the finite sequences given by

x0 = f0

xn+1 = xi fi xR
i ,

where, as before, 0 = 1 and 1 = 0. The regular paperfolding sequence

001001100011011 · · ·
corresponds to the unfolding instructions 000 · · · .
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It turns out that many properties of these sequence are also decidable using
our method. The key observation is due to Luke Schaeffer: a known formula to
compute the n’th term of a paperfolding sequence [20] can be implemented by
the following automaton of 5 states (depicted below in Figure 4) that takes, as
input, a prefix of a sequence of unfolding instructions in parallel with the base-2
expansion of n (starting with the least significant digit), and computes the n’th
term of the corresponding paperfolding sequence.

Fig. 4. Automaton for the paperfolding sequences

This makes it possible to prove many of the known results about paperfolding
sequences, and some new ones, in a purely mechanical fashion. We just mention
one new result, answering a question of Narad Rampersad [26]:

Theorem 4. If f = f0f1f2 · · · and g = g0g1g2 · · · are two different sequences of
unfolding instructions, and the smallest index where they differ is fi = gi, then
Pf and Pg have no factors of length ≥ 14 · 2i in common.

13 Implementation

As mentioned previously, the extraordinary upper bound on the running time of
the decision procedure means that care has to be taken during the implementa-
tion. Dane Henshall and my master’s student Daniel Goč independently wrote
code that takes a description of an automatic sequence and a predicate as input
and translates the predicate to the appropriate automaton. In Goč’s algorithm,
DFA minimization is done using Brzozowski’s algorithm, which often seems to
outperform the usual methods. With these implementations we have been able
to find new machine proofs of many old results and also some new ones.
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14 Inexpressible Predicates

It is natural to wonder if other kinds of properties of automatic sequences are
solvable using our method. One natural candidate that seems difficult is testing
abelian squarefreeness. We say that a nonempty word x is an abelian square if
it of the form ww′ with |w| = |w′| and w′ a permutation of w. (An example
in English is the word reappear, and three examples in Russian are kreker
(“cracker”) otletelo (“(it) flew away”) and rotatora (“(of) rotator”, genitive
case).)

Recently my student Luke Schaeffer has shown that the predicate for abelian
squarefreeness is indeed inexpressible, in general [41]. To do so, he considers the
regular paperfolding sequence

f = f1f2f3 · · · = 0010011000110110001001110011011 · · · ,

which is 2-automatic, and then the language

L = {(n, i)2 : f [i..i+ n− 1] is a permutation of f [i + n..i+ 2n− 1]}.

If abelian squarefreeness were expressible, then L would be regular, but he shows
it is not [41].

15 Open Questions

There are still many interesting questions that are unresolved. For example, it is
known that, given a DFA M , we can decide if quok(L(M)) ⊆ N [40]. However,
the following related problems are still open:

Open Question 1. Are any of the following problems recursively solvable? Given
a DFA M accepting L ⊆ (Σk ×Σk)

∗,

(a) Does there exist x ∈ L such that quok(x) ∈ N?
(b) Do there exist infinitely many x ∈ L such that quok(x) ∈ N?
(c) Is there an infinite subset S ⊆ N such that S ⊆ quok(L)?

Similarly, if L is represented by a pushdown automaton instead of a DFA, we
can ask.

Open Question 2. Is sup quok(L) computable for context-free languages L?
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(1983)

28. Honkala, J.: A decision method for the recognizability of sets defined by number
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