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Abstract. Gurevich and Rabinovich raised the following question: given
a property of a set of rational numbers definable in the real line by a
monadic second-order formula, is it possible to define it directly in the
rational line? In other words, is it true that the presence of reals at the
background do not increase the expressive power of monadic second-order
logic?

In this paper, we answer positively this question. The proof in itself is a
simple application of classical and more recent techniques. This question
will guide us in a tour of results and ideas related to monadic theories of
linear orderings.

1 In Which the Legacy Is Acknowledged

Büchi, Elgot, Kleene, Rabin, Scott, Shelah, Schützenberger, Trakhtenbrot and
others shaped the notion of regular languages as we know it. In less than two
decades, a beautiful theory involving computability, logic, algebra and topology
has emerged. Today’s researcher still walk on this path and are far from its end.

Most of the attention in this theory is put on monadic second-order logic.
Monadic logic (we will drop the second-order from now) is the extension of first-
order logic with the possibility to quantify over sets of elements. For comparison,
full second-order logic would allow to quantify over relations of all arities, while
in monadic logic, only 1-ary relations are allowed, and these can be interpreted
as sets. 1-ary relations are called monadic.

Monadic logic allows for instance to express properties of directed graph. In
this case, we assume that the elements are vertices of the graph and the only
available symbol edge(x, y) expresses the existence of an edge from vertex x to
vertex y. The existence of a path starting from a node i and reaching a node f
can be expressed in monadic logic, as follows:

All sets of vertices that contain i and are closed under the edge relation
also contain f .
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Of course, this is to be translated in mathematical symbols, as follows:

path(i, f)
def
= ∀Z(i ∈ Z ∧ ∀x∀y (x ∈ Z ∧ edge(x, y) → y ∈ Z))

→ f ∈ Z .

The important convention here is that lower case letter (here i, f, x, y) implicitly
range over elements, while upper case letters (here Z) range over sets of such
elements. We also see that a membership relation is available, such as in x ∈ Z,
with an obvious meaning. In some works, emphasizing on the fact that sets are
1-ary relations, this is denoted as Z(x).

(In this example, the power of monadic logic compared to first-order logic,
is already transparent. Indeed, it is a classical fact that reachability, i.e., the
existence of a path, is not expressible in first-order logic. This is usually the first
application that is given to Ehrenfeucht-Fräıssé games.)

The view we have on monadic logic is the one of algorithmic model theory,
i.e., the aim is to develop algorithms that can “solve” the logic. Solving has
several meaning depending on the situation. The first is satisfiability which
means, given a formula, to determine the existence of a structure for which it
holds (a model). The second is model-checking which means, given a formula
and some description of a structure (possibly infinite), to determine if the formula
holds on this specific structure. Grand expectations have to be immediately
lowered: satisfiability of monadic logic is undecidable as such. This is inherited
from first-order logic, that it is extending, which is already undecidable [11].

The interest of monadic logic appears when it is considered on structures of
specific shapes, namely words and trees or resemblant models. We will not de-
velop the tree-like structures in this paper. By words, we mean structures that
are linearly ordered, and in which each element is decorated by some finite local
information. These are also referred to as chains. These two terminologies de-
scribe properties of exactly the same nature, but differ concerning many choices
of notations. In particular the notations for chains are consistent with the view
of logic, while the notations for words are consistent with language theory. We
adopt in this paper the word terminology and stick to it, even if it is rightfully
arguable.

Let us explain how a word can be encoded as a relational structure: a word
can be seen as a linearly ordered set of positions enriched with unary predicates
that describe what letter is carried by each position. Formally, a word over an
alphabet A is a structure (L,≤, (a)a∈A) where ≤ equips L of a total order – we
call (L,≤) the domain of the word, and refer to (L,≤) as a linear ordering
– and for all elements x of L there exists one and exactly one letter a ∈ A such
that a(x) holds. Remark here that we did not make any assumption concerning
the finiteness of the linear ordering. This is important since we will eventually
be entering the realm of infinite structures. We will refer to countable words
or ω-words if the underlying linear ordering is countable or isomorphic to ω
respectively.

A language of finite words over the alphabet A
∗ is monadic definable if

there is a monadic sentence ϕ such that L = {u ∈ A
∗ : u |= ϕ} (where, as
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is usual u |= ϕ is pronounced “u models ϕ” and means that ϕ holds over the
relational structure encoding the word u). If ϕ(X1, . . . , Xk) is a monadic formula
of free monadic variables X1, . . . , Xk, and A1, . . . , Ak are subsets of the domain
of a word u, then u |= ϕ(A1, . . . , Ak) is true if ϕ is satisfied on u when its free
variables X1, . . . , Xk take A1, . . . , Ak as respective value.

For instance, over finite words, a property ϕ(X) expressing that “between any
two occurrences of the letter a, at least one point belongs to X” can be written
as ∀x∀y (x < y ∧ a(x) ∧ a(y)) → ∃z(z ∈ X ∧ x < z < y).

The starting point in the description of monadic logic is its equivalence over fi-
nite words with regular languages, as it has been found independently by Trakht-
enbrot on the one side, and Elgot and Büchi on the other side:

Theorem 1 (Büchi, Elgot and Trakhtenbrot [1,4,10]). A language of fi-
nite words is definable in monadic logic if and only if it is regular1.
Furthermore, the translations are effective, and as a consequence, satisfiability
of monadic logic over finite words is decidable.

The decidability result means that we can symbolically test the formula toward
an infinite number of potential inputs, here words. But Büchi made a further
step by showing that in such results, even the input can be infinite. Here, an
ω-word is a word such that the underlying linear ordering is isomorphic to ω, or
equivalently (N,≤).

Theorem 2 (Büchi [2]). A language of ω-words is definable in monadic logic
if and only if it is recognized by a Büchi-automaton2.
Furthermore, the translations are effective, and as a consequence, satisfiability
of monadic logic over ω-words is decidable.

This result was the first success in the decidability of the monadic theory of
some infinite models.

Remark 1. The original result of Büchi establishes the decidability of the monadic
theory of (N,≤). Of course, (N,≤) can be seen as an instance of a word over
a unary alphabet. Thus, from Theorem 2, we can deduce the decidability of
(N,≤). The converse also holds. Indeed, a word over the finite alphabet A can
be encoded, e.g., as the linear ordering of its domain together with sets (Xa)a∈A

such that a position i belongs to Xa if and only if i carries the letter a. Using
this encoding, a monadic formula over ω can guess on ω-word using existential
quantifiers over sufficiently many monadic variables. Using this technique, the
decidability of the satisfiability of monadic logic over ω-words can be deduced
from the decidability of the theory of ω. These kind of encodings are doable for
all linear orderings.

Of course, we can go further. The two landmark linear orderings are the rational
line (Q,≤) (sometimes denoted η of Q), and the real line (R,≤) (sometimes
denoted λ or R).

1 Say, recognized by a finite state automaton.
2 We do not present this very classical model here.
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Theorem 3 (Rabin [8]). The monadic theory of the rational line is decid-
able, or equivalently the satisfiability of monadic logic over words of domain the
rational line is decidable.

In fact, the proof of Rabin concerns the infinite binary tree, which is a richer
structure than the rational line. The proof of Rabin establishes that, over infinite
trees, monadic logic is equivalent to a certain form of automata. The decidability
of the rational line is then obtained by interpreting the rational line inside the
infinite binary tree. This allows to decide the monadic theory of the rational line,
but it is not at all informative concerning the expressive power of monadic logic
over the rational line. In particular, one cannot deduce, say, a model of automata
that would have the expressive power of monadic logic over the rational line.

Example 1. In order to illustrate the above theorem, let us try to give some intu-
ition of what can be defined using monadic logic over linear orderings in general.
We do not try to be exhaustive, and merely list some classical constructions and
examples.

Relativisation. Given a monadic formula Ψ and a set X , the relativisation
of Ψ to X is the formula ΨX in which all first-order quantifiers are required to
range overX and all monadic quantifiers are required to range over subsets of X .
This can be done by a simple syntactic transformation of Ψ . The formula ΨX holds
over a structure if the formula Ψ holds over the structure restricted to the set X .

As a consequence, Theorem 3 can be used to decide monadic logic over the
class of all countable linear orderings. Indeed, remark that any countable linear
ordering is isomorphic to a sub-ordering of the rational line. As a consequence,
Theorem 3 can be used to decide the existence of a countable linear ordering that
satisfy a formula Ψ : such a linear ordering exists if and only if (Q,≤) |= ∃X ΨX .

Finiteness. Remark that a non-empty linear ordering that has no maximal
point is infinite. Furthermore, this property is expressible in monadic logic (in
fact in first-order logic). Now, it is easy to see that conversely, if a linear ordering
is infinite, then either it has a non-empty sub-ordering that has no maximal
point, or a non-empty sub-ordering that has no minimal point. This is expressible
in monadic logic.

Using relativisation, this allows to express properties such as “X is finite” for
X a monadic variable. As a consequence we can express properties such as “every
finite sub-words belong to L”, where L is a regular language of finite words.

Digression. Let us recall that finiteness is not first-order definable in linear or-
derings. This is a straightforward consequence of compactness, as follows. For
the sake of contradiction, assume that the property “the linear ordering is finite”
is expressible in first order, then the property Pn =“the linear ordering is finite
and contains at least n distinct elements” would be expressible in first-order logic
too. But any finite sets of properties Pn has a model (the finite linear ordering of
length m where m is the maximal of the n’s involved in the Pn’s under consider-
ation). Thus by compactness, there exists a linear ordering that satisfies all Pn’s
simultaneously. This is obviously impossible since this would be a linear ordering
that is at the same be finite and contains more than n points for all n.
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Density. A linear ordering is said dense if for any two points x < y there
exists another point z ∈ (x, y). The rational line is dense, while ω (and more
generally any ordinal) is not dense. As an extra example, the integer line (Z,≤)
is also not dense, and it is not isomorphic to an ordinal either.

In particular, assuming that a linear ordering is countable, then being iso-
morphic to (Q,≤) is expressible in monadic logic (in fact first-order). Indeed,
up to isomorphism, (Q,≤) is the only countable linear ordering that is dense,
contains at least two points, and has no minimal nor maximal point.

Scatteredness. A linear ordering is said scattered if none of its sub-
orderings are dense. This is definable directly in monadic logic using relativi-
sation.

Remark that it may happen that a linear ordering is neither dense nor scat-
tered: imagine for instance a copy of the rational line in which every point is
replaced by a copy of (Z,≤).

In his seminal paper [9], Shelah uses another technique – the composition
method – and use it to prove the decidability of the monadic theory of the
rational line. However, the most impressive result he obtains is the undecidability
of the monadic theory of the real line.

Theorem 4 (Shelah [9]). The monadic theory of the real line is undecidable3.

This is a intriguing result that in some sense contradicts the intuition.
At this point, we have seen the key results concerning the decidability of the

monadic theory of linear orderings. Though both the result of decidability and of
undecidability can be improved, these improvements do not help understanding
the picture better.

2 In Which the Problem Is Exposed and Some of Its
Intriguing Characteristics Appear

As we have seen, the central problems of decidability are solved for most of
them. The questions we are really interested in this paper are more related to
expressivity.

Question 1. Given a monadic formula ϕ(X1, . . . , Xk), does there exist another
formula ϕ∗(X1, . . . , Xk) such that for all sets of rationals A1, . . . , Ak ⊆ Q,

(R,≤) |= ϕ(A1, . . . , Ak) if and only if (Q,≤) |= ϕ∗(A1, . . . , Ak) .

In other words, the question is whether the ability to use all points of the real
line does give more expressive power for stating properties of predicates over the
rational line. Notice here that implicitely, we use the fact that there is a fixed
embedding of (Q,≤) into (R,≤) (the usual one).

Gurevich and Rabinovich use the nice and suggestive terminology that the
formula ϕ has access to the reals at the background [6]. The open above
question is thus a rephrasing of the following open question in [6]:

3 Originally under a weak version of the continuum hypothesis, which has then be
removed in collaboration with Gurevich [7].
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“Is it true that a family of point-sets is definable in the chain (Q,≤) of
rationals if and only if it is definable in (Q,≤) with the chain of reals at
the background?”

Gurevich and Rabinovich solved this question for the integers.

Theorem 5 (Theorem 1 in [6]). For all monadic formula ϕ(X1, . . . , Xk),
there exists a formula ϕ∗(X1, . . . , Xk) such that for all A1, . . . , Ak ⊆ N,

(R,≤) |= ϕ(A1, . . . , Ak) if and only if (N,≤) |= ϕ∗(A1, . . . , Ak) .

We will not go into this proof which is superseded by what follows. However,
already in this case a very interesting phenomenon occurs: the existence of the
formula is inherently non-effective. Even if one allows the produced formula to
use extra predicates of decidable monadic theory.

Theorem 6 (variant of Theorem 2 in [6]). Let Q1, · · · ⊆ N be monadic
predicates such that (N,≤, Q̄) has a decidable monadic theory. There exists no
algorithm which, given a monadic formula ϕ, constructs ϕ∗ such that:

(R,≤) |= ϕ(X1, . . . , Xk) if and only if (N,≤, Q̄) |= ϕ∗(X1, . . . , Xk) .

Proof. Assume that such an algorithm exists, and consider some monadic sen-
tence ϕ. We apply the algorithm to ϕ, and obtain a sentence ϕ∗ such that
(R,≤) |= ϕ if and only if (N,≤, Q̄) |= ϕ∗. Since the monadic theory of (N,≤, Q̄)
is decidable, we could decide (R,≤) |= ϕ. This contradicts Theorem 4. 	

Despite this inherent difficulty due to non-effectiveness of the construction, we
shall provide a positive answer to Question 1.

3 In Which the Composition Theorem Is Introduced

In the same seminal paper as the one showing the undecidability of the monadic
theory of the real line [9], Shelah develops a technique referred to as the com-
position method. This is a variant for monadic logic of techniques developed
originally by Feferman and Vaught for first-order logic [5]. It becomes particu-
larly relevant in the context of monadic logic. The versatility of this approach
lies in its central theorem (known as the composition theorem, Theorem 7 be-
low) which is not in itself a decidability result, but provides the skeleton for a
decision procedure.

We need some notations first. Let α be a linear ordering and ui for all i ∈ α
be words. Then, we denote:

∏

i∈α

ui

the word consisting of copies of the ui’s arranged according to the linear order-
ing α. Formally, assume that α = (L,≤) and that the domain of ui is (Ki,≤i)
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for all i ∈ α, then the domain of the word
∏

i∈α ui is the set of pairs (i, x) where
i ∈ L and x ∈ Ki, ordered by (i, x) ≤ (j, y) if i < j or i = j and x ≤i y.
Furthermore, the letter at position (i, x) is the letter at position x in ui. In the
terminology of Shelah, this is denoted as a sum. The product notation reflects
the fact that it extends the concatenation product used for words.

Example 2. Before stating it, let us try to give an intuitive meaning to the com-
position theorem. Consider that you are interested in the following property of a
word u: “there is an even number of occurrences of the letter a”. For simplicity,
we denote from now by |u|a the number of occurrences of the letter a in the
word u. Let us distinguish four formulae:

– none holds over u if |u|a = 0,
– even holds over u if |u|a > 0 is even,
– odd holds over u if |u|a > 0 is odd,
– infinite holds over u if |u|a is infinite.

Over any word, exactly one of these four formulae holds, and the property we
are interested in is a disjunction of such formulae, namely empty∨ even.

Now consider a word u =
∏

i∈α ui, where the ui’s are themselves words. It is
easy to check that:

– u |= none if and only if ui |= none for all i ∈ α,
– u |= even if and only if

1. ui �|= infinity for all i ∈ α,
2. either ui |= even or ui |= odd for some i ∈ α, and finitely many of them,

and;
3. there is a finite even number of i ∈ α such that ui |= odd,

– u |= odd if and only if [...as above, replacing even by odd in 3...].
– u |= infinite if and only if either ui |= infinite for some i ∈ α or there

are infinitely many i ∈ α such that ui |= even or there are infinitely many
I ∈ α such that ui |= odd.

For all words u there is one and only one formula ϕ among none, even, odd and
infinity such that u |= ϕ: let us call this formula the type of u, and denote it
type(u). What we have seen in this example is that in order to know the type
of
∏

i∈α ui, it is sufficient to know the type of each of the ui’s. What is crucial
is that there are only finitely many types that are sufficient. The composition
theorem (Theorem 7) generalizes this example. It states that in order to know
the truth value of any monadic formula it is sufficient to consider only finitely
many types that have properties similar to this example.

Let us fix now a constant k ∈ N. A monadic formula has quantifier rank k if
there are at most k nested quantifiers.

Proposition 1. Over a fixed finite signature with only relational symbols (the
case of words over a fixed finite alphabet), there are only finitely many formulas
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up to syntactic equivalence. Here, the syntactic equivalence involves the usual
associativity, commutativity, idempotency, and distributivity of conjunctions and
disjunctions, the renaming of bound variables, and

∃s(ϕ ∨ ψ) ≡ (∃s ϕ) ∨ (∃s ψ) and ∀s(ϕ ∧ ψ) ≡ (∀s ϕ) ∧ (∀s ψ) ,
for t a first-order variable or a monadic variable.

From now, all formulae will be considered modulo this syntactic equivalence,
and since we fix k, by the above fact, we only have to consider finitely many
formulae.

Now, given a word u, its (k-)type is the set of sentences ϕ of quantifier rank
at most k such that u |= ϕ.

Theorem 7 (composition [9]). If typek(ui) = typek(vi) for all i ∈ α, then

typek

(
∏

i∈α

ui

)
= typek

(
∏

i∈α

vi

)
.

This completely reflects the intuition of Example 2, in which only four possible
types were distinguished for simplicity.

Remark 2. In fact the real composition theorem is more precise in that it ex-
presses how typek(

∏
i∈α ui) can be defined from

∏
i∈α typek(ui). Formally, it

states that for all type t of quantifier rank k, there exists a monadic formula t∗

such that:

typek

(
∏

i∈α

ui

)
= t iff

∏

i∈α

typek(ui) |= t∗ .

This implies Theorem 7 as if typek(ui) = typek(vi) for all i ∈ α, this means that∏
i∈α typek(ui) =

∏
i∈α typek(vi). However, this more complete presentation is

quite misleading since the quantifier rank of t∗ may be (much) higher than k.
In practice, the decision procedures using the composition method do not make
use of this formula t∗.

4 In Which Algebraic Recognizability for Countable
Words Is Defined

In this section, we introduce a notion of recognizability that is suitable for captur-
ing monadic logic over countable words [3]. It is highly related to the composition
method as shall be shown below.

Let us denote by M◦ the set of words of countable length over the alphabet
M . We call them M◦-words from now. Consider an application ⊗ : M◦ → M .
We will often use, for α a countable linear ordering, and ai ∈ M for all i ∈ α,
the notation ⊗

i∈α

ai
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to denote ⊗u where u is the word of domain α that carries at position i the
letter ai for all i ∈ α. This operation ⊗ is associative, or a product, if

– ⊗(a) = a for all a ∈M , and;
– for all countable linear orderings α and all families of M◦-words (ui)i∈α,

⊗
(
∏

i∈α

ui

)
=
⊗

i∈α

⊗(ui) .

A ◦-monoid M = (M,⊗) is a set M equipped with a product ⊗.

Remark 3. A consequence of the above definition is that for a, b, c in M :

⊗(a⊗ (bc)) = ⊗(⊗(a)⊗ (bc)) = ⊗(abc) = ⊗(⊗(ab)⊗ (c)) = ⊗(⊗(ab)c) .

Thus, if you denote ⊗(ab) as a · b, this means a · (b · c) = (a · b) · c. Hence this
generalizes the usual notion of associativity. Also, notice that the empty-word
ε belonging to M◦, it has a value ⊗(ε) under ⊗. Let us denote by 1 this value.
Still using associativity, we get for all a ∈M ,

a · 1 = ⊗(a1) = ⊗(⊗(a)⊗ (ε)) = ⊗(aε) = ⊗(a) = a ,

and similarly 1 · a = a. Thus, every ◦-monoid is in particular a monoid.

Of course, the free ◦-monoid generated by a set M is simply (M◦,
∏
).

The notion of a morphism of ◦-monoids is also natural. Given two ◦-monoids
M = (M,⊗) and M′ = (M ′,⊗′), a morphism from M to M′ is a function f
fromM toM ′ such that for all countable linear orderings α and (ai)i∈α elements
of M ,

f

(
⊗

i∈α

ai

)
=
⊗

i∈α

′
f(ai) .

We are now ready to define the notion of a recognizable set of countable words. A
set of words L ⊆ A

◦ is recognizable if there exist a finite ◦-monoidM = (M,⊗),
a morphism f from A

◦ to M and a set F ⊆M such that for all words u ∈ A
◦,

u ∈ L if and only if f(u) ∈ F .

Remark here that clearly, the finiteness refers to the carrier M of M (even if
M is finite, ⊗ is a mapping of infinite domain). The fact that the product ⊗
is “infinite” means that, as such, a finite ◦-monoid cannot be represented in a
computer.

In fact, the very strong properties of associativity of the product have as effect
that only a finite quantity of information is sufficient for representing a finite
◦-monoid. Concretely, it is sufficient to know the value of ⊗ over a finite number
of words for being able to reconstruct ⊗ uniquely over all countable words [9,3].
This is very similar to the fact that once the product of two elements is known
in a monoid, the product can be extended uniquely to arbitrarily long finite
sequences of elements. Decidability results and effective constructions are done
manipulating this representation.
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Example 3. Let us consider the set of {a, b}◦-words that have a finite and even
number of occurrences of the letter a (this corresponds to Example 2), and show
that it is recognizable.

We consider as carrier of the monoid the set M = {1, e, o, 0}. We start by
giving the morphism f that sends {a, b}◦ to M :

f(u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if |u|a = 0,

e if |u|a > 0 is finite and even,

o if |u|a > 0 is finite and odd,

0 otherwise.

With this morphism in mind, it is simple to uniquely define the product over
M . Consider for instance the M◦-word oo, since o = f(a), this means ⊗(oo) =
⊗(f(a)f(a)) = ⊗(f(aa)) = e. Using similar arguments, we can complete the
product as:

– ⊗(u) = 1 if u contains only 1’s,

– ⊗(u) = e if u does not contain the letter 0, it contains at least one non-1
letter, finitely many e letters, and a finite even number of o letters,

– ⊗(u) = e if u does not contain the letter 0, it contains at least one non-1
letter, finitely many e letters, and a finite odd number of o letters,

– ⊗(u) = 0 otherwise.

The intuition behind the previous example generalizes. A direct consequence
of the composition theorem is the recognizability of all monadic definable lan-
guages.

Theorem 8. All monadic definable languages of ◦-words are recognizable.

Proof. Let ϕ be a monadic formula defining L ⊆ A
◦. Let k be the quantifier

rank of ϕ.
We shall construct a ◦-monoid M and a morphism f from A

◦ to M. Define

M = {typek(v) : v ∈ A
◦} .

Since typek is surjective from A
◦ onto M , there exists a mapping g : M → A

◦

such that typek ◦ g is the identity over M . We extend it to M◦-words letter by
letter, yielding a mapping g̃ fromM◦ to A

◦ (formally g̃(
∏

i∈α ai) =
∏

i∈α g(ai)).
We now equip M with an operation ⊗ as follows. Let u be a word in M◦, define

⊗(u) = typek(g̃(u)) .
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We have for all A◦-words (vi)i∈α indexed by a countable linear ordering α,

typek

(
∏

i∈α

vi

)
= typek

(
∏

i∈α

g(typek(vi))

)
(Theorem 7)

= typek

(
g̃

(
∏

i∈α

typek(vi)

))

=
⊗

i∈α

typek(vi) ,

in which the first equality is by the composition theorem (Theorem 7) since by
construction of g, typek(vi) = typek(g(typek(vi))).

We do not know yet that ⊗ is a product. However, since typek is surjective
from A

◦ onto M and satisfies the properties of a morphism, it follows that the
fact that (A◦,

∏
) is a ◦-monoid is automatically transferred to (M,⊗). Thus

(M,⊗) is also a ◦-monoid, and typek is a morphism from (A◦,
∏
) to (M,⊗).

Let now F = {typek(u) : u ∈ L}. Let us show that M, typek, F recognize L.
Let u ∈ A

◦ be a word. We have that u ∈ L if and only if u |= ϕ if and only if
ϕ ∈ typek(u) if and only if typek(u) ∈ F . Hence M, typek, F recognize L. 	

One of the main contributions in [3] is to provide a form of converse to Theorem 8.

Theorem 9. All recognizable languages of ◦-words are monadic definable.

This direction relies on completely different techniques. It involves in particular
the theory of ideals of the monoid underlying the ◦-monoid and special forms
of factorizations of the words. In particular, it heavily relies on the fact that
the ◦-monoids used to recognize languages are finite, an assumption that was
not used so far (in fact, it is already crucial in Shelah’s work, but for different
reasons, for decidability). We will use this result as a black-box.

5 In Which the Question Is Answered

Let us consider now Question 1 again. We will see that the situation is not much
different from the previous section.

In order to deal with the real line, we need to describe a bit more precisely
the relationship between the rational line and the real line. For technical reasons
it is not very convenient to work directly with the real line, but rather on the
expansion of the rational line with all “Dedekind cuts”. The real line itself is
slightly different: it is obtained from the rational line using a similar expansion,
but keeping only the so-called “natural cuts”. Nevertheless, as far as logic is
concerned, this difference is very minor.

Given a linear ordering (E,≤), a (Dedekind) cut is an ordered pair (A,B) of
sets A,B ⊆ E such that A ∪ B = E and x < y for all x ∈ A and y ∈ B. Cuts
are ordered by (A,B) ≤ (A′, B′) if A ⊆ A′. Cuts can also be compared with the
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elements of E by x < (A,B) if x ∈ A and (A,B) < x if x ∈ B. Equipped with
this relation, the (disjoint) union of the elements of E with the cuts form a linear
ordering. A cut (A,B) is extremal if either A = ∅ or B = ∅. Given a linear
ordering α = (L,≤), denote by α̂ the completion of α, which is obtained from
α by adding to it all non-extremal cuts. Remark that to every element in x ∈ E
corresponds three copies x− < x < x+ in the the completed linear orderings,
where x− = ((−∞, x), [x,∞)) and x+ = ((−∞, x], (x,∞)). Cuts that are not
of the form x− or x+ are called natural. As mentioned above, the real line is
obtained from the rational line by adding to it the non-extremal natural cuts
only.

The completion of a word is done as follows. We fix ourselves a dummy letter
ι that is intended to label cuts. The (cut) completion comp(u) of a word u
over the alphabet A is a word over the alphabet A∪{ι} defined as

∏
i∈α̂ bi where

bi = ai for all i ∈ α and bi = ι otherwise (i.e., if i is a cut).
A simple, yet important, point is the relationship between the completion and

the product
∏
. The following lemma discloses this point. It essentially states

that the completion of the product is equivalent to a variant product of the
completion, where the variant product “fills the missing cuts”.

Lemma 1. For all linear orderings α and words (vi)i∈α,

comp

(
∏

i∈α

vi

)
≡
∏̂

i∈α

ι

comp(vi) ,

where for all words (wi) indexed by a linear ordering α we set

∏̂

i∈α

ι

wi =
∏

i∈α̂

w′
i

with for all i ∈ α̂, w′
i =

{
wi if i ∈ α,

ι otherwise, i.e., if i is a cut.

A language L of countable words is called monadic definable with cuts at
the background if there exists a monadic formula ϕ such that u ∈ L if and
only if û |= ϕ.

The following key proposition follows exactly the same proof scheme as the
one of Theorem 8.

Proposition 2. Languages of countable words that are monadic definable with
cuts at the background are ◦-recognizable.
Proof. Let ϕ be a monadic formula defining with cuts at the background a
language of countable words L ⊆ A

◦. Let k be the quantifier rank of ϕ.
We shall construct a ◦-monoid M and a morphism f from A

◦ to M. Let first
set typeck(v) to be typek ◦ comp(v) for all v ∈ A

◦. Define

M = {typeck(v) : v ∈ A
◦} .
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Since typeck is surjective from A
◦ onto M , there exists a mapping g :M → A

◦

such that typeck ◦ g is the identity overM . We extend it to M◦-words letter by
letter, yielding a mapping g̃ fromM◦ to A

◦ (formally g̃(
∏

i∈α ai) =
∏

i∈α g(ai)).

We now equip M with an operation ⊗̂ as follows. Let u be a word in M◦, define

⊗̂(u) = typeck(g̃(u)) .

We show now that typeck has the properties of a morphism from A
◦ to M

(though we do not know yet that ⊗̂ is a product). Consider a family of A◦-words
(vi)i∈α indexed by a countable linear ordering α, we have:

typeck

(
∏

i∈α

vi

)
= typek

(
∏̂

i∈α

ι

comp(vi)

)
(Lemma 1)

= typek

(
∏̂

i∈α

ι

comp(g(typeck(vi)))

)
(Theorem 7)

= typeck

(
∏

i∈α

g(typeck(vi))

)
(Lemma 1)

= typeck

(
g̃

(
∏

i∈α

typeck(vi)

))

=
⊗̂

i∈α

typeck(vi) .

in which the equality between the first and second line is by the composition
theorem using the fact that typeck(vi) = typeck(g(typeck(vi)).

We do not know yet that ⊗̂ is a product. However, since typeck is surjective
from A

◦ onto M and satisfies the properties of a morphism, it follows that the
fact that (A◦,

∏
) is a ◦-monoid is automatically transferred to (M, ⊗̂). Thus

(M, ⊗̂) is also a ◦-monoid, and typeck is a morphism from (A◦,
∏
) to (M, ⊗̂).

Let now F = {typeck(u) : u ∈ L}. Let us show that M, typeck, F recog-
nize L. Let u ∈ A

◦ be a word. We have that u ∈ L if and only if comp(u) |= ϕ
if and only if ϕ ∈ typeck(u) if and only if typeck(u) ∈ F . Hence M, typek, F
recognize L. 	

Thus, in combination with Theorem 9, we get the following corollary.

Corollary 1. Every language of countable words monadic definable with cuts at
the background is monadic definable.

If we restate this corollary in terms of relational structures, we get:

Corollary 2. Given a monadic formula ϕ(X1, . . . , Xk), there exists a formula
ϕ∗(X1, . . . , Xk) such that for all countable linear orderings α and all sets of
rationals A1, . . . , Ak ⊆ α,

α̂ |= ϕ(A1, . . . , Ak) if and only if α |= ϕ∗(A1, . . . , Ak) .
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Indeed, a countable linear ordering α labeled with A1, . . . , Ak can be seen as a
countable word over the alphabet 2k.

Now, recall that the reals are the completion of the rationals with natural cuts.
The only reason that the above theorem does not exactly solve Question 1 as it
stands is that α̂ also contains cuts that are not natural. Thus, it is sufficient to
remark that given a linear ordering α of domain A, there is a first-order formula
ϕ(X, x) such that α̂ |= ϕ(A, a) if and only if a is a non-natural cut (recall that
the non-natural cuts are the ones that are predecessors or successors of elements
of A; a property that makes them easily definable). Thus, using Corollary 2
together with a relativisation to the natural cuts and the original ordering, we
finally answer positively Question 1.

Theorem 10. Given a monadic formula ϕ(X1, . . . , Xk), there exists a formula
ϕ∗(X1, . . . , Xk) such that for all A1, . . . , Ak ⊆ Q,

(R,≤) |= ϕ(X1, . . . , Xk) if and only if (Q,≤) |= ϕ∗(X1, . . . , Xk) .
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