
More on the Complexity of Quantifier-Free

Fixed-Size Bit-Vector Logics
with Binary EncodingÆ
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Abstract. Bit-precise reasoning is important for many practical appli-
cations of Satisfiability Modulo Theories (SMT). In recent years, efficient
approaches for solving fixed-size bit-vector formulas have been developed.
From the theoretical point of view, only few results on the complexity
of fixed-size bit-vector logics have been published. Most of these results
only hold if unary encoding on the bit-width of bit-vectors is used.

In previous work [1], we showed that binary encoding adds more ex-
pressiveness to bit-vector logics, e.g. it makes fixed-size bit-vector logic
without uninterpreted functions nor quantificationNExpTime-complete.

In this paper, we look at the quantifier-free case again and propose
two new results. While it is enough to consider logics with bitwise opera-
tions, equality, and shift by constant to derive NExpTime-completeness,
we show that the logic becomes PSpace-complete if, instead of shift by
constant, only shift by 1 is permitted, and even NP-complete if no shifts
are allowed at all.

1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical appli-
cations of Satisfiability Modulo Theories (SMT), particularly for hardware and
software verification. Examples of state-of-the-art SMT solvers with support for
bit-precise reasoning are Boolector, MathSAT, STP, Z3, and Yices.

Syntax and semantics of fixed-size bit-vector logics do not differ much in the
literature [2–6]. Concrete formats for specifying bit-vector problems also exist,
e.g. the SMT-LIB format [7] or the BTOR format [8].

Working with non-fixed-size bit-vectors has been considered for instance in
[4, 9], and more recently in [10], but is not the focus of this paper. Most industrial
applications (and examples in the SMT-LIB) have fixed bit-width.

We investigate the complexity of solving fixed-size bit-vector formulas. Some
papers propose such complexity results, e.g. in [3] the authors consider quantifier-
free bit-vector logic and give an argument for theNP-hardness of its satisfiability
problem. In [5], a sublogic of the previous one is claimed to be NP-complete.
Interestingly, in [11] there is a claim about the full quantifier-free bit-vector
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logic without uninterpreted functions (QF BV) being NP-complete, however,
the proposed decision procedure confirms this claim only if the bit-widths of the
bit-vectors in the input formula are written/encoded in unary form. In [12, 13],
the quantified case is addressed, and the satisfiability problem of this logic with
uninterpreted functions (UFBV) is proved to be NExpTime-complete. Again,
the proof only holds if we assume unary encoded bit-widths. In practice, a more
natural and exponentially more succinct logarithmic encoding is used, such as
in the SMT-LIB, the BTOR, and the Z3 format.

In previous work [1], we already investigated how complexity varies if we con-
sider either a unary or a logarithmic, actually without loss of generality, binary
encoding. Apart from this, we are not aware of any work that investigates how
the particular encoding of the bit-widths in the input affects complexity (as an
exception, see [14, Page 239, Footnote 3]). Tab. 1 summarizes the completeness
results we obtained in [1].

Table 1. Completeness results of [1] for various bit-vector logics and encodings

quantifiers
no yes

uninterpreted functions uninterpreted functions
no yes no yes

encoding
unary NP NP PSpace NExpTime
binary NExpTime NExpTime ? 2-NExpTime

In this paper, we revisit QF BV2, the quantifier-free case with binary encod-
ing and without uninterpreted functions. We then put certain restrictions on the
operations we use (in particular on the shift operation). As a result, we obtain
two new sublogics which we show to be PSpace-complete resp. NP-complete.

2 Motivation

In practice, state-of-the-art bit-vector solvers rely on rewriting and bit-blasting.
The latter is defined as the process of translating a bit-vector resp. word-level
description into a bit-level circuit, as in hardware synthesis. The result can then
be checked by a (propositional) SAT solver. In [1], we gave the following example
(in SMT2 syntax) to point out that bit-blasting is not polynomial in general. It
checks commutativity of adding two bit-vectors of bit-width 1000000:

(set-logic QF_BV)

(declare-fun x () (_ BitVec 1000000))

(declare-fun y () (_ BitVec 1000000))

(assert (distinct (bvadd x y) (bvadd y x)))
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Bit-blasting such formulas generates huge circuits, which shows that checking
bit-vector logics through bit-blasting cannot be considered to be a polynomial
reduction. This also disqualifies bit-blasting as a sound way to argue that the
decision problem for (quantifier-free) bit-vector logics is in NP. We actually
proved in [1], that deciding bit-vector logics, even without quantifiers, is much
harder. It turned out to be NExpTime-complete in the general case.

However, in [1] we then also defined a class of bit-width bounded problems
and showed that under certain restrictions on the bit-widths this growth in
complexity can be avoided and the problem remains in NP.

In this paper, we give a more detailed classification of quantifier-free fixed-
size bit-vector logics by investigating how complexity varies when we restrict
the operations that can be used in a bit-vector formula. We establish two new
complexity results for restricted bit-vector logics and bring together our previous
results in [1] with work on linear arithmetic on non-fixed-size bit-vectors [10, 15]
and work on the reduction of bit-widths [16, 17]. The formula in the given
example only contains bitwise operations, equality, and addition. Solving this
kind of formulas turns out to be PSpace-complete.

3 Definitions

We assume the usual syntax for (quantifier-free) bit-vector logics, with a re-
stricted set of bit-vector operations: bitwise operations, equality, and (left) shift
by constant.

Definition 1 (Term). A bit-vector term t of bit-width n (n � N, n � 1) is
denoted by t�n�. A term is defined inductively as follows:

term condition bit-width

bit-vector constant: c�n� c � N, 0 � c � 2n n

bit-vector variable: x�n� x is an identifier n

bitwise negation: � t�n� t�n� is a term n

bitwise and/or/xor: �
t1
�n� � t2

�n�
�

t1
�n� and t2

�n� are terms n
� � �&, 	,
�

equality:
�
t1
�n� � t2

�n�
�

t1
�n� and t2

�n� are terms 1

shift by constant:
�
t�n�  c�n�

� t�n� is a term,

c�n� is a constant
n

We also define how to measure the size of bit-vector expressions:

Definition 2 (Size). The size of a bit-vector term t�n� is denoted by 	t�n�	 and
is defined inductively as follows:
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term size

natural number: enc�n� �log2 �n� 1��� 1

bit-vector constant: 	c�n�	 enc�c� � enc�n�

bit-vector variable: 	x�n�	 1� enc�n�

bitwise negation: 	 � t�n�	 1� 	t�n�	

binary operations:
	
�
t1
�n� � t2

�n�
�
	 1� 	t1

�n�	 � 	t2
�n�	

� � �&, 	,
,�,�

A bit-vector term t�1� is also called a bit-vector formula. We say that a bit-vector
formula is in flat form if it does not contain nested equalities. It is easy to see that
any bit-vector formula can be translated to this form with only linear growth in
the number of variables. In the rest of the paper, we may omit parentheses in a
formula for the sake of readability.

Let Φ be a bit-vector formula and α an assignment to the variables in Φ. We
use the notation α�Φ� to denote the evaluation of Φ under α, with α�Φ� � �0, 1�.
α satisfies Φ if and only if α�Φ� � 1. We define three different bit-vector logics:

- QF BV2�c: bitwise operations, equality, and shift by any constant are allowed
- QF BV2�1: bitwise operations, equality, and shift by only c � 1 are allowed
- QF BV2bw: only bitwise operations and equality are allowed

Obviously, QF BV2bw � QF BV2�1 � QF BV2�c. In Sec. 4, we investigate
the complexity of the satisfiability problem for these logics:

- QF BV2�c is NExpTime-complete.
- QF BV2�1 is PSpace-complete.
- QF BV2bw is NP-complete.

Adding uninterpreted functions does not change expressiveness of these logics,
since in the quantifier-free case, uninterpreted functions can always be replaced
by new variables. To guarantee functional consistency, Ackermann constraints
have to be added to the formula. However, even in the worst case, the number
of Ackermann constraints is only quadratic in the number of function instances.
Without loss of generality, we therefore do not explicitly deal with uninterpreted
functions.

4 Complexity Results

Theorem 1. QF BV2�c is NExpTime-complete.

Proof. The claim directly follows from our previous work in [1]. We informally
defined QF BV2 as the quantifier-free bit-vector logic that uses the common
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bit-vector operations as defined for example in SMT-LIB, including bitwise op-
erations, equality, shifts, addition, multiplication, concatenation, slicing, etc.,
and then showed that QF BV2 is NExpTime-complete.

Obviously, QF BV2�c � QF BV2 and therefore, QF BV2�c � NExpTime.
To show theNExpTime-hardness ofQF BV2, we gave a (polynomial) reduction
from DQBF (which is NExpTime-complete [18]) to QF BV2. Since we only
used bitwise operations, equality, and shift1 by constant in our reduction, we also
immediately get the NExpTime-hardness of QF BV2�c.

Theorem 2. QF BV2�1 is PSpace-complete.

Proof. In Lemma 1, we give a (polynomial) reduction from QBF (which is
PSpace-complete) to QF BV2�1. This shows the PSpace-hardness of
QF BV2�1. In Lemma 2, we then prove that QF BV2�1 � PSpace by giv-
ing a translation from QF BV2�1 to (polynomial sized) Sequential Circuits. As
pointed out for example in [19], the symbolic reachability problem is PSpace-
complete as well.

Lemma 1. QBF can be (polynomially) reduced to QF BV2�1.

Proof. To show the PSpace-hardness of QF BV2�1, we give a polynomial re-
duction fromQBF similar to the one from DQBF to QF BV2 that we proposed
in [1]. For our reduction, we again use the so-called binary magic numbers (or
magic masks in [20, p. 141]).

Given m,n � N with 0 � m � n, a binary magic number can be written in
the following form:

binmagic �2m, 2n� �

2n���������������������������������������
0 . . . 0���	��


2m

1 . . . 1���	��

2m

. . . 0 . . . 0���	��

2m

1 . . . 1���	��

2m

Note that in [1], we used shift by constant to construct the binary magic numbers,
as done in the literature [20]. This is not permitted in QF BV2�1. We therefore
give an alternative construction using only bitwise operations, equality, and shift
by 1 :

Given n � 0, for all m, 0 � m � n, add the following equation to the
formula:

b�m
�2n�

�

� �
0�i�m

bi
�2n�



 bm

�2n�

Consider all the bit-vector variables b0
�2n�, . . . , bn�1

�2n� as column vectors in a

matrix B�2n�n� and all the bit-vector variables b�0
�2n�

, . . . , b�n�1
�2n�

as column

vectors in a matrix B��2n�n�. If each row of B is interpreted as a number 0 �
c � 2n in binary representation, the corresponding row of B� is equal to c� 1.

1 Note, logical right shifts were used in the proof in [1]. However, by applying negated
bit masks throughout the proof, all right shifts can be rewritten as left shifts.
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Now, again for all m, 0 � m � n, add another constraint:

b�m
�2n�

� bm
�2n�  1�2

n�

Together with the previous n equations, those n constraints force the rows of B
to represent an enumeration of all binary numbers 0 � c � 2n. Therefore, the
columns of B, i.e. the individual bit-vectors b0

�2n�, . . . , bn�1
�2n�, exactly define

the binary magic numbers: binmagic �2m, 2n� :� bm
�2n�.

Of course, all b�m, for 0 � m � n, can be eliminated and the two sets of
constraints can be replaced by a single set of constraints:� �

0�i�m

bi
�2n�



 bm

�2n� � bm
�2n�  1�2

n�

Now let φ :� Q.M denote a QBF formula with quantifier prefix Q and matrix
M . Since φ is a QBF formula (in contrast to DQBF in [1]), we know that Q
defines a total order on the universal variables. We now assume the universal
variables u0, . . . , un�1 of φ are ordered according to their appearance in Q, with
u0 (resp. un�1) being the innermost (resp. outermost) variable.

Translate φ to a QF BV2�1 formula Φ by eliminating the quantifier prefix
and translating the matrix as follows:

Step 1. Replace Boolean constants 0 and 1 with 0�2
n� resp. � 0�2

n� and logical
connectives with corresponding bitwise bit-vector operations (e.g. � with &). Let

Φ� denote the formula generated so far. Extend it to the formula
�
Φ� � �0�2

k�
�
.

Step 2. For each universal variable um � �u0, . . . , un�1�,

1. translate (all the occurrences of) um to a new bit-vector variable Um
�2n�;

2. in order to assign a binary magic number to Um
�2n�, add the following equa-

tion (i.e., conjunct it with the current formula):

Um
�2n� � binmagic �2m, 2n�

Step 3. For an existential variable e depending on Deps�e� � �um, . . . , un�1�,
with um being the innermost universal variable that e depends on,

1. translate (all the occurrences of) e to a new bit-vector variable E�2n�;
2. if Deps�e� � � add the following equation:

�E & �1� � �E  1� (1)

otherwise, if m � 0 add the two equations:

U �
m � �

�
�Um  1� 
 Um

�
(2)

�E & U �
m� �

�
�E  1� & U �

m

�
(3)
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Note that we omitted the bit-widths in the last equations to improve read-
ability. Each bit position of Φ corresponds to the evaluation of φ under a spe-
cific assignment to the universal variables u0, . . . , un�1, and, by construction of
U0

�2n�, . . . , Un�1
�2n�, all possible assignments are considered. Eqn. (2) creates a

bit-vector U �
m
�2n�

for which each bit equals to 1 if and only if the corresponding
universal variable changes its value from one universal assignment to the next.

Of course, Eqn. (2) does not have to be added multiple times, if several exis-
tential variables depend on the same universal variable. Eqn. (3) (resp. Eqn. (1))
ensures that the corresponding bits of E�2n� satisfy the dependency scheme of
φ by only allowing the value of e to change if an outer universal variable takes
a different value. If m � 0, i.e. if e depends on all universal variables, Eqn. (2)

evaluates to U �
0
�2n�

� 0, and as a consequence Eqn. (3) simplifies to true. Be-
cause of this no constraints need to be added for m � 0. A similar approach
used for translating QBF to Symbolic Model Verification (SMV) can be found
in [21]. See also [19] for a translation from QBF to Sequential Circuits.

Lemma 2. QF BV2�1 can be (polynomially) reduced to Sequential Circuits.

Proof. In [10, 15], the authors give a translation from quantifier-free Presburger
arithmetic with bitwise operations (QFPAbit) to Sequential Circuits. We can
adopt their approach in order to construct a translation for QF BV2�1. The
main difference betweenQFPAbit andQF BV2�1 is the fact that bit-vectors of
arbitrary, non-fixed, size are allowed in QFPAbit while all bit-vectors contained
in QF BV2�1 have a fixed bit-width.

Given Φ � QF BV2�1 in flat form. Let x�n�, y�n� denote bit-vector variables,
c�n� a bit-vector constant, and t1

�n�, t2
�n� bit-vector terms only containing bit-

vector variables and bitwise operations. Following [10, 15] we further assume
w.l.o.g that Φ only consists of three types of expressions: t1

�n� � t2
�n�, x�n� � c�n�,

and x�n� � y�n�  1�n�, since any QF BV2�1 formula can be written like this
with only a linear growth in the number of original variables.

We encode each equality in Φ separately into an atomic Sequential Circuit.
Compared to [10, 15], two modifications are needed. First, we need to give a
translation for x � y  1 to Sequential Circuits. This can be done for example
by using the Sequential Circuit for x � 2 � y in QFPAbit. However, a direct
translation can also easily be constructed.

The second modification relates to dealing with fixed-size bit-vectors. Let n
be the bit-width of all bit-vectors in a given equality. We extend each atomic
Sequential Circuit to include a counter (circuit). The counter initially is set to
0 and is incremented by 1 in each clock cycle up to a value of n.

When the counter reaches a value of n, it does not change anymore and the
output of the atomic Sequential Circuit is set to the same value as the output
in the previous cycle. A counter like this can be realized with �log2�n�� gates,
i.e. polynomially in the size of Φ. In contrast to the implementation described
in [15], we assume that the input streams for all variables start with the least
significant bit. However, as already pointed out by the authors in [15], their
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choice was arbitrary and it is no more complicated to construct the circuits the
other way round.

Finally, after constructing atomic circuits, their outputs are combined by logi-
cal gates following the Boolean structure of Φ, in the same way as for unbounded
bit-width in [10, 15]. Due to adding counters, we ensure that for every input
stream xi, only the first ni bits of xi influence the result of the whole circuit.

For the proof of Thm. 3, we need the following definition and lemma from [1]:

Definition 3 (Bit-Width Bounded Formula Set [1]). Given a formula Φ,
we denote the maximal bit-width in Φ with maxbw �Φ�. An infinite set S of bit-
vector formulas is (polynomially) bit-width bounded, if there exists a polynomial
function p : N �� N such that �Φ � S. maxbw �Φ� � p�	Φ	�.

Lemma 3 ([1]). S � NP for any bit-width bounded formula set S � QF BV2.

Theorem 3. QF BV2bw is NP-complete.

Proof. Since Boolean Formulas are a subset of QF BV2bw, NP-hardness follows
directly. To show that QF BV2bw � NP, we give a reduction from QF BV2bw
to a bit-width bounded set of formulas. The claim then follows from Lemma 3.

Given a formula Φ � QF BV2bw in flat form. If Φ contains any constants
c�n� � 0�n�, we remove those constants in a (polynomial) pre-processing step.
Let cmax

�n� � bk�1 . . . b1b0 be the largest constant in Φ denoted in binary rep-
resentation with bk�1 � 1 and arbitrary bits bk�2, . . . , b0. We now replace each
equality t1

�m� � t2
�m� in Φ with

�t1,k��1
�1� � t2,k��1

�1�� & . . . & �t1,0
�1� � t2,0

�1��

where k� � min�m, k�, and, if m � k, we additionally add

& �t1,hi
�m�k� � t2,hi

�m�k��

For 0 � i � k, we use �t1,i
�1� � t2,i

�1�� to express the ith row of the original
equality. All occurrences of a variable x�m� are replaced with a new variable
xi
�1�. All occurrences of a constant c�m� are replaced with 0�1� if the ith bit of

the constant is 0, and by �0�1� otherwise.
In a similar way, if m � k, �t1,hi

�m�k� � t2,hi
�m�k�� represents the remaining

�m�k� rows of the original equality corresponding to the most significant bits. All
occurrences of a variable x�m� are replaced with a new variable xhi

�m�k� and all
occurrences of a constant c�m� are replaced with 0�m�k�. Since this pre-processing
step is logarithmic in the value of cmax, it is polynomial in 	Φ	. Without loss of
generality, we now assume that Φ does not contain any bit-vector constants
different from 0�n�.

We now construct a formula Φ� by reducing the bit-widths of all bit-vector

terms in Φ. Each term t�n� in Φ with bit-width n is replaced with a term t�n
��,

with n� :� min�n, 	Φ	�. Apart from this, Φ� is exactly the same as Φ. As a
consequence, maxbw �Φ

�� � 	Φ	. The set of formulas constructed in this way is
bit-width bounded according to Def. 3.
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To complete our proof, we now have to show that the proposed reduc-
tion is sound, i.e. out of every satisfying assignment to the bit-vector vari-
ables x1

�n1�, . . . , xk
�nk� for Φ we can also construct a satisfying assignment to

x1
�n�

1�, . . . , xk
�n�

k� for Φ� and vice versa.
It is easy to see that whenever we have a satisfying assignment α� for Φ�,

we can construct a satisfying assignment α for Φ. This can be done by simply
setting all additional bits of all bit-vector variables to the same value as the most
significant bit of the corresponding original vector, i.e. by performing a signed
extension. Since all equalities still evaluate to the same value under the extended
assignment, α�F � � α��F �� for all equalities F (resp. F �) of Φ (resp. Φ�). As a
direct consequence, α�Φ� � α��Φ� � 1.

The other direction needs slightly more reasoning. Given α, with α�Φ� � 1, we
need to construct α�, with α��Φ�� � 1. Again, we want to ensure that α��F �� �
α�F � for all equalities F (resp. F �) in Φ (resp. Φ�).

In each variable xi
�ni�, i � �1, . . . , k�, we are going to select some of the

bits. For each equality F with α�F � � 0, we select a bit-index as a witness for
its evaluation. If α�F � � 1, we select an arbitrary bit-index. We then mark the
selected bit-index in all bit-vector variables contained in F , as well as in all other
bit-vector variables of the same bit-width. Having done this for all equalities, we
end up with sets Mi of selected bit-indices, for all i � �1, . . . , k�, where

	Mi	 � min�ni, 	Φ	�

Mi �Mj �j � �1, . . . , k� with ni � nj

The selected indices contain a witness for the evaluation of each equality. We now
add arbitrary further bit-indices, again selecting the same indices in bit-vector
variables of the same bit-width, until 	Mi	 � min�ni, 	Φ	� �i � �1, . . . , k�.

Finally, we can directly construct α� using the selected indices and get α��Φ�� �
α�Φ� � 1 because of the fact that we included a witness for every equality in
our index-selection process. Note, that we only had to choose a specific witness
for the case that α�F � � 0. For α�F � � 1, we were able to choose an arbitrary
bit-index because every satisfied equality will trivially still be satisfied when only
a subset of all bit-indices is considered.

Remark 1. A similar proof can be found in [16, 17]. While the focus of [16, 17]
lies on improving the practical efficiency of SMT-solvers by reducing the bit-
width of a given formula before bit-blasting, the author does not investigate
its influence on the complexity of a given problem class. In fact, the author
claims that bit-vector theories with common operators are NP-complete. As we
have already shown in [1], this only holds if unary encoding on the bit-widths is
used. However, unary encoding leads to the fact that the given class of formulas
remains NP-complete, independent of whether a reduction of the bit-width is
possible. While the arguments on bit-width reduction given in [16, 17] still hold
for binary encoded bit-vector formulas when only bitwise operators are used, our
proof considers the complexity of the problem class.
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5 Discussion

The complexity results given in Sec. 4 provide some insight in where the expres-
siveness of bit-vector logics with binary encoding comes from. While we assume
bitwise operations and equality naturally being part of a bit-vector logic, if and
to what extent we allow shifts directly determines its complexity. Shifts, in a cer-
tain way, allow different bits of a bit-vector to interact with each other. Whether
we allow no interaction, interaction between neighbouring bits, or interaction
between arbitrary bits is crucial to the expressiveness of bit-vector logics and
the complexity of their decision problem.

Additionally, we directly get classifications for various other bit-vector opera-
tions: for example, we still remain in PSpace if we add linear modular arithmetic
to QF BV2�1. This can be seen by replacing expressions x�n� � y�n� � z�n� by�

x�n� � y�n� 
 z�n� 
 cin
�n�
�

&
�
cin

�n� � cout
�n�  1�n�

�
&�

cout
�n� �

�
x�n� & y�n�

�
	
�
cin

�n� & y�n�
�
	
�
x�n� & cin

�n�
��

with new variables cin
�n�, cout

�n�, and by splitting multiplication by constant into
several multiplications by 2 (resp. shift by 1), similar to [10, 15]. However, this
is not surprising since QFPAbit is already known to be PSpace-complete [15].

More interestingly, we can also extend QF BV2�1 (resp. QFPAbit) by in-
dexing (denoted by x�n��i�) without growth in complexity. The counter we in-
troduced in our translation from QF BV2�1 to Sequential Circuits can be used
to return the value at a specific bit-index of a bit-vector. Extending QF BV2�1

with additional relational operators like e.g. unsigned less than (denoted by
x�n� �u y�n�) does not increase complexity, either. For instance, the above ex-
pression can be replaced by checking whether x� y � 0 holds, which can simply
be done by constructing an adder for x�n��

�
�y�n� � 1�n�

�
, as shown above, and

then check whether overflow occurs, i.e.,
�
y�n� � 0�n�

�
&
�
cout

�n��n� 1� � 0�1�
�
.

On the other hand, slicing (denoted by x�n� �i : j�) cannot be added without
growth in complexity. To prove this, consider�

x�n� �n� 1 : c� � y�n� �n� c� 1 : 0�
�

&
�
x�n� �c� 1 : 0� � 0�c�

�
which is equivalent to

x�n� � �y�n�  c�n��

and shows that slicing can be used to express shift by constant. Therefore, the
resulting logic becomes NExpTime-complete. The same result holds for general
multiplication. We can use

x�n� � �y�n� � 2c�n��

to replace shift by constant and use exponentiation by squaring to calculate 2c�n�

with �log2�n�� multiplications.
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Note that those results only hold for fixed-size bit-vector logics. For exam-
ple, allowing multiplication (in combination with addition) makes non-fixed-size
bit-vector logics undecidable [22]. We are not aware of any complexity results
concerning non-fixed-size bit-vector logics with slicing or shift by constant.

6 Conclusion

In this paper, we discussed the complexity of fixed-size bit-vector logics with bi-
nary encoding on numbers. In contrast to existing literature, except for [1], where
usually it is not distinguished between unary or binary encoding, we argued that
it is important to make this distinction. Our results apply to the actually much
more natural binary encoding as it is also used in standard formats, e.g. in the
SMT-LIB format. In previous work [1], we already showed the quantifier-free
case of those bit-vector logics to be NExpTime-complete. We now extended our
previous work by analyzing the quantifier-free case in more detail and gave two
new complexity results.

In particular, we showed that the complexity of deciding quantifier-free bit-
vector logics with bitwise operations and equality depends on whether we al-
low shift by constant (QF BV2�c), shift by 1 (QF BV2�1), or no shifts at
all (QF BV2bw). While deciding QF BV2�c remains NExpTime-complete, we
proved that QF BV2�1 is PSpace-complete, and QF BV2bw even becomes
NP-complete.

In addition to the already previously proposed concept of bit-width bound-
edness, this gives an alternative way to avoid the increase in complexity that
comes with binary encoding in the general case. To be more specific for prac-
tical logics, we then looked at the effect some other common operations have
on this complexity results. We discussed why logics with addition, multipli-
cation by constant, indexing, and relational operations still can be decided in
PSpace, and showed that allowing general multiplication or slicing already leads
to NExpTime-completeness.

On the one hand, our theoretical results give an argument for using more
powerful solving techniques when dealing with bit-vector logics. Currently the
most common approach used in state-of-the-art SMT solvers for bit-vectors is
based on simple rewriting, bit-blasting, and SAT solving. We have shown this
can possibly produce exponentially larger formulas when a logarithmic encoding
is used in the input. As already argued in [1], possible candidates for the general
case are techniques used in EPR and/or DQBF solvers (see e.g. [23, 24]).

On the other hand, we described various logics that remain in lower complexity
classes. For QF BV2bw this shows the importance of bit-width reduction as
proposed in [16, 17] before bit-blasting. For formulas in QF BV2�1 or one of
the related classes, only using shift by 1, addition, multiplication by constant,
and indexing, techniques used in state-of-the-art QBF solvers [25] or symbolic
model checking on Sequential Circuits [19] might be of interest.



More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics 389

References
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