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Abstract. We say that an infinite word w is weakly abelian periodic
if it can be factorized into finite words with the same frequencies of
letters. In this paper we study properties of weak abelian periodicity,
and its relations with balance and frequency. We establish necessary
and sufficient conditions for weak abelian periodicity of fixed points of
uniform binary morphisms. Also, we discuss weak abelian periodicity in
minimal subshifts.

The study of abelian properties of words dates back to Erdös’s question whether
there is an infinite word avoiding abelian squares [7]. Abelian powers and their
avoidability in infinite words is a natural generalization of analogous questions
for ordinary powers. The answer to Erdös’s question was given by Keränen, who
provided a construction of an abelian square-free word [10]. From that time till
nowadays, many problems concerning different abelian properties of words have
been studied, including abelian periods, abelian powers, avoidability, complexity
(see, e. g., [2], [4], [5], [13]).

Two words are said to be abelian equivalent, if they are permutations of each
other. Similarly to usual powers, an abelian k-power is a concatenation of k abelian
equivalent words.We define a weak abelian power as a concatenation of words with
the same frequencies of letters. So, in a weak abelian power we admit words with
different lengths; if all words are of the same length, thenwe have an abelian power.
Earlier some questions about avoidability of weak abelian powers have been con-
sidered. In [11] for given integer k the author finds an upper bound for length
of binary word which does not contain weak abelian k-powers. In [8] the authors
build an infinite ternary word having no weak abelian (511 + 1)-powers.

The notion of abelian period is a generalization of the regular notion of period,
and it is closely related to abelian powers. A periodic infinite word can be defined
as an infinite power. Similarly, we say that a word is (weakly) abelian periodic,
if it is a (weak) abelian ∞-power. In the paper we study the property of weak
abelian periodicity for infinite words, in particular, its connections with related
notions of balance and frequency. We establish necessary and sufficient conditions
for weak abelian periodicity of fixed points of uniform binary morphisms. Also,
we discuss weak abelian periodicity in minimal subshifts.
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The paper is organized as follows. In Section 2 we fix our terminology, in
Section 3 we discuss some general properties of weak abelian periodicity and its
connections with other notions, such as balance and frequencies of letters. In
Section 4 we give a criteria for weak abelian periodicity of fixed points of prim-
itive binary uniform morphisms. In Section 5 we study weak abelian periodicity
of points in shift orbit closure of uniform recurrent words.

1 Preliminaries

In this section we give some basics on words following terminology from [12] and
introduce the concepts used in this paper.

Given a finite non-empty set Σ (called the alphabet), we denote by Σ∗ and
Σω, respectively, the set of finite words and the set of (right) infinite words over
the alphabet Σ. Given a finite word u = u1u2 . . . un with n ≥ 1 and ui ∈ Σ, we
denote the length n of u by |u|. The empty word will be denoted by ε and we
set |ε| = 0.

Given words w, x, y, z such that w = xyz, x is called a prefix, y is a factor
and z a suffix of w. The factor of w starting at position i and ending at position
j will be denoted by w[i, j] = wiwi+1 . . . wj . The prefix (resp., suffix) of length n
of w is denoted prefn(w) (resp., suffn(w)). The set of all factors of w is denoted
by F (w), the set of all factors of length n of w is denoted by Fn(w).

An infinite word w is ultimately periodic, if for some finite words u and v it
holds w = uvω; w is purely periodic (or briefly periodic) if u = ε. An infinite
word is aperiodic if it is not ultimately periodic.

An infinite word w = w1w2 . . . is recurrent if any of its factors occurs infinitely
many times in it. The word w is uniformly recurrent if for each its factor u there
exists C such that wheneverw[i, j] = u, there exists 0 < k ≤ C such that w[i, j] =
w[i + k, j + k] = u. In other words, factors occur in w in a bounded gap.

Given a finite word u = u1u2 . . . un with n ≥ 1 and ui ∈ Σ, for each a ∈ Σ,
we let |u|a denote the number of occurrences of the letter a in u. Two words u
and v in Σ∗ are abelian equivalent, denoted u ∼ab v, if and only if |u|a = |v|a
for all a ∈ Σ. It is easy to see that abelian equivalence is indeed an equivalence
relation on Σ∗.

An infinite word w is called abelian (ultimately) periodic, if w = v0v1 . . . ,
where vk ∈ Σ∗ for k ≥ 0, and vi ∼ab vj for all integers i, j ≥ 1.

For a finite word w ∈ Σ∗, we define frequency ρa(w) of a letter a ∈ Σ in w as

ρa(w) =
|w|a
|w| .

Definition 1. An infinite word w is called weakly abelian (ultimately) periodic,
if w = v0v1 . . . , where vi ∈ Σ∗, ρa(vi) = ρa(vj) for all a ∈ Σ and all integers
i, j ≥ 1.

In other words, a word is weakly abelian periodic if it can be factorized into
words of possibly different lengths with the same frequencies of letters. In what
follows we usually omit the word “ultimately”, meaning that there can be a
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prefix with different frequencies. Also, we often write WAP instead of weakly
abelian periodic for brevity.

Definition 2. An infinite word w is called bounded weakly abelian periodic, if
it is weakly abelian periodic with bounded lengths of blocks, i. e., there exists C
such that for every i we have |vi| ≤ C.

We mainly focus on binary words, but we also make some observations in the
case of general alphabet. One can consider the following geometric interpretation
of weak abelian periodicity. Let w = w1w2 . . . be an infinite word over a finite
alphabet Σ. We translate w to a graph visiting points of the infinite rectangular
grid by interpreting letters of w by drawing instructions. In the binary case, we
assign 0 with a move by vector v0 = (1,−1), and 1 with a move v1 = (1, 1). We
start at the origin (x0, y0) = (0, 0). At step n, we are at a point (xn−1, yn−1) and
we move by a vector corresponding to the letter wn, so that we come to a point
(xn, yn) = (xn−1, yn−1) + vwn , and the two points (xn−1, yn−1) and (xn, yn) are
connected with a line segment. Thus, we translate the word w to a path in Z

2.
We denote corresponding graph by gw. Therefore, for any word w, its graph is
a piece-wise linear function with linear segments connecting integer points (see
Example 1). It is easy to see that weakly abelian periodic word w has graph with
infinitely many integer points on a line with rational slope (we will sometimes
write that w is WAP along this line). A bounded weakly abelian periodic word
has a graph with bounded differences between letters. Note also that instead
of vectors (1,−1) and (1, 1) one can use any other pair of noncollinear vectors
v0 and v1, and sometimes it will be convenient for us to do so. For a k-letter
alphabet one can consider a similar graph in Z

k. Note that the graph can also
be defined for finite words in a similar way, and we will sometimes use it.

Definition 3. We say that a word w is of bounded width, if there exist two
lines with the same rational slope, so that the path corresponding to w lies between
these two lines. Formally, there exist rational numbers a, b1, b2, so that ax+b1 ≤
gw(x) ≤ ax+ b2.

Note that we focus on rational a, because words of bounded irrational width
cannot be weakly abelian periodic. Equivalently, bounded width means that
graph of the word lies on finitely many lines with rational coefficients.

We will also need the notions of frequency and balance, which are closely
related to abelian periodicity. Relations between these notions are discussed in
the next section. A word w is called C-balanced if for each two its factors u and
v of equal length ||u|a−|v|a| ≤ C for any a ∈ Σ. Actually, the notion of bounded
width is equivalent to the notion of balance (see, e.g., [1]). We say that a letter a ∈
Σ has frequency ρa(w) in an infinite word w if ρa(w) = limn→∞ ρa(prefn(w)).
Note that for some words the limit does not exist, and we say that such words
do not have letter frequencies. Note also that we define here a prefix frequency,
though sometimes another version of frequency of letters in words is studied
(see Section 5 for definitions). Observe that if a WAP word has a frequency of a
letter, then this frequency coincides with the frequency of this letter in factors
of corresponding factorization.
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A morphism is a function ϕ : Σ∗ → B∗ such that ϕ(ε) = ε and ϕ(uv) =
ϕ(u)ϕ(v), for all u, v ∈ Σ∗. Clearly, a morphism is completely defined by the
images of the letters in the domain. For most of morphisms we consider, Σ = B.
A morphism is primitive, if there exists k such that for every a ∈ Σ the image
ϕk(a) contains all letters from B. A morphism is uniform, if |ϕ(a)| = |ϕ(b)| for
all a, b ∈ Σ, and prolongeable on a ∈ Σ, if |ϕ(a)| ≥ 2 and a = pref1(ϕ(a)). If
ϕ is prolongeable on a, then ϕn(a) is a proper prefix of ϕn+1(a), for all n ∈ N.
Therefore, the sequence (ϕn(a))n≥0 of words defines an infinite word w that is
a fixed point of ϕ.

Remind the definition of Toeplitz words. Let ? be a letter not in Σ . For a
word w ∈ Σ(Σ ∪ {?})∗, let

T0(w) =?ω, Ti+1(w) = Fw(Ti(w)),

where Fw(u), defined for any u ∈ (Σ ∪ {?})ω, is the word obtained from wω by
replacing the sequence of all occurrences of ? by u; in particular, Fw(u) = wω if
w contains no ?.

Clearly,

T (w) = lim
i→∞

Ti(w) ∈ Σω

is well-defined, and it is referred to as the Toeplitz word determined by the
pattern w. Let p = |w| and q = |w|? be the length of w and the number of ?’s in
w, respectively. Then T (w) is called a (p, q)-Toeplitz word (see, e. g., [3]).

Example 1. Paperfolding word:

00100110001101100010011100110110 . . .

This word can be defined, e.g., as a Toeplitz word with pattern w = 0?1?. The
graph corresponding to the paperfolding word with v0 = (1,−1), v1 = (1, 1)
is in Fig. 1. The paperfolding word is not balanced and is WAP along the line
y = −1 (and actully along any line y = C, C = −1,−2, . . . ). See Proposition 2
(2) for details.
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Fig. 1. The graph of the paperfolding word with v0 = (1,−1), v1 = (1, 1)

Example 2. A word obtained as an image of the morphism 0 	→ 01, 1 	→ 0011
of any nonperiodic binary word is bounded WAP.
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2 General Properties of Weak Abelian Periodicity

In this section we discuss the relations between notions defined in the previ-
ous section and observe some simple properties of weak abelian periodicity. We
start with the property of bounded width and its connections to weak abelian
periodicity.

Proposition 1. 1. If an infinite word w is of bounded width, then w is WAP.
2. There exists an infinite word w of bounded width which is not bounded WAP.
3. If an infinite word w is bounded WAP, then w is of bounded width.

Proof. 1. Since w is of bounded width, its graph lies on a finite number of lines
with rational coefficients. By the pigeonhole principle it has infinitely many
points on one of these lines and hence is WAP.

2. Consider

w = 01110100010101110101010 · · · = (01)11(10)20(01)31(10)4 . . . (01)2i−11(10)2i0 . . .

Taking its graph with v0 = (−1, 1) and v1 = (1, 1) we see that it lies on the
lines y = 0,−1, 1, 2 and hence w is of bounded width. The graph intersects each
of these lines infinitely many times, but each of them with growing gaps.

3. Again, take graph of w with v0 = (−1, 1) and v1 = (1, 1). Bounded WAP
means that it intersects some line y = ax+ b with a, b rational and gap at most
C for some integer C, i. e., the difference between two consecutive points xi and
xi+1 is at most C. Therefore, the graph lies between lines y = ax+ b−C/2 and
y = ax+ b+ C/2, and hence w is of bounded width.

In the following proposition we discuss the connections between uniform recur-
rence and WAP.

Proposition 2. 1. If w is uniformly recurrent and of bounded width, then w is
bounded WAP.
2. There exists a uniformly recurrent WAP word w which is not of bounded
width.

Proof. 1. Take graph of w with some vectors, e. g., v0 = (−1, 1) and v1 = (1, 1).
Bounded width means that the graph gw satisfies ax+ b1 ≤ gw(x) ≤ ax+ b2 for
some rational numbers a, b1, b2. Take the biggest such b1 and the smallest b2, i.
e., there are integers x1 and x2 such that gw(x1) = ax1 + b1, gw(x2) = ax2 + b2.
Without loss of generality suppose x1 ≤ x2 and consider the factor w[x1, x2].
Since w is uniformly recurrent, this factor occurs infinitely many times in it
with bounded gap. Every position i corresponding to an occurrence of this factor
satisfies gw(i) = ai+ b1, otherwise gw(i+ x2 − x1) > a(i + x2 − x1) + b2, which
contradicts the choice of b2. Hence the word is bounded WAP along the line
y = ax+ b1 (and moreover along y = ax+ b2 and any rational line in between).

2. One of such examples is the paperfolding word w. It can be defined in several
equivalent ways, we define it as a Toeplitz word with pattern 0?1? [3]. It is not
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difficult to see that |pref4k−1(w)|0 = 4k/2, |pref4k−1(w)|1 = 4k/2−1. Hence, the
word is WAP with frequencies ρ0 = ρ1 = 1

2 along the line y = −1. On the other

hand, taking n = 2k +2k−2+ · · ·+2k−2� k
2 �, one gets |prefn(w)|0 −|prefn(w)|1 =

k + 1. Thus, the word is not of bounded width.

Next, we study the relation between WAP property and frequencies of letters.

Proposition 3. 1. There exists an infinite word w with rational frequencies of
letters which is not WAP.
2. If an infinite word w has irrational frequency of some letters, then w is not
WAP.
3. If a binary infinite word w does not have frequencies of letters, then w is
WAP.
4. There exists a ternary infinite word w which does not have frequencies of
letters and which is not WAP.

Proof. 1. Consider

w = 01001010(01)4 . . . 0(01)2
n

. . .

This word has letter frequencies ρ0 = ρ1 = 1/2. Suppose it is weakly abelian
periodic. If a word has frequencies of letters and is WAP, then these frequencies
coincide with frequencies of letters in the corresponding factorization. So, if w
is WAP, then there is a sequence k1, k2, . . . (the sequence of lengths of factors
in the corresponding factorization), such that |prefki

w|0 = ki/2+C, where C is
defined by the first factor of length k1: C = k1/2 − |prefk1

w|0/2. For the word
w, the number of 0’s in a prefix of length n is |prefnw|0 = n/2 + θ(log n). For
n = ki large enough one has θ(logn) > C, a contradiction. Thus, w is not WAP.

For uniformly recurrent examples see Section 5.

2. Assume that the word w is WAP, then for every letter a there exists a

rational partial limit limnk→∞
|prefnk

(w)|a
|prefnk

(w)| . For w having irrational frequency of

some letter all such partial limits corresponding to this letter exist and are equal
to this irrational frequency. A contradiction.

3. Consider a sequence ( |prefn(w)|a
|prefn(w)| )n≥1. This sequence is bounded, and has a

lower and upper partial limits r = limn→∞
|prefn(w)|a
|prefn(w)| andR = limn→∞

|prefn(w)|a
|prefn(w)| .

Since the sequence does not have a limit, these partial limits do not coincide:
r < R. Using the graph of w, one gets that the graph intersects every line with
slope corresponding to the frequency between r and R. For rational frequencies
one gets that the graph intersects the line infinitely many times. Hence there
are infinitely many integer points on it (or its shift, depending on the choice of
v0 and v1). Thus, we proved that w is WAP, and moreover, it is WAP with any
rational frequency ρ, r < ρ < R in factors in the corresponding factorization.

4. Consider the word

w = 0120122406110216 . . . 0ni1ni+12ni+2 . . . ,
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where ni = ni−1 + ni−2 for every i ≥ 5, n1 = n2 = n3 = n4 = 1. The word
is organized in a way that after each block ani the frequency of the letter a in
the prefix ending in this block is equal to 1/2, i. e., ρa(01201

224 . . . ani) = 1
2 for

a ∈ {0, 1, 2}. Hence, the frequencies of letters do not exist.
Now we will prove that it is not weakly abelian periodic. Suppose it is,

with points k1, k2 . . . and rational frequencies ρ0, ρ1, ρ2 in the blocks, i. e. w =

w1w2 . . . , and |w1 . . . wn| = kn and |wi|a
|wi| = ρa for every a ∈ {0, 1, 2} and i > 1.

By the pigeonhole principle there exists a letter a such that infinitely many ki
are in the blocks of a-s, meaning that at least one of the letters wki , wki+1 is
a. Without loss of generality suppose a = 2. Using the recurrence relation for

ni, one can find limn→∞
|prefknw|0
|prefknw|1 = 1

λ1
, where λ1 = 1+

√
5

2 is the larger root of

the equation λ2 = λ+1 corresponding to the recurrence relation. Therefore, the
limit is irrational, and hence w cannot be equal to ρ0

ρ1
. Thus, w is not WAP.

Thus, we obtain the following corollary:

Corollary 1. If a binary word w is not WAP, then it has frequencies of letters.

This simple corollary, however, is unexpected: from the first glance weak abelian
periodicity and frequencies of letters seem to be very close notions. But it turns
out that one of them (WAP) does not hold, then the other one should necessarily
hold.

We end this section with an observation about WAP of non-binary words. We
will show that contrary to ordinary and abelian periodicity, the property WAP
cannot be checked from binary words obtained by unifying letters of the original
word.

For a word w over an alphabet of cardinality k define wa∪b to be the word
over the alphabet of cardinality k− 1 obtained from w by unifying letters a and
b. In other words, wa∪b is an image of w under a morphism b 	→ a, c 	→ c for
every c 
= b.

Proposition 4. There exists a ternary word w, such that w0∪1, w0∪2, w1∪2 are
WAP, and w itself is not WAP.

Proof. We use the example we built in the proof of Proposition 3(3), i. e., we take
w = 0120122406110216 . . . 0ni1ni+12ni+2 . . . , where ni = ni−1 + ni−2 for every i.
Due to space limitations, we omit the calculations.

3 Weak Abelian Periodicity of Fixed Points of Binary
Uniform Morphisms

In this section we study the weak abelian periodicity of fixed points of uniform
binary morphisms.

Consider a binary uniform morphism ϕ with matrix

(
a b
c d

)
. This means that

|ϕ(0)|0 = a, |ϕ(0)|1 = b, |ϕ(1)|0 = c, |ϕ(1)|1 = d, and a+ b = c+ d = k, since we
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consider a uniform morphism. In a fixed point w of the binary uniform morphism
ϕ the frequencies exist and they are rational. It is easy to see that ρ0(w) =

c
b+c ,

ρ1(w) =
b

b+c . It will be convenient for us to consider a geometric interpretation
with v0 = (1,−b), v1 = (1, c). If w is WAP, then the frequency inside the blocks
is equal to the frequency in the whole word. Thus, WAP can be reached along a
horizontal line y = C.

The following theorem gives a characterization of weak abelian periodicity for
fixed points of non-primitive binary uniform morphisms. Observe that the theo-
rems in this section are stated for non-primitive morphisms, since for primitive
binary uniform morphisms it is easy to check (bounded) WAP directly.

Theorem 1. Consider a non-primitive binary uniform morphism ϕ with matrix(
a b
c d

)
having a fixed point w starting with letter 0. For any u ∈ {0, 1}∗∪{0, 1}∞

let gu be its graph with vectors v0 = (1,−b), v1 = (1, c).
1. If gϕ(0)(x) = 0 for some x, 0 < x ≤ k, then w is WAP.
2. If gϕ(0)(k) ≥ −b, then w is WAP.
3. Otherwise we need the following parameters. Denote Δ = gϕ(0)(k), A =
max{gϕ(0)(i)|i = 1, . . . k, wi = 1}, t = max{gϕ(1)(i)|i = 1, . . . k, wi = 1}.

If ϕ does not satisfy conditions 1 and 2, then its fixed point w is WAP if and
only if ΔA−c

−b + t ≥ A.

Proof. 1. If in the condition gϕ(0)(x) = 0, 0 < x ≤ k, the number x is integer,
then for every i it holds gϕi(0)(k

i−1x) = 0, so the word is WAP. If x is not
integer, then we have either gϕ(0)(�x�) < 0 and gϕ(0)(
x�) > 0 or gϕ(0)(�x�) > 0
and gϕ(0)(
x�) < 0. Without loss of generality consider the first case. For any
i, one has gϕi(0)(k

i−1�x�) < 0 and gϕi(0)(k
i−1
x�) > 0, hence there exists xi,

ki−1�x� < xi < ki−1
x�, such that gϕi(0)(xi) = 0. Hence, we have an infinite
sequence of points (xi)

∞
i=1 such that gw(xi) = 0. By the definition of gw and

the pigeonhole principle we obtain that there is an infinite number of integer
points from the set �xi�, 
xi�, i = 1, . . . ,∞, on one of the lines x = C, C =
−max(b, c) + 1,−max(b, c) + 2, . . . ,max(b, c)− 1. So, w is WAP.

2. If gϕ(0)(k) ≥ 0, we are in the conditions of the case 1, so the word is
WAP. If 0 > gϕ(0)(k) ≥ −b, then the only possible case is gϕ(0)(k) = −b. This
follows from the fact that the condition 0 > gϕ(0)(k) ≥ −b means that a > c, or,
equivalently, a − c ≥ 1, and therefore gϕ(0)(k) = a(−b) + bc = −b(a− c) ≥ −b.
Hence c = a − 1, and so gϕi(0)(k

i) = −b, and thus w is WAP along the line
y = −b.

3. Suppose that ΔA−c
−b + t ≥ A. We need to prove that w is WAP.

Let j be such that gϕ(1)(j) = t. Under these conditions we will prove the
following claim: If for some m one has wm = 1 and gw(m) ≥ A, then wkm+j = 1
and gw(k(m− 1) + j) ≥ A.

Consider the occurrence of 1 at the position m. By the definition of the graph
of w, one has that gw(m− 1) ≥ A− c, and hence prefm−1(w) contains at least
c

b+c (m− 1)− 1
b+c (A− c) letters 0 and at most b

b+c (m− 1) + 1
b+c(A− c) letters
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1. Therefore, for the image of this prefix one has gw(k(m − 1)) ≥ ΔA−c
−b . Since

wm = 1, one has w[k(m−1)+1, km] = ϕ(1). Then gw(k(m−1)+j) = gw(k(m−
1)) + t ≥ ΔA−c

−b + t, and we have ΔA−c
−b + t ≥ A, and so gw(k(m− 1) + j) ≥ A.

The claim is proved.
Now consider the occurrence of 1 corresponding to the value A defined in the

theorem, i. e., we consider wi = 1 such that gw(i) = A. Applying the claim we
just proved to m = i we have wk(i−1)+j = 1, gw(k(i − 1) + j) ≥ A. Now we
can apply the claim to m = k(i − 1) + j and obtain that wk(k(i−1)+j)+j = 1,
gw(k(k(i − 1) + j)) ≥ A. Continuing this line of reasoning, one gets infinitely
many positions n for which gw(n) ≥ A. On the other hand, it is easy to see that
gw(k

l) < 0 for all integers l. Hence, w is WAP along one of the lines y = C,
A−max(b, c) + 1 ≤ C ≤ max(b, c)− 1. Additional term ±max(b, c) is added to
guarantee integer points, since the graph ”jumps” by b and c.

Now suppose that ΔA−c
−b + t < A. We need to prove that w is not WAP.

Let j be such that gϕ(1)(j) = t. Under these conditions we prove the following
claim: If for all m in the prefix of w of length N such that wm = 1 one has
gw(m) ≤ A, then for all N + 1 ≤ l ≤ Nk such that wl = 1 we have gw(l) <
maxm{gw(m)|1 ≤ m ≤ N,wm = 1}, or, equivalently, gw(l) ≤ maxm{gw(m) −
1|1 ≤ m ≤ N,wm = 1}. Roughly speaking, the claim says that maximal values
are decreasing. The claim is proved in a similar way as the previous claim, so we
omit the proof.

Now consider occurrences of 1 from ϕ(0), i. e., we consider wi = 1 such that
1 ≤ i ≤ k. By the conditions of the part 3 of the theorem we have gw(i) ≤ A.
Applying the latter claim to m = i we have that for all occurrences l of 1 in
w[k + 1, k2] it holds gw(l) ≤ A − 1. By the definition of the graph gw, maximal
values are attained immediately after the occurrences of 1-s, hence we actually
have gw(l) ≤ A− 1 for all k + 1 ≤ l ≤ k2. Continuing this line of reasoning, we
obtain that for kn + 1 ≤ i ≤ kn+1 it holds gw(l) ≤ A − n. Thus, the word w is
not WAP (since w can be WAP only along horizontal lines).

Now we are going to show that a fixed point of a uniform morphism is bounded
WAP iff it is abelian periodic. This is probably known or follows from some gen-
eral characterizations of balance of morphic words (e. g., [1]), but we nevertheless
provide a short combinatorial proof to be self-contained.

Theorem 2. Let w be a fixed point of binary k-uniform morphism ϕ. The fol-
lowing are equivalent:
1. w is bounded WAP
2. w is abelian periodic

3. ϕ(0) ∼ab ϕ(1) or k is odd and ϕ(0) = (01)
k−1
2 0, ϕ(1) = (10)

k−1
2 1.

Proof. We prove the theorem in the following way. Starting with a bounded
WAP word w, we step by step restrict the form of w and prove that the mor-

phism should satisfy either ϕ(0) ∼ab ϕ(1) or k is odd and ϕ(0) = (01)
k−1
2 0,

ϕ(1) = (10)
k−1
2 1. These conditions clearly imply abelian periodicity, and abelian

periodicity implies bounded WAP. So, we actually prove 1 ⇒ 3 ⇒ 2 ⇒ 1, and
the only implication to be proved is 1 ⇒ 3.
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Suppose that w is bounded WAP and ϕ(0) is not abelian equivalent to ϕ(1),
i. e., a 
= c. Without loss of generality we may assume that the fixed point starts
with 0 and that a > c. If a < c, we consider a morphism ϕ2, so that one has
gϕ2(0) ≤ 0. We will prove that either the fixed point is not of bounded width or

the morphism is of the form ϕ(0) = (01)
k−1
2 0, ϕ(1) = (10)

k−1
2 1, k odd.

In the proof we will use the following terminology. For a factor u of w such

that ρ0(u) > ρ0(w), we say that u has m extra 0’s, if |u|0−m
|u|−m = ρ0(w). In other

words, deleting m letters 0 from u gives a word with frequency ρ0(w). We also
admit non-integer values of m. E. g., if ρ0(w) = 1

3 and u = 01, then u has 1
2

extra 0’s.
Suppose a > c + 1. In this case ϕi(0) contains (a − c)i extra zeros. Since

(a − c)i increases as i increases, w is not of bounded width. Hence, the fixed
point is not bounded WAP in this case, and hence for bounded WAP one should
have a = c+ 1.

Suppose that ϕ(0) has a prefix x with more than one extra zero. Without loss
of generality we assume that x ends with 0, otherwise we may take a smaller
prefix. So, x = x′0, and x′ has m > 0 extra 0-s. It is not difficult to show that
under the condition a = c + 1 the image ϕ(x′) also contains m extra 0. An
image of x starts with ϕ(x′)x′0. An image of this word starts in ϕ2(x′)ϕ(x′)x′0.
Continuing taking images, we obtain that for every i the word w has a prefix
of the form ϕi(x′)ϕi−1(x′) . . . ϕ(x′)x′0. This word contains (i + 1)m + 1 extra
0-s, and this amount grows as i grows. Hence word w is not of bounded width,
a contradiction. Therefore, we have that every prefix of ϕ(0) has at most one
extra 0, in particular, ϕ(0) starts in 01.

In a similar way we show that every suffix of ϕ(0) has at most one extra 0.
The only difference is that we obtain a series of factors (not prefixes) of w with
growing amount of extra 0-s.

Now consider an occurrence of 0 in ϕ(0), i. e., wj = 0, 1 ≤ j ≤ k. By what
we just proved, ρ0(prefj−1(ϕ(0)) ≥ ρ0(w), and ρ0(suffk−j(ϕ(0)) ≥ ρ0(w). Since
ϕ(0) has one extra 0, we have ρ0(prefj−1(ϕ(0)) = ρ0(suffk−j(ϕ(0)) = ρ0(w).
Hence, wj can be equal to 0 only if in the prefix prefj−1(ϕ(0)) the frequency of
0 is the same as in w.

On the other hand, if the frequencies in the prefj−1(ϕ(0)) are the same as
in w, then wj cannot be equal to 1. Suppose the converse; let wj = 1, then all
wl = 1, l = j, . . . , k − 1, since by induction in all the prefixes prefl(ϕ(0)) the
frequency of 0 is less than ρ0(w). Therefore, in ϕ(0) there will be less than one
extra 0, a contradiction.

Thus, each time we have ρ0(prefj−1(ϕ(0)) = ρ0(w), we necessarily have wj =
0, otherwise wj = 1. Since |ϕ(0)|0 = a, the frequency ρ0(w) is reached a times,
and ϕ(0) consists of a− 1 blocks with one 0 and with frequency ρ0(w), and one
extra block 0. Therefore, a−1 divides a−1+b, i. e., b = i(a−1) for some integer
i. By a similar argument applied to ϕ(1) we get that d− 1 divides c− 1, which
means i(a − 1) divides a − 1. Hence i = 1, and the matrix of the morphism is
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(
a a− 1

a− 1 a

)
. Combining this with the conditions for positions of 0 in ϕ(0),

we obtain ϕ(0) = (01)
k−1
2 0, ϕ(1) = (10)

k−1
2 1.

4 On WAP of Points in a Shift Orbit Closure

In this section we consider the following question: if a uniformly recurrent word
w is WAP, what can we say about WAP of other words whose language equals
F (w)?

As a corollary from Theorem 1 we obtain the following proposition:

Proposition 5. There exists a binary uniform morphism having two infinite
fixed points, such that one of them is WAP, and the other one is not.

Proof. Consider the morphism ϕ : 0 → 0001, 1 → 1011. Using Theorem 1 (3),
one gets that the fixed point starting from 0 is not WAP. Using Theorem 1 (1),
one gets that the fixed point starting from 1 is WAP.

Remark. In particular, this means that there exist two words with same sets of
factors such that one of them is WAP while the other one is not.

In this section we need some more definitions.
Let T : Σω → Σω denote the shift transformation defined by T : (xn)n∈N →

(xn+1)n∈ω. The shift orbit of an infinite word x ∈ Σω is the set O(x) =
{T i(x)|i ≥ 0} and its closure is given by O(x) = {y ∈ Σω|Pref(y) ⊆
{Pref(T i(x))|i ∈ N}}, where Pref(w) denotes the set of prefixes of a finite or
infinite word w. For a uniformly recurrent word w any infinite word x in O(w)
has the same set of factors as w.

We say that w ∈ Σω has uniform frequency ρa of a letter a, if in every
word from O(w) the frequency of the letter a exists and is equal to ρa. In
other words, a letter a ∈ Σ has uniform frequency ρa in w if its minimal fre-

quency ρ
a
= limn→∞ infx∈Fn(w)

|x|a
|x| is equal to its maximal frequency ρa =

limn→∞ supx∈Fn(w)
|x|a
|x| , i. e. ρa = ρa.

Theorem 3. Let w be an infinite binary uniformly recurrent word.
1. If w has irrational frequencies of letters, then every word in its shift orbit
closure is not WAP.
2. If w does not have uniform frequencies of letters, then there is a point in a
shift orbit closure of w which is WAP.
3. If w has uniform rational frequencies of letters, then there is a point in a shift
orbit closure of w which is WAP.
4. There exists a non-balanced word w with uniform rational frequencies of let-
ters, such that every point in a shift orbit closure of w is WAP.
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Proof. 1. Follows from Proposition 3 (2).

2. Follows from Proposition 3 (3).

3. In the proof we use the notion of a return word. For u ∈ F (w), let n1 <
n2 < . . . be all integers ni such that u = wni . . . wni+|u|−1. Then the word
wni . . . wni+1−1 is a return word (or briefly return) of u in w [6], [9], [13].

We now build a WAP word u from O(w). Start with any factor u1 of w, e. g.
with a letter. Without loss of generality assume that ρ0(u1) ≥ ρ0(w). Consider
factorization of w into first returns to u1: w = v11v

1
2 . . . v

1
i . . . , so that v1i is a

return to u1 for i > 1. Then there exists i1 > 1 satisfying ρ0(v
1
i1) ≥ ρ0. Suppose

the converse, i. e., for all i > 1 ρ0(v
1
i ) < ρ0. Due to uniform recurrence, the

lengths of the v1i ’s are uniformly bounded, and hence ρ0(w) < ρ0, a contradiction.
Take u2 = v1i1 , then u1 = pref(u2). Now consider a factorization of w into first
returns to u2: w = v21v

2
2 . . . v

2
i . . . . Then there exists i2 > 1 satisfying ρ0(v

2
i2
) ≤

ρ0, take u3 = v2i2 . Continuing this line of reasoning to infinity, we build a word
u = limn→∞ ui, such that ρ0(u2i) ≥ ρ0, ρ0(u2i+1) ≤ ρ0. So, the graph of w
with vectors v0 = (1,−1) and v0 = (1,−1) intersects the line y = ρ0x infinitely
many times. Since ρ0 is rational, by a pigeonhole principle the graph intersects in
integer points infinitely many times one of finite number (actually, a denominator
of ρ0) of lines parallel to y = ρ0x. It follows that u is WAP with frequency ρ0,
and by construction u ∈ O(w).

4. Due to space limitations, we omit the proof of this item.
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