
Cyclic Shift on Prefix-Free Languages

Jozef Jirásek 1,� and Galina Jirásková 2,��

1 Institute of Computer Science, Faculty of Science, P.J. Šafárik University,
Jesenná 5, 040 01 Košice, Slovakia

jozef.jirasek@upjs.sk
2 Mathematical Institute, Slovak Academy of Sciences,

Grešákova 6, 040 01 Košice, Slovakia
jiraskov@saske.sk

Abstract. We prove that the cyclic shift of a prefix-free language rep-
resented by a minimal complete n-state deterministic finite automaton is
recognized by a deterministic automaton of at most (2n− 3)n−2 states.
We also show that this bound is tight in the quaternary case, and that it
cannot be met by using any smaller alphabet. In the ternary and binary
cases, we still get exponential lower bounds.

1 Introduction

Cyclic shift is a unary operation on formal languages defined as shift(L) =
{w|w = uv and vu ∈ L}. The operation preserves regularity since the cyclic shift
of a regular language may be expressed as a union of n concatenations [9]. Us-
ing such a representation, an upper bound (n·2n−2n−1)n on the state complexity
of cyclic shift has been proved already by Maslov [9] in 1970. He also provided a
lower bound (n− 2)n−2 · 2(n−2)(n−2) for incomplete deterministic automata over
a growing alphabet of size 2n − 2. It follows that a lower bound for complete
deterministic automata over a growing alphabet is (n− 3)n−3 · 2(n−3)(n−3).

The Maslov’s lower bound has been improved by Jirásková and Okhotin [7]
by presenting a regular language recognized by a complete n-state deterministic
finite automaton, defined over a fixed four-letter input alphabet, that requires
at least (n−1)! ·2(n−1)(n−2) deterministic states for its cyclic shift. Nevertheless,
the new lower bound does not match the above mentioned upper bound.

In the case of prefix-free regular languages, concatenation is a simple opera-
tion. While the state complexity of concatenation is m · 2n− 2n−1 in the general
case [9,14], it is only m+ n− 2 if the operands are prefix-free [3,6]. Now a ques-
tion arises whether such an easy concatenation on prefix-free languages could be
used to get the exact value of the state complexity of cyclic shift on this subclass
of regular languages. In our paper, we answer this question positively, and prove
the tight bound (2n− 3)n−2 on the state complexity of cyclic shift on prefix-free
languages.

� Research supported by grants VEGA 1/0832/12 and APVV-0035-10.
�� Research supported by grants VEGA 2/0183/11 and APVV-0035-10.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 246–257, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Cyclic Shift on Prefix-Free Languages 247

Our witness languages are defined over a four-letter alphabet. We also prove
the optimality of the size of an input alphabet by showing that the upper bound
(2n−3)n−2 on the state complexity of cyclic shift on prefix-free languages cannot
be met by any language defined over a ternary (or any smaller) alphabet. How-
ever, in the ternary and binary cases, we still are able to prove exponential lower
bounds (n− 2)! · 2n−2 and (n− 2) · (3n−2 − 1)+ 1, respectively. Our calculations
show that these lower bounds can be exceeded.

The study of cyclic (or circular) shift has applications in coding theory. Cyclic
codes are block codes, in which the cyclic shift of a codeword always yields
another codeword. Thus L = shift(L) for a cyclic code L. It is known that the
operation of cyclic shift preserves context-freeness [10,11], and that the cyclic
shift of a language described by a regular expression of length n can be described
by a regular expression of length O(n3) [2].

In prefix codes, like variable-length Huffman codes or country calling codes,
there is no codeword that is a proper prefix of any other codeword. With such
a code, a receiver can identify each codeword without any special marker be-
tween words. Motivated by prefix codes, the class of prefix-free regular languages
have been recently investigated. It is known that every minimal deterministic
automaton recognizing a prefix-free regular language must have exactly one final
state, from which all transitions go to a dead state. Using this property, tight
bounds on the state complexity of basic operations such as union, intersection,
concatenation, star, and reversal have been obtained in [3] and strengthened
in [6,8]. The nondeterministic state complexity of basic regular operations has
been studied in [4,6], while the complexity of combined operations on prefix-free
regular languages has been investigated in [5].

2 Preliminaries

We assume that the reader is familiar with basic concepts of regular languages
and finite automata and for unexplained notions we refer to [12,13].

For an alphabet Σ, let Σ∗ be the set of all strings over Σ, including the empty
string ε. A language is any subset of Σ∗. We denote the power-set of a set X by
2X . For an integer m, let [m] = {0, 1, . . . ,m− 1} .

A deterministic finite automaton (DFA) is a quintuple M = (Q,Σ, ·, s, F),
where Q is a finite non-empty set of states, Σ is an input alphabet, · : Q×Σ → Q
is the transition function, s ∈ Q is the initial (start) state, and F ⊆ Q is the set of
final states. In this paper, all DFAs are assumed to be complete. The transition
function · is extended to the domain Q × Σ∗ in a natural way. The language
accepted by the DFA M is the set of strings L(M) = {w ∈ Σ∗ | s · w ∈ F}.
A state q of M is called a dead state if no string is accepted by M from q.

A nondeterministic finite automaton (NFA) is a quintupleM = (Q,Σ, ·, S, F),
where Q,Σ, and F are defined in the same way as for a DFA, S is the set of
initial states, and · is the nondeterministic transition function that maps Q×Σ

248 J. Jirásek and G. Jirásková

to 2Q. The transition function can be naturally extended to the domain 2Q×Σ∗.
The language accepted by NFA M is L(M) = {w ∈ Σ∗ | S · w ∩ F �= ∅}.

Two automata are equivalent if they recognize the same language. A DFA
M is minimal if every DFA equivalent to M has at least as many states as M .
It is well-known that a DFA is minimal if all of its states are reachable and
pairwise distinguishable. The state complexity of a regular language L, sc(L), is
the number of states in the minimal DFA recognizing the language L.

The cross-product automaton [1] for the union of two languages recognized by
DFAs (QA, Σ, ◦, sA, FA) and (QB, Σ, •, sB, FB), respectively, is the DFA

(QA ×QB, Σ, · , (sA, sB), F),

where (p, q) · a = (p ◦ a, q • a) and F = (FA ×QB) ∪ (QA × FB).

2.1 Prefix-Free Languages

If u, v, w are strings in Σ∗ and w = uv, then u is a prefix of w. If, moreover,
v �= ε, then u is a proper prefix of w. A language is prefix-free if it does not
contain two strings, one of which is a proper prefix of the other.

It is well known that a minimal DFA recognizes a non-empty prefix-free lan-
guage if and only if it has a dead state and a unique final state, from which all
transitions go to the dead state.

3 Cyclic Shift on Prefix-Free Languages

The cyclic shift of a language L is defined as

shift(L) = {uv | vu ∈ L}.

Assume that the language L is recognized by a DFA A. By definition, a string
w is in shift(L) if it can be partitioned as w = uv so that the string vu is
in L. This means that there is a state q, such that the computation of A on the
string v ends in the state q, while the string u is accepted by A from the state q.
This gives the following result from [9].

Lemma 1 (Maslov [9]). Let A = (Q,Σ, ·, q0, F) with Q = {q0, q1, . . . , qn−1}
be an n-state DFA. For i = 0, 1 . . . , n − 1, let Bi = (Q,Σ, ·, qi, F) and Ci =
(Q,Σ, ·, q0, {qi}) be the DFAs that have the same state set and the same tran-
sitions as the DFA A, and differ from A only in their initial and final states.
Then

shift(L(A)) =
n−1⋃

i=0

L(Bi)L(Ci).

Cyclic Shift on Prefix-Free Languages 249

3.1 Upper Bound for Cyclic Shift on Prefix-Free Languages

Using the above mentioned Maslov’s result we now get an upper bound on the
number of states of deterministic finite automata recognizing the cyclic shift of
prefix-free languages.

Lemma 2 (Upper Bound). Let n ≥ 3 and let L be a prefix-free language
accepted by a minimal n-state DFA. Then the language shift(L) is accepted by
a DFA of at most (2n− 3)n−2 states.

Proof. Let A = (Q,Σ, ·, q0, {qn−2}) with Q = {q0, q1, . . . , qn−1} be a minimal
DFA for a prefix-free language L, in which qn−1 is the dead state, and qn−2

is the sole final state. Then, by Lemma 1, shift(L) = ∪n−1
i=0 L(Bi)L(Ci), where

Bi = (Q,Σ, ·, qi, {qn−2}) and Ci = (Q,Σ, ·, q0, {qi}). Since qn−1 is the dead state
of A, and all transitions defined in the unique final state qn−2 go to the dead
state qn−1, the language L(Bn−1) is empty and L(Bn−2) = {ε}. Therefore, the
language L(Bn−1)L(Cn−1) is empty and

L(Bn−2)L(Cn−2) = L(Cn−2) = L(B1) ⊆ L(B1)L(C1)

since ε ∈ L(C1). Hence shift(L) = ∪n−3
i=0 L(Bi)L(Ci).

For i = 0, . . . , n − 3, the language L(Bi)L(Ci) is accepted by a DFA Di

obtained from the DFAs Bi and Ci as follows. First, since all transitions defined
in the unique final state qn−2 of Bi go to the dead state, the state qn−2 can
be merged with the initial state q0 of Ci. Next, the state qn−1 in Bi as well as
the states qn−1 and qn−2 in Ci are all dead, and therefore can be merged into a
single dead state. The resulting DFA Di is deterministic and has 2n− 3 states.

Now the language shift(L) = ∪n−3
i=0 L(Bi)L(Ci) is accepted by the cross-

product automaton D0 ×D1 × · · · ×Dn−3 that has at most (2n− 3)n−2 states.
The construction is illustrated in Fig. 1.
�

3.2 Lower Bound in Quaternary Case

Throughout this subsection assume that n ≥ 4 and Σ = {a, b, c, d}. Recall that
[m] = {0, 1, . . . ,m− 1}. Our aim is to prove that the upper bound on the state
complexity of cyclic shift of prefix-free languages given in the previous lemma is
tight in the case of a four-letter alphabet.

To this aim define a quaternary n-state DFA A = ([m+2], Σ, ·, 0, {m}), where
m = n− 2. For each state i in [m],

i · a = i+ 1 mod m,

i · b =
⎧
⎨

⎩

1, if i = 0,
0, if i = 1,
i, otherwise,

i · c =
{
0, if i ∈ {0, 1},
i, otherwise,

i · d = i+ 1,

250 J. Jirásek and G. Jirásková

a,b,c,d

A

b,c

a,b,c,da,b,d
b,c

da,d

a

43210

a,b,d
b,c

da,d

a

a,b,c,d

a,b,d
b,c

da,d

a

a,b,c,d

a,b,d
b,c

da,d

a

D

D

D

a,b,d
b,c

da,d

a

a,b,c,d

a,b,d
b,c

da,d

a

a,b,d
b,c

da,d

a
0

1

2

20 1 3 4 5 6

b,c b,c

b,c b,c

b,c b,c

320 1 4 5 6

3210 4 5 6

Fig. 1. A five-state DFA A and the resulting DFAs Di for L(Bi)L(Ci) for i = 0, 1, 2

and m · σ = (m+ 1) · σ = m+ 1 for each input σ in Σ. The DFA A is depicted
in Fig. 2. Since all transitions defined in the unique final state m go to the dead
state m+ 1, the language L(A) is prefix-free.

Note that on states in [m], input a causes a great permutation, input b causes a
transposition, and input c causes a contraction. Thus, the semigroup of functions
of [m] into itself is generated by the inputs a, b, c.

For i = 0, 1, . . . ,m − 1, construct the DFA Di = ([2m + 1], Σ, ◦, i, {m+ i})
accepting the language L(Bi)L(Ci) as described in the proof of the previous
lemma. All the automata Di’s have the same transition function ◦, defined by
2m ◦ σ = 2m and i ◦ σ = (m + i) ◦ σ = i · σ for each i in [m] and σ in Σ, and
these automata differ only in the initial and final states. Fig. 1 shows the DFAs
D0, D1, and D2 corresponding to the DFA A in the case of m = 3.

Then the language shift(L) = ∪m−1
i=0 L(Di) is recognized by the cross-product

automaton D0×· · ·×Dm−1. Our aim is to prove that the cross-product automa-
ton has (2n− 3)n−2 = (2m+ 1)m reachable and pairwise distinguishable states.

m m+10 1 2 ... m−1
a,d a,d a,b,c,d

a,b,c,db,cb,c

a,d
a,b,d

c

d

b,c
a

Fig. 2. The quaternary n-state witness DFA A; m = n− 2

Cyclic Shift on Prefix-Free Languages 251

Let us start with reachability. The state set of the cross-product automaton
consists of m-tuples in [2m + 1]m, and the initial m-tuple is (0, 1, . . . ,m − 1).
The next lemma shows that every m-tuple in [2m+ 1]m is reachable.

Lemma 3 (Reachability). Every m-tuple in [2m + 1]m is reachable in the
cross-product automaton D0 ×D1 × · · · ×Dm−1.

Proof. Let (k0, k1, . . . , km−1) be an arbitrary but fixed m-tuple in [2m + 1]m.
We will show that there is a string w that moves the cross-product automaton
from its initial state (0, 1, . . . ,m− 1) to the state (k0, k1, . . . , km−1).

For the m-tuple (k0, k1, . . . , km−1), consider the two disjoint sets of indices I
and J defined by

I = {i ∈ [m] | ki = 2m},
J = {i ∈ [m] |m ≤ ki ≤ 2m− 1},

that is, the i-th component of the m-tuple is the dead state 2m of Di whenever
i ∈ I, it is a state in {m,m+ 1, . . . , 2m− 1} whenever i ∈ J , and it is a state in
[m] otherwise. Next, define a function f : [m] → [m] by

f(i) =

⎧
⎨

⎩

1, if i ∈ I,
ki −m, if i ∈ J,
ki, otherwise.

Since the symbols a, b, c perform the three basic functions on [m] in the DFA A,
there is a string vf over {a, b, c} that moves every state i in [m] to f(i) in A.

Finally, for each � in [m] consider the string u� = am−1−� d a�, and define

w = (
∏

i∈I

uiui

∏

i∈J

ui) · vf , (1)

where
∏

stands for concatenation (in an arbitrary order).
Our goal is to prove that w is the desired string that moves the cross-product

automaton from the initial state (0, 1, . . . ,m− 1) to the state (k0, k1, . . . , km−1).
First, notice that each D� goes from its initial state � to the state m + � by

the string u� = am−1−�da� and then to the dead state 2m by the next u� since

�
am−1−�−−−−−→ m− 1

d−→ m
a�−→ m+ �

am−1−�−−−−−→ 2m− 1
d−→ 2m

a�−→ 2m.

On the other hand, if j �= �, then Dj remains in its initial state j upon reading
u� since Dj moves by am−1−� from j to state (j +m− 1− �) mod m, in which
the transition on d is defined the same way as on a, and therefore reading u�

from j with j �= � results in the same state as reading am from j:

j
am−1−�−−−−−→ (j +m− 1− �) mod m

d−→ (j +m− �) mod m
a�−→ j.

Now consider the string
∏

i∈I uiui

∏
i∈J ui, that is, the first part of the string w

in (1). Recall that the sets of indices I and J are disjoint, and therefore

252 J. Jirásek and G. Jirásková

• every D� with � ∈ I goes from � to 2m by
∏

i∈I uiui and remains in 2m upon
reading

∏
i∈J ui;

• every D� with � ∈ J remains in its initial state � upon reading
∏

i∈I uiui and
then goes to m+ � by

∏
i∈J ui;

• every D� with � /∈ I ∪ J remains in � upon reading
∏

i∈I uiui

∏
i∈J ui.

It follows that the string
∏

i∈I uiui

∏
i∈J ui moves the cross-product automaton

from its initial state (0, 1, . . . ,m− 1) to the state (k′0, k′1, . . . , k′m−1), where

k′� =

⎧
⎨

⎩

2m, if � ∈ I,
m+ �, if � ∈ J,
�, otherwise.

Then, after reading the second part of the string w in (1), that is the string vf ,
which moves every state i in [m] to state f(i) in the DFA A, each dfa D� with
� ∈ I remains in its dead state 2m, each dfa D� with � ∈ J goes from m+ � to
m+ f(�) = m+ (k� −m) = k�, while each DFA D� with � /∈ I ∪ J goes from �
to f(�) = k�.

Hence the string w = (
∏

i∈I uiui

∏
i∈J ui) · vf moves the cross-product au-

tomaton from its initial state (0, 1, . . . ,m − 1) to the state (k0, k1, . . . , km−1).
This proves the lemma.
�
The following lemma proves the distinguishability of all the states in the cross-
product automaton. Note that only symbols a and d are needed to get this result,
which will be used later in the paper when dealing with smaller alphabets.

Lemma 4 (Distinguishability). Every two distinc states of the cross-product-
product automaton D0 ×D1 × · · · ×Dm−1 can be distinguished by a string over
{a, d}.
Proof. Let (k0, k1, . . . , km−1) and (k′0, k

′
1, . . . , k

′
m−1) be two distinct m-tuples in

[2m+1]m. Then there is an i in [m] with ki �= k′i, and without loss of generality
we may assume that ki �= 2m. Set

w = d2m−1−ki a dm−1 a dm−1 ai+1,

and let us show that the string w is accepted by the cross-product automaton
from (k0, k1, . . . , ki, . . . , km−1) and rejected from (k′0, k

′
1, . . . , k

′
i, . . . , k

′
m−1).

The DFA Di goes from ki to the accepting state m+ i by the string w since

ki
d2m−1−ki−−−−−−→ 2m− 1

a−→ m
dm−1−−−→ 2m− 1

a−→ m
dm−1−−−→ 2m− 1

a−→ m
ai−→ m+ i.

Therefore, the string w is accepted by the cross-product automaton from the
state (k0, k1, . . . , ki, . . . , km−1).

On the other hand, let us show that the DFA Di rejects the string w from
each state � different from ki. If � > ki, the Di moves from � to the dead state 2m

Cyclic Shift on Prefix-Free Languages 253

by w since it is already in 2m after reading d2m−1−ki . If � < ki, then Di moves
from � to �′ = �+2m−1−ki by d2m−1−ki . If m ≤ �′ < 2m−1 or �′ < m−1, then
Di moves from �′ to the dead state 2m by adm−1 or adm−1adm−1, respectively.
If �′ = m− 1, the Di moves from �′ to its rejecting state i by adm−1adm−1ai+1.
Hence Di rejects the string w from each state � with � �= ki.

The transitions in each Dj with j �= i are the same as in Di, however, the
states m+ i and i are rejecting in Dj . Therefore, the DFA Dj rejects the string
w from each of its states.

Thus the cross-product automaton rejects w from (k′0, k
′
1, . . . , k

′
i, . . . , k

′
m−1),

which concludes the proof.
�
Hence, in the quaternary case, we get a lower bound that matches our upper
bound (2n − 3)n−2 given by Lemma 2. Our next aim is to show that the four-
letter alphabet cannot be decreased, that is, to show that the upper bound
cannot be met by using any smaller alphabet. On the other hand, we will get
still exponential lower bounds in the ternary and binary cases.

3.3 Small Alphabets

Let us start with an upper bound in the ternary case.

Lemma 5. Let n ≥ 5. If L is a prefix-free language recognized by a minimal
n-state DFA over a ternary input alphabet, then the minimal DFA for shift(L)
has less than (2n− 3)n−2 states.

Proof. Let L be accepted by a minimal n-state DFA A over the alphabet {a, b, c}.
Let m = n− 2. Let the state set of A be [m+ 2], with the unique final state m
and the dead state m+ 1. Then, since the final state m is reachable in A, there
must be a symbol σ in {a, b, c} and a state j, from which A goes to m by σ.
Without loss of generality, we may assume that σ = c.

Let D0 × · · · ×Dm−1 be the cross-product automaton for shift(L) described
above. Consider those of its states, in which all the components are less than m,
that is, the states in [m]m, and let us show that at least one of them must be
unreachable in the cross-product automaton.

For each permutation ϕ of [m], the state (ϕ(0), ϕ(1), . . . , ϕ(m− 1)) may only
be reached from the initial state (0, 1, . . . ,m − 1) by reading a string w over
{a, b, c}, in which all symbols permute the set [m] in the DFA A. Therefore, no
c occurs in w. To reach all such permutation states, the symbols a and b must
cause two permutations on [m] generating the group of all permutations on [m]
since m ≥ 3. However, in such a case, no state (f(0), f(1), . . . , f(m−1)) in [m]m,
where f is a function from [m] to [m] which is not a permutation, can be reached
in the cross-product automaton.

If at least one of the symbols a or b does not cause a permutation on [m],
then it is not possible to reach all the states (ϕ(0), ϕ(1), . . . , ϕ(m− 1)) where ϕ
is a permutation on [m] and m ≥ 3. This concludes the proof.
�

254 J. Jirásek and G. Jirásková

Now, using a subautomaton of our quaternary witness automaton defined in
subsection 3.2 and shown in Fig. 2, we prove an exponential lower bound for the
ternary case.

Lemma 6. For every n with n ≥ 4, there exists a prefix-free language recognized
by an n-state DFA over a ternary alphabet such that every DFA for the language
shift(L) requires at least (n− 2)! 2n−2 states.

Proof. Consider the DFA B obtained from the DFA A in Fig. 2 by considering
only the input symbols a, b, d. Since the symbols a and b cause a great permu-
tation and a transposition on [m], respectively, for each permutation ϕ on [m],
there is a string vϕ over {a, b} that moves every state i in [m] to the state ϕ(i).

As shown in the proof of Lemma 3, for each set J of [m] and each permutation
ϕ on [m], the state (k0, k1, . . . , km−1) with

ki =

{
m+ ϕ(i), if i ∈ J,
ϕ(i), otherwise

is reached in the cross-product automaton from the initial state (0, 1, . . . ,m− 1)
by the string ∏

i∈J

(am−1−i d ai) · vϕ.

This gives (n − 2)! 2n−2 reachable states. All these states are pairwise distin-
guishable by Lemma 4.
�

Let us continue with the binary case. By using another subautomaton of our
quaternary witness, the next lemma shows that the lower bound on the state
complexity of cyclic shift of prefix-free languages is exponential even in the case
of a two-letter alphabet.

Lemma 7. For every n with n ≥ 4, there exists a prefix-free language recognized
by an n-state DFA over a binary alphabet such that every DFA for the language
shift(L) requires at least (n− 2)(3n−2 − 1) + 1 states.

Proof. Consider the DFA C obtained from the DFA A in Fig. 2 by considering
only the input symbols a and d. Recall that m = n− 2.

There are 3m possibilities of choosing two disjoint subsets I and J of [m]. For
each of them, as shown in the proof of Lemma 3, the state (k0, k1, . . . , km−1)
with

ki =

⎧
⎨

⎩

2m, if i ∈ I,
m+ i, if i ∈ J,
i, otherwise

is reached in the cross-product automaton from the initial state (0, 1, . . . ,m− 1)
by the string ∏

i∈I

(ui ui)
∏

i∈J

ui

Cyclic Shift on Prefix-Free Languages 255

with ui = am−1−i d ai. From every such state (k0, k1, . . . , km−1), except for the
state with I = [m], the cross-product automaton moves after reading aj with j
in [m] to the state (k′0, k′1, . . . , k′m−1) with

ki =

⎧
⎨

⎩

2m, if i ∈ I,
m+ (i+ j) mod m, if i ∈ J,
(i+ j) mod m, otherwise.

This gives (n − 2)(3n−2 − 1) + 1 reachable states. The distinguishability again
follows from Lemma 4.
�
Recall that the state complexity of a regular language L, sc(L), is defined as the
smallest number of states in any DFA recognizing the language L. Denote by
fk(n) the state complexity function of cyclic shift on prefix-free regular languages
over a k-letter alphabet defined by

fk(n) = max{sc(shift(L)) | L ⊆ Σ∗, |Σ| = k, L is prefix-free, and sc(L) = n}.

Using this notation, we can summarize our results in the following theorem.

Theorem 1 (State Complexity). Let n ≥ 5 and fk(n) be the state complexity
of cyclic shift on prefix-free regular languages over a k-letter alphabet. Then

(i) f1(n) = n;
(ii) f2(n) ≥ (n− 2)(3n−2 − 1) + 1;
(iii) (n− 2)! · 2n−2 ≤ f3(n) < (2n− 3)n−2;
(iv) f4(n) = fk(n) = (2n− 3)n−2 for every k with k ≥ 4.

Proof. The equality in (i) holds since the cyclic shift of every unary language
is the same language. The lower bound on f2(n) in (ii) is given by Lemma 7,
while the bounds on f3(n) in (iii) follow from Lemmata 5 and 6. The upper
bound on fk(n) in (iv) is given by Lemma 2, and its tightness for k = 4 is
proved in Lemmata 3 and 4. Since adding new symbols to the quaternary witness
automata does not change the proofs of reachability and distinguishability in the
quaternary case, the upper bound is tight for every k with k ≥ 4.
�
Hence the tight bound on the state complexity of cyclic shift on prefix-free
languages over an alphabet of at least four symbols is (2n − 3)n−2. Moreover,
the alphabet of size at least four is necessary for the tightness. Using any smaller
alphabet, the upper bound (2n−3)n−2 cannot be met. However, the lower bounds
in the binary and ternary cases are still exponential, namely (n−2)·(3n−2−1)+1
and (n − 2)! · 2n−2, respectively. Our calculations given in Table 1 show that
the state complexity of cyclic shift on prefix-free languages in the binary and
ternary cases is greater than the above mentioned lower bounds. Its exact value
in these two cases remains open. The hardest binary and ternary automata for
n = 4, 5, 6, 7 are shown in Fig. 3 and Fig. 4, respectively.

256 J. Jirásek and G. Jirásková

Table 1. The state complexity of cyclic shift on prefix-free languages

n f2(n) f3(n) f4(n) = (2n− 3)n−2

4 17 25 25

5 121 319 343

6 1709 6193 6561

7 36256 154976 161051

10

10

0 1 2 3 4a a ba,ba,b36256

b
b

a

10 a,b

a,b

a,b

a,b

a,b

a,b

a,b

a,b

121 2 3

b

a,ba b

2 3 4a a a b1709

b
b b

a

a

a,b b
17 2

a

5

4

6

5

3

Fig. 3. The hardest binary DFAs; n = 4, 5, 6, 7

1 2

a

aaa
a

c c c c c
...

a,b,c

b b b b

0

a,b,c

a,b,c
n−1n−3 n−2n−4

Fig. 4. The hardest ternary DFAs; for n = 4, 5, 6, 7

Cyclic Shift on Prefix-Free Languages 257

4 Conclusions

We investigated the state complexity of cyclic shift operation in the class of
prefix-free regular languages. We obtained the upper bound (2n − 3)n−2, and
we showed that it is tight in the case of a four-letter alphabet. We also proved
that this upper bound cannot be met by any prefix-free language defined over
a smaller alphabet. In the ternary and binary cases, we were still able to get
exponential lower bounds (n− 2)! ·2n−2 and (n− 2) · (3n−2− 1)+1, respectively.
Our calculations showed that these lower bounds can be exceeded.

Notice that for incomplete deterministic finite automata, the tight bound for
an alphabet of at least four symbols is (2n− 1)n−1 − 1.

The exact values of the state complexity of cyclic shift on binary and ternary
prefix-free languages remain open, and are of interest to us. We also conjecture
that the state complexity of cyclic shift on prefix-free languages in the binary
case is smaller than that in the ternary case.

References

1. Birget, J.-C.: Intersection and union of regular languages and state complexity.
Inform. Process. Letters 43, 185–190 (1992)

2. Gruber, H., Holzer, M.: Language operations with regular expressions of polyno-
mial size. Theoret. Comput. Sci. 410, 3281–3289 (2009)

3. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free reg-
ular languages. In: Automata, Formal Languages, and Related Topics, pp. 99–115.
University of Szeged, Hungary (2009)

4. Han, Y.-S., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic
operations for prefix-free regular languages. Fund. Inform. 90, 93–106 (2009)

5. Han, Y.-S., Salomaa, K., Yu, S.: State complexity of combined operations for prefix-
free regular languages. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.)
LATA 2009. LNCS, vol. 5457, pp. 398–409. Springer, Heidelberg (2009)

6. Jirásková, G., Krausová, M.: Complexity in prefix-free regular languages. In:
McQuillan, I., Pighizzini, G., Trost, B. (eds.) Proc. 12th DCFS, pp. 236–244. Uni-
versity of Saskatchewan, Saskatoon (2010)

7. Jirásková, G., Okhotin, A.: State complexity of cyclic shift. Theor. Inform.
Appl. 42, 335–360 (2008)

8. Krausová, M.: Prefix-free regular languages: Closure properties, difference, and left
quotient. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D.
(eds.) MEMICS 2011. LNCS, vol. 7119, pp. 114–122. Springer, Heidelberg (2012)

9. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Dokl. 11, 1373–1375 (1970)

10. Maslov, A.N.: The cyclic shift of languages. Problemy Peredači Informacii 9, 81–87
(1973) (Russian)

11. Oshiba, T.: Closure property of the family of context-free languages under the
cyclic shift operation. Electron. Commun. Japan 55, 119–122 (1972)

12. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

13. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. I, ch. 2, pp. 41–110. Springer, Heidelberg (1997)

14. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

	Cyclic Shift on Prefix-Free Languages
	1 Introduction
	2 Preliminaries
	2.1 Prefix-Free Languages

	3 Cyclic Shift on Prefix-Free Languages
	3.1 Upper Bound for Cyclic Shift on Prefix-Free Languages
	3.2 Lower Bound in Quaternary Case
	3.3 Small Alphabets

	4 Conclusions
	References

