
Amortized Communication Complexity
of an Equality Predicate

Vladimir Nikishkin

Moscow Institute of Physics and Technology

Abstract. We study the communication complexity of the direct sum
of independent copies of the equality predicate. We prove that the prob-
abilistic communication complexity of this problem is equal to O(N);
the computational complexity of the proposed protocol is polynomial in
the size of inputs. Our protocol improves the result achieved in 1991 by
Feder et al. Our construction is based on two techniques: Nisan’s pseu-
dorandom generator (1992, Nisan) and Smith’s string synchronization
algorithm (2007, Smith).

1 Introduction

In this paper we study the amortized communication complexity of the equality
predicate. We deal with the classic model of communication complexity with
two participants (Alice and Bob), who want to compute some function of the
data distributed between the participants. Alice and Bob can talk to each other
via a communication channel. We measure the number of bits that must be
transmitted between Alice and Bob to achieve the goal.

More specifically, let f : {0, 1}n × {0, 1}n → {0, 1} be a function of two
arguments. We assume that Alice is given the value of x, Bob is given the value
of y, and Alice and Bob communicate with each other to compute the value
f(x, y).

We use three standard models of communication complexity: deterministic
communication protocols, randomized communication protocols with public ran-
dom bits, and randomized communication protocols with private random bits,
see Kushilevitz and Nisan’s textbook [1]. We denote communication complexities
for these three models by Cdet, Cε

pub, and Cε
priv , respectively. In the randomized

versions, the superscript denotes the error probability and may be omitted if
unnecessary.

Further, let us denote by fN the direct sum of N independent copies of the
initial function f . More precisely, the two arguments of f are an N -tuple of
values (x1, . . . , xN) and an N -tuple of values (y1, . . . , yN), and

fN (x1, . . . , xN , y1, . . . , yN) = (f(x1, y1), . . . , f(xN , yN)).

We assume that Alice is given all values of the xi, and Bob is given all values
of the yi. Now Alice and Bob need to compute fN , i.e., to get all the values
f(xi, yi) for i = 1, . . . , N . It is natural to ask how the communication complexity

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 212–223, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Amortized Communication Complexity of an Equality Predicate 213

of the problem fN grows as N tends to infinity. The asymptotic behavior of
this complexity is called the amortized communication complexity of f . More
formally, the amortized communication complexity of f is defined as

AC(f) = lim sup
N→∞

C(fN)

N
.

This definition makes sense for each model of communication, i.e., the value of
C in the definition above can be substituted with Cdet, Cε

pub, or Cε
priv (or by any

other version of communication complexity known in the literature).
The question of communication complexity for the direct sum of several in-

dependent copies of the same problem is very natural, and it has been stud-
ied extensively for different models of communication complexity. This kind
of questions were first raised by Karchmer et al. in [14]. Later, Feder et al.
proved in [11] the first nontrivial lower bound for the deterministic model:
AC(f) = Ω(

√
Cdet(f) − logn). Since then, several interesting results were

achieved, mostly for more specific models of communication complexity (see [15–
17]). However, the case of the classical randomized communication complexity
remains not well understood. We only know that the gap between randomized
communication complexity of one single instance of a problem and the corre-
sponding amortized complexity can be rather large. E.g., such a gap was proven
in [11] for the equality predicate.

The equality predicate EQn : {0, 1}n × {0, 1}n → {0, 1} is defined as

EQn(x, y) =

{
1, if x = y,
0, if x �= y.

The communication complexity of the equality predicate is Cε
priv = Θ(log n) for

any constant ε > 0, see [1]. On the other hand, the amortized randomized com-
plexity of the equality predicate is only O(1) with error probability O(2−

√
N),

[11]. In this paper we revisit the amortized communication complexity of the
equality predicate. Our protocol achieves the same amortized communication
complexity O(1), and has a slightly better error probability ε = O(2

− N
log2 N).

Besides, our protocol has “modular” structure; it consists of several independent
gadgets, which makes the construction more flexible. So we hope that a simi-
lar technique can be applied to construct communication protocols with small
amortized complexity for other functions.

Our construction is based on ideas similar to the protocol from [11]: (a) use
random checksums to compare stings on Alice’s and Bob’s ends, (b) use a com-
munication protocol with a public coin to compare Alice and Bob’s checksums,
and (c) use a pseudorandom generator to convert a public coin protocol to a
private coin model. Still, the implementations of these ideas differ. The last
idea (substitute public truly random bits by pseudorandom bits with a privately
generated random seed) comes from the following classic theorem:
Theorem 1 ([1]). Let f : {0, 1}n × {0, 1}n → {0, 1} be a function of two argu-
ments. For every δ > 0 and every ε > 0, it holds

Cε+δ
priv(f) < Cε

pub(f) +O(log n+ log δ−1).

214 V. Nikishkin

The proof of this theorem is not constructive, i.e., the pseudorandom generator
used in the argument requires exponential (in the size of input) computations for
Alice and Bob. The generators used in [11] and in our work run in polynomial
(in n) time. However, the generator from [11] was created ad hoc for the EQ
predicate problem, while the generator used in this paper is a well known general
purpose generator, first described in [4].

Now let us formulate our main result.

Theorem 2 (the main result). The randomized communication complexity
(for the private coin model) of a direct sum of N equality predicates EQn is
equal to O(N) if n < N , with error probability Perr ≤ O(2

−c N
log2 N). Moreover, we

explicitly construct a communication protocol that achieves this communication
complexity and requires only polynomial time computations on Alice’s and Bob’s
sides.

In our construction, we use several classic tools (N. Nisan’s pseudorandom gen-
erator, BCH codes, deterministic synchronization protocol by A. Orlitsky, [3])
and one relatively new construction (probabilistic synchronization protocol by
A. Smith, [3]).

2 Classic Communication Protocols for EQ

2.1 Complexity of EQn for Different Types of Communication
Protocols

The predicate EQn is very well studied. Let us remind the three different com-
munication protocols for this predicate.

Deterministic Model. It is known that Cdet(EQn) = n + 1, see [1]. The
bound is achieved by a trivial protocol: Alice transmits her string x to Bob,
Bob compares the two strings x and y and sends back one-bit response, 1 if the
strings are equal and 0 otherwise. From the standard technique of fooling sets it
follows that this bound is tight, i.e., there are no protocols with communication
complexity less than n+ 1.

Private Coin Model. For the randomized communication complexity with
private sources of randomness Cε

priv(EQn) = O(log n
ε). This bound is achieved

by several classic communication protocols. Here we describe one of them. Alice
and Bob view their inputs x and y as n-digit binary representations of integers
(between 0 and 2n − 1). Alice chooses a prime number p at random among the
first (n/ε) primes. She sends to Bob both p and x mod p. Bob verifies whether x
mod p = y mod p. If x and y are equal modulo p, then Bob returns 1, otherwise
he returns 0. If x = y, then this protocol always returns the correct result. If
x �= y, then the difference (x−y) has at most n prime factors; hence, the protocol
returns the wrong answer with probability at most ε.

Amortized Communication Complexity of an Equality Predicate 215

Public Coin Model. For randomized communication complexity with public
source of randomness Cε

pub(EQn) = O(log 1
ε). This bound for communication

complexity is achieved by the following protocol. Alice and Bob jointly choose
a random n-bit string r. Then Alice computes the inner product b = 〈x, r〉 and
transmits the result (a single bit) to Bob. Bob checks whether b = 〈y, r〉 and
outputs "equal" if so and "not equal" otherwise. Obviously, if x = y, then the
output is always "equal." On the other hand, if x �= y, then by the properties
of the inner product, Pr[〈x, r〉 �= 〈y, r〉] = 1

2 . Thus, Bob outputs "not equal"
with probability 1

2 . To decrease the probability of a wrong answer, Alice and
Bob repeat these procedure several times with several independently chosen
random strings r. If Alice and Bob repeat (in parallel or sequentially) l times the
described procedure, then the probability that 〈x, ri〉 �= 〈y, ri〉 for all r1, . . . , rl is
equal to 2−l. So, for l = �log 1/ε� we reduce the probability of error to ε, while
communication complexity is O(log 1/ε).

2.2 Trivial Generalizations for EQN
n

The protocols from the previous section can be easily adapted to get some pro-
tocols for the direct sum of N copies of EQn, i.e., for the function EQN

n .

Adaptation of the Protocol from Paragraph 2.1. We run the protocol
independently for each pair of blocks(xi, yi). The probability of a wrong answer
for at least one pair of blocks must be bounded by ε. To this end we need to
reduce the probability of an error for each of the N pairs of blocks to be less
than ε′ = ε/N . This results in communication complexity O(N(log(n/ε′))) =
O(N(log n+logN +log 1/ε))). Thus, from the trivial adaptation of the protocol
from paragraph 2.1 we get Cε

priv(EQ
N) = O(N(log n+ logN + log 1/ε))).

Adaptation of the Protocol from Paragraph 2.1. We run the protocol
from section 2.1 for each pair of blocks (xi, yi) independently. To guarantee that
the total probability of error is bounded by ε, we need to reduce the probability
of error for each pair of blocks to ε′ = ε/N . Then we get

Cε
pub(EQ

N) = O(N(logN + log 1/ε)).

From Public to Private Randomness. The last protocol above can be trans-
formed into a protocol with private source of randomness. Indeed, from Theo-
rem 1 we get immediately

Cpriv = O(N · logN +N log
1

ε
+ log(n ·N) + log

1

δ
) = O(N · logN + log

1

ε
).

Note that this communication protocol requires exponential computational com-
plexity (at least for the standard proof of Theorem 1).

How to reduce the obtained (rather trivial) bound O(N · logN), hopefully to
O(N)? How to achieve this bound with a communication protocol that requires

216 V. Nikishkin

only poly-time computations? The construction of such a communication pro-
tocol is the main result of this paper. Loosely speaking, we plan to do it in two
steps. In the first step, we construct a more effective communication protocol for
the communication model with public randomness (this part of our construction
is based on ideas of A. Smith). In the second step, we reduce the protocol with
public randomness to a protocol with private randomness. In some sense, this
idea is similar to the usual proof of Theorem 1: we substitute the sequence of
random bits (shared by Alice and Bob) by a sequence of pseudorandom bits,
which can be obtained as an output of a pseudorandom generator. A random
seed of this generator is rather short. So, one of the participants can choose it
at random and then send to another participant. E.g., Alice chooses a random
seed and sends it to Bob; then Alice and Bob apply the pseudorandom gener-
ator to this same seed, and then both participants obtain the same long string
of pseudorandom bits. The sharp difference between our construction and the
standard general proof of Theorem 1 is that we use an explicit and effectively
computable generator (the generator of N. Nisan).

Before explaining the details of our construction, we remind the technical
tools used in our proof.

3 Pseudorandomness, Codes and String Synchronization

3.1 Pseudorandom Generator

In our construction we need a pseudorandom generator that fools tests with
bounded memory. Technically, we assume that a generator is a mapping G :
{0, 1}m → {0, 1}n, and a test is a randomized Turing machine with working
space of some size S. Technically, we define a test (for a pseudorandom generator)
as follows.

Definition. A statistical test with memory S is a deterministic Turing machine
M with three tapes: a finite working tape of size S, an auxiliary read-only tape
with some binary string a = (a1, ...an, ...) (an advice string), and a one-way input
tape with an n-bit input x (the reading head on the input tape can move from
the left to the right but cannot move back to the left). We always assume that
the length of a should not be greater than exp(S). This machine returns 1(true)
or 0(false). We denote machine’s output by Ma(x). Informally the output means
that test accepts/rejects x given an advice string a.

Definition. A function G : {0, 1}m → {0, 1}n is called a pseudorandom gener-
ator, ε-robust for tests with memory S(n), if for every statistical test A with S
bits of working memory

|Pry∈r{0,1}n [A accepts y]− Prx∈r{0,1}m [A accepts G(x)]| < ε.

Here the notation x ∈r X means x chosen uniformly at random from X. Note
that this definition involves several parameters: n, m, S, ε. In general, these
parameters can be chosen independnetly. But typically we use this definition
when m, S, ε are some functions of n.

Amortized Communication Complexity of an Equality Predicate 217

Nisan suggested in [4] an explicit construction of a pseudorandom generator
that fools tests with sufficiently small memory:

Theorem 3 ([4]). There exists a constant c > 0 such that for any R and S
there exists a pseudorandom generator G : cS logR → R (computable in time
poly(R)) that is 2−S-robust for all statistical tests with S bits of working memory.

In Section 4.6 we construct some statistical test (with small working memory
S) which is roughly equivalent to our communication protocol. Then, we use
the standard argument: the protocol with high probability returns the correct
answer when running on truly random public bits; futher, the generator of Nisan
fools our test; hence, given pseudorandom bits instead of truly random ones, the
communication protocol must also return the correct answer with high proba-
bility.

3.2 BCH Codes

Our construction involves implicitly the classic BCH-codes, see [12]. We do not
employ any specific properties of the construction of the BCH codes. We use only
the fact that ∀m > 3 and t < 2m−1 there exists an explicit construction of a
linear code with parameters [n, k, d] such that the codeword length is n = 2m−1,
the number of checksum bits is n − k ≤ mt, and the minimal distance between
codewords of the code is d ≥ 2t + 1. We also use the fact that BCH codes can
be decoded efficiently by the Berlekamp-Messy algorithm, [13].

The BCH codes are not used explicitly in our paper. However, we use a con-
struction by Orlitsky from Section 3.3. This construction involves a linear error
correcting code, which is not chosen explicitly in Section 3.3. In our applica-
tions, the BCH codes fits perfectly that construction. In what follows we refer
to Orlitsky’s protocol assuming that the codes used there are the BCH codes.

3.3 Strings Synchronization Protocols

In our communication protocol we will need to solve the following auxiliary
problem. Let Alice and Bob each hold an n-bit string, A and B, respectively.
We assume that A and B differ from each other in at most e positions. Alice
and Bob want to exchange their inputs, i.e., Alice should get string B, and Bob
should get string A. We will call this problem the string synchronization problem
(Alice and Bob want to synchronize their inputs).

Orlitsky suggested in [3] a deterministic communication protocol for the prob-
lem of synchronization of a pair of n-bit strings with the Hamming distance from
each other at most e. Communication complexity of this protocol is O(e log n).
All computations of Alice and Bob in this protocol run in polynomial time in
the length of the strings. More formally, the theorem (see [2]) is as follows:

Theorem 4. Assume there exists a linear error-correcting code with parameters
(α,R(α)), with a polynomial time decoding algorithms. Then there exists a one-
round communication protocol solving the string synchronization problem with

218 V. Nikishkin

communication complexity C = (1−R(α)) ·n. Computational complexity of this
protocol is polynomial.

If the BCH code is used (noted in section 3.2), the communication complexity of
this protocol is O(e logn). The protocol of Orlitsky makes sense if the distance e
between strings is very small. In case e = Ω(n), the communication complexity
of Orlitsky’s protocol is worse than the trivial upper bound 2n.

The parameters of the BCH code correspond to the ones of the synchronization
protocol code in the following way: α = d/n,R(α) = n− k

Adam Smith suggested in [9] a randomized communication protocol for the
problem of strings synchronization with an asymptotically optimal bound for
communication complexity for the case e = const · n. More precisely, Smith
proved that for every δ(n) = Ω(log logn√

logn
) there exists an explicit communica-

tion protocol (with a private source of randomness) that solves the problem of
synchronization of n bit strings that differ in at most e positions, with com-
munication complexity n(H(e

n) + δ) and error ε = 2−Ω(δ3n
log n), where H(p) =

p log2
1
p + (1 − p) log 1

1−p . Algorithms of Alice and Bob in this protocol run in
polynomial time.

4 Proof of the Main Theorem

In this section we present a protocol for EQN
n and prove Theorem 2.

4.1 Overview of the Protocol

Our protocol runs as follows. First of all, Alice generates a string of truly random
bits of length O(N) and sends this string to Bob. They both use Nisan’s generator
and produce pseudorandom bits from this seed. In what follows, Alice and Bob
use this long string of pseudorandom bits.

Then, Alice and Bob iteratively calculate "checksums" (inner products mod
2 with the pseudorandom string) for their n-bit blocks and synchronize strings
of the resulting checksums using the probabilistic or deterministic protocol from
Section 3.3. As soon as some pair of non-equal blocks X i, Y i is revealed (if some
checksums for these blocks are different), Alice and Bob remove these blocks from
the list of their bit strings and never test them again. Thus, in every consecutive
iteration the fraction of non-equal pairs of blocks (that are not discovered yet)
becomes smaller and smaller.

in every consecutive iteration, we make the length of the checksums larger
and larger, so for each pair of non-equal blocks the probability to be discovered
becomes closer and closer to 1. Hence, the fraction of (non-discovered) pairs
of non-equal blocks gradually reduces, and only pairs of equal blocks remain
untouched at their places. This means that in every consecutive iteration the
Hamming distance between arrays of checksums (obtained by Alice and Bob
respectively) becomes smaller and smaller.

Amortized Communication Complexity of an Equality Predicate 219

In each iteration Alice and Bob need to exchange the checksums computed for
their blocks of bits (inner products with the same pseudorandom bits). For sev-
eral initial iterations (technically, for log logN iterations) we use the randomized
synchronization protocol by Smith. Then we switch to the deterministic protocol
by Orlitsky. In what follows we explain this protocol in more detail.

4.2 Generation Stage

Alice generates r = log ((n ·N)4) · log(2 N
log (n·N)) = O(N) random bits and sends

them to Bob. Then Alice and Bob apply Nisan’s pseudorandom generator from
Section 3.1 and get R = n2N2 pseudorandom bits. The length of the seed r is
chosen so that the generator is ε-robust against tests with working memory of
size N

log (n·N) .

4.3 Probabilistic Synchronization Stage (steps i = 1, . . . , log logN)

The input of Alice is a sequence of N blocks X = (X1, . . . , XN), and the input
of Bob is a sequence of N blocks Y = (Y 1, . . . , Y N). Each block Xj or Y j is an
n-bits string.

We start the discussion with a minor technical difficulty. In our construction
we employ the synchronization protocols by Orlitsky and Smith; these protocols
need to know in advance the distance between the strings that should be syn-
chronized. As we may not know the initial distance between X and Y , we will
add N dummy equal blocks to both X and Y . This simple trick guarantees that
in the very first stage of the protocol the fraction of equal pairs of blocks is no
less than 1/2. This trick increases the total number of blocks from N to 2N , but
it will not affect the asymptotic complexity of our protocol.

Now we explain the main part of the protocol. For i = 1, . . . , log logN we
repeat the following procedure. We set λ (a constant to be fixed later). Alice and
Bob computes for each of their blocks (for all Xj and Y j) λ random checksums.
One checksum for each block Xj or Y j is the inner products modulo 2 between
this block and a new portion of pseudorandom bits generated in the previous
stage, e.g., for Xj = x1 . . . xn and Y j = y1 . . . yn the checksums are the bits

x1r1 + . . .+ xnrn (mod 2) and y1r1 + . . .+ ynrn (mod 2),

where r1 . . . rn is a block from the stream of pseudorandom bits, similar to the
protocol in Section 2.1 (Alice and Bob share the same sequence of pseudorandom
bits, so they can use the same bits r1 . . . rn in the checksums for both Xj and
Y j). Thus, the resulting string of checksums (for Alice and Bob) consists of
λ · [number of blocks] bits. E.g., at the very first iteration it makes λ · 2N bits
since Alice and Bob computes the checksums for all 2N blocks (N original blocks
and N dummy blocks).

Then Alice and Bob exchange their checksums using the randomized string
synchronization protocol by Smith. In the i-th step we run the synchronization
protocol assuming that Alice’s and Bob’s checksums differ from each other in

220 V. Nikishkin

a fraction at most 2−i of blocks (this threshold for the number of different
blocks should be given to the synchronization protocol). When the checksums
are exchanged, Alice and Bob remove from their lists all blocks Xj and Y j whose
checksums are not identical. Note that for a pair of equal blocks Xj, Y j , the
random checksums are always equal. If blocks are not equal to each other, then
the probability to get λ equal checksums is about 2−λ (this probability is not
exactly 2−λ since Alice and Bob use pseudorandom bits r1 . . . rn rather than
truly random ones to compute the checksums).

Typically, on each step the number of non-discovered pairs of non-equal blocks
Xj, Y j is reduced by a factor of about 2−λ. We say that the i-th step of the
described procedure fails, if in this stage Alice and Bob discover less than 50%
of the remaining pairs of non-equal blocks Xj, Y j . If at least one step fails, we
cannot guarantee the correctness of the result of the protocol. If no step fails,
then on the i-th step the arrays of checksums of Alice and Bob differ from each
other in a fraction at most 1/2i of all computed inner products.

The communication complexity of this stage of the protocol is the sum of com-
munication complexities of runs of Smith’s protocol at steps i = 1, . . . , log logN :

log logN∑

i=1

(H(1/2i) + δ)λN = O(N),

where δ = log lognN√
lognN

. The last equation follows from the property of Smith syn-
chronization protocol and from the asymptotic H(α) = α log(1 − α) + O(1) as
α tends to 0.

4.4 Deterministic Synchronization Stage
(i = log logN + 1, . . . , logN)

In this stage we continue essentially the same procedure as in the prevoius stage.
There are two important differences: now we use checksums of variable size λi,
and Alice and Bob apply the deterministic protocol of Orlitsky (instead or the
randomized protocol of Smith) to exchange their checksums.

At each step i = log logN, . . . , logN Alice and Bob compute λi = � 2i

log2 N
�

checksums for each remaining block Xj and Y j , respectively. Again, each check-
sum of a block is the inner product (mod 2) with a new portion of pseudorandom
bits. Then Alice and Bob exchange the computed lists of checksums. Now they
use the deterministic synchronization protocol by Orlitsky, see Section 3.3.

The communication complexity of the deterministic protocol is about logN
times greater than the complexity of the protocol by Smith. But nevertheless we
can use it since the Hamming distance between checksums is reasonably small.
The communication complexity of this stage is

logN∑

i=log logN

�Nλi logN

2i
� ≈

logN∑

i=log logN

logN · 2i
log2 N · 2i ·N = O(N).

Amortized Communication Complexity of an Equality Predicate 221

4.5 Summary

When the described stages are completed, we assume that Alice and Bob have
discovered all pairs of non-equal blocks. All the remaining pairs Xj , Y j (all
pairs of blocks whose checksums at all steps of the protocol remain equal to each
other) are considered equal.

4.6 Probability of Error

We need to estimate the probability of error in our protocol. For simplicity, let
us assume first that instead of R pseudorandom bits Alice and Bob share R
independent and uniformly distributed random bits (so, we temporarily switch
to the model with a public source of randomness). Then stages 4.3 and 4.4 make
sense, and we can estimate the probability of error of the protocol.

The protocol may return a wrong answer because of the following reasons:
(1) the probabilistic synchronization protocol of Smith fails at some stage; (2)
some of the steps i = 1, . . . , logN fail since more than 50% of random checksums
turn out to be equal for non-equal pairs of blocks Xj , Y j . Let us estimate the
probabilities of each of these two events.

Error in the Probabilistic Synchronization Protocol. Summing up the
probabilities of error in Smith’s synchronization in every step of our protocol we
obtain (for some constant c > 0)

P (Err) =

log logN∑

i=1

O(2−(N
log N)) ≤ O(2−

cN
log N).

Failure of Checksum Verification. A step i = 1, . . . , logN fails if for more
than half of (not discovered yet) pairs of non-equal blocks Xj, Y j all the check-
sums turn out to be equal. We estimate the probability of this event using the
Chernoff bound. We may assume that after the first (i − 1) steps there remain
N/2i pairs of non-equal blocks.

For a pair of blocks Xj, Y j that are not equal, the probability that their inner
products with a random string r1 . . . , rn have the same parity, is equal to 1/2.
When we calculate λ independent checksums, the probability that all pairs of
checksums for Xj and Y j are equal to each other, is 1/2λ. We say that the whole
step of the protocol fails if the event all checksums are equal happens for more
than 50% of pairs of non equal Xj , Y j .

We assumed that after (i − 1) steps of the protocol the number of remain-
ing non equal pairs of blocks (Xj , Y j) is Ni = N

2i . For each of these pairs the
probability not to be discovered at step i is 2−λ. We estimate the probability of
failure, i.e., the probability that more than Ni/2 pairs remain not revealed. By
the Chernoff bound this probability is not greater than 2NiD(q,p), where

D(q, p) = q ln (
q

p
) + (1− q) ln (

1− q

1− p
) for q =

1

2
, p =

1

2λ
.

222 V. Nikishkin

In the first steps i = 1, . . . , log logN steps of the protocol λ = const (a large
enough constant), and later for i = log logN +1, . . . , logN we have λi =

2i

log2 N
.

Hence, the probability of failure P (Erri) = O(2
− N

log2 N). Sum up the error prob-
abilities for all steps of stages 2 and 3:

logN∑

i=1

O(2
− N

log2 N) ≈ logN · O(2
− N

log2 N) = O(2
−c N

log2 N)

for some c > 0.

Pseudorandom Generator. In this section we construct a statistical test (see
the definition in Section 3.1) that simulates one step of our protocol. In a sense,
this test verifies that (pseudo)random bits are “suitable” for our communication
protocol: they do not cause a failure of the protocol in the i-th iteration. The
"advice strings" of this statistical test contain a sequence of pairs of blocks Xj ,
Y j from the inputs of Alice and Bob that have passed the checksum tests in the
first i − 1 rounds. The input x is a string of (pseudo)random bits that should
be accepted or rejected. The test rejects x (for a given advice string a), if our
communication protocol fails in the i-th round with random bits x while Alice
and Bob are given the blocks Xj , Y j corresponding to the advice a.

The algorithm of the test is straightforward: it computes the checksums for
Xj and Y j as it is done by our communication protocol in the i-th round,
with random bits x shared by Alice and Bob, and compares the corresponding
checksums for Alice’s and Bob’s blocks. Note that the test does not simulate
the synchronization procedure (the sub-protocols following the construction of
Orlitsky and Smith).

The working space of our machine is O(N
log2 N

). This is enough to simulate
the computation of the checksums performed by our communication protocol.
The test accepts x, if in the simulation at least 50% of non-equal pairs of blocks
are successfully revealed, and rejects x otherwise. In other words, a teststring x
is rejected if it causes a failure in the i-th round of the protocol.

Theorem 3.1 guarantees that Nisan’s pseudorandom generator fools this test.
Hence, for our protocol the probability of failure with pseudorandom bits is not
much greater than the probability of failure for truly random bits. More precisely,
the difference between the probabilities of failure for random and pseudorandom
bits is at most

2−S(N) = O(2
−c N

log2 N).

We sum up these values for all steps i = 1, . . . , logN and get

P (Err) ≤
logN∑

i=1

O(2
− N

log2 N) = O(2
−c3

N
log2 N).

Summary. The probability of error of our protocol consists of three parts: (1)
the probability of error in Smith’s protocol, (2) the probability of failure with

Amortized Communication Complexity of an Equality Predicate 223

truly random checksums in some step i = 1, . . . , logN , and (3) the additional
probability of failure caused by the difference between truly random and pseu-
dorandom checksums. Therefore,

P (Err) = O(2−c1(
N

log N)) +O(2
−c2

N
log2 N) +O(2−c3

N
log N) = O(2

−C N
log2 N).

This concludes the proof of the correctness of our communication protocol.

References

1. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge Univ. Press
(1997)

2. Chuklin, A.: Effective protocols for low-distance file synchronization.
arXiv:1102.4712 (2011)

3. Orlitsky, A.: Interactive communication of balanced distributions and of correlated
files. SIAM Journal on Discrete Mathematics 6, 548–564 (1993)

4. Nisan, N.: Pseudorandom Generators for Spacebounded Computation. Combina-
torica 12(4), 449–461 (1992)

5. Nisan, N., Widgerson, N.: Hardness vs. Randomness. Journal of Computer and
System Sciences 49(2), 149–167 (1994)

6. Canetti, R., Goldreich, O.: Bounds on Tradeoffs between Randomness and Com-
munication Complexity. Computational Complexity 3(2), 141–167 (1990)

7. Newman, L.: Private vs. Common Random Bits in Communication Complexity.
Information Processing Letters 39(2), 67–71 (1991)

8. Impagliazzo, R., Nisan, N., Widgerson, A.: Pseudorandomness for Network Al-
gorithms. In: Proc. of the 26th ACM Symposium on Theory of Computing,
pp. 356–364 (1994)

9. Smith, A.: Scrambling Adversarial Errors Using Few Random Bits, Optimal Infor-
mation Reconciliation, and Better Private Codes. In: Proc. of the 18th ACM-SIAM
Symposium on Discrete Algorithms, pp. 395–404 (2007)

10. Nisan, N., Zukerman, D.: Randomness is Linear in Space. 1993 Journal of Com-
puter and System Sciences 52(1), 43–52 (1996)

11. Feder, T., Kushilevitz, E., Naor, M., Nisan, N.: Amortized Communication Com-
plexity. SIAM J. Comput. 24(4), 736–750 (1991)

12. Bose, R.C.M., Ray-Chaudhuri, D.K.: On A Class of Error Correcting Binary Group
Codes. Information and Control 3(1), 68–79 (1960)

13. Berlekamp, E.R.: Nonbinary BCH decoding. IEEE Transactions on in Information
Theory 14(2), 242 (1967)

14. Karchmer, M., Raz, R., Wigderson, A.: On Proving Super-Logarithmic Depth
Lower Bounds via the Direct Sum in Communication Complexity. In: Proc. of
6th IEEE Structure in Complexity Theory, pp. 299–304 (1991)

15. Parnafes, I., Raz, R., Wigderson, A.: Direct Product Results and the GCD Prob-
lem, in Old and New Communication Models. In: STOC 1997 Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 363–372
(1997)

16. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational Complexity and the
Direct Sum Problem for Simultaneous Message Complexity. In: Proceedings of
42nd IEEE Symposium on Foundations of Computer Science (2001)

17. Sherstov, A.: Strong Direct Produce Theorems for Quantum Communication and
Query Complexity. In: STOC 2011 Proceedings of the 43rd Annual ACM Sympo-
sium on Theory of Computing, pp. 41–50 (2011)

	Amortized Communication Complexityof an Equality Predicate
	1 Introduction
	2 Classic Communication Protocols for EQ
	2.1 Complexity of EQn for Different Types of Communication Protocols
	2.2 Trivial Generalizations for EQ

	3 Pseudorandomness, Codes and String Synchronization
	3.1 Pseudorandom Generator
	3.2 BCH Codes
	3.3 Strings Synchronization Protocols

	4 Proof of the Main Theorem
	4.1 Overview of the Protocol
	4.2 Generation Stage
	4.3 Probabilistic Synchronization Stage (steps
	4.4 Deterministic Synchronization Stage (
	4.5 Summary
	4.6 Probability of Error

	References

