Improving on Gutfreund, Shaltiel,
and Ta-Shma’s Paper “If NP Languages
Are Hard on the Worst-Case,
Then It Is Easy to Find Their Hard Instances”

Nikolay Vereshchagin*

Moscow State University
ver@mccme.ru

Abstract. Assume that NP ¢ BPP. Gutfreund, Shaltiel, and Ta-Shma
in [Computational Complexity 16(4):412-441 (2007)] have proved that
for every randomized polynomial time decision algorithm D for SAT
there is a polynomial time samplable distribution such that D errs with
probability at least 1/6 — ¢ on a random formula chosen with respect to
that distribution. A challenging problem is to increase the error proba-
bility to the maximal possible 1/2 — ¢ (the random guessing has success
probability 1/2). In this paper, we make a small step towards this goal:
we show how to increase the error probability to 1/3 — e.

1 Introduction

Suppose that NP is worst-case hard, say, NP ¢ BPP[] This means that every
efficient algorithm D fails to solve SATISFIABILITY (SAT) correctly on an
infinite sequence of instances. A natural question is the following: given such
an algorithm D, how hard is it to generate such instances? I.e. given an input
length n, what is the complexity of finding a formula of length at least n on which
D errs. Clearly, by exhaustive search one can do that in exponential time (for
infinitely many n). Surprisingly, Gutfreund, Shaltiel and Ta-Shma [6] showed
that it can actually be done in probabilistic polynomial-time with a constant
probability of success.

More specifically the result of [6] is the following. Let D be a probabilistic
polynomial-time algorithm trying to decide SAT. We say that a distribution p
over Boolean formulas is é-hard for D, if with probability at least §, D fails to
decide correctly whether a formula ¢ drawn from p is satisfiable or not (where
the probability is over the choice of ¢ and the randomness of D). A sampler is
a polynomial-time probabilistic algorithm G that given 1™ as input outputs a

* The work was in part supported by the RFBR grant 09-01-00709 and the ANR grant
Projet ANR-08-EMER-008.

! NP ¢ BPP means that there is no polynomial time randomized algorithm that
given any Boolean formula with probability at least 2/3 correctly decides whether
it is satisfiable.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 203-ETT] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

204 N. Vereshchagin

Boolean formula of length at least n. The result of [0] says that if NP ¢ BPP,
then for every probabilistic polynomial-time algorithm D that tries to decide
SAT there exists a sampler G such that for infinitely many n the probability
distribution g, produced by G(1™) is d-hard for SAT. Here 0 < 6 < 1/2 is some
universal constant.

The authors of [6] do not try to optimize § and do not even carefully compute
¢ obtained in their proof. Instead they notice that § derived from their proof is
certainly less that 1/3 and ask whether ¢ can be arbitrarily close to 1/2. (Note
that 1/2 is the best one can hope for since an algorithm that decides according
to an unbiased coin toss will always give a correct answer on every instance with
probability 1/2.) This question remains open.

In this paper, we will outline the proof of [6] and show that the proof yields
the result for every § < 1/6. Then using an additional trick (Lemma [I]) we show
how to prove the result for every ¢ < 1/3 (Theorem [3)).

It turns out that the barrier of 1/3 can be broken for £} predicates for every
k > 1. A result of [4] states that if X} is not included in BPP then for every
probabilistic polynomial time algorithm D there is a sampler G such that for
infinitely many n, algorithm D errs on a random formula produced by G(1™)
with probability close to 1/2. As we said, for k = 1 (that is for NP), this is still
open.

For motivation of the study of this question and for its history we refer the
reader to an excellent introduction from [4].

2 Generating Hard Instances of Search Version of SAT

We start with presenting the main construction of [6] so that it be clear what
our contribution is.

In this paper, we consider Boolean formulas in the basis —, VvV, A,0,1. The
length || of a formula ¢ is defined as the number of symbols in it: every variable
is counted as one symbol.

Definition 1. The search version of SAT is the following problem: given a
Boolean formula ¢ find an assignment that satisfies it. A (randomized) SAT
solver is a (randomized) polynomial time algorithm that for every input formula
p either finds its satisfying assignment, or says “don’t know”. A SAT solver D
errs on ¥ if 1 is satisfiable and D(¢) = “don’t know”.

Theorem 1 ([6]). Assume that NP # P. Given a deterministic SAT solver
S one can construct a deterministic polynomial time procedure that given 1™
produces a formula 1, of length at least n such that S errs on 1, for infinitely
many n.

Proof. Consider the following search problem in NP.

Search Problem P:
Instance: a string 1™ over the unary alphabet.

Improving on Gutfreund, Shaltiel, and Ta-Shma’s Paper 205

Solution: a pair (¢,a) where 9 is a satisfiable formula of length n such that
S(1) =“don’t know”, and a is its satisfying assignment.

We will call an instance 1™ of P solvable if such pair (1, a) exists. As SAT is
NP complete, the search problem P reduces to the search version of SAT. This
means that there is a polynomial time algorithm that given 1™ finds a formula,
called ¢, such that:

(1) if the instance 1™ of P is solvable then ¢, is satisfiable, and
(2) given any satisfying assignment of ¢,, we can find (in polynomial time) a
solution to the instance 1™ of problem P.

The length of ¢,, is bounded by a polynomial n¢ and w.l.o.g. we may assume
that |¢,| > n, since SAT is paddable.
The desired procedure works as follows: given 1™, as input

(a) find the formula p,,;
(b) run S(py);
(c) if S(¢n)="%“don’t know”then output ¢, and halt;
(d) otherwise S(p,) produces a satisfying assignment for ¢,,; given that assign-
ment, find in polynomial time a solution (¢, a) to the instance 1" of the problem
P; output ¥ and halt.

Since we assume that P # NP, for infinitely many n the instance 1" of P
is solvable. For such n either S(p,)="“don’t know” (and thus S errs on ¢,), or
(1, a) is a solution to 1™ (and thus S errs on).

The next construction of [6] allows one to generalize this theorem to randomized
SAT solvers. This is done as follows. Let S be a randomized SAT solver working
in time n¢ and let r be string of length at least n°. We will denote by S, the
algorithm S that uses bits of r as coin flips. Note that S, is a deterministic
algorithm.

Theorem 2 ([6]). Assume that NP ¢ BPP. Then for some natural constant d
the following holds. Let S be a randomized SAT solver and let n© denote its running
time on formulas of length n. Then there is a deterministic polynomial time pro-
cedure that given any binary string r of length ne’d produces a formulan, of length
between n and n?, where for any positive € for infinitely many n the following
holds. For a fraction at least 1 — € of r’s the algorithm S, errs on n,.

Notice that the length of 7, is at most n°®. Therefore the running time of S for
. . c2d .
input 7, is at most n® “. Hence S, (n,) is well defined.

Proof. The proof is very similar to that of the previous theorem. The only change
is that we have to replace the search problem P by the following problem P’:
Instance: a binary string ' of length n° (for some n).
Solution: a satisfiable formula 9 of length n and its satisfying assignment a such
that Sy (¢) =“don’t know”.

Let ' + ¢, be a reduction of P’ to the search version of SAT. The length
of ¢, is bounded by a polynomial n°? of |r'| = n¢ and w.l.o.g. we may assume
that ¢,/ > n.

206 N. Vereshchagin

The procedure requiregl in the theorem, called Procedure A, works as fol-
lows: given r of length n¢ ¢, as input,

(a) let 7’ stand for the prefix of r of length n¢;

(b) find the formula ¢,/ ; recall that satisfying assignments of ¢, are basi-
cally pairs (a formula 1 of length n, its satisfying assignment a) such that
Sy (1) =“don’t know”;

() run S,(,);

(d) if Sy(¢r)="“don’t know”then output ¢,» and halt;

(e) otherwise S,.(¢,/) produces a satisfying assignment for ¢, ; given that assign-
ment find in polynomial time a solution (¢, a) to the instance r’ of the problem
P’; output ¢ and halt. (End of Procedure A.)

Let 7, stand for the formula output by the procedure. Since we assume that
NP ¢ BPP, for every positive ¢ the randomized searching algorithm .S errs with
probability at least 1 — ¢ for infinitely many input formulas. This implies that
for infinitely many n the number of solvable instances 7' of the problem P’ is at
least (1—¢)2™". For those 1’s the formula ¢, is satisfiable. Therefore, for all but
a fraction e of r’s the algorithm S, errs on ¢,s or S,/ errs on v, which implies
that S, errs on 9 as well.

Remark 1. Theorem [holds for e = 1/n* for any constant k. Indeed, the as-
sumption NP ¢ BPP implies that the randomized searching algorithm S errs
with probability at least 1 — |¢|~* for infinitely many input formulas .

3 Generating Hard Instances of the Decision Version of
SAT

We start with defining samplers and samplable distributions. We will use the
framework of Bogdanov and Trevisan [I] rather than the original Levin’s one
from [2].

Definition 2. A sampler is a polynomial time probabilistic algorithm G that
given 1™ as input outputs a Boolean formula of length at least n. If the length
of the output formula is always exactly n, we call the sampler proper. Sequences
Loy 41, 2, - - - Of distributions for which there is a polynomial time sampler are
called polynomial time samplable ensembles of distributions.

We say that a randomized decision algorithm D with randomness r errs on a
formula ¢ if D,(¢) =YES and ¢ is not satisfiable or vice verse.
Here is our result.

Theorem 3. If NP ¢ BPP then for every probabilistic polynomial time decision
algorithm D and every positive € there is a sampler G such that for infinitely
many n with probability at least 1 — e the decision algorithm D errs on the
formula produced by G(1™) with probability at least 1/3 — ¢.

Improving on Gutfreund, Shaltiel, and Ta-Shma’s Paper 207

Remark 2. This result strengthens a result that is implicit in [6], which states the
same with 1/6 in place of 1/3. In the proof we will explain what is the difference
between the construction in [6] and ours. For proper samplers the constant 1/6
should be reduced to 1/24 by the following reason. Using padding we may assume
that the formula output by the sampler has length either n, or n°® (and not in

between). Consider a new sampler G that runs G(1") and G (1”1/6(1) and if either
of the runs produces a formula of length n, then we output that formula (if both
runs produce a formula of length n then we output each of them with probability
1/2). This yields the constant 1/24 — €. Indeed, assume that G(1™) produces a
formula ¢ such that D(yp) errs with probability 1/6 — €. Then either the event
“D(¢p) errs and the length of ¢ is m” or the event “D(y) errs and the length of
¢ is m®@” has probability at least 1/12 — &/2. In the first case the probability of
the event “D errs on the output of G(1™)” is at least 1/24 — £/4. In the second
case the probability of the event “D errs on the output of G(lmCd)” is at least
1/24 —¢/4.

Proof (of Theorem[3). Let D and ¢ be given. First we use the standard ampli-
fication, as in [7], to transform the algorithm D into another decision algorithm
D with a smaller error probability.

Given a formula ¢ of length n as input the algorithm D invokes D(¢) poly-
nomial number K of times and outputs the most frequent result among all the
results obtained in those runs. If K is large enough (but still polynomial in n)
then the probability that the frequency of the result YES in those K runs differs
from the probability that D(¢) = YES by more than ¢ is exponentially small in
n. This follows from the Chernoff bound. Note that the number of formulas of
length n is also exponential in n. Moreover, we can choose K = poly(n) so that
with probability at least 1 — 27" there is no formula ¢ of length n for which the
frequency of the result YES deviates from the probability that D(p) = YES by
at most €.

Using the standard binary search techniques we transform the algorithm D
to a SAT solver S. That is, given a formula ¢ the algorithm S first runs D(y).
If the result is YES then it substitutes first = 0 and then x = 1 for the first
variable x in ¢ and runs D on the resulting formulas Pe=0, Pz=1. If at least
one of these runs outputs YES, we replace ¢ by the corresponding formula and
recurse. Otherwise we return “don’t know”and halt.

If D returns NO for the input formula ¢, we return “don’t know”and halt.
Finally, if we have substituted 0s and 1s for all variables and the resulting formula
is true, we return the satisfying assignment we have found, and otherwise we
return “don’t know”.

Let n¢ be the upper bound of S’s running time for input formulas of length
n and let 7 be a string of length n¢ used as randomness for S. In its run for
input ¢ the algorithm S, uses parts of r as coin flips for D. With some abuse
of notation we will denote by D, the algorithm D with that randomness. The
notation D, is understood in the same way.

208 N. Vereshchagin

The heart of the construction is a procedure that given any formula v and
randomness 7 such that S, errs on ¥ returns at most three formulas such that
the algorithm D errs on at least one of those formulas with high probability.

Procedure B. Given a satisfiable input formula ¢ and r such that S, () =“don’t
know”, run S, (¢) to find the place in the binary search tree where S, is stuck.
By the construction of S this may happen in the following three cases:

(1) D, (¢)=NO. In this case output 1.

(2) Sy (1)) performs binary search till the very end, it finds a formula 7 obtained
from original formula by substituting all its variables by 0,1 such that 7 is false
while D, claims that 7 is true. In this case output 7.

(3) In the remaining case S,(%) is stuck in the middle of the binary search
and thus it has found a formula ¢ and its variable = such that D,(¢) =YES
while both D,(¢.—0) and D,.(p,=1) are NO. In this case return ¢, ,—g, Pr=1-
(End of Procedure B.)

We will call formulas returned by this procedure by «, B,’y They depend on
input formula v and on randomness 7.

By Theorem [2] applied to the search algorithm .S there is a polynomial pro-
cedure (called Procedure A in the proof) with the following property. Given a
string r of length ned the procedure returns a formula 7, of length between n
and n°? such that for infinitely many n, S, errs on 7, (except for a fraction at
most € of r’s).

The sampler G from [6] works as follows. For input 1™ choose a random string r
of length n’d. Then apply Procedure A to r to obtain 7,.. Then apply Procedure
B to S, r and 7, to obtain three formulas «, 3,7. Finally choose one of these
formulas at random, each with probability 1/3, and output it.

Fix a positive e. We claim that for infinitely many n with probability at least
1 — 2¢ the algorithm D errs on the formula produced by G(1™) with probability
at least 1/6 — e. To prove this claim notice that S,.(n,) calls D, at most 2n?
times (two times for each variable). Each time D, is called on an input formula
¢ of length between n and n°®. Call a string r of length n°? bad if in at least
one of these runs of D, the frequency of YES answers of D for input ¢ differs
from the probability of the event D(¢)=YES by more than ¢ (recall that D,.(p)
runs D(p) some K times). By construction of D a fraction at most

ncd

Z el < pedg—nt2 < o

l=n

r’s are bad (for all large enough n). If r is good and S, errs on 7, then the error
probability of D on the formula output by Procedure B is at least 1/3(1/2 —¢).
And for infinitely many n the probability that S, does not err on 7, is at most
€. Thus for infinitely many n with probability at least 1 — 2¢ both S, errs on

2 Without loss of generality we may assume that Procedure B always outputs three
formulas.

Improving on Gutfreund, Shaltiel, and Ta-Shma’s Paper 209

1 and 7 is good hence D errs on the output formula with probability at least
1/3(1/2 —¢).

Up to now we have just recited the arguments from [6]. Now we will present a
new trick, which improves the constant 1/6 to 1/3. We will change the very last
step in the work of this sampler. This time we will output «, 3, with different
probabilities, which are carefully chosen based on the frequencies of YES/NO
answers of the algorithm D in the run of D, on inputs a, 3, .

Recall that Procedure B has run the algorithm D, on inputs a, 3,7, and
algorithm D, has done majority vote among some number K of runs of the
algorithm D on «, 3, v, respectively (using in each run a part of r as randomness
for D). Let a,b,c be the answers obtained during those majority votes and
let u,., v, w, stand for the frequencies of answers a, b, ¢ of the runs of D with
randomness from r on «, 3,7, respectively. All numbers u,,v,,w, are thus at
least 1/2. For all good r’s u, is e-close to the probability of the event D(a) =
a. Thus with probability at least 1 — e (over the choice of r) we know an e-
approximation to the probability of the event D(a) = a. The same applies to
b,c and 3,7, respectively. Thus it remains to prove the following lemma, which
is essentially our contribution.

Lemma 1. Assume that we are given bits a,b,c € { YES, NO} and the probabil-
ities u,v,w > 1/2 of the events D(a)) = a, D(B) = b and D(v) = ¢, respectively.
Assume further that at least one of the bits a,b, ¢ is incorrect (we call a incorrect
if « is satisfiable and a = NO or the other way around, and similarly for b, c).
Based on this information we can find in polynomial time a probability distri-
bution over the set {«, 8,7} such that D errs on a random formula drawn from
that distribution with probability at least 1/3.

Proof. Tf u < 2/3, then consider the probability distribution concentrated on a.
In this case the probabilities of both events D(a) =NO, D(«a) =YES are greater
than 1/3. We argue similarly, if v or w is less than 2/3.

Otherwise let probabilities of «, 8, be equal to numbers p, ¢, s such that all
the numbers

putq(l—v)+s(l-w), p(l—u)+qut+s(l-w), p(l—u)+g(l—v)+sw (1)

are at least 1/3. We will argue later that such non-negative rational number
P, q, s that sum up to 1 exist. Distinguish now three cases.

Case 1: the bit a is wrong. Then the probability that D errs on « is equal to u.
The probability that D errs on (3 is at least 1 — v (indeed, if b is correct than
the error probability is equal to 1 — v; otherwise it is equal to v > 1 — v, as
v > 1/2). The same holds for ¢ and . Thus the overall probability that D errs
on the formula drawn from the constructed distribution is at least

pu+q(l —v)+s(l—w)>1/3.

Case 2: the bit b is incorrect. In this case we argue in a similar way and use the
assumption that the second number in () is at least 1/3.

210 N. Vereshchagin

Case 3: the bit ¢ is incorrect. In this case the statement follows from the assump-
tion that the third number in () is at least 1/3.

It remains to show that there are non-negative p, g, s such that p4+g+s=1
and all the numbers in () are at least 1/3. Note that for all non-negative p, ¢, s
with p 4+ ¢ + s = 1 the arithmetic mean of those numbers is equal to

1+p(l—u)+q(l—v)+s(l—w) < 1
3 -3
Thus it suffices to show that there are non-negative p, ¢, s such that all the three

numbers in ({]) are equal (and thus the maximum equals to the arithmetical
mean):

putqg(l—v)+s(l—w)=p(l—u)+qu+s(l—w)=p(l—u)+q(l—v)+sw.

The first equality means that p(2u — 1) = ¢(2v — 1) and the second one means
that ¢(2v — 1) = r(2w — 1). Thus all the three numbers are equal, if p, ¢, s are
proportional to 1/(2u — 1),1/(2v — 1),1/(2w — 1). As all w,v,w are bounded
away from 1/2 (we are assuming that these numbers are at least 2/3), all these
numbers are bounded by a constant. Thus we are able to find in polynomial time
the desired p, q, s.

Actually, we only know e-approximation to the probabilities of events D(«) = a,
D(B) = b and D() = c. However, from the proof of the lemma it is clear that,
if we use e-approximation in place of true values, the probability of error of D
will decrease by at most . The last step of the algorithm G(1™) is thus the
following: we apply Lemma [Il to the e-approximations we have and sample the
output formula with respect to the distribution from Lemma [Tl If r is good and
S, errs on 7, then D errs on the the output formula with probability at least
1/3 —e.

Take into account a fraction at most € of bad r’s and also a fraction at most
€ of r’s such that S, does not err on 7,. We obtain that with probability at least
1 — 2¢ the algorithm D errs on the formula produced by G(1™) with probability
at least 1/3 — .

Remark 3. Theorem [l remains true for e = 1/n* for any constant k.

Remark 4. Say that NP ¢ BPP everywhere if there is a constant ¢ such that for
every randomized SAT solver S and all n > 1, S errs on a formula of length be-
tween n and n°. (A randomized SAT solver S errs on a formula ¢ if S(¢) =“don’t
know” with probability more 1/2.)

If instead of NP ¢ BPP we assume that NP ¢ BPP everywhere then all our
result holds in a stronger form: the quantifier “for infinitely many n” may be
replaced by the universal quantifier.

Theorem 4. If NP ¢ BPP everywhere then for every probabilistic polynomial
time decision algorithm D and every positive € there is a sampler G such that
for all n the decision algorithm D errs on G(1™) with probability at least 1/3 —¢.

Improving on Gutfreund, Shaltiel, and Ta-Shma’s Paper 211

The proof of this theorem is entirely similar to that of Theorem [B] and thus
we omit it. We only have to replace, in the definition of the search problem P,
the requirement “the length of 1 is n” by the requirement “the length of ¢ is
between n and n¢” (and make a similar change in the definition of problem P’).
The constructed sampler will work for almost all n, which is enough, as we can
change its behavior for the remaining n’s.

References

1. Bogdanov, A., Trevisan, L.: Average-Case Complexity. Foundations and Trends in
Theoretical Computer Science 1(2), 1-106 (2006)

2. Leonid, A.: Levin, Average Case Complete Problems. SIAM J. Comput. 15(1),
285-286 (1986)

3. Ben-David, S., Chor, B., Luby, O.G.M.: On the Theory of Average Case Complexity.
In: STOC, pp. 204216 (1989)

4. Gutfreund, D.: Worst-Case Vs. Algorithmic Average-Case Complexity in the
Polynomial-Time Hierarchy. In: Diaz, J., Jansen, K., Rolim, J.D.P., Zwick, U.
(eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 386-397. Springer,
Heidelberg (2006)

5. Bogdanov, A., Talwar, K., Wan, A.: Hard instances for satisfiability and quasi-
one-way functions. In: Proceedings of Innovations in Computer Science (ICS 2009),
pp. 290-300. Tsinghua University Press (2009)

6. Gutfreund, D., Shaltiel, R., Ta-Shma, A.: If NP Languages are Hard on the Worst-
Case, Then it is Easy to Find Their Hard Instances. Computational Complexity
(CC) 16(4), 412-441 (2007)

7. Adleman, L.M.: Two Theorems on Random Polynomial Time. In: FOCS 1978,
pp. 75-83 (1978)

	Improving on Gutfreund, Shaltiel,
and Ta-Shma’s Paper “If NP Languages
Are Hard on theWorst-Case,
Then It Is Easy to Find Their Hard Instances”

	1 Introduction
	2 Generating Hard Instances of Search Version of SAT
	3 Generating Hard Instances of the Decision Version of SAT
	References

