Exponential Lower Bounds
for Refuting Random Formulas
Using Ordered Binary Decision Diagrams

Luke Friedman* and Yixin Xu**

Rutgers University, Piscataway, NJ, USA
{1bfried,yixinxu}@cs.rutgers.edu

Abstract. A propositional proof system based on ordered binary deci-
sion diagrams (OBDDs) was introduced by Atserias et al. in [3]. Krajicek
proved exponential lower bounds for a strong variant of this system us-
ing feasible interpolation [14], and Tveretina et al. proved exponential
lower bounds for restricted versions of this system for refuting formulas
derived from the Pigeonhole Principle [20]. In this paper we prove the
first lower bounds for refuting randomly generated unsatisfiable formu-
las in restricted versions of this OBDD-based proof system. In particular
we consider two systems OBDD* and OBDD+; OBDD* is restricted by
having a fixed, predetermined variable order for all OBDDs in its refu-
tations, and OBDD+ is restricted by having a fixed order in which the
clauses of the input formula must be processed. We show that for some
constant € > 0, with high probability an OBDD* refutation of an un-
satisfiable random 3-CNF formula must be of size at least 2°, and an
OBDD+ refutation of an unsatisfiable random 3-XOR formula must be
of size at least 2°".

1 Introduction

Propositional proof complexity is both an approach for attacking the famous
P vs. NP problem, and also for obtaining a better theoretical understanding of
algorithms for the satisfiability problem. A whole landscape of proof systems
of varying strengths has been mapped out and studied — see for instance [I7]
for general background in this field. From a complexity theory standpoint the
situation is similar to that of circuit complexity — for certain restricted systems
such as the resolution system exponential lower bounds on the size of refuting
many different families of unsatisfiable propositional formulas have been proved.
However, for strong systems such as extended Frege, researchers have failed to
prove even super-linear lower bounds for any family of unsatisfiable formulas,
despite the fact that if such a system had polynomial-size refutations of all
unsatisfiable formulas this would imply that NP = CO-NP.

* Partially supported by NSF grants CCF-0832787 and CCF-1064785.
** Partially supported by NSF grant CCF-0832787.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 127-[[38] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



128 L. Friedman and Y. Xu

In this paper we prove the first lower bounds on the size of refuting randomly-
generated unsatisfiable 3-CNF and 3-XOR formulas in proof systems based on
ordered binary decision diagrams. Random CNF formulas have been studied ex-
tensively, both as a benchmark for measuring in some sense the average case
performance of SAT solving algorithms, and also as a tool for proving proof
complexity lower bounds. It is well-known that if a random 3-CNF formula on
n variables is generated with An clauses for large enough constant A, then with
high probability the formula will be unsatisfiable. The lack of structure in these
formulas makes them hard to refute; indeed, it is conceivable that they require
exponential size refutations in any proof system, and since even generating can-
didate hard formulas for strong proof systems can be difficult [16], they are a
natural choice for lower bound proofs and developing new techniques for them
is a worthwhile task.

Along with random 3-CNF formulas, we also consider random 3-XOR formu-
las, which are formulas whose clauses are satisfied if and only if one or three
of its literals are satisfied. Unlike in the 3-CNF case, determining satisfiability
of a 3-XOR formula is known to be computable in polynomial time, since such
formulas can be equivalently represented as a system of linear equations over
F2, and then an algorithm such as Gaussian elimination can be used to test the
solvability of the system. However, random 3-XOR formulas retain a lot of the
important properties of random 3-CNF formulas, and because they are easier
to reason about they have been useful in proving lower bounds for weak proof
systems (e.g. [2]).

Ordered Binary Decision Diagrams (OBDDs) are data structures for repre-
senting Boolean functions that were originally introduced in [5] and have found
a wide variety of applications in areas of computer science such as VLSI de-
sign and model checking. They have also emerged as a basis for SAT solving
algorithms that have been demonstrated to be competitive on certain classes of
formulas with the state-of-the-art DPLL based solvers that are generally used in
practice [I5],[I3]. Informally they are read-once branching programs where vari-
ables must be queried according to a fixed order. Part of what makes OBDDs
so useful is that their relatively rigid structure makes it possible to manipulate
them efficently: For any given Boolean function f on n variables and variable
order 7 there is a unique (up to isomorphism) minimal OBDD computing f,
and operations such as taking the conjunction of two OBDDs and determining
whether an OBDD representing a function f; majorizes an OBDD representing
a function fo (i.e for all z, fi(x) > fa(x)) are computable in polynomial time
[5].

A refutation system based on OBDDs was introduced in [3]. The basic idea
of such a system is simple: Given an unsatisfiable 3-CNF (or 3-XOR) formula
F, an OBDD refutation of F with respect to a variable order 7 is a sequence
OBDD;, OBDDs,...OBDD; = 0, where each OBDD; uses the variable order =
and is either the OBDD representation of a clause from F (an axiom), or is the
conjunction of two OBDDs derived earlier (i.e. OBDD; = OBDD; A OBDD;
for some j,k < 7). One can also include a weakening rule, so that OBDD; may
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also be an OBDD such that OBDD; majorizes OBDD; for some j < 4. Such a
refutation system is sound and complete, and because computing the conjunc-
tion of two OBDDs can be done in polynomial time (as well as determining
whether one OBDD majorizes another in the case of a weakening), verifying
whether a refutation is correct is also polynomial time computable. Thus these
OBDD-based systems qualify as propositional proof systems in the formal sense
introduced by Cook and Reckhow [7]. The OBDDs representing axioms in this
type of refutation are small, as well as the final OBDD OBDD;. Therefore, if
a refutation in one of these OBDD-based systems has a polynomial number of
steps, whether it is polynomial size or not depends only on whether one of the
intermediate OBDDs computed along the way has super-polynomial size. The
only non-deterministic choices the prover must make are which variable order 7
to use, and in what order to combine OBDDs. (If a weakening rule exists, the
prover must also choose when and how to use it). These choices can be crucial
however in determining the size of the refutation; for instance, it is a simple
exercise to show that for certain functions the OBDD representation has size
O(n) according to one variable order yet size £2(2") according to another order.

By restricting the options the prover has in making these choices, one can de-
fine different variants of this OBDD-based system that have varying strengths.
One reason for doing so is that no current OBDD-based SAT solver takes full
advantage of the power offered by the underlying OBDD proof system in its un-
restricted form. This is a common phenomenon in SAT solving — basing solvers
on more powerful proof systems does not necessarily make the solvers better.
The reason is that as the proof systems become more powerful, trying to deter-
ministically make the non-deterministic choices of the proof system becomes an
increasingly difficult task. This is highlighted by the fact that the best general
purpose SAT solvers in use today are variants of the DPLL algorithm, which is
based on the resolution system, one of the weakest proof systems that has been
studied. In the case of OBDD based systems, it is not clear how to best make use
of the full weakening rule, and even determining the best variable order to use
in an OBDD representation of a single function is an NP-complete problem [4].
Particularly when considering random formulas, because of the symmetry and
lack of structure it seems unlikely that one variable order would be exponentially
better than another, or even if such a good order did exist that it could be found
efficiently. However, the sheer number of different possible variable orders make
proving such a fact difficult from a technical standpoint.

From a theoretical point of view, restricting these OBDD systems creates in-
teresting intermediate systems. It was proved in [3] that allowing unrestricted use
of the weakening rule makes the OBDD proof system as strong as CP*, a variant
of the cutting planes system where coefficients are represented in unary, that is
strictly stronger than resolution and for which the only known lower bounds are
based on feasible interpolation. However, if we do not allow weakening the story
changes significantly — in this case there exist certain families of unsatisfiable
formulas for which the smallest OBDD refutations are exponentially larger than
the smallest resolution refutations [20]. Despite this apparent weakness, it has
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not been proved that the Frege system, a powerful system that could even con-
ceivably be optimal, can polynomially simulate this restricted OBDD system.
The reason is that the lines of Frege systems are formulas, which cannot directly
simulate the dag-like structure of OBDDs. Thus studying different variations of
restricted OBDD-based systems is one possible route towards bridging the gap
between systems we know to be weak and those for which we do not have lower
bounds on natural families of formulas.

Krajicek gave exponential lower bounds for the OBDD-based system of [3] in
its full generality using a form of the feasible interpolation method [14], and these
are currently the only lower bounds known for this strongest variant. Tveretina
et al. showed that if the weakening rule is disallowed, then an OBDD-based
refutation of the pigeonhole principle must have exponential size [20], building
upon a similar result from Groote and Zantema [I1], who had also restricted the
system to only consider specific variable orders. In this paper we take a first step
towards understanding the limitations of OBDD-based systems to refute random
formulas by proving exponential lower bounds for certain restricted variants.

In particular we consider two restricted OBDD-based systems, which we can
denote by OBDD* and OBDD+. In both systems the weakening rule is excluded.
In the OBDD* system the variable order that will be used for the refutation is
fixed before the random formula is chosen. Because random formulas are gen-
erated symmetrically with respect to the variables, without loss of generality
we can fix the identity order Z that orders a set of variables x1,xso,...x, as
T1 < xg < -+ < x,. In the OBDD* system the prover has the freedom to com-
bine OBDDs during the refutation in an arbitrary way. In the OBDD+ system,
the prover has the freedom to choose any variable order 7 after seeing the ran-
dom formula ¢ that is to be refuted. However, during the refutation, the clauses
of ¢ (represented as OBDDs) must be combined in a predetermined fashion
corresponding to some canonical ordering of the clauses in ¢.

The following two theorems are our main results:

Theorem 1. Let A be a sufficiently large constant. There exists an € > 0, such
that with high probability when ¢ is a random 3-CNF formula on n variables
with clause density An, ¢ is unsatisfiable and any OBDD* refutation of ¢ must
have size at least 2 [1

Theorem 2. Let A be a sufficiently large constant. There exists an € > 0 such
that with high probability when ¢ is a random 3-XOR formula on n wvariables
with clause density An, ¢ is unsatisfiable and any OBDD+ refutation of ¢ must
have size at least 2°™.

The progress we have made in this paper is summarized in Figure [I1

! This theorem can be proved almost identically in the case where we consider a
random 3-XOR formula as well. Also, a close inspection of the proof shows that for
either the 3-CNF or 3-XOR case, if instead of fixing the variable order Z we allow
the prover to fix any set S of 2°™ variable orders for sufficiently small § before seeing
the random formula ¢, then to choose one of the variable orders from S after seeing
¢, the theorem still holds in this scenario as well.
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Fig. 1. A summary of the results from this paper. We consider different OBDD-based
proof systems, none of which include a weakening rule. The systems differ according
to two possible restrictions: (1) Is the variable order that will be used in the refutation
fixed before the random formula is chosen? (2) Are the clauses processed in the refu-
tation according to a canonical order in which they appear in the input formula? We
consider both random 3-CNF and random 3-XOR formulas. A check mark appears in
the box corresponding to a given proof system and type of random formula if we prove
exponential lower bounds for this combination in this paper, and an X appears in the
box if proving lower bounds in this case is still open.

2 Preliminaries and Notations

We will denote a set of n Boolean variables as {z1,...,z,}. A literal xg, J €
{0, 1}, is either a variable or its negation. An assignment « to a set of n variables
is a function [n] — {0, 1}, where [n] denotes the set {1,2,...,n}. « satisfies a

literal - if and only if a(i) = j.

A clause C' is a set of literals. An assignment « satisfies C' as a CNF clause if
and only if « satisfies some literal in C. « satisfies C' as an XOR clause if and
only if « satisfies an odd number of literals in C. A 3-CNF (3-XOR) formula
F over n variables is a list of clauses (Cy,...,C,,), where each of the clauses
contains three literals from variables in the set {x1,...x,}. It is satisfied by an
assignment « if and only if every clause in F is satisfied by a as a CNF (XOR)
clause. If it is irrelevant whether we are referring to a 3-CNF formula or a 3-XOR
formula, we will often refer to the formula simply as a 3-formula.

Definition 1 (Random 3-formula). A random 3-formula ¢ on n variables
with clause density A is a 3-formula (C1,...,Cayn), where each clause C; is
chosen uniformly at random from all of the 23 (g) possible clauses.

Let 7 be a total order on a set of variables {z1, ..., x, }. We will refer to 7 simply
as an order. Alternatively, we can view 7 as a permutation such that 7(i) = j if
and only if the i-th variable in the order of 7 is z;. We will also write 7=1(j) =4
to indicate that 7(i) = j. We also define the identity order Z such that for all ¢,
Z(i) =1.

Let f: {0,1}™ — {0,1} be a Boolean function on n variables and let z €
{0,1}* for t < n. We define f|,, to be the function f’: {0,1}"~* — {0,1} that
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is the function f restricted so that for each 1 < i < ¢, if w(i) = j, then z; is
fixed to the constant value z;.

Definition 2 (OBDD). Given an order m on {x1,...,2,}, an ordered binary
decision diagram with respect to w, denoted by OBDD,, is a branching program
with the following structure. An OBDD, is a layered directed acyclic graph with
layers 1 through n + 1. Layer 1 contains a single root node, and layer (n + 1)
contains two final nodes, one labeled with the value 0 and the other labeled with
the value 1. Every node in layers 1 through n has outdegree two: such a node v
on level i has one outgoing edge to a node on level i+ 1 labeled with the value 0,
and another outgoing edge to a node on level i + 1 labeled with the value 1.

An OBDD,; defines a Boolean function {0,1}™ — {0,1} in the following way.
For an assignment o on n variables, we start at the root node, and for i =1 to
n, advance along the edge labeled with o(mw(i)). When this process is complete,
we will have arrived at one of the final nodes. If this final node is labeled with 0,
then we define OBDD, () = 0, and otherwise we define OBDD,(«) = 1, where
now we are associating o with an n bit string in the natural way.

|OBDD | denotes the size (the number of nodes) of the OBDD.

An important property of OBDDs is that for a given Boolean function f :
{0,1}™ — {0, 1} and an ordering =, there is a unique minimal OBDD,. up to iso-
morphism computing f [5]. Thus for a given f we can safely refer to OBDD,(f)
as the OBDD computing f according to .

The following simple theorem (and corollary) provide general techniques for
proving lower bounds on |OBDD,(f)].

Theorem 3 ([18]). Let f : {0,1}"™ — {0,1} be a Boolean function on n vari-
ables and 7 an order. Let k = |{f|r, : z € {0,1}'}| (i.e., k counts the number
of distinct subfunctions of f that can be produced by fizing the first t variables
according to ). Then the t-th level of OBDD(f) contains k nodes.

Corollary 1 ([19]). Let f be a Boolean function on n variables and m an order.
Suppose the following conditions hold

1. 1, ,x¢ are the least t variables according to ™ for some t < n.
2. BC{l,...,t}.
3. z€{0,1}.

4. For all x,x' € {0,1}!, if x # x' and x; = x, = z; for all i ¢ B, then there
exists y € {0,1}"~" such that f(x,y) # f(X,y).

Then |OBDD,(f)| > 2!51.
Definition 3 (OBDD refutation). Given an unsatisfiable 3-formula F and
an order m, an OBDD}. refutation of F is a sequence

OBDD(f1),OBDD(f2), -+ ,OBDD,(f; =0) such that for each f; one of the
following conditions is satisfied:
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1. fi is a clause of F. (In this case we say that f; is an axiom.)
2. fi=fi A fr for some j,k < i.

The size of the OBDDZ refutation is defined as > ;_, |[OBDDy(f;)|.
We define SX(F) to be the minimum size of any OBDD. refutation of F. In
this paper we focus on m =T and thus will refer to S5 (F).

Definition 4 (OBDD; refutation). An OBDD; refutation of an unsatisfi-
able 3-formula F = (Ci,...,Cy,) is an OBDD refutation where the clauses
of F are processed one at a time in order. Precisely, an OBDDY refutation of
F is a sequence OBDD,(f1),OBDD(f2), -+ ,OBDD.(fom = 0) where for
1<i<m, fi =Ci, fmt1=C1, and form +2 < j <2m, f;j = fi-1 A fj—m.
We define S (F) to be the size of the unique OBDD} refutation of F, and we
define ST(F) to be the minimum over m of St (F).

We will make use of the following bounds related to satisfiability thresholds.

Theorem 4. [8] There exists A* < 4.51 such that for large n, w.h.p a random
3-CNF formula with n variables and clause density A > A* will be unsatisfiable.

Theorem 5. [9] There exists A* < 0.91 such that for large n, w.h.p a random
3-XOR formula with n variables and clause density A > A* will be unsatisfiable.

We will also need the following lemma, which is a restatement of a result that
appeared in [6]. For S a subset of the clauses of a 3-formula F, let var(S) be
the set of all variables that appear in at least one of the clauses of S (ignoring
the sign of the literal). We call a 3-formula F on n variables an (z,y)-expander
if for all subsets S of the clauses of F such that |S| < zn, |var(S)| > y|5|.

Lemma 1. [6] For ally < 2 and A > 0, there exists positive © such that w.h.p a
random 3-formula on n variables with clause density A will be an (x,y)-expander.

Finally, we need two results on systems of distinct representatives that follow
from Hall’s marriage theorem. For a clause C, let var(C') be the set of variables
appearing in C, and for a set of clauses S, let var(S) = Ugegvar(C). We say a
subset S of clauses has a system of distinct representatives (SDR) if there is a
one-to-one function o : S — var(S) such that for all C € S, o(C) € var(C).

Lemma 2. [T2] Let S be a subset of clauses. S has an SDR if and only if for
all 8" C S, Jvar(S")| > |5

Lemma 3. [0] Let S be a set of clauses and V' a set of variables. S has an SDR
o with at most t elements of V in the range of o if and only if it has an SDR
and for all ' C S, |S'| — |var(S")\ V| < t.

3 Proof of the OBDD* Case

The purpose of this section is to prove Theorem [ which we now restate.
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Theorem 6 (restatement of Theorem [I). Let A > 4.51. There ezists a
constant € > 0 such that, with high probability when ¢ is a random 3-CNF
formula on n variables with clause density A, ¢ is unsatisfiable and S5 (p) > 2.

The main work in our proof of Theorem [6]is proving the following lemma.

Lemma 4. Let A > 4.51. There exist constants d,e > 0 such that, with high
probability when ¢ is a random 3-CNF formula on n variables with clause density
A, ¢ is a (6,1.9) expander and the following holds: Let S be any subset of the
clauses of ¢ such that on/2 < |S| < on, and let fs be the conjunction of these
clauses. Then |OBDDz(fs)| > 2¢".

Proof (of Theorem[d). Because A > 4.51, by Theorem [ with high probability ¢
will be unsatisfiable. Let P = OBDDz(f1),OBDDz(f2), - ,0OBDDz(f; = 0)
be an OBDDZ refutation of ¢. Each f; is a conjunction of some subset of clauses
S of ¢. Let |f;| denote |S].

By Lemma [T, there exists a constant 0 such that with high probability ¢
is a (0,1.9) expander. By Lemma [2] this means that any subset S of clauses
of ¢ with |S] < én has an SDR. Any set of clauses S that has an SDR o
is satisfiable, since an assignment that for each clause C' € S sets o(C) to the
value that satisfies C' will satisfy S. Therefore, since f; is the constant 0 function,
which is trivially unsatisfiable, | f;| > dn. For every f; that is an axiom, we have
|fil = 1. If f; = f; A fi for some j, k < i, then |f;| < |f;| + |fx|. Therefore, for
each i € t, |f;] < 2max;; |f;|. This implies that there exists ¢ € [t] such that
on/2 < |fi| < on. By Lemmall |OBDDz(f;)| > 2, so P has size at least 2°".

The remainder of this section is devoted to proving Lemma [l First we prove a
few other lemmas that will be useful towards this goal. Some of these proofs are
omitted for space reasons (but can be seen in the full version [10]).

Lemma 5. Let A > 0 and 0 < § < A be some constant. There exists € > 0,
such that with high probability when ¢ is a random 3-formula on n variables with
clause density A, for any set T of en variables, the number of clauses from ¢
that contain a variable from T is less than on.

Lemma 6. Let A > 0 and 0 < 6 < A be some constant. There exists € > 0,
such that with high probability when ¢ is a random 3-formula on n variables with
clause density A, the following property holds: For all sets S of clauses from ¢
with |S| > dn, there exists a set of clauses T C S with |T| = en such that the
clauses in T are disjoint (i.e. no two clauses of T' share a common variable).

Definition 5 (splits). Let t be a positive integer less than n and F a 3-formula.
For a clause C € F, we say that t left-splits C' according to an order m if there
is exactly one variable z; € var(C) such that m=1(i) < t. In this case we define
leftc+ » = ;. Similarly, we say that t right-splits C' according to an order m
if there is exactly one variable ; € var(C) such that 7=1(i) > t, and in this
case define rightc, . = ;. If t either right-splits or left-splits C, then we will
sometimes simply say that t splits C'.
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Lemma 7. Let A6 > 0 be any constants, and for some 0 < € < 1, let
I'. = {[en], [2en], [3en], -+, [(1 — €)n]}. Then with high probability when ¢ is
a random 3-formula on n variables with clause density A, for any set of clauses
S from ¢, with |S| > on, there exists t € I'. such that at least (6 — TeA)en of the
clauses are left-split by t according to T.

Lemma 8. Let A > 4.51, and let &' be the constant that comes out of Lemma
[ such that with high probability a random 3-formula with clause density A is a
(¢6',1.9) expander. Let 6 < &' be some constant. There exists constants y,e > 0,
such that with high probability when ¢ is a random 3-formula on n variables with
clause density A, the following property holds: For all sets T' of clauses from ¢,
with dn < |T'| < §'n, there exists S C T such that

1. |S| =n.

2. There exists t € I'. such that every clause C' € S is left-split by t according
toZ.

3. The clauses of S are disjoint.

4. T has an SDR o, such that for every clause C € S, exactly one variable in
C is in the range of o.

Proof. Suppose the conclusions of Lemma[Il Lemma[Gl and Lemma [ hold with
respect to ¢ (which occurs with high probability). Let T be a set of clauses from
¢ such that én < |T| < ¢'n. By Lemmal[7] there exists a constant e such that for
A= (6 —TeA)e > 0, at least An clauses from T are left-split by ¢ € I'. according
to Z. Call this set of An clauses U.

By Lemma [6] for some constant A\ we can find a set of XN'n disjoint clauses
U’ C U. Now we invoke Lemma [J] to show that there exists an SDR o for
T such that at most 1.6\'n of the 3\'n variables in var(U’) are in the range
of 0. To do this it suffices to show that for any set of clauses S’ C T, |S'| —
|var(S") \ var(U’)| < 1.6Nn. If |S] < 1.6\'n then trivially the inequality is
satisfied. Otherwise, if |S’| > 1.6X'n, then because 9 is a (¢’,1.9) expander,
lvar(S")| > 1.9]57], so

|S"| — Jvar(S")\var(U")| < —0.9]S"| + 3\'n < —1.44\'n + 3\'n < 1.6\'n

Because there are at most 1.6A\'n variables from var(U’) in the range of o, there
must exist a set of clauses S C U’, with |S| = 0.4\'n, such that for every clause
C € S, exactly one variable in C' is in the range of o. This set S satisfies the
requirements of the lemma.

We are now ready to prove Lemma [

Proof (of Lemmal[j).

By Lemma [I] there exists § > 0 such that with high probability ¢ is a (4,1.9)
expander, and also with high probability the conclusion of Lemma [8 holds.

Let S be a subset of the clauses of ¢ such that dn/2 < |S| < én. Let 8" C S
be the set guaranteed to exist by Lemma [§ with the four properties from that
lemma, and o the corresponding SDR for S. Let leftgr = {leftc 7z : C € §'}.
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In order to prove the lemma we will make use of Corollary [l to show that
|OBDDz(fs)| > ollefts/| > 2¢n for some constant € > 0. Our set B from that
theorem will be lefts: . Define z € {0,1} as follows. For each 1 < 4 < ¢t such
that z; = o(C) for some clause C, let z; be the value that satisfies the clause C.
Assign all other values of z arbitrarily.

To finish the proof of the lemma, we need that for all x,x" € {0,1}¢, if x # x’
and x; = x, = z; for all i ¢ B, then there exists y € {0,1}"* such that

(3

p(x,y) # o(x',y).

Let x,x’ € {0,1} such that x # x” and x; = x| = z; for all i ¢ B. Let j be an
index such that x; # x . Let C' be the clause from S’ such that x; = leftc ;7.

Define y as follows. Let p and ¢ be the two indices other than j such that x,
and x, are in the clause C. Define y,_; and y,—; each to be the value that does
not satisfy the clause C. For each clause D # C such that D € S’, let r and s be
the two indices greater than ¢ such that x, and x are in the clause D. Define
yr—+ and ys—; each to be the value that satisfies D. For any index i such that
t <i<mnand x; = 0(F) for some clause F other than C, define y;_; to be the
value that satisfies the clause E. Assign all other values of y arbitrarily. Note
that because the clauses in S’ are disjoint and for each clause C in S’ exactly one
of the variables of C is in the range of o, it is always possible to form the partial
assignment y according to these rules. (Note in particular that if o(F) = z for
some clause E ¢ S'; then = ¢ var(S")).

Either x; satisfies the clause C, or x/; does. Assume without loss of generality
that x; does. Then ¢(x’,y) = 0, since the assignment (x’,y) does not satisty
the clause C. However, ¢(x,y) = 1, since the assignment (x,y) satisfies every
clause in ¢. This completes the proof.

4 Proof of the OBDD+ Case

The purpose of this section is to prove Theorem 2] which we now restate.

Theorem 7 (Restatement of Theorem [2]). Let A > 0.91. There exists a
constant € > 0 such that, with high probability when ¢ is a random 3-XOR
formula on n variables with clause density A, ¢ is unsatisfiable and S*(¢) > 2".

The following three lemmas are needed in the proof; for space reasons we are
forced to omit their proofs and the proof of Theorem [7] (all of which appear in

[10]).

Lemma 9. For 0 < € < 1, let I'. = {[en], [2en], [3en],...,[(1 — €)n]}. Let
A > 0.5. There exists €, > 0 such that, with high probability when ¢ is a
random 3-formula on n variables with clause density A, the following property
holds: For any order m, there exists some tr € I such that more than én of the
clauses from ¢ are split by t, according to

2 In fact, using a slightly more complicated first moment argument, one can prove the
stronger statement that this lemma holds even if we fix t» = n/2.
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Lemma 10. There exists A > 0 such that, with high probability when ¢ is a
random 3-XOR formula with clause density A = 0.6, ¢ is a (0.6, 1+ \) expander.

Lemma 11. Let ¢ be a 3-formula over n variables with clause density A such
that v is a (A, 1+ d)-expander for some 6 > 0. Let U C 4 be a set of disjoint
clauses with |U| = An for some A > 0. Let ¥ be a set of variables and f be a
bijection from W to U such that for all x € ¥, x appears in the clause f(z). Then
there exists € > 0 such that there is an SDR o on 1 for which at least en of the
variables from ¥ are not in the range of o.

5 Future Work

The obvious open problem is to prove lower bounds for refuting random 3-
CNF or 3-XOR formulas in an OBDD-based refutation system where neither
the variable order nor the order in which clauses are processed in the refutation
is constrained. Although it might seem that one could tweak our techniques to
get this result, it may be that this is more difficult than appears at first glance.

For instance, suppose we tried to use the same approach of focusing in on a
particular OBDD in the refutation of a random 3-CNF formula such that the
OBDD represents the conjunction of about dn clauses, for some appropriately
chosen fixed §, in the hopes of showing that the OBDD must be of exponential
size. In the restricted systems from this paper, we were able to choose § to be
an arbitarily small constant. However, in the unrestricted system (still without
weakening), we would be forced to choose ¢ to be greater than about 1/6, because
a random formula with clause density just above the threshold does contain sub-
formulas with about n/6 clauses that have small OBDD representations for some
variable order. (For instance, one can look for a large set of disjoint clauses and
then choose a variable order where the variables from each clause are adjacent
in the order). It is much more difficult to reason about sub-formulas in this
regime; for instance, to the best of our knowledge it has not even been proved
that a random 3-CNF formula with clause density just above the threshold with
high probability does not contain an unsatisfiable sub-formula consisting of n/6
clauses (let alone that all sub-formulas slightly larger than this must have large
OBDD representations). Certainly one cannot rely on the existence of SDRs
when considering sub-formulas with clause density this close to the threshold.

Making progress will probably require using a more sophisticated analysis of
the structure of random formulas than we do in this paper. A large amount of
research has been done on investigating the structure of random CNF and XOR
formulas with densities below the respective satisfiability thresholds, including
understanding the solution space structure of such formulas and the occurrence
of various phase transitions. (See for example [I] for a survey of this work,
along with more general information about SAT solving and random formulas).
Finding a way to leverage this type of knowledge in this context is probably a
key step towards achieving these more difficult lower bounds.
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