
Andrei A. Bulatov
Arseny M. Shur (Eds.)

 123

LN
CS

 7
91

3

8th International Computer Science Symposium
in Russia, CSR 2013
Ekaterinburg, Russia, June 2013
Proceedings

Computer Science –
Theory and Applications

Lecture Notes in Computer Science 7913
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Andrei A. Bulatov Arseny M. Shur (Eds.)

Computer Science –
Theory and Applications

8th International Computer Science Symposium
in Russia, CSR 2013
Ekaterinburg, Russia, June 25-29, 2013
Proceedings

13

Volume Editors

Andrei A. Bulatov
Simon Fraser University
School of Computing Science
8888 University Drive, Burnaby, BC V5A 1S6, Canada
E-mail: abulatov@sfu.ca

Arseny M. Shur
Ural Federal University
Institute of Mathematics and Computer Science
51 Lenina Ave., 620083 Ekaterinburg, Russia
E-mail: arseny.shur@usu.ru

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38535-3 e-ISBN 978-3-642-38536-0
DOI 10.1007/978-3-642-38536-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013938303

CR Subject Classification (1998): F.2, F.3, F.1, G.2, F.4, G.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 8th International Computer Science Symposium in Russia (CSR 2013) was
held during June 25–29, 2013, in Ekaterinburg, Russia, hosted by the Ural Fed-
eral University. It was the eighth event in the series of regular international
meetings following CSR 2006 in St. Petersburg, CSR 2007 in Ekaterinburg, CSR
2008 in Moscow, CSR 2009 in Novosibirsk, CSR 2010 in Kazan, CSR 2001 in St.
Petersburg, and CSR 2012 in Nizhny Novgorod.

The opening lecture was given by Mario Szegedy and seven other invited
plenary lectures were given by Thomas Colcombet, Gilles Dowek, Alexandr Kos-
tochka, Nicole Schweikardt, Jeffrey Shallit, Paul Spirakis, and Ryan Williams.

This volume contains the accepted papers and abstracts of the invited talks.
The scope of the proposed topics for the symposium is quite broad and covers
a wide range of areas in theoretical computer science and its applications. We
received 52 papers in total, and out of these the Program Committee selected 29
papers for presentation at the symposium and for publication in the proceedings.

As usual, Yandex provided the Best Paper Awards; the recipients of these
awards were selected by the Program Committee:

– Best Paper Award: Mark Braverman, Ankit Garg, Denis Pankratov, and
Omri Weinstein
“Information Lower Bounds via Self-Reducibility”

– Best Student Paper Award: Luke Friedman and Yixin Xu
“Exponential Lower Bounds for Refuting Random Formulas Using Ordered
Binary Decision Diagrams”

The reviewing process was organized using the EasyChair conference system
created by Andrei Voronkov. We would like to acknowledge that this system
helped greatly to improve the efficiency of the committee work.

The following satellite events were co-located with CSR 2013:

– The Second Workshop on Current Trends in Cryptology (CTCrypt 2013)
– The 4th Workshop on Program Semantics, Specification and Verification:

Theory and Applications (PSSV 2013)
– The 6th School for Students and Young Researchers “Computer Science

Ekaterinburg Days” (CSEdays 2013)

We are grateful to our sponsors:

– Russian Foundation for Basic Research
– SKB Kontur
– Eastwind
– Yandex

VI Preface

We greatly appreciate the assistance of the many departments of the Ural
Federal University. Our special thanks to Dmitry Bugrov, the first vice-rector,
and to Magaz Asanov, the director of the Institute of Mathematics and Com-
puter Science. We also thank the local organizers: Alexei Borbunov, Alexandr
Galperin, Irina Polyakova, Elena Pribavkina, Ekaterina Shcherbakova, Mikhail
Volkov, and Alexei Zverev.

June 2013 Andrei Bulatov
Arseny Shur

Organization

CSR 2013 was organized by the Ural Federal University in Ekaterinburg.

Program Committee Chair

Andrei Bulatov Simon Fraser University, Canada

Program Committee

Max Alekseyev University of South Carolina, USA
Andris Ambainis University of Latvia, Latvia
Maxim Babenko Higher School of Economics, Russia
Patrick Baillot ENS Lyon, France
Glencora Borradaile Oregon State University, USA
Yijia Chen Shanghai Jiao Tong University, China
Victor Dalmau Universitat Pompeu Fabra, Spain
Yevgeniy Dodis Courant Institute of Mathematical Sciences,

New York University, USA
Manfred Droste University of Leipzig, Germany
Anna Frid Sobolev Institute of Mathematics, Novosibirsk,

Russia
Hamed Hatami McGill University, Canada
Tero Harju University of Turku, Finland
Michal Koucky Mathematical Institute of Czech Academy

of Sciences, Czech Republic
Stephan Kreutzer Technical University of Berlin, Germany
Alexander Kulikov Steklov Institute of Mathematics at

St. Petersburg, Russia
Konstantin Makarychev Microsoft Research, Redmond, USA
Simone Martini University of Bologna, Italy
Jaroslav Nesetril Charles University, Czech Republic
Jean-Eric Pin Université Paris 7, France
Harald Raecke University of Munich, Germany
Alexander Razborov University of Chicago, USA, and Steklov

Mathematical Institute, Russia
Mikhail Volkov Ural Federal University, Russia

Symposium Chair

Arseny Shur Ural Federal University, Russia

VIII Organization

Organizing Committee

Alexandr Galperin Ural Federal University, Russia
Elena Pribavkina Ural Federal University, Russia
Arseny Shur (Chair) Ural Federal University, Russia
Mikhail Volkov Ural Federal University, Russia
Alexei Zverev Ural Federal University, Russia

Steering Committee

Anna Frid Sobolev Institute of Mathematics, Russia
Edward A. Hirsch Steklov Institute of Mathematics at

St. Petersburg, Russian Academy of
Sciences, Russia

Juhani Karhumäki University of Turku, Finland
Ernst W. Mayr Technical University of Munich, Germany
Alexander Razborov University of Chicago, USA, and Steklov

Mathematical Institute, Russia
Mikhail Volkov Ural Federal University, Russia

External Reviewers

Artem Babenko
Ivan Bliznets
Gabor Braun
Christian Choffrut
Diego Figueira
Alexander Golovnev
Yuri Gurevich
Pooya Hatami
Shuai Jiang
Stanislav Kikot
Ignat Kolesnichenko

Anton Korobeynikov
Gregory Kucherov
Peter Leupold
Ingmar Meinecke
Theresa Migler
Ivan Mihajlin
Sergey Nikolenko
Vsevolod Oparin
Ivan Pouzyrevsky
Narad Rampersad
Christian Retore

Michel Rigo
Michael Roizner
Rahul Santhanam
Maximilian Schlund
Sylvain Schmitz
Alexander Shen
George Voutsadakis
John Watrous
Thomas Weidner

Sponsoring Institutions

Russian Foundation for Basic Research
SKB Kontur
Eastwind
Yandex

Table of Contents

Opening Lecture

The Lovász Local Lemma – A Survey . 1
Mario Szegedy

Session 1: Algorithms

An Improved Knapsack Solver for Column Generation 12
Klaus Jansen and Stefan Kraft

QuickHeapsort: Modifications and Improved Analysis 24
Volker Diekert and Armin Weiß

Alphabetic Minimax Trees in Linear Time . 36
Pawe�l Gawrychowski

Invited Lecture 1

Decidability and Enumeration for Automatic Sequences: A Survey 49
Jeffrey Shallit

Session 2: Automata

Walking on Data Words . 64
Amaldev Manuel, Anca Muscholl, and Gabriele Puppis

Careful Synchronization of Partial Automata with Restricted
Alphabets . 76

Pavel V. Martyugin

Random Generation of Deterministic Acyclic Automata Using the
Recursive Method . 88

Sven De Felice and Cyril Nicaud

Boolean Language Operations on Nondeterministic Automata with a
Pushdown of Constant Height . 100

Viliam Geffert, Zuzana Bednárová, Carlo Mereghetti, and
Beatrice Palano

X Table of Contents

Invited Lecture 2

A Short Tutorial on Order-Invariant First-Order Logic 112
Nicole Schweikardt

Session 3: Logic, Proof Complexity

Exponential Lower Bounds for Refuting Random Formulas Using
Ordered Binary Decision Diagrams . 127

Luke Friedman and Yixin Xu

Parameterized Resolution with Bounded Conjunction 139
Stefan Dantchev and Barnaby Martin

Lower and Upper Bounds for the Length of Joins in the Lambek
Calculus . 150

Alexey Sorokin

Graph Expansion, Tseitin Formulas and Resolution Proofs for CSP 162
Dmitry Itsykson and Vsevolod Oparin

Invited Lecture 3

Towards NEXP versus BPP? . 174
Ryan Williams

Session 4: Complexity 1

Information Lower Bounds via Self-reducibility . 183
Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein

On the Encoding Invariance of Polynomial Time Computable
Distribution Ensembles . 195

Anton Makhlin

Improving on Gutfreund, Shaltiel, and Ta-Shma’s Paper “If NP
Languages Are Hard on the Worst-Case, Then It Is Easy to Find Their
Hard Instances” . 203

Nikolay Vereshchagin

Amortized Communication Complexity of an Equality Predicate 212
Vladimir Nikishkin

Invited Lecture 4

On Coloring of Sparse Graphs . 224
Alexandr Kostochka and Matthew Yancey

Table of Contents XI

Session 5: Words and Languages

On Recognizing Words That Are Squares for the Shuffle Product 235
Romeo Rizzi and Stéphane Vialette

Cyclic Shift on Prefix-Free Languages . 246
Jozef Jirásek and Galina Jirásková

Weak Abelian Periodicity of Infinite Words . 258
Sergey Avgustinovich and Svetlana Puzynina

Universality of Regular Realizability Problems . 271
Mikhail N. Vyalyi

Invited Lecture 5

Potential Functions in Strategic Games . 283
Paul G. Spirakis and Panagiota N. Panagopoulou

Session 6: Algorithms 2

The Probabilistic Min Dominating Set Problem . 298
Nicolas Boria, Cécile Murat, and Vangelis Th. Paschos

Dichotomy of the H-Quasi-Cover Problem . 310
Jǐŕı Fiala and Marek Tesař

QCSP on Partially Reflexive Cycles – The Wavy Line of Tractability . . . 322
Florent Madelaine and Barnaby Martin

Quantum Alternation . 334
Abuzer Yakaryılmaz

Invited Lecture 6

Real Numbers, Chaos, and the Principle of a Bounded Density
of Information . 347

Gilles Dowek

Session 7: Complexity 2

Random Selection in Few Rounds . 354
Timofey Stepanov

One-Counter Verifiers for Decidable Languages . 366
Abuzer Yakaryılmaz

XII Table of Contents

More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector
Logics with Binary Encoding . 378

Andreas Fröhlich, Gergely Kovásznai, and Armin Biere

Invited Lecture 7

Composition with Algebra at the Background . 391
Thomas Colcombet

Session 8: Logic, Automata

Model-Checking Bounded Multi-Pushdown Systems 405
Kshitij Bansal and Stéphane Demri

Multi-weighted Automata and MSO Logic . 418
Manfred Droste and Vitaly Perevoshchikov

Overlapping Tile Automata . 431
David Janin

Author Index . 445

The Lovász Local Lemma – A Survey

Mario Szegedy�

Rutgers University, Piscataway NJ, USA

Abstract. The Local Lemma of Lovász has affected multiple sciences.
We survey its impact on mathematics, computer science and statistical
physics.

1 Introduction

Lovász in the early seventies invented his celebrated local lemma (LLL) [11] to
prove the existence of combinatorial objects that satisfy a prescribed sparse set
of constraints. His beautiful proof was inherently non-constructive. Nearly two
decades later J. Beck [5] presented a constructive proof, which was however seen
as technical. In 2008 Robin A. Moser [23], and in 2009 Moser and Gábor Tardos
[24] turned the LLL research around by giving a constructive proof with a sim-
ple Resample process (algorithm) at its heart. Although the process (or similar
ones) had been under the radar screen of other researchers [25][29], finding its
connection to the LLL was a milestone. We survey past and recent research
related to the LLL, raise some questions, and take a look at the plethora of sub-
jects it has impacted from mathematics through computer science to statistical
physics.

2 Versions of the Lovász Local Lemma

The variable version (or setting) of the Lovász Local Lemma is most elegantly
defined by Moser and Tardos [23][24]. Let {X1, . . . , Xm} be mutually indepen-
dent random variables. In the space they define we have n events, viewed as
constraints, and we denote by Ai (1 ≤ i ≤ n) the event that the ith constraint
does not hold. We denote by vbl(Ai) the set of variables on which Ai depends.
In particular, if vbl(Ai) ∩ vbl(Ai) = ∅ then Ai and Aj are independent. Let

pi:= Prob(Ai), the probability of the event we try to avoid;
G:= the dependency graph: V (G) = [n], E(G) = {(i, j) | vbl(Ai)∩vbl(Ai) �= ∅}.

The LLL gives conditions in terms of G and p = (p1, . . . , pn) for the existence
of an assignment to X1, . . . , Xm which satisfies all constraints (i.e. avoids all
Ais). In the history of the lemma many different conditions have been considered
[11][32]. The simplest: pi ≤ 1

e(d+1) (1 ≤ i ≤ n), where d is the maximum degree

of G. Let N(i) be the set of neighbors of a node i in G, together with i itself.
The most cited condition is
� The author was supported by NSF grant CCF-0832787.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 M. Szegedy

∠(G, p): There are 0 < xi < 1 such that pi ≤ xi

∏
j∈N(i)\{i}(1 − xj).

Abstract Setting. While almost all applications in mathematics and computer
science use the variable version of LLL, Lovász’s original formulation was more
abstract and more general: Let {A1, . . . , Am} be a family of events in any prob-
ability space with Prob(Ai) = pi, and let G be a dependency graph on [n], i.e. it
must hold that for each i the event Ai is independent from the σ-algebra gener-
ated by the events {Aj | j ∈ [n] \N(i)} (recall that N(i) is the set of neighbors
of i plus i itself). Throughout the paper we assume that G is undirected, but in
a section we will also discuss the case of directed dependency graphs.

Remark 1. Interesting examples show, that the sparsest graph G satisfying the
above is not necessarily unique.

As in the variable version, under some Condition(G,p) we want to arrive at the
conclusion

Prob(

n⋂
i=1

Ai) > 0.

Clearly, for every Condition(G,p) under which the abstract holds, the variable
version does too. The standard Lovász Local Lemma states that in the abstract
setting:

Theorem 1 (Standard LLL). If ∠(G, p) holds then Prob(
⋂n

i=1 Ai) > 0.

The strongest possible Condition for the abstract setting was given by Shearer
[31]. To state it, we need the notion of the independence polynomial. It is a multi-
variate polynomial, Z(G, z) =

∑
I∈Ind(G)

∏
i∈I zi. Here Ind(G) is the set of all

independent sets of G, including the empty set. Shearer’s condition is then:

∠+(G, p): For every subgraph G′ of G it holds, that Z(G′,−p|V (G′)) > 0.

Shearer has also proved, that for every G and p that do not meet his condition
there is an instance, that violates the Lovász Local Lemma’s conclusion. Kashyap
Kolipaka and the author have shown, that if we restrict ourselves to the variable
version, Shearer’s bound is not sharp for G = C4 [19].

Efficient LLL. While the LLL is an existence statement, in the case of the
variable version it makes sense to ask how efficiently a solution can be found.
Efficiency in this case means constructing an evaluation of the variables in ran-
dom polynomial time (i.e. in time random poly(m,n)) that satisfies all of the n
constraints. The first efficient algorithm was due to Beck [5], which was followed
by several improvements [1][22][9][33]. In all of these the conditions on G and p
under which Prob(

⋂n
i=1 Ai) > 0 was shown were more binding than in the non-

efficient version. Furthermore, all algorithms and their proofs contained a lot
of technicalities, and in particular, they used the original LLL as a component.
The turnaround came when R. Moser [23] and a year later, in a more general
and streamlined way, R. Moser and G. Tardos [24] invented their breakthrough
Resample algorithm:

The Lovász Local Lemma – A Survey 3

Algorithm 1. Resample

– Assign random values to X1, . . . , Xm;
– While ∃ 1 ≤ i ≤ n such that Ai is not violated by the current assignment, do:

– Choose the smallest such i and resample all variables Xj ∈ vbl(Ai);
– Return the current assignment;

Theorem 2 (Moser-Tardos). If ∠(G, p) holds for a system of constraints in
the variable setting, then Resample finds a solution in expected time

∑n
i=1

xi

1−xi
.

In particular, in the variable setting ∠(G, p) implies that the solution exists.

In a further development K. Kolipaka and the author have proven, that condition
∠ above can be replaced with the stronger ∠+ [19].

The Resample algorithm. One might consider it a historic accident that Re-

sample was analyzed after the LLL was invented. Had it happened in the other
way around, the natural question would be: Under what conditions is the success
of the Resample algorithm guaranteed for a system of constraints? It is not a
priory clear that we want to answer to this question solely in therms of G and
p, but if we do, first it would be good to know how far we may be able to go:

Problem: What is the ultimate Condition(G,p) for the variable version of LLL?

We know from [19] that the answer is not ∠+. Let us denote the ultimate con-
dition for the variable version by ∠?(G, p). Since a solution can be found only if
one exists, the most generous condition, that depends only on G and p, under
which Resample may find a solution is ∠?(G, p).

Problem: Does Resample succeed in polynomial time under the condition ∠??

Observe, that if we drop the restriction “polynomial time” from the Problem, the
answer becomes obviously “yes,” since if there is a solution at all, Resample

will eventually find it. It is a small miracle that the efficiency of Resample

is proven (in a very natural way) exactly up-to ∠+. Can we understand better
what is behind this? The issue with Resample is further complicated by the fact
that we have swept under the rug the method of selecting a violated constraint
in the resample step. Indeed, the Moser-Tardos theorem holds for any (even
adversarial) choice of a violated constraint. Experiments however indicate that
the selection process matters.

Problem: Try to find the best method of selecting a violated constraint in the
resample step of Resample.

The Lopsided LLL.We can compute Prob(
⋂n

i=1 Ai) from the inclusion-exclusion
formula as long as we know the probability of the other 2n − 1 atomic events cre-
ated by the Ais. This is barely helpful because of the large number of atoms and
the alternating signs in the formula. The LLL is valuable exactly because we can
deduce the positiveness of the above probability from simple information onG and
p. It may occur however, that simple information on the Ais other than G and p

4 M. Szegedy

can lead us to the conclusion we want to get. There is at least one well known con-
dition, that relies on other than G and p alone. This is the lopsided LLL [12]. Here
we also have a graph G, but now we can choose it arbitrarily. The price for this is
that we have to replace every pi with

qi = max
S:S⊆[n]\N(i)

Prob(Ai |
⋂
j∈S

Aj).

If we replace p with q, and the dependency graph with the new G then we can
turn conditions ∠ and ∠+ into new conditions, ∠� and ∠+

� such that the LLL
still holds for these. Again a little miracle happens: ∠� and ∠+

� also guarantee
the efficiency of Resample.

Despite of the generality of the lopsided LLL, it is not easy to apply it since
the max takes exponentially many arguments. In some cases, however, we can
find this maximum value easily. Let us restrict ourselves to the variable version.
Moser and Tardos define Ai and Aj to be lopsidependent, if there exist two
evaluations, α and β, of the variable sequence that differ in values only on the
variables in vbl(Ai)∩vbl(Aj) such that α violates Ai and β violates Aj but either
α does not violate Aj or β does not violate Ai. If instead of the usual dependency
graph we connect i and j when Ai and Aj are lopsidependent as above, we get a
graph that has the same or less edges than the original dependency graph, and
q = p.

Problem: find other simple local conditions for the constraints (in the variable
framework) that advantageously translate to some abstract lopsided condition.

The Clique LLL. Another example, when a condition becomes very natural in
the variable setting is the Clique LLL of K. Kolipaka, Y. Xu and the author [20].
It is also a constraint that involves only G and p, and is similar to ∠ in the sense
that its application requires appropriately set real numbers that range in [0, 1],
but now we have more than n numbers. For simplicity here we only describe the
condition for the variable version of LLL:

∠∠ (in the variable setting): Let j � i denoteXj ∈ vbl(Ai). For every 1 ≤ i ≤ n
and 1 ≤ j ≤ m such that j � i there is a number xi,j ∈ [0, 1] such that

– ∀ 1 ≤ j ≤ m :
∑

i: j�i xi,j < 1,
– ∀ 1 ≤ i ≤ n, ∀ 1 ≤ j ≤ m : pi ≤ xi,j

∏
j′ �=j: j′�i(1−

∑
i′ �=i: j′�i′ xi′,j′).

Other Intermediate Versions: Condition ∠∠ gives strictly better bounds,
than ∠, but worse bounds, than ∠+. Its great advantage, however, that it is
poly-concise, unlike ∠+. In [20] a hierarchy of decreasingly concise bounds are
presented between ∠ and ∠+, which includes ∠∠. A bound due to R. Bissacot,
R. Fernandez, A. Procacci and B. Scoppola [7] is also intermediate between ∠
and ∠+ To compare their condition with ∠ we restate the latter as

∠(G, p) (restated): There are 0 ≤ μi such that pi ≤ μi/
∏

j∈N(i)(1 + μj).

The Lovász Local Lemma – A Survey 5

Notice that
∏

j∈N(i)(1 + μj) =
∑

H⊆N(i)

∏
j∈H μj (the empty product is 1 by

definition). We do not increase the sum if we let it run only over the independent
sets of N(i), thus getting a more generous condition:

∠�(G, p): There are 0 ≤ μi such that pi ≤ μi/
∑

H⊆N(i); H∈Ind(N(i))

∏
j∈H μj .

It turns out that LLL holds under ∠�(G, p) as well.

Lefthanded Local Lemma. An interesting variant is the lefthanded local
lemma, due to W. Pegden [26], [27]. The lemma does not hold for all depen-
dency graphs, but for the ones it does, it gives an equal or stronger bound than
the Standard LLL. For chordal graphs the lemma is optimal, meaning, it is
equivalent to Shearer’s [27], but the expression involved resembles far more to
∠ than to ∠+, and in particular it does not use sums that run over subsets of
events, and it is easily verifiable. In other words, Pegden shows that ∠+ greatly
simplifies when G is chordal.

The Issue of Undirectedness. For Shearer’s bound (∠+) the graph G has to
be undirected. On the other hand, even for the simplest LLL as usually stated

Theorem 3. Let A1, A2, ..., An be events such that each Ai is is mutually inde-
pendent of all but d of the others. If p · e · (d+ 1) ≤ 1 then Prob(∩n

i=1Ai) > 0.

The underlying graph is directed. The following example may be enlightening.
Let H be a graph, and we randomly color its vertices with k colors. Let Ai be the
event that the ith edge, ei = (u, v), is not well colored, i.e. its two endpoints u
and v get the same color. Let Su and Sv be the set of edges that are incident to u
and v, respectively. In the Moser-Tardos framework, discussed in the beginning,
the neighbors of event Ai are {Aj | j ∈ Su ∪ Sv}. But we can do better: notice,
that Ai is mutually independent from the system of events that contain all but
the events in {Aj | j ∈ Su}. The same holds when we replace u with v. This
shows two phenomena at once. First, the set of events to be excepted, so that
Ai is independent from the rest, may not be unique, and second, that if directed
dependency graphs exist, they may be sparser than any undirected dependency
graph for the same system. We will briefly return to this example in Section 3.

Problem: Investigate if there is an analogue of Shearer’s bound for directed depen-
dency graphs. We do not anticipate to have a simple analogue. Another question
is if we can somehow exploit, when there are more than one dependency graphs.

Btw, graph G for the Standard LLL as stated in the original [11] is directed. We
do not have to restate anything, just replace “neighbors” with “out-neighbors”
in the definition and we get the directed version, which then implies Theorem
3. This is all in the abstract setting. In the Moser-Tardos variable setting the
dependency is defined via the non-emptyness of vbl(Ai) ∩ vbl(Ai) (thus G is
undirected) which is stronger than actual dependency. Our example above shows
that actual dependency can be a strictly weaker requirement.

Problem: If we replace the Moser-Tardos notion of dependency (in the variable
framework) with actual dependency (or with a notion in-between) can we say
anything about the running time of Resample?

6 M. Szegedy

The Quantum LLL. It has become customary to extend probabilistic state-
ments to the quantum setting, and LLL could not avoid this fate either, due to
Andris Ambainis, Julia Kempe and Or Sattath [4]. Actually, there is nothing
quantum about the quantum LLL, except its consequence to k-QSAT (a quan-
tum problem). It talks about vector spaces and dimensions. For a subspace A of
vector space X we define R(A) = dim(A)/ dim(X). We say that a subspace A
is mutually independent from a set S of subspaces if for any {B1, . . . , Bk} ⊆ S
of this set it holds that dim(A ∩

⋂k
i=1 Bk)/ dim(

⋂k
i=1 Bk) = R(A).

Theorem 4 (Quantum LLL). Let A1, A2, ..., An be subspaces, where R(Ai) ≥
1− p and such that each subspace is mutually R-independent of all but d of the
others. If p · e · (d+ 1) ≤ 1 then dim(∩n

i=1Ai) > 0.

3 Applications in Computer Science and Mathematics

The most typical application of LLL is to show that sparse constraint systems
(with the sparsity parameter depending on the constraint types) always have
solutions. We start our discussion with a well known statement of this type that
does not rely on LLL:

Proposition 1. If an undirected graph has maximal degree k−1 it is k colorable.

If instead of the usual greedy coloring argument we try to prove this proposi-
tion from the Lovász Local Lemma, we get a weaker statement. Let Ai be the
event that under random coloring with k colors the ith edge is illegally colored.
Then Prob(Ai) =

1
k . We then use Theorem 3 and the structure of the directed

dependency graph for the above problem, we have discussed in the paragraph
after Theorem 3. We get that to have a good coloring the following is sufficient:

p =
1

k
≤ 1

e(d+ 1)
−→ d ≤ k

e
− 1.

The resulting bound on d, although not the best possible, is in the right order of
magnitude: d = θ(k). In addition, due to [24], if d ≤ k+e

2e , then Resample (i.e.
randomly recoloring bad edges until we have none) runs in polynomial time.

For any k determine the largest possible d such that k coloring graphs with max-
imum degree d, with the Resample algorithm, takes polynomial time.

The power of LLL reveals itself in the hyper-graph two-coloring problem: Color
the vertices of a k-hyper graphs such that no hyper-edge becomes monochro-
matic. The constraints thus correspond to the hyper-edges. Under a random
coloring each hyper edge is well-colored with probability 1− 2−k+1. We say that
two hyper-edges are neighbors if they properly intersect (the edge-graph of the
hyper-graph). If now the hyper-graph is sparse, i.e. d is suitably small, then there
is always a good coloring. How small d is small enough? The LLL gives:

p =
1

2−k+1
≤ 1

e(d+ 1)

The Lovász Local Lemma – A Survey 7

and so d = θ(2k). This turns out to be the right order of magnitude. No argument
(or algorithm) other than LLL (and Resample) seems to be of help in achieving
a similarly strong conclusion.

The kSAT Problem. Every constraint Ci of a strict (or exact) kSAT instance is
a disjunction Ci = �1,i∧ . . .∧ �k,i of k literals (variables or their negations), such
that the underlying variables are all different. The latter condition is necessary to
ensure that the probability of the event Ai that the ith constraint does not hold
under a random assignment is exactly 2−k. A kSAT instance is typically written
as Φ =

∧n
i=1 Ci, i.e. as a Bool formula we want to satisfy (the alternative would

be just to list the constraints). In computer science kSAT is the “archetypical
NP-hard problem” [15], which is under constant investigation. The density of
a kSAT instance is measured by not only one, but at least by two different
parameters:

1. Let f(Φ) = maxmi=1 fi, where fi is the number of occurrences of xi (negated
or not) in Φ. For a positive integer k let f(k) denote the largest integer
such that for every kSAT formula Φ it holds that if f(Φ) ≤ f(k) then Φ is
satisfiable. The notion f(k) was introduced in [21].

2. Let l(Φ) denote the minimal integer such that all clauses of Φ intersect
at most l(Φ) other clauses of Φ. For a positive integer k let l(k) denote the
largest integer such that for every kSAT formula Φ it holds that if l(Φ) ≤ l(k)
then Φ is satisfiable. The notion l(k) was introduced in [14].

Theorem 3 immediately implies that l(k) ≥
⌊
2k

e

⌋
− 1. Since for every kSAT

formula Φ the inequality (k − 1)f(Φ) ≥ l(φ) trivially holds, we immediately get

that f(Φ) ≥
⌊
l(φ)
k

⌋
+1 ≥

⌊
2k

e·k

⌋
. It would be a good guess that the lower bounds

we get for f(k) and l(k) above are tight within a factor of 1+o(1). This is indeed
the case for l(k), but for f(k) it turns out that one can improve on the lower
bound by a factor of two. The version of LLL needed for the tighter bound is
the lopsided version [6], [15]. In [15] it is shown:

⌊
2k+1

ek

⌋
− 1 ≤ f(k) ≤

(
1 +

O(1)√
k

)
2k+1

ek
(1)

⌊
2k

e

⌋
− 1 ≤ l(k) ≤

(
1 +

O(1)√
k

)
2k

e
(2)

The upper bounds are of course constructions of sparse kSAT instances that
are not satisfiable. A sequence of constructions [28], [18], [13] have lead to the
construction in [15]. (A trivial construction that consists of all possible k-clauses
on k variables already implies l(k) < 2k − 1. To get the right order of magnitude
for f(k) is much trickier.)

Problem: Determine f(k) and l(k) more accurately.

The exact value of f(k) has the following significance: Kratochv́ıl, Savický,
and Tuza [21] have shown that the satisfiability problem for kSAT instances Φ

8 M. Szegedy

with f(Φ) = f(k) + 1 is already NP complete. Thus at f(k) a sharp complexity
“phase transition” occurs (for deterministic instances) from trivial to hard.

Non-regular Dependency Graphs. Thus far we could apply Theorem 3 be-
cause the probabilities of the bad events were the same. The problems we shall
consider in the sequel are such that the constraints greatly vary in size and the
associated probabilities are different. In these cases we need the Standard LLL
or one of its improvements.

Acyclic Edge Coloring.Given an undirected graphG, an acyclic edge coloring
is a proper edge coloring such that no cycle is 2-edge-colored. The acyclic edge
chromatic number of G is the minimum number of colors in an acyclic edge
coloring of G and is denoted by a′(G). Let a′(d) denote the maximum value
a′(G) over all graphs with max-degree at most d. Alon, McDiarmid and Reed in
[3] consider acyclic edge coloring among other things, and use the LLL to prove
that a′(d) < 64d. The bound is currently a′(d) ≤ 8.6d [20].

Non-repetitive Vertex Coloring.Given an undirected graph G, a non- repet-
itive vertex coloring is a proper coloring of the vertices of G such that there is no
simple path with an even number of vertices such that the sequence of colors in
the first half is the same as the sequence of colors in the second half. The mini-
mum number of colors in such a coloring for G, called the Thue number of G, is
denoted by π(G). Let π(d) = max{π(G) |max-degree ofG ≤ d}. Alon, Grytczuk,
Hauszczak and Riordan [2] proved that π(d) is inO(d2) and inΩ(d2/ log d). Their
proof of the upper bound uses the LLL. In a recent development, Dujmovic,
Joret, Kozik and Wood [10] have shown that π(d) ≤ (1 + o(1))d2, employing an
entropy-compression argument similar to the one in Moser and Tardos [23], [24].

Games. W. Pegden in [26] applies LLL to show that in certain games a par-
ticular player has a winning strategy. A representative example of the types of
games he considers: Player 1 and Player 2 take turns to create an infinite binary
string character by character. Player 2 wins if in the string a contiguous block of
k > 100 characters is never repeated in h(k) or less steps, where h(k) is carefully
given. The existence of a winning strategy for Player 2 is via the LLL.

Super-Polynomial Number of Events. In [17] a setting is described, where
the number of events, n, is possibly super-polynomial in the number of variables,
m. We run Resample as before, but assume access to an oracle that provides an
Ai that holds, if one exists. It turns out that “when a LLL application provides a
small amount of slack, the number of resamplings of the Moser-Tardos algorithm
is nearly linear in the number of underlying independent variables (not events!).”
The authors “obtain the first constant-factor approximation algorithm for the
Santa Claus problem by making a LLL-based proof of Feige constructive” [17].
Further improvements over some of their results are made in [19].

De-randomization. While it was a decisive step to make the LLL efficient
in a very elegant way, the most efficient algorithm is randomized. The first
de-randomization of the Moser-Tardos algorithm was given by Moser [23] and

The Lovász Local Lemma – A Survey 9

Moser and Tardos [24] themselves, but their running time bound, nθ(k2) for
kSAT, grows exponentially with k, although remains polynomial in the number of
clauses, n. An O(n2+1/ε) was presented in [8], which eliminates this dependence
on k, but questions about de-randomization still remain.

4 The Lovász Local Lemma and Statistical Mechanics

Physicists have known for some time the connection between LLL and the Re-
pulsive Lattice Gas model [35][16][34]. The connection is rather formal, and
only through expressions that are “accidentally” identical. The independence
set polynomial,

Z(G, z) =
∑

I∈Ind(G)

∏
i∈I

zi

of a graph G happens to coincide with the partition function of the system,
where we have a “container” G of gas, with the rules that:

1. Each node of G is either occupied by a (single) particle or is empty;
2. Two particles cannot occupy two neighboring nodes (hard-core repulsive

property);
3. The particles are indistinguishable;
4. They can be created or destroyed, so the particle number is not fixed.

Clearly, the possible states of such a physical system are in one-one correspon-
dence with the elements of Ind(G). The probability that the system is in any
one of the states is a mathematical expression, with Z(G,−z) in its denomina-
tor. Here vector z is a physical parameter that depends on the system (together
with the graph G). In statistical mechanics it is important to determine the
range of parameter z for which Z(G,−z) �= 0, since this is the domain, where
the above probabilities make sense. Alexander D. Scott and Alan D. Sokal [30]
in their ninety pages article describe many formulas associated with Z(G,−z).
Their “Fundamental theorem” rewrites condition ∠+ in many equivalent ways,
and in particular it proves that:

Theorem: Z(G, z) �= 0 for every |z| ≤ p (coordinate-wise) if and only if ∠+(G, p)
holds.

This, of course, doubles the motivation to study sufficient conditions for ∠+(G, p)
such as ∠∠ and ∠�. One of the goals of Scott and Sokal was to connect the efforts
of physicists and computer scientists in finding easy sufficient conditions for ∠+.

Problem: Find a more essential connection between statistical mechanics and
LLL, and in particular a physical interpretation of the Resample algorithm.

Acknowledgements. Naturally, in this short survey we could not do justice to
all LLL related research, for instance we have not mentioned the very interesting
case of infinite number of events or the applications of LLL to Ramsey theory.
The original article of Erdős and Lovász is cited 547 times according to Google
Scholar. Kashyap Kolipaka has multiply contributed to this survey.

10 M. Szegedy

References

1. Alon, N.: A parallel algorithmic version of the Local Lemma. In: FOCS, pp. 586–593
(1991)

2. Alon, N., Grytczuk, J., Haluszczak, M., Riordan, O.: Nonrepetitive colorings of
graphs. Random Struct. Algorithms 21(3-4), 336–346 (2002)

3. Alon, N., McDiarmid, C., Reed, B.A.: Acyclic coloring of graphs. Random Struct.
Algorithms 2(3), 277–288 (1991)

4. Ambainis, A., Kempe, J., Sattath, O.: A quantum lovász local lemma. In: STOC,
pp. 151–160 (2010)

5. Beck, J.: An algorithmic approach to the Lovász Local Lemma. i. Random Struct.
Algorithms 2(4), 343–366 (1991)

6. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness and satisfiability
of bounded occurrence instances of sat. Electronic Colloquium on Computational
Complexity (ECCC) 10(022) (2003)

7. Bissacot, R., Fernandez, R., Procacci, A., Scoppola, B.: Combinatorics Probability
and Computing 20(5), 709–719 (2011)

8. Chandrasekaran, K., Goyal, N., Haeupler, B.: Deterministic algorithms for the
lovász local lemma. In: Proceedings of the Twenty-First Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2010, pp. 992–1004. Society for Industrial
and Applied Mathematics, Philadelphia (2010)

9. Czumaj, A., Scheideler, C.: Coloring non-uniform hypergraphs: a new algorithmic
approach to the general Lovász Local Lemma. In: SODA, pp. 30–39 (2000)

10. Dujmovic, V., Joret, G., Wood, D.R.: Nonrepetitive colouring via entropy com-
pression. CoRR abs/1112.5524 (2011)

11. Erdös, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some
related questions. In: Hajnal, A., Rado, R., Sós, V.T. (eds.) Infinite and Finite Sets
(to Paul Erdös on his 60th birthday), pp. 609–627 (1975)

12. Erdös, P., Spencer, J.: Lopsided Lovász Local Lemma and latin transversals. Dis-
crete Applied Mathematics 30(2-3), 151–154 (1991)

13. Gebauer, H.: Disproof of the neighborhood conjecture with implications to sat.
Combinatorica 32(5), 573–587 (2012)

14. Gebauer, H., Moser, R.A., Scheder, D., Welzl, E.: The lovász local lemma and
satisfiability. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS,
vol. 5760, pp. 30–54. Springer, Heidelberg (2009)

15. Gebauer, H., Szabó, T., Tardos, G.: The local lemma is tight for sat. In: SODA,
pp. 664–674 (2011)

16. Guttmann, A.J.: Comment: Comment on the exact location of partition function
zeros, a new method for statistical mechanics. Journal of Physics A Mathematical
General 20, 511–512 (1987)

17. Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of the lovász local
lemma. In: Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, FOCS 2010, pp. 397–406. IEEE Computer Society, Washing-
ton, DC (2010), http://dx.doi.org/10.1109/FOCS.2010.45

18. Hoory, S., Szeider, S.: A note on unsatisfiable k-cnf formulas with few occurrences
per variable. SIAM J. Discrete Math. 20(2), 523–528 (2006)

19. Kolipaka, K.B.R., Szegedy, M.: Moser and Tardos meet Lovász. In: STOC,
pp. 235–244 (2011)

20. Kolipaka, K., Szegedy, M., Xu, Y.: A sharper local lemma with improved applica-
tions. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM
2012. LNCS, vol. 7408, pp. 603–614. Springer, Heidelberg (2012)

http://dx.doi.org/10.1109/FOCS.2010.45

The Lovász Local Lemma – A Survey 11

21. Kratochv́ıl, J., Savický, P., Tuza, Z.: One more occurrence of variables makes satis-
fiability jump from trivial to np-complete. SIAM J. Comput. 22(1), 203–210 (1993)

22. Molloy, M., Reed, B.A.: Further algorithmic aspects of the Local Lemma. In:
STOC, pp. 524–529 (1998)

23. Moser, R.A.: A constructive proof of the Lovász Local Lemma. In: STOC,
pp. 343–350 (2009)

24. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász Local Lemma.
J. ACM 57(2) (2010)

25. Papadimitriou, C.H.: On selecting a satisfying truth assignment (extended
abstract). In: FOCS, pp. 163–169 (1991)

26. Pegden, W.: Highly nonrepetitive sequences: Winning strategies from the local
lemma. Random Struct. Algorithms 38(1-2), 140–161 (2011)

27. Pegden, W.: The lefthanded local lemma characterizes chordal dependency graphs.
Random Struct. Algorithms 41(4), 546–556 (2012)

28. Savický, P., Sgall, J.: Dnf tautologies with a limited number of occurrences of every
variable. Theor. Comput. Sci. 238(1-2), 495–498 (2000)

29. Schöning, U.: A probabilistic algorithm for k-sat and constraint satisfaction prob-
lems. In: FOCS, pp. 410–414 (1999)

30. Scott, A.D., Sokal, A.D.: On dependency graphs and the lattice gas. Combinatorics,
Probability & Computing 15(1-2), 253–279 (2006)

31. Shearer, J.B.: On a problem of Spencer. Combinatorica 5(3), 241–245 (1985)
32. Spencer, J.: Asymptotic lower bounds for Ramsey functions. Discrete Mathemat-

ics 20(0), 69–76 (1977)
33. Srinivasan, A.: Improved algorithmic versions of the Lovász Local Lemma. In:

SODA, pp. 611–620 (2008)
34. Todo, S.: Transfer-matrix study of negative-fugacity singularity of hard-core lattice

gas. International Journal of Modern Physics C 10, 517–529 (1999)
35. Wood, D.W.: The exact location of partition function zeros, a new method for

statistical mechanics. Journal of Physics A: Mathematical and General 18(15),
L917 (1985)

An Improved Knapsack Solver

for Column Generation�

Klaus Jansen and Stefan Kraft

Department of Computer Science, Theory of Parallelism,
Christian-Albrechts-University to Kiel, 24098 Kiel, Germany

{kj,stkr}@informatik.uni-kiel.de

Abstract. The Knapsack Problem (KP) and its variants are well-known
NP-hard problems. Their study is also driven by approximation algo-
rithms for optimization problems like Bin Packing: these algorithms must
often solve KP instances as subproblems. In this paper, we introduce the
Knapsack Problem with Inversely Proportional Profits (KPIP), a gen-
eralization of KP: in it, one of several knapsack sizes has to be chosen.
At the same time, the item profits are inversely proportional to the cho-
sen knapsack size so that it is non-trivial to take the right knapsack. We
adapt Lawler’s approximation scheme for KP to faster solve KPIP. Thus,
we are able to improve the running time of an approximation scheme for
Variable-Sized Bin Packing that solves KPIP as a subproblem.

Keywords: Knapsack Problem, Unbounded Knapsack Problem, Boun-
ded Knapsack Problem, Variable-Sized Bin Packing, Column Generation.

An instance I of the Knapsack Problem (KP) consists of a list of items a1, . . . , an,
n ∈ IN, where every item has a profit p(aj) = pj ∈ IN and a size s(aj) = sj ∈ IN.
Moreover, a knapsack size c ∈ IN is given. In the 0-1 Knapsack Problem (0-1
KP), a subset V ⊂ {a1, . . . , an} has to be chosen such that the total profit of V
is maximized and the total size of the items in V is at most c. Mathematically,
the problem can be defined by max{

∑n
j=1 pjxj |

∑n
j=1 sjxj ≤ c;xj ∈ {0, 1}∀j}.

In the bounded variant (BKP), up to dj ∈ IN copies of each item aj may be
taken (i.e. xj ∈ {0, . . . , dj}), and in the unbounded variant (UKP), an arbitrary
number of copies of every item is allowed (i.e. xj ∈ IN).

In the 0-1 Knapsack Problem with Inversely Proportional Profits (0-1 KPIP),
the items have sizes sj ∈ (0, 1] and basic profits pj ∈ (0, 1]. Moreover, M knap-
sack sizes 0 < c1 < . . . < cM = 1 are given. If an item aj is packed into the
knapsack of size cl for l ∈ {1, . . . ,M}, its profit counts as pj

cl
. A smaller knapsack

size cl1 < cl2 may therefore have a solution with a larger profit than an optimal
solution for knapsack cl2 . The goal is to determine the knapsack size cl and the
corresponding item set V such that the total profit is maximized. Mathemat-
ically, the problem is defined by maxl∈{1,...,M}max{

∑n
j=1

pj

cl
xj |

∑n
j=1 sjxj ≤

� Research supported by DFG project JA612/14-1, “Entwicklung und Analyse von
effizienten polynomiellen Approximationsschemata für Scheduling- und verwandte
Optimierungsprobleme”.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 12–23, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Improved Knapsack Solver for Column Generation 13

cl;xj ∈ {0, 1}∀j}. The bounded variant (BKPIP) and the unbounded variant
(UKPIP) are defined similar to BKP and UKP.

1 Introduction

1.1 Known Results

The 0-1 knapsack problem and its variants are well-known NP-hard problems
[2]. They can be optimally solved in pseudo-polynomial time by dynamic pro-
gramming [1,9]. Furthermore, approximation schemes (Aε)ε>0 are known: for
every ε > 0, there is an algorithm Aε that finds a solution with profit Aε(I) ≥
(1 − ε)OPT (I), where OPT (I) denotes the optimal value. Such schemes with
running time polynomial in n and 1

ε are called fully polynomial time approxi-
mation schemes (FPTAS). Several FPTAS are known for 0-1 KP [5,10,11][9, pp.
166–183], BKP [13, p. 296],[9] and UKP [5,10,9].

Many algorithms of optimization problems like Bin Packing rely on fast KP
solvers for column generation: the algorithms have to solve linear programs,
but enumerating all columns of the linear programs would take too much time.
Instead, the algorithms solve KP instances whose solutions correspond to the
columns needed. Examples can be found in [3,4,8,13].

In fact, the study of KPIP is motivated by column generation for Variable-
Sized Bin Packing (VBP). In this generalization of the Bin Packing Problem,
several bin sizes C = {c1, . . . , cM}, with 0 < c1 < . . . < cM = 1, are given
together with a set I of n items of size in (0, 1]. An arbitrary number of copies of
every bin size may be taken to pack the items, and the goal is to find the smallest
total volume OPT (I, C) of bins needed. Note that VBP becomes the normal Bin
Packing Problem if there is only one bin size c1 = cM = 1. We [6] have recently
presented an improved asymptotic fully polynomial time approximation scheme
(AFPTAS), i.e. there is an algorithm for every ε > 0 that finds a packing of value
of at most (1+ε)OPT (I, C)+C(1ε), and its running time is polynomial in n and
1
ε . This new AFPTAS has a smaller constant C(1ε) and a better running time

of O
(

1
ε7 log

2 1
ε + (M + n) log 1

ε

)
than previously known algorithms [12,15]. The

algorithm has to approximately solve instances of UKPIP for column generation.
Hence, a faster UKPIP solver would directly improve the running time of the
algorithm.

There is a simple way to solve an instance of 0-1 KPIP, BKPIP or UKPIP with
n items and M knapsack sizes: take an FPTAS for the corresponding variant of
the knapsack problem that can also handle fractional profits and sizes. For each
knapsack cl, solve the KP instance with item profits

pj

cl
. Return the solution and

knapsack size of highest profit. Lawler’s algorithm [10] for UKP yields a running
time of O(M · (n+ 1

ε3)) and a space bound of O(M + n+ 1
ε2) for UKPIP.

1.2 Our Result

By adapting Lawler’s algorithm, we get an improved running time.

14 K. Jansen and S. Kraft

Theorem 1. Let ε > 0. Let cmin be the smallest knapsack size of a UKPIP
instance with M knapsacks and n item sizes. There is an FPTAS that solves
this problem in time

O

(
n logM +min

{⌊
log

1

cmin

⌋
+ 1,M

}
n+min

{⌊
log

1

cmin

⌋
+ 1,M

}
1

ε3
+

M

ε2

)
and space O(M + n+ 1

ε2).

This directly improves the column generation subroutine of the AFPTAS for
VBP [6]. Thus, the running time of the AFPTAS decreases by a factor of 1

ε (as
shown in Section 5). Another small modification removes the factor log 1

ε of M .

Theorem 2. Let ε > 0. There is an AFPTAS for Variable-Sized Bin Packing
that finds a solution for an instance with n items and M bin sizes in time
O

(
1
ε6 log

2 1
ε +M + n log 1

ε

)
.

1.3 Techniques

As mentioned above, we adapt the classical knapsack algorithms by Lawler [10]
for 0-1 KP as well as BKP and UKP to obtain FPTAS for 0-1 KPIP, BKPIP and
UKPIP.Thealgorithmsavoid redundancyand thereforehavea faster running time.

For a normal 0-1 KP instance, Lawler’s algorithm first computes an approxi-
mate solution with profit P0 ≥ 1

2OPT (I). Based on P0, a threshold T is defined
and the items are partitioned into large ones with profit pj > T and small ones
with profit pj ≤ T . Since an optimal solution cannot contain too many items of
large profit, it is sufficient to take a subset of them. The profits of these large
items are then scaled, and the well-known dynamic programming by profits is
used to compute several candidates. Small items are greedily added to each can-
didate to obtain several solutions, and the solution of highest profit is returned.
For the unbounded and the bounded case, copies of large items are created to
transform the respective problem instances into normal 0-1 KP instances.

Solving KPIP by applying Lawler’s algorithm M times, i.e. once for each
knapsack size, results in using dynamic programming M times, which is time-
consuming. For large M , our algorithm avoids redundancy by first partitioning

the knapsacks into intervals Cb := (c
(b+1)w
min , cbwmin] for b ∈ {0, . . . , � 1

w�} and a
suitable w ≤ 1. The basic item profits pj are scaled in a way suitable for all
cl ∈ Cb. Then, the dynamic programming is applied to these scaled profits to
determine the candidates for all cl ∈ Cb at once: thus, dynamic programming
is only executed once for the cl ∈ Cb, which yields an improved running time.
As above, the small items are then greedily added to the candidates. Finally,
the solutions for cl ∈ Cb are scaled by 1

cl
to get the solutions for profits

pj

cl
.

When all Cb have been considered, the solution of highest profit for all cl, l ∈
{1, . . . ,M}, is returned. However, cbwmin

c
(b+1)w
min

= 1
cwmin

is part of the running time for

each execution of the dynamic programming. Hence, w is chosen in such a way
that O(1

cwmin
· 1
w), i.e. the running time of one dynamic programming computation

times the number of computations, is minimized.

An Improved Knapsack Solver for Column Generation 15

1.4 Notation and Remarks

OPTcl = max{
∑n

j=1
pj

cl
xj |

∑n
j=1 sjxj ≤ cl;xj ∈ Dj} refers to the optimal solu-

tion for the current variant of KPIP when only knapsack size cl is considered
(with Dj = {0, 1} for 0-1 KPIP, Dj = {0, . . . , dj} for BKPIP and Dj = IN for
UKPIP). OPT = maxl∈{1,...,M} OPTcl denotes the global optimum.

We will also consider the case where the items only have their unscaled basic
profit pj , independent of the knapsack in which they are packed. OPT cl =
max{

∑n
j=1 pjxj |

∑n
j=1 sjxj ≤ cl;xj ∈ Dj} denotes the optimum for knapsack

size cl (with Dj defined as above) and OPT = maxl∈{1,...,M} OPT cl the global

optimum. (Note that OPT = OPT cM .) This notation will also be used for the
normal Knapsack Problem.

As stated above, we denote the basic profit of an item a by p(a) or p(aj) = pj
if a = aj , and we do the same for the size s(a) and s(aj) = sj . We also define
the total basic profit p(V) :=

∑
a∈V p(a) and the total size s(V) :=

∑
a∈V s(a)

of an item set V .
We assume throughout the paper that basic arithmetic operations as well as

computing the logarithm can be performed in O (1). Missing proofs can be found
in the technical report [7].

2 Observations

Two simple observations help us to handle that the profits depend on the knap-
sack size.

Lemma 3. For every variant of KPIP, it is sufficient to calculate a (1 − ε)
approximate solution with profits

pj

cl
for every knapsack cl and take as final

solution the maximum over all knapsack sizes.

Lemma 4. Let cl be a knapsack size. A (1−ε) approximate solution (x1, . . . , xn)
of one variant of KP for knapsack size cl with the basic profits pj is also a (1−ε)
solution for the corresponding variant of KPIP with profits

pj

cl
, and vice versa.

The following algorithm therefore finds an approximate solution for any variant
of KPIP:

Algorithm MaxSolution(a1, . . . , an; c1, . . . , cM)

(1) for all cl, l ∈ {1, . . . ,M} do

Find a solution (x
(cl)
1 , . . . , x

(cl)
n) with

∑n
j=1 pjx

(cl)
j ≥ (1− ε)OPT cl od

(2) for all cl, l ∈ {1, . . . ,M} do Compute Pcl :=
1
cl

∑n
j=1 pjx

(cl)
j od

(3) return maxl∈{1,...,n} Pcl .

In fact, Lemma 4 shows that Pcl ≥ (1−ε)OPTcl . Taking the maximum over all
Pcl then yields a solution with objective value of at least (1− ε)OPT according
to Lemma 3.

16 K. Jansen and S. Kraft

3 Adapting Lawler’s Algorithm

We have seen that Algorithm MaxSolution calculates the desired approximate
solution. In this section, we will see how to adapt Lawler’s algorithm for 0-1 KP
[10] to 0-1 KPIP such that we obtain the approximate solutions in Step (1) of
the algorithm, and how we avoid redundancy when calculating them. BKPIP
and UKPIP will then be considered in Section 4.

First, we will introduce a basic technique for the Knapsack Problem.

3.1 Dynamic Programming

Dynamic Programming by Profits [1,9] is a well-known technique to optimally
solve a 0-1 KP instance in pseudo-polynomial time. Let Fj(i) ∈ IR≥0 be the
minimum size necessary to obtain profit i ∈ IN with the items a1, . . . , aj, i.e.
F1(0) = 0 and F1(p1) = s1. If a profit i cannot be obtained with the first j
items, Fj(i) = ∞ is set, i.e. F1(i) = ∞ for i �= 0, p1. The Fj(i) are computed
by Fj(i) = min{Fj−1(i), Fj−1(i − pj) + sj}. Let c1 < . . . < cM be several
knapsack sizes. Obviously, OPT cl = max {i | Fn(i) ≤ cl} holds (see also [3]),
and the corresponding items can be found by backtracking in the table of the
Fj(i). Note that it is possible that i ≤ i′, but Fn(i) ≥ Fn(i

′): a larger profit i′ is
achieved with a smaller size Fn(i

′). Hence, Fn(i) is dominated by Fn(i
′).

Lemma 5. Dominated table entries Fn(i) can be discarded in O(PB), where
PB is an upper bound for the maximum profit maxl∈{1,...,M}OPT cl = OPT cM .

All OPT cl can be found by a single scan of the Fn(i) in time O(M + PB).

Theorem 6. The Fj(i) can be determined in time and space O(PB · n). Then,
the optimal values OPT cl for l ∈ {1, . . . ,M} can be found in time O

(
PB +M

)
and space O (M). Dynamic programming also works for non-integral item sizes
sj ∈ IR>0 and knapsack sizes cl ∈ IR>0.

3.2 Bounds for the Optimum: A Simple 1
2
Algorithm

We present a simple algorithm that provides a bound for OPT cl . Let S1 :=
{ai | s(ai) ≤ c1} and Sl := {ai | cl−1 < s(ai) ≤ cl} for l ∈ {2, . . . ,M}. (Note
that we still have c1 < c2 < . . . < cM .)

Obviously, S̄l :=
⋃l

l′=1 Sl′ is the set of the items that have to be considered for
a solution of knapsack size cl. Based on an idea by Lawler [10], it is not difficult
to construct the Sl: create M stacks, one for each Sl. Each item a is then added
to the right stack by binary search.

Lemma 7. The Sl can be created in time O(n logM +M) and space O(n+M).

The idea of the approximation for any cl is simple: start with the item of largest

efficiency p(a)
s(a) in S̄l and add items in S̄l to the knapsack in non-increasing order

of their efficiency until no more items can be added. Return the maximum of

An Improved Knapsack Solver for Column Generation 17

this value and of pl,max := max {pj |sj ≤ cl}. As seen in [10], this value P̄cl

satisfies 1
2OPT cl ≤ P̄cl ≤ OPT cl . For 0-1 KPIP, let Pcl :=

P̄cl

cl
, which is a 1

2

solution for cl with profits
pj

cl
according to Lemma 4. Lemma 3 shows that P0 :=

maxl∈{1,...,M} Pcl is also a 1
2 approximation of OPT with 1

2OPT ≤ P0 ≤ OPT .

Theorem 8. For 0-1 KPIP, we have P̄cl ≥ 1
2OPT cl and Pcl ≥ 1

2OPTcl . Fur-
thermore, P0 is a 1

2 approximation of the global optimum OPT .

Corollary 9. For 0-1 KPIP, we can discard knapsacks cl with Pcl =
P̄cl

cl
< 1

2P0.

The P̄cl can be constructed without having to sort the items according to their
efficiency by a median-based divide-and-conquer strategy (similar to [10]).

Lemma 10. All P̄cl and therefore P0 can be found in time O (M · n) and space
O (M + n) without sorting the items according to their efficiency.

3.3 Scaling and Dividing: The Basic FPTAS

We introduce the basic algorithm, an adaptation of Lawler’s algorithm [10],
which also uses ideas by Sahni [14] as well as Ibarra and Kim [5]. The basic idea
of Lawler’s FPTAS for the normal 0-1 KP with knapsack size c is as follows:

First, a threshold T , which will be defined later, is introduced: items ai with
p(ai) ≥ T are large, the other items small. For ease of notation, let a1, . . . , anL

be the large items. They are scaled as follows: if p(aj) = pj ∈ (2kT, 2k+1T], the
item has the scaled profit q(aj) = qj := 2k

⌊ pj

2kK

⌋
, where K will be defined later.

(We assume that q(aj) can be computed in time O(1) because k can be found in
O (1) with the logarithm.) Dynamic programming is applied to the large items
with profits qj , but unchanged sizes sj , and dominated FnL(i) are discarded.

Moreover, let φ(c − FnL(i)) be the profit obtained by greedily filling up the
remaining capacity c − FnL(i) with small items: as in Subsection 3.2 items are
added in non-increasing order of their efficiency

pj

sj
(and starting with the item

of largest efficiency) until adding the next item would result in a packing of size
more than c− FnL(i).

Lawler’s algorithm for 0-1 KP then returns maxFnL
(i)≤c K · i+φ(c−FnL(i)).

We now want to use the same principle for KPIP and combine it with the idea
from Subsection 3.1: first, the FnL(i) are determined for the scaled large items
and the dominated values discarded. For every cl, we take

P̄
(1)
l := max

FnL
(i)≤cl

K · i+ φl(cl − FnL(i)) , (1)

where φl only uses small items in S̄l = {ai | s(ai) ≤ cl} to fill the remaining
capacity cl −FnL(i). Therefore, the FnL(i) are calculated only once and used to

determine all P̄
(1)
l similar to Subsection 3.1.

Lemma 11. Let Ṽcl be the items chosen by the algorithm for knapsack cl, and let
APP cl :=

∑
a∈Ṽcl

p(a) be their profit. Let cmin = c1 be the smallest knapsack size.

18 K. Jansen and S. Kraft

By setting T := 1
2εP̄cmin and K := 1

4ε
2P̄cmin, we have APP cl ≥ (1 − ε)OPT cl

for all cl. Moreover, APP cl ≥ P̄
(1)
l ≥ (1 − ε)OPT cl holds, and the algorithm

also works for non-integral pj ∈ IR>0.

The lemma, i.e. the correctness of the algorithm, is proved similar to Lawler’s
proof [10]. Algorithm MaxSolution then yields a (1− ε) solution for 0-1 KPIP.

Let us now determine the running time. We will see how to optimize it by a
change to the calculation of the FnL(i).

Running Time for the Large-Item Computation. We have already seen
in Theorem 6 the general running time of O (n · imax) for the dynamic program,
where imax is the largest profit i of scaled items we have to consider. Therefore,
we have to bound imax.

It is not difficult to see that imax ≤ OPT
K =

cmaxOPTcmax

K

Thm. 8
≤ 2cmaxP0

K so

that time in O
(
2cmaxP0

K · nL

)
is needed for the large-item computation.

We have K = ε2

4 P̄cmin = ε2

4 cminPcmin as seen in Lemma 11 and Subsection

3.2. Since we assume without loss of generality that Pcl ≥ P0

2 (see Corollary 9),

we get imax ≤ 2cmaxP0

K = 2cmaxP0
ε2

4 cminPcmin

≤ 8cmaxP0

ε2cmin
P0
2

= 16
ε2

cmax

cmin
. Hence, the large-item

computation can be done in time O(2cmaxP0

K · nL) = O(16ε2
cmax

cmin
nL).

The ratio cmax

cmin
may be quite large. Fortunately, there is a method to control

it. Partition [cmin, cmax] into intervals Cb := (c
w·(b+1)
min , cw·bmin] for w > 0 and b ∈

{0, . . . ,
⌊
1
w

⌋
} (with the exception of the last interval, which is [cmin, c

w·� 1
w �

min]).
The value for w will be chosen later.

For every Cb, we only consider the bin sizes cl ∈ Cb. Therefore, we have an
adapted threshold Tb := 1

2εP̄cb,min
and scaling factor Kb := 1

4ε
2P̄cb,min

, where
cb,min is the smallest knapsack size in Cb. The disadvantage is obviously that we
have to partition the items into large and small ones as well as scale the large
items again if we consider another Cb. The advantage is a decreased running time:

if cb,max is the largest knapsack size in Cb, we have
cb,max

cb,min
≤ cw·b

min

c
w·(b+1)
min

= 1
cwmin

.

Should M ≤ � 1
w�+1 hold, we instead set Cb = Cl := {cl} for l ∈ {1, . . . ,M}:

we have
cb,max

cb,min
= 1 and less Cb than for partitioning into (c

w·(b+1)
min , cw·bmin].

Theorem 12. Let nb be the number of large items for knapsack interval Cb, and
let nL be an upper bound for all nb. The overall time and space bound for the
large-item computation in one knapsack interval Cb is in O(1

ε2
cb,max

cb,min
nb), which

is in O(1
ε2

1
cwmin

nL) for M > � 1
w�+ 1 and in O(1

ε2nL) otherwise.

Note that the running time for re-partitioning and re-scaling is not considered
yet, as well as the optimal choice of w.

Adding the Small Items Efficiently. Let Cb be a knapsack interval and Fnb
(i)

the values Fj(i) that consider all nb large items. For every cl and Fnb
(i) ≤ cl,

An Improved Knapsack Solver for Column Generation 19

we have to determine φl(cl − Fnb
(i)). One way to do this would be sorting all

items according to their efficiency p(a)
s(a) . It is however possible to avoid sorting:

we use median finding in a divide-and-conquer strategy similar to the idea by
Lawler [10]. Details can be found in the technical report [7]. The algorithm also
returns item sets J̃i from which the item choice for every cl − Fnb

(i) can be
reconstructed.

Theorem 13. For one cl ∈ Cb, the values φl(cl − Fnb
(i)) can be determined in

time O(1
ε2

cb,max

cb,min
+n · log(1ε

cb,max

cb,min
)) and in space O(1

ε2
cb,max

cb,min
+n). The item set Ji

for the profit φl(cl−Fnb
(i)) can be constructed from the sets J̃i′ by Ji =

⋃i
i′=1 J̃i′ .

Putting the Basic FPTAS Together. The algorithm works as follows.

(1) if M > � 1
w� + 1 then Partition the cl into intervals Cb = (c

w·(b+1)
min , cw·bmin]

else create Cb = Cl = {cl} for l ∈ {1, . . . ,M}
(2) Create the sets Sl for l ∈ {1, . . . ,M}.
(3) Calculate the P̄cl and P0, discard bin sizes with

P̄cl

cl
< 1

2P0.
(4) Let P1 := 0 and I := ∅.
(5) For every Cb do
(5.1) Determine cb,min, cb,max and compute Tb and Kb.
(5.2) Partition the items in every Sl for cl ≤ cb,max into large and small items

and scale the large ones.
(5.3) Calculate the Fj(i). Discard dominated Fnb

(i).
(5.4) For every cl ∈ Cb do

(5.4.1) Find P̄
(1)
l = maxFnb

(i)≤cl Kb · i+ φl(cl − Fnb
(i))

(5.4.2) if 1
cl
P̄

(1)
l > P1 then P1 := 1

cl
P̄

(1)
l

Determine the item set It for solution P̄
(1)
l and set I := It end if

end do
end do

(6) Return P1 and I.

The algorithm is an implementation of Algorithm MaxSolution. Its correctness
follows from Lemma 3, Lemma 4 and Lemma 11. Note that we keep the structure
of the Sl to faster get the small items in S̄l for the calculations in Step (5.4.1).

Except for the space O (M) needed in Steps (2) and (3) and to store all cl, all
operations are dominated in time and space by Sub-steps (5.3) and (5.4.1) over
all Cb. Fix one Cb. Calculating and saving the Fj(i) in Step (5.3) needs time and
space O(1

ε2
cb,max

cb,min
nb) according to Theorem 12, and discarding the dominated

Fnb
(i) is done in time O(1

ε2
cb,max

cb,min
) as seen in Lemma 5 because the largest profit

ib,max that has to be considered is in O(1
ε2

cb,max

cb,min
). In Step (5.4.1), the Fnb

(i) ≤ cl

have to be found as well as the φl(cl−Fnb
(i)) determined, which can be done in

O(|Cb| · (1
ε2

cb,max

cb,min
+n · log(1ε

cb,max

cb,min
))) (see Thm. 13). The space needed is bounded

by O(1
ε2

cb,max

cb,min
+n). Finally, the for-loop (5) is executed min{� 1

w �+1,M} times.

The space of Steps (5.4) and (5) is bounded by the space of one iteration
because the new values except of P1 and I can be discarded after one iteration.

20 K. Jansen and S. Kraft

Theorem 14. The basic FPTAS determines a solution of 0-1 KPIP in time
O(min{(� 1

w�+ 1)
cb0,max

cb0,min
,M} · 1

ε2nL +M · (1
ε2

cb0,max

cb0,min
+ n · log(1ε

cb0,max

cb0,min
))) and in

space O(1
ε2

cb0,max

cb0,min
nL +M + n), where nL ≤ n is an upper bound for the number

of the large items and
cb0,max

cb0,min
:= maxCb

cb,max

cb,min
. Note that

cb0,max

cb0,min
≤ 1

cwmin
for

M > � 1
w �+ 1 and

cb0,max

cb0,min
= 1 otherwise.

3.4 Improved FPTAS: Reducing Running Time and Storage Space

Lawler [10] presented two techniques to decrease the running time and the stor-
age space of the basic FPTAS algorithm.

Let a be a large item with p(a) ∈ (2kTb, 2
k+1Tb] and therefore with scaled

profit qj ∈ Ĩk,b := (� 2
ε�2k,

⌊
4
ε

⌋
2k]. An estimate similar to [10] shows that only

a subset of nL,j ∈ O(2
−k

ε
cb,max

cb,min
) items for every scaled profit qj ∈ Ĩk,b has to be

kept. Moreover, an optimal solution using n′ ≤ nL,j items of profit qj obviously
uses the n′ items of smallest size. Thus, the large items needed can be found by
grouping them according to qj and taking the nL,j items of smallest size by a
median-based divide-and-conquer strategy.

Lemma 15. For one Cb, there are at most O(2ε · log(1ε
cb,max

cb,min
)) different scaled

profits qj. We need at most nb ≤ nL ∈ O(1
ε2

cb,max

cb,min
) items of large profit, which

can be found in time and space O(n+ 2
ε log(

1
ε
cb,max

cb,min
)).

From now on, let Fj(i) represent the smallest size to get profit i with items
of profits in q1, . . . , qj . Hence, sort the nL,j smallest items of profit qj in non-
increasing order of their size. One Fj(i) is then determined by checking similar
to Subsection 3.1 with the Fj−1(i

′) which number of the first n′ ≤ nL,j smallest
items with profit qj yields the smallest Fj(i).

Lemma 16. Redefine the Fj(i) as above. By modifying the large-item compu-
tation, we need space O(1

ε3
cb,max

cb,min
) to find and store the Fj(i) of one Cb. The

running time is in O(1
ε2

cb,max

cb,min
nL) ⊆ O(1

ε4 (
cb,max

cb,min
)2).

Lemma 15 and 16 can now be applied to the basic FPTAS for 0-1 KPIP. Let
cb0,max

cb0,min
= maxCb

cb,max

cb,min
. The running time of Step (5.3) decreases to O(min{(

⌊
1
w

⌋
+

1)(
cb0,max

cb0,min
)2,M} 1

ε4) and only needs space in O(1
ε3

cb0,max

cb0,min
). The additional run-

ning time and space of Step (5.2) for reducing the large items and sorting them
according to their size is dominated by Step (5.3) and the original operations in
Step (5.2).

Lemma 17. The improved FPTAS needs time in O(min{(� 1
w�+1)(

cb0,max

cb0,min
)2,M}·

1
ε4 +M · (1

ε2
cb0,max

cb0,min
+ n · log 1

ε

cb0,max

cb0,min
)) and space in O(1

ε3
cb0,max

cb0,min
+M + n).

w has still to be chosen so that the running time is minimized. Note that
cb0,max

cb0,min
≤

1
cwmin

and that cmin ≤ cwmin ≤ 1 so that w ≤ 1, i.e.
⌊
1
w

⌋
+ 1 ≤ 2

w . For simplicity,

we minimize the expression min{(� 1
w� + 1)(

cb0,max

cb0,min
)2,M} 1

ε4 by minimizing the

An Improved Knapsack Solver for Column Generation 21

dominating expression 2
w

1
ε4c2wmin

. A short calculation shows that the minimum is

attained at w = − 1
2 ln cmin

. Since c2wmin|w=− 1
2 ln cmin

= e
− 2 ln cmin

2 ln cmin = e−1 ∈ O (1), we

get the following result:

Theorem 18. 0-1 KPIP can be solved in time O(min{M, �2 log 1
cmin

�+ 1} 1
ε4 +

M ·
(

1
ε2 + n log 1

ε

)
) and in space O

(
1
ε3 +M + n

)
.

4 Variants of KPIP

4.1 The Unbounded KPIP

Here, it is allowed to take an arbitrary number of copies of each item aj .
The computation of P0 in Step (3) becomes much easier. For P0, take for every

cl the most efficient item al,eff and the most precious item al,max in S̄l = ∪l
l′=1Sl′ .

Then P̄cl = max{� cl
s(al,eff)

� ·p(al,eff), p(al,max)}, and since the items can be found

in O (n+M) by a single scan of the Sl, the time to determine P0 is in O (n+M).
A similar result holds for the computation of the φl(cl − Fnb

(i)) in Step (5.4.1):
as there are O(1

ε2
cb,max

cb,min
) scaled profits i to be considered, the running time is in

O(min{
⌊
1
w

⌋
+ 1,M}n+ M

ε2
cb,max

cb,min
) over all iterations of Step (5).

For Step (5.2), note that only one large item ãj of smallest size is necessary
for every scaled profit qj . These large items are taken similar to Lemma 15. The
problem is then transformed into a normal 0-1 KPIP problem by creating item

copies ã
(r)
j with profit 2rp(ãj) and size 2rs(ãj) for r ∈ {1, . . . , �log2(nL,j)�},

where nL,j is the maximal possible number of items with scaled profit qj in a
solution. Obviously, these copies are sufficient to represent any choice of large
items in a feasible solution of UKPIP. We have the following lemma:

Lemma 19. Let qj be one fixed scaled profit. In UKPIP, it is sufficient to have
only one item ã

(r)
j1

of smallest size with q(ã
(r)
j1

) = qj.

The item copies are therefore reduced again. Hence, the running time of Step
(5.3) decreases: since only one item for every scaled profit has to be considered,
the time to determine one Fj(i) is in O(1) and the time for the large-item com-
putation therefore equal to the space bound in Lemma 16. Step (5.3) therefore
has a running time in O(min{(� 1

w �+1)
cb0,max

cb0,min
,M} · 1

ε3) over all iterations, which

dominates the running time of the algorithm together with Steps (2) and (5.4.1).
By changing the large-item computation, less space for UKPIP is needed:

only the current entries (Fj(i), j
′) are saved and the old entries (Fj−1(i), j

′′)
discarded, where the second value j′ is the index of the scaled profit qj′ with
which the entry Fj(i) was formed. This is enough to find a solution by back-
tracking with the final values (Fnb

(i), j) so that the space bound decreases to
O(1

ε2
cb0,max

cb0,min
). (The ideas above are again taken from [10].)

Lemma 20. UKPIP can be solved in time O(n logM + min{
⌊
1
w

⌋
+ 1,M}n +

min{(� 1
w�+ 1)

cb0,max

cb0,min
,M} 1

ε3 + M
ε2

cb0,max

cb0,min
) and space O(M + n+ 1

ε2
cb0,max

cb0,min
).

Similar to Theorem 18, we get w = − 1
ln cmin

and Theorem 1.

22 K. Jansen and S. Kraft

4.2 The Bounded KPIP

Contrary to UKPIP, only a bounded number dj ∈ IN of copies of every item aj ,
j ∈ {1, . . . , n}, can be taken. Thus, at most mL,j := min {dj , nL,j} item copies
may be used for any large item with scaled profit qj . Similar to UKPIP, the
Bounded KPIP (BKPIP) is solved with a slightly modified 0-1 KPIP FPTAS.

The median-based divide-and-conquer strategy (which is used to get the P̄cl

and P0 in Step (3), the subset of large items in Step (5.2) and the small-item
values φl(cl − Fnb

(i)) in Step (5.4.1)) can be easily adapted to still run in time
linear to the number of item sizes that are considered. As proposed in [13, p.
296], item copies of the large items can be taken similar to UKPIP. However,
the additional modifications for UKPIP are not possible, i.e. the running time
and space bound are identical to the improved 0-1 KPIP algorithm.

Theorem 21. BKPIP can be solved in the same time and space as 0-1 KPIP,
i.e. the bounds of Lemma 17 and Theorem 18 also apply to BKPIP.

5 A Faster AFPTAS for Variable-Sized Bin Packing

Let ε > 0 and take a Variable-Sized Bin Packing (VBP) instance with n items I
and M bin sizes C. As mentioned in the introduction, a part of our AFPTAS [6]
for VBP solves UKPIP instances. More precisely, it has to find solutions of value
at least (1− ε̄

6)OPT for ε̄ = Θ(ε). The instances have d1 ∈ O
(
1
ε log

1
ε

)
item sizes,

a minimal knapsack size cmin ≥ ε and M := min
{
M, � 2

ε ln
1
ε�+ 1

}
∈ O

(
1
ε log

1
ε

)
different knapsack sizes cl. (If M > � 2

ε ln
1
ε�+1, the AFPTAS partitions the bin

sizes c ≥ ε in C into intervals ((1+ ε)−(l+1), (1+ ε)−l] and keeps only the largest
size in every interval. This yields the number of bin sizes M and only slightly
increases the approximation ratio.)

Let KP (d1, ε̄,M, cmin) be the running time for an FPTAS to solve one of
these UKPIP instances. Then, the AFPTAS needs time in O(KP (d1, ε̄,M, cmin)
1
ε3 log

1
ε + log(1ε) (M + n)). So far, we used Algorithm MaxSolution with the

FPTAS by Lawler [10] for UKP s.t. we had KP (d1, ε̄,M, cmin) ∈ O
(

1
ε4 log

1
ε

)
because of the values of d1, ε̄,M and cmin. Now, our algorithm yields a running
time KP (d1, ε̄,M, cmin) ∈ O

(
1
ε3 log

1
ε

)
(see Thm. 1). Hence, the overall running

time of our AFPTAS for VBP decreases by Θ(1ε). Moreover, we assumed time
in O(log(1ε)M) for the reduction of the number of bin sizes to � 2

ε ln
1
ε�+1. This

can be done in O
(
M + 1

ε log
1
ε

)
with the technique for the large-item reduction

of Lemma 15. We get Thm. 2.

6 Concluding Remarks

We have introduced the 0-1 Knapsack Problem with Inversely Proportional Prof-
its (0-1 KPIP) and its variants, the Unbounded KPIP and the Bounded KPIP.
The study of KPIP was motivated by our AFPTAS for Variable-Sized Bin Pack-
ing [6] where UKPIP instances have to be solved for column generation.

An Improved Knapsack Solver for Column Generation 23

We have adapted Lawler’s algorithm [10] to KPIP and improved the running
time by using for large M the values Fj(i) determined by dynamic programming

for all knapsack sizes in Cb = (c
(b+1)w
b,min , cbwb,min]. The running time was minimized

by finding a good balance between the number of intervals Cb and the ratio
cb,max

cb,min
≤ 1

cwmin
. This has yielded a faster algorithm for UKPIP and therefore

decreased the running time of our AFPTAS for VBP by a factor of 1
ε .

Better algorithms for UKPIP may be possible. For instance, it may be suf-
ficient to consider only a subset of the M knapsacks. Moreover, Kellerer and
Pferschy’s algorithm for 0-1 KP [9, pp. 166–183] may be adapted to UKPIP.

References

1. Bellman, R.E.: Dynamic Programming. Princeton University Press (1957)
2. Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company (1979)
3. Gilmore, P., Gomory, R.: A linear programming approach to the cutting stock

problem. Operations Research 9(6), 849–859 (1961)
4. Gilmore, P., Gomory, R.: A linear programming approach to the cutting stock

problem—Part II. Operations Research 11(6), 863–888 (1963)
5. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum

of subset problems. Journal of the ACM 22, 463–468 (1975)
6. Jansen, K., Kraft, S.: An improved approximation scheme for variable-sized bin

packing. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS,
vol. 7464, pp. 529–541. Springer, Heidelberg (2012)

7. Jansen, K., Kraft, S.: An improved approximation scheme for variable-sized
bin packing. Tech. Rep. 1301, Christian-Albrechts-Universität zu Kiel (2013)
ISSN 2192-6247

8. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: 23rd Annual Symposium on Foundations
of Computer Science (FOCS 1982), November 3-5, pp. 312–320. IEEE Computer
Society, Chicago (1982)

9. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
10. Lawler, E.L.: Fast approximation algorithms for knapsack problems. Mathematics

of Operations Research 4(4), 339–356 (1979)
11. Magazine, M.J., Oguz, O.: A fully polynomial approximation algorithm for the

0-1 knapsack problem. European Journal of Operational Research 8(3), 270–273
(1981)

12. Murgolo, F.D.: An efficient approximation scheme for variable-sized bin packing.
SIAM Journal on Computing 16(1), 149–161 (1987)

13. Plotkin, S.A., Shmoys, D.B., Tardos, E.: Fast approximation algorithms for frac-
tional packing and covering problems. Mathematics of Operations Research 20(2),
257–301 (1995)

14. Sahni, S.: Approximate algorithms for the 0/1 knapsack problem. Journal of the
ACM 22, 115–124 (1975)

15. Shachnai, H., Yehezkely, O.: Fast asymptotic FPTAS for packing fragmentable
items with costs. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639,
pp. 482–493. Springer, Heidelberg (2007)

QuickHeapsort: Modifications

and Improved Analysis

Volker Diekert and Armin Weiß

FMI, Universität Stuttgart, Universitätsstr. 38, D-70569 Stuttgart, Germany
{diekert,weiss}@fmi.uni-stuttgart.de

Abstract. We present a new analysis for QuickHeapsort. This enables
us to consider samples of non-constant size for the pivot selection and
leads to better theoretical bounds for the algorithm. Furthermore, we in-
troduce some modifications of QuickHeapsort, both in-place and using n
extra bits. We show that on every input the expected number of compar-
isons is n lg n−0.03n+o(n) (in-place) respectively n lg n−0.997n+o(n)
(always lg n = log2 n). Both estimates improve the previously known best
results. (It is conjectured [17] that the in-place algorithm Bottom-Up-
Heapsort uses at most n lg n + 0.4n on average and for Weak-Heapsort
which uses n extra bits the average number of comparisons is at most
n lg n − 0.42n [8].) Moreover, our non-in-place variant can even com-
pete with index based Heapsort variants (e.g. Rank-Heapsort [15]) and
Relaxed-Weak-Heapsort (n lg n − 0.9n + o(n) comparisons in the worst
case) for which no O(n)-bound on the number of extra bits is known.

Keywords: in-place sorting, heapsort, quicksort, analysis of algorithms.

1 Introduction

QuickHeapsort is a combination of Quicksort and Heapsort which was first de-
scribed by Cantone and Cincotti [2]. It is based on Katajainen’s idea for Ultimate
Heapsort [11]. Its advantage is that it is very fast in the average case and hence
not only of theoretical interest. In fact, it uses always less comparisons than
Quicksort, but we did not aim to beat Quicksort by running time. In our im-
plementations Quicksort is only slightly faster when the sample size for pivot
selection is close to

√
n.

Both, QuickHeapsort and Ultimate Heapsort have in common that first the
array is partitioned into two parts. Then, in one part a heap is constructed
and the elements are successively extracted. Finally, the remaining elements
are treated recursively. As a consequence the sift-down needs one comparison
per level, whereas standard Heapsort needs two comparisons per level, which
is one of the reasons why standard Heapsort cannot compete with Quicksort
in practice (of course there are also other reasons like cache behavior). The
difference between QuickHeapsort and Ultimate Heapsort lies in the choice of
the pivot element for partitioning the array. While for Ultimate Heapsort the
pivot is chosen as median of the whole array, for QuickHeapsort the pivot is
selected as median of some smaller sample (e.g. as median of 3 elements).

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 24–35, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

QuickHeapsort: Modifications and Improved Analysis 25

In [2] the basic version with fixed index as pivot is analyzed and – together
with the median of three version – implemented and compared with other Quick-
and Heapsort variants. In [8] Edelkamp and Stiegeler compare these variants with
so called Weak-Heapsort [7] and some modifications of it (e.g. Relaxed-Weak-
Heapsort).Weak-Heapsort beats basic QuickHeapsort with respect to the number
of comparisons, however it needs O(n) bits extra-space, hence is not in place.

We split the analysis of QuickHeapsort into three parts: the partitioning
phases, the heap construction and the heap extraction. This allows us to get bet-
ter bounds for the running time, especially when choosing the pivot as median of
a larger sample. It also simplifies the analysis. We introduce some modifications
of QuickHeapsort, too. The first one is in-place and needs n lgn− 0.03n+ o(n)
comparisons on average what is to the best of our knowledge better than any
other known in-place Heapsort variant. We also examine a modification using
O(n) bits extra-space, which applies the ideas of MDR-Heapsort to QuickHeap-
sort. With this method we can bound the average number of comparisons to
n lgn− 0.997n+ o(n). Actually, a complicated, iterated in-place MergeInsertion
uses only n lgn− 1.3n+O(lg n) comparisons, [14]. Unfortunately, for practical
purposes this algorithm is not competitive.

Our contributions are as follows: 1. We give a simplified analysis which gives
better bounds than previously known. 2. Our approach yields the first precise
analysis of QuickHeapsort when the pivot element is taken from a larger sample.
3. We give a simple in-place modification of QuickHeapsort which saves 0.75n
comparisons. 4. We give a modification of QuickHeapsort using n extra bits
only and a bound of the expected number of comparisons. Our bound is better
than all bounds previously known for the worst case of Heapsort variants using
O(n lg n) extra bits (for these algorithms, average and worst case are almost the
same). 5. We have implemented QuickHeapsort, and our experiments confirm
the theoretical predictions.

Due to lack of space most proofs are omitted. They can be found on ArXiv [6].

2 QuickHeapsort

A two-layer-min-heap is an array A[1..n] of n elements together with a partition
(G,R) of {1, . . . , n} into green and red elements such that for all g ∈ G, r ∈ R we
have A[g] ≤ A[r]. Furthermore, the green elements g satisfy the heap condition
A[g] ≤ min{A[2g], A[2g + 1]}, and if g is red, then 2g and 2g + 1 are red, too.
(The conditions are required to hold, only if the indices involved are in the
range of 1 to n.) The green elements are called “green” because the they can
be extracted out of the heap without caution, whereas the “red” elements are
blocked. Two-layer-max-heaps are defined analogously. We can think of a two-
layer-heap as rooted binary tree such that each node is either green or red. Green
nodes satisfy the standard heap-condition, children of red nodes are red. Two-
layer-heaps were defined in [11]. In [2] for the same concept a different language
is used (they describe the algorithm in terms of External Heapsort). Now we are
ready to describe the QuickHeapsort algorithm as it has been proposed in [2].

26 V. Diekert and A. Weiß

We intend to sort an array A[1..n]. First, we choose a pivot p. This is the
randomized part of the algorithm. Then, just as in Quicksort, we rearrange the
array according to p. That means, using n − 1 comparisons the partitioning
function returns an index k and rearranges the array A so that A[i] ≥ A[k] for
i < k, A[k] = p, and A[k] ≥ A[j] for k < j. After the partitioning a two-layer-
heap is built out of the elements of the smaller part of the array, either the part
left of the pivot or right of the pivot. We call this smaller part heap-area and
the larger part work-area. More precisely, if k − 1 < n − k, then {1, . . . , k − 1}
is the heap-area and {k + 1, . . . , n} is the work-area. If k − 1 ≥ n − k, then
{1, . . . , k − 1} is the work-area and {k + 1, . . . , n} is the heap-area. Note that
we know the final position of the pivot element without any further comparison.
Therefore, we do not count it to the heap-area nor to the work-area. If the
heap-area the part of the array left of the pivot, a two-layer-max-heap is built,
otherwise a two-layer-min-heap is built.

At the beginning the heap-area is an ordinary heap, hence it is a two-layer-
heap consisting of green elements, only. Now the heap extraction phase starts.
We assume that we are in the case of a max-heap. The other case is symmetric.
Let m denote the size of the heap-area. The m elements of the heap-area are
moved to the work-area. The extraction of one element works as follows: the
root of the heap is placed at the current position of the work-area (which at
the beginning is its last position). Then, starting from the root the resulting
“hole” is trickled down: always the larger child is moved up into the vacant
position and then this child is treated recursively. This stops as soon as a leaf
is reached. We call this the SpecialLeaf procedure according to [2]. Now, the
element which before was at the current position in the work-area is placed as
red element in this hole at the leaf in the heap-area. Finally the current position
in the work-area is moved by one and the next element can be extracted.

The procedure sorts correctly, because after the partitioning it is guaranteed
that all red elements are smaller than all green elements. Furthermore there is
enough space in the work-area to place all green elements of the heap, since the
heap is always the smaller part of the array. After extracting all green elements
the pivot element it placed at its final position and the remaining elements are
sorted recursively.

Actually we can improve the procedure, thereby saving 3n/4 comparisons by
a simple trick. Before the heap extraction phase starts in the heap-area with m
elements, we perform at most m+2

4 additional comparisons in order to arrange
all pairs of leaves which share a parent such that the left child is not smaller
than its right sibling. Now, in every call of SpecialLeaf, we can save exactly one
comparison, since we do not need to compare two leaves. For a max-heap we only
need to move up the left child and put the right one at the place of the former
left one. Summing up over all heaps during an execution of standard QuickHeap-
sort, we invest n+2t

4 comparisons in order to save n comparisons, where t is the
number of recursive calls. The expected number of t is in O(lg n). Hence, we
can expect to save 3n

4 +O(lg n) comparisons. We call this version the improved
variant of QuickHeapsort.

QuickHeapsort: Modifications and Improved Analysis 27

3 Analysis of QuickHeapsort

This section contains the main contribution of the paper. We analyze the num-
ber of comparisons. By n we denote the number of elements of an array to be
sorted. We use standard O-notation where O(g), o(g), and ω(g) denote classes
of functions. In our analysis we do not assume any random distribution of the
input, i.e. it is valid for every permutation of the input array. Randomization is
used however for pivot selection. With Pr [e] we denote the probability of some
event e. The expected value of a random variable T is denoted by E[T].

The number of assignments is bounded by some small constant times the
number of comparisons. Let T (n) denote the number of comparisons during
QuickHeapsort on a fixed array of n elements. We are going to split the analysis
of QuickHeapsort into three parts:

1. Partitioning with an expected number of comparisons E[Tpart(n)] (average
case).

2. Heap construction with at most Tcon(n) comparisons (worst case).
3. Heap extraction (sorting phase) with at most Text(n) comparisons (worst

case).

We analyze the three parts separately and put them together at the end. The
partitioning is the only randomized part of our algorithm. The expected num-
ber of comparisons depends on the selection method for the pivot. For the ex-
pected number of comparisons by QuickHeapsort on the input array we obtain
E[T (n)] ≤ Tcon(n) + Text(n) + E[Tpart(n)].

Theorem 1. The expected number E[T (n)] of comparisons by basic resp. im-
proved QuickHeapsort with pivot as median of p randomly selected elements on
a fixed input array of size n is E[T (n)] ≤ n lgn+ cn+ o(n) with c as follows:

p c basic c improved
1 +2.72 +1.97
3 +1.92 +1.17

f(n) +0.72 −0.03

Here, f ∈ ω(1) ∩ o(n) with 1 ≤ f(n) ≤ n, e.g., f(n) =
√
n and we assume that

we choose the median of f(n) randomly selected elements in time O(f(n)).

As we see, the selection method for the pivot is very important. However, one
should notice that the bound for fixed size samples for pivot selection are not
tight. The proof of these results are postponed to Sect. 3.3. Note that it is
enough to prove the results without the improvement, since the difference is
always 0.75n.

3.1 Heap Construction

The standard heap construction [9] needs at most 2m comparisons to construct
a heap of size m in the worst case and approximately 1.88m in the average case.

28 V. Diekert and A. Weiß

For the mathematical analysis better theoretical bounds can be used. The best
result we are aware of is due to Chen et al. in [5]. According to this result we
have Tcon(m) ≤ 1.625m+ o(m). Earlier results are of similar magnitude, by [4]
it has been known that Tcon(m) ≤ 1.632m+ o(m) and by [10] it has been known
Tcon(m) ≤ 1.625m + o(m), but Gonnet and Munro used O(m) extra bits to
get this result, whereas the new result of Chen et al. is in-place (by using only
O(lgm) extra bits).

During the execution of QuickHeapsort over n elements, every element is part
of a heap only once. Hence, the sizes of all heaps during the entire procedure
sum up to n. With the result of [5] the total number of comparisons performed
in the construction of all heaps satisfies:

Proposition 1. Tcon(n) ≤ 1.625n+ o(n).

3.2 Heap Extraction

For a real number r ∈ R with r > 0 we define {r} by the following condition

r = 2k + {r} with k ∈ Z and 0 ≤ {r} < 2k .

This means that 2k is largest power of 2 which is less than or equal to r and
{r} is the difference to that power, i.e. {r} = r − 2
lg r�. In this section we first
analyze the extraction phase of one two-layer-heap of size m. After that, we
bound the number of comparisons Text(n) performed in the worst case during
all heap extraction phases of one execution of QuickHeapsort on an array of size
n. Thm. 2 is our central result about heap extraction.

Theorem 2. Text(n) ≤ n · (�lg n� − 3) + 2{n}+O(lg2 n) .

The proof of Thm. 2 covers almost the rest of Section 3.2. In the following,
the height height(v) of an element v in a heap H is the maximal distance from
that node to a leaf below it. The height of H is the height of its root. The
level level(v) of v is its distance from the root. In this section we want to count
the comparisons during SpecialLeaf procedures, only. Recall that a SpecialLeaf
procedure is a cyclic shift on a path from the root down to some leaf, and the
number comparisons is exactly the length of this path. Hence, an upper bound
for one SpecialLeaf execution is the height of the heap. But there is a better
analysis.

Let us consider a heap with m green elements which are all extracted by
SpecialLeaf procedures. The picture is as follows: First, we color the green root
red. Next, we perform a cyclic shift defined by the SpecialLeaf procedure. In
particular, the leaf is now red. Moreover, red positions remain red, but there is
exactly one position v which has changed its color from green to red. This posi-
tion v is on the path defined by the SpecialLeaf procedure. Hence, the number of
comparisons needed to color the position v red is bounded by height(v)+level(v).

QuickHeapsort: Modifications and Improved Analysis 29

The total number of comparisons E(m) to extract all m elements of a Heap
H is therefore bounded by E(m) ≤

∑
v∈H(height(v) + level(v)).

We have height(H) − 1 ≤ height(v) + level(v) ≤ height(H) = �lgm� for all
v ∈ H . We now count the number of elements v where height(v) + level(v) =
�lgm� and the number of elements v where height(v) + level(v) = �lgm� − 1.
Since there are exactly {m}+1 nodes of level �lgm�, there are at most 2 {m}+
1+ lgm elements v with height(v)+ level(v) = �lgm�. All other elements satisfy
height(v) + level(v) = �lgm� − 1. We obtain

E(m) ≤ 2 · {m} · �lgm�+ (m− 2 · {m})(�lgm� − 1) +O(lgm)

= m · (�lgm� − 1) + 2 · {m}+O(lgm) . (1)

Note that this is an estimate of the worst case, however this analysis also shows
that the best case only differs by O(lgm)-terms from the worst case.

Now, we want to estimate the number of comparisons in the worst case per-
formed during all heap extraction phases together. During QuickHeapsort over
n elements we create a sequence H1, . . . , Ht of heaps of green elements which are
extracted using the SpecialLeaf procedure. Let mi = |Hi| be the size of the i-th
Heap. The sequence satisfies 2mi ≤ n−

∑
j<i mj , because heaps are constructed

and extracted on the smaller part of the array.
Here comes a subtle observation: Assume that m1 +m2 ≤ n/2. If we replace

the first two heaps with one heap H ′ of size |H |′ = m1 +m2, then the analysis
using the sequenceH ′, H3, . . . , Ht cannot lead to a better bound. Continuing this
way, we may assume that we have t ∈ O(lg n) and therefore

∑
1≤i≤t O(lgmi) ⊆

O(lg2 n). With (1) we obtain the bound

Text(n) ≤
t∑

i=1

E(mi) =

(
t∑

i=1

mi · �lgmi�+ 2 {mi}
)

− n+O(lg2 n) . (2)

We will replace the mi by other positive real numbers. Let 1 ≤ ν ∈ R. We say
a sequence x1, x2, . . . , xt with xi ∈ R>0 is valid w.r.t. ν, if for all 1 ≤ i ≤ t we
have 2xi ≤ ν −

∑
j<i

xj .

As just mentioned the initial sequence m1,m2 . . . ,mt is valid w.r.t. n. Let
us define a continuous function F : R>0 → R by F (x) = x · �lg x� + 2 {x} .
It is piecewise differentiable with right derivative �lg x� + 2. Furthermore, for
x ≥ y > δ ≥ 0 we have the inequalities:

F (x) + F (y) ≤ F (x+ δ) + F (y − δ) and F (x) + F (y) ≤ F (x+ y).

Applying them we can prove the following (for details see [6]):

1. Let 1 ≤ ν ∈ R. For all sequences x1, x2, . . . , xt with xi ∈ R>0, which are

valid w.r.t. ν, we have
t∑

i=1

F (xi) ≤

lg ν�∑
i=1

F
(

ν
2i

)
.

2.
∑
lgn�

i=1 F
(
n
2i

)
≤ F (n)− 2n+O(lg n).

30 V. Diekert and A. Weiß

Combining these facts with (2) yields the proof of Thm. 2. Furthermore, we
obtain the following corollary of Thm. 2 by using [16, Thm. 1].

Corollary 1. We have Text(n) ≤ n lgn− 2.9139n+O(lg2 n).

3.3 Partitioning

In the following Tpivot(n) denotes the number of comparisons required to choose
the pivot element in the worst case; and, as before, E[Tpart(n)] denotes the
expected number of comparisons performed during partitioning. We have the
following recurrence:

E[Tpart(n)] ≤ n− 1 + Tpivot(n) +
n∑

k=1

Pr [pivot = k] · E[Tpart(max {k − 1, n− k})] .

If we choose the pivot at random, we obtain by standard methods:

E[Tpart(n)] ≤ n− 1 +
1

n
·

n∑
k=1

E[Tpart(max {k − 1, n− k})] ≤ 4n .

Similarly, if we choose the pivot with the median of three method, then we
obtain:

E[Tpart(n)] ≤ 3.2n+O(lg n) .

The proof of the first part of Thm. 1 follows from the above eqations, Thm. 2,
and 1. Using a growing number of elements (as n grows) as sample for the pivot
selection, we can do better. The second part of Thm. 1 follows from Thm. 2, 1,
and Thm. 3.

Theorem 3. Let f ∈ ω(1) ∩ o(n) with 1 ≤ f(n) ≤ n. When choosing the pivot
as median of f(n) randomly selected elements in time O(f(n)) (e.g. with the
algorithm of [1]), the expected number of comparisons used in all recursive calls
of partitioning is in 2n+ o(n).

Thm. 3 is close to a well-known result in [12, Thm. 5] on Quickselect. Actually,
in our approach it becomes a corollary.

Corollary 2 ([12]). Let f ∈ ω(1)∩o(n) with 1 ≤ f(n) ≤ n. When implementing
Quickselect with the median of f(n) randomly selected elements as pivot, the
expected number of comparisons is 2n+ o(n).

The following lemma is the key step in the proof of Thm. 3.

Lemma 1. Let 0 < δ < 1
2 . If we choose the pivot as median of 2c+ 1 elements

such that 2c + 1 ≤ n
2 , then we have Pr

[
pivot ≤ n

2 − δn
]
< (2c + 1)αc where

α = 4
(
1
4 − δ2

)
< 1.

In [12] it is also proved that choosing the pivot as median of O(
√
n) elements is

optimal for Quicksort as well as for Quickselect. This suggests that we choose
the same value in QuickHeapsort; what is backed by our experiments.

QuickHeapsort: Modifications and Improved Analysis 31

4 Modifications of QuickHeapsort Using Extra-Space

In this section we want to describe some modification of QuickHeapsort using
n bits of extra storage. We introduce two bit-arrays. In one of them (the Com-
pareArray) – which is actually two bits per element – we store the comparisons
already done (we need two bits, because there are three possible values – right,
left, unknown – we have to store). In the other one (the RedGreenArray) we
store which element is red and which is green.

Since the heaps have maximum size n/2, the RedGreenArray only requires
n/2 bits. The CompareArray is only needed for the inner nodes of the heaps, i.e.
length n/4 is sufficient. Totally this sums up to n extra bits.

For the heap construction we do not use the algorithms described in Sect. 3.1.
With the CompareArray we can do better by using the algorithm of McDiarmid
and Reed [13]. The heap construction works similarly to Bottom-Up-Heapsort,
i.e. the array is traversed backward calling for all inner positions i the Reheap
procedure on i. The Reheap procedure takes the subheap with root i and restores
the heap condition, if it is violated at the position i. First, the Reheap procedure
determines a special leaf using the SpecialLeaf procedure as described in Sect. 2,
but without moving the elements. Then, the final position of the former root
is determined going upward from the special leaf (bottom-up-phase). In the
end, the elements above this final position are moved up towards the root by
one position. That means that all but one element which are compared during
the bottom-up-phase, stay in their places. Since in the SpecialLeaf procedure
these elements have been compared with their siblings, these comparisons can
be stored in the CompareArray and can be used later.

With another improvement concerning the construction of heaps with seven
elements as in [3] the benefits of this array can be exploited even more.

The RedGreenArray is used during the sorting phase, only. Its functionality
is straightforward: Every time a red element is inserted into the heap, the cor-
responding bit is set to red. The SpecialLeaf procedure can stop as soon as it
reaches an element without green children. Whenever a red and a green element
have to be compared, the comparison can be skipped.

Theorem 4. Let f ∈ ω(1) ∩ o(n) with 1 ≤ f(n) ≤ n, e.g., f(n) =
√
n, and

let E[T (n)] be the expected number of comparisons by QuickHeapsort using the
CompareArray with the improvement of [3] and the RedGreenArray on a fixed
input array of size n. Choosing the pivot as median of f(n) randomly selected
elements in time O(f(n)), we have

E[T (n)] ≤ n lg n− 0.997n+ o(n) .

Proof. We can analyze the savings by the two arrays separately, because the
CompareArray only affects comparisons between two green elements, while the
RedGreenArray only affects comparisons involving at least one red element.

First, we consider the heap construction using the CompareArray. With this
array we obtain the same worst case bound as for the standard heap construction
method. However, the CompareArray has the advantage that at the end of the

32 V. Diekert and A. Weiß

heap construction many comparisons may be stored in the array and can be
reused for the extraction phase. More precisely: For every comparison except
the first one made when going upward from the special leaf, one comparison is
stored in the CompareArray. This is because for every additional comparison
one element on the path defined by SpecialLeaf stays at its place. Since every
pair of siblings has to be compared at one point during the heap construction
or extraction, all these stored comparisons can be reused. Hence, we only have
to count the comparisons in the SpecialLeaf procedure during the construction
plus n

2 for the first comparison when going upward. Thus, we get an amortized
bound for the comparisons during heap construction of 3n

2 .
In [3] the notion of Fine-Heaps is introduced. A Fine Heap is a heap with the

additional CompareArray such that for every node the larger child is stored in the
array. Such a Fine-Heap of sizem can be constructed using the abovemethod with
2m comparisons. In [3] Carlsson, Chen and Mattsson showed that a Fine-Heap of
size m actually can be constructed with only 23

12m+O(lg2 m) comparisons. That

means we have to invest 23
12m+O(lg2 m) for the heap construction and at the end

there are m
2 comparisons stored in the array. All these comparisons stored in the

array are used later. Summing up over all heaps during an execution of Quick-
Heapsort, we can save another 1

12n comparisons additionally to the comparisons
saved by the CompareArray with the result of [3]. Hence, for the amortized cost
of the heap construction T amort

con (i.e. the number of comparisons needed to build
the heap minus the number of comparisons stored in the CompareArray after the
construction which all can be reused later) we have obtained:

Proposition 2. T amort
con (n) ≤ 17

12n+ o(n).

This bound is slightly better than the average case for the heap construction
with the algorithm of [13] which is 1.52n.

Now, we want to count the number of comparisons we save using the Red-
GreenArray. We distinguish the two cases that two red elements are compared
and that a red and a green element are compared. Every position in the heap
has to turn red at one point. At that time, all nodes below this position are
already red. Hence, for that position we save as many comparisons as it is above
the bottom level. Summing over all levels of a heap of size m the saving results
in ≈ m

4 · 1 + m
8 · 2 + · · · = m ·

∑
i≥1

i2−i−1 = m. This estimate is exact up to

O(lgm)-terms. Since the expected number of heaps is O(lg n), we obtain for the
overall saving the value TsaveRR(n) = n+O(lg2 n).

Another place where we save comparisons with the RedGreenArray is when
a red element is compared with a green element. It occurs at least one time –
when the node looses its last green child – for every inner node that we compare
a red child with a green child. Hence, we save at least as many comparisons as
there are inner nodes with two children, i.e. at least m

2 −1. Since every element –
except the expected O(lg n) pivot elements – is part of a heap exactly once, we
save at least TsaveRG(n) ≥ n

2 +O(lg n) comparisons when comparing green with
red elements. In the average case the saving might be even slightly higher, since
comparisons can also be saved when a node does not loose its last green child.

QuickHeapsort: Modifications and Improved Analysis 33

Summing up all our savings and using the median of f(n) ∈ ω(1) ∩ o(n) as
pivot we obtain the proof of Thm. 4:

E[T (n)] ≤ T amort
con (n) + Text(n) + E[Tpart(n)]− TsaveRR(n)− TsaveRG(n)

≤ 17

12
n+ n · (�lg n� − 3) + 2 {n}+ 2n− 3n

2
+ o(n)

≤ n lgn− 0.997n+ o(n) .

5 Experimental Results and Conclusion

In Fig. 1 we present the number of comparisons of the different versions of Quick-
Heapsort we considered in this paper, i.e. the basic version, the improved variant
of Sect. 2, and the version using bit-arrays (however, without the modification
by [3]) for different values of n. We compare them with Quicksort, Ultimate
Heapsort and MDR-Heapsort. All algorithms are implemented with median of√
n elements as pivot (for Quicksort we show additionally the data with median

of 3). For the heap construction we implemented the normal algorithm due to
Floyd [9] as well as the algorithm using the extra bit-array (which is the same
as in MDR-Heapsort).

As our theoretical estimates predict, QuickHeapsort with bit-arrays beats all
other variants when implemented with median of

√
n for pivot selection. In

Table 1 on page 33 we present actual running times of the different algorithms
for n = 1000000 with two different comparison functions. One of them is the
normal integer comparison, the other one first applies four times the logarithm
to both operands before comparing them. Like in [8], this simulates expensive
comparisons.

Table 1. Running times for QuickHeapsort and other algorithms tested on 106, average
over 10 runs elements

Sorting algorithm integer data time [s] log(4)-test-function time [s]
Basic QuickHeapsort, median of 3 0.1154 4.21

Basic QuickHeapsort, median of
√
n 0.1171 4.109

Improved QHS, median of 3 0.1073 4.049

Improved QHS, median of
√
n 0.1118 3.911

QHS with bit-arrays, median of 3 0.1581 3.756

QHS with bit-arrays, median of
√
n 0.164 3.7

Quicksort with median of 3 0.1181 3.946

Quicksort with median of
√
n 0.1316 3.648

Ultimate Heapsort 0.135 5.109

MDR-Heapsort 0.2596 4.129

34 V. Diekert and A. Weiß

103 104 105 106
−2

0

2

4

6

n

(#
co
m
p
a
ri
so
n
s
−

n
lg
n
)/
n

Quicksort with Median of 3

Quicksort with Median of
√
n

Basic QuickHeapsort

Improved QuickHeapsort

QuickHeapsort with bit-arrays

MDR-Heapsort

Ultimate-Heapsort

Lower Bound

Fig. 1. Average number (over 100 runs) of comparisons of QuickHeapsort implemented
with median of

√
n compared with other algorithms

More experimental results with other pivot selection strategies can be found
on ArXiv [6]. They also confirm that a sample size of

√
n is optimal for pivot

selection with respect to the number of comparisons and also that the o(n)-terms
in Thm. 1 and Thm. 3 are not too big.

In this paper we have shown that with known techniques QuickHeapsort can
be implemented with expected number of comparisons less than n lgn− 0.03n+
o(n) and extra storage O(1). On the other hand, using n extra bits we can
improve this to n lgn − 0.997n + o(n), i.e. we showed that QuickHeapsort can
compete with the most advanced Heapsort variants. These theoretical estimates
were also confirmed by our experiments. We also considered different pivot se-
lection schemes. For any constant size sample for pivot selection, QuickHeapsort
beats Quicksort for large n, since Quicksort has a expected running time of
≈ Cn lg n with C > 1. However, when choosing the pivot as median of

√
n ele-

ments (i.e. with the optimal strategy) then our experiments show that Quicksort
needs less comparisons than QuickHeapsort. However, using bit-arrays Quick-
Heapsort is the winner, again. In order to make the last statement rigorous,
better theoretical bounds for Quicksort with sampling

√
n elements are needed.

For future work it would also be of interest to prove the optimality of
√
n el-

ements for pivot selection in QuickHeapsort, to estimate the lower order terms
of the average running time of QuickHeapsort and also to find an exact average
case analysis for the saving by the bit-arrays.

QuickHeapsort: Modifications and Improved Analysis 35

Acknowledgements. We thank Martin Dietzfelbinger, Stefan Edelkamp, Jyrki
Katajainen and the anonimous referees for their helpful comments. We thank
Simon Paridon for implementing the algorithms for our experiments.

References

1. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

2. Cantone, D., Cincotti, G.: Quickheapsort, an efficient mix of classical sorting algo-
rithms. Theor. Comput. Sci. 285(1), 25–42 (2002)

3. Carlsson, S., Chen, J., Mattsson, C.: Heaps with Bits. In: Du, D.-Z., Zhang, X.-S.
(eds.) ISAAC 1994. LNCS, vol. 834, pp. 288–296. Springer, Heidelberg (1994)

4. Chen, J.: A Framework for Constructing Heap-like structures in-place. In: Ng,
K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993.
LNCS, vol. 762, pp. 118–127. Springer, Heidelberg (1993)

5. Chen, J., Edelkamp, S., Elmasry, A., Katajainen, J.: In-place Heap Construction
with Optimized Comparisons, Moves, and Cache Misses. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 259–270. Springer,
Heidelberg (2012)

6. Diekert, V., Weiss, A.: Quickheapsort: Modifications and improved analysis. ArXiv
e-prints, abs/1209.4214 (2012)

7. Dutton, R.D.: Weak-heap sort. BIT 33(3), 372–381 (1993)
8. Edelkamp, S., Stiegeler, P.: Implementing HEAPSORT with n log n − 0.9n and

QUICKSORT with n log n+0.2n comparisons. ACM Journal of Experimental Al-
gorithmics 7, 5 (2002)

9. Floyd, R.W.: Algorithm 245: Treesort. Commun. ACM 7(12), 701 (1964)
10. Gonnet, G.H., Munro, J.I.: Heaps on Heaps. SIAM J. Comput. 15(4), 964–971

(1986)
11. Katajainen, J.: The Ultimate Heapsort. In: Lin, X. (ed.) CATS. Australian Com-

puter Science Communications, vol. 20, pp. 87–96. Springer-Verlag Singapore Pte.
Ltd. (1998)

12. Mart́ınez, C., Roura, S.: Optimal Sampling Strategies in Quicksort and Quickselect.
SIAM J. Comput. 31(3), 683–705 (2001)

13. McDiarmid, C., Reed, B.A.: Building Heaps Fast. J. Algorithms 10(3), 352–365
(1989)

14. Reinhardt, K.: Sorting in-place with a worst case complexity of n log n − 1.3n +
o(log n) comparisons and εn log n + o(1) transports. In: Ibaraki, T., Inagaki, Y.,
Iwama, K., Nishizeki, T., Yamashita, M. (eds.) ISAAC 1992. LNCS, vol. 650, pp.
489–498. Springer, Heidelberg (1992)

15. Wang, X.-D., Wu, Y.-J.: An Improved HEAPSORT Algorithm with n log n −
0.788928n Comparisons in the Worst Case. Journal of Computer Science and Tech-
nology 22, 898–903 (2007), doi:10.1007/s11390-007-9106-7

16. Wegener, I.: The Worst Case Complexity of McDiarmid and Reed’s Variant of
Bottom-Up-Heap Sort is Less Than n log n + 1.1n. In: Jantzen, M., Choffrut, C.
(eds.) STACS 1991. LNCS, vol. 480, pp. 137–147. Springer, Heidelberg (1991)

17. Wegener, I.: BOTTOM-UP-HEAPSORT, a new variant of HEAPSORT, beating,
on an average, QUICKSORT (if n is not very small). Theoretical Computer Sci-
ence 118(1), 81–98 (1993)

Alphabetic Minimax Trees in Linear Time

Pawe�l Gawrychowski1,2,�

1 Institute of Computer Science, University of Wroc�law, Poland
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

gawry@cs.uni.wroc.pl

Abstract. We develop a linear time algorithm for the following prob-
lem: given an ordered sequence of n real weights, construct a binary tree
on n leaves labelled with those weights when read from left to right mini-
mizing the maximum value of wi plus the depth of the corresponding leaf.
This improves the previously known O(n log n) time solutions [3,10,12].
Assuming that the integer and the fractional part of each weight is given
separately, our solution works in the linear decision tree model, i.e., we
use only the basic arithmetical operations on the input numbers. To de-
cide (efficiently) which operations to perform we need the word RAM
model, though. We provide a simplified O(nd) version of the algorithm,
where d is the number of distinct integer parts, which does not require the
full power of the word RAM model in order to decide which operations to
perform. Nevertheless, it improves the previously known O(nd log log n)
solution of Gagie [5].

Keywords: minimax tree, Yeung’s inequality, linear decision tree.

1 Introduction

Trees are one of the most common and useful objects appearing in such areas as
graph theory, data structures, and information theory, to name just a few. There
exists an enormous amount of research devoted to investigating various aspects
of constructing optimal trees, for different definitions of optimality. In particular,
a lot of effort has been put into solving variants of the following problem: given
a collection of n weights construct a (binary, ternary, or t-ary) tree with those
weights stored in the leaves so that the sum (or the maximum) of all root-to-leaf
paths weights is minimized, where the path weight depends only on its length
and the leaf weight.

For the case when the path weight is simply the product of those two quan-
tities, a well-known O(n logn) time solution was given by Huffman [11]. If we
additionally require that the collection of weights is ordered, and they must
be assigned in the natural left-to-right order in the tree, we call the problem
alphabetic. A significantly more complex O(n log n) time solution for the alpha-
betic version of the problem was developed by Hu and Tucker [10]. In some

� Supported by MNiSW grant number N N206 492638, 2010–2012 and START schol-
arship from FNP.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 36–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Alphabetic Minimax Trees in Linear Time 37

special cases better running time is known to be possible. For example, the
non-alphabetic variant can be solved in linear time assuming the weights are
sorted [14], and the alphabetic case admits an O(n

√
logn) time algorithm in the

word RAM model [13].
For the case when we minimize the maximum path weight, and the path weight

is the sum of its length and the leaf weight, Golumbic [7] modified the Huffman’s
algorithm to find the optimum tree, which has been then used [4,8] to restrict
the fan-in and fan-out of a circuit without increasing its size too much, and
recently a linear time solution in the word RAM model of computation for the
problem was given [6]. Also the alphabetic version of this case was considered
before. Hu, Kleitman and Tamaki [9] observed that a certain modification of
the Hu-Tucker algorithm can be used to compute the ordered minimax cost in
O(n logn) time (actually, their algorithm minimizes wi2

li , but this is easily seen
to be equivalent). Then Kirkpatrick and Klawe [12] considered the strict t-ary
version and applied their O(n logn) time solution to study the effects of fan-out
constraint in planar logical circuits (for a more recent application of a similar
formulation, see [1]). Later Coppersmith, Klawe and Pippinger [3] solved the
non-strict version with the same complexity. If the weights are integer, a linear
time solution is known [12], and if the number of different rounded down weights
is bounded by d, running time of O(nd log logn) is possible [5]. This suggest the
following natural question: is there a linear time solution for the alphabetic case?
Or maybe when we minimize the maximum instead of the sum this additional
requirement makes the problem more complex in terms of the best running time
possible? In this paper we show that this is not the case.

A (very) high level idea of our algorithm is the same as in the non-alphabetic
case, but we need to apply a significantly more complicated reasoning in order
to deal with the alphabetic constraint. Nevertheless, we are able to achieve a lin-
ear running time in the linear decision tree model. More precisely, we assume
that we are given the integer and the fractional part of each wi separately, and
are allowed to branch based on the sign of a linear function of all �wi� and
frac(wi). To actually implement the algorithm in linear time, i.e., to quickly de-
cide which expression should be computed next, we need the word RAM model
of computation, though.

We start with a simple linear time algorithm for the case when all wi are
integer. While this is not a new result, the characterization of ordered binary
search trees we use there can be applied to develop an O(nd) time algorithm
for the more general case when wi are arbitrary real numbers, with d being the
cardinality of {�wi� : i = 1, 2, . . . , n}. Then we use the power of the word RAM
model more extensively in order to improve the complexity to linear. Of course
the interest in achieving such complexity is mostly theoretical, as in practice one
would be fine with either suboptimal constructions, or slower algorithm. Never-
theless, we believe that determining the exact complexity of the problem is an
intriguing question on its own. Furthermore, our computationally effective use of
the Yeung’s inequality, while maybe heavily tailored to this specific application,
seems to be a direction unexplored before.

38 P. Gawrychowski

2 Preliminaries

Given a sequence of n real weights w1, w2, . . . , wn, we want to construct an
ordered binary search tree on n leaves labelled with those weights. The labeling
is ordered: the leftmost leaf should correspond to w1, the second leftmost to w2,
and so on. Our goal is to minimize the maximum value of wi plus depth of the i-th
leaf. This quantity will be called the ordered minimax cost M(w1, w2, . . . , wn).

We assume that for each wi we are given its integer part �wi� and frac-
tional frac(wi) part separately. The only operation concerning those parts will
be branching based on the sign of a linear function of all �wi� and frac(wi). To
quickly decide which expression should be computed next we assume the usual
word RAM model with words of size Ω(log n), though.

We are going to work with ordered binary trees, meaning that each node can
have a left and a right child. The shape of such tree is a sequence of n integers,
the depths of its leaves when read from left to right. We need an efficient way
of checking whether a given shape corresponds to at least one tree. When the
tree is not meant to be ordered, this is possible thanks to the well-known Kraft’s
inequality. In the ordered case the inequality is no longer useful, though. We use
a different and not so well-known characterization instead.

Theorem 1 (Yeung’s inequality [15]). 〈l1, l2, . . . , ln〉 is a shape of some or-
dered binary tree if and only if

fl1 ◦ fl2 ◦ . . . ◦ fln−1 ◦ fln(0) ≤ 1 (1)

where fa(x) =
x2a�+1

2a .

The intuition behind the above formula is that to construct a tree of a given
shape, one can always use a simple greedy method: add leaves from left to right,
putting each of them as deeply as it is possible. A n-tuple 〈l1, l2, . . . , ln〉 for which
the above lemma holds will be called a valid shape.

Having the above lemma, we can formulate the problem of computing the
ordered minimax costM(w1, w2, . . . , wn) as follows: minimize maxiwi+li among
all l1, l2, . . . , ln such that 〈l1, l2, . . . , ln〉 is a valid shape. From now on we will
work with such formulation of the problem. Furthermore, we will assume that
the weights are normalized so that miniwi = 0 and maxiwi ≤ n, as we can
simply replace weights smaller than maxi wi − n with maxi wi − n and then
subtract the same value from all of them at once.

Finally, notice that having the minimax cost allows us to actually output the
whole tree in linear time. For this we first compute the depth of each node,
and add them one-by-one starting from the leftmost. We maintain the rightmost
path in the current (partial) tree on a stack, where maximal sequences of unary
nodes are compressed into single objects. Then adding new leaf requires just
(amortized) constant time.

Alphabetic Minimax Trees in Linear Time 39

3 Linear Time Algorithm for Integer Weights

We begin with a rather simple linear time algorithm for the case when all wi

are integers. While it neither improves or simplifies already known solutions, it
does help to understand the general real weight case algorithm.

We begin with modifying the formulation of Lemma 1 to make it more con-
venient to use. First of all, we do not want to use fractions. Define ga(x) =⌈

x
2a

⌉
2a + 2a and observe that any tree can be rebuilt so that the depths of all

leaves do not exceed n and the depth of any leaf does not increase. Hence we
can assume that li ≤ n and rewrite (1) as

gn−l1 ◦ gn−l2 ◦ . . . ◦ gn−ln−1 ◦ gn−ln(0) ≤ 2n (2)

Lemma 1. If all wi are integers, M(w1, w2, . . . , wn) can be calculated in linear
time.

Proof. First observe that the i-th leaf must be created at depth not exceeding
li = M(w1, w2, . . . , wn)− wi and define:

A = gw1 ◦ gw2 ◦ . . . ◦ gwn(0)

Then if c is the smallest possible integer such that A ≤ 2c (or, in other words, c
is A rounded up to the nearest power of 2), the ordered minimax cost is c.

To calculate A, first recall that all wi are between 0 and n. We start the
computation with x = 0 and successively apply gw1 , gw2 , . . . , gwn to the current
x. Note that because of the bounds on all wi and the structure of all gwi , the
current x will be always an integer between 0 and n2n. We store it as a sorted
list L of bits set to 1, so for example if the current value is 1001102, we store
[1, 2, 5]. Computing gwi(x) =

⌈
x
2a

⌉
2a + 2a consists of two steps:

1. removing the prefix of L consisting of elements less than a,
2. adding 2a twice or once to the current value of x, depending on whether we

removed at least one element in the previous step or not, respectively.

For a detailed description of the procedure see Integer-ordered-minimax. To
bound its running time by O(n) we assign one credit to each element of L. ��

4 O(nd) Time Algorithm for Real Weights

To deal with the case of non-integer weights we follow the approach of [12],
who reduced the general case to a sequence of integers instances. We restate
their method in a different form, which will be more convenient for our pur-
poses.

40 P. Gawrychowski

Algorithm 1. Integer-ordered-minimax(w1, w2, . . . , wn)

1: L ← []
2: for i ← 1 to n do
3: t ← 1
4: while L = [a, . . .] and a < wi do
5: remove a from L
6: t ← 2
7: end while
8: for k ← 1 to t do
9: b ← wi

10: while L = [b, . . .] do
11: remove b from L
12: b ← b+ 1
13: end while
14: prepend wi to L
15: end for
16: end for
17: c ← last element of L
18: return c+ [|L| > 1]

Lemma 2. �M(w1, w2, . . . , wn)� = M(�w1� , �w2� , . . . , �wn�).

Proof. Left side minimizes �maxi wi + li� among all valid shapes, and right side
minimizes maxi �wi�+ li. This immediately gives the claim. ��

Lemma 3. M(w1, w2, . . . , wn) ≤ X if and only if M(w′1, w
′
2, . . . , w

′
n) ≤ �X�

where w′i is �wi� if frac(wi) ≤ frac(X) and �wi�+ 1 otherwise.

Proof. M(w1, w2, . . . , wn) ≤ X if and only if for some valid shape 〈l1, l2, . . . , ln〉
inequality wi + li ≤ X holds for all i. As li is integer, there are two cases:

1. frac(wi) ≤ frac(X), the inequality is equivalent to �wi�+ li ≤ �X�,
2. frac(wi) > frac(X), the inequality is equivalent to �wi�+ 1 + li ≤ �X�.

Hence the whole claim follows. ��

This gives a simple O(n log n) time algorithm, as observed in [12]. First use
Lemma 1 and Lemma 2 to compute �M(w1, w2, . . . , wn)�. Then note that the
fractional part of the answer must be equal to some frac(wi). We can compute
it using a binary search inside which we use Lemma 1 and Lemma 3 (again) to
check if a chosen frac(wi) is bigger than frac(M(w1, w2, . . . , wn)).

To accelerate the O(n logn) time procedure, we must somehow reuse
the information found by the successive steps of binary search. We split the
whole {1, 2, . . . , n} into three parts L, C, and R. L contains indices i such that we

Alphabetic Minimax Trees in Linear Time 41

b1b2b3b4

00100101010110011101 1100111010x= ︸ ︷︷ ︸

log 2n�

︸ ︷︷ ︸

log 2n�

︸ ︷︷ ︸

log 2n�

2

Fig. 1. Succinct representation of x is [0102, 0101010102 , 1001110112 , 1001110102]

already know that frac(wi) ≤ frac(M(w1, w2, . . . , wn)), R contains i for which
we already know that frac(wi) > frac(M(w1, w2, . . . , wn)), and C consists of all
the remaining indices. At each step we select the median of {frac(wi) : i ∈ C}
and compare it with frac(M(w1, w2, . . . , wn)) using Lemma 1 and Lemma 3.
Depending on the outcome of this comparison we move half of the elements of
C into L or R. Observe that at each step of the computation values of wi with
i ∈ L ∪ R are permanently round up or down. This suggest that if a whole
segment i, i+ 1, i+ 2, . . . , j belongs to L ∪ R already, we could try to somehow
preprocess the function gw′

i
◦ gw′

i+1
◦ gw′

i+2
◦ . . . ◦ gw′

j
, where each w′i is either

�wi� or �wi�+1, and apply the whole compositions at once instead of processing
their elements one-by-one. Hence we need to take a closer look at how such
composition ga1,a2,...,ak

(x) = ga1 ◦ ga2 ◦ . . . ◦ gak
(x) looks like.

Lemma 4. If a1, a2, . . . , ak are nonnegative integers, ga1,a2,...,ak
(x) =

�x+r
2a �2a + c, where a = maxi ai and r, c are of the form

∑k
i=1 αi2

ai with
αi ∈ {0, 1, 2} for all i.

Now if there are just d different values of �wi�, any gw′
i
◦gw′

i+1
◦ . . .◦gw′

j
depends

on just O(d logn) bits. More specifically, assume those rounded down values are
b1 < b2 < . . . < bd. For any position k which does not belong to any block of the
form {di, di + 1, . . . , di + �log 2n�}, the k-th bit of all gw′

1
◦ gw′

2
◦ . . . ◦ gw′

i
(0) is

set to zero. Hence while the numbers x, r, c we operate on might be as large as
n2n, there are just d blocks of O(log n) consecutive indices which (potentially)
correspond to nonzero bits. Thus x, r and c can be actually described in just d
machine words, each word storing the bits from a single block, see Figure 1. It
is easy to see that given such succinct representation of x we can compute any
gw′

i
(x) in O(d) arithmetical operations on whole words. More generally, given

the succinct representations of x, r, and c we can compute �x+r
2a �2a + c in O(d)

time as well.
The last building block for the O(nd) time algorithm is a method for comput-

ing the description of ga1,a2,...,ak
◦ gb1,b2,...,b� given the descriptions of ga1,a2,...,ak

and gb1,b2,...,b� . In other words, we need to describe how a composition of two
functions h1(x) =

⌈
x+r1
2a

⌉
2a + c1 and h2(x) =

⌈
x+r2
2b

⌉
2b + c2 looks like.

Lemma 5. Let h1(x) =
⌈
x+r1
2a

⌉
2a + c1 and h2(x) =

⌈
x+r2
2b

⌉
2b + c2. If

b ≤ a then h2(h1(x)) =
⌈
x+r1
2a

⌉
2a +

⌈
c1+r2
2b

⌉
2b + c2, otherwise h2(h1(x)) =⌈

x+r1+� c1+r2
2a �2a

2b

⌉
2b + c2.

42 P. Gawrychowski

Using the above lemma, given the succinct representations of r1, c1, r2, c2 we
can compute the representation of h1◦h2 in O(d) time. The procedure which cal-
culates M(w1, w2, . . . , wn) using such operations will be called Slow-ordered-

minimax.

Theorem 2. Slow-ordered-minimax computes M(w1, w2, . . . , wn) in O(nd)
time, where d is the number of different values of �wi�.

Proof. We start with computing M(�w1� , �w2� , . . . , �wn�). Initially we do not
know whether wi should be rounded up or down for any i. During the execution
of Slow-ordered-minimax we repeatedly choose the median of all frac(wi)
with i belonging to the set of indices which we do not know how to round yet.
By a well-known result the selection can be performed in O(|C|) time [2]. Then
we temporarily round all wi with frac(wi) not exceeding this median down, and
all remaining wi up, and compute the ordered minimax cost for the rounded
weights w′i. If M(w′1, w

′
2, . . . , w

′
n) = M(�w1� , �w2� , . . . , �wn�) we permanently

move all indices corresponding to the rounded down wi from C to L. Otherwise
we move all indices corresponding to the rounded up wi from C to R. In either
case, corresponding wi stay rounded till the end of the procedure.

To evaluateM(w′1, w
′
2, . . . , w

′
n) efficiently, for each maximal segment of indices

i, i+ 1, . . . , j belonging L∪R we store a succinct description of the correspond-
ing function gw′

i,w
′
i+1,...,w

′
j
. More precisely, we store an ordered collection S of

maximal segments [�1, r1] , [�2, r2] , . . . , [�s, rs] consisting of indices from L ∪ R,
and for each such segment we keep the corresponding function. Then computing
M(w′1, w

′
2, . . . , w

′
n) reduces to evaluating a composition of |S| + |C| functions

given by their succinct descriptions. Note that because the segments in S are
maximal, |S| ≤ |C| + 1 , so this evaluation can be performed in O(d|C|) time.
After computing M(w′1, w

′
2, . . . , w

′
n) we shrink C by moving half of its elements

to either L or R. As a consequence we must update S by first adding singleton
segments [i, i] for all i removed from C and then gluing together all pairs of neigh-
boring segments of the form [�i, ri], [�i+1, ri+1] with ri+1 = �i+1. Both operations
require just O(|C|) operations on succinct descriptions of either integers or func-
tions, and hence the total running time is O(d(n+ n

2 +
n
4 +

n
8 + . . .)) = O(nd). ��

While we do use arithmetical operations on whole words, the only computation
directly concerning the input numbers is comparing two fractional parts, com-
puting the sorted list of all bi, and finding the position of each �wi� on this list.
As the allowed time per element is O(d), we can afford to simply traverse the
list for each i to either update it or find the corresponding position.

5 Linear Time Algorithm for Real Weights

At a very high level, the idea behind the fully linear time algorithm is the
same as in Slow-ordered-minimax(w1, w2, . . . , wn). We iteratively select the
median fractional part of all wi with i ∈ C and after computing gw′

1
◦ gw′

2
◦

. . . ◦ gw′
n
(0) remove half of C. The bottleneck is clearly the evaluation of g.

Alphabetic Minimax Trees in Linear Time 43

Note that a running time of order O(n
logn) would be perfectly acceptable here

in order to get a linear overall bound. Before we describe how to speed up the
evaluation, we need to take a closer look at our computational model. While
the only operation on the fractional parts of the weights will be comparison, for
each integer part (which is between 0 and n by the assumptions described in
the preliminaries) we need to have its value available in a machine word in order
to facilitate indirect addressing. As we are interested in the linear decision tree
model, we cannot simply say that we store a part of the input in our working
memory. Nevertheless, we can easily apply binary search to compute �wi� in
O(log logn) time. To decrease this complexity, we observe that in some cases we
do not need the exact value of each �wi�. For example, the exact value of �w1�
is not important as long as �w1� + 1 < �w2�. A more general version of this
observation is formulated below.

Lemma 6. We can compute in linear time a sequence of n machine words with
the property that replacing each �wi� with the integer stored in the i-th word
does not change the ordered minimax cost. The computation accesses the input
numbers only by branching based on the sign of a linear function of all �wi�.

Now we can focus on how to accelerate computing g. For this we split all indices
{1, 2, . . . , n} into groups of consecutive �logn� elements, and call such group
a package. Consider the function gw′

i,w
′
i+1,...,w

′
i+�log n�−1

corresponding to such

package. Each w′i is either �wi� or �wi� + 1, so by Lemma 4 this function is of
the form �x+r

2a �2a + c with both r and c possibly containing nonzero bits just
on a specified set of 2 �logn� positions, no matter how the corresponding wi

are rounded. Let the sorted list of those positions be
[
t1, t2, . . . , t2
logn�

]
. Note

that we can easily construct all such sorted lists in linear time by preprocessing
all the packages at once in the very beginning. Additionally for any index i we
store the positions of bits corresponding to �wi� and �wi�+1 on its package list.
Observe that composing any sequence of gw′

i
◦ gw′

i+1
◦ . . . ◦ gw′

j
with all indices

belonging to the same package results in a function �x+r
2a �2a+ c with both r and

c containing nonzero bits only on positions from the package list. This allows us
to store a succinct description of such function in a constant amount of machine
words. Furthermore, given such descriptions of two functions corresponding to
consecutive fragments of the same package, we can compute the description of
their composition in constant time by Lemma 5.

During the execution of the algorithm some w′i are permanently rounded up,
some are permanently rounded down, and some are yet undecided. For each
package we consider its maximal fragments consisting of indices with already
known values of w′i. We store succinct descriptions of all corresponding functions
and update them accordingly whenever any w′i becomes fixed. We claim that this
allows us to construct succinct descriptions of all functions corresponding to the
whole packages.

Lemma 7. Given succinct descriptions of all functions corresponding to max-
imal fragments of packages consisting of indices with already fixed values of w′i

44 P. Gawrychowski

and the current value of t, we can compute succinct descriptions of all functions
corresponding to whole packages in O(|C|+ n

logn) time.

Proof. We consider the packages one by one. Consider a single package. First
for any index i for which w′i is not fixed yet, we construct a succinct description
of the function g
wi�+[frac(wi)>t]. This requires just constant time as during the
preprocessing stage we found the position of �wi�+[frac(wi) > t] on the package
list. Then we must compute a succinct description of the composition of all
functions corresponding to the fragments of the current package. Due to Lemma 5
this requires time proportional to the number of those fragments. There are n

logn

packages and |C| not permanently rounded indices so the total running time is
as claimed. ��

Given succinct descriptions of functions corresponding to all packages, we still
have to somehow evaluate their composition at 0. We would like to start with
x = 0 and apply the functions one by one. This is not that simple to perform
quickly, though. While there are just n

log n functions, and we already have a
succinct description of each of them, lists of different packages might consist
of completely different elements. Thus as a result of applying them one by one
we might get x with more than just 2 �logn� bits set to one, and so we cannot
simply claim that applying a single function takes constant time.

By Lemma 4 as a result of applying the functions we get 0 ≤ x ≤ n2n.
The obvious method of storing the current value of x would be to keep a list
of its bit set to one as we did in Integer-ordered-minimax which would
require Θ(n) time to operate on. An obvious improvement would be to store
the values of logn consecutive bits in a single machine word. While it improves
the storage requirements to O(n

logn), it is not clear how to apply the functions
efficiently using such representation. We switch to a more complicated hybrid
storage method.

Definition 1. A hybrid representation of a n-bit integer x is an ordered list of
objects. There are two types of objects:

chunk a description of at most logn consecutive bits,
scattered chunk a description of a range of consecutive bits, some of them

corresponding to a contiguous fragment of a single package
list, and all remaining set to zero.

For a chunk we store the values of those bits in a single machine word together
with the position of the first and last bit in x. For a scattered chunk we store the
corresponding package number and the values of the potentially nonzero bits in
a single machine word.

Note that the positions of the extreme bits on the package list in fact give us
the corresponding positions in x. We call a representation valid if the ranges of
bits of x referred to by the objects are disjoint and sorted. See Figure 2 for an
example of such valid representation.

Consider evaluating h(x) =
⌈
x+r
2a

⌉
2a + c given a valid hybrid representation

of x and a succinct representation of r and c. It requires performing a few steps:

Alphabetic Minimax Trees in Linear Time 45

01110001x=
2

0 1 11 0010111 100

[40, 35, 34, 32, 29, 25, 24, 17, 7, 0][68, 67, 60, 55, 54, 30, 11, 10]package lists:

chunksscattered chunks

Fig. 2. Example of a valid hybrid representation

1. check if the current value of x modulo 2a plus r exceeds 2a,
2. erase all bits on positions less than a,
3. add 2a once or twice to the current value of x,
4. add

⌊
c
2a

⌋
2a to the current value of x,

5. add c mod 2a to the current value of x.

Some of those steps are fairly simple to perform efficiently assuming we can use
the hybrid representation. Consider step 5. Succinct representation of c can be
immediately converted into a scattered chunk, and after step 2 there will be no
bits set to one at positions 0, 1, . . . , a − 1, so this new scattered chunk can be
simply appended to the current representation. Note that a is either a′ or a′+1,
where a′ is the maximum value of wi with i belonging to the corresponding
package. We will need some preprocessing depending on those values of a and
thus we would like a to be the same no matter how the wi are rounded. This
can be ensured by replacing step 5 with:

5(a). if a = a′+1 and the a′-th bit of c is set, add 2a
′
to the current value of x,

5(b). add c mod 2a
′
to the current value of x.

Let the functions we are applying be h1, h2, . . . , h n
log n

. Assuming step 5 is the
only place a new scatter chunk can be created, the above modification ensures
the following property:

Lemma 8. For any i and j there exists at most one package such that the i-th
bit of h1 ◦h2 ◦ . . . hj(0) belongs to a scattered chunk referring to this package, no
matter how all wi were rounded.

Proof. Induction on i. For i there are no scattered chunks so the claim holds.
Assuming it holds for some i, applying hi+1 creates one new scattered chunk
describing bits 0,1,. . . ,a′ − 1 and for all higher positions the claim holds by the
induction hypothesis. ��

Lemma 9. Given a scattered chunk describing bits at positions i, i+1, . . . , j we
can construct a chunk describing bits at positions i, i+1, . . . , i+ logn− 1 and a
scattered chunk describing bits at positions i+ logn, . . . , j in constant time.

Proof. For any position k in a package list we construct a word with the i-th
bit (with 0 ≤ i ≤ logn) set if and only if i + k belongs to the list as well.

46 P. Gawrychowski

Then given a scattered chunk we retrieve the preprocessed word. By counting
the number of bits set there we calculate the shift necessary to construct the
new scattered chunk. Constructing the chunk reduces to the following problem:
given b =

∑
i 2

ji with ji strictly increasing and c =
∑

i βi2
i (both given in single

words) compute the value of
∑

i βi2
ji . This can be answered in constant time

after a simple preprocessing. ��

Lemma 10. Given hybrid representations of two integers 0 ≤ x, y < 2a we can
check if x+ y ≥ 2a in linear time.

Proof. To compute the carry we process the representations from right to left.
Instead of performing the processing bit-by-bit, we go through whole chunks at
once. The only problem is that we must be able to add two scattered chunks and
a chunk to a scattered chunk efficiently. For the latter we apply Lemma 9 and
simply add two chunks. For the former let the scattered chunks refer to poten-
tially nonzero bits at positions i1, i1+1, . . . , j1 and i2, i2+1, . . . , j2, respectively.
Note that if j1 > i1 + 2 logn and j2 > i2 + 2 logn there will be no carry no
matter which bits are set. Otherwise we apply Lemma 9 twice and remove at
least one scattered chunk from the representations. ��

Lemma 11. Steps 1 and 2 can be performed in amortized constant time.

Proof. We apply Lemma 10 with x mod 2a and r. The hybrid representation of
x mod 2a is a suffix of the current representation of x, with the exception that
we might need to split a chunk (which is simple to perform in constant time)
or a scattered chunk into two. To perform the latter in constant time, note that
due to Lemma 8 we can preprocess the predecessor of a′ on the package list
corresponding to this scattered chunk, as the list is the same no matter how
we round the wi. Using such preprocessing we can locate the predecessor of a
and erase all bits on its right. This allows us to construct hybrid representations
of x mod 2a and

⌊
x
2a

⌋
2a in time proportional to the size of the former. After

applying Lemma 10 we replace x with
⌊

x
2a

⌋
2a so the time can be amortized by

the decrease in the size of the representation. ��

Lemma 12. Given 0 ≤ t ≤ n and a hybrid representation of x we can add t to
x in amortized constant time.

Proof. We convert t into a chunk and go through the representation of x from
right to left using Lemma 9 as long as there is a carry. Note that we stop as
soon as we encounter a scattered chunk referring to a sufficiently large range of
bits, namely at least 2 logn. All smaller scattered chunks end up converted to
chunks. To amortize to constant time we assign one credit to each chunk and
two credits to each scattered chunk. ��

Lemma 13. Steps 3 and 4 can be performed in amortized constant time.

Proof. After step 2 there are no bits at positions 0, 1, . . . , a− 1 and thus while
both 2a and

⌊
c
2a

⌋
2a can be much larger than n, we will try to apply Lemma 12

Alphabetic Minimax Trees in Linear Time 47

as if the numbers were divided by 2a. It is easy to see that we can do that with 2a

but
⌊

c
2a

⌋
2a requires more attention. By Lemma 4,

⌊
c
2a

⌋
≤ �logn�. Unfortunately,

c is given in a succinct representation, and we would like to compute
⌊

c
2a

⌋
as an

integer. This can be done by preprocessing the position of a on the corresponding
package list (note that we actually have to preprocess the positions of a′ and
a′+1 which are the possible values of a), which allows us to construct a scattered
chunk describing

⌊
c
2a

⌋
2a with a constant number of bitwise operations. Then we

apply Lemma 9 to compute
⌊

c
2a

⌋
, and Lemma 12 to add it to the current x. ��

Lemma 14. Step 5 can be performed in constant time.

Proof. After precomputing the position of a′ on the corresponding package list
we can check if the a′-th bit is set in c in constant time. If so, we append a new
chunk containing just one bit at the a′-th position to the hybrid representation
of x. Then we construct and append a new scattered chunk describing c mod 2a

′

by simply erasing bits at higher position from the succinct representation of c
and converting it into the scattered chunk in constant time. ��

Finally we combine Lemma 11, Lemma 13 and Lemma 14.

Theorem 3. M(w1, w2, . . . , wn) can be calculated in O(n) time.

Acknowledgements. Many thanks to Travis Gagie for helpful discussions con-
cerning (alphabetic and not) minimax trees.

References

1. Bartoschek, C., Held, S., Maßberg, J., Rautenbach, D., Vygen, J.: The repeater
tree construction problem. Inf. Process. Lett. 110(24), 1079–1083 (2010)

2. Blum, M., Floyd, R., Pratt, V., Rivest, R., Tarjan, R.: Time bounds for selection.
Journal of Computer and System Sciences 7(4), 448–461 (1973)

3. Coppersmith, D., Klawe, M., Pippenger, N.: Alphabetic Minimax Trees of Degree
at Most t. SIAM Journal on Computing 15, 189 (1986)

4. Parker Jr., D.S.: Combinatorial Merging and Huffman’s Algorithm. IEEE Trans-
actions on Computers, 365–367 (1979)

5. Gagie, T.: A new algorithm for building alphabetic minimax trees. Fundam. Inf. 97,
321–329 (2009), http://portal.acm.org/citation.cfm?id=1735991.1735995

6. Gawrychowski, P., Gagie, T.: Minimax trees in linear time with applications. In:
Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp.
278–288. Springer, Heidelberg (2009)

7. Golumbic, M.C.: Combinatorial merging. IEEE Trans. Comput. 25, 1164–1167
(1976), http://dx.doi.org/10.1109/TC.1976.1674574

8. Hoover, H.J., Klawe, M.M., Pippenger, N.J.: Bounding fan-out in logical networks.
J. ACM 31, 13–18 (1984), http://doi.acm.org/10.1145/2422.322412

9. Hu, T., Kleitman, D., Tamaki, J.: Binary trees optimum under various criteria.
SIAM Journal on Applied Mathematics 37(2), 246–256 (1979)

10. Hu, T., Tucker, A.: Optimal computer search trees and variable-length alphabetical
codes. SIAM Journal on Applied Mathematics 21(4), 514–532 (1971)

http://portal.acm.org/citation.cfm?id=1735991.1735995
http://dx.doi.org/10.1109/TC.1976.1674574
http://doi.acm.org/10.1145/2422.322412

48 P. Gawrychowski

11. Huffman, D.: A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE 40(9), 1098–1101 (1952)

12. Kirkpatrick, D., Klawe, M.: Alphabetic minimax trees. SIAM Journal on Comput-
ing 14, 514 (1985)

13. Larmore, L.L., Przytycka, T.M.: The optimal alphabetic tree problem revisited. J.
Algorithms 28(1), 1–20 (1998)

14. van Leeuwen, J.: On the construction of Huffman trees. In: ICALP, pp. 382–410
(1976)

15. Yeung, R.: Alphabetic codes revisited. IEEE Transactions on Information
Theory 37(3), 564–572 (2002)

Decidability and Enumeration

for Automatic Sequences: A Survey

Jeffrey Shallit

School of Computer Science, University of Waterloo, Waterloo,
ON N2L 3G1, Canada

shallit@cs.uwaterloo.ca

Abstract. In this talk I will report on some recent results concerning
decidability and enumeration for properties of automatic sequences. This
is work with Jean-Paul Allouche, Émilie Charlier, Narad Rampersad,
Dane Henshall, Luke Schaeffer, Eric Rowland, Daniel Goč, and Hamoon
Mousavi.

1 Introduction

An infinite sequence a = (an)n≥0 over a finite alphabet is said to be k-automatic
if there exists a deterministic finite automaton (with outputs associated with
the states) such that after completely processing the input n expressed in base
k, the automaton reaches some state q with output an [17,5]. A typical example
of such a sequence is the Thue-Morse sequence

t = t0t1t2 · · · = 011010011001 · · · ,

which is generated by the automaton in Figure 1. Here the input is n, expressed
in base 2.

0

0 1

0
1

1

Fig. 1. Finite automaton generating the Thue-Morse sequence t

The Thue-Morse sequence is named after the Norwegian mathematician Axel
Thue [45,46,6], who discovered it in 1912, although it also appears if one reads
“between the lines” in an 1851 paper of Prouhet [39], and it has since been
rediscovered many times (e.g., [34,22]). For more information about t, see the
survey [4].

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 49–63, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

50 J. Shallit

Below we list just a few of the properties of t that people have studied. By a
factor we mean a contiguous block of symbols inside another word.

1. t is not ultimately periodic.
2. t contains no factor that is an overlap, that is, a word of the form axaxa,

where a is a single letter and x is an arbitrary finite word [45,46,6].
3. t has infinitely many distinct palindromic factors and infinitely many distinct

antipalindromic factors. (A palindrome is a word equal to its reverse; an
example of a palindrome in Russian is dohod (“income”). An antipalindrome

is a word of the form xxR, where xR denotes the reverse of x and 0 = 1,
1 = 0.)

4. The number p(n) of distinct palindromic factors of length n in t is given by

p(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if n odd and n ≥ 5;

1, if n = 0;

2, if 1 ≤ n ≤ 4, or n even and 3 · 4k + 2 ≤ n ≤ 4k+1 for k ≥ 1;

4, if n even and 4k + 2 ≤ n ≤ 3 · 4k for k ≥ 1;

see [7]. A similar expression exists for the number p′(n) of distinct antipalin-
dromic factors of length n.

5. t contains infinitely many distinct square factors xx, but for each such factor
we have |x| = 2n or 3 · 2n, for n ≥ 1. Examples of squares in Russian include
d�d� (“uncle”) and kuskus (“couscous”).

6. t is mirror-invariant: if x is a finite factor of t, then so is its reverse xR.
7. t is recurrent, that is, every factor that occurs, occurs infinitely often [34].
8. t is uniformly recurrent, that is, for all factors x occurring in t, there is a

constant c(x) such that two consecutive occurrences of x are separated by
at most c(x) symbols [35, pp. 834 et seq.].

9. t is linearly recurrent, that is, it is uniformly recurrent and furthermore there
is a constant C such that c(x) ≤ C|x| for all factors x [35, pp. 834 et seq.].
In fact, the optimal bound is given by c(1) = 3, c(2) = 8, and c(n) = 9 · 2e
for n ≥ 3, where e = �log2(n− 2)�.

10. The lexicographically least sequence in the orbit closure of t is t1 t2 t3 · · · ,
which is also 2-automatic [2].

11. The subword complexity ρ(n) of t, which is the function counting the number
of distinct factors of t, is given by

ρ(n) =

⎧⎪⎨⎪⎩
2n, if 0 ≤ n ≤ 2;

2n+ 2t+2 − 2, if 3 · 2t ≤ n ≤ 2t+2 + 1;

4n− 2t − 4, if 2t + 1 ≤ n ≤ 3 · 2t−1;

see [8,32].
12. t has an unbordered factor of length n if n �≡ 1 (mod 6) [19]. (Here by an

unbordered word y we mean one with no expression in the form y = uvu for
words u, v with u nonempty.)

Decidability and Enumeration for Automatic Sequences 51

Recently I and my co-authors J.-P. Allouche, E. Charlier, D. Goč, D. Henshall,
N. Rampersad, E. Rowland, and L. Schaeffer, have developed and implemented
a decision procedure by which all these assertions, and many others, can be
feasibly verified and/or generated in a purely mechanical fashion. In this talk I
will explain how our method works, what has been done so far, and what remains
to be done.

2 Logic

By Th(N,+, 0, 1, <) I mean the set of all true first-order sentences in the logical
theory of the natural numbers with addition. In such a theory, for example,
we can express the so-called “Chicken McNuggets” theorem [47, Lesson 5.8,
Problem 1] to the effect that 43 is the largest integer that cannot be represented
as a non-negative integer linear combination of 6, 9, and 20, as follows:

(∀n > 43 ∃x, y, z ≥ 0 such that n = 6x+ 9y + 20z) ∧
¬(∃x, y, z ≥ 0 such that 43 = 6x+ 9y + 20z). (1)

Here, of course, “6x” is shorthand for the expression “x + x + x + x + x + x”,
and similarly for 9y and 20z.

Thanks to the work of Presburger [37,38] we know that Th(N,+, 0, 1, <) is
decidable: that is, there exists an algorithm that, given a sentence in the theory,
will decide its truth.

In fact, there is a relatively simple proof of this fact, based on finite automata,
and due to Büchi [11,12], Elgot [21], and Hodgson [27]. More recently it has
appeared (without attribution) in the textbook of Sipser [44, §6.2] and progress
has been made on its complexity (e.g., [29]). The idea is to represent integers
in a integer base k ≥ 2 using the alphabet Σk = {0, 1, . . . , k − 1}. We can
then represent n-tuples of integers as words over the alphabet Σn

k , padding with
leading zeroes, if necessary. Thus, for example, the pair (21, 7) can be represented
in base 2 by the word

[1, 0][0, 0][1, 1][0, 1][1, 1].

Then the relation x + y = z can be checked by a simple 2-state automaton
depicted in Figure 2, where transitions not depicted lead to a nonaccepting
“dead state”.

Fig. 2. Checking addition in base k

52 J. Shallit

Relations like x = y and x < y can be checked similarly.
Given a formula with free variables x1, x2, . . . , xn, we construct an automa-

ton accepting the base-k expansion of those n-tuples (x1, . . . , xn) for which the
proposition holds. If a formula is of the form ∃x1, x2, . . . xn p(x1, . . . , xn), then
we use nondeterminism to “guess” the xi and check them. If the formula is of
the form ∀p, we use the equivalence ∀p ≡ ¬∃¬p; this may require using the
subset construction to convert an NFA to a DFA and then flipping the “final-
ity” of states. Finally, the truth of a formula can be checked by using the usual
depth-first search techniques to see if any final state is reachable from the start
state.

However, even more is true. If we add the function Vk : N → N to our logical
theory, where Vk(x) = kn, and kn is the largest power of k dividing x, it is still
decidable by a similar automaton-based technique [10]. By doing so, we gain the
capability of deciding many questions about automatic sequences. Thus we have

Theorem 1. There is an algorithm that, given a predicate phrased using only
the universal and existential quantifiers, indexing into a given automatic se-
quence a, addition, subtraction, logical operations, and comparisons, will decide
the truth of that proposition.

We call such a predicate an automatic predicate.
Although the worst-case running time of our algorithm is bounded above by

22
. .
.2p(N)

,

where the number of 2’s in the exponent is equal to the number of quantifiers, p is
a polynomial, and N is the number of states needed to describe the underlying
automatic sequence, it turns out that in practice, significantly better running
times are usually achieved.

3 Periodicity

An infinite word a is periodic if it is of the form xω = xxx · · · for a finite
nonempty word x. It is ultimately periodic if it is of the form yxω for a (possibly
empty) finite word y.

Honkala [28] was the first to prove that ultimate periodicity is decidable
for automatic sequences. Later, Leroux [31], and, more recently, Marsault and
Sakarovitch [33] gave efficient algorithms for the problem.

Using our approach, we can easily see that periodicity is decidable for k-
automatic sequences [3]. It suffices to express ultimately periodicity as an auto-
matic predicate:

∃p ≥ 1, N ≥ 0 ∀i ≥ N a[i] = a[i+ p].

When we run this on the Thue-Morse sequence, we discover (as expected) that
t is not ultimately periodic.

Decidability and Enumeration for Automatic Sequences 53

4 Repetitions

Repetitions in sequences have been studied for over a hundred years. We defined
overlaps above in § 1. Other classic repetitions include squares (factors of the
form xx, where x is nonempty) and cubes (factors of the form xxx).

Thue [46] proved that t contains no overlaps; that is, t is overlap-free. Using
our technique, we can express the property of having an overlap axaxa beginning
at position N with |ax| = p, as follows: a[N..N + p] = a[N + p..N + 2p]. So the
corresponding automatic predicate for t is

∃p ≥ 1, N ≥ 0 t[N..N + p] = t[N + p..N + 2p],

or, in other words,

∃p ≥ 1, N ≥ 0 ∀i, 0 ≤ i ≤ p t[N + i] = t[N + p+ i].

From now on, we will abbreviate predicates like the one above by writing the
first form only.

We programmed up our decision procedure and verified that indeed t is
overlap-free [3].

We can also ask about the lengths and positions of squares in the Thue-Morse
sequence. Here we can create an automaton to accept

{(N, p)2 : p ≥ 1 and N ≥ 0 and t[N..N + p− 1] = t[N + p..N + 2p− 1]}.

When we do so, we get the automaton depicted below in Figure 3 (computed by
Daniel Goč).

Fig. 3. Positions and lengths of squares in Thue-Morse

54 J. Shallit

From this automaton, we easily recover the results of [36,8] that the only
squares xx that occur have |x| = 2n or |x| = 3 · 2n for n ≥ 0, and all those
lengths occur. The positions where these squares occur were previously given by
Brown et al. [9].

5 Critical Exponent

We can define more general repetitions as follows: a word x is an α-power for
α ≥ 1 if we can write x = yey′ where e = �α� and y′ is a prefix of y and
|x| = α|y|. Thus, for example, abracadabra is an 11

7 -power and the Russian
word l�bl� (“love”) is a 5

3 -power. The techniques above suffice to check if a
k-automatic sequence has α-powers, using the following predicate:

∃N ≥ 0, p, q ≥ 1 a[N..N + p− q − 1] = a[N + q..N + p− 1] and p = αq.

However, this observation alone does not suffice to compute the so-called critical
exponent of a, which is the supremum over all rational α such that a has α-power
factors.

It turns out that the critical exponent is also computable for automatic se-
quences [43,42]. More generally, we can extend the concept of k-automatic sets
of natural numbers to k-automatic sets of non-negative rational numbers, as
follows. Given a word x ∈ (Σk ×Σk)

∗, define

quok(x) =
[π1(x)]k
[π2(x)]k

,

where πi(x) is the projection of x onto its i’th coordinate (i = 1, 2), and [x]k is
the integer represented by the word x in base k. This is extended to languages
L in the usual way:

quok(L) = {quok(x) : x ∈ L}.
Then we have

Theorem 2. If M is a DFA, then sup quok(L(M)) is either rational or infinite,
and it is computable.

We can now apply this theorem to our problem. Let a be a k-automatic sequence.
Using the techniques above, we can compute a DFA M accepting the language

L = {(p, q) : ∃N a[N..N + p− q − 1] = a[N + q..N + p− 1]},

which represents all fractional powers p/q occurring in a. Now, applying Theo-
rem 2, we get the desired result.

As an application, we considered an old construction of Leech [30] for square-
free words: consider the fixed point L of the 13-uniform morphism ϕ given by

0 → 0121021201210

1 → 1202102012021

2 → 2010210120102

Decidability and Enumeration for Automatic Sequences 55

Using our method, we proved that the critical exponent of L is actually 15
8 .

Furthermore, if x is a 15
8 power occurring in L, then |x| = 15 ·13i for some i ≥ 0.

See [23].

6 Mirror Invariance

We can express the property that a is mirror-invariant as follows:

∀N ≥ 0, � ≥ 1 ∃N ′ ≥ 0 a[N..N + �− 1] = a[N ′..N ′ + �− 1]R,

which is the same as

∀N ≥ 0, � ≥ 1 ∃N ′ ≥ 0 ∀i, 0 ≤ i < � a[N + i] = a[N ′ + �− i− 1],

which can be easily checked by our method.

7 Recurrence

We can express the property that a is recurrent by saying that for each factor,
and each integer M there exists a copy of that factor occurring at a position
after M in a. This corresponds to the following predicate:

∀N,M ≥ 0, � ≥ 1 ∃M ′ ≥ M a[N..N + �− 1] = a[M ′..M ′ + �− 1].

An easy argument shows that an infinite word a is recurrent if and only if each
finite factor occurs at least twice. This means that the following simpler predicate
suffices:

∀N ≥ 0, � ≥ 1 ∃M �= N a[N..N + �− 1] = a[M..M + �− 1].

For uniform recurrence, we need to express the fact that two consecutive occur-
rences of each factor are separated by no more than C positions. Since there are
only finitely many factors of each length, we can take C to be the maximum
of the constants corresponding to each factor of that length. Thus we get the
following predicate:

∀� ≥ 1 ∃C ≥ 1 ∀N ≥ 0 ∃M with N < M ≤ N+C a[N..N+�−1] = a[M..M+�−1].

For linear recurrence, we have to work harder, since at first glance knowing if
there is a factor at distance C� seems to require multiplication, which we cannot
perform. Instead, we construct a DFA accepting the language

L = {(n, �)k : ∃ i ≥ 0 s. t. ∀ j, 0 ≤ j < � we have a[i+ j] = a[i+ n+ j] and

� ∃ t, 0 < t < n s. t. ∀ j, 0 ≤ j < � we have a[i+ j] = a[i+ t+ j] }.

Note that (n, �)k ∈ L iff there exists some factor of length � for which the next
occurrence is at distance n. Then linear recurrence corresponds to quok(L) < ∞,
which we can test using Theorem 2.

56 J. Shallit

8 Orbit Closure

The orbit of a sequence a = a0a1a2 · · · is the set of all sequences under the shift,
that is, the set S = {aiai+1ai+2 · · · : i ≥ 0}. The orbit closure is the topological
closure S under the usual topology. In other words, a sequence b = b0b1b2 · · · is
in S if and only if, for each j ≥ 0, the prefix b0 · · · bj is a factor of a.

In general, the cardinality of the orbit closure is uncountable. On the other
hand, the k-automatic sequences are countable. Hence most sequences in the
orbit closure of a k-automatic sequence are not automatic themselves. However,
we can use our method to show that two distinguished sequences, the lexico-
graphically least and lexicographically greatest sequences in the orbit closure,
are indeed k-automatic.

For example, Currie [18] showed that the lexicographically least sequence in
the orbit closure of the Rudin-Shapiro sequence

r = r0r1r2 · · · = 000100100001110100010010111000 · · ·

is 0r, thus confirming a conjecture in [3].

9 Unbordered Factors

Recall that a word is bordered if it can be expressed as uvu for words u, v with
u nonempty, and otherwise it is unbordered. Currie and Saari [19] proved that
t has an unbordered factor of length n if n �≡ 1 (mod 6). However, these are not
the only lengths with an unbordered factor; for example,

0011010010110100110010110100101

is an unbordered factor of length 31. We can express the property that t has an
unbordered factor of length � as follows:

∃N ≥ 0 ∀j, 1 ≤ j ≤ �/2 t[N..N + j − 1] �= t[N + �− j..N + �− 1].

Using our technique, we can create a DFA to accept the base-2 representations
of all such �. Using our method, we were able to prove [23]

Theorem 3. There is an unbordered factor of length � in t if and only iff (�)2 �∈
1(01∗0)∗10∗1.

10 Enumeration

Up to now we have focused on deciding properties of automatic sequences. In
many cases, however, we can actually count the number T (n) of length-n factors
of an automatic sequence having a particular property P . Here by “count” we
mean, give an algorithm A to compute T (n) efficiently, that is, in time bounded

Decidability and Enumeration for Automatic Sequences 57

by a polynomial in logn. Although finding the algorithm A may not be partic-
ularly efficient (and indeed, has a “tower-of-2’s” running time depending on the
predicate to express P), but once we have it, we can compute T (n) quickly.

One example is subword complexity, the number of distinct length-n factors
of a sequence. To count these factors, we create a DFA M accepting the language

{(n, �)k : a[n..n+ �− 1] is the first occurrence of the given factor}
= {(n, �)k : ∀n′ < n a[n..n+ �− 1] �= a[n′..n′ + �− 1]}.

Once we have M , the number of � corresponding to a given n is just the subword
complexity. It then turns out [16] that this number can be expressed as the
product

vMa1 · · ·Maiw

for suitable vectors v, w and matrices M0, . . . ,Mk−1, where a1 · · ·ai is the base-k
representation of n, thus giving an efficient algorithm to compute it.

In a similar way, we can handle

– palindrome complexity (the number of distinct length-n palindromic factors)
[1];

– the number of words whose reversals are also factors;
– the number of squares of a given length;
– the number of unbordered factors [24];

and so forth.
For this last example, the number f(n) of unbordered factors of length n, we

carried out an explicit computation for the Thue-Morse sequence. The resulting
computation allowed us to prove that f(n) ≤ n for n ≥ 4 and f(n) = n infinitely
often [24].

11 Synchronization

Sometimes even more is true: we can build a DFA to accept the language

{(n, T (n))k : n ≥ 0},

where T (n) counts some interesting property about an automatic sequence. In
this case we say, following Carpi [15,13,14], that the function T is k-synchronized.
When a function T is k-synchronized, we have T (n) = O(n) and further, we can
compute it in O(log n) time [25].

Many enumerations about automatic sequences are now known to be k-
synchronized. These include

– the separator sequence [15];
– the repetitivity index [13];
– the recurrence function [16];
– the appearance function [16];

58 J. Shallit

– the subword complexity function [25];
– the number of factors of length n that are primitive [25].

Here is a novel example of synchronization. Blondin-Massé et al. studied the
longest palindromic suffix of a finite word w, defined to be the unique longest
word x such that x = xR and there exists y such that w = yx; it is denoted
LPS(w). Given an infinite word a = a0a1 · · · , they defined the related function
LLPSa(n) = |LPS(a[0..n])|, which measures the length of the longest palin-
dromic suffix of each prefix.

We can see that LLPSa(n) is k-synchronized, as we can build an automaton
to accept

{(n, i)k : a[n− i+ 1..n] = a[n− i+ 1..n]R and

∃j, 0 ≤ j ≤ n− i a[j..n] �= a[j..n]R}.

Blondin-Massé et al. also studied a related function, given by

Ha(n) =

{
LLPSa(n), if LPS(a[0..n]) does not occur in a[0..n− 1] ;

0, otherwise.

This sequence Ha is also k-synchronized, as we can express it as

{(n, i)k : a[n− i+ 1..n] = a[n− i+ 1..n]R and

∃j, 0 ≤ j ≤ n− i a[j..n] �= a[j..n]R and

∀�, 0 ≤ � ≤ n− i a[�..�+ i− 1] �= a[n− i+ 1..n]}
∪ {(n, 0)k : a[n− i+ 1..n] = a[n− i+ 1..n]R and

∃j, 0 ≤ j ≤ n− i a[j..n] �= a[j..n]R and

∃�, 0 ≤ � ≤ n− i a[�..�+ i− 1] = a[n− i+ 1..n]}.

12 Paperfolding

Up to now we have only applied our decision procedure to a single automatic
sequence. Sometimes, however, it is desirable to talk about the properties of
a family of such sequences. A famous example of such a family is the set of
paperfolding sequences. Given a sequence of unfolding instructions f = f0f1f2 · · ·
over the alphabet {0, 1}, the paperfolding sequence Pf = p1p2p3 · · · is defined
as the limit of the finite sequences given by

x0 = f0

xn+1 = xi fi xR
i ,

where, as before, 0 = 1 and 1 = 0. The regular paperfolding sequence

001001100011011 · · ·

corresponds to the unfolding instructions 000 · · · .

Decidability and Enumeration for Automatic Sequences 59

It turns out that many properties of these sequence are also decidable using
our method. The key observation is due to Luke Schaeffer: a known formula to
compute the n’th term of a paperfolding sequence [20] can be implemented by
the following automaton of 5 states (depicted below in Figure 4) that takes, as
input, a prefix of a sequence of unfolding instructions in parallel with the base-2
expansion of n (starting with the least significant digit), and computes the n’th
term of the corresponding paperfolding sequence.

Fig. 4. Automaton for the paperfolding sequences

This makes it possible to prove many of the known results about paperfolding
sequences, and some new ones, in a purely mechanical fashion. We just mention
one new result, answering a question of Narad Rampersad [26]:

Theorem 4. If f = f0f1f2 · · · and g = g0g1g2 · · · are two different sequences of
unfolding instructions, and the smallest index where they differ is fi = gi, then
Pf and Pg have no factors of length ≥ 14 · 2i in common.

13 Implementation

As mentioned previously, the extraordinary upper bound on the running time of
the decision procedure means that care has to be taken during the implementa-
tion. Dane Henshall and my master’s student Daniel Goč independently wrote
code that takes a description of an automatic sequence and a predicate as input
and translates the predicate to the appropriate automaton. In Goč’s algorithm,
DFA minimization is done using Brzozowski’s algorithm, which often seems to
outperform the usual methods. With these implementations we have been able
to find new machine proofs of many old results and also some new ones.

60 J. Shallit

14 Inexpressible Predicates

It is natural to wonder if other kinds of properties of automatic sequences are
solvable using our method. One natural candidate that seems difficult is testing
abelian squarefreeness. We say that a nonempty word x is an abelian square if
it of the form ww′ with |w| = |w′| and w′ a permutation of w. (An example
in English is the word reappear, and three examples in Russian are kreker
(“cracker”) otletelo (“(it) flew away”) and rotatora (“(of) rotator”, genitive
case).)

Recently my student Luke Schaeffer has shown that the predicate for abelian
squarefreeness is indeed inexpressible, in general [41]. To do so, he considers the
regular paperfolding sequence

f = f1f2f3 · · · = 0010011000110110001001110011011 · · · ,

which is 2-automatic, and then the language

L = {(n, i)2 : f [i..i+ n− 1] is a permutation of f [i + n..i+ 2n− 1]}.

If abelian squarefreeness were expressible, then L would be regular, but he shows
it is not [41].

15 Open Questions

There are still many interesting questions that are unresolved. For example, it is
known that, given a DFA M , we can decide if quok(L(M)) ⊆ N [40]. However,
the following related problems are still open:

Open Question 1. Are any of the following problems recursively solvable? Given
a DFA M accepting L ⊆ (Σk ×Σk)

∗,

(a) Does there exist x ∈ L such that quok(x) ∈ N?
(b) Do there exist infinitely many x ∈ L such that quok(x) ∈ N?
(c) Is there an infinite subset S ⊆ N such that S ⊆ quok(L)?

Similarly, if L is represented by a pushdown automaton instead of a DFA, we
can ask.

Open Question 2. Is sup quok(L) computable for context-free languages L?

References

1. Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity.
Theoret. Comput. Sci. 292, 9–31 (2003)

2. Allouche, J.P., Currie, J., Shallit, J.: Extremal infinite overlap-free binary words.
European J. Combinatorics 5, R27 (1998),
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v5i1r27

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v5i1r27

Decidability and Enumeration for Automatic Sequences 61

3. Allouche, J.P., Rampersad, N., Shallit, J.: Periodicity, repetitions, and orbits of an
automatic sequence. Theoret. Comput. Sci. 410, 2795–2803 (2009)

4. Allouche, J.P., Shallit, J.: The ubiquitous Prouhet-Thue-Morse sequence. In:
Ding, C., Helleseth, T., Niederreiter, H. (eds.) Proceedings of Sequences and Their
Applications, SETA 1998, pp. 1–16. Springer (1999)

5. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press (2003)

6. Berstel, J.: Axel Thue’s work on repetitions in words. In: Leroux, P., Reutenauer,
C. (eds.) Séries Formelles et Combinatoire Algébrique, Publications du LaCim,
Université du Québec à Montréal, vol. 11, pp. 65–80 (1992)

7. Blondin Massé, A., Brlek, S., Garon, A., Labbé, S.: Combinatorial properties of f -
palindromes in the Thue-Morse sequence. Pure Math. Appl. 19(2-3), 39–52 (2008),
http://www.mat.unisi.it/newsito/puma/public_html/19_2_3/4.pdf

8. Brlek, S.: Enumeration of factors in the Thue-Morse word. Disc. Appl. Math. 24,
83–96 (1989)

9. Brown, S., Rampersad, N., Shallit, J., Vasiga, T.: Squares and overlaps in the
Thue-Morse sequence and some variants. RAIRO Inform. Théor. App. 40, 473–484
(2006)

10. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets
of integers. Bull. Belgian Math. Soc. 1, 191–238 (1994); Corrigendum, Bull. Belg.
Math. Soc. 1, 577 (1994)

11. Büchi, J.R.: Weak secord-order arithmetic and finite automata. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960); reprinted
in Mac Lane, S., Siefkes, D. (eds.): The Collected Works of J. Richard Büchi,
pp. 398–424. Springer (1990)

12. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), pp. 1–11.
Stanford University Press (1962)

13. Carpi, A., D’Alonzo, V.: On the repetitivity index of infinite words. Internat. J.
Algebra Comput. 19, 145–158 (2009)

14. Carpi, A., D’Alonzo, V.: On factors of synchronized sequences. Theoret. Comput.
Sci. 411, 3932–3937 (2010)

15. Carpi, A., Maggi, C.: On synchronized sequences and their separators. RAIRO
Inform. Théor. App. 35, 513–524 (2001)

16. Charlier, E., Rampersad, N., Shallit, J.: Enumeration and decidable properties of
automatic sequences. Internat. J. Found. Comp. Sci. 23, 1035–1066 (2012)

17. Cobham, A.: Uniform tag sequences. Math. Systems Theory 6, 164–192 (1972)
18. Currie, J.: Lexicographically least words in the orbit closure of the Rudin-Shapiro

word. Theoret. Comput. Sci. 41, 4742–4746 (2011)
19. Currie, J.D., Saari, K.: Least periods of factors of infinite words. RAIRO Inform.

Théor. App. 43, 165–178 (2009)
20. Dekking, F.M., Mendès France, M., van der Poorten, A.J.: Folds! Math. Intelli-

gencer 4, 130–138, 173–181, 190–195 (1982); erratum 5, 5 (1983)
21. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.

Trans. Amer. Math. Soc. 98, 21–51 (1961)
22. Euwe, M.: Mengentheoretische Betrachtungen über das Schachspiel. Proc. Konin.

Akad. Wetenschappen, Amsterdam 32, 633–642 (1929)
23. Goč, D., Henshall, D., Shallit, J.: Automatic theorem-proving in combinatorics on

words. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 180–191.
Springer, Heidelberg (2012)

http://www.mat.unisi.it/newsito/puma/public_html/19_2_3/4.pdf

62 J. Shallit

24. Goč, D., Mousavi, H., Shallit, J.: On the number of unbordered factors. In:
Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp.
299–310. Springer, Heidelberg (2013)

25. Goč, D., Schaeffer, L., Shallit, J.: The subword complexity of k-automatic sequences
is k-synchronized (2012) (submitted), preprint available at
http://arxiv.org/abs/1206.5352

26. Goč, D., Schaeffer, L., Shallit, J.: A new approach to the paperfolding sequences
(manuscript in preparation, 2013)

27. Hodgson, B.: Décidabilité par automate fini. Ann. Sci. Math. Québec 7, 39–57
(1983)

28. Honkala, J.: A decision method for the recognizability of sets defined by number
systems. RAIRO Inform. Théor. App. 20, 395–403 (1986)

29. Klaedtke, F.: Bounds on the automata size for Presburger arithmetic. ACM Trans.
Comput. Logic 9(2), article 11 (March 2008),
http://doi.acm.org/10.1145/1342991.1342995

30. Leech, J.: A problem on strings of beads. Math. Gazette 41, 277–278 (1957)

31. Leroux, J.: A polynomial time Presburger criterion and synthesis for number
decision diagrams. In: 20th IEEE Symposium on Logic in Computer Science
(LICS 2005), pp. 147–156. IEEE Press (2005)

32. Luca, A.D., Varricchio, S.: Some combinatorial properties of the Thue-Morse se-
quence and a problem in semigroups. Theoret. Comput. Sci. 63, 333–348 (1989)

33. Marsault, V., Sakarovitch, J.: Ultimate periodicity of b-recognisable sets: a quasi-
linear procedure (2013), preprint available at http://arxiv.org/abs/1301.2691

34. Morse, M.: Recurrent geodesics on a surface of negative curvature. Trans. Amer.
Math. Soc. 22, 84–100 (1921)

35. Morse, M., Hedlund, G.A.: Symbolic dynamics. Amer. J. Math. 60, 815–866 (1938)

36. Pansiot, J.J.: The Morse sequence and iterated morphisms. Inform. Process.
Lett. 12, 68–70 (1981)

37. Presburger, M.: Über die Volständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Spara-
wozdanie z I Kongresu Matematyków Krajów Slowianskich, Warsaw, pp. 92–101
(1929)

38. Presburger, M.: On the completeness of a certain system of arithmetic of whole
numbers in which addition occurs as the only operation. Hist. Phil. Logic 12,
225–233 (1991)

39. Prouhet, E.: Mémoire sur quelques relations entre les puissances des nombres. C.
R. Acad. Sci. Paris 33, 225 (1851)

40. Rowland, E., Shallit, J.: k-automatic sets of rational numbers. In: Dediu, A.-H.,
Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 490–501. Springer, Hei-
delberg (2012)

41. Schaeffer, L.: Abelian powers in automatic sequences are not always automatic.
Talk at CanadaDAM 2013 Conference, St. John’s, Newfoundland (June 2013)

42. Schaeffer, L., Shallit, J.: The critical exponent is computable for automatic se-
quences. Int. J. Found. Comput. Sci. (2012) (to appear)

43. Shallit, J.: The critical exponent is computable for automatic sequences. In: Am-
broz, P., Holub, S., Másaková, Z. (eds.) Proceedings 8th International Conference
Words 2011. Elect. Proc. Theor. Comput. Sci, vol. 63, pp. 231–239 (2011)

44. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, 3rd
edn. (2013)

http://arxiv.org/abs/1206.5352
http://doi.acm.org/10.1145/1342991.1342995
http://arxiv.org/abs/1301.2691

Decidability and Enumeration for Automatic Sequences 63

45. Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7,
1–22 (1906); reprinted in Nagell, T. (ed.): Selected Mathematical Papers of Axel
Thue, Universitetsforlaget, Oslo, pp. 139–158 (1977)

46. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
vid. Selsk. Skr. Mat. Nat. Kl 1, 1–67 (1912); reprinted in Nagell, T. (ed.): Selected
Mathematical Papers of Axel Thue, Universitetsforlaget, Oslo, pp. 413–478 (1977)

47. Wah, A., Picciotto, H.: Algebra: Themes, Tools, Concepts. Creative Publications,
Mountain View (1994), http://www.mathedpage.org/attc/attc.html

http://www.mathedpage.org/attc/attc.html

Walking on Data Words�

Amaldev Manuel, Anca Muscholl, and Gabriele Puppis

LaBRI, University of Bordeaux, France

Abstract. We see data words as sequences of letters with additional
edges that connect pairs of positions carrying the same data value. We
consider a natural model of automaton walking on data words, called
Data Walking Automaton, and study its closure properties, expressive-
ness, and the complexity of paradigmatic problems. We prove that de-
terministic DWA are strictly included in non-deterministic DWA, that
the former subclass is closed under all boolean operations, and that the
latter class enjoys a decidable containment problem.

1 Introduction

Data words arose as a generalization of strings over finite alphabets, where the
term ‘data’ denotes the presence of elements from an infinite domain. Formally,
data words are modelled as finite sequences of elements chosen from a set of the
form Σ×D, where Σ is a finite alphabet and D is an infinite alphabet. Elements
of Σ are called letters, while elements of D are called data values. Sets of data
words are called data languages.

It comes natural to investigate reasonable mechanisms (e.g., automata, log-
ics, algebras) for specifying languages of data words. Some desirable features of
such mechanisms are the decidability of the paradigmatic problems (i.e., empti-
ness, universality, containment) and effective closures of the recognized languages
under the usual boolean operations and projections. The often-used idea is to
enhance a finite state machine with data structures to provide some ability to
handle data values. Examples of these structures include registers to store data
values [5,6], pebbles to mark positions in the data word [7], hash tables to store
partitions of the data domain [1]. In [4] the authors introduced the novel idea of
composing a finite state transducer and a finite state automaton to obtain a so-
called Data Automaton. Remarkably, the resulting class of automata captures
the data languages definable in two-variable first-order logic over data words.
For all models except Pebble Automata and Two-way Register Automata the
non-emptiness problem is decidable; universality and, by extension, equivalence
and inclusion problems are undecidable for all non-deterministic models.

In this work we consider data words as sequences of letters with additional
edges that connect pairs of positions carrying the same data value. This idea is

� The research leading to these results has received funding from the ANR project
2010 BLAN 0202 01 FREC and from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement n. 259454.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 64–75, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Walking on Data Words 65

consistent with the fact that as far as a data word is concerned the actual data
value at a position is not relevant, but only the relative equality and disequality
of positions with respect to data values. It is also worth noting that none of the
above automaton models makes any distinction between permutations of the
data values inside data words. Our model of automaton, called Data Walking
Automaton, is naturally two-way: it can roughly be seen as a finite state device
whose head moves along successor and predecessor positions, as well as along
the edges that connect any position to the closest one having the same data
value, either to the right or to the left. Remarkably, emptiness, universality, and
containment problems are decidable for Data Walking Automata. Our automata
capture, up to letter-to-letter renamings, all data languages recognized by Data
Automata. The deterministic subclass of Data Walking Automata is shown to
be closed under all boolean operations (closure under complementation is not
immediate since the machines may loop). Finally, we deduce from results about
Tree Walking Automata [2,3] that deterministic Data Walking Automata are
strictly less powerful than non-deterministic Data Walking Automata, which in
turn are subsumed by Data Automata.

2 Preliminaries

We use [n] to denote the subset {1, ..., n} of the natural numbers. Given a data
word w = (a1, d1) ... (an, dn), a class of w is a maximal set of positions
with identical data value. The set of classes of w forms a partition of the set of
positions and is naturally defined by the equivalence relation i ∼ j iff di = dj .

The global successor and global predecessor of a position i in a data word w
are the positions i+1 and i− 1 (if they exist). The class successor of a position
i is the least position after i in its class (if it exists) and is denoted by i⊕ 1. The
class predecessor of a position i is the greatest position before i in its class (if it
exists) and is denoted by i� 1. The global and class successors of a position are
collectively called successors, and similarly for the predecessors.

Using the above definitions we can identify any data word w ∈ (Σ×D)∗ with
a directed graph whose vertices are the positions of w, each one labelled with
a letter from Σ, and whose edges are given by the successors and predecessor
functions +1, −1, ⊕1, �1. This graph is represented in space Θ(|w|).
Local Types. Given a data word w and a position i in it, we introduce local
types

−−→
typew(i) and

←−−
typew(i) to describe if each of the successors and predecessors

of i exist and whether they coincide. Formally, when considering the successors
of a position i, four scenarios are possible: (1) i is the rightmost position and
neither the global successor nor the class successor are defined (for short we
denote this by

−−→
typew(i) = max), (2) i is not the rightmost position, but it is

the greatest in its class, in which case the global successor exists but not the
class successor (

−−→
typew(i) = cmax), (3) both global and class successors of i are

defined and they coincide, i.e. i + 1 = i ⊕ 1 (
−−→
typew(i) = 1succ), or (4) both

successors of i are defined and they diverge, i.e. i+1 �= i⊕ 1 (
−−→
typew(i) = 2succ).

We define
−−−→
Types = {max, cmax, 1succ, 2succ} to be the set of possible right types

66 A. Manuel, A. Muscholl, and G. Puppis

of positions of data words. The analogous scenarios for the predecessors of i are

determined by the left type
←−−
typew(i) ∈

←−−−
Types = {min, cmin, 1pred, 2pred}. Finally,

we define typew(i) =
(←−−
typew(i),

−−→
typew(i)

)
∈ Types =

←−−−
Types×−−−→

Types.

Class-Memory Automata. We depend on Data Automata [4] for our decid-
ability results. For convenience we use an equivalent model called Class-Memory
Automata [1]. Class-Memory Automata are finite state automata enhanced with
memory-functions from D to a fixed finite set [k]. On encountering a pair (a, d),
a transition is non-deterministically chosen from a set that may depend on the
current state of the automaton, the memory-value f(d), and the input letter a.
When a transition on (a, d) is executed, the current state and the memory-value
of d are updated. Below we give a formal definition of Class-Memory Automata
and observe that this model is similar to that of Tiling Automata [9].

A Class-Memory Automaton (CMA) is formally defined as a tuple A =
(Q, k,Σ,Δ, I, F,K), where Q is the finite set of states, [k] is the set of memory-
values, Σ is the finite alphabet, Δ ⊆ Q×Σ×({0}∪[k])×Q×[k] is the transition
relation, I ⊆ Q is the set of initial states, F ⊆ Q is the set of accepting states,
and K ⊆ [k] is the set of accepting memory-values. Configurations are pairs
(q, f), with q ∈ Q and f partial function from D to [k] (for the sake of brevity,
we write f(d) = 0 whenever f is undefined on d). Transitions are of the form

(q, f) (a,d)−−→ (q′, f ′), with (q, a, f(d), q′, h) ∈ Δ, f ′(d) = h, and f ′(e) = f(e) for all
e ∈ D\{d}. Sequences of transitions are called runs. The initial configurations are
the pairs (q0, f0), with q0 ∈ I and f0(d) = 0 for all d ∈ D; the final configurations
are the pairs (q, f), with q ∈ F and f(d) ∈ {0}∪K for all d ∈ D. The recognized
language L (A) contains all data words w = (a1, d1) ... (an, dn) ∈ (Σ × D)∗

that admit runs of the form (q0, f0)
(a1,d1)−−→ ... (an,dn)−−→ (qn, fn), starting in an initial

configuration and ending in a final configuration.
It is known that CMA-recognizable languages are effectively closed under

union, intersection, letter-to-letter renaming, but not under complementation.
Their emptiness problem is decidable and reduces to reachability in vector addi-
tion systems, which is not known to be of elementary complexity. Inclusion and
universality problems are undecidable. The following result, paired with closure
under intersection, allows us to assume that the information about local types
of positions of a data word is available to CMA:

Proposition 1 (Björklund and Schwentick [1]). Let L be the set of all data
words w ∈ (Σ×Types×D)∗ such that, for all positions i, w(i) = (a, τ, d) implies
τ = typew(i). The language L is recognized by a CMA.

Tiling Automata. We conclude this preliminary section by observing that
CMA are similar to the model of Tiling Automata on directed graphs [9], re-
stricted to a subclass of graphs, namely data words.We fix a finite set Γ of colours
to be used in tiles. Given a type τ = (�−τ ,−�τ) ∈ Types, a τ -tile associates colours
to each position and to its neighbours (as specified by the type). For instance, a
(1pred, 2pred)-tile is a tuple of the form t = (γ0, γ−1, γ+1, γ⊕1) ∈ Γ 4 such that,
when associated to a position i in w with type typew(i) = (1pred, 2pred), implies

Walking on Data Words 67

that the colour of i is γ0, the colour of i− 1 (= i� 1) is γ−1, the colour of i+ 1
is γ+1, and the colour of i ⊕ 1 is γ⊕1. A Tiling Automaton consists of a family
T = (Ta,τ)a∈Σ,τ∈Types of τ -tiles for each letter a ∈ Σ and each type τ ∈ Types.
A tiling by T of a data word w = (a1, d1) ... (an, dn) is a function w̃ : [n] → Γ
such that, for all types τ and all positions i of type τ , the τ -tile that is formed
by i and its neighbours belongs to the set Tai,τ . The language recognized by the
Tiling Automaton T consists of all data words that admit a valid tiling by T .

The following result depends on the fact that CMA can compute the types of
the positions in a data word and is obtained by simple translations of automata:

Proposition 2. CMA and Tiling Automata on data words are equivalent.

3 Automata Walking on Data Words

An automaton walking on data words is a finite state acceptor that processes a
data word by moving its head along the successors and predecessors of positions.
We let Axis = {0,+1,⊕1,−1,�1} be the set of the five possible directions of
navigation in a data word (0 stands for ‘stay in the current position’).

Definition 1. A Data Walking Automaton (DWA for short) is defined as a
tuple A = (Q,Σ,Δ, I, F), where Q is the finite set of states, Σ is the finite
alphabet, Δ ⊆ Q × Σ × Types × Q × Axis is the transition relation, I ⊆ Q is
the set of initial states, F ⊆ Q is the set of final states.

Let w = (a1, d1) ... (an, dn) ∈ (Σ × D)∗ be a data word. Given i ∈ [n] and
α ∈ Axis, we denote by α(i) the position that is reached from i by following
the axis α (for instance, if α = 0 then α(i) = i, if α = ⊕1 then α(i) = i ⊕ 1,
provided that i is not the last element in its class). A configuration of A is a
pair consisting of a state q ∈ Q and a position i ∈ [n]. A transition is a tuple

of the form (p, i) w−−→ (q, j) such that (p, ai, τ, q, α) ∈ Δ, with τ = typew(i)
and j = α(i). The initial configurations are the pairs (q0, i0), with q0 ∈ I and
i0 = 1. The halting configurations are those pairs (q, i) on which no transition
is enabled; such configurations are said to be final if q ∈ F . The language L (A)
recognized by A is the set of all data words w ∈ (Σ × D)∗ that admit a run of
A that starts in an initial configuration and halts in a final configuration.

We will also consider deterministic versions of DWA, in which the set I of
initial states is a singleton and the transition relation Δ can be seen as a partial
function from Q×Σ × Types to Q× Axis.

Example 1. Let L1 be the set of all data words that contain at most one oc-
currence of each data value (this language is equally defined by the formula
∀x∀y x ∼ y → x = y). A deterministic DWA can recognize L1 by reading
the input data word from left to right (along axis +1) and by checking that all
positions except the last one have type (cmin, cmax). When a position with type
(cmin,max) or (min,max) is reached, the machine halts in an accepting state.

68 A. Manuel, A. Muscholl, and G. Puppis

Example 2. Let L2 be the set of all data words in which every occurrence of
a is followed by an occurrence of b in the same class (this is expressed by the
formula ∀x a(x) → ∃y b(y) ∧ x < y ∧ x ∼ y). A deterministic DWA
can recognize L2 by scanning the input data word along the axis +1. On each
position i with left type cmin, the machine starts a sub-computation that scans
the entire class of i along the axis ⊕1, and verifies that every a is followed by
a b. The sub-computation terminates when a position with right type cmax is
reached, after which the machines traverses back the class, up to the position i
with left type cmin, and then resumes the main computation from the successor
i+ 1. Intuitively, the automaton traverses the data word from left to right in a
‘class-first’ manner.

Example 3. Our last example deals with the set L3 of all data words in which
every occurrence of a is followed by an occurrence of b that is not in the same
class (this is expressed by the formula ∀x a(x) → ∃y b(y) ∧ x < y ∧ x � y).
This language is recognized by a deterministic DWA, although not in an obvious
way. Fix a data word w. It is easy to see that w ∈ L3 iff one following cases
holds:

1. there is no occurrence of a in w,
2. w contains a rightmost occurrence of b, say in position �b, and all occurrences

of a are before �b; in addition, we require that either the class of �b does not
contain an a, or the class of �b contains a rightmost occurrence of a, say in
position �a, and another b appears after �a but outside the class of �b.

It is easy to construct a deterministic DWA that verifies the first case. We show
how to verify the second case. For this, the automaton reaches the rightmost
position |w| and searches backward, following the axis −1, the first occurrence
of b: this puts the head of the automaton in position �b. From position �b the
automaton searches along the axis �1 an occurrence of a. If no occurrence of a
is found before seeing the left type cmin, then the automaton halts by accepting.
Otherwise, as soon as a is seen (necessarily at position �a), a second phase starts
that tries to find another occurrence of b after �a and outside the class of �b (we
call such an occurrence a b-witness). To do this, the automaton moves along the
axis +1 until it sees a b, say at position i. After that, it scans the class of i along
the axis ⊕1. If the right type cmax is seen before b, this means that the class
of i does not contain a b: in this case, the automaton goes back to position i
(which is now the first position along axis �1 that contains a b) and accepts iff
b is seen along axis +1 (thanks to the previous test, that occurrence of b must
be outside the class of �b and hence a b-witness). Otherwise, if a b is seen in
position j before the right type cmax, this means that the class of i contains a
b: in this case, the automaton backtracks to position i and resumes the search
for another occurrence of b to the right of i (note that if i is a b-witness, then j
is also a b-witness, which will be eventually processed by the automaton).

Closure Properties. Closure of non-deterministic DWA under union is easily
shown by taking a disjoint union of the state space of the two automata. Closure

Walking on Data Words 69

under intersection is shown by assuming that one of the two automata accepts
only by halting in the leftmost position and by coupling its final states with the
initial states of the other automaton.

Closure properties for deterministic DWA rely on the fact that one can remove
loops from deterministic computations. The proof of the following result is an
adaptation of Sipser’s construction for eliminating loops on configurations of
deterministic space-bounded Turing machines [8].

Proposition 3. Given a deterministic DWA A, one can construct a determin-
istic DWA A′ equivalent to A that always halts.

Proposition 4. Non-deterministic DWA are effectively closed under union and
intersection. Deterministic DWA are effectively closed under union, intersection,
and complementation.

4 Deterministic vs Non-deterministic DWA

We aim at proving the following separation results:

Theorem 1. There exist data languages recognized by non-deterministic DWA
that cannot be recognized by deterministic DWA. There also exist data languages
recognized by CMA that cannot be recognized by non-deterministic DWA.

Intuitively, the proof of the theorem exploits the fact that one can encode bi-
nary trees by suitable data words and think of deterministic DWA (resp. non-
deterministic DWA, CMA) as deterministic Tree Walking Automata (resp. non-
deterministic Tree Walking Automata, classical bottom-up tree automata). One
can then use the results from [2,3] that show that (i) Tree Walking Automata
cannot be determinized and (ii) Tree Walking Automata, even non-deterministic
ones, cannot recognize all regular tree languages. We develop these ideas below.

Encodings of trees. Hereafter we use the term ‘tree’ (resp. ‘forest’) to denote
a generic finite tree (resp. forest) where each node is labelled with a symbol
from a finite alphabet Σ and has either 0 or 2 children. To encode trees/forests
by data words, we will represent the node-to-left-child and the node-to-right-
child relationships via the predecessor functions �1 and −1, respectively. In
particular, a leaf will correspond to a position of the data word with no class
predecessor, an internal node will correspond to a position where both class and
global predecessors are defined (and are distinct), and a root will be represented
either by the rightmost position in the word or by a position with no class
successor that is immediately followed by a position with no class predecessor.
As an example, given pairwise different data values d, e, f, g, the complete binary
tree of height 2 can be encoded by the following data word:

w = d e d f g f d

(to ease the understanding of the example, we drew only the instances of the
predecessor functions �1 and −1 that represent left and right edges of the tree).

A formal definition of encoding of a tree/forest follows:

70 A. Manuel, A. Muscholl, and G. Puppis

Definition 2. We say that a data word w ∈ (Σ × D)+ is a forest encoding
if there is no position i such that

←−−
typew(i) = 1pred and no pair of consecutive

positions i and i+ 1 such that
−−→
typew(i) = 2succ ∧ ←−−

typew(i+ 1) = 2pred.
Given a forest encoding w, we denote by forest(w) the directed binary forest

that has for nodes the positions of w, labelled over Σ, and such that:

– if
←−−
typew(i) ∈ {min, cmin}, then i is a leaf in forest(w),

– if
←−−
typew(i) = 2pred, then i� 1 and i− 1 are left and right children of i,

– if
−−→
typew(i) = max or

−−→
typew(i) = cmax ∧ ←−−

typew(i + 1) = cmin, then i is a
root

(forest(w) is clearly an acyclic directed graph; the fact that each node i has at
most one parent follows from a case distinction based on the types of i and i+1).

We let tree(w) = forest(w) if the forest encoded by w contains a single root,
namely, it is a tree, otherwise, we let tree(w) be undefined.

We remark that there exist several encodings of the same tree/forest that are
not isomorphic even up to permutations of the data values. For instance, the
two data words below encode the same complete binary tree of height 2:

w = d e d f g f d w′ = d f e d g f d

Among all possible encodings of a tree/forest, we identify special ones, called
canonical encodings, in which the nodes are listed following the post-order visit.
Each tree t has a unique canonical encoding up to permutations of the data
values, which we denote by enc(t).

Separations of Tree Automata. We briefly recall the definition of a tree
walking automaton and the separation results from [2,3]. In a way similar to
DWA, we first introduce local types of nodes inside trees. These can be seen
as pairs of labels from the finite sets Types↓ = {leaf, internal} and Types↑ =
{root, leftchild, rightchild}, and they allow us to distinguish between a leaf and
an internal node as well as between a root, a left child, and a right child. We
envisage a set TAxis = {0, ↑, ↙, ↘} of four navigational directions inside a tree:
0 is for staying in the current node, ↑ is for moving to the parent, ↙ is for moving
to the left child, and ↘ is for moving to the right child. A non-deterministic Tree
Walking Automaton (TWA) is a tuple A = (Q,Σ,Δ, I, F), where Σ is the finite
alphabet, Q is the final set of states, Δ ⊆ Q×Σ×Types↓×Types↑×Q×TAxis
is the transition relation, and I, F ⊆ Q are the sets of initial and final states.
Runs of these automata are defined in a way similar to the runs of DWA. The
sub-class of deterministic TWA is obtained by replacing the transition relation
Δ with a partial function from Q × Σ × Types↓ × Types↑ to Q × TAxis and by
letting I consist of a single initial state q0.

Theorem 2 (Bojanczyk and Colcombet [2,3]). There exist languages rec-
ognized by non-deterministic TWA that cannot be recognized by deterministic
TWA. There also exist regular languages of trees that cannot be recognized by
non-deterministic TWA.

Walking on Data Words 71

Translations between TWA and DWA. Hereafter, given a tree language L,
we define Lenc to be the language of all data words that encode (possibly in a
non-canonical way) trees in L, that is, Lenc =

{
w : tree(w) ∈ L

}
. To derive

from Theorem 2 analogous separation results for data languages, we provide
translations between TWA and DWA, as well as from tree automata to CMA:

Lemma 1. Given a deterministic (resp. non-deterministic) TWA A recognizing
L, one can construct a deterministic (resp. non-deterministic) DWA Aenc rec-
ognizing Lenc. Conversely, given a deterministic (resp. non-deterministic) DWA
A, one can construct a deterministic (resp. non-deterministic) TWA Atree such
that, for all trees t, Atree accepts t iff A accepts the canonical encoding enc(t).

The proof of the first claim is almost straightforward: the DWA Aenc is obtained
by first transforming A into a DWA A′ that mimics A when the input is a valid
encoding of a tree, and then intersecting A′ with a deterministic DWA U that
accepts all and only the valid encodings of trees. For the proof of the second
claim, we observe that the navigational power of a DWA is generally greater
than that of a TWA: when the input is a non-canonical encoding of a tree, a
DWA may choose to move from a position i to the position i+1 even if i does not
represent a right child; on the other hand, a TWA is only allowed to move from
node i to node i + 1 when the former is a right child of the latter. Nonetheless,
when restricting to canonical encodings of trees, the successor i+1 of a position
represents the node that immediately follows i in the post-order visit of the tree;
in this case, any move of a DWA from i to i+ 1 can be mimicked by a maximal
sequence of TWA moves of the form ↑↘↙ ... ↙.

Lemma 2. Given a tree automaton A recognizing a regular language L, one can
construct a CMA Aenc recognizing Lenc.

We are now ready to transfer the separation results to data languages:

Proof (of Theorem 1). Let L1 be a language recognized by a non-deterministic
TWA A1 that cannot be recognized by deterministic TWA (cf. first claim of
Theorem 2). Using the first claim of Lemma 1, we construct a non-deterministic
DWA Aenc

1 such that L (Aenc
1) = Lenc

1 . Suppose by way of contradiction that
there is a deterministic DWA B1 that also recognizes Lenc

1 . We apply the second
claim of Lemma 1 and we obtain a deterministic TWA Btree

1 that accepts all
and only the trees whose canonical encodings are accepted by B1. Since Lenc

1 =
{w : tree(w) ∈ L1} is invariant under equivalent encodings of trees (that is,
w ∈ Lenc

1 iff w′ ∈ Lenc
1 whenever tree(w) = tree(w′)), we have that t ∈ L1 iff

enc(t) ∈ Lenc
1 , iff t ∈ L (Btree

1). We have just shown that the deterministic TWA
Btree
1 recognizes the language L1, which contradicts the assumption on L1.
By applying similar arguments to a regular tree language L2 that is not rec-

ognizable by non-deterministic TWA (cf. second claim of Theorem 2), one can
separate CMA from non-deterministic DWA. �

We conclude by observing that if non-deterministic TWA were not closed under
complementation, as one would reasonably expect, then, by Lemma 1, non-
deterministic DWA would not be closed under complementation either.

72 A. Manuel, A. Muscholl, and G. Puppis

5 Decision Problems on DWA

We analyse in detail the complexity of the decision problems on DWA. We
start by considering the simpler acceptance problem, which consists of deciding
whether w ∈ L (A) for a given a DWA A and data word w. Subsequently,
we move to the emptiness and universality problems, which consist of deciding,
respectively, whether a given DWA accepts at least one data word and whether
a given DWA accepts all data words. We will show that these problems are
decidable, as well as the more general problems of containment and equivalence.

Acceptance. Compared to other classes of automata on data words (e.g. CMA,
Register Automata), deterministic DWA enjoy an acceptance problem of very
low time/space complexity, and the problem does not get much worse if we
consider non-deterministic DWA:

Proposition 5. The acceptance problem for a deterministic DWA A and a
data word w is decidable in time O(|w| · |A|) and is Logspace-complete un-
der NC

1 reductions. The acceptance problem for a non-deterministic DWA is
NLogspace-complete.

Emptiness. We start by reducing the emptiness of CMA to the emptiness of
deterministic DWA (or, equivalently, to universality of deterministic DWA). For
this purpose, it is convenient to think of a CMA A as a Tiling Automaton over
a finite set Γ of colours and accordingly identify the set of all runs of A with the
set Tilings(A) ⊆ (Σ × Γ × D)∗ of all valid tilings of data words. Given a data
word w̃ ∈ (Σ × Γ × D)∗, checking whether w̃ belongs to Tilings(A) reduces to
checking constraints on neighbourhoods of positions. Since this can be done by
a deterministic DWA, we get the following result:

Proposition 6. Given a CMA A, one can construct a deterministic DWA Atiling

that recognizes the data language Tilings(A).

Two important corollaries follow from this observation:

Corollary 1. Data languages recognized by CMA are projections of data lan-
guages recognized by deterministic DWA.

Corollary 2. Emptiness and universality of deterministic DWA is at least as
hard as emptiness of CMA, which in turn is equivalent to reachability in VASS.

We turn now to showing that languages recognized by non-deterministic DWA
are also recognized by CMA, and hence emptiness of DWA is reducible to empti-
ness of CMA. Let A = (Q,Σ,Δ, I, F) be a non-deterministic DWA. Without
loss of generality, we can assume that A has a single initial state q0 and a single
final state qf . We can also assume that whenever A accepts a data word w,
it does so by halting in the rightmost position of w. For the sake of brevity,
given a transition δ = (p, a, τ, q, α) ∈ Δ, we define source(δ) = p, target(δ) = q,
letter(δ) = a, type(δ) = τ , and reach(δ) = α. Below, we introduce the concept
of min-flow, which can be thought of as a special form of tiling that witnesses
acceptance of a data word w by A.

Walking on Data Words 73

Definition 3. Let w = (a1, d1) ... (an, dn) be a data word of length n. A
min-flow on w is any map μ : [n] → 2Δ that satisfies the following conditions:

1. There is a transition δ ∈ μ(1) such that source(δ) = q0;
2. There is a transition δ ∈ μ(n) such that target(δ) = qf ;
3. For all i ∈ [n], if δ ∈ μ(i), then letter(δ) = ai and type(δ) = typew(i);
4. For each i ∈ [n] and each q ∈ Q, there is at most one transition δ ∈ μ(i)

such that source(δ) = q;
5. For each i ∈ [n] and each q ∈ Q, there is at most one position j ∈ [n] for

which there is δ ∈ μ(j) such that target(δ) = q and i = reach(δ)(j);
6. For each i ∈ [n], let exiting(i) be the set of all states of the form source(δ)

for some δ ∈ μ(i); similarly, let entering(i) be the set of all states of the form
target(δ) for some δ ∈ μ(j) and some j ∈ [n] such that i = reach(δ)(j); our
last condition states that for all positions i ∈ [n],
(a) if i = 1, then entering(i) = exiting(i) \ {q0},
(b) if i = n, then exiting(i) = entering(i) \ {qf},
(c) otherwise, exiting(i) = entering(i).

Lemma 3. A accepts w iff there is a min-flow μ on w.

Proof. Let w = (a1, d1)...(an, dn) be a data word of length n and let ρ be a

successful run ofA on w of the form (q0, i0)
w−−→(q1, i1)

w−−→...(qm, im) obtained by
the sequence of transitions δ1, ..., δm. Without loss of generality, we can assume
that no position in ρ is visited twice with the same state (indeed, if ik = ih and
qk = qh for different indices k, h, ρ would contain a loop that could be eliminated
without affecting acceptance). We associate with each position i ∈ [n] the set
μ(i) = {δk : 1 ≤ k ≤ m, ik = i}. One can easily see that μ is a min-flow on w.

For the other direction, we assume that there is a min-flow μ on w. We con-
struct the edge-labelled graph Gμ with vertices in Q× [n] and edges of the form(
(p, i), (q, j)

)
labelled by a transition δ, where i ∈ [n], δ ∈ μ(i), p = source(δ),

q = target(δ), and j = reach(δ)(i). By construction, every vertex of Gμ has the
same in-degree as the out-degree (either 0 or 1), with the only exceptions be-
ing the vertex (q0, 1) of in-degree 0 and out-degree 1, and the vertex (qf , n) of
in-degree 1 and out-degree 0. One way to construct a successful run of A on w
is to repeatedly choose the only vertex x in Gμ with in-degree 0 and out-degree
1, execute the transition δ that labels the only edge departing from x, and re-
move that edge from Gμ. This procedure terminates when no edge of Gμ can be
removed and it produces a successful run on w. �

Since min-flows are special forms of tilings, CMA can guess them and hence:

Theorem 3. Given a DWA, one can construct an equivalent CMA.

Universality. Here we show that the complement of the language recognized
by a DWA is also recognized by a CMA, and hence universality of DWA is
reducible to emptiness of CMA. As usual, we fix a DWA A = (Q,Σ,Δ, I, F),
with I = {q0} and F = {qf}, and we assume that A halts only on rightmost
positions. Below we define max-flows, which, dually to min-flows, can be seen as
a special forms of tilings witnessing non-acceptance.

74 A. Manuel, A. Muscholl, and G. Puppis

Definition 4. Let w = (a1, d1) ... (an, dn) be a data word of length n. A
max-flow on w is any map ν : [n] → 2Q that satisfies the following conditions:

1. q0 ∈ ν(1) and qf �∈ ν(n),
2. for all positions i ∈ [n] and all transitions δ ∈ Δ, if source(δ) ∈ ν(i),

letter(δ) = ai, and type(δ) = typew(i), then target(δ) ∈ νreach(δ)(i).

Lemma 4. A rejects w iff there is a max-flow ν on w.

Theorem 4. Given a non-deterministic DWA A recognizing L, one can con-
struct a CMA A′ that recognizes the complement of L.

Containment and Other Problems. We conclude by mentioning a few in-
teresting decidability results that follow directly from Theorems 3 and 4 and
from the closure properties of CMA under union and intersection. The first re-
sult concerns the decidability of containment/equivalence of DWA. The second
result concerns the property of language of being invariant under tree encodings,
namely, of being of the form Lenc for some language L of trees.

Corollary 3. Given two non-deterministic DWA A and B, one can decide
whether L (A) ⊆ L (B).

Corollary 4. Given a non-deterministic DWA A, one can decide whether L (A)
is invariant under tree encodings.

6 Discussion

We showed that the model of walking automaton can be adapted to data words
in order to define robust families of data languages. We studied the complexity
of the fundamental problems of word acceptance, emptiness, universality, and
containment (quite remarkably, all these problems are shown to be decidable).
We also analysed the relative expressive power of the deterministic and non-
deterministic models of Data Walking Automata, comparing them with other
classes of automata appeared in the literature (most notably, Data Automata
and Class-Memory Automata). In this respect, we proved that deterministic
DWA, non-deterministic DWA, and CMA form a strictly increasing hierarchy of
data languages, where the top ones are projections of the bottom ones.

It follows from our results that DWA satisfy properties analogous to those
satisfied by Tree Walking Automata – for instance deterministic DWA, like de-
terministic TWA, are effectively closed under under all boolean operations, and
are strictly less expressive than non-deterministic DWA. It turns out that DWA
are also incomparable with one-way Register Automata [5]: on the one hand,
DWA can check that all data values are distinct, whereas Register Automata
cannot; on the other hand, Register Automata can recognize languages of data
strings that do not encode valid runs of Turing machines, while Data Walking
Automata cannot, as otherwise universality would become undecidable.

Walking on Data Words 75

Since moving along the axis⊕1 (resp. �1) can be simulated by storing the cur-
rent data value or putting a pebble at the current position and moving along the
axis +1 (resp. −1) searching for the nearest position with the stored data value
or marked data value, it follows that DWA are subsumed by two-way 1-Register
Automata and 2-Pebble Automata (note that in Pebble Automata one pebble is
always used by the head). Other variants of DWA could have been considered,
for instance, by adding registers, pebbles, alternation, or nesting. Unfortunately,
none of these extensions yield a decidable containment problem. For instance,
equipping DWA with a single pebble would enable encoding positive instances
of the Post Correspondence Problem, thus implying undecidability of emptiness.

We leave open the following problems:

– Are non-deterministic DWA closed under complementation? (a similar sep-
aration result remains open for Tree Walking Automata [2,3]).

– Do DWA capture all languages definable by two-variable first-order formulas
using the predicates < and ∼.

As a matter of fact, we can easily show that DWA capture FO2 logic with pred-
icates +1 and ⊕1 (the proof relies on a variant of Gaifman’s locality theorem).

Acknowledgments. The first author thanks Thomas Colcombet for detailed
discussions and acknowledges that some of the ideas were inspired during these.
The second author acknowledges Miko�laj Bojańczyk and Thomas Schwentick for
discussions about the relationship between DWA and Data Automata.

References

1. Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theo-
retical Computer Science 411(4-5), 702–715 (2010)

2. Bojańczyk, M., Colcombet, T.: Tree-walking automata cannot be determinized. The-
oretical Computer Science 350(2-3), 164–173 (2006)

3. Bojańczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular
languages. SIAM Journal 38(2), 658–701 (2008)

4. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Transactions on Computational Logic 12(4), 27 (2011)

5. Kaminski, M., Francez, N.: Finite-memory automata. Theoretical Computer Sci-
ence 134(2), 329–363 (1994)

6. Libkin, L., Vrgoč, D.: Regular expressions for data words. In: Bjørner, N., Voronkov,
A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 274–288. Springer, Heidelberg (2012)

7. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Transactions on Computational Logic 5(3), 403–435 (2004)

8. Sipser, M.: Halting space-bounded computations. Theoretical Computer Science 10,
335–338 (1980)

9. Thomas, W.: Elements of an automata theory over partial orders. In: Partial Order
Methods in Verification, pp. 25–40. Americal Mathematical Society (1997)

Careful Synchronization of Partial Automata

with Restricted Alphabets

Pavel V. Martyugin

Ural Federal University, Ekaterinburg, Russia
martuginp@gmail.com

Abstract. We consider the notion of careful synchronization for partial
finite automata as a natural generalization of the notion of synchro-
nization for complete finite automata. We obtain a lower bound for the
length of the shortest carefully synchronizing words of an automaton
with a fixed number of states and a fixed number of letters. In partic-
ular, we consider this bound for automata over a binary alphabet. Our
results improve previously known bounds.

Keywords: careful synchronization, partial automata, synchronizing
words, Černý conjecture.

1 Introduction

A deterministic finite automaton (DFA for short) is a triple A = (Q,Σ, δ),
where Q is a finite set of states, Σ is a finite input alphabet and δ is a totally
defined transition function. Denote by Σ∗ the free Σ-generated monoid and
by λ the empty word. The function δ extends in a natural way to an action
Q × Σ∗ → Q. This extension is also denoted by δ. A DFA A = (Q,Σ, δ) is
called synchronizing if there exists a word w ∈ Σ∗ whose action resets A , that
is, leaves the automaton in one particular state no matter which state in Q it
starts at: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any such word w is said to be a
reset or synchronizing word for the automaton A .

A conjecture proposed by Černý in [2] states that every synchronizing DFA
with n states can be synchronized by a word of length at most (n − 1)2. There
have been made many attempts to prove it but they all have failed so far. The
conjecture was proved only for some partial classes of DFA (see [3,1,5,13]). The
best upper bound known up to date is n(7n2 + 6n+ 16)/48, see [11]. A survey
of results concerning synchronizing words can be found in [12].

The notion of a synchronizing word may be generalized to the case of automata
with a partial transition function (PFA). A partial finite automaton (PFA) is a
triple A = (Q,Σ, δ), where Q is a finite set of states, Σ is a finite input alphabet
and δ is a partial function from Q×Σ to Q. The function δ can be undefined on
some pairs from the set Q×Σ. The function δ can be first extended to an action
from Q × Σ∗ to Q as follows. We put δ(q, λ) = q for every q ∈ Q. Let q ∈ Q,
a ∈ Σ, w ∈ Σ∗. If the transitions δ(q, w) is defined, p = δ(q, w) and the value

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 76–87, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Careful Synchronization of Partial Automata 77

δ(p, a) is defined, then we put δ(q, wa) = δ(p, a). Next, the function δ can be
extended to 2Q ×Σ∗, where 2Q denotes the set of all subsets of Q. Take S ⊆ Q
and w ∈ Σ∗. If the values δ(q, w) are defined for all states q ∈ S, then we put
δ(S,w) = {δ(q, w) | q ∈ S}.

A PFA A = (Q,Σ, δ) is called carefully synchronizing, if there exists a word
w ∈ Σ∗ such that the value δ(Q,w) is defined and |δ(Q,w)| = 1. Any such
word w is said to be carefully synchronizing word (c.s.w.) for the PFA A . It
may turns out that a c.s.w. synchronizes a PFA and does not ”break” it in the
sense that no undefined transition is ever used. Clearly, as each DFA is also a
PFA, a c.s.w. for a DFA is also a synchronizing word for it. Therefore, the notion
of careful synchronization for PFA is a natural generalization of the notion of
synchronization for DFA.

The Černý-type problem may be also considered for PFA. Let car(n) be the
maximal possible length of the shortest c.s.w. of a carefully synchronizing PFA
with n states. The value car(n) was initially studied in [6], [7] and [8] (in these
papers this value was considered in general way and was denoted by d3(n)).
In particular, it was obtained that car(n) = Ω(2n/2). The lower bound was
improved in [10]. Namely, it was proved that car(n) = Ω(3n/3). The best known
up to now upper bound car(n) = O(n2 · 4n/3) was found in [4].

Observe that known bounds on the length of the shortest synchronizing words
are polynomial in n. By contrast the length of the shortest c.s.w may be an
exponential function of n. But there is an essential feature of the series of PFA
used in the proof of the previous lower bounds. In these series the input alphabet
size grows with the number of states.

The above mentioned examples contrast with Černý’s examples [2], in which
the alphabet size is independent of the number of states in the DFA. Thereby,
we may propose the following natural problem: determine the maximum length
of the shortest carefully synchronizing word for an n-state PFA over an input
alphabet of fixed size.

For any integer m we may define the value carm(n) as the maximal length of
the shortest c.s.w. among all carefully synchronizing PFA with n states and an
m-letter input alphabet. In [9] the following lower bounds were obtained:

car2(n) > 2e0,9
2+ε
√
n, car3(n) > e0,9

2+ε√2n.

In this paper we improve these bounds. Let m ≥ 3. Then for infinitely many n

carm(n) > 3
n

3 logm−1 n

For a binary alphabet the relation

car2(n) > 3
n

6 log2 n

holds for infinitely many n. These inequalities improve the previous lower bounds
for n large enough.

We now give some auxiliary notations. Let p and q be integers and p ≤ q. We
denote the set {p, p+ 1, . . . , q} by p..q. Let w be a word over some alphabet Σ.

78 P.V. Martyugin

We denote by |w| the length of the word w. And for 1 ≤ i ≤ |w| by w[i] the i-th
letter of w. More generally, for given i, k ∈ 1..|w| we denote by w[i, k] the word
w[i]w[i + 1] · · ·w[k]. For a DFA A = (Q,Σ, δ) and q ∈ Q, a ∈ Σ, we will write
q.a instead of δ(q, a), when δ is clear from the context. For any subset S ⊆ Q
and for any word w ∈ Σ∗ we also write S.w instead of δ(S,w).

2 Arbitrary Alphabet

Our goal is to construct series of PFA with an increasing number of states, a
fixed alphabet and a large length for the shortest c.s.w. First we introduce a
simple series of a PFA with an increasing alphabet size and a sufficiently long
shortest c.s.w. After that we will use this PFA to construct more complicated
PFA with a restricted alphabet size. Our first construction is a simplification of
the construction from [10]. The lower bound from [10] is better but this example
is useful to construct required examples of automata over fixed alphabets.

Theorem 1. The inequality car(n) ≥ 3n/3 holds for infinitely many n.

Proof. Take a positive integer n = 3k, where k is a natural number. We define
a PFA A (k) = (Q,Σ, δ) with n states and k + 1 letters such that the length of

the shortest c.s.w. for A (k) is 3k = 3n/3. Let Q be the disjoint union
⋃k

i=1 Qi,
where Qi = {q(i, j) | j ∈ 0..2} and let Σ = {x0, . . . , xk−1, y}. The set Q can be
seen as a table with 3 columns and k rows. We now define a partial function δ
as follows. Let i ∈ 0..k − 1, j ∈ 0..2 and m ∈ 0..k − 1. Then

q(i, j).xm =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q(i, j) if m < i;

q(i, j − 1) if m = i, j �= 0;

q(i, 0) if m = i, j = 0;

q(i, 2) if m > i, j = 0;

undefined if m > i, j �= 0;

q(i, j).y =

{
q(0, 0) if j = 0;

undefined otherwise.

Let Qi be the i-th row of the set Q. The restriction of A (k) to the set Qi leads
to three possible actions −,+ and # of letters x0, . . . , xk−1. The action ”−”
associated with the letters x0, . . . , xi−1 is the identity action 0.− = 0,
1.− = 1, 2.− = 2. The action ”#” associated with the letter xi is given by
0.# = 0, 1.# = 0, 2.# = 1. The action ”+” corresponding to the remain-
ing letters xi+1, . . . , xk−1 is 0.+ = 2, 1. + and 2.+ undefined. We denote by
K = ({0, 1, 2}, {#,−,+}, .) the resulting PFA. This 3-state PFA is a basis of
all constructions from this paper. Figure 1 represents the automaton K and the
automaton A (k) for k = 3.

We are going to prove that the length of the shortest c.s.w. of A (k) is 3k.
Let v0 = x2

0; v1 = v0x1v0x1v0; . . . ; vk−1 = vk−2xk−1vk−2xk−1vk−2. It is easy to
check by induction on m that for m ∈ 0..k − 1

Careful Synchronization of Partial Automata 79

Fig. 1. The automata K and A (3)

Q.vm = Qk ∪Qk−1 ∪ · · · ∪Qm+1 ∪ {q(m, 0), . . . , q(0, 0)}

Therefore, Q.vk−1 = {q(k − 1, 0), . . . , q(0, 0)} and the word w = vk−1y carefully
synchronizes the automaton A (k) to the state q(0, 0). It is not hard to calculate
the length of the word w. It equals 3k.

We are going to prove that the word w is the shortest c.s.w for the PFA A (k).
Note the following simple properties of the automaton A (k).

1. Let i ∈ 0..k − 1 and let S ⊆ Qi, then for any m ∈ 0..k − 1, one has Qi ⊇
S.xm �= ∅;

2. For any word u ∈ (Σ \ {y})∗ and for any i ∈ 0..k− 1, one has Q.u∩Qi �= ∅;
3. Only the letter y can merge states from different Qi. Hence every shortest

c.s.w. contains y;
4. The letter y is defined only on the states of the set T0 = {q(i, 0) | i ∈ 0..k−1}

and T0.y = {q(0, 0)}.

These properties imply, that the shortest c.s.w. w is equal to w′y, where w′ ∈
(Σ\y)∗ andQ.w′ = T0. Furthermore for any prefix u of w′ and for any i ∈ 0..k−1,
one has Q.u ∩Qi �= ∅.

Next we define a weight function μ for an arbitrary subset S ⊆ Q such that
S ∩Qi �= ∅ for i ∈ 0..k − 1. Let T ⊆ Qi for some i ∈ 0..k − 1. We put

μ(T) =

⎧⎪⎨⎪⎩
2 · 3i if q(i, 2) ∈ T ;

3i if q(i, 2) /∈ T, q(i, 1) ∈ T ;

0 if T = {q(i, 0)}.

For each S ⊆ Q such that S ∩ Qi �= ∅ for i ∈ 0..k − 1, we set μ(S) =∑k−1
i=0 μ(S ∩Qi). Let S ⊆ Q be such that the value μ(S) is defined and for

80 P.V. Martyugin

m ∈ 0..k − 1 the set S.xm is defined. In this case from the definition of μ and
the transition function δ we obtain

1. For any i ∈ 0..m − 1 the values q(i, 1).xm and q(i, 2).xm are undefined.
Hence we have S ∩ Qi = {q(i, 0)}. Hence S.xm ∩ Qi = {q(i, 2)}. Therefore,
μ(S.xm ∩Qi) = μ(S ∩Qi) + 2 · 3i.

2. For i ∈ m + 1..k − 1 the letter xm fixes the states q(i, 0), q(i, 1) and q(i, 2).
Hence we have S.xm ∩Qi = S ∩Qi. Therefore, μ(S.xm ∩Qi) = μ(S ∩Qi).

3. Let i = m. If μ(S∩Qm) = 2·3m, then μ(S.xm∩Qm) = 3m. If μ(S∩Qm) = 3m,
then μ(S.xm∩Qm) = 0. If μ(S∩Qm) = 0, then μ(S.xm∩Qm) = 0. Therefore,
μ(S.xm ∩Qm) ≥ μ(S ∩Qm)− 3m.

Thus μ(S.xm) ≥ μ(S)− 3m +
∑i=0

m−1 3
i = μ(S)− 1. Furthermore, μ(Q) = 3k − 1

and μ(T0) = 0. Therefore, the length of the shortest word to reach the set T0

from the set Q is not less than 3k − 1. Thus the length of c.s.w. in not less than
3k = 3n/3. The theorem is proved.

3 Fixed Alphabet Size

The n-state automaton from the previous section has n
3 + 1 letters in the input

alphabet. Suppose we can only use an alphabet of fixed size. Can we construct a
series of slowly carefully synchronizing PFA in this case? The answer is positive.
In this section for any integer m ≥ 3 we construct a series of PFA over an
m-letter alphabet such that the shortest c.s.w. of the PFA from this series are
exponentially long.

Theorem 2. Let m ≥ 3. The inequality carm(n) > 3
n

3 logm−1 n holds for infinitely
many n.

Proof. Let n = 3(r + 1)(m − 1)r for some integer r > 0. For any such n we
construct an automaton B(m, r) = (P,Σ, γ) with m letters 0, 1, . . . ,m − 2, c
and n states such that the shortest c.s.w. for B(m, r) has length not less than

3
n

3logm−1 n . We denote the set of letters 0..m− 2 by Ψ . Let k = (m− 1)r and

P = {p(i, j, t) | i ∈ 0..k − 1, j ∈ 0..2, t ∈ 0..r}.

The states of the PFA B(m, r) can be drawn as k blocks (numbered from 0 to
k − 1) where each block is a table with r + 1 rows (numbered from 0 to r) and
3 columns (numbered from 0 to 2).

The upper part of the Figure 2 represents the PFA B(m, r) for m = 3 and
r = 2. In this case k = 4 and n = 36. The action of the letter 1 is drawn by
solid lines, the action of the letter 0 is drawn by dashed lines, the action of the
letter c is drawn by dotted lines. Let us define the function γ. First, we define
the action of the letter c. For any i ∈ 0..k − 1, t ∈ 0..r, j ∈ 0..2 we put

γ(p(i, j, t), c) =

⎧⎪⎨⎪⎩
p(i, j, 0) if t = r;

p(0, 0, 0) if t = 0, j = 0;

undefined otherwise.

Careful Synchronization of Partial Automata 81

Let i ∈ 0..k − 1, and let (a0, . . . , ar−1) be the (m − 1)-ary presentation of the
number i (i.e. the presentation of i in the numeric system with m − 1 digits
0, . . . ,m− 2). If i < 2r−1 then we add leading zeros to the presentation. For any
α ∈ Ψ, j ∈ 0..2, t ∈ 0..r we put

γ(p(i, j, t), α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(i, j, t+ 1) if at = α, t < r − 1;

p(i, r, j − 1) if at = α, j > 0, t = r − 1;

p(i, r, 0) if at = α, j = 0, t = r − 1;

undefined if at > α, j > 0, t < r;

p(i, r, 2) if at > α, j = 0, t < r;

p(i, r, j) if at < α, t < r;

p(i, t, j) if t = r.

Fig. 2. The automaton B(3, 2) and the corresponding automaton A (4)

Let Q = {p(i, j, 0) | i ∈ 0..k − 1, j ∈ 0..2} (it is the first row in Figure 2).
Let Ψrc be the set of all r + 1-letter words having letters from Ψ in the first r
positions and the letter c in the last position. The following lemma clears up the
complicated construction of the automaton B(m, r) and its correlation with the
automaton A (k) from Theorem 1.

Lemma 1. For any word u ∈ (Ψrc ∪ {c})∗ and for any state q ∈ Q such that
q.u is defined, one has q.u ∈ Q, and the PFA (Q,Ψrc∪{c}, γ) is exactly the PFA
A (k) = A (mr−1).

Proof. The upper part and the lower part of Figure 2 illustrate this lemma. The
lower part of the figure represents the action of all words from the set (Ψrc∪{c})∗

82 P.V. Martyugin

on the set Q (which is the first row of the states in the picture above) for PFA
B(3, 2) from upper part of the picture. This automaton is isomorphic to A (4)
with letters x0 = 00c, x1 = 01c, x2 = 10c and x3 = 11c. It consists of four parts.
Each part is isomorphic to the automaton K form the previous section. In the
i-th part (if we number them from 0 to 3) the action of the letter xi is drawn
by solid lines, the actions of letters xh, h < i is drawn by dotted lines and the
actions of letters xh, h > i is drawn by dashed lines.

The first statement of this lemma can be easily checked using the definition of
the function γ. So we prove that A (k) = A (mr−1). Let (a0, a1, . . . , ar−1) where
a0, ..., ar−1 ∈ 0..m−2 be the (m−1)-ary presentation of some integer μ ∈ 0..k−1.
We may consider any digit as ∈ {0, 1} as the letter from the alphabet of the PFA
B(m, r). We prove that the word a0 . . . ar−1c plays the role of the letter xμ for the
PFA A (k), the letter c plays the role of the letter y and, for any i ∈ 0..k− 1, j ∈
0..2, the state p(i, j, 0) plays the role of the state q(i, j) in Q.

First, if the letter c is defined on some state q ∈ Q, then γ(q, c) = p(0, 0, 0) =
q(0, 0). Therefore, the letter c acts on the states from the set Q as the letter y
from A (k).

Let i = μ. In this case by the definition of the function γ, we have p(i, j, 0).a0 =
p(i, j, 1), for any j. Further p(i, j, 1).a1 = p(i, j, 2), . . . , p(i, j, r − 2).ar−2 =
p(i, j, r − 1). Finally

p(i, j, r − 1).ar−1 =

{
p(i, j − 1, r) if j > 0;

p(i, j, r) if j = 0.

Thus,

γ(p(i, j, 0), a0 . . . ar−1c) =

{
p(i, j − 1, 0) if j > 0;

p(i, j, 0) if j = 0
= δ(q(i, j), xμ).

Let i > μ and let (b0, . . . , br−1) be the binary presentation of the number i. In this
case there exists t ∈ 0..r−1 such that at < bt. Let t be the minimal number with
this property. In this case from the definition of γ we obtain p(i, j, 0).a0 . . . at−1 =
p(i, j, t) and p(i, j, t).at = p(i, j, r). Further
p(i, j, r).at+1 . . . ar−1 = p(i, j, r). Thus,

γ(p(i, j, 0), a0 . . . ar−1c) = p(i, j, 0) = δ(q(i, j), xμ).

Let i < μ and let (b0, . . . , br−1) be the binary presentation of the number i. In this
case there exists t ∈ 0..r−1 such that at > bt. Let t be the minimal number with
this property. As in the previous case, we get p(i, j, 0).a0 . . . at−1 = p(i, j, t). If
j > 0, then p(i, j, t).at is undefined. If j = 0, then p(i, j, t).at = p(i, 2, r). Further,
p(i, 2, r).at+1 . . . ar−1 = p(i, 2, r). Thus,

γ(p(i, j, 0), a0 . . . ar−1c) =

{
undefined if j > 0;

p(i, 2, 0) if j = 0.
= δ(q(i, 0), xμ).

The lemma is proved.

Careful Synchronization of Partial Automata 83

Lemma 2. Let w be a shortest c.s.w. for the PFA B(m, r). Then w ∈ (Ψrc ∪
{c})∗.

Proof. Only the transition 0 is defined on the state p(0, 2, 0) and p(0, 2, 0).0 =
p(0, 2, 1). Only the transition 0 is defined on the state p(0, 2, 1) and p(0, 2, 1).0 =
p(0, 2, 2), e.t.c. only the transition 0 is defined on the state p(0, 2, r− 1). There-
fore, w starts with 0r. Furthermore, Q.0r ⊆ Q = {p(i, r, j) | i ∈ 0..k−1, j ∈ 0..2}
(Q is the last row of states in Figure 2). All states from the set Q are fixed
by the letters 0..m − 2. Therefore, we should apply the letter c after 0r to
move something. Hence the word w starts with 0rc. Denote by Qi the set
{p(i, j, 0) | j = 0..2}. Note that 0rc ∈ Ψrc and, for i ∈ 0..k − 1, Q.0rc ∩ Qi �= ∅.
Further Q.0rc.c is not defined. We call a subset S ⊆ Q a Q-set if for any
i ∈ 0..k − 1, one has S ∩ Si �= ∅ and γ(S, c) is not defined. Note, that Q.0rc
is a Q-set.

Let S be a Q-set. Now we prove that for any natural r0 < r and for any
word u ∈ Ψ∗ of length r0 < r the word uc is not defined on the set S. Let
u = a0 . . . ar0−1. Let i ∈ 0..k− 1 be an (m− 1)-ary r-digit integer with (m− 1)-
ary presentation (a0, . . . , ar0−1, 0, ..., 0). It is easy to check by the definition of
γ, that Qi.u belongs to the set {p(i, j, r0) | j ∈ 0..2}. The letter c is not defined
on any state of this set. Hence the word uc is not defined on any state from Qi.
Therefore, the word uc is undefined on the set S.

It can be also proved that for any word u ∈ Ψ∗ of length r0 > r the relations
S.u ⊆ Q and S.u = S.u[1, r] holds, where u[1, r] is the r-letter prefix of the word
u. Moreover, for any word u ∈ Ψrc and any i ∈ 0..k − 1, we have S.u ∩Qi �= ∅.

Thus, we have the following structure of the word w. The word w starts with
w1 = 0rc and P.w1 is a Q-set. The word w can be extended only by some word
w2 ∈ Ψrc. In this case P.w1w2 is also the Q-set. And so on, the word w starts
with w1w2 . . . wz, where w1, . . . , wz ∈ Ψrc and for any y ∈ 1..z − 1 we have
P.w1w2 . . . wy is a Q-set, but P.w1 . . . wz is not a Q-set. In this case the letter c
should be defined on the set P.w1 . . . wz. We also have P.w1 . . . wzc = p(0, 0, 0).
Thus, w = w1 . . . wjc ∈ (Ψrc ∪ {c})∗. The lemma is proved.

We now come back to the proof of Theorem 2. Let w be the shortest c.s.w. for
B(m, r). By Lemma 2 we know that w = w1 . . . wzc for some integer z > 0, where
w1, . . . , wz ∈ Ψrc. Moreover, it follows from the proof of Lemma 2 that w1 = 0rc.
Therefore, it can be checked that γ(P,w1) = Q\{p(0, 2, 0)} = γ(Q,w1). So
γ(P,w1 . . . wy) = γ(Q,w1 . . . wy) for any y ∈ 1..z . Hence w, being a word over
the alphabet Ψrc ∪ {c}, is the shortest c.s.w. for the PFA A (k). Therefore, by
Theorem 1, the word w in the PFA A (k) has 3k letters, and just the last letter
of w is c. So |w| = (3k − 1)(r+1)+ 1. Recall that n = 3(m− 1)r(r+1). Finally,
we get

logm−1 n = logm−1 3+r+logm−1(r+1) > r+1, (m−1)r =
n

3(r + 1)
>

n

3 logm−1 n
.

|w| = (3k − 1)(r + 1) + 1 ≥ 3(m−1)
r

mr > 3
n

3 logm−1 n .

The theorem is completely proved.

84 P.V. Martyugin

4 Binary Alphabet

In this section we construct a series of PFA with 2 letters. This series still give
us an exponential lower bound of the length of the shortest c.s.w. The same
construction can be implemented for an alphabet with more than two letters,
but such a construction gives worse lower bound than the bound obtained from
the construction of the corresponding PFA B(m, r).

Theorem 3. The inequality car2(n) > 3
n

6 log2 n holds for infinitely many n.

Proof. Let n = 3(2r + 1)2r for some integer r > 0. We will construct an au-
tomaton C (r) = (P, {0, 1}, γ) over a binary alphabet with n states such that the

length of its shortest c.s.w. is not less than 3
n

6 log2 n . Let k = 2r and let

P = p(i, j, t) | i ∈ 0..k − 1, j ∈ 0..2, t ∈ {−1, 0, r} ∪

∪ {p(i, j, t, e) | i ∈ 0..k − 1, j ∈ 0..2, t ∈ 1..r − 1, e ∈ {0, 1}}
Sometimes we will denote the states of the kind p(i, j, 0) by p(i, j, 0, 0) and the
states of the kind p(i, j, r) by p(i, j, r, 1). The set of states of the PFA C (r) can
be drawn as k blocks (numbered from 0 to k-1), where each block is a table with
r+ 2 rows (from -1 to r) and 3 columns (from 0 to 2), where the middle part of
any column splits into two columns (0 and 1). Figure 3 represents the PFA C (3).
For this automaton k = 8 and n = 168. The action of the letter 0 is drawn by
dashed lines, the action of the letter 1 is drawn by solid lines. Any of the eight
gray states represents a state of the form p(0, 0,−1). Let us define the function
γ. For any i ∈ 0..k − 1, and j ∈ 0..2 we put

γ(p(i, j,−1), 0) = p(i, j, 0); γ(p(i, j,−1), 1) =

{
p(0, 0,−1) if j = 0;

undefined otherwise.

γ(p(i, j, r), 0) = p(i, 2, r), γ(p(i, j, r), 1) = p(i, j,−1).

Let i ∈ 0..k − 1 and let (a0, . . . , ar−1) be the binary presentation of the number
i. If i < 2r−1 then we add leading zeros. For any t ∈ −1..r − 1, j ∈ 0..2, e ∈
{0, 1}, α ∈ {0, 1} we put

γ(p(i, j, t, e), α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(i, j, t+ 1, 0) if at = α, t < r − 1, e = 0;

p(i, j − 1, r) if at = α, j > 0, t = r − 1, e = 0;

p(i, j, r) if at = α, j = 0, t = r − 1, e = 0;

undefined if at > α, j > 0, e = 0;

p(i, 2, t+ 1, 1) if at > α, j = 0, e = 0;

p(i, j, t+ 1, 1) if at < α, e = 0;

p(i, j, t+ 1, 1) if e = 1.

The proof of this theorem is similar to the proof of the previous theorem. We
just give a sketch of it. Let Q = {p(i, j,−1) | i ∈ 0..k− 1, j ∈ 0..2} (it is the first
row on the Figure 3). The construction of the PFA C (r) is also related to the
PFA A (k) from Theorem 1 (as the construction of the PFA B(m, r)).

Careful Synchronization of Partial Automata 85

Fig. 3. The automaton C (3)

86 P.V. Martyugin

Lemma 3. For any word u ∈ 0{0, 1}r1∪ {1} and for any state q ∈ Q such that
q.u is defined, one has q.u ∈ Q, and the PFA (Q, 0{0, 1}r1 ∪ {1}, γ) is exactly
the PFA A (k) = A (2r).

Proof. The proof of this lemma is similar to the proof of Lemma 1. For any
i ∈ 0..k − 1, j ∈ 0..2 the state p(i, j,−1) plays the role of the state q(i, j) in the
PFA A (k) (as the state p(i, j, 0) in B(m, r)) Let a0 ∈ {0, 1}, . . . , ar−1 ∈ {0, 1}
and let μ ∈ 0..k − 1 be a number with a m − 1-ary record (a0, . . . , ar−1). The
word 0a0 . . . ar−11 in PFA C (r) plays the role of the letter xμ in A (k) (as the
word a0 . . . ar−1c in B(m, r)). The letter 1 from C (r) plays the role of the letter
y from A (k) on the set Q.

Thus, Lemma 3 can be proved in the same way as Lemma 1 by using the
definition of the function γ. We skip details here.

Lemma 4. Let w be the shortest c.s.w. for PFA C (r), then w ∈ (0{0, 1}r1)∗1.

Proof. The proof of this lemma is similar to the proof of Lemma 2. We give a
sketch of it.

Let w be the shortest c.s.w. for C (r). It not difficult to prove, that the word
w starts with 0r+11 and P.0r+11 ⊆ Q. Let p be the state from the set P without
the last row (i.e. except all states of form p(i, j, r)). Then the letters 0 and 1
move this state to the next row. Furthermore, the letter 1 is not defined on the
-1-th row (states of form p(i, j,−1)). The letter 1 moves the states from the last
row to the -1-th row. It is not useful to apply the letter 0 to any state of the last
row, because it moves it back to the subcolumn with number 2, but we need to
obtain the states of the form p(i, 0,−1) to use the last letter 1 and reach the one-
element set {p(0, 0,−1)}. Thus, any ”iteration” of the shortest synchronization
except the last letter starts with 0, continues with some r−1 letters and finishes
with 1. Therefore, the shortest c.s.w. consists of words from the set 0{0, 1}r1
and the last letter 1. The lemma is proved.

Let us finish the proof of Theorem 3. Let w be the shortest c.s.w. of C (r).
Similarly to the proof of Theorem 2 we obtain that w = w1 . . . wz1, where
w1, . . . , wz ∈ 0{0, 1}r1 and γ(P,w1 . . . wh) = γ(Q,w1 . . . wh) for any h ∈ 1..z.
Hence w, being a word over 0{0, 1}r1∪{1}, is the shortest c.s.w. of the PFA A (k).
Therefore, the word w in the PFA A (k) has 3k letters and just the last letter of
w is equal to c. Therefore, |w| = (3k − 1)(r+2)+1. Recall that n = 3(2r+1)2r.
Finally,

log2 n = log2 3 + r + logm−1(2r + 1) > (2r + 1)/2, 2r =
n

3(2r + 1)
>

n

6 log2 n
.

|w| = (3
k − 1)(r + 2) + 1 ≥ 32

r

r > 3
n

6 log2 n .

The theorem is proved.

Acknowledgement. The author acknowledges support from the Presidential
Programm for young researchers, grant MK-266.2012.1. The author also ac-
knowledges Jean-Eric Pin for a careful reading and useful recommendations.

Careful Synchronization of Partial Automata 87

References

1. Ananichev, D.S., Volkov, M.V.: Synchronizing monotonic automata. Theoret. Com-
put. Sci. 327, 225–239 (2004)

2. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Mat.-
Fyz. Cas. Slovensk. Akad. Vied. 14, 208–216 (1964) (in Slovak)

3. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19,
500–510 (1990)

4. Gazdag, Z., Ivan, S., Nagy-Gyorgy, J.: Improved upper bounds on synchroniz-
ing nondeterministic automata. Information Processing Letters 109(17), 986–990
(2009)

5. Kari, J.: Synchronizing finite automata on eulerian digraphs. In: Sgall, J., Pultr, A.,
Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 432–438. Springer, Heidelberg
(2001)

6. Imreh, B., Steinby, M.: Directable nondeterministic automata. Acta Cybernet-
ica 14, 105–115 (1999)

7. Ito, M., Shikishima-Tsuji, K.: Some results on directable automata. In: Karhumäki,
J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113,
pp. 125–133. Springer, Heidelberg (2004)

8. Ito, M.: Algebraic Theory of Automata and Languages. World Scientific, Singapore
(2004)

9. Martyugin, P.V.: Lower bounds for the length of the shortest carefully synchro-
nizing words for two- and three-letter partial automata. Diskretn. Anal. Issled.
Oper. 15(4), 44–56 (2008)

10. Martyugin, P.V.: A Lower Bound for the Length of the Shortest Carefully Syn-
chronizing Words. Russian Mathematics (Iz. VUZ) 54(1), 46–54 (2010)

11. Trahtman, A.N.: Modifying the Upper Bound on the Length of Minimal Synchro-
nizing Word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 173–180. Springer, Heidelberg (2011)

12. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

13. Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. Theo-
ret. Comput. Sci. 410, 3513–3519 (2009)

Random Generation of Deterministic Acyclic
Automata Using the Recursive Method�

Sven De Felice and Cyril Nicaud

LIGM, Université Paris-Est, 77454 Marne-la-Vallée Cedex 2, France
defelic@univ-mlv.fr, nicaud@univ-mlv.fr

Abstract. In this article, we propose a uniform random generator for
accessible deterministic acyclic automata with n states, which is based
on the recursive method. The generator has a preprocessing that re-
quires O(n3) arithmetic operations, and, once it is done, can generate
acyclic automata using O(n) arithmetic operations for each sample. We
also propose a lazy version of the algorithm that takes advantage of the
typical shape of random acyclic automata to reduce experimentally the
preprocessing. Using this algorithm, we provide some statistics on acyclic
automata with up to 1000 states.

1 Introduction

The field of random generation has been very active in the last two decades, de-
veloping general techniques based on combinatorics and probabilities to produce
efficient random samplers for combinatorial structures that appear in computer
science. The main focus is to build an algorithm for a given combinatorial set
E, i.e. a set together with a size function, which takes an integer n as input
and produces an element of E of size n uniformly at random. The interest in
random generators comes from both practice and theory: they are commonly
used as an alternative to benchmarks, in order to test the efficiency of imple-
mentations; they are also widely used by theorists in their works on describing
the typical properties of large random objects, which is a cornerstone in average
case analysis of algorithms [7].

This article deals with the random generation of acyclic deterministic au-
tomata with n states on a fixed finite alphabet. Acyclic automata are automata
recognizing finite languages, and, as such, form an important subclass of au-
tomata. They are especially used in applications such as in linguistics where the
languages of interest are essentially finite. A better understanding of their com-
binatorics, of their typical behavior and the average cases analysis of algorithms
that handle that kind of structures is a long term goal of our work.

In random generation standards, we aim at designing algorithms that can
produce experimental statistics on objects of size at least 1000, in a reasonable

� This work is supported by the French National Agency (ANR) through ANR-10-
LABX-58, through ANR-2010-BLAN-0204 and through ANR-JCJC-12-JS02-012-01.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 88–99, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Random Generation of Deterministic Acyclic Automata 89

amount of time: though probabilistic and combinatorial in nature, random gen-
erator are above all algorithms and the main concern when designing them is to
optimize their complexity, in order to allow the generation of objects that are
large enough.

In the sequel, we present how deterministic acyclic automata can be gener-
ated using a technique known as the recursive method. It is based on an inductive
specification of the objects of interest and consists in two steps: a preprocess-
ing which is costly but need to be done only once, and the random generation
itself. This method originates in [10] and was systematized in [8] to classes of
combinatorial structures that can be described using the symbolic method [7,
Ch. I]. Acyclic automata cannot be described in such a way, and the aim of this
article is to show that the technique applies anyway, though not automatically.
Our algorithm has a preprocessing step using O(n3) arithmetic operations, and
can then generate deterministic acyclic automata with n states using a linear
number of arithmetic operations. We also propose an improved version that is
very efficient in practice to lower the complexity of the preprocessing. This effi-
ciency relies on the typical shape of a random acyclic automaton: we formulate
its complexity as a function of a parameter of its output (its width, defined in
Section 4.5) which seems to grow very slowly in practice. Though requiring a
detailed probabilistic analysis for this observation to be mathematically estab-
lished, we were able to compute some statistics on automata with up to 1000
states within a few minutes using our improved algorithm. This is an example
where information on typical structures helps in designing better algorithms.

One of our motivation for studying acyclic automata comes from the theory
of automaton groups. Consider a letter-by-letter deterministic transducer, and
the different functions from A∗ to A∗ it realizes when taking all the possibilities
for the initial state. Assume that some conditions ensure that this functions are
permutations of A∗ and consider the group they generate. That kind of groups
are especially rich and have been studied by both mathematicians and computer
scientists (see [1] for more details). In particular, Antonenko [3] gave some condi-
tions on the shape of the transducer that ensure that the generated group is finite,
and these conditions make use of acyclic automata. The quantitative study of
Antonenko automata therefore requires more knowledge on deterministic acyclic
automata, and could be a first step toward understanding the combinatorics
behind that kind of groups.
Related works. In [4], the first author and Carnino proposed a solution to the
same problem based on Markov chain techniques. This yields an elegant and
easily adaptable algorithm1, that produces an acyclic automaton with almost
uniform distribution. The major drawback of this method is that there is no
estimation of the bias induced when halting the algorithm after a given number
of iterations, making the design of the algorithm difficult when uniformity is
important2.

1 For instance, they described a Markov chain on minimal acyclic automata only.
2 Using Markov chain terminology: the mixing time of the chain is not known and

seems to be difficult to estimate.

90 S. De Felice and C. Nicaud

The recursive method is based on the combinatorial properties of the objects
to be generated. In [9], Liskovets presented inclusion-exclusion results on the
number of deterministic acyclic automata and on some related quantities. We
will use his work at several stages of the design of our algorithm. Prior to this
work, Domaratzki, Kisman and Shallit proposed lower and upper bounds on the
number of acyclic automata in [5,6].

In [2], Almeida, Moreira and Reis gave a solution to a related problem: they
proposed an algorithm that generate exhaustively all minimal automata with
a given number of states. Because the number of minimal acyclic automata
grows very fast, such an exhaustive generator is limited to small number of
states (there are more than 7 · 1014 minimal acyclic automata with 15 states
on a two-letter alphabet), but it has the virtue of checking every object unlike
a random generator. Both solutions are relevant, in different manners, when
testing conjectures.

2 Definition and Notations

For any integer n ≥ 1, let [n] = {1, . . . , n} be the set of integer from 1 to n. If
n and m are two non-negative integers, we denote by Surj(n,m) the number of
surjections from [n] onto [m]. The value of Surj(n,m) can be computed recur-
sively using the formula: Surj(n,m) = m ·Surj(n− 1,m− 1)+m ·Surj(n− 1,m),
with initial conditions Surj(n, 1) = 1 and Surj(n,m) = 0 if m > n.

Let A be a finite alphabet, a deterministic automaton (or automaton for short)
on A is a tuple (Q, δ, q0), where Q is a finite set of states, δ is the transition
function, a possibly partial mapping from Q×A to Q, and q0 ∈ Q is the initial
state. If p, q ∈ Q and a ∈ A are such that δ(p, a) = q, then (p, a, q) is the
transition from p to q labelled by a, and is denoted by p

a−→ q. An automaton
A = (A,Q, δ) is classically seen as a labelled directed graph whose set of vertices
is Q and whose edges are the transitions of A.

An automaton is accessible (or initially connected) when for every state p
there exists a path starting from the initial state that ends at p. The transition
function is extended to Q×A∗ by morphism, setting δ(p, ε) = p for every p ∈ Q
and δ(p, ua) = δ(δ(p, u), a) when everything is defined, and undefined otherwise.

An automaton is acyclic when its graph is acyclic. A source of an automaton A
is a state with no incoming transition. An acyclic automaton always has at least
one source, and accessible acyclic automata are acyclic automata with exactly
one source.

In the sequel, the set of states of an automaton with n states will almost
always be [n]. If A is an automaton of set of states [n] and X is a set of n
positive integers, the relabelling of A using X is the automaton obtained from
A when changing the states labels by elements of X , while respecting their
relative order: if p < q in A then the new label of p is smaller than the one of q.
Notice that there is only one way to do so.

Important : We are not interested in final states except in the experimental
section of this article (Section 5). We will therefore call “automaton” a determin-

Random Generation of Deterministic Acyclic Automata 91

istic automaton without final states throughout the article, and denote classical
deterministic automata by “automata with final states”.

3 Combinatorics of Acyclic Automata

3.1 Liskovet’s Formula

In [9], Liskovets establishes formulas to count the number of acyclic automata.
These results relies on the inclusion-exclusion method [11], which is a classical
and elegant technique yielding formulas with alternating sums. One such result
is the following (set r = 1 in Eq. (3) of [9]): if ak(n) denote the number of labelled
acyclic automata with n states on a k-letter alphabet, then

ak(n) =

n−1∑
t=0

(
n

t

)
(−1)n−t−1(t+ 1)k(n−t)ak(t). (1)

Let αk(n, s) denote the number of labelled acyclic automata with n states on a
k-letter alphabet that have exactly s sources. Using almost the same proof as
Liskovets’ one can obtain the following formula:

αk(n, s) =

(
n

s

) n−s∑
i=0

(
n− s

i

)
(−1)iak(n− s− i) · (n− s− i+ 1)k(s+i). (2)

Lemma 1. The values of ak(m) for every m ∈ [n] can be computed using O(n2)
arithmetic operations and storing O(n2) integers. The values of αk(m, t) for
every m ∈ [n] and t ∈ [s], with s ≤ n, can be computed using O(sn2) arithmetic
operations and storing O(n2) integers.

Though originating from a combinatorial description, inclusion-exclusion for-
mulas are not always very useful when designing efficient random generators3,
because of the complications inherent to the exclusions of subsets, which corre-
spond to the minus signs in the formulas.

We will however use Liskovets’ formulas later in our algorithms, as a short-
cut to compute the required values more efficiently. For now, we need a more
straightforward combinatorial decomposition that is amenable to the recursive
method; this is the purpose of next section.

3.2 Decomposition Using Sources and Secondary Sources

Our decomposition consists intuitively in repeatedly pruning the automaton by
removing its sources. This is a classical idea coming from the enumeration of
acyclic directed graphs. If A is an acyclic automaton, a state of A is a secondary
source if it is not a source and if all its incoming transitions come from sources.
3 There is a noticeable exception when rejection techniques can be applied, but it does

not appear to be the case for acyclic automata.

92 S. De Felice and C. Nicaud

In other words, p is a secondary source if it has no more incoming transition
when the sources of A are removed.

Let A be an acyclic automaton with n states and s sources on a k-letter
alphabet; when the s sources and their outgoing transitions are removed from
A, what remains is an acyclic automaton B with n−s states. We obtain a formula
by partitioning the possibilities according to the number u of sources of B, that
is, the number of secondary sources of A. Thinking backward, for any given B
with n− s states and u sources, one can reconstruct an automaton A by doing
the following:

1. Choose the set of labels Y ⊆ [n] for the s sources of A and relabel B following
[n] \ Y .

2. For every transition starting from one of the s sources, choose whether it is
undefined or not, and if it is not, where it ends amongst the n−s possibilities.
This must be done in such a way that every secondary source has at least
one incoming transition.

There are
(
n
s

)
ways to choose the set of labels. Let βk(n, s, u) be the number of

possibilities for the second item. We count the number of valid configurations
for the ks transitions starting from a source using the number i of transitions
that end in a secondary source as a parameter: at fixed i, a valid configuration is
obtained by choosing the i transitions amongst the ks possibilities, how they are
mapped to their u possible ending states in a surjective way (since each secondary
source must have an incoming transition from a source) and the ending state of
each of the ks − i remaining transitions, which can be either undefined or one
of the n− s− u states that are neither a source nor a secondary source. Hence,
the number of valid configurations is given by:

βk(n, s, u) =

ks∑
i=u

(
ks

i

)
· Surj(i, u) · (n− s− u+ 1)ks−i. (3)

This yields the following formula for the number of acyclic automata with s < n
sources:

αk(n, s) =

min(ks,n−s)∑
u=1

(
n

s

)
· βk(n, s, u) · αk(n− s, u), (4)

since there are αk(n−s, u)ways to choose B. Of course, we also have αk(n, n) = 1.
Remark that for computational purposes, Eq. (4) is not as good as Liskovet’s

formula, which can be computed in time O(n2) according to Lemma 1. The
gain is the combinatorial description that can be directly turned into a random
generator, provided all the required quantities are already computed.

3.3 Another Description for βk(n, s, u)

For T , U and R three finite sets such that U and R are disjoint, consider the
family G(T ,U ,R) of partial functions from T to U ∪ R such that every q ∈ U

Random Generation of Deterministic Acyclic Automata 93

p1

p2

p3

q1

q2

r1

r2

r3

r4

r5

s sources u secondary
sources

automaton B
automaton A Fig. 1. Main decomposition on an au-

tomaton with n = 10 states on a two-
letter alphabet: To build an acyclic au-
tomaton A with s = 3 sources and
u = 2 secondary sources, one has to
choose B, an acyclic automaton with
2 sources, and to set the transitions
starting from the sources of A: they
can either be defined or undefined,
cannot end in a source of A, and must
cover all the sources of B. The num-
ber of ways to do so is β2(10, 3, 2) =
γ(6, 2, 5).

has at least one preimage. Let γ(t, u, r) be the cardinality of G(T ,U ,R) when
|T | = t, |U| = u and |R| = r.

Recall that βk(n, s, u) counts the number of ways to define the transitions
starting from the s sources such that each of the u secondary sources has at least
one incoming transition, with a total of n states. Let T denote the pairs (s, a)
where s is a source and a is a letter, let U denote the set of secondary sources, and
let R denote the set of states that are neither a source nor a secondary source.
The function that maps each (s, a) to its ending state, when it exists, is a partial
function from T to U ∪R such that every q ∈ U has at least one preimage: it is
therefore an element of G(T ,U ,R). Conversely, every such function corresponds
to a valid choice for the transitions starting from a source. Hence we have the
identity βk(n, s, u) = γ(ks, u, n− s− u).

The inductive description of G(T ,U ,R) is the following. Let x be any element
of T . The functions in G(T ,U ,R) fall in two categories: those such that x is the
unique preimage of an element of U and the other ones. A function of the first
category restricted to T \{x} is exactly an element of G(T \{x},U\{q},R): there
are u · γ(t − 1, u − 1, r) such possibilities. Otherwise, the restriction to T \ {x}
is exactly an element of G(T \ {x},U ,R) and there are (u + r + 1)γ(t− 1, u, r)
possibilities, u + r − 1 being the number of different ways to choose the image
of x including the case when it is undefined. We therefore obtained that:

γ(t, u, r) = u · γ(t− 1, u− 1, r) + (r + u+ 1) · γ(t− 1, u, r). (5)

Moreover this formula has a combinatorial meaning, since it is a discussion on
the different possibilities for the image of a given element of T . The boundary
conditions are: γ(t, 0, r) = (r + 1)t and γ(t, u, r) = 0 for t < u.

3.4 Remark on Labelled Combinatorial Structures

The combinatorial study of labelled structures, i.e. when the n vertices are la-
belled with the elements of [n], is often easier than the one of unlabelled struc-
tures, since symmetries that can appear in the unlabelled case usually make the
counting more complicated.

94 S. De Felice and C. Nicaud

The situation is different for structures that are rigid, that is, structures with
no symmetry4, since the number of labelled structures is exactly n! times the
number of unlabelled ones. Fortunately, this is the case for deterministic au-
tomata when they are accessible, as explained in [9]. In particular, the number
of unlabelled accessible acyclic automata is 1

n!αk(n, 1) and they can be randomly
generated as labelled structures and still being uniform as unlabelled automata.

4 Random Generator

4.1 The Recursive Method

As stated in the introduction, acyclic automata cannot not be directly described
using the symbolic method [7, Ch. I]. Therefore, we cannot use the automatic
translation into a random generator proposed in [8]. The purpose of this section
is to adapt the method to our specific formulas of Section 3 in order to get
such a generator. Remark informally that our formulas are always of the form
λn =

∑
i λn,i, where parameter i has a combinatorial meaning. Assume that λn

and all the λn,i have already been computed, it is then easy to generate the value
of parameter i for a uniform object of size n, since Pn(parameter = i) =

λn,i

λn
. The

idea is to choose i with correct probability, reducing the problem to the uniform
random generation of smaller objects. Some additional constructions can be
required to finally build the result, depending on the combinatorial construction
that leads to the formula for λn.

4.2 Application to Acyclic Automata

The method described above can directly be applied to generate uniformly at
random accessible acyclic automata. The first unoptimized version of the algo-
rithm for an acyclic automaton with s sources is the following:

1. Compute all the values of ak(m), αk(m, s), βk(m, s, u) and also of
(
ks
i

)
and

Surj(i, u) for every m ∈ [n], every s ∈ [m], every u ∈ [m − s] and every
i ∈ [m].

2. Use Eq. (4) with s sources to generate the value of u with correct probability:
The number of secondary sources takes value u with probability(

n
s

)
· βk(n, s, u) · αk(n− s, u)

αk(n, s)
. (6)

3. Recursively generate an acyclic automaton B of size n− s having u sources.
4. Choose the set of source labels X , and relabel B following [n] \X .
5. Use Eq. (3) to generate the number of transitions starting from a source and

ending in a secondary source. The number of such transitions takes value i
with probability (

ks
i

)
· Surj(i, u) · (n− s− u+ 1)ks−i

βk(n, s, u)
. (7)

4 Formally, the group of structure automorphisms is trivial.

Random Generation of Deterministic Acyclic Automata 95

6. Generate the transitions starting from sources with correct probability, by
choosing the i transitions ending in a secondary source, the surjective way
they are associated to secondary sources, and by choosing the ending state
of the other ones (or whether they are undefined).

Lemma 2. The method above produces a random acyclic automaton with n
states and s sources uniformly at random.

The proof is done by induction on n and follows from the unicity of our decom-
position. A direct computation of the probabilities using Eq. (6), Eq. (7), the
induction hypothesis and the probability associated with step 6 yields that A is
produced with uniform probability.

This straightforward way to turn the formulas of Section 3 into a random
generator is constitutive of the recursive method. Notice that a random generator
for accessible acyclic automata of size n is obtained by setting s = 1.

Also remark that the first step is the main limitation of this method, since it
requires quite some time and space to compute and store all the needed results.
Using Eq. (3) and Eq. (4) to perform the computations require O(n4) arithmetic
operations. However, it is important to notice that this preprocessing must be
done only once. Thereafter, as will be explained in Section 4.4, the random
generation of an acyclic automaton with n states is done in time O(n).

In the sequel we will show how to improve the complexity of the algorithm.

4.3 Using γ Instead of β

In Section 3.3 is explained that βk(n, s, u) = γ(ks, u, r), where both quantities
describe how to link the sources to the secondary sources, in two different ways.
The formula for γ(ks, u, r) is more advantageous in terms of time complexity,
since one can compute all the O(n3) needed values for γ using O(n3) arithmetic
operations with Eq. (5). Using γ instead of βk, we also do not need to compute
the values of Surj(i, u) anymore, since the combinatorial decomposition that
leads to Eq. (5) can be directly turned into an algorithm: in order to generate
a random element f of G(T ,U ,R), start from any x ∈ T then pick a random
number d in [γ(t, u, r)]. If d ≤ u·γ(t−1, u−1, r), choose uniformly an element q of
U and set that x is the unique preimage of q by f ; it remains to recursively draw
the restriction of f to T \{x} in G(T \{x},U \{q},R). If d > u ·γ(t−1, u−1, r),
choose uniformly the image of x by f in U ∪ R ∪ {⊥}, where f(x) = ⊥ means
that f(x) is undefined, and recursively draw the restriction of f to T \ {x}
in G(T \ {x},U ,R). The complexity of generating an element of G(T ,U ,R) is
therefore linear in |T |, using adapted data structures.

4.4 Algorithms and Complexity

Our main algorithms are given in Fig. 2, page 96. As explain before, one must
first compute the values for αk, γ and the binomial coefficients that are needed
in the process. In particular, γ having three parameters that can all three be

96 S. De Felice and C. Nicaud

RandomNumberOfSecondarySources(n,s)

1 if n = s then
2 return 0

3 d ←Random([αk(n, s)])
4 u ← 0
5 while d > 0 do
6 u ← u+ 1
7 d ← d−

(
n
s

)
· γ(ks, u, n− s− u) · αk(n− s, u)

8 return u

RandomlySetTransitionsFromSources(T ,U ,R,δ)

// Transitions are added to δ during the process

1 if T = ∅ then
2 return

3 (p, a) ←Remove the first element of T
4 if Random([γ(|T |, |U|, |R|)]) ≤ u · γ(|T | − 1, |U| − 1, |R|)

then
5 q ←Remove the first element of U
6 δ(p, a) ← q

7 else
8 q ← Random(U ∪R ∪ {⊥})
9 if q
= ⊥ then

10 δ(p, a) = q

11 RandomlySetTransitionsFromSources(T ,U,R,δ)

RandomAcyclicAutomaton(n,s,δ)

1 if n = s then
2 δ =empty function
3 return

4 u ← RandomNumberOfSecondarySources(n,s)
5 B ←RandomAcyclicAutomaton(n− s,u,δ)
6 T ← ∅
7 for p ∈ {n− s+ 1, . . . , n} and a ∈ A do
8 Add (p, a) in T
9 U ← {n− s− u+ 1 . . . , n− s}

10 R ← [n− s− u]
11 RandomlySetTransitionsFromSources(T ,U,R,δ)

Fig. 2. On the left a random acyclic automaton with 30 states on a two-letter alphabet.
On the right our main algorithms. The states are labelled in a specific way during the
process, but this does not change the uniformity of the unlabelled result, since we
follow the correct counting numbers for the sources, secondary sources and transitions
between them.

Random Generation of Deterministic Acyclic Automata 97

proportional to n, there are Θ(n3) numbers to store. Thanks to Eq. (5), each
new value of γ is computed in a constant number of arithmetic operations, giving
the following result.

Theorem 1 (Preprocessing). The preprocessing step of the algorithm, where
all the possibly needed values of αk, γ and

(
n
s

)
are computed can be done using

O(n3) arithmetic operations and the memory to store O(n3) numbers.

Once the preprocessing is done, the random generation can be performed effi-
ciently, as stated in the following theorem.

Theorem 2 (Generation). After the preprocessing, the random generation of
an acyclic automaton with n state can be done in a linear number of arithmetic
operations and random generations of integers.

Notice that, as it is usually the case when using the recursive method, the num-
bers involved in the computations are huge. This is why our theorems are stated
in terms of number of arithmetic operations: one cannot consider that such
operations can be done in constant time in real implementations. Alternative
algorithms for the recursive method that use floating point arithmetic have been
studied, but this is beyond the scope of this article.

4.5 A Lazy Strategy

A common strategy for that kind of algorithms is the lazy strategy, which consists
in computing the values for αk and γ only when needed. They are still stored,
but the computations are done on the fly. This strategy proves to be very efficient
in practice in our case, because of the specific shape of a uniform random acyclic
automata (as depicted in Fig. 3).

If A is an acyclic automaton, let sources(A) be its number of sources and let
pruned(A) be the acyclic automaton obtained when removing the sources and
their outgoing transitions. We define the width width(A) of an acyclic automaton
A by width(A) = max {sources(A),width(pruned(A))} if A has at least one state
and width(A) = 0 otherwise. The width of an acyclic automaton A is therefore
the maximum size of a layer of sources obtained when repeatedly pruning A.

We aim at using the width of the output automaton as a parameter for the
complexity of our algorithm. The main motivation for this is the typical flat shape
of a random acyclic automaton (Fig. 3). Assume that the algorithm produces an
automaton A of width w. Then the various values taken by u in the algorithms
are always smaller than or equal to w, and those taken by |T | smaller than or
equal to k ·w. Therefore, the lazy strategy only computes values for γ(t, u, r) for
t ≤ k ·w, u ≤ w and r ≤ n, which requires O(n·w2) time and space. However, the
idea would not work without a shortcut to compute the values of αk(n, s), which
is needed in the algorithms; indeed, the variable u in Eq. (4) takes values that
are bigger than w, especially considering the inductive nature of this equation.
Fortunately, we can use the inclusion-exclusion formula of Eq. (2) instead, which
can be computed using O(n2 · w) arithmetic operations according to Lemma 1.
This gives the following result.

98 S. De Felice and C. Nicaud

Fig. 3. The shape of a random acyclic automata with 200 states on a two-letter alpha-
bet. The initial state is on the left, and we have represented the number of sources seen
at each step when repeatedly pruning the automaton. The width of this automaton is
6, and its shape is typical of what is observed under the uniform distribution.

Theorem 3 (Lazy Strategy). Using the lazy strategy in the random genera-
tor, the generation algorithm (including the computation of the required values)
needs O(n2 · w) arithmetic operations, where w is the width of the generated
acyclic automaton.

Theorem 3 is not enough to prove the generic efficiency of the lazy strategy: one
would also needs to show that, with high probably, a random uniform acyclic
automaton with n states has a small width with respect to n. Experimentation
indicates that it should be true, and trying to prove this is ongoing work. How-
ever, there is no reason to avoid this strategy, which is at least as good as the
classical one even when the generated acyclic automaton has a large width.

5 Conclusion and Experiments

Using some optimizations on an inductive decomposition of acyclic automata,
we proposed a random generator that is efficient enough to make experimental
statistics on automata of size up to 1000 or a bit more. We relied on the alter-
native description of βk by γ to lower the initial complexity, and used inclusion-
exclusion formulas to make the lazy strategy possible.

We have implemented our random generator in the interpreted language
Python, which is clearly not the best choice for computational speed. However,
we could easily generate accessible automata of size 1000 in a reasonable amount
of time (a few minutes to generate 100 automata on a personal computer).

In our experiments, we considered that each state is final with probability
1
2 . In our first test, we computed experimentally the probability that a random
acyclic automaton with final states is minimal. Notice that minimality is easier
to check for acyclic automata than for general automata (see [2] for the details).
The results for alphabets of size 2 and 3 are depicted in Fig. 4.

We also computed the number of words in the finite language recognized by a
random acyclic automaton with final states. Since it grows very fast, we switch
to logarithms by calculating logarithm of the geometric mean of the number of
recognized words. It seems to indicate that random acyclic automata are a very
compact way to describe huge random sets of words (see Fig. 5).

Acknowledgments. we would like to thanks Arnaud Carayol for the very fruit-
ful discussions we had during the preparation of this article.

Random Generation of Deterministic Acyclic Automata 99

100 200 300 400 500 600 700 800 900 1000

10%

20%

30%

40%

50%

k = 2

k = 3

number of states

ra
ti

o
of

m
in

im
al

au
to

m
at

a

Fig. 4. The ratio of minimal automata for
alphabet of size 2 and 3. Each curve has
been obtained by generating 1000 acyclic
automata for 101 different sizes, from 10
to 1000. Note that one can significantly
increase the ratio by forcing states with
no outgoing transition to be final (hoping
that there is only one such state, which is
often the case experimentally).

Fig. 5. The natural logarithm of the num-
ber of recognized words for an alphabet
of size 2. The curve has been obtained by
generating 1000 acyclic automata for 101
different sizes, from 10 to 1000. It is dif-
ficult to guess the function behind that
kind of experimental curves, but subex-
ponential growth like x �→ e

√
x is a possi-

bility. 100 200 300 400 500 600 700 800 900 1000

5

10

15

20

25

30

number of states

lo
ga

ri
th

m
of

th
e

nu
m

be
r

of
re

co
gn

iz
ed

w
or

ds

References

1. Akhavi, A., Klimann, I., Lombardy, S., Mairesse, J., Picantin, M.: On the finiteness
problem for automaton (semi)groups. IJAC 22(6) (2012)

2. Almeida, M., Moreira, N., Reis, R.: Exact generation of minimal acyclic determin-
istic finite automata. Int. J. Found. Comput. Sci. 19(4), 751–765 (2008)

3. Antonenko, A.S.: On transition function of mealy automata with finite growth.
Matematychni Studii 29(1) (2008)

4. Carnino, V., De Felice, S.: Sampling different kinds of acyclic automata using
Markov chains. TCS 450, 31–42 (2012)

5. Domaratzki, M.: Improved bounds on the number of automata accepting finite lan-
guages. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 209–219.
Springer, Heidelberg (2003)

6. Domaratzki, M., Kisman, D., Shallit, J.: On the number of distinct languages
accepted by finite automata with n states. Journal of Automata, Languages and
Combinatorics 7(4), 469–486 (2002)

7. Flajolet, P., Sedgewick, R.: Analytic combinatorics. Cambridge Univ. Pr. (2009)
8. Flajolet, P., Zimmermann, P., Cutsem, B.V.: A calculus for the random generation

of labelled combinatorial structures. TCS 132(2), 1–35 (1994)
9. Liskovets, V.A.: Exact enumeration of acyclic deterministic automata. Discrete

Applied Mathematics 154(3), 537–551 (2006)
10. Nijenhuis, A., Wilf, H.: Combinatorial algorithms. Computer Science and Applied

Mathematics. Academic Press (1975),
http://bks9.books.google.fr/books?id=09BQAAAAMAAJ

11. Stanley, R.P.: Enumerative Combinatorics, Cambridge Univ. Pr. (2000)

http://bks9.books.google.fr/books?id=09BQAAAAMAAJ

Boolean Language Operations

on Nondeterministic Automata
with a Pushdown of Constant Height

Viliam Geffert1,�, Zuzana Bednárová1,�,
Carlo Mereghetti2, and Beatrice Palano2

1 Dep.Computer Sci., P. J. Šafárik Univ., Jesenná 5, 04154 Košice, Slovakia
viliam.geffert@upjs.sk, ivazuzu@eriv.sk

2 Dip. Informatica, Univ. degli Studi di Milano, v. Comelico 39, 20135Milano, Italy
mereghetti@di.unimi.it, palano@di.unimi.it

Abstract. We study the size-cost of Boolean operations on constant
height nondeterministic pushdown automata, i.e. on pushdown automata
with a constant limit on the size of the pushdown. For intersection, we
show an exponential simulation and prove that the exponential blow-
up is necessary. For union, instead, we provide a linear trade-off while,
for complement, we show a double-exponential simulation and prove a
single-exponential lower bound.

Keywords: descriptional complexity, finite state automata, regular lan-
guages, nondeterministic pushdown automata.

1 Introduction

A primary task in the area of descriptional complexity is the analysis of how suc-
cinctly a given device is able to describe a certain class of languages. Quite often,
languages that are more “complex” are obtained from “simpler” ones by the use
of some “standard” language operations in the class, which requires evaluating
the cost of implementing these language operations by the given device.

The largest amount of results devoted to descriptional complexity is related
to regular languages . Among others, these languages are representable by reg-
ular grammars, expressions, and several variants of automata, starting from
the original model of a deterministic finite state automaton (dfa) and ranging
over enhanced models with additional features, like nondeterminism, alternation,
probabilism, quantum or two-way versions. . . For a brief survey, see, e.g., [6,12].

In this paper, we study the descriptional power of a constant height nondeter-
ministic pushdown automaton (constant height npda). Such machine is a tradi-
tional pushdown automaton (see, e.g., [7]) with a constant limit on the height of
the pushdown, not depending on the input length. This model was introduced
in [4], together with its deterministic version (constant height dpda). It is easy
to see that such devices accept regular languages. However, a representation by

� Supported by the Slovak grant contracts VEGA 1/0479/12 and APVV-0035-10.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 100–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Nondeterministic Automata with a Pushdown of Constant Height 101

constant height pushdown automata can be more succinct. In [4], an optimal
exponential gap was shown between the sizes of npdas and of nondeterministic
finite state automata (nfas). The same gap was found for the deterministic case,
between dpdas and dfas. Converting a constant height npda into an equivalent
dpda uses, and also requires, a double-exponential blow-up [1].

Here we concentrate on a classical problem, the cost of Boolean operations, on
constant height npdas. There exists a wide literature on this issue with respect
to, e.g., finite state automata [6,13], regular expressions [3,5], or grammars [8,9].
The cost of these operations for constant height dpdas was also investigated,
in [2] (see also Tab. 1 in Sect. 5).

First, we analyze the cost of intersection. Given two constant height npdas
A and B with respective sets of states QA, QB, pushdown alphabets ΓA, ΓB, and
pushdown heights hA, hB, we design an npda for L(A)∩L(B) with at most ‖QA‖·
‖Γ≤hA

A ‖ · ‖QB‖, states, ‖ΓB‖ pushdown symbols, and the pushdown height hB.
Since the roles of A and B can be swapped, the number of states is actually
exponential in h = min{hA, hB}. In the worst case, an exponential blow-up is
necessary: for each fixed c ≥ 2, we exhibit {L′n}n≥1 and {L′′n}n≥1, two families
of languages over a (c+1)-letter alphabet, such that: (i) both L′n and L′′n are
accepted by npdas with O(c) states, c pushdown symbols, and the pushdown
height n, but (ii) their intersection cannot be accepted by an npda in which
both the number of states and the pushdown height are below cn/3−O(logn).

The union operation, instead, turns out to be easy. We propose an npda for
L(A)∪L(B) with a linear trade-off, namely, with at most max{1, |hA−hB|} +
‖QA‖+‖QB‖ states, 1+max{‖ΓA‖, ‖ΓB‖} pushdown symbols, and the pushdown
height bounded by max{hA, hB}.

Finally, for the complement L(A)c, we provide an npda with 2‖QA‖·‖Γ
≤hA
A ‖

many states, actually a dfa with the pushdown height equal to zero. Although we
leave as open the problem of showing the optimality of such double-exponential
blow-up, we prove a single-exponential lower bound for the cost, by providing
{L̃n}n≥1, a family of languages over a (c+1)-letter alphabet, such that: (i) L̃n is
accepted by an npda with n+O(c) states, c+1 pushdown symbols, and the
pushdown height n+1, but (ii) its complement cannot be accepted by an npda in
which both the number of states and the pushdown height are below cn/3−O(logn).

These lower bounds required some new techniques, for several reasons: (i) Al-
ready a deterministic machine with a polynomial pushdown height can use expo-
nentially many different pushdown contents and hence exponential lower bounds
cannot be obtained directly, by standard pigeonhole arguments. (ii) Moreover,
our machines are nondeterministic and hence, after reading the first i symbols
of an input a1 · · ·a�, the state and the pushdown content do not depend only on
a1 · · · ai, but, using a guess-and-verify fashion, on the entire input.

2 Preliminaries

We assume the reader is familiar with the standard models of deterministic and
nondeterministic finite state automata (dfa and nfa, for short) and pushdown

102 V. Geffert et al.

automata (dpda and npda, see, e.g., [7]). Here we briefly recall these models.
By Σ∗, we denote the set of words over an alphabet Σ. For a word ϕ = a1 · · · a� ∈
Σ∗, let ϕR = a� · · · a1 denote its reversal and |ϕ| = � its length. The set of words

of length i is denoted by Σi, with Σ≤h =
⋃h

i=0 Σ
i. By ‖S‖, we denote the

cardinality of a set S and by Sc its complement.
For technical reasons, the npdas are introduced here in the form that clearly

distinguishes instructions manipulating the pushdown store from those reading
the input tape [4]. An npda is a sextuplet A = 〈Q,Σ, Γ,H, qI, F 〉, where Q is
the finite set of states, Σ the input alphabet, Γ the pushdown alphabet, qI ∈ Q
the initial state, F ⊆ Q the set of accepting (final) states, and H ⊆ Q × ({ε} ∪
Σ ∪ {−,+}·Γ)×Q the transition relation, with the following meaning:

(i) (q, ε, q′) ∈ H : A gets from the state q to the state q′ without using the
input tape or the pushdown store.

(ii) (q, a, q′) ∈ H : if the next input symbol is a, A gets from q to q′ by reading
the symbol a, not using the pushdown store.

(iii) (q,−X, q′) ∈ H : if the symbol on top of the pushdown is X , A gets from q
to q′ by popping X , not using the input tape.

(iv) (q,+X, q′) ∈ H : A gets from q to q′ by pushing the symbol X onto the
pushdown, not using the input tape.

An accepting computation begins in the state qI with the empty pushdown store,
and ends in an accepting state q′ ∈ F after reading the entire input. As usual,
L(A) denotes the language accepted by the npda A. A deterministic pushdown
automaton (dpda) is obtained by claiming that the transition relation does not
allow executing more than one transition at a time. (See [2] for a more formal
definition.) The following “normal form” of npdas will be required later.

Lemma 1 ([4, Lem. 1]). For any npda A = 〈Q,Σ, Γ,H, qI, F 〉, there exists
an equivalent npda A′ = 〈Q ∪ {qF}, Σ, Γ,H ′, qI, {qF}〉, such that A′ accepts by
entering the unique qF with empty pushdown store at the end of the input.

Given a constant h ≥ 0, the npda A is of pushdown height h if, for any ϕ ∈ L(A),
there exists an accepting computation along which the pushdown store never
contains more than h symbols. Such a machine will be denoted by a septuplet
A = 〈Q,Σ, Γ,H, qI, F, h〉, where h ≥ 0 is a constant denoting the pushdown
height, and all other elements are defined as above. By definition, the meaning
of the transitions in the form (iv) is modified as follows:

(iv’) (q,+X, q′) ∈ H : if the current pushdown store height is smaller than h,
then A gets from the state q to the state q′ by pushing the symbol X onto
the pushdown, not using the input tape; otherwise A aborts and rejects.

A fair descriptional complexity measure takes into account all the components
the device consists of, i.e., (i) the number of finite control states, (ii) the size of
the pushdown alphabet, and (iii) the height of the pushdown store [4].

Lemma 2 ([2, Lem. 2]). For each constant height npda A = 〈Q,Σ, Γ,H,
qI, F, h〉, there exists an equivalent nfa A′ = 〈Q′, Σ,H ′, q′I, F

′〉 with ‖Q′‖ ≤
‖Q‖·‖Γ≤h‖ states.

Nondeterministic Automata with a Pushdown of Constant Height 103

We conclude this section by a combinatorial lemma required later. The lemma
says that each sufficiently large subset of A×B (where A and B are some finite
sets) must contain a trio of elements forming a “rectangular triangle”.

Lemma 3. Let A and B be arbitrary two finite sets satisfying ‖A‖ ≥ 2 and
‖B‖ ≥ 2, and let C be a subset of A×B satisfying ‖C‖ ≥ ‖A‖+ ‖B‖− 1. Then
there must exist some elements ȧ, ä ∈ A and ḃ, b̈ ∈ B, with ȧ �= ä and ḃ �= b̈,
such that [ȧ, ḃ], [ȧ, b̈], [ä, ḃ] are all in C.

3 Intersection for Constant Height NPDAs

Here we consider the amount of computational resources that are sufficient and
necessary for a constant height npda accepting the intersection L(A)∩L(B), for
the given constant height npdas A and B. After transforming both A and B into
the equivalent nfas, such machine can be built easily. However, by exploiting
the power of pushdown storage, we obtain a better construction:1

Theorem 1. Given two constant height npdas A = 〈QA, Σ, ΓA, HA, qA, FA, hA〉
and B = 〈QB, Σ, ΓB, HB, qB, FB, hB〉, there exists a constant height npda C
accepting the intersection L(A) ∩ L(B) with the number of states bounded by

‖QC‖ ≤ ‖QA‖ · ‖Γ≤hA
A ‖ · ‖QB‖, using ‖ΓC‖ = ‖ΓB‖ pushdown symbols and the

pushdown height hC = hB.

The main idea is to turn the machine A into an nfa A′ (by Lem. 2) and then
construct C simulating A′ and B simultaneously, using the pushdown store for
the simulation of B. Final states are chosen so that C accepts if and only if the
input is accepted by both machines. Since the roles of A and B can be swapped,
the number of states is actually exponential in h = min{hA, hB}.
We shall now show that the exponential cost cannot be avoided. To this pur-
pose, for arbitrary fixed input alphabet Σ, we define two families of languages
{L′n}n≥1 and {L′′n}n≥1 accepted by constant height npdas with O(‖Σ‖) states,
‖Σ‖ pushdown symbols, and the pushdown height hn = n, but with a lower
bound ‖Σ‖Ω(n) for accepting {L′n ∩ L′′n}n≥1. First, fix a special symbol $ /∈ Σ.
Then, for each n ≥ 1, define the following two languages:

L′n = {u1$v1$u
R
2$v

R
2 : u1, v1, u2, v2 ∈ Σ∗, |u1|≤n, u2 is a suffix of u1},

L′′n = {u1$v1$u
R
2$v

R
2 : u1, v1, u2, v2 ∈ Σ∗, |v1|≤n, v2 is a suffix of v1} .

(1)

Lemma 4. For any given Σ and n ≥ 1, the languages L′n and L′′n can be accepted
by dpdas (hence, also by npdas) A′n and A′′n, respectively, with 2 ·‖Σ‖ + 4 ≤
O(‖Σ‖) states, ‖Σ‖ pushdown symbols, and the pushdown height hn = n.

1 Using the transition function in a form introduced in standard textbooks, only a
single state would be required, since the language L(A)∩L(B) is regular, and hence
context free. (See e.g. [7, Sect. 6.3.1].) This indicates that the “traditional” transition
function δ : Q× (Σ∪{ε})×Γ → 2Q×Γ∗

(combining input and pushdown operations
into a single step) is not realistic if the state-set size is at stake.

104 V. Geffert et al.

Proof. On input u1$v1$u
R
2$v

R
2 , the dpda A′n compares the pushdown content

filled while reading u1 with uR
2 in order to check whether v2 is a suffix of v1,

which leaves the first |u1| − |uR
2 | symbols of u1 in the pushdown. (The machine

A′′n runs in a similar way.) The tricky detail is that, to reduce the number of
states from Ω(n·‖Σ‖) to O(‖Σ‖), we do allow both A′n and A′′n to reject in the
middle of the input by pushdown overflow. ��

Denote now the intersection of L′n and L′′n as

Ln = L′n ∩ L′′n = {u1$v1$u
R
2$v

R
2 : u1, v1, u2, v2 ∈ Σ∗, |u1|≤n, |v1|≤n,

u2 is a suffix of u1 and v2 is a suffix of v1} .

Clearly, if |u1| = |v1| = |u2| = |v2| ≤ n, the conditions for membership are
simplified: u1$v1$u

R
2$v

R
2 is in Ln if and only if u2 = u1 and v2 = v1.

Theorem 2. Let {An}n≥1 be constant height npdas accepting the languages
{Ln}n≥1, for some non-unary alphabet Σ, and let Qn and hn be, respectively,
the number of states and the pushdown height in An. Then (‖Qn‖+1)2·(hn+1) >
‖Σ‖n/(4n2+6n), for each n ≥ 1. Consequently, in {An}n≥1, the number of
states and the pushdown height cannot be both polynomial in n; either ‖Qn‖+1
or hn + 1 (or both values) are above ‖Σ‖n/3/ 3

√
4n2+6n ≥ ‖Σ‖n/3−O(logn).

Proof. Let An = 〈Qn, Σ, Γn, Hn, qI,n, Fn, hn〉 be a constant height npda accept-
ing Ln. For contradiction, assume first that the npda An is in the “normal form”
of Lem. 1, that is, it accepts each input by entering the unique final state qF,n

with empty pushdown store at the end of the input (hence, Fn = {qF,n}), and
that pn = ‖Qn‖2·(hn+1) ≤ ‖Σ‖n/(4n2 + 6n), for some n. From now on, for the
sake of readability, we simply write p instead of pn, as well as A,Q, Γ,H, qI, qF, h
instead of An, Qn, Γn, Hn, qI,n, qF,n, hn. From these assumptions we get that

p = ‖Q‖2 ·(h+ 1) ≤ ‖Σ‖n/(4n2 + 6n) . (2)

Next, define the following set of pairs:

V0 = Σn×Σn = {[u, v] : u, v ∈ Σ∗, |u| = |v| = n} .

Consider now the computation on the input z = uvuR$vR, for each [u, v] ∈ V0.
It is clear that z ∈ Ln, and hence there must exist at least one accepting compu-
tation of A on this input. From among all possible accepting computations for
this input, let us fix the “leftmost” accepting computation path. (That is, each
time the machine gets into a configuration from which several nondeterministic
choices lead to successful acceptance, take the leftmost choice, using some lexico-
graphical ordering on H , the transition relation.) Now, let us fix some significant
parameters for this leftmost path (see either side of Fig. 1):

– y� ∈ {0, . . . , h}, the lowest height of pushdown store in the course of reading
the substring vuR$,

– q� ∈ Q, the state in which the height y� is attained for the last time, along
vuR$,

Nondeterministic Automata with a Pushdown of Constant Height 105

�

��

� �
�

��
x� xk

y�
qkq�

u v uR$ vR

γu,v
�� �

� �

� �
�

x�xk

y�
qk q�

u v uR$ vR

γu,v
��� �

Fig. 1. Parameters y�, q�, x� and the pushdown content γu,v along the computation
(either side). Parameters qk, xk depend on whether q� is reached in the course of read-
ing v (shown on the left), or in the course of reading uR$ (shown on the right).

– x� ∈ {1, . . . , |vuR$|} = {1, . . . , 2n+ 3}, the distance from the beginning of
vuR$ to the input position in which q� is entered, and

– γu,v, the pushdown content at this moment.

The values for the next two parameters, namely, for qk ∈ Q and xk ∈ {1, . . . , n},
depend on whether x� ≤ |v| = n+2 or x� > n+2:

If x� ≤ |v| = n+2, that is, if the computation reaches the state q� in the
course of reading v (see the left part of Fig. 1), then

– qk ∈ Q is the state at the moment when the machine is going to decrease,
for the first time, the pushdown height from y� to y�−1, in the course of
reading vR (because our automaton always accepts with empty pushdown
store—by Lem. 1, such situation must happen), and

– xk ∈ {1, . . . , |vR|} = {1, . . . , n} is the distance from the beginning of vR to
the input position in which qk is entered.

If x� > |v| = n+2, that is, if the computation reaches the state q� in the course
of reading uR$ (see the right part of Fig. 1), then

– qk ∈ Q is the state at the moment when the machine has just increased, for
the last time, the pushdown height from y�−1 to y�, in the course of reading u
(because our automaton always starts with empty pushdown store—by def-
inition, such situation must happen), and

– xk ∈ {1, . . . , |u|} = {1, . . . , n} is the distance from the beginning of u to the
input position in which qk is entered.

It is easy to see that, independent of whether x� ≤ |v| = n+2 or x� > n+2, we
have y� ∈ {0, . . . , h}, q� ∈ Q, x� ∈ {1, . . . , 2n+ 3}, qk ∈ Q, and xk ∈ {1, . . . , n}.
Therefore, the number of different quintuples [y�, q�, x�, qk, xk] is bounded by
‖Q‖2 ·(h + 1) ·(2n+3) ·n = ‖Q‖2 ·(h + 1) ·(2n2+3n). Thus, by using also (2),
the number of such quintuples can be bounded by ‖Q‖2 ·(h + 1) ·(2n2+3n) ≤
‖Σ‖n/(4n2+6n)·(2n2+3n) = ‖Σ‖n/2.

In conclusion, for each [u, v] ∈ V0, we took the input uvuR$vR, and fixed the
unique leftmost accepting computation path, which gives the unique quintuple of
parameters [y�, q�, x�, qk, xk]. Thus, each pair [u, v] ∈ V0 can be associated with
exactly one quintuple [y�, q�, x�, qk, xk]. Hence, a simple pigeonhole argument

106 V. Geffert et al.

�

��

� �
�

��
x� xk

y�

qkq�

u̇ or ü $v̇$ u̇R$ or üR$ v̇R

γu̇,v̇ or γü,v̇

��

Fig. 2. Computation paths for the inputs ż = u̇$v̇$u̇R$v̇R, z̈u = ü$v̇$üR$v̇R, and δu =
u̇$v̇$üR$v̇R /∈ Ln, for the case of x� ≤ |$v̇$| = n+2

proves the existence of a set V1 ⊆ V0, such that all [u, v] ∈ V1 share the same
[y�, q�, x�, qk, xk] and, moreover, the cardinality of such set is

‖V1‖ ≥ ‖V0‖
‖Q‖2 ·(h+ 1)·(2n2+3n)

≥ ‖Σ‖2n
‖Σ‖n/2 = 2·‖Σ‖n > 2·‖Σ‖n − 1 . (3)

Realize that V1 ⊆ Σn× Σn and ‖Σn‖ = ‖Σ‖n ≥ 2, for each ‖Σ‖ ≥ 2 and
n ≥ 1. Hence, taking into account (3), the sets A = Σn, B = Σn, and C = V1

satisfy the assumptions of Lem. 3. Therefore, there must exist some strings
u̇, ü, v̇, v̈ ∈ Σn, with u̇ �= ü, v̇ �= v̈, such that [u̇, v̇], [u̇, v̈], and [ü, v̇] are all
in V1. Consequently, they all share the same parameters [y�, q�, x�, qk, xk] on the
corresponding accepting paths. Now we have to distinguish between the two
cases, depending on the value x�.

Case i: x� ≤ n+2 = |$v̇$|. This means that, for [u, v] ∈ {[u̇, v̇], [u̇, v̈], [ü, v̇]}, all
fixed leftmost computations for the inputs uvuR$vR visit the same state q� ∈ Q,
with the same pushdown height y�, and at the same position x�, in the course of
reading v. Thus, for all these inputs, the parameter qk ∈ Q is taken as the state
at the moment when the height is going to be decreased below y� for the first
time, along vR, at a position xk. Also the values qk and xk are the same for all
these inputs. This situation is depicted in Fig. 2. Consider now ż = u̇$v̇$u̇R$v̇R

and z̈u = ü$v̇$üR$v̇R, together with their crossbreed δu = u̇$v̇$üR$v̇R /∈ Ln.
First, on the inputs ż and z̈u, at the moment when the machine A reaches the

state q� at the position x�, the pushdown store contains, respectively, the string
γu̇,v̇ or γü,v̇, consisting of y� symbols loaded in the course of reading u̇ (or ü,
respectively). On both ż and z̈u, these deepest y� symbols will stay unchanged in
the pushdown until the moment when A reaches the same state qk at the same
position xk, along v̇R.

Now, for the input δu, one of the possible computations can start by following
the trajectory for ż, reading u̇ and the first x� symbols of $v̇$, until it reaches
the state q�. At this moment, the pushdown store contains the string γu̇,v̇. Now
the machine switches to the computation path for z̈u, until it gets into the
state qk. Along this path, the computation does not visit the deepest y� symbols
in the pushdown store, reading the remaining |$v̇$| − x� symbols of $v̇$, the
entire block üR$, and the first xk symbols of v̇R. From this point forward, the

Nondeterministic Automata with a Pushdown of Constant Height 107

�

� �

� �
�

x�xk

y�

qk q�

u̇ $v̇$ or $v̈$ u̇R$ v̇R or v̈R

γu̇,v̇ or γu̇,v̈

��� �

Fig. 3. Computation paths for the inputs ż = u̇$v̇$u̇R$v̇R, z̈v = u̇$v̈$u̇R$v̈R, and δv =
u̇$v̈$u̇R$v̇R /∈ Ln, for the case of x� > |$v̇$| = n+2

computation on δu can switch back to the trajectory for ż, working with the same
content in the pushdown store and reading the remaining |v̇R|−xk symbols of v̇R.
Clearly, such computation path stops with the empty pushdown in the accepting
state qF. Thus, A accepts δu = u̇$v̇$üR$v̇R /∈ Lh, which is a contradiction.

Case ii: x� > n+2 = |$v̇$|. Again, the three leftmost computations on the
inputs uvuR$vR, for [u, v] ∈ {[u̇, v̇], [u̇, v̈], [ü, v̇]}, visit the same state q� ∈ Q,
with the same pushdown height y�, and at the same position x�, this time in
the course of reading uR$. For all of them, the parameter qk ∈ Q is now taken
as the state reached at the moment when the height has been increased to y�

for the last time, along u, at a position xk, but also here the values qk and xk

are the same for all these inputs. This situation is depicted in Fig. 3. This time
we consider the inputs ż = u̇$v̇$u̇R$v̇R and z̈v = u̇$v̈$u̇R$v̈R, together with their
crossbreed δv = u̇$v̈$u̇R$v̇R /∈ Ln.

First, on the inputs ż and z̈v, at the moment when A gets to the state qk at
the position xk, the pushdown store contains, respectively, the string γu̇,v̇ or γu̇,v̈,
consisting of y� pushdown symbols loaded in the course of reading the first xk

symbols of u̇. On both ż and z̈v, these deepest y� symbols will stay unchanged in
the pushdown until the moment when A reaches the same state q� at the same
position x�, along u̇R$.

Now, for the input δv, one of the possible computations can start by following
the trajectory for ż, reading first xk symbols of u̇, until it reaches the state qk.
At this moment, the pushdown store contains the string γu̇,v̇. Here A switches
to the computation path for z̈v, until it gets into the state q�. Along this path,
the computation does not visit the deepest y� symbols in the pushdown store,
reading the remaining |u̇| − xk symbols of u̇ and the first x� symbols of $v̈$u̇R$
(which includes, among others, traversing across the entire block $v̈$). From this
point forward, the computation on δv can switch back to the trajectory for ż,
working with the same content in the pushdown store and reading the remaining
|$v̈$u̇R$| − x� symbols of u̇R$ and the entire block v̇R. Again, such path stops
in qF. Thus, A accepts δv = u̇$v̈$u̇R$v̇R /∈ Ln, which is a contradiction.

In conclusion, if A = An accepts Ln, the inequality (2) must be reversed.
Thus, the value p = pn must satisfy pn = ‖Qn‖2 ·(hn+1) > ‖Σ‖n/(4n2 + 6n).
However, recall that we have derived this lower bound for the npda An in the

108 V. Geffert et al.

“normal form” of Lem. 1. For unrestricted npdas (not assuming this form), the
lower bound changes to (‖Qn‖+1)2·(hn+1) > ‖Σ‖n/(4n2+6n), since converting
a general npda into the normal form does not cost more than one state, keeping
the same pushdown height. Consequently, either ‖Qn‖+1 > ‖Σ‖n/3/ 3

√
4n2 + 6n,

or else hn+1 > ‖Σ‖n/3/ 3
√
4n2 + 6n ≥ ‖Σ‖n/3−O(logn). ��

By combining Lem. 4 with Thm. 2, we get the following blow-up:

Theorem 3. For each fixed constant c ≥ 2, there exist {L′n}n≥1 and {L′′n}n≥1,
some families of regular languages built over a (c+1)-letter alphabet, such that:

(i) there exist, respectively, {A′n}n≥1 and {A′′n}n≥1, sequences of constant height
npdas accepting these languages with O(c) states, c pushdown symbols, and
the pushdown height hn = n, but

(ii) for any constant height npdas {An}n≥1 accepting the family of their in-
tersections {Ln}n≥1 = {L′n ∩L′′n}n≥1, either the number of states in An or
else the pushdown height must be above cn/3−O(logn), independently of the
size of the used pushdown alphabet.

For comparison, by the use of Thm. 1 for npdas from Lem. 4, we get that
{L′n ∩ L′′n}n≥1 can be accepted2 by npdas with ‖QA‖ · ‖Γ≤hA

A ‖ · ‖QB‖ ≤ O(cn)
states, ‖ΓB‖ = c pushdown symbols, and the pushdown height hB = n.

4 Union and Complement for Constant Height NPDAs

Now we shall deal with another two basic Boolean operations, union and comple-
ment. First, given two constant height npdas A and B, we construct a constant
height npda C accepting the union L(A) ∪ L(B). The size of C is linear in all
“reasonable” complexity measures. This allows us to derive an exponential lower
bound for the complement L(A)c.

An npda C accepting L(A)∪L(B) is simple: C nondeterministically chooses
which of the given two machines it will simulate. However, the pushdown heights
hA, hB may be different. If the chosen machine uses a lower pushdown height than
the other one, the difference in the pushdown limit must be repaired, by filling
|hA−hB| copies of some extra symbol at the bottom of the pushdown.

Theorem 4. Given two constant height npdas A = 〈QA, Σ, ΓA, HA, qA, FA, hA〉
and B = 〈QB, Σ, ΓB, HB, qB, FB, hB〉, there exists a constant height npda C
accepting the union L(A) ∪ L(B) with the number of states bounded by ‖QC‖ ≤
max{1, |hA−hB|}+ ‖QA‖+ ‖QB‖, using ‖ΓC‖ ≤ 1+max{‖ΓA‖, ‖ΓB‖} pushdown
symbols and the pushdown height hC = max{hA, hB}.
2 Alternatively, one can get a different npda for {L′

n ∩ L′′
n}n≥1, using only O(cn/2)

states, with a pushdown of height 3/2 ·n. The idea is to load the first half of u1 and
the entire v1 in the pushdown, but to store the second half of u1 in the finite state
control. After checking the second half of u1 against the first half of uR

2 , we store the
second half of uR

2 in the finite state control, to be checked later, after comparing vR
2

with v1. This indicates that—without using a different witness language— the gap
from Thm. 3 cannot be raised higher than to Ω(cn/2).

Nondeterministic Automata with a Pushdown of Constant Height 109

The last operation is complement. A trivial double-exponential upper bound
is obtained by the use of Lem. 2, coding the pushdown content of the given
npda A in the finite state control, which gives a classical nfa with at most
‖QA‖·‖Γ≤hA

A ‖ states. Then we make this machine deterministic, by the standard

power set construction [7,11], with 2‖QA‖·‖Γ
≤hA
A ‖ states. Finally, we obtain a

dfa B for L(A)c by swapping the roles of accepting and rejecting states.

Theorem 5. Given a constant height npda A = 〈QA, Σ, ΓA, HA, qA, FA, hA〉,
there exists a dfa B (hence, also a constant height npda) accepting the comple-

ment L(A)c with the number of states bounded by ‖QB‖ ≤ 2‖QA‖·‖Γ
≤hA
A ‖ (hence,

using no pushdown symbols and the pushdown height equal to zero).

At this point, one can easily combine the exponential lower bound obtained for
intersection with the linear upper bound for union and conclude that the lower
bound for complementing is at least exponential, by application of De Morgan’s
laws. Nevertheless, to see some growth rate for the gap, we shall consider a
specific witness language. For this purposes, recall the languages L′n and L′′n,
introduced by (1). For the fixed alphabet Σ and each n ≥ 1, let

L̃n = L′n
c ∪ L′′n

c
. (4)

Lemma 5. For any given Σ and n ≥ 1, the language L̃n can be accepted by an
npda Ãn with ‖Qn‖ = n+4·‖Σ‖+11 ≤ n+O(‖Σ‖) states, ‖Σ‖+1 pushdown
symbols, and the pushdown height hn = n+ 1.

Proof. Recall that, by Lem. 4, both L′n and L′′n are accepted by the respec-
tive dpdas A′n and A′′n using 2·‖Σ‖+4 states, ‖Σ‖ pushdown symbols, and the
pushdown height n. Since both A′n and A′′n are deterministic, an npda Ãn for L̃n

can nondeterministically choose which of these two machines it will simulate, to
verify that its unique computation rejects . The tricky detail is that, to reduce
the number of states from Ω(n ·‖Σ‖) to n + O(‖Σ‖), we do not keep track of
the current pushdown height during the simulation, and hence we do not detect
pushdown overflows . However, A′n and A′′n from Lem. 4 reject by pushdown over-
flows only if the length of some block (u1 or v1, respectively) exceeds n, that is,
only if the input contains a substring of length n+1 not containing any $-symbols.
Therefore, Ãn proceeds as follows. First, Ãn stores some new initial symbol XI

at the bottom of the pushdown (to detect pushdown underflows during the sim-
ulation), and then nondeterministically chooses from among (i) testing whether
A′n rejects by a computation not blocked by a pushdown overflow, (ii) testing
whether A′′n rejects by a computation not blocked by a pushdown overflow, and
(iii) testing whether the input contains a substring ϕ of length n+1 without any
$-symbol, the starting position of ϕ is established nondeterministically. ��

Conversely, by De Morgan’s laws, the complement of the language introduced
by (4) is L̃c

n = (L′n
c ∪ L′′n

c
)
c
= L′n ∩ L′′n = Ln. Recall that the lower bound

derived for Ln in Thm. 2 is exponential. Combined with Lem. 5, this gives:

110 V. Geffert et al.

Theorem 6. For each fixed constant c ≥ 2, there exists {L̃n}n≥1, a family of
regular languages built over a (c+1)-letter alphabet, such that:

(i) there exists {Ãn}n≥1, a sequence of constant height npdas accepting these
languages with Qn ≤ n+O(c) states, c+1 pushdown symbols, and the push-
down height hn = n+ 1, but

(ii) for any constant height npdas {Ãc
n}n≥1 accepting the family of their com-

plements {L̃c
n}n≥1, either the number of states in Ãc

n or else the pushdown
height must be above cn/3−O(log n), independently of the size of the used push-
down alphabet.

The above lower bound is far below the known conversion for complement-

ing, presented in Thm. 5, using 2‖QA‖·‖Γ
≤hA
A ‖ states. It should also be pointed

out that, in the case of our witness languages {L̃n}n≥1, their complements

{L̃c
n}n≥1 = {Ln}n≥1 can be accepted by npdas with only a single-exponential

blow-up, namely, with O(cn) states, c pushdown symbols, and the pushdown
height n, which is obtained by combining Lem. 4 with Thm. 1.

5 Concluding Remarks

We have analyzed the size cost of basic Boolean operations for nondetermin-
istic automata with a pushdown of constant height . For intersection, a single-
exponential cost is sufficient and, in the worst case, also necessary. On the other
hand, the cost of union is only linear. Combining these results, we have shown
that the lower bound for complement is single-exponential, but we have derived
only a double-exponential upper bound, which leaves a large gap.

It was conjectured that the lower bound for the intersection from Thm. 3 can
be improved to an exponential lower bound on the number of states, indepen-
dently of the pushdown height. This would give two witness regular languages
the intersection of which would be “expensive” with respect to the number of
states even for an npda with unrestricted pushdown. However, using the “tradi-
tional” transition function, we can reduce the number of states in such a machine
to one, with a large pushdown alphabet. (See also Ft. 1.)

The corresponding costs for constant height dpdas, deterministic versions
of npdas, are [2]: single-exponential for intersection and union, but polynomial
for complement. These results are compared in Tab. 1. It turns out that the
cost of studied Boolean operations, both for dpdas and npdas with a constant
height pushdown, reflects the closure properties for the corresponding machines
with an unrestricted pushdown (hence, for deterministic and general context-free
languages): the unrestricted version of the pushdown machine is closed under the
given operation (see e.g. [7]) if and only if the cost of the same operation for the
constant height version is at most polynomial. Therefore, it could be interesting
to investigate the complexity of other language operations for constant height
pushdown automata and compare them with unrestricted versions.

Nondeterministic Automata with a Pushdown of Constant Height 111

Table 1. Size-cost of Boolean operations on constant height dpdas [2] and constant
height npdas, studied in this paper.

Operation constant height DPDAs constant height NPDAs

Intersection exponential exponential
Union exponential linear

Complement polynomial exponential ... double-exponential

Similarly, we would like to emphasize the interest in two-way versions of these
machines, and in some more restricted versions . For instance, one could study
the cost for unary languages: the same investigation on unary nfas [10] shows
interesting differences from the general case.

References

1. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: Removing nondeterminism
in constant height pushdown automata. In: Kutrib, M., Moreira, N., Reis, R. (eds.)
DCFS 2012. LNCS, vol. 7386, pp. 76–88. Springer, Heidelberg (2012)

2. Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The size-cost of Boolean op-
erations on constant height deterministic pushdown automata. Theoret. Comput.
Sci. 449, 23–36 (2012)

3. Ehrenfeucht, A., Zieger, P.: Complexity measures for regular expressions. J. Com-
put. System Sci. 12, 134–146 (1976)

4. Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular
languages by automata and regular expressions. Inf. & Comp. 208, 385–394 (2010)

5. Gruber, H., Holzer, M.: Language operations with regular expressions of polyno-
mial size. Theoret. Comput. Sci. 410, 3281–3289 (2009)

6. Holzer, M., Kutrib, M.: Descriptional complexity — an introductory survey. In:
Mart́ın-Vide, C. (ed.) Scientific Applications of Language Methods, pp. 1–58. Im-
perial College Press (2010)

7. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley (2001)

8. Kutrib, M., Malcher, A., Wotschke, D.: The Boolean closure of linear context-free
languages. Acta Inform. 45, 177–191 (2008)

9. Meyer, A., Fischer, M.: Economy of description by automata, grammars, and for-
mal systems. In: Proc. IEEE Symp. Switching & Automata Th., pp. 188–191 (1971)

10. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Internat. J. Found. Comput. Sci. 13, 145–159 (2002)

11. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3, 114–125 (1959)

12. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. I, pp. 41–110. Springer (1997)

13. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

A Short Tutorial on Order-Invariant First-Order Logic

Nicole Schweikardt

Goethe-Universität Frankfurt am Main, Germany
schweika@informatik.uni-frankfurt.de

Abstract. This paper gives a short introduction to order-invariant first-order logic
and arb-invariant first-order logic. We present separating examples demonstrating
the expressive power, as well as tools for proving certain expressive weaknesses
of these logics.

1 Introduction

Expressibility of logics over finite structures plays an important role in various areas of
computer science. In descriptive complexity, logics are used to characterise complexity
classes, and concerning databases, common query languages have well-known logical
equivalents. Order-invariant and arb-invariant logics were introduced to capture the data
independence principle in databases: An implementation of a database query may ex-
ploit the order in which the database elements are stored in memory, and thus identify
the elements with natural numbers on which arithmetic can be performed. But the use
of order and arithmetic should be restricted in such a way that the result of the query
does not depend on the particular order in which the data is stored.

Arb-invariant queries are queries that can make use of an order predicate < and
of arithmetic predicates such as + or ×, but only in such a way that the answer is
independent of the particular interpretation of <,+,×. Queries that only use the linear
order, but no further arithmetic predicates, are called order-invariant.

It is known that order-invariant least fixed-point logic LFP precisely captures the
polynomial time computable queries [12,26], while arb-invariant LFP and arb-invariant
first-order logic capture the queries computable in P/poly [15] and AC0 [13], respec-
tively. Order-invariant queries and arb-invariant queries have been studied in depth, cf.
e.g. [1,5,25,15,8,14,17,22,16,19,20,7,4,24,9,2]. A short overview of the state-of-the-art
concerning these logics can be found in [23].

The aim of this paper is to give a short tutorial on order-invariant and arb-invariant
first-order logic FO. In Section 2 we fix the basic notation. Section 3 gives the precise
definition of order-invariant and arb-invariant FO, along with a few easy examples.
Section 4 presents examples that separate order-invariant FO from plain FO. Section 5
shows how to prove that certain queries are not definable in order- or arb-invariant FO.
Section 6 gives a list of open research questions.

2 Preliminaries

Basic Notation. We write N for the set of non-negative integers, and we let N≥1 :=
N \ {0}. For n ∈ N≥1 we write [n] to denote the set {i ∈ N : 0 ≤ i < n}, i.e.,

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 112–126, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Short Tutorial on Order-Invariant First-Order Logic 113

[n] = {0, . . . , n−1}. For a positive real number r, the logarithm of r with respect to
base 2 is denoted log r.

For a finite set A we write |A| to denote the cardinality of A. By 2A we denote the
power set of A, i.e., the set {Y : Y ⊆ A}. The set of all non-empty finite words built
from symbols in A is denoted A+. We write |w| for the length of a word w ∈ A+.

Structures. A signature σ is a set of relation symbols R, each of them associated with
a fixed arity ar(R) ∈ N≥1. A σ-structure A consists of a non-empty set A called the
universe of A, and a relation RA ⊆ Aar(R) for each relation symbol R ∈ σ.

The cardinality of a σ-structureA is the cardinality of its universe. Finite σ-structures
are σ-structures of finite cardinality.

For σ-structures A and B and tuples a = (a1, . . . , ak) ∈ Ak and b = (b1, . . . , bk) ∈
Bk we write (A, a) ∼= (B, b) to indicate that there is an isomorphism π from A to B
that maps a to b (i.e., π(ai) = bi for each i ≤ k).

First-Order Logic. We assume that the reader is familiar with basic concepts and
notations concerning first-order logic (cf., e.g., the textbooks [14,6]). We write FO(σ)
to denote the class of all first-order formulas of signature σ. By free(ϕ) we denote the set
of all free variables of an FO(σ)-formula ϕ. A sentence is a formula ϕ with free(ϕ) = ∅.
We often write ϕ(x), for x = (x1, . . . , xk), to indicate that free(ϕ) = {x1, . . . , xk}.

If A is a σ-structure and a = (a1, . . . , ak) ∈ Ak, we write A |= ϕ[a] to indicate
that the formula ϕ(x) is satisfied in A when interpreting the free occurrences of the
variables x1, . . . , xk with the elements a1, . . . , ak.

If A and B are σ-structures and r is a natural number, we write A ≡r B to indicate
that A and B satisfy exactly the same FO(σ)-sentences of quantifier rank r.

Throughout the remainder of this paper, we will assume that σ is a fixed finite signature.

3 Order-Invariant Logic and Arb-Invariant Logic

The idea: Extend the expressive power of a logic by allowing formulas to use, apart
from the relation symbols present in the signature σ, also a linear order <, arithmetic
predicates such as + or ×, or arbitrary numerical predicates.

Definition 3.1 (Numerical predicate)
For r ∈ N≥1, an r-ary numerical predicate is an r-ary relation on N.

Three particular numerical predicates that will often be used in this paper are

– the linear order <N consisting of all tuples (a, b) ∈ N2 with a < b,
– the addition predicate +N consisting of all triples (a, b, c) ∈ N3 with a+b = c, and
– the multiplication predicate×N consisting of all triples (a, b, c) ∈ N3 with a×b = c.

To allow logical formulas to use numerical predicates, we fix the following notation:
For every r ∈ N≥1 and for every r-ary numerical predicate PN (i.e., PN ⊆ Nr), we let
P be a new relation symbol of arity r — here, “new” means that P does not belong to
σ. We write ηarb to denote the set of all the relation symbols P obtained this way, and

114 N. Schweikardt

we let σarb be the disjoint union of σ and ηarb (the subscript “arb” stands for “arbitrary
numerical predicates”).

Next, we would like to allow FO(σarb)-formulas to make meaningful statements
about finite σ-structures. To this end, for a finite σ-structure A, we consider embed-
dings ι of the universe of A into the initial segment of N of size n = |A|, i.e., the set
[n] = {0, . . . , n−1}.

Definition 3.2 (Embedding). Let A be a finite σ-structure, and let n := |A|.
An embedding ι of A is a bijection ι : A → [n].

Given a finite σ-structure A and an embedding ι of A, we can translate r-ary numerical
predicates PN into r-ary predicates on A as follows: The linear order <N induces a
linear order <ι on A where for all a, b ∈ A we have a <ι b iff ι(a) < ι(b). The addition
predicate +N induces an addition predicate +ι on A where for all a, b, c ∈ A we have
(a, b, c) ∈ +ι iff ι(a) + ι(b) = ι(c). In general, an arbitrary r-ary numerical predicate
PN induces the r-ary predicate P ι on A, consisting of all r-tuples a = (a1, . . . , ar) ∈
Ar where ι(a) = (ι(a1), . . . , ι(ar)) ∈ PN.

The σarb-structure Aι associated with A and ι is the expansion of A by the predicates
P ι for all P ∈ ηarb. I.e., Aι has the same universe as A, all relation symbols R ∈ σ
are interpreted in Aι in the same way as in A, and every numerical symbol P ∈ ηarb is
interpreted by the relation P ι.

To ensure that an FO(σarb)-formula ϕ makes a meaningful statement about a σ-
structure A, we evaluate ϕ in Aι, and we restrict attention to those formulas whose truth
value is independent of the particular choice of the embedding ι. This is formalised by
the following notion.

Definition 3.3 (Arb-invariance and arb-inv-FO)
Let ϕ(x) be an FO(σarb)-formula with k free variables, and let A be a finite σ-structure.

(a) The formula ϕ(x) is arb-invariant on A if for all embeddings ι1 and ι2 of A and
for all tuples a ∈ Ak we have: Aι1 |= ϕ[a] ⇐⇒ Aι2 |= ϕ[a].

(b) Let ϕ(x) be arb-invariant on A.
We write A |= ϕ[a], if Aι |= ϕ[a] for some (i.e., every) embedding ι of A.

(c) ϕ(x) is called arb-invariant if it is arb-invariant on every finite σ-structure A.
(d) We write arb-inv-FO(σ) to denote the set of all arb-invariant FO(σarb)-formulas.

Example 3.4. We present an arb-invariant FO(σarb)-sentence ϕeven which is satisfied
by exactly those finite σ-structures that have even cardinality. The formula is chosen as
follows:

ϕeven := ∃x∀y
(
(y<x ∨ y=x) ∧ Odd(x)

)
,

where OddN is the unary numerical predicate consisting of all odd numbers.
Let us consider a finite σ-structure A of size n = |A| and an embedding ι of A

into the set [n] = {0, . . . , n−1}. Obviously, Aι |= ϕeven iff the maximum element in
[n], i.e., the number n−1, is odd, i.e., the number n is even. Thus, the formula ϕeven is
arb-invariant on A, and it expresses that A is of even cardinality.

Note that <N and OddN are the only numerical predicates used by the formula ϕeven.
Both predicates can be replaced by uses of the addition predicate +N, since Odd(x) is
equivalent to ¬∃z z+z=x, and y<x is equivalent to (¬ y=x ∧ ∃z y+z=x).

A Short Tutorial on Order-Invariant First-Order Logic 115

Thus, “even cardinality” of finite σ-structures can also be expressed by an arb-
invariant FO(σarb)-sentence that only uses the numerical predicate +N. Recall that it
is well-known that “even cardinality” can neither be expressed by FO(σ), nor by arb-
invariant FO(σarb)-sentences that only use the numerical predicate <N (cf., e.g., the
textbooks [14,6], where it is shown that “even cardinality of linear orders” is not defin-
able in first-order logic).

Definition 3.5 (Order-invariance and addition-invariance)

(a) An arb-invariant formula that only uses the numerical predicate <N is called
order-invariant. By <-inv-FO(σ) we denote the set of all order-invariant FO(σ ∪
{<})-formulas.

(b) An arb-invariant formula that only uses the numerical predicate +N is called
addition-invariant. By +-inv-FO(σ) we denote the set of all addition-invariant
FO(σ ∪ {+})-formulas.

Example 3.4 shows that <-inv-FO(σ) is less expressive than +-inv-FO(σ).
It is known that for any signature σ that contains at least one symbol of arity ≥ 2,

there is no algorithm that decides whether an input FO(σ ∪ {<})-sentence is order-
invariant (this can be shown by an easy reduction using Trakhtenbrot’s theorem, see
e.g. [14]). However, if σ contains only unary relation symbols, order-invariance of an
input sentence is decidable, since commutativity of regular languages is decidable (via
checking if the language’s syntactic monoid is commutative).

Definition 3.6. An arb-invariant formula that only uses numerical predicates that be-
long to a subset S of ηarb is called S-invariant. By S-inv-FO(σ) we denote the set of all
S-invariant FO(σ ∪ S)-formulas.

The next two examples show that+-inv-FO(σ) is less expressive than {+,×}-inv-FO(σ)
which, in turn, is less expressive than arb-inv-FO(σ).

Example 3.7. Consider the formula ϕeven from Example 3.4. Let ϕsquare be the formula
obtained from ϕeven by replacing the atom Odd(x) by Square′(x), where Square′N :=
{i2−1 : i ∈ N≥1}. Obviously, ϕsquare is an arb-invariant sentence satisfied by exactly
those finite σ-structures whose cardinality is a square number.

Note that i2−1 = (i−1)2 + 2(i−1). Thus, Square′(x) is equivalent to

∃y ∃z1 ∃z2
(
y×y=z1 ∧ y+y=z2 ∧ z1+z2=x

)
.

Therefore, “square number cardinality” can be expressed in {+,×}-inv-FO(σ). It is
well-known that this cannot be expressed in +-inv-FO(σ) (since, by the theorem of
Ginsburg and Spanier, FO(+)-definable subsets of N are semi-linear; see e.g. [21] for
an overview).

Example 3.8. It is straightforward to see that {+,×}-inv-FO(σ)-sentences can only
define decidable properties of finite σ-structures. However, arb-inv-FO(σ) can define
also undecidable properties. For example, let UN be an undecidable subset of N (such a
set exists, since there are uncountably many subsets of N, but only a countable number

116 N. Schweikardt

of decidable sets). Now let ϕU be the formula obtained from ϕeven by replacing the
atom Odd(x) by U ′(x), where U ′N := {i−1 : i ∈ U and i �= 0}. Clearly, ϕU is an
arb-invariant sentence satisfied by exactly those finite σ-structures whose cardinality
belongs to UN. As UN is undecidable, also the class of finite σ-structures satisfying ϕU

is undecidable.

The examples seen so far are simple in the sense that they only refer to the cardinality
of structures and do not make use of the relation symbols present in σ. Showing that
<-inv-FO(σ) is more expressive than plain FO(σ) requires much more sophisticated
constructions and depends on the particular choice of the signature σ. In fact, if σ is the
empty signature ∅ (as could have been chosen for the examples above), it is straightfor-
ward to see that <-inv-FO(∅) has exactly the same expressive power as FO(∅).

4 Three Examples Showing That Order-Invariant FO Is More
Expressive Than FO

In the literature, basically only three examples are known that separate <-inv-FO(σ)
from plain FO(σ), for various signatures σ. These examples go back to Gurevich (who
did not publish this example; but it can be found in the textbooks [1,14]), Potthoff [18],
and Otto [17].

Gurevich’s Example. For a finite set X let BX := (2X ,⊆) be the Boolean algebra
over X . Thus, BX is a finite σ-structure, where σ := {⊆} is the signature consisting of
a single binary relation symbol ⊆.

Theorem 4.1 (Gurevich). There is an order-invariant FO(σ∪{<})-sentence ϕGurevich,
but no FO(σ)-sentence, such that for every finite set X we have: BX |= ϕGurevich ⇐⇒
|X | is even.

Proof sketch. Part 1: Construction of the <-inv-FO(σ)-sentence ϕGurevich. An element
y ∈ 2X is called an atom if it is a singleton set. Thus, |X | is the number of atoms in
2X . Obviously, the following FO(σ)-formula atom(x) expresses that x is an atom:

atom(x) :=
(
¬emptyset(x) ∧ ∀y

(
y ⊆ x → (y=x ∨ emptyset(y)

))
,

where emptyset(y) := ∀z y⊆ z.
The order-invariant FO(σ ∪ {<})-sentence ϕGurevich states that

(1) the underlying σ-structure is indeed a Boolean algebra (2X ,⊆), and
(2) there exists a set z ∈ 2X that contains the first (w.r.t. <) atom of 2X and every

other atom (w.r.t. <) of 2X , and that has the property that the last (w.r.t. <) atom
of 2X does not belong to z.

Note that the statements (1) and (2) ensure that ϕGurevich is order-invariant on the class
of all finite σ-structures, and that a finite Boolean algebra BX satisfies ϕGurevich if and
only if |X | is even. It is an easy exercise to express statement (1) by an FO(σ)-sentence
and statement (2) by an FO(σ ∪ {<})-sentence.

A Short Tutorial on Order-Invariant First-Order Logic 117

Part 2: Proof of the non-expressibility in FO(σ). By using a standard Ehrenfeucht-
Fraı̈ssé game argument one can show that BX1 ≡r BX2 is true for all r ∈ N and all
finite sets X1 and X2 of size at least 2r. Thus, for every quantifier rank r ∈ N, we can
find sufficiently large finite sets X1 and X2 of odd and even cardinality, respectively,
that cannot be distinguished by FO(σ)-sentences of quantifier rank r.

A detailed exposition of Gurevich’s proof can be found in the textbook [14]. ��

Potthoff’s Example. We consider unordered finite binary trees T where every node is
either a leaf or has exactly two children. The height of a leaf x of T is the length of the
path from the root to x. The height of T is the largest height of a leaf of T . A tree T is
full if all leaves are of the same height.

Let σ := {E,D} be the signature consisting of two binary relation symobls E and
D. We represent an unordered finite binary tree T by a σ-structure AT whose universe
is the set of nodes of T , and where E is the directed edge relation connecting every
non-leaf node with its two children, and D is the descendant relation, i.e., the transitive
closure of E.

Theorem 4.2 (Potthoff [18]). There exists an order-invariant FO(σ ∪ {<})-sentence
ϕPotthoff, but no FO(σ)-sentence, such that for every full unordered finite binary tree T
we have: AT |= ϕPotthoff ⇐⇒ T is of even height.

Proof sketch. Part 1: Construction of the <-inv-FO(σ)-sentence ϕPotthoff. To keep the
description of the formula simple, we here present a sentence ϕPotthoff that is order-
invariant only on the class of all full unordered finite binary trees. A more sophisti-
cated sentence that is order-invariant on all finite σ-structures is outlined below, after
Lemma 4.3.

For constructing ϕPotthoff let us consider a full binary tree T of height h. We use the
linear order < to order the children of each node a of T : If b1 and b2 are a’s children
and b1 < b2, then b1 is called the 1-child, and b2 is called the 2-child of a. Now, we
consider the zig-zag-path which starts in the root, visits the root’s 1-child, that node’s
2-child, that nodes 1-child, etc. I.e., the zig-zag-path is the path (x0, x1, x2, . . . , xh)
where x0 is the root, xh is a leaf, and for odd i ≥ 1, xi is the 1-child of xi−1, whereas
for even i ≥ 1, xi is the 2-child of xi−1.

As T is a full binary tree, the height h of T is even if and only if the last node of
the zig-zag-path is a 2-child — and this is exactly the statement made by the formula
ϕPotthoff. Note that a formula making this statement will be order-invariant on the struc-
ture AT , for all full binary trees T .

The statement “the last node of the zig-zag-path is a 2-child” can be formalised by
an FO(σ ∪ {<})-sentence ϕPotthoff, which states the following:

(1) There exists a node x0 which is the root, and there exists a node xh which is a
leaf, such that

(2) xh is the 2-child (w.r.t. <) of its parent,
(3) the node x1 which satisfies

(
E(x0, x1) ∧ D(x1, xh)

)
is the 1-child (w.r.t. <) of

its parent, and
(4) for any three nodesu, v, w such that E(u, v) andE(v, w) and

(
w=xh∨D(w, xh)

)
we have that v is the 1-child of its parent iff w is the 2-child of its parent.

118 N. Schweikardt

Part 2: Proof of the non-expressibility in FO(σ). By using a standard Ehrenfeucht-
Fraı̈ssé game argument, one can show that AT1 ≡r AT2 is true for all r ∈ N and all
full unordered finite binary trees T1 and T2 of height ≥ 2r+1 (the duplicator’s winning
strategy in the Ehrenfeucht-Fraı̈ssé game is a straightforward generalisation of the win-
ning strategy in the game on two linear orders, cf. e.g. [14]). Thus, for every r ∈ N,
we can find sufficiently big full unordered finite binary trees of odd and even height,
respectively, that cannot be distinguished by FO(σ)-sentences of quantifier rank r. ��

For completeness, let us give the precise statement of Potthoff’s result. Instead of con-
structing an order-invariant FO(σ)-formula, Potthoff constructs an FO(σ′)-formula for
the signature σ′ = σ ∪ {C1, C2}, where C1 and C2 are unary relation symbols. An or-
dered finite binary tree T is represented by the σ′-structure BT which is the expansion
of the structure AT by unary relations C1 and C2, where C1 consists of all nodes which
are the first child of their parent, and C2 consists of all nodes which are the second child
of their parent.

Lemma 4.3 (Lemma 5.1.8 in [18]). There is an FO(σ′)-sentence ψPotthoff such that for
every ordered finite binary tree T we have: BT |= ψPotthoff ⇐⇒ every leaf of T is of
even height.

The order-invariant sentence ϕPotthoff whose existence is claimed in Theorem 4.2 is now
obtained as the conjunction of

– a straightforward FO(σ)-axiomatisation of unordered binary trees, and
– the formula obtained from ψPotthoff by replacing atoms of the form Ci(x) (for i ∈
{1, 2}) with an FO(E,<)-formula stating that x is the i-child (w.r.t. <) of its parent.

Otto’s Example. For every n ∈ N≥1 and every undirected graph G on 2n vertices, we
consider a σ-structure S2n(G) into which G is embedded. The signature σ = {E,∼,∈,
V, V ′, P ′} consists of three binary relation symbols E,∼,∈ and three unary relation
symbols V, V ′, P ′.

We let σ′ := σ \ {E} and define, for each n ∈ N≥1, the σ′-structure S2n as
follows: The universe of S2n is partitioned into three disjoint sets V, V ′, P ′, where
V = {v0, . . . , v2n−1}, V ′ = {v′0, . . . , v′2n−1}, and P ′ = 2V

′
. The relation ∈ is the

“element”-relation between V ′ and 2V
′
, connecting for each X in 2V

′
every node

v′ ∈ X with X . The relation ∼ is the equivalence relation on V ∪ V ′ whose equiv-
alence classes are {vi, v′i, vn+i, v

′
n+i} for all i < n. For every graph G = (V,E), the

σ-structure S2n(G) is the expansion of the structure S2n with the graph’s edge relation
E. An illustration can be found in Figure 1.

Theorem 4.4 (Otto [17]). There is an order-invariant FO(σ∪{<})-sentence ϕOtto, but
no FO(σ)-sentence, such that for every n ∈ N≥1 and every graph G on 2n nodes we
have: S2n(G) |= ϕOtto ⇐⇒ G is connected.

Proof sketch. Part 1: Construction of the <-inv-FO(σ)-sentence ϕOtto. Otto’s proof
shows a stronger result, namely that every monadic second-order sentence Φ of signa-
ture {E} can be translated into an order-invariant FO(σ ∪ {<})-sentence ϕΦ, such that

A Short Tutorial on Order-Invariant First-Order Logic 119

Fig. 1. The σ-structure S2n(G) where G = G1
2n is a cycle on 2n nodes V =

{v0, v1, . . . , v2n−1}. G is represented in the leftmost box of the picture. The box in the middle
contains the set V ′ = {v′ : v ∈ V }. The 4-cliques between V and V ′ represent the equivalence
relation ∼. The box on the right contains a node X for each element X in P ′ = 2V

′
. The edges

between the box in the middle and the box on the right represent the ∈-relation connecting, for
each X in 2V

′
, every node v′ ∈ X with the node X .

for every n ∈ N≥1 and every graph G on 2n nodes we have: S2n(G) |= ϕΦ ⇐⇒
G |= Φ.

The claimed formula ϕOtto can then be chosen as ϕΦ where Φ is a monadic second-
order formalisation of graph connectivity.
For constructing ϕΦ, the following observations are crucial:

(1) We can use the linear order < to define a bijection β< from V to V ′ such that
v ∼ β<(v) for every v ∈ V . This bijection can be described by an FO(V, V ′,∼
, <)-formula.

(2) Using this bijection, we can identify V with V ′. And using P ′ and the ∈-relation
between V ′ and P ′, we can simulate monadic second-order quantification over V
by first-order quantification of elements in P ′. Utilising this, it is straightforward
to translate Φ into an FO(σ ∪ {<})-sentence ψΦ.

(3) Finally, the formula ϕΦ is chosen as the conjunction of ψΦ with an FO(V,E)-
sentence stating that E is a subset of V × V , and an FO(σ′)-axiomatisation of
σ′-structures isomorphic to S2n for some n ∈ N≥1.

The resulting formula ϕΦ is satisfied by Aι, for a finite σ-structure A and an embedding
ι of A if, and only if, A is isomorphic to S2n(G) for some n ∈ N≥1 and some graph
G on 2n vertices satisfying Φ. This also shows that ϕΦ is order-invariant on all finite
σ-structures.

Part 2: Proof of the non-expressibility in FO(σ). For each n ∈ N≥1 let G1
2n be

the cycle (v0, v1, . . . , v2n−1, v0), and let G2
2n be the disjoint union of the two cycles

(v0, v1, . . . , vn−1, v0) and (vn, vn+1, . . . , v2n−1, vn). An illustration of G1
2n is given in

120 N. Schweikardt

the leftmost box of Figure 1. It suffices to show that for all r ∈ N and all sufficiently
large n, the structures S2n(G

1
2n) and S2n(G

2
2n) cannot be distinguished by FO(σ)-

sentences of quantifier rank r.
For each b ∈ {1, 2} let Ĝb

2n be the expansion of Gb
2n where each node is labeled by

its equivalence class with respect to ∼ in S2n(G
b
2n). An easy Hanf-locality argument

(cf., [14]) shows that for every r ∈ N and all sufficiently large n, the structures Ĝ1
2n and

Ĝ2
2n cannot be distinguished by first-order sentences of quantifier rank r.
A closer inspection of the structures S2n(G

1
2n) and S2n(G

2
2n) shows that the dupli-

cator’s winning strategy in the r-round Ehrenfeucht-Fraı̈ssé game on Ĝ1
2n and Ĝ2

2n can
be translated into a winning strategy on S2n(G

1
2n) and S2n(G

2
2n). Thus, the latter two

structures cannot be distinguished by FO(σ)-sentences of quantifier rank r. ��

5 Limitations of the Expressive Power of Arb-Invariant FO

The results stated in this section hold for arbitrary signatures σ. For simplicity of presen-
tation, however, we let σ = {E} be the signature consisting of a single binary relation
symbol E. Thus, finite σ-structures are finite directed graphs.

Connections between arb-inv-FO(σ) and Circuit Complexity. For proving non-ex-
pressibility results for arb-inv-FO(σ), tools from circuit complexity are of major use.
We assume that the reader is familiar with basic notions and results in circuit complexity
(cf., e.g., the textbook [3]). We consider Boolean circuits consisting of AND- and OR-
gates of unbounded fan-in, NOT-gates, input gates, and constant gates 0 and 1. The size
of a circuit is the number of its gates, and the depth is the length of the longest path
from an input gate to the output gate.

Let Cm be a circuit with m ∈ N≥1 input gates, and let w ∈ {0, 1}m be a bitstring
of length m. We say that Cm accepts w if Cm evaluates to 1 when for every i ≤ m the
i-th input gate of Cm is assigned the i-th symbol of w.

The non-expressibility proofs for arb-inv-FO(σ) presented in this section rely on
Håstad’s following well-known circuit lower bound.

Theorem 5.1 (Håstad [10]). There exist numbers �,m0 > 0 such that for every d ∈ N

with d ≥ 2 and every m ∈ N with m ≥ m0 the following is true: No circuit of depth d
and size at most 2�·

d−1
√
m accepts exactly those bitstrings w ∈ {0, 1}m that contain an

even number of ones.

To establish the connection between circuits and arb-inv-FO(σ), we need to repre-
sent graphs by bitstrings. This is done in a straightforward way: Consider a directed
graph G = (V,E) on |V | = n nodes. Let ι be an embedding of G into [n], and
let (ai,j)0≤i,j<n be the adjacency matrix of G with respect to ι, i.e., ai,j = 1 if
(ι−1(i), ι−1(j)) ∈ E, and ai,j = 0 otherwise. The bitstring representation Repι(G)
of G w.r.t. ι is then chosen as Repι(G) := a0,0 · · ·a0,n−1 · · · an−1,0 · · ·an−1,n−1. I.e.,
Repι(G) is the concatenation of all rows of the adjacency matrix (ai,j)0≤i,j<n. The
connection between FO(σarb) and Boolean circuits is obtained by the following result.

A Short Tutorial on Order-Invariant First-Order Logic 121

Theorem 5.2 (Immerman [13]). For every FO(σarb)-sentence ϕ there exist numbers
d, s ∈ N (with d ≥ 2) such that for every n ∈ N≥1 there is a circuit Cn2 with n2 input
gates, depth d, and size ns such that the following is true for all graphsG = (V,E) with
|V | = n and all embeddings ι of V into [n]: Cn2 accepts Repι(G) ⇐⇒ Gι |= ϕ.

Proof sketch. For every fixed n, we translate ϕ into a Boolean formula with n2 Boolean
variables:

(1) Replace every existential quantification “∃x” of ϕ into a big disjunction
∨

0≤x<n,
(2) replace every universal quantification “∀x” of ϕ into a big conjunction

∧
0≤x<n.

After these two tranformation steps, the “atomic formulas” remaining in ϕ are either of
the form E(x, y) for x, y ∈ [n], where E is the edge relation of the graph, or of the form
P (x1, . . . , xr) for x1, . . . , xr ∈ [n], where P is a symbol for a numerical predicate PN

of arity r (here, equality of the form “x1 = x2” is also viewed as a numerical predicate).

(3) Replace every “atom” of the form E(x, y) for x, y ∈ [n] with the Boolean variable
ax,y representing the edge from ι−1(x) to ι−1(y) in Gι, and

(4) replace every “atom” of the form P (x1, . . . , xr) for x1, . . . , xr ∈ [n], where P is
a symbol for a numerical predicate PN by the constant 1 if (x1, . . . , xr) ∈ PN,
and by the constant 0 otherwise.

The result of this transformation is a Boolean formula with Boolean variables ax,y for
x, y ∈ [n]. This Boolean formula can easily be turned into the desired circuit Cn2 . ��

As an immediate consequence of the Theorems 5.2 and 5.1 one obtains the following.

Corollary 5.3. There is no arb-inv-FO(σ)-sentence ϕ that is satisfied by exactly those
finite directed graphs that consist of an even number of edges.

Proof. For contradiction, assume that ϕ is an arb-inv-FO(σ)-sentence satisfied by ex-
actly those finite directed graphs that consist of an even number of edges.

Let d, s and Cn2 (for every n ∈ N≥1) be chosen according to Theorem 5.2. It can
easily be seen that the circuit Cn2 accepts exactly those bitstrings w of length n2 that
contain an even number of ones: Every w ∈ {0, 1}n2

can be viewed as the bitstring
representation Repι(G) of some graph G = (V,E) on n nodes. Clearly, Gι |= ϕ iff
G |= ϕ iff G contains an even number of edges. By Theorem 5.2 we furthermore know
that Gι |= ϕ iff w = Repι(G) is accepted by Cn2 .

Thus, for m := n2, Cm is a circuit of depth d and size ns = ms/2 that accepts
exactly those bitstrings w ∈ {0, 1}m that contain an even number of ones. However,
for any fixed � and all sufficiently large m we have ms/2 < 2�·

d−1
√
m, contradicting

Theorem 5.1. ��

Gaifman Locality of Arb-Invariant FO. A k-ary query q is a mapping that associates
with every finite directed graph G = (V,E) a k-ary relation q(G) ⊆ V k, which is
invariant under isomorphisms, i.e., if π is an isomorphism from a graph G to a graph H ,
then for all a = (a1, . . . , ak) ∈ Ak we have a ∈ q(G) iff π(a) = (π(a1), . . . , π(ak)) ∈
q(H). Every arb-inv-FO(σ)-formula ϕ(x) with k free variables defines a k-ary query
qϕ via qϕ(G) = {a ∈ V k : G |= ϕ[a]}.

122 N. Schweikardt

The notion of Gaifman locality is a standard tool for showing that particular queries
are not definable in certain logics (cf., e.g., the textbook [14] for an overview). For
presenting the precise definition of Gaifman locality, we need the following notation.

The Gaifman graph of a directed graph G = (V,E) is the undirected graph G(G)
with the same vertex set as G, where for any a, b ∈ V with a �= b there is an undirected
edge between a and b iff (a, b) ∈ E or (b, a) ∈ E. The distance distG(a, b) between
two nodes a, b of G is the length of the shortest path between a and b in G(G).

For every r ∈ N, the r-ball NG
r (a) around a node a is the set of all nodes b with

distG(a, b) ≤ r. The r-ball NG
r (a) around a tuple a = (a1, . . . , ak) ∈ V k is the union

of the r-balls around the nodes a1, . . . , ak. The r-neighborhood of a is the induced
subgraph NG

r (a) of G on NG
r (a).

Definition 5.4 (Gaifman locality). Let k ∈ N≥1 and f : N → N. A k-ary query q
is Gaifman f(n)-local if there is an n0 ∈ N such that for every n ∈ N with n ≥ n0

and every directed graph G = (V,E) on n nodes, the following is true for all k-tuples
a, b ∈ V k with (NG

f(n)(a), a)
∼= (NG

f(n)(b), b): a ∈ q(G) ⇐⇒ b ∈ q(G).

I.e., in a graph of size n, a query that is Gaifman f(n)-local cannot distinguish between
k-tuples of nodes whose neighborhoods of radius f(n) are isomorphic. Gaifman local-
ity is a powerful tool for showing that certain queries cannot be defined by formulas of
particular logics.

Example 5.5. Let F be a class of formulas such that every query q definable by a
formula in F is Gaifman fq(n)-local for a function fq : N → N where fq(n) ≤ n/5
for all sufficiently large n. Then, none of the following queries is definable in F :

– reach(G) := {(a, b) : G contains a directed path from node a to node b},
– cycle(G) := {a : a is a node that lies on a cycle of G},
– triangle-reach(G) := {a : a is reachable from a triangle in G},
– same-distance(G) := {(a, b, c) : distG(a, c) = distG(b, c)}.

Assume, for contradiction, that reach is definable in F . By assumption, freach(n) ≤ n/5
for all sufficiently large n. Now, consider for each n the graph Gn consisting of two
disjoint directed paths of length n/2, and let a be the first node of the first path, let b
be the last node of the first path, and let b′ be the last node of the second path. Then,
NGn

n/5(a, b) consists of two disjoint paths of length n/5, where a is the first node of the

first path and b is the last node of the second path. Obviously, (NGn

n/5(a, b), (a, b))
∼=

(NGn

n/5(a, b
′), (a, b′)). Thus, due to the assumed Gaifman freach(n)-locality of the query

reach, we have (a, b) ∈ reach(Gn) iff (a, b′) ∈ reach(Gn). However, in Gn there is a
directed path from a to b, but no directed path from a to b′ — a contradiction.
Similar constructions can be used to show that none of the queries cycle, triangle-reach,
same-distance is definable in F .

It is well-known that FO(σ)-definable queries are Gaifman local with constant local-
ity radius, i.e., for every FO(σ)-definable query q there is a constant c such that q is
Gaifman c-local [11]. This can be generalised to order-invariant FO:

A Short Tutorial on Order-Invariant First-Order Logic 123

Theorem 5.6 (Grohe, Schwentick [8]). Order-invariant FO is Gaifman local with
constant locality radius. I.e., for every <-inv-FO(σ)-definable query q there is a con-
stant c such that q is Gaifman c-local.

The result for constant locality radius (independent of the size of the graph) cannot
be lifted to arb-invariant FO: In [2] it was shown that for every d ∈ N there is an
{+,×}-inv-FO(σ)-definable unary query qd that is not Gaifman (logn)d-local. But
still, for arb-invariant FO we get a Gaifman locality result for neighborhoods whose
radius is bounded polylogarithmically in the size of the underlying graphs:

Theorem 5.7 (Anderson, Melkebeek, Schweikardt, Segoufin [2]). Arb-invariant FO
is Gaifman local with polylogarithmic locality radius. I.e., for every query q definable
in arb-inv-FO(σ) there is a constant c such that q is Gaifman (logn)c-local.

Note that this suffices to conclude that none of the queries mentioned in Example 5.5 is
definable in arb-inv-FO(σ).

The proof of Theorem 5.6 relies on a sophisticated construction using Ehrenfeucht-
Fraı̈ssé games. A simplified proof a weaker version of Theorem 5.6 can be found in the
textbook [14]. The proof of Theorem 5.7 exploits the connection between arb-invariant
FO and Boolean circuits. In the following, we present the proof of a weaker version of
Theorem 5.7 for the particular case of unary queries and the notion of weak Gaifman
locality [14], where “a ∈ q(G) ⇐⇒ b ∈ q(G)” needs to be true only for those tuples
a and b whose f(n)-neighborhoods are disjoint.

Definition 5.8 (Weak Gaifman locality). Let f : N → N. A unary query q is called
weakly Gaifman f(n)-local if there is an n0 ∈ N such that for every n ∈ N with n ≥ n0

and every directed graph G = (V,E) on n nodes, the following is true for all nodes
a, b ∈ V with (NG

f(n)(a), a)
∼= (NG

f(n)(b), b) and NG
f(n)(a) ∩ NG

f(n)(b) = ∅:
a ∈ q(G) ⇐⇒ b ∈ q(G).

We give a proof of the following weaker version of Theorem 5.7:

Proposition 5.9. For every unary query q definable in arb-inv-FO(σ) there is a con-
stant c such that q is weakly Gaifman (logn)c-local.

Proof. Let q be a unary query expressed by an arb-inv-FO(σ)-formula ϕ(x). By using
a variation of Theorem 5.2, there exist numbers d, s ∈ N such that for every n ∈ N≥1

there is a circuit Cn2+n with n2+n input gates, depth d, and size ns such that the
following is true for all graphs G = (V,E) with |V | = n, for all nodes a ∈ V , and all
embeddings ι of V into [n]:

Cn2+n accepts Repι(G, a) ⇐⇒ G |= ϕ[a]. (1)

Here, Repι(G, a) = Repι(G)Repι(a) is the bitstring representation of (G, a), where
Repι(a) is the bitstring b0 · · · bn−1 with bι(a) = 1 and bj = 0 for all j �= ι(a).

For contradiction, let us now assume that for every c ∈ N the query q defined by
ϕ(x) is not weakly Gaifman (log n)c-local. Thus, in particular for c := 2(d−1) we
obtain that for all n0 ∈ N there exists an n ≥ n0, and

124 N. Schweikardt

(∗): a graph G = (V,E) on n nodes, and nodes a, b ∈ V such that
for m := (log n)c = (log n)2(d−1) we have:

(NG
m (a), a) ∼= (NG

m (b), b), NG
m(a) ∩NG

m(b) = ∅, G |= ϕ[a], G �|= ϕ[b].

Claim. The circuit Cn2+n can be transformed into a circuit C̃m on m input bits, such
that C̃m has the same depth and size as Cn2+n and accepts exactly those bitstrings
w ∈ {0, 1}m that contain an even number of ones.

Before proving this claim, let us point out how it can be used to conclude the proof of
Proposition 5.9. According to the claim, C̃m is a circuit of depth d and size ns, which
accepts exactly those bitstrings w ∈ {0, 1}m that contain an even number of ones.

From Theorem 5.1 we know that the size ns of C̃m must be bigger than 2�·
d−1
√
m.

However, we had chosen m = (log n)2(d−1), and hence 2�·
d−1
√
m = 2�·(logn)2 =

n�·logn > ns for all sufficiently large n — a contradiction! Thus, for concluding the
proof of Proposition 5.9, it suffices to prove the claim.

Proof of the claim. Let G = (V,E) be the graph chosen according to (∗), and let ι be an
arbitrary embedding of V into [n]. The idea is to define, for every bitstring w ∈ {0, 1}m,
a graph Gw such that

(∗∗): (Gw , a) ∼=
{

(G, a) if w contains an even number of ones,

(G, b) otherwise.

The circuit C̃m is constructed in such a way that on input w ∈ {0, 1}m it does the same
as circuit Cn2+n does on input Repι(Gw , a). From (1) we then obtain that

C̃m accepts w ⇐⇒ Cn2+n accepts Repι(Gw , a) ⇐⇒ Gw |= ϕ[a].

If w contains an even number of ones, (Gw , a) ∼= (G, a). As we know from (∗) that
G |= ϕ[a], we therefore obtain that C̃m accepts w.
If w contains an odd number of ones, (Gw , a) ∼= (G, b). As we know from (∗) that
G �|= ϕ[b], we therefore obtain that C̃m does not accept w.
Thus, circuit C̃m accepts exactly those w ∈ {0, 1}m that contain an even number of 1s.

Definition of Gw: From (∗) we know that there exists an isomorphism π from
NG

m(a) to NG
m(b) with π(a) = b. Furthermore, we know that NG

m(a) ∩ NG
m(b) = ∅,

and thus G contains no edges that link vertices of NG
m−1(a) with vertices of NG

m−1(b).
For x ∈ {a, b}, we partition NG

m(x) into shells Si(x) := {y ∈ V : distG(x, y) = i},
for all i ≤ m. Note that π(Si(a)) = Si(b).
In the following, we write Si for the set Si(a) ∪ Si(b).
For a bitstring w = w1 · · ·wm ∈ {0, 1}m the graph Gw is defined as follows:

– Gw has the same vertex set V as the graph G.
– All edges of G that do not link a vertex of shell Si−1 with a vertex of shell Si, for

some i ≤ m, are copied into Gw.
– Edges of G that link a vertex of shell Si−1 with a vertex of shell Si, for some i ≤ m

are modified depending on the i-th bit wi of the bitstring w:

A Short Tutorial on Order-Invariant First-Order Logic 125

– If wi = 0, then edges of G that link a vertex of shell Si−1 with a vertex of
shell Si are copied into Gw.

– If wi = 1, then for every edge of G that links a vertex u of shell Si−1(a)
with a vertex v of shell Si(a), we insert into Gw an edge that links vertex
u (in shell Si−1(a)) with vertex π(v) (in shell Si(b)), and we also insert the
according edge that links vertex π(u) (in shell Si−1(b)) with the vertex v (in
shell Si(a)).

Thus, for every i with wi = 1, the roles of the shells Si(a) and Si(b) are swapped. It
is straightforward to see that the resulting graph Gw satisfies (∗∗); see Figure 2 for an
illustration.

Fig. 2. Illustration of the graph Gw for neighborhoods of radius m = 4

Construction of C̃m: Let us fix an embedding ι of V into [n]. The circuit C̃m is
obtained from Cn2+n by replacing the input gates of Cn2+n as follows:

Let u, v ∈ V , and let gμ,ν for μ := ι(u) and ν := ι(v) be the input gate of Cn2+n

that corresponds to the entry aμ,ν of G’s adjacency matrix w.r.t. ι (i.e., aμ,ν = 1 iff
(u, v) ∈ E).

In case that (u, v) does not belong to (Si−1 × Si) ∪ (Si × Si−1) for any i ≤ m, the
gate gμ,ν is replaced by the constant gate 1 if (u, v) ∈ E, and by the constant gate 0 if
(u, v) �∈ E.

In case that (u, v) belongs to (Si−1(a)×Si(a))∪(Si(a)×Si−1(a)) for some i ≤ m,
let g := gμ,ν , and let g′, g̃, g̃′ be the input gates of Cn2+n corresponding to the potential
edges (π(u), π(v)), (u, π(v)), and (π(u), v), respectively.
If (u, v) �∈ E, then g, g′, g̃, g̃′ are replaced by the constant gate 0.
If (u, v) ∈ E, then g and g′ are replaced by ¬wi, whereas g̃ and g̃′ are replaced by wi,
where wi is the input gate for the i-th bit of the input bitstring of length m.

It is straightforward to see that on input w ∈ {0, 1}m the circuit C̃m does the same as
circuit Cn2+n does on input Repι(Gw, a). This completes the proof of Proposition 5.9.

��
6 Some Open Questions

We conclude with a list of open research questions:

(1) Is addition-invariant FO Gaifman local with constant locality radius? (Cf., [8,14].)
(2) Can addition-invariant FO define string-languages that are not regular? (See [24]

for details.)
(3) Are there analogues of the Theorems 5.6 and 5.7 for the notion of Hanf locality?

(Cf. [14] for the definition of Hanf locality.)
(4) Does order-invariant FO have a zero-one law? (See [6,14] for zero-one laws.)
(5) Are there decidable characterisations of order-invariant FO, addition-invariant

FO, or {+,×}-invariant FO? (See [4,24,9] for related results.)

126 N. Schweikardt

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Anderson, M., van Melkebeek, D., Schweikardt, N., Segoufin, L.: Locality from circuit lower

bounds. SIAM Journal on Computing 41(6), 1481–1523 (2012)
3. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge Univ.

Press (2009)
4. Benedikt, M., Segoufin, L.: Towards a characterization of order-invariant queries over tame

structures. Journal of Symbolic Logic 74(1), 168–186 (2009)
5. Courcelle, B.: The monadic second-order logic of graphs X: Linear orderings. Theoretical

Computer Science 160(1&2), 87–143 (1996)
6. Ebbinghaus, H.-D., Flum, J.: Finite model theory. Springer (1999)
7. Ganzow, T., Rubin, S.: Order-invariant MSO is stronger than Counting MSO in the finite. In:

Proc. STACS 2008, pp. 313–324 (2008)
8. Grohe, M., Schwentick, T.: Locality of order-invariant first-order formulas. ACM Transac-

tions on Computational Logic 1(1), 112–130 (2000)
9. Harwath, F., Schweikardt, N.: Regular tree languages, cardinality predicates, and addition-

invariant FO. In: Proc. STACS 2012, pp. 489–500 (2012)
10. Håstad, J.: Computational limitations for small-depth circuits. PhD thesis. MIT (1986)
11. Hella, L., Libkin, L., Nurmonen, J.: Notions of locality and their logical characterizations

over finite models. Journal of Symbolic Logic 64(4), 1751–1773 (1999)
12. Immerman, N.: Relational queries computable in polynomial time. Information and Con-

trol 68(1-3), 86–104 (1986)
13. Immerman, N.: Languages that capture complexity classes. SIAM Journal on Comput-

ing 16(4), 760–778 (1987)
14. Libkin, L.: Elements of Finite Model Theory. Springer (2004)
15. Makowsky, J.A.: Invariant Definability and P/poly. In: Gottlob, G., Grandjean, E., Seyr, K.

(eds.) CSL 1998. LNCS, vol. 1584, pp. 142–158. Springer, Heidelberg (1999)
16. Niemistö, H.: On locality and uniform reduction. In: Proc. LICS 2005, pp. 41–50 (2005)
17. Otto, M.: Epsilon-logic is more expressive than first-order logic over finite structures. Journal

of Symbolic Logic 65(4), 1749–1757 (2000)
18. Potthoff, A.: Logische Klassifizierung regulärer Baumsprachen. PhD thesis, Christian-

Albrechts-Universität Kiel (1994)
19. Rossman, B.: Successor-invariant first-order logic on finite structures. Journal of Symbolic

Logic 72(2), 601–618 (2007)
20. Rossman, B.: On the constant-depth complexity of k-clique. In: Proc. STOC 2008,

pp. 721–730 (2008)
21. Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM Transactions

on Computational Logic 6(3), 634–671 (2005)
22. Schweikardt, N.: On the expressive power of monadic least fixed point logic. Theoretical

Computer Science 350(2-3), 325–344 (2006)
23. Schweikardt, N.: On the expressive power of logics with invariant uses of arithmetic pred-

icates. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 85–87.
Springer, Heidelberg (2012)

24. Schweikardt, N., Segoufin, L.: Addition-invariant FO and regularity. In: Proc. LICS 2010,
pp. 273–282 (2010)

25. Schwentick, T.: On Winning Ehrenfeucht Games and Monadic NP. Annals of Pure and Ap-
plied Logic 79(1), 61–92 (1996)

26. Vardi, M.: The complexity of relational query languages. In: Proc. STOC 1982, pp. 137–146
(1982)

Exponential Lower Bounds

for Refuting Random Formulas
Using Ordered Binary Decision Diagrams

Luke Friedman� and Yixin Xu��

Rutgers University, Piscataway, NJ, USA
{lbfried,yixinxu}@cs.rutgers.edu

Abstract. A propositional proof system based on ordered binary deci-
sion diagrams (OBDDs) was introduced by Atserias et al. in [3]. Kraj́ıček
proved exponential lower bounds for a strong variant of this system us-
ing feasible interpolation [14], and Tveretina et al. proved exponential
lower bounds for restricted versions of this system for refuting formulas
derived from the Pigeonhole Principle [20]. In this paper we prove the
first lower bounds for refuting randomly generated unsatisfiable formu-
las in restricted versions of this OBDD-based proof system. In particular
we consider two systems OBDD* and OBDD+; OBDD* is restricted by
having a fixed, predetermined variable order for all OBDDs in its refu-
tations, and OBDD+ is restricted by having a fixed order in which the
clauses of the input formula must be processed. We show that for some
constant ε > 0, with high probability an OBDD* refutation of an un-
satisfiable random 3-CNF formula must be of size at least 2εn, and an
OBDD+ refutation of an unsatisfiable random 3-XOR formula must be
of size at least 2εn.

1 Introduction

Propositional proof complexity is both an approach for attacking the famous
P vs. NP problem, and also for obtaining a better theoretical understanding of
algorithms for the satisfiability problem. A whole landscape of proof systems
of varying strengths has been mapped out and studied – see for instance [17]
for general background in this field. From a complexity theory standpoint the
situation is similar to that of circuit complexity – for certain restricted systems
such as the resolution system exponential lower bounds on the size of refuting
many different families of unsatisfiable propositional formulas have been proved.
However, for strong systems such as extended Frege, researchers have failed to
prove even super-linear lower bounds for any family of unsatisfiable formulas,
despite the fact that if such a system had polynomial-size refutations of all
unsatisfiable formulas this would imply that NP = CO-NP.

� Partially supported by NSF grants CCF-0832787 and CCF-1064785.
�� Partially supported by NSF grant CCF-0832787.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 127–138, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

128 L. Friedman and Y. Xu

In this paper we prove the first lower bounds on the size of refuting randomly-
generated unsatisfiable 3-CNF and 3-XOR formulas in proof systems based on
ordered binary decision diagrams. Random CNF formulas have been studied ex-
tensively, both as a benchmark for measuring in some sense the average case
performance of SAT solving algorithms, and also as a tool for proving proof
complexity lower bounds. It is well-known that if a random 3-CNF formula on
n variables is generated with Δn clauses for large enough constant Δ, then with
high probability the formula will be unsatisfiable. The lack of structure in these
formulas makes them hard to refute; indeed, it is conceivable that they require
exponential size refutations in any proof system, and since even generating can-
didate hard formulas for strong proof systems can be difficult [16], they are a
natural choice for lower bound proofs and developing new techniques for them
is a worthwhile task.

Along with random 3-CNF formulas, we also consider random 3-XOR formu-
las, which are formulas whose clauses are satisfied if and only if one or three
of its literals are satisfied. Unlike in the 3-CNF case, determining satisfiability
of a 3-XOR formula is known to be computable in polynomial time, since such
formulas can be equivalently represented as a system of linear equations over
F2, and then an algorithm such as Gaussian elimination can be used to test the
solvability of the system. However, random 3-XOR formulas retain a lot of the
important properties of random 3-CNF formulas, and because they are easier
to reason about they have been useful in proving lower bounds for weak proof
systems (e.g. [2]).

Ordered Binary Decision Diagrams (OBDDs) are data structures for repre-
senting Boolean functions that were originally introduced in [5] and have found
a wide variety of applications in areas of computer science such as VLSI de-
sign and model checking. They have also emerged as a basis for SAT solving
algorithms that have been demonstrated to be competitive on certain classes of
formulas with the state-of-the-art DPLL based solvers that are generally used in
practice [15],[13]. Informally they are read-once branching programs where vari-
ables must be queried according to a fixed order. Part of what makes OBDDs
so useful is that their relatively rigid structure makes it possible to manipulate
them efficently: For any given Boolean function f on n variables and variable
order π there is a unique (up to isomorphism) minimal OBDD computing f ,
and operations such as taking the conjunction of two OBDDs and determining
whether an OBDD representing a function f1 majorizes an OBDD representing
a function f2 (i.e for all x, f1(x) ≥ f2(x)) are computable in polynomial time
[5].

A refutation system based on OBDDs was introduced in [3]. The basic idea
of such a system is simple: Given an unsatisfiable 3-CNF (or 3-XOR) formula
F , an OBDD refutation of F with respect to a variable order π is a sequence
OBDD1,OBDD2, . . .OBDDt ≡ 0, where each OBDDi uses the variable order π
and is either the OBDD representation of a clause from F (an axiom), or is the
conjunction of two OBDDs derived earlier (i.e. OBDDi = OBDDj ∧ OBDDk

for some j, k < i). One can also include a weakening rule, so that OBDDi may

Exponential Lower Bounds for Refuting Random Formulas 129

also be an OBDD such that OBDDi majorizes OBDDj for some j < i. Such a
refutation system is sound and complete, and because computing the conjunc-
tion of two OBDDs can be done in polynomial time (as well as determining
whether one OBDD majorizes another in the case of a weakening), verifying
whether a refutation is correct is also polynomial time computable. Thus these
OBDD-based systems qualify as propositional proof systems in the formal sense
introduced by Cook and Reckhow [7]. The OBDDs representing axioms in this
type of refutation are small, as well as the final OBDD OBDDt. Therefore, if
a refutation in one of these OBDD-based systems has a polynomial number of
steps, whether it is polynomial size or not depends only on whether one of the
intermediate OBDDs computed along the way has super-polynomial size. The
only non-deterministic choices the prover must make are which variable order π
to use, and in what order to combine OBDDs. (If a weakening rule exists, the
prover must also choose when and how to use it). These choices can be crucial
however in determining the size of the refutation; for instance, it is a simple
exercise to show that for certain functions the OBDD representation has size
O(n) according to one variable order yet size Ω(2n) according to another order.

By restricting the options the prover has in making these choices, one can de-
fine different variants of this OBDD-based system that have varying strengths.
One reason for doing so is that no current OBDD-based SAT solver takes full
advantage of the power offered by the underlying OBDD proof system in its un-
restricted form. This is a common phenomenon in SAT solving – basing solvers
on more powerful proof systems does not necessarily make the solvers better.
The reason is that as the proof systems become more powerful, trying to deter-
ministically make the non-deterministic choices of the proof system becomes an
increasingly difficult task. This is highlighted by the fact that the best general
purpose SAT solvers in use today are variants of the DPLL algorithm, which is
based on the resolution system, one of the weakest proof systems that has been
studied. In the case of OBDD based systems, it is not clear how to best make use
of the full weakening rule, and even determining the best variable order to use
in an OBDD representation of a single function is an NP-complete problem [4].
Particularly when considering random formulas, because of the symmetry and
lack of structure it seems unlikely that one variable order would be exponentially
better than another, or even if such a good order did exist that it could be found
efficiently. However, the sheer number of different possible variable orders make
proving such a fact difficult from a technical standpoint.

From a theoretical point of view, restricting these OBDD systems creates in-
teresting intermediate systems. It was proved in [3] that allowing unrestricted use
of the weakening rule makes the OBDD proof system as strong as CP*, a variant
of the cutting planes system where coefficients are represented in unary, that is
strictly stronger than resolution and for which the only known lower bounds are
based on feasible interpolation. However, if we do not allow weakening the story
changes significantly – in this case there exist certain families of unsatisfiable
formulas for which the smallest OBDD refutations are exponentially larger than
the smallest resolution refutations [20]. Despite this apparent weakness, it has

130 L. Friedman and Y. Xu

not been proved that the Frege system, a powerful system that could even con-
ceivably be optimal, can polynomially simulate this restricted OBDD system.
The reason is that the lines of Frege systems are formulas, which cannot directly
simulate the dag-like structure of OBDDs. Thus studying different variations of
restricted OBDD-based systems is one possible route towards bridging the gap
between systems we know to be weak and those for which we do not have lower
bounds on natural families of formulas.

Kraj́ıček gave exponential lower bounds for the OBDD-based system of [3] in
its full generality using a form of the feasible interpolation method [14], and these
are currently the only lower bounds known for this strongest variant. Tveretina
et al. showed that if the weakening rule is disallowed, then an OBDD-based
refutation of the pigeonhole principle must have exponential size [20], building
upon a similar result from Groote and Zantema [11], who had also restricted the
system to only consider specific variable orders. In this paper we take a first step
towards understanding the limitations of OBDD-based systems to refute random
formulas by proving exponential lower bounds for certain restricted variants.

In particular we consider two restricted OBDD-based systems, which we can
denote by OBDD* and OBDD+. In both systems the weakening rule is excluded.
In the OBDD* system the variable order that will be used for the refutation is
fixed before the random formula is chosen. Because random formulas are gen-
erated symmetrically with respect to the variables, without loss of generality
we can fix the identity order I that orders a set of variables x1, x2, . . . xn as
x1 < x2 < · · · < xn. In the OBDD* system the prover has the freedom to com-
bine OBDDs during the refutation in an arbitrary way. In the OBDD+ system,
the prover has the freedom to choose any variable order π after seeing the ran-
dom formula φ that is to be refuted. However, during the refutation, the clauses
of φ (represented as OBDDs) must be combined in a predetermined fashion
corresponding to some canonical ordering of the clauses in φ.

The following two theorems are our main results:

Theorem 1. Let Δ be a sufficiently large constant. There exists an ε > 0, such
that with high probability when φ is a random 3-CNF formula on n variables
with clause density Δn, φ is unsatisfiable and any OBDD* refutation of φ must
have size at least 2εn.1

Theorem 2. Let Δ be a sufficiently large constant. There exists an ε > 0 such
that with high probability when φ is a random 3-XOR formula on n variables
with clause density Δn, φ is unsatisfiable and any OBDD+ refutation of φ must
have size at least 2εn.

The progress we have made in this paper is summarized in Figure 1.

1 This theorem can be proved almost identically in the case where we consider a
random 3-XOR formula as well. Also, a close inspection of the proof shows that for
either the 3-CNF or 3-XOR case, if instead of fixing the variable order I we allow
the prover to fix any set S of 2δn variable orders for sufficiently small δ before seeing
the random formula φ, then to choose one of the variable orders from S after seeing
φ, the theorem still holds in this scenario as well.

Exponential Lower Bounds for Refuting Random Formulas 131

Fig. 1. A summary of the results from this paper. We consider different OBDD-based
proof systems, none of which include a weakening rule. The systems differ according
to two possible restrictions: (1) Is the variable order that will be used in the refutation
fixed before the random formula is chosen? (2) Are the clauses processed in the refu-
tation according to a canonical order in which they appear in the input formula? We
consider both random 3-CNF and random 3-XOR formulas. A check mark appears in
the box corresponding to a given proof system and type of random formula if we prove
exponential lower bounds for this combination in this paper, and an X appears in the
box if proving lower bounds in this case is still open.

2 Preliminaries and Notations

We will denote a set of n Boolean variables as {x1, . . . , xn}. A literal xj
i , j ∈

{0, 1}, is either a variable or its negation. An assignment α to a set of n variables
is a function [n] → {0, 1}, where [n] denotes the set {1, 2, . . . , n}. α satisfies a
literal xj

i if and only if α(i) = j.
A clause C is a set of literals. An assignment α satisfies C as a CNF clause if

and only if α satisfies some literal in C. α satisfies C as an XOR clause if and
only if α satisfies an odd number of literals in C. A 3-CNF (3-XOR) formula
F over n variables is a list of clauses (C1, . . . , Cm), where each of the clauses
contains three literals from variables in the set {x1, . . . xn}. It is satisfied by an
assignment α if and only if every clause in F is satisfied by α as a CNF (XOR)
clause. If it is irrelevant whether we are referring to a 3-CNF formula or a 3-XOR
formula, we will often refer to the formula simply as a 3-formula.

Definition 1 (Random 3-formula). A random 3-formula φ on n variables
with clause density Δ is a 3-formula (C1, . . . , CΔn), where each clause Ci is
chosen uniformly at random from all of the 23

(
n
3

)
possible clauses.

Let π be a total order on a set of variables {x1, . . . , xn}. We will refer to π simply
as an order. Alternatively, we can view π as a permutation such that π(i) = j if
and only if the i-th variable in the order of π is xj . We will also write π−1(j) = i
to indicate that π(i) = j. We also define the identity order I such that for all i,
I(i) = i.

Let f : {0, 1}n → {0, 1} be a Boolean function on n variables and let z ∈
{0, 1}t for t ≤ n. We define f |π,z to be the function f ′ : {0, 1}n−t → {0, 1} that

132 L. Friedman and Y. Xu

is the function f restricted so that for each 1 ≤ i ≤ t, if π(i) = j, then xj is
fixed to the constant value zi.

Definition 2 (OBDD). Given an order π on {x1, . . . , xn}, an ordered binary
decision diagram with respect to π, denoted by OBDDπ, is a branching program
with the following structure. An OBDDπ is a layered directed acyclic graph with
layers 1 through n + 1. Layer 1 contains a single root node, and layer (n + 1)
contains two final nodes, one labeled with the value 0 and the other labeled with
the value 1. Every node in layers 1 through n has outdegree two: such a node v
on level i has one outgoing edge to a node on level i+1 labeled with the value 0,
and another outgoing edge to a node on level i+ 1 labeled with the value 1.

An OBDDπ defines a Boolean function {0, 1}n → {0, 1} in the following way.
For an assignment α on n variables, we start at the root node, and for i = 1 to
n, advance along the edge labeled with α(π(i)). When this process is complete,
we will have arrived at one of the final nodes. If this final node is labeled with 0,
then we define OBDDπ(α) = 0, and otherwise we define OBDDπ(α) = 1, where
now we are associating α with an n bit string in the natural way.

|OBDDπ| denotes the size (the number of nodes) of the OBDD.

An important property of OBDDs is that for a given Boolean function f :
{0, 1}n → {0, 1} and an ordering π, there is a unique minimal OBDDπ up to iso-
morphism computing f [5]. Thus for a given f we can safely refer to OBDDπ(f)
as the OBDD computing f according to π.

The following simple theorem (and corollary) provide general techniques for
proving lower bounds on |OBDDπ(f)|.

Theorem 3 ([18]). Let f : {0, 1}n → {0, 1} be a Boolean function on n vari-
ables and π an order. Let k = |{f |π,z : z ∈ {0, 1}t}| (i.e., k counts the number
of distinct subfunctions of f that can be produced by fixing the first t variables
according to π). Then the t-th level of OBDDπ(f) contains k nodes.

Corollary 1 ([19]). Let f be a Boolean function on n variables and π an order.
Suppose the following conditions hold

1. x1, · · · , xt are the least t variables according to π for some t < n.
2. B ⊆ {1, . . . , t}.
3. z ∈ {0, 1}t.
4. For all x,x′ ∈ {0, 1}t, if x �= x′ and xi = x′i = zi for all i /∈ B, then there

exists y ∈ {0, 1}n−t such that f(x,y) �= f(x′,y).

Then |OBDDπ(f)| ≥ 2|B|.

Definition 3 (OBDD∗π refutation). Given an unsatisfiable 3-formula F and
an order π, an OBDD∗π refutation of F is a sequence
OBDDπ(f1), OBDDπ(f2), · · · , OBDDπ(ft ≡ 0) such that for each fi one of the
following conditions is satisfied:

Exponential Lower Bounds for Refuting Random Formulas 133

1. fi is a clause of F . (In this case we say that fi is an axiom.)
2. fi = fj ∧ fk for some j, k < i.

The size of the OBDD∗π refutation is defined as
∑t

i=1 |OBDDπ(fi)|.
We define S∗π(F) to be the minimum size of any OBDD∗π refutation of F . In

this paper we focus on π = I and thus will refer to S∗I(F).

Definition 4 (OBDD+
π refutation). An OBDD+

π refutation of an unsatisfi-
able 3-formula F = (C1, . . . , Cm) is an OBDD∗π refutation where the clauses
of F are processed one at a time in order. Precisely, an OBDD+

π refutation of
F is a sequence OBDDπ(f1), OBDDπ(f2), · · · , OBDDπ(f2m = 0) where for
1 ≤ i ≤ m, fi = Ci, fm+1 = C1, and for m + 2 ≤ j ≤ 2m, fj = fj−1 ∧ fj−m.
We define S+

π (F) to be the size of the unique OBDD+
π refutation of F , and we

define S+(F) to be the minimum over π of S+
π (F).

We will make use of the following bounds related to satisfiability thresholds.

Theorem 4. [8] There exists Δ∗ ≤ 4.51 such that for large n, w.h.p a random
3-CNF formula with n variables and clause density Δ > Δ∗ will be unsatisfiable.

Theorem 5. [9] There exists Δ∗ ≤ 0.91 such that for large n, w.h.p a random
3-XOR formula with n variables and clause density Δ > Δ∗ will be unsatisfiable.

We will also need the following lemma, which is a restatement of a result that
appeared in [6]. For S a subset of the clauses of a 3-formula F , let var(S) be
the set of all variables that appear in at least one of the clauses of S (ignoring
the sign of the literal). We call a 3-formula F on n variables an (x, y)-expander
if for all subsets S of the clauses of F such that |S| ≤ xn, |var(S)| ≥ y|S|.

Lemma 1. [6] For all y < 2 and Δ > 0, there exists positive x such that w.h.p a
random 3-formula on n variables with clause density Δ will be an (x, y)-expander.

Finally, we need two results on systems of distinct representatives that follow
from Hall’s marriage theorem. For a clause C, let var(C) be the set of variables
appearing in C, and for a set of clauses S, let var(S) = ∪C∈Svar(C). We say a
subset S of clauses has a system of distinct representatives (SDR) if there is a
one-to-one function σ : S → var(S) such that for all C ∈ S, σ(C) ∈ var(C).

Lemma 2. [12] Let S be a subset of clauses. S has an SDR if and only if for
all S′ ⊆ S, |var(S′)| ≥ |S′|.

Lemma 3. [6] Let S be a set of clauses and V a set of variables. S has an SDR
σ with at most t elements of V in the range of σ if and only if it has an SDR
and for all S′ ⊆ S, |S′| − |var(S′) \ V | ≤ t.

3 Proof of the OBDD* Case

The purpose of this section is to prove Theorem 1, which we now restate.

134 L. Friedman and Y. Xu

Theorem 6 (restatement of Theorem 1). Let Δ > 4.51. There exists a
constant ε > 0 such that, with high probability when φ is a random 3-CNF
formula on n variables with clause density Δ, φ is unsatisfiable and S∗I(φ) ≥ 2εn.

The main work in our proof of Theorem 6 is proving the following lemma.

Lemma 4. Let Δ > 4.51. There exist constants δ, ε > 0 such that, with high
probability when φ is a random 3-CNF formula on n variables with clause density
Δ, φ is a (δ, 1.9) expander and the following holds: Let S be any subset of the
clauses of φ such that δn/2 ≤ |S| ≤ δn, and let fS be the conjunction of these
clauses. Then |OBDDI(fS)| ≥ 2εn.

Proof (of Theorem 6). Because Δ > 4.51, by Theorem 4 with high probability φ
will be unsatisfiable. Let P = OBDDI(f1), OBDDI(f2), · · · , OBDDI(ft = 0)
be an OBDD∗I refutation of φ. Each fi is a conjunction of some subset of clauses
S of φ. Let |fi| denote |S|.

By Lemma 1, there exists a constant δ such that with high probability φ
is a (δ, 1.9) expander. By Lemma 2 this means that any subset S of clauses
of φ with |S| ≤ δn has an SDR. Any set of clauses S that has an SDR σ
is satisfiable, since an assignment that for each clause C ∈ S sets σ(C) to the
value that satisfies C will satisfy S. Therefore, since ft is the constant 0 function,
which is trivially unsatisfiable, |ft| ≥ δn. For every fi that is an axiom, we have
|fi| = 1. If fi = fj ∧ fk for some j, k < i, then |fi| ≤ |fj | + |fk|. Therefore, for
each i ∈ t, |fi| ≤ 2maxj<i |fj |. This implies that there exists i ∈ [t] such that
δn/2 ≤ |fi| ≤ δn. By Lemma 4, |OBDDI(fi)| ≥ 2εn, so P has size at least 2εn.

The remainder of this section is devoted to proving Lemma 4. First we prove a
few other lemmas that will be useful towards this goal. Some of these proofs are
omitted for space reasons (but can be seen in the full version [10]).

Lemma 5. Let Δ > 0 and 0 < δ < Δ be some constant. There exists ε > 0,
such that with high probability when φ is a random 3-formula on n variables with
clause density Δ, for any set T of εn variables, the number of clauses from φ
that contain a variable from T is less than δn.

Lemma 6. Let Δ > 0 and 0 < δ < Δ be some constant. There exists ε > 0,
such that with high probability when φ is a random 3-formula on n variables with
clause density Δ, the following property holds: For all sets S of clauses from φ
with |S| ≥ δn, there exists a set of clauses T ⊆ S with |T | = εn such that the
clauses in T are disjoint (i.e. no two clauses of T share a common variable).

Definition 5 (splits). Let t be a positive integer less than n and F a 3-formula.
For a clause C ∈ F , we say that t left-splits C according to an order π if there
is exactly one variable xi ∈ var(C) such that π−1(i) ≤ t. In this case we define
leftC,t,π = xi. Similarly, we say that t right-splits C according to an order π
if there is exactly one variable xi ∈ var(C) such that π−1(i) > t, and in this
case define rightC,t,π = xi. If t either right-splits or left-splits C, then we will
sometimes simply say that t splits C.

Exponential Lower Bounds for Refuting Random Formulas 135

Lemma 7. Let Δ, δ > 0 be any constants, and for some 0 < ε < 1, let
Γε = {�εn�, �2εn�, �3εn�, · · · , �(1− ε)n�}. Then with high probability when φ is
a random 3-formula on n variables with clause density Δ, for any set of clauses
S from φ, with |S| ≥ δn, there exists t ∈ Γε such that at least (δ− 7εΔ)εn of the
clauses are left-split by t according to I.

Lemma 8. Let Δ > 4.51, and let δ′ be the constant that comes out of Lemma
1 such that with high probability a random 3-formula with clause density Δ is a
(δ′, 1.9) expander. Let δ < δ′ be some constant. There exists constants γ, ε > 0,
such that with high probability when φ is a random 3-formula on n variables with
clause density Δ, the following property holds: For all sets T of clauses from φ,
with δn ≤ |T | ≤ δ′n, there exists S ⊆ T such that

1. |S| = γn.
2. There exists t ∈ Γε such that every clause C ∈ S is left-split by t according

to I.
3. The clauses of S are disjoint.
4. T has an SDR σ, such that for every clause C ∈ S, exactly one variable in

C is in the range of σ.

Proof. Suppose the conclusions of Lemma 1, Lemma 6, and Lemma 7 hold with
respect to φ (which occurs with high probability). Let T be a set of clauses from
φ such that δn ≤ |T | ≤ δ′n. By Lemma 7, there exists a constant ε such that for
λ = (δ− 7εΔ)ε > 0, at least λn clauses from T are left-split by t ∈ Γε according
to I. Call this set of λn clauses U .

By Lemma 6, for some constant λ′ we can find a set of λ′n disjoint clauses
U ′ ⊆ U . Now we invoke Lemma 3 to show that there exists an SDR σ for
T such that at most 1.6λ′n of the 3λ′n variables in var(U ′) are in the range
of σ. To do this it suffices to show that for any set of clauses S′ ⊆ T , |S′| −
|var(S′) \ var(U ′)| ≤ 1.6λ′n. If |S′| ≤ 1.6λ′n then trivially the inequality is
satisfied. Otherwise, if |S′| > 1.6λ′n, then because ψ is a (δ′, 1.9) expander,
|var(S′)| ≥ 1.9|S′|, so

|S′| − |var(S′)\var(U ′)| ≤ −0.9|S′|+ 3λ′n ≤ −1.44λ′n+ 3λ′n ≤ 1.6λ′n

Because there are at most 1.6λ′n variables from var(U ′) in the range of σ, there
must exist a set of clauses S ⊆ U ′, with |S| = 0.4λ′n, such that for every clause
C ∈ S, exactly one variable in C is in the range of σ. This set S satisfies the
requirements of the lemma.

We are now ready to prove Lemma 4.

Proof (of Lemma 4).
By Lemma 1, there exists δ > 0 such that with high probability φ is a (δ, 1.9)

expander, and also with high probability the conclusion of Lemma 8 holds.
Let S be a subset of the clauses of φ such that δn/2 ≤ |S| ≤ δn. Let S′ ⊆ S

be the set guaranteed to exist by Lemma 8 with the four properties from that
lemma, and σ the corresponding SDR for S. Let leftS′ = {leftC,t,I : C ∈ S′}.

136 L. Friedman and Y. Xu

In order to prove the lemma we will make use of Corollary 1 to show that

|OBDDI(fS)| ≥ 2|leftS′ | ≥ 2εn for some constant ε > 0. Our set B from that
theorem will be leftS′ . Define z ∈ {0, 1}t as follows. For each 1 ≤ i ≤ t such
that xi = σ(C) for some clause C, let zi be the value that satisfies the clause C.
Assign all other values of z arbitrarily.

To finish the proof of the lemma, we need that for all x,x′ ∈ {0, 1}t, if x �= x′

and xi = x′i = zi for all i /∈ B, then there exists y ∈ {0, 1}n−t such that
φ(x,y) �= φ(x′,y).

Let x,x′ ∈ {0, 1}t such that x �= x′ and xi = x′i = zi for all i /∈ B. Let j be an
index such that xj �= x′j . Let C be the clause from S′ such that xj = leftC,t,I .

Define y as follows. Let p and q be the two indices other than j such that xp

and xq are in the clause C. Define yp−t and yq−t each to be the value that does
not satisfy the clause C. For each clause D �= C such that D ∈ S′, let r and s be
the two indices greater than t such that xr and xs are in the clause D. Define
yr−t and ys−t each to be the value that satisfies D. For any index i such that
t < i ≤ n and xi = σ(E) for some clause E other than C, define yi−t to be the
value that satisfies the clause E. Assign all other values of y arbitrarily. Note
that because the clauses in S′ are disjoint and for each clause C in S′ exactly one
of the variables of C is in the range of σ, it is always possible to form the partial
assignment y according to these rules. (Note in particular that if σ(E) = x for
some clause E /∈ S′, then x /∈ var(S′)).

Either xj satisfies the clause C, or x′j does. Assume without loss of generality
that xj does. Then φ(x′,y) = 0, since the assignment (x′,y) does not satisfy
the clause C. However, φ(x,y) = 1, since the assignment (x,y) satisfies every
clause in φ. This completes the proof.

4 Proof of the OBDD+ Case

The purpose of this section is to prove Theorem 2, which we now restate.

Theorem 7 (Restatement of Theorem 2). Let Δ > 0.91. There exists a
constant ε > 0 such that, with high probability when φ is a random 3-XOR
formula on n variables with clause density Δ, φ is unsatisfiable and S+(φ) ≥ 2εn.

The following three lemmas are needed in the proof; for space reasons we are
forced to omit their proofs and the proof of Theorem 7 (all of which appear in
[10]).

Lemma 9. For 0 < ε < 1, let Γε = {�εn�, �2εn�, �3εn�, . . . , �(1 − ε)n�}. Let
Δ > 0.5. There exists ε, δ > 0 such that, with high probability when φ is a
random 3-formula on n variables with clause density Δ, the following property
holds: For any order π, there exists some tπ ∈ Γε such that more than δn of the
clauses from φ are split by tπ according to π.2

2 In fact, using a slightly more complicated first moment argument, one can prove the
stronger statement that this lemma holds even if we fix tπ = n/2.

Exponential Lower Bounds for Refuting Random Formulas 137

Lemma 10. There exists λ > 0 such that, with high probability when φ is a
random 3-XOR formula with clause density Δ = 0.6, φ is a (0.6, 1+λ) expander.

Lemma 11. Let ψ be a 3-formula over n variables with clause density Δ such
that ψ is a (Δ, 1 + δ)-expander for some δ > 0. Let U ⊆ ψ be a set of disjoint
clauses with |U | = λn for some λ > 0. Let Ψ be a set of variables and f be a
bijection from Ψ to U such that for all x ∈ Ψ , x appears in the clause f(x). Then
there exists ε > 0 such that there is an SDR σ on ψ for which at least εn of the
variables from Ψ are not in the range of σ.

5 Future Work

The obvious open problem is to prove lower bounds for refuting random 3-
CNF or 3-XOR formulas in an OBDD-based refutation system where neither
the variable order nor the order in which clauses are processed in the refutation
is constrained. Although it might seem that one could tweak our techniques to
get this result, it may be that this is more difficult than appears at first glance.

For instance, suppose we tried to use the same approach of focusing in on a
particular OBDD in the refutation of a random 3-CNF formula such that the
OBDD represents the conjunction of about δn clauses, for some appropriately
chosen fixed δ, in the hopes of showing that the OBDD must be of exponential
size. In the restricted systems from this paper, we were able to choose δ to be
an arbitarily small constant. However, in the unrestricted system (still without
weakening), we would be forced to choose δ to be greater than about 1/6, because
a random formula with clause density just above the threshold does contain sub-
formulas with about n/6 clauses that have small OBDD representations for some
variable order. (For instance, one can look for a large set of disjoint clauses and
then choose a variable order where the variables from each clause are adjacent
in the order). It is much more difficult to reason about sub-formulas in this
regime; for instance, to the best of our knowledge it has not even been proved
that a random 3-CNF formula with clause density just above the threshold with
high probability does not contain an unsatisfiable sub-formula consisting of n/6
clauses (let alone that all sub-formulas slightly larger than this must have large
OBDD representations). Certainly one cannot rely on the existence of SDRs
when considering sub-formulas with clause density this close to the threshold.

Making progress will probably require using a more sophisticated analysis of
the structure of random formulas than we do in this paper. A large amount of
research has been done on investigating the structure of random CNF and XOR
formulas with densities below the respective satisfiability thresholds, including
understanding the solution space structure of such formulas and the occurrence
of various phase transitions. (See for example [1] for a survey of this work,
along with more general information about SAT solving and random formulas).
Finding a way to leverage this type of knowledge in this context is probably a
key step towards achieving these more difficult lower bounds.

138 L. Friedman and Y. Xu

References

1. Achlioptas, D.: Random satisfiability. In: Handbook of Satisfiability, pp. 245–270
(2009)

2. Alekhnovich, M.: Lower bounds for k-DNF resolution on random 3-CNFs. In: Pro-
ceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 251–256
(2005)

3. Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg
(2004)

4. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Transactions on Computers 45(9), 993–1002 (1996)

5. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computing 35, 677–691 (1986)

6. Chvátal, V., Szémeredi, E.: Many hard examples for resolution. Journal of the
ACM 35(4), 759–768 (1988)

7. Cook, S., Reckhow, R.: The relative efficiency of propositional proof systems. Jour-
nal of Symbolic Logic 44, 36–50 (1979)

8. Dubois, O., Boufkhad, Y., Mandler, J.: Typical random 3-sat formulae and the
satisfiability threshold. Tech. Rep (10)003, ECCC (2003)

9. Dubois, O., Mandler, J.: The 3-XORSAT threshold. In: Proceedings of the 43rd
Annual IEEE Symposium on Foundations of Computer Science, pp. 769–778 (2002)

10. Friedman, L., Xu, Y.: Exponential lower bounds for refuting random formulas using
ordered binary decision diagrams. Tech. Rep. TR13-018, Electronic Colloquium on
Computational Complexity (2013)

11. Groote, J.F., Zantema, H.: Resolution and binary decision diagrams cannot simu-
late each other polynomially. Discrete Applied Mathematics 130, 157–171 (2003)

12. Hall, P.: On representatives of subsets. J. London Math. Soc. 10, 26–30 (1935)
13. Huang, J., Darwiche, A.: Toward good elimination ordering for symbolic SAT solv-

ing. In: Proceedings of the Sixteenth IEEE Conference on Tools with Artificial
Intelligence, pp. 566–573 (2004)

14. Kraj́ıček, J.: An exponential lower bound for a constraint propagation proof sys-
tem based on ordered binary decision diagrams. Tech. Rep. (07)007, Electronic
Colloquium on Computational Complexity (2007)

15. Pan, G., Vardi, M.Y.: Search vs. symbolic techniques in satisfiability solving.
In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 235–250.
Springer, Heidelberg (2005)

16. Razborov, A.A.: Pseudorandom generators hard for k-DNF resolution and polyno-
mial calculus resolution (2003) (manuscript)

17. Segerlind, N.: The complexity of propositional proofs. Bulletin of Symbolic
Logic 54, 40–44 (2007)

18. Seiling, D., Wegener, I.: NC-algorithms for operations on binary decision diagrams.
Parallel Processing Letters 3(1), 3–12 (1993)

19. Tveretina, O., Sinz, C., Zantema, H.: An exponential lower bound on OBDD refu-
tations for pigeonhole formulas. In: Athens Colloquium on Algorithms and Com-
plexity. Electronic Proceedings in Theoretical Computer Science (2009)

20. Tveretina, O., Sinz, C., Zantema, H.: Ordered binary decision diagrams, pigeonhole
formulas and beyond. Journal on Satisfiability, Boolean Modeling and Computa-
tion 7, 35–38 (2010)

Parameterized Resolution

with Bounded Conjunction

Stefan Dantchev1 and Barnaby Martin2,�

1 School of Engineering and Computing Sciences, Durham University
Science Laboratories, South Road, Durham DH1 3LE, UK

2 CNRS / LIX UMR 7161, École Polytechnique, Palaiseau, France

Abstract. We provide separations between the parameterized versions
of Res(1) (Resolution) and Res(2). Using a different set of parameterized
contradictions, we also separate the parameterized versions of Res∗(1)
(tree-Resolution) and Res∗(2).

1 Introduction

In a series of papers [8, 3–5] a program of parameterized proof complexity is ini-
tiated and various lower bounds and classifications are extracted. The program
generally aims to gain evidence that W[i] is different from FPT (usually W[2],
though in the journal version [9] of [8] this becomes W[SAT], and in the note
[14] W[1] is entertained). Parameterized proof (in fact, refutation) systems aim
at refuting parameterized contradictions which are pairs (F , k) in which F is
a propositional CNF with no satisfying assignment of weight ≤ k. Several pa-
rameterized (hereafter often abbreviated as “p-”) proof systems are discussed in
[8, 3, 5]. The lower bounds in [8], [3] and [5] amount to proving that the sys-
tems p-tree-Resolution, p-Resolution and p-bounded-depth Frege, respectively,
are not fpt-bounded. Indeed, this is witnessed by the Pigeonhole principle, and
so holds even when one considers parameterized contradictions (F , k) where F
is itself an actual contradiction. Such parameterized contradictions are termed
“strong” in [5], in which the authors suggest these might be the only param-
eterized contradictions worth considering, as general lower bounds – even in
p-bounded-depth Frege – are trivial (see [5]). We sympathise with this outlook,
but remind that there are alternative parameterized proof systems built from
embedding (see [8, 9]) for which no good lower bounds are known even for gen-
eral parameterized contradictions.

Kraj́ıček introduced the system Res(j) of Resolution-with-bounded-conjunc-
tion in [13]. The tree-like variant of this system is normally denoted Res∗(j).
Res(j+1) incorporates Res(j) and is ostensibly more powerful. This was demon-
strated first for Res(1) and Res(2) in [2], where a quasi-polynomial separation
was given. This was improved in [1], until an exponential separation was given in
[16], together with similar separations for Res(j) and Res(j+1), for j > 1. Sim-
ilar separations of Res∗(j) and Res∗(j +1) were given in [11]. We are motivated

� The author was supported by ANR Blanc International ALCOCLAN.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 139–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

140 S. Dantchev and B. Martin

mainly by the simplified and improved bounds of [7], which use relativisations of
the Least number principle, LNPn and an ordered variant thereof, the Induction
principle, IPn. The contradiction LNPn asserts that a partial n-order has no
minimal element. In the literature it enjoys a myriad of alternative names: the
Graph Ordering Principle GOP, Ordering Principle OP and Minimal Element
Principle MEP. Where the order is total it is also known as TLNP and GT.
The contradiction IPn uses the built-in order of {1, . . . , n} and asserts that: 1
has property P , n fails to have property P , and any number having property P
entails a larger number also having property P . Relativisation of these involves
asserting that everything holds only on some non-empty subset of the domain
(in the case of IPn we force 1 and n to be in this relativising subset).

In the world of parameterized proof complexity, we already have lower bounds
for p-Res(j) (as we have for p-bounded-depth Frege), but we are still interested
in separating levels p-Res(j). We are again able to use the relativised least num-
ber principle, RLNPn to separate p-Res(1) and p-Res(2). Specifically, we prove
that (RLNPn, k) admits a polynomial-sized in n refutation in Res(2), but all

p-Res(1) refutations of (RLNPn, k) are of size ≥ n
√

(k−3)/16. Although we use
the same principle as [7], the proof given there does not adapt to the parame-
terized world, and instead we look for inspiration to the proof given in [5] for
the Pigeonhole principle. For tree-Resolution, the situation is more complicated.
The relativisation of IPn, the Relativised induction principle RIPn, admits fpt-
bounded proofs in Res∗(1), indeed of size O(k!), therefore we are forced to alter
this principle. Thus we come up with the Relativised vectorised induction prin-
ciple RVIPn. We are able to show that (RVIPn, k) admits O(n4) refutations in
Res∗(2), while every refutation in Res∗(1) is of size ≥ nk/16. Note that both of
our parameterized contradictions are “strong”, in the sense of [5]. We go on to
give extended versions of RVIPn and explain how they separate p-Res∗(j) from
p-Res∗(j + 1), for j > 1.

This paper is organised as follows. After the preliminaries, we give our sep-
arations of p-Res∗(j) from p-Res∗(j + 1) in Section 3 and our separation of
p-Res(1) from p-Res(2) in Section 4. We then conclude with some remarks and
open questions.

2 Preliminaries

A parameterized language is a language L ⊆ Σ∗×N; in an instance (x, k) ∈ L, we
refer to k as the parameter. A parameterized language is fixed-parameter tractable
(fpt – and in FPT) if membership in L can be decided in time f(k).|x|O(1) for
some computable function f . If FPT is the parameterized analog of P, then (at
least) an infinite chain of classes vye for the honour to be the analog of NP.
The so-called W-hierarchy sit thus: FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[SAT]. For
more on parameterized complexity and its theory of completeness, we refer the
reader to the monographs [10, 12]. Recall that the weight of an assignment to a

Parameterized Resolution with Bounded Conjunction 141

propositional formula is the number of variables evaluated to true. Of particu-
lar importance to us is the parameterized problem Bounded-CNF-Sat whose
input is (F , k) where F is a formula in CNF and whose yes-instances are those
for which there is a satisfying assignment of weight ≤ k. Bounded-CNF-Sat

is complete for the class W[2], and its complement (modulo instances that are
well-formed formulae) PCon is complete for the class co-W[2]. Thus, PCon is
the language of parameterized contradictions, (F , k) s.t. F is a CNF which has
no satisfying assignment of weight ≤ k.

A proof system for a parameterized language L ⊆ Σ∗ × N is a poly-time
computable function P : Σ∗ → Σ∗ × N s.t. range(P) = L. P is fpt-bounded
if there exists a computable function f so that each (x, k) ∈ L has a proof
of size at most f(k)|x|O(1). These definitions come from [3–5] and are slightly
different from those in [8, 9] (they are less unwieldy and have essentially the same
properties). The program of parameterized proof complexity is an analog of that
of Cook-Reckow [6], in which one seeks to prove results of the form W[2] �=co-
W[2] by proving that parameterized proof systems are not fpt-bounded. This
comes from the observation that there is an fpt-bounded parameterized proof
system for a co-W[2]-complete L if W[2] =co-W[2].

Resolution is a refutation system for sets of clauses (formulae in CNF) F . It
operates on clauses by the resolution rule, in which from (P ∨ x) and (Q ∨ ¬x)
one can derive (P ∨Q) (P and Q are disjunctions of literals), with the goal being
to derive the empty clause. The only other permitted rule in weakening – from
P to derive P ∨ � for a literal �. We may consider a Resolution refutation to be a
DAG whose sources are labelled by initial clauses, whose unique sink is labelled
by the empty clause, and whose internal nodes are labelled by derived clauses.
As we are not interested in polynomial factors, we will consider the size of a
Resolution refutation to be the size of this DAG. Further, we will measure this
size of the DAG in terms of the number of variables in the clauses to be resolved
– we will never consider CNFs with number of clauses superpolynomial in the
number of variables. We define the restriction of Resolution, tree-Resolution, in
which we insist the DAG be a tree.

The system of parameterized Resolution [8] seeks to refute the parameterized
contradictions of PCon. Given (F , k), where F is a CNF in variables x1, . . . , xn,
it does this by providing a Resolution refutation of

F ∪ {¬xi1 ∨ . . . ∨ ¬xik+1
: 1 ≤ i1 < . . . < ik+1 ≤ n}. (1)

Thus, in parameterized Resolution we have built-in access to these additional
clauses of the form ¬xi1 ∨ . . . ∨ ¬xik+1

, but we only count those that appear in
the refutation.

A j-clause is an arbitrary disjunction of conjunctions of size at most j. Res(j)
is a system to refute a set of j-clauses. There are four derivation rules. The
∧-introduction rule allows one to derive from P ∨

∧
i∈I1 �i and Q ∨

∧
i∈I2 �i,

P ∨ Q ∨
∧

i∈I1∪I2 �i, provided |I1 ∪ I2| ≤ j (P and Q are j-clauses). The cut
(or resolution) rule allows one to derive from P ∨

∨
i∈I �i and Q ∨

∧
i∈I ¬�i,

P ∨ Q. Finally, the two weakening rules allow the derivation of P ∨
∧

i∈I �i

142 S. Dantchev and B. Martin

from P , provided |I| ≤ j, and P ∨
∧

i∈I1 �i from P ∨
∧

i∈I1∪I2 �i. Res(j) is more
commonly called Res(k), but here k is a variable reserved specifically for the
parameter.

If we turn a Res(j) refutation of a given set of j-clauses Σ upside-down,
i.e. reverse the edges of the underlying graph and negate the j-clauses on the
vertices, we get a special kind of restricted branching j-program. The restrictions
are as follows. Each vertex is labelled by a j-CNF which partially represents the
information that can be obtained along any path from the source to the vertex
(this is a record in the parlance of [15]). Obviously, the (only) source is labelled
with the constant +. There are two kinds of queries, which can be made by a
vertex:

1. Querying a new j-disjunction, and branching on the answer: that is, from C
and the question

∨
i∈I �i? we split on C ∧

∨
i∈I �i and C ∧

∧
i∈I ¬�i.

2. Querying a known j-disjunction, and splitting it according to the answer:
that is, from C∧

∨
i∈I1∪I2 �i and the question

∨
i∈I1 �i? we split on C∧

∨
i∈I1 �i

and C ∧
∨

i∈I2 �i.

There are two ways of forgetting information. From C1 ∧ C2 we can move to C1.
And from C ∧

∨
i∈I1 �i we can move to C ∧

∨
i∈I1∪I2 �i. The point is that forget-

ting allows us to equate the information obtained along two different branches
and thus to merge them into a single new vertex. A sink of the branching j-
program must be labelled with the negation of a j-clause from Σ. Thus the
branching j-program is supposed by default to solve the Search problem for Σ:
given an assignment of the variables, find a clause which is falsified under this
assignment.

The equivalence between a Res(j) refutation of Σ and a branching j-program
of the kind above is obvious. Naturally, if we allow querying single variables only,
we get branching 1-programs – decision DAGs – that correspond to Resolution.
If we do not allow the forgetting of information, we will not be able to merge
distinct branches, so what we get is a class of decision trees that correspond pre-
cisely to the tree-like version of these refutation systems. These decision DAGs
permit the view of Resolution as a game between a Prover and Adversary (orig-
inally due to Pudlak in [15]). Playing from the unique source, Prover questions
variables and Adversary answers either that the variable is true or false (different
plays of Adversary produce the DAG). Internal nodes are labelled by conjunc-
tions of facts (records to Pudlak) and the sinks hold conjunctions that contradict
an initial clause. Prover may also choose to forget information at any point –
this is the reason we have a DAG and not a tree. Of course, Prover is destined
to win any play of the game – but a good Adversary strategy can force that the
size of the decision DAG is large, and many Resolution lower bounds have been
expounded this way.

We may consider any refutation system as a parameterized refutation system,
by the addition of the clauses given in (1). In particular, parameterized Res(j)
– p-Res(j) – will play a part in the sequel.

Parameterized Resolution with Bounded Conjunction 143

3 Separating p-Res∗(j) and p-Res∗(j + 1)

The Induction Principle IPn (see [7]) is given by the following clauses:

P1,¬Pn∨
j>i Si,j i ∈ [n− 1]

¬Si,j ∨ ¬Pi ∨ Pj i ∈ [n− 1], j ∈ [n]

The Relativised Induction Principle RIPn (see [7]) is similar, and is given as
follows.

R1, P1, Rn,¬Pn∨
j>i Si,j i ∈ [n− 1]

¬Si,j ∨ ¬Ri ∨ ¬Pi ∨Rj i ∈ [n− 1], j ∈ [n]
¬Si,j ∨ ¬Ri ∨ ¬Pi ∨ Pj i ∈ [n− 1], j ∈ [n]

The important properties of IPn and RIPn, from the perspective of [7], are as
follows. IPn admits refutation in Res∗(1) in polynomial size, as does RIPn in
Res∗(2). But all refutations of RIPn in Res∗(1) are of exponential size. In the
parameterized world things are not quite so well-behaved. Both IPn and RIPn

admit refutations of size, say, ≤ 4k! in p-Res∗(1); just evaluate variables Si,j

from i := n− 1 downwards. Thus ask in sequence

Sn−1,n, Sn−2,n−1, Sn−2,n, , Sn−k,n−k+1, . . . , Sn−k,n,

each level Sn−i,n−i+1, . . . , Sn−i,n surely yielding a true answer. Clearly this is an
fpt-bounded refutation. We are forced to consider something more elaborate, and
thus we introduce the Relativised Vectorised Induction Principle RVIPn below.
Roughly speaking, we stretch each single level of RIPn into n copies of itself in
RVIPn, to make things easier for Adversary.

R1, P1,1, Rn,¬Pn,j j ∈ [n]∨
l>i,m∈[n] Si,j,l,m i, j ∈ [n]

¬Si,j,l,m ∨ ¬Ri ∨ ¬Pi,j ∨Rl i ∈ [n− 1], j, l,m ∈ [n]
¬Si,j,l,m ∨ ¬Ri ∨ ¬Pi,j ∨ Pl,m i ∈ [n− 1], j, l,m ∈ [n]

3.1 Lower Bound: A Strategy for Adversary over RVIPn

We will give a strategy for Adversary in the game representation of a Res∗(1)
refutation. For convenience, we will assume that Prover never questions the same
variable twice (this saves us from having to demand trivial consistencies in future
evaluations).

Information conceded by Adversary of the form Ri,¬Ri, Pi,j and Si,j,l,m

makes the element i busy (¬Pi,j and ¬Si,j,l,m do not). The source is the largest
element i for which there is a j such that Adversary has conceded Ri ∧Pi,j . Ini-
tially, the source is 1. Adversary always answers R1, P1,1, Rn,¬Pn,j (for j ∈ [n]),
according to the axioms. Thus i := 1 and n are somehow special, and the size
of the set inbetween is n − 2. In the following, i refers to the first index of a
variable.

If i is below the source. When Adversary is asked Ri, Pi,j or Si,j,l,m, then he
answers ⊥.

144 S. Dantchev and B. Martin

If i is above the source. When Adversary is asked Ri, or Pi,j , then he gives
Prover a free choice unless: 1.) Ri is asked when some Pi,j was previously an-
swered + (in this case Ri should be answered ⊥); or 2.) Some Pi,j is asked when
Ri was previously answered + (in this case Pi,j should be answered ⊥). When
Adversary is asked Si,j,l,m, then again he offers Prover a free choice. If Prover
chooses + then Adversary sets Pi,j and Ri to ⊥.

Suppose i is the source. Then Adversary answers Pi,j and Si,j,l,m as ⊥, unless
Ri ∧ Pi,j witnesses the source. If Ri ∧ Pi,j witnesses the source, then, if k is not
the next non-busy element above i, answer Si,j,l,m as ⊥. If l is the next non-
busy element above i, then give Si,j,l,m a free choice, unless ¬Pl,m is already
conceded by Adversary, in which case answer ⊥. If Prover chooses + for Si,j,l,m

then Adversary sets Rl and Pl,m to +.
Using this strategy, Adversary can not be caught lying until either he has

conceded that k variables are true, or he has given Prover at least n − 2 free
choices.

Let T (p, q) be some monotone decreasing function that bounds the size of the
game tree from the point at which Prover has answered p free choices + and
q free choices ⊥. We can see that T (p, q) ≥ T (p + 1, q) + T (p, q + 1) + 1 and
T (k, n − 2 − k) ≥ 0. The following solution to this recurrence can be found in
[9].

Corollary 1. There is an f ∈ Ω(nk/16) s.t. every p-Res∗(1) refutation of RVIPn

is of size ≥ f(n).

We may increase the number of relativising predicates to define RVIPr
n (note

RVIP1
n = RVIPn).

R1
1, . . . , R

r
1, P1,1, R

1
n, . . . , R

r
n¬Pn,j j ∈ [n]∨

l>i,m∈[n] Si,j,l,m i, j ∈ [n]

¬Si,j,l,m ∨ ¬R1
i ∨ . . . ∨ ¬Rr

i ∨ ¬Pi,j ∨R1
l i ∈ [n− 1], j, l,m ∈ [n]

...
¬Si,j,l,m ∨ ¬R1

i ∨ . . . ∨ ¬Rr
i ∨ ¬Pi,j ∨Rr

l i ∈ [n− 1], j, l,m ∈ [n]
¬Si,j,l,m ∨ ¬R1

i ∨ . . . ∨ ¬Rr
i ∨ ¬Pi,j ∨ Pl,m i ∈ [n− 1], j, l,m ∈ [n]

We sketch how to adapt the previous argument in order to demonstrate the
following.

Corollary 2. There is an f ∈ Ω(nk/16j) s.t. every p-Res∗(j) refutation of
RVIPj

n is of size ≥ f(n).

We use essentially the same Adversary strategy in a branching j-program. We
answer questions �1 ∨ . . . ∨ �j as either forced or free exactly according to the
disjunction of how we would have answered the corresponding �is, i ∈ [j], before.
That is, if one �i would give Prover a free choice, then the whole disjunction is
given as a free choice. The key point is that once some disjunction involving some
subset of R1

i , . . . , R
j
i or Pi,j (never all of these together, of course), is questioned

Parameterized Resolution with Bounded Conjunction 145

then, on a positive answer to this, the remaining unquestioned variables of this
form should be set to ⊥. This latter rule introduces the factor of j in the exponent
of nk/16j .

3.2 Upper Bound: A Res∗(j + 1) Refutation of RVIPj
n

We encourage the reader to have a brief look at the simpler, but very similar,
refutation of RIPn in Res∗(2), of size O(n2), as depicted in Figure 1.

¬Rn ∨ ¬Pn?

�
��

⊥ �� #

¬Rn−1 ∨ ¬Pn−1?

� ��

⊥ �� Sn−1,n?

�
��

⊥ �� #

...

�
��

#

¬R1 ∨ ¬P1?

�
��

⊥ �� S1,n?

�
��

⊥ �� · · · ⊥ �� S1,2?

�
��

⊥ �� #

#

Fig. 1. Refutation of RIPn in Res∗(2)

Proposition 1. There is a refutation of RVIPj
n in Res∗(j+1), of size O(nj+4).

Proof. We give the branching program for j := 1 in Figure 2. The generalisation
to higher j is clear: substitute questions of the form ¬Ri ∨¬Pi,j by questions of

the ¬R1
i ∨ . . . ∨Rj

i ∨ ¬Pi,j .

4 Separating p-Res(1) and p-Res(2)

The Relativised Least Number Principle RLNPn is given by the following clauses:

¬Ri ∨ ¬Li,i i ∈ [n]
¬Ri ∨ ¬Rj ∨ ¬Rk ∨ ¬Li,j ∨ ¬Lj,k ∨ Li,k i, j, k ∈ [n]∨

i∈[n] Si,j j ∈ [n]

¬Si,j ∨ ¬Rj ∨Ri i, j ∈ [n]
¬Si,j ∨ ¬Rj ∨ Li,j i, j ∈ [n]

Rn

The salient properties of RLNPn are that it is polynomial to refute in Res(2), but
exponential in Res(1) (see [7]). Polynomiality clearly transfers to fpt-boundedness
in p-Res(2), so we address the lower bound for p-Res(1).

146 S. Dantchev and B. Martin

¬Rn ∨ ¬Pn,n?

� ��

⊥ �� #

...

�
��

¬Rn ∨ ¬Pn,1?

�
��

⊥ �� #

¬Rn−1 ∨ ¬Pn−1,n?

� ��

⊥ �� Sn−1,n,n,n?

�
��

⊥ �� · · · ⊥ �� Sn−1,n,n,1?

�
��

⊥ �� #

...

�
��

#

¬Rn−1 ∨ ¬Pn−1,1?

� ��

⊥ �� Sn−1,1,n,n?

�
��

⊥ �� · · · ⊥ �� Sn−1,1,n,1?

�
��

⊥ �� #

...

� ��

#

...

�
��

¬R1 ∨ ¬P1,n?

� ��

⊥ �� S1,n,n,n?

�
��

⊥ �� · · · ⊥ �� · · · ⊥ �� S1,n,2,1?

�
��

⊥ �� #

...

�
��

#

¬R1 ∨ ¬P1,1?

�
��

⊥ �� S1,1,n,n?

�
��

⊥ �� · · · ⊥ �� · · · ⊥ �� S1,1,2,1?

�
��

⊥ �� #

#

Fig. 2. Refutation of RVIPn in Res∗(2)

Parameterized Resolution with Bounded Conjunction 147

4.1 Lower Bound: A Strategy for Adversary over RLNPn

We will give a strategy for Adversary in the game representation of a p-Res(1)
refutation. The argument used in [7] does not adapt to the parameterized case,
so we instead use a technique developed specifically for the parameterized Pi-
geonhole principle in [5].

Recall that a parameterized clause is of the form ¬v1 ∨ . . . ∨ ¬vk+1 (where
each vi is some R, L or S variable). The i, j appearing in Ri, Li,j and Si,j are
termed co-ordinates. We define the following random restrictions. Set Rn := +.
Randomly choose i0 ∈ [n−1] and set Ri0 := + and Li0,n = Si0,n := +. Randomly
choose n − √

n elements from [n − 1] \ i0, and call this set C. Set Ri := ⊥ for
i ∈ C. Pick a random bijection π on C and set Li,j and Si,j , for i, j ∈ C,
according to whether π(j) = i. Set Li,j = Lj,i = Si,j = Sj,i := ⊥, if j ∈ C and
i ∈ [n] \ (C ∪ {i0}).

What is the probability that a parameterized clause is not evaluated to true
by the random assignment? We allow that each of ¬Rn, ¬Ri,0, ¬Lio,n and ¬Si0,n

appear in the clause – leaving k+1−4 = k−3 literals, within which must appear√
(k − 3)/4 distinct co-ordinates. The probability that some ¬Ri, i /∈ {i0, n},

fails to be true is bound above by the probability that i is in [n−1]\ (C ∪{i0}) –
which is ≤

√
n−2
n−2 ≤ 1√

n
. The probability that some ¬Li,j fails to be true, where

one of the co-ordinates i, j is possibly mentioned before and (i, j) �= (i0, n), is
bound above by the probability that both i, j are in [n] \ C plus the probability

that both i, j are in C and i = π(j). This gives the bound ≤
√
n
n ·

√
n−1
n−1 +

n−
√
n

n · n−
√
n−1

n−1 · 1
n−√n−1 ≤ 2

n ≤ 1√
n
. Likewise with ¬Si,j . Thus we get that the

probability that a parameterized clause is not evaluated to true by the random

assignment is ≤ 1√
n

√
(k−3)/4

= n−
√

(k−3)/16.

Now we are ready to complete the proof. Suppose fewer than n
√

(k−3)/16

parameterized clauses appear in a p-Res(1) refutation of RLNPn, then there is
a random restriction as per the previous paragraph that evaluates all of these
clauses to true. What remains is a Res(1) refutation of RLNP√n, which must

be of size larger than n
√

(k−3)/16 itself, for n sufficiently large (see [7]). Thus we
have proved.

Theorem 1. Every p-Res(1) refutation of RLNPn is of size ≥ n
√

(k−3)/16.

5 Concluding Remarks

It is most natural when looking for separators of p-Res∗(1) and p-Res∗(2) to look
for CNFs, like RVIPn that we have given. p-Res∗(2) is naturally able to process
2-clauses and we may consider p-Res∗(1) acting on 2-clauses, when we think of
it using any of the clauses obtained from those 2-clauses by distributivity. In
this manner, we offer the following principle as being fpt-bounded for p-Res∗(2)
but not fpt-bounded for p-Res∗(1). Consider the two axioms ∀x(∃y¬S(x, y) ∧

148 S. Dantchev and B. Martin

T (x, y))∨ P (x) and ∀x, yT (x, y) → S(x, y). This generates the following system
ΣPST of 2-clauses.

Pi ∨
∨

j∈[n](¬Si,j ∧ Ti,j) i ∈ [n]

¬Ti,j ∨ Si,j i, j ∈ [n]

Note that the expansion of ΣPST to CNF makes it exponentially larger. It is
not hard to see that ΣPST has refutations in p-Res∗(2) of size O(kn), while any
refutation in p-Res∗(1) will be of size ≥ nk/2.

All of our upper bounds, i.e. for both RVIPn and RLNPn, are in fact polyno-
mial, and do not depend on k. That is, they are fpt-bounded in a trivial sense.
If we want examples that depend also on k then we may enforce this easily
enough, as follows. For a set of clauses Σ, build a set of clauses Σ′k with new
propositional variables A and B1, B

′
1, . . . , Bk+1, B

′
k+1. From each clause C ∈ Σ,

generate the clause A∨C in Σ′k. Finally, augment Σ′k with the following clauses:
¬A ∨ B1 ∨ B′1, . . . , ¬A ∨ Bk+1 ∨ B′k+1. If Σ admits refutation of size Θ(nc) in

p-Res∗(j) then (Σ′k, k) admits refutation of size Θ(nc+2k+1). The parameterized
contradictions so obtained are no longer “strong”, but we could even enforce this
by augmenting instead a Pigeonhole principle from k + 1 to k.

It seems hard to prove p-Res(1) lower bounds for parameterized k-clique on
a random graph [4], but we now introduce a contradiction that looks similar
but for which lower bounds should be easier. It is a variant of the Pigeonhole
principle which could give us another very natural separation of p-Res(1) from
p-Res(2). Define the contradiction PHPk+1,n,k, on variables pi,j (i ∈ [k+1] and
j ∈ [n]) and qi,j (i ∈ [n] and j ∈ [k]), and with clauses:

¬pi,j ∨ ¬pl,j i �= l ∈ [k + 1]; j ∈ [n]
¬qi,j ∨ ¬ql,j i �= l ∈ [n]; j ∈ [k]∨

j∈[n] pi,j i ∈ [k]

¬pi,j ∨
∨

l∈[k] qj,l j ∈ [n]

We conjecture that this principle, which admits fpt-bounded refutation in
p-Res(2), does not in p-Res(1).

Finally, we leave open the technical question as to whether suitably defined,
further-relativised versions of RLNPn can separate p-Res(j) from p-Res(j + 1).
We conjecture that they can.

Acknowledgements. We thank the reviewers as well as St. Evlogi.

References

1. Atserias, A., Bonet, M.: On the automatizability of resolution and related proposi-
tional proof systems. In: 16th Annual Conference of the European Association for
Computer Science Logic (2002)

2. Atserias, A., Bonet, M.L., Esteban, J.L.: Lower bounds for the weak pigeonhole
principle and random formulas beyond resolution. Inf. Comput. 176(2), 136–152
(2002)

Parameterized Resolution with Bounded Conjunction 149

3. Beyersdorff, O., Galesi, N., Lauria, M.: Hardness of parameterized resolution. Tech-
nical report, ECCC (2010)

4. Beyersdorff, O., Galesi, N., Lauria, M.: Parameterized complexity of DPLL search
procedures. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695,
pp. 5–18. Springer, Heidelberg (2011)

5. Beyersdorff, O., Galesi, N., Lauria, M., Razborov, A.: Parameterized bounded-depth
frege is not optimal. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part I. LNCS, vol. 6755, pp. 630–641. Springer, Heidelberg (2011)

6. Cook, S., Reckhow, R.: The relative efficiency of propositional proof systems. Jour-
nal of Symbolic Logic 44(1), 36–50 (1979)

7. Dantchev, S.: Relativisation provides natural separations for resolution-based proof
systems. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS,
vol. 3967, pp. 147–158. Springer, Heidelberg (2006)

8. Dantchev, S., Martin, B., Szeider, S.: Parameterized proof complexity. In: 48th
IEEE Symp. on Foundations of Computer Science, pp. 150–160 (2007)

9. Dantchev, S., Martin, B., Szeider, S.: Parameterized proof complexity. Computa-
tional Complexity 20 (2011)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. In: Monographs in Com-
puter Science. Springer (1999)

11. Esteban, J.L., Galesi, N., Messner, J.: On the complexity of resolution with
bounded conjunctions. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M.,
Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 220. Springer,
Heidelberg (2002)

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science, vol. XIV. An EATCS Series. Springer (2006)

13. Kraj́ıĉek, J.: On the weak pigeonhole principle. Fundamenta Mathematica, 170,
123–140 (2001)

14. Martin, B.: Parameterized proof complexity and W[1].
CoRR: arxiv.org/abs/1203.5323 (2012)

15. Pudlák, P.: Proofs as games. American Mathematical Monthly, 541–550
(June-July 2000)

16. Segerlind, N., Buss, S.R., Impagliazzo, R.: A switching lemma for small restrictions
and lower bounds for k-dnf resolution. SIAM J. Comput. 33(5), 1171–1200 (2004)

Lower and Upper Bounds

for the Length of Joins in the Lambek Calculus

Alexey Sorokin

Moscow State University, Faculty of Mechanics and Mathematics,
Moscow Institute of Physics and Technology

Abstract. In 1993 Mati Pentus proved a criterion of conjoinability for
the Lambek calculus and multiplicative cyclic linear logic. In 2011 Alexey
Sorokin showed that any pair of conjoinable types in the Lambek calculus
has the join type of quadratic length with respect to the length of the
types in the pair. We prove that the lower bound on the length of joins
in the Lambek calculus and multiplicative linear logic is also quadratic.

1 Introduction

The Lambek calculus was introduced by Joachim Lambek in 1958 ([8]). In last
the decades this calculus and its relatives, such as the multiplicative cyclic linear
logic MCLL ([19]), the pregroup calculus ([7]), the Lambek-Grishin calculus([6]),
have found various applications in modelling syntax and semantics of natural
language. Also the Lambek calculus has a natural algebraic interpretation ([14]).
For a survey of various aspects of the Lambek calculus see [10].

If a type A is derived from a sequence of types Γ in the Lambek calculus, this
means that the sequence of grammar categories represented by the types of Γ
can play the role of the category A in a sentence of the language. It makes some
sense to consider the transitive symmetric closure of the derivability relation:
the so-called conjoinability relation. Two types A and B are called conjoinable if
there exists a type C such that both sequents A → C and B → C are derivable
in the Lambek calculus. Intuitively, the categories are conjoinable if there is a
context where the expressions of both categories can be used. A meet type for
two categories is an analogue of their intersection (which cannot be expressed
by means of the Lambek calculus itself).

A characterization of conjoinability in a particular calculus is deeply connected
to the generative properties of the categorial grammars based on this calculus: the
calculi with the conjoinability relation characterized by the non-abelian free group
interpretation, like the Lambek calculus or the pregroup calculus, usually can be
modelled by context-free grammars (see [13], [2]). The criteria of conjoinability
for different variants of the Lambek calculus were studied in [12], [3] and [9].

A criterion of conjoinability for standard the Lambek calculus was established
by Mati Pentus in [12] (the criterion appeared first in the preprint [11]). Although
the proof is constructive, this work does not contain any algorithm to construct
join types, which are proved to be conjoinable or any bound on the length of

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 150–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Lower and Upper Bounds for the Length of Joins in the Lambek Calculus 151

the join. Linguistic (sf. [4]) and theoretical ([17]) applications require such an
algorithm or at least some bound on the length of the join type. In particular,
in Safiullin’s algorithm for determinating the Lambek grammars we need to
estimate the size of join types to measure the size of the grammar obtained.

In the article [18] it was proved that the upper bound on the length of joins
of the Lambek calculus is quadratic. That paper also provided a quadratic algo-
rithm for constructing such a join of types. Since the construction in the paper is
rather straightforward (though it contains some technicalities), it is interesting,
whether a faster algorithm exists. In the present work we prove that the lower
bound on the length of joins is also quadratic which implies that with respect
to the multiplicative constant the algorithm from [18] was optimal.

The present paper is mainly of theoretical nature. We give a brief outline of
the proof of the quadratic upper bound for the length of joins in the Lambek
calculus. Then we prove a new result, which establishes a lower bound on the
length of joins (the lower bound is also quadratic). We use the technique of proof
nets to prove this result. The author does not know any results concerning lower
bounds for the length of join and meet types for the Lambek calculus and related
calculi.

2 Preliminaries

In this section we briefly introduce the Lambek calculus and the notion of con-
joinability for this calculus. Let Pr be a countable set of primitive types. Then
the set of types Tp is the smallest set containing Pr, such that for any types
A and B from Tp the types (A · B), (A/B) and (B\A) also belong to Tp (we
will omit external brackets). The sequents of the Lambek calculus are of the
form Γ → A, where A is a type and Γ is a finite sequence of types. We will
use small Latin letters p, q, r, . . . (possibly with subscripts) for primitive types,
capital Latin letters A,B,C, . . . for types and capital Greek letters Γ,Δ,Π, . . .
for finite sequences of types. The Lambek calculus has only one axiom scheme
A → A, A ∈ Tp. The rules of the Lambek calculus are the following:

ΠA → B

Π → B/A
(→ /)

ΓBΔ → C Π → A

Γ (B/A)ΠΔ → C
(/ →)

AΠ → B

Π → A\B (→ \) ΓBΔ → C Π → A

ΓΠ(A\B)Δ → C
(/ →)

Γ → A Δ → B

ΓΔ → A · B (→ ·) ΓABΔ → C

Γ (A ·B)Δ → C
(· →)

The Lambek calculus admits cut-elimination, so we can add the cut rule
ΓBΔ → C Π → B

ΓΠΔ → C
to the calculus. Note that the Lambek calculus is associa-

tive, so the types A · (B ·C) and (A ·B) ·C are equivalent (which means each of
them is derivable from the other), as well as the types (A\B)/C and A\(B/C).
Associativity allows us to omit brackets in such types and write A · B · C or
A\B/C.

152 A. Sorokin

Definition 1

1. A type C ∈ Tp is called a join type for types A,B ∈ Tp if both sequents
A → C and B → C are derivable in the Lambek calculus. In this case the
types A and B are called conjoinable.

2. A type D ∈ Tp is called a meet type for types A,B ∈ Tp types A,B ∈ Tp if
both sequents D → A and D → B are derivable in the Lambek calculus.

Example 1. The types (r/p)\r and p/(q/q) are conjoinable in the Lambek cal-
culus for any p, q, r ∈ Pr. They have a join type (r/p)\((r · q)/q)/(q/q) and a
meet type (p/(q/q)) · (q/q).

Lemma 1 (Lambek, 1958). Types A and B have a join type iff they have a
meet type.

Proof. 1) → 2) TakeD = (A/C)·C·(C\B). 2) → 1) Take C = (D/A)\D/(B\D).

We need some auxiliary notions to formulate the conjoinability criterion from
[12]. Let FG be the free group generated by the elements of Pr. For every type
A we define its interpretation [A] in FG. It is done by induction: [p] = p for all
p ∈ Pr, [A ·B] = [A]# [B], [A/B] = [A]# [B]−1, [B\A] = [B]−1 # [A], where #
is the group operation. For example [p3\((p/p)/(r/p3))] = r−1.

Theorem 1 (Pentus, 1992). Types A,B ∈ Tp are conjoinable iff [A]=[B].

The length of a type is the number of primitive types occurrences in it, we will
denote the length of a type A by |A|. For example, |(p1/(p2\p1)) · p2| = 4. It is
interesting to estimate the minimal length of a join type C for given conjoinable
types A and B. We will show that in this case both lower and upper bounds are
quadratic. Namely, for any two conjoinable types A and B there exists a join

type of length not greater than |A|
2+|B|2
2 + 35

2 (|A| + |B|), and for any positive
integers k and l of the same parity there exist two conjoinable types A and B

such that |A| = k, |B| = l and there is no join for them of length less than k2+l2

8 .

3 Upper Bound

In this section we briefly summarize the proof of the upper bound for the length
of join type given in [18]. Let P be the set Pr∪ {p−1 | p ∈ Pr}. For every string
α ∈ P∗ we define its inverse α−1 as a string that is obtained from α by reversing it
and changing all the p to p−1 and vice versa. For example (pq−1r)−1 = r−1qp−1.
For every type A ∈ Tp we define its representing string 〈A〉 in the following way:
〈p〉 = p, p ∈ Pr, 〈A/B〉 = 〈A〉〈B〉−1, 〈A\B〉 = 〈B〉−1〈A〉, 〈A · B〉 = 〈A〉〈B〉. It
it not difficult to see that [A] is the normal form of 〈A〉 after reducing all the
substrings of the form pp−1 and p−1p to the empty string. So if 〈A〉 = 〈B〉, then
[A] = [B] and hence A and B are conjoinable.

We also define the ”reverse” mapping φ from P∗ to Tp. We set φ(ε) = q/q,
where q is a new primitive type, φ(p) = p, p ∈ Pr and φ(p−1) = p\p/p.

Lower and Upper Bounds for the Length of Joins in the Lambek Calculus 153

We extend this mapping to the sequences, defining φ(αβ) = φ(α)φ(β) for α and
β from P+. Note that all the types A, φ(〈A〉), and φ([A]) are conjoinable. The
next lemma follows immediately from the definitions:

Lemma 2. |φ([A])| ≤ |φ(〈A〉)| ≤ 3|A|.

The construction of the conjoining type C for given conjoinable types A and B
is illustrated in the scheme below. Using this scheme and the proof of Lemma
1 we can give the following estimation of the length of type C: |C| ≤ |A3| +
|B3|+3|φ([A]) ≤ |A1|+ |A2|+3|φ(〈A〉)|+ |B1|+ |B2|+3|φ(〈B〉)|+3|φ([A])|. The
following lemma is proved in [18]. In what follows we just recall some principal
moments from the proof. Note that the proofs of all lemmas are constructive,
hence the proof also provides an algorithm for constructing the joins.

Lemma 3. 1) |A1| ≤ |A|2
2 + |A|. 2) |A2| ≤ |φ(〈A〉)|.

We will prove here just the first part since it is this statement that leads to the
quadratic growth of the join type length. First we need to give some auxiliary
definitions.

Definition 2. The sets of positive and negative simplified types, denoted STp+

and STp−, respectively, are the smallest sets satisfying the following conditions:

1. Pr ⊂ STp+, Pr ⊂ STp−,
2. ∀A,B ∈ STp+ (A ·B) ∈ STp+,
3. ∀A ∈ STp+, B ∈ STp− (A/B), (B\A) ∈ STp+.
4. ∀p ∈ Pr, A,B ∈ STp+ (A\p), (p/B), (A\p/B) ∈ STp−.

For example, the type (p1 · p2)/(p3\p4) is a positive simplified type, but not a
negative one. The next proposition allows one to consider only positive simplified
types in the algorithm for constructing join types.

Lemma 4

1. For every type A ∈ Tp there exists a positive simplified type A′ such that the
sequent A → A′ is derivable, 〈A〉 = 〈A′〉 and |A| = |A′|.

2. For every type B ∈ Tp there exist negative simplified types B1, . . . , Br such
that the sequent B(1) . . . B(r) → B is derivable, 〈B(1)〉 . . . 〈B(r)〉 = 〈A〉 and
r∑

i=1

|B(i)| = B.

Proof. Both statements of the proposition are proved by mutual induction on the
structure of the types A and B. For example, let us consider the case A = C/D
and prove the first statement. By the induction hypothesis, there exist a type
C′ and types D(1), . . . , D(r) yielding the statement of the lemma for the types
C and D respectively. Then we can take A′ = (. . . (C′/D(r)) . . .)/D(1). It is not
difficult to verify that this type satisfies the first statement of the lemma.

154 A. Sorokin

Let us now prove the second statement for the type A = C/D. There exist
types C(1), . . . , C(s) which yield the second statement of the lemma for the type
C and the type D′ which yield the statement for the type D. By definition C(s)

has the form E\p/F for some positive simplified types E,F . Then we can take
A(i) = C(i) for i < s and A(s) = E\p/(D′ ·F). The other cases are considered in
the analogous way.

It is not difficult to see that the types A′ and B(1), . . . , B(r) from Lemma 4
can be constructed in quadratic time. Indeed, in the recursive procedure from
the proof in each step we must find the main connective and then apply the
procedure to the obtained subtypes. The division into subtypes can be easily
done in linear time, so the whole algorithm is not harder than quadratic. Note
also that all positive subtypes of a positive simplified type are positive, as well
as all the negative subtypes are negative simplified types. Below we give a proof
of the Lemma 3.

Proof. Lemma 4 allows us to prove the bound in the statement of the lemma only
in the case when A is a positive simplified type. The proof proceeds by induction
on the structure of type A. The basic case, when A is primitive is obvious, so we
have to prove only the induction step. The case A = B ·C is also trivial since we
set A1 = B1 · C1. The only difficult case is when the main connective of A is a
division connective; without loss of generality we assume that it is right division.
So there are four remaining subcases: A = B/p, A = B/(E\p), A = B/(p/D),
and A = B/(E\p/D). In the first subcase we note that φ(〈A〉) = φ(〈B〉) · p\p/p
and take A1 = (p/B1)\p/p. The bound of the lemma is verified by calculation.

Now we consider the main subcase A = B/(E\p/D). The other two subcases
are similar. Note that φ(〈A〉) = φ(〈B〉) · φ(〈D〉) · (p\p/p) · φ(〈E〉). So we set
A1 = (p/(B1 ·D1))\p/((E1\p/D)·D). Then |A1| = |B1|+ |D1|+ |E1|+3+2|D| ≤
1
2 (|B|2 + |D|2 + |E|2) + 2|D| + (|B| + |D| + |E|) + 3 ≤ 1

2 (|B|2 + |D|2 + |E|2 +
2(|B|+ |E|+1)|D|) + |A|+2 ≤ 1

2 (|B|+ |D|+ |E|+1)2 + |A| = 1
2 |A|2 + |A|. The

lemma is proved. ��

Let us show that the algorithm constructing the type A1 in Lemma 3 requires
only quadratic time. First assume that the type A is positive simplified. Let us
consider the last step in constructing the type A1 in the proof above. We should
first find the main division in the type A = B/(E\p/D). Note that all the types
B,E,D are positive simplified, so we do not need additional simplification in
the recursion. The types B1, D1, E1 can be recursively constructed “at place”,
so if we denote the time required to construct the type A1 by T (A), then we
can write T (A) ≤ T (B) + T (D) + T (E) + c|A| for some constant c. Since |A| =
|B|+ |D|+ |E|+ 1 it follows that T (A) ≤ c′|A|2 for some constant c′.

If A is not simplified, then we first construct the type A′ from Lemma 4 and
then apply the algorithm constructing the type A′ to it. The first part of this
procedure is also quadratic, which yields the overall quadratic complexity. We
have proved the following corollary:

Lower and Upper Bounds for the Length of Joins in the Lambek Calculus 155

Corollary 1. The type A1 from Lemma 3 can be constructed in quadratic time
in the worst case.

A

���
��

φ(〈A〉)
����� ���

��
φ([A])

����� ���
��

φ(〈B〉)
����
�

���
��

B

				
	

A1

����
��

A2

�����
�

B2

��

B1

�����
�

A3

���
����

��� B3

��

C

Fig. 1. The scheme of construction of the join type C for conjoinable types A and B

So |C| ≤ |A|2
2 + |A| + 4|φ(〈A〉)| + |B|2

2 + |B| + 4|φ(〈B〉)| + 3|φ([A])|. Taking
into account Lemma 2 and the fact that [A] is shorter than the type A itself

(and also shorter than B), we conclude that |C| ≤ |A|2+|B|2
2 + 12(|A| + |B|) +

9(min (|A|, |B|)) ≤ |A|2+|B|2
2 + 35

2 (|A|+ |B|). The following theorem holds:

Theorem 2. If types A and B are conjoinable in the Lambek calculus, then they

have a join type C of length not greater than |A|
2+|B|2
2 + 35

2 (|A|+ |B|).

Let us consider the complexity of the algorithm for constructing the joins. Note
that all the steps of the algorithm except of constructing types A1, B1,
φ(〈A〉), φ(〈B〉), φ([A]), A2 , B2 are just the applications of the Rosser lemma. As
proved in Lemma 4,constructing A1, B1 takes quadratic time in the worst case.
If we consider the detailed proof from [18] it is not difficult to see that all
other types can be constructed in linear time. The complexity of application of
the Rosser lemma is the same as the length of the types in it, so the overall
complexity is quadratic. The following corollary holds (we use the fact that the
conjoinability criterion can obviously be verified in linear time):

Corollary 2. There exists an algorithm that takes the types A and B as input
and returns either a join type C or “NO” in the case the types are not conjoin-
able. The algorithms runs in quadratic time and space in the worst case.

4 Lower Bound

In this section we prove a quadratic lower bound on the length of joins in the
Lambek calculus. For this purpose we use the method of proof nets. Because
proof nets of the Lambek calculus itself are not convenient for our purposes,
we use the proof nets of linear logic. To make their usage possible we need to
translate sequents of the Lambek calculus to a variant of multiplicative cyclic
linear logic (MCLL, see [19]). The translation itself is an element of mathematical
folklore, a proof can be found in the preprint [11].

156 A. Sorokin

Let Pr be the same set of primitive types as in the Lambek calculus (in the
context of linear logic they are called variables). The set of literals Lit includes
the variables and their negations (formally, Lit = Pr ∪ {p | p ∈ Pr}). The
formulae of linear logic are built from literals with the help of binary operations
� and ⊗. Formally, the set of formulae Fm is the smallest set containing Lit,
such that for any elements A and B of Fm the elements (A�B) and (A ⊗ B)
also belong to Fm. The negation can be extended from variables to formulae by
defining the external negation operation (·)⊥ according to De Morgan laws. We
set p⊥ = p, p⊥ = p, p ∈ Pr, (A�B)⊥ = B⊥ ⊗ A⊥, (A ⊗ B)⊥ = B⊥�A⊥. The
sequents of MCLL have the form → Γ , where Γ is a non-empty finite sequence
of formulae.

The calculus MCLL has the only axiom scheme → pp, p ∈ Pr. It has the
following rules (Λ denotes the empty sequence):

→ ΓABΔ

→ Γ (A�B)Δ
(→�), ΓΔ �= Λ

→ ΓA → BΔ

→ Γ (A⊗B)Δ
(→ ⊗)

ΓΔ

ΔΓ
(rotate)

→ ΓA → A⊥Δ

→ ΓΔ
(cut)

Note that the constraint in the rule � → can be reformulated: every derivable
sequent must contain at least two formulas. Also note that MCLL admits cut-
elimination, so any derivable sequent can be derived without using the cut rule.
We can also add two-sided sequents to the calculus. The notation A1 . . . An → B
means → A⊥n . . . A⊥1 B (the lefthand formulae are negated and their order is
changed to the reverse).

Two formulae A and B from Fm are said to be conjoinable in MCLL if there
exists a formula C, called a join formula, such that the sequents A → C and
B → C are derivable in this calculus. The notion of a meet formula is introduced
in a similar way. As well as in the Lambek calculus, the conjoinability relation
in multiplicative cyclic linear logic possesses the Rosser property.

Now we want to formulate an algebraic criterion of conjoinability for MCLL.
This criterion was proved in [12] for the calculus without ”two-formulae”-const-
raint, but the proof holds also for the calculus with two-formulae constraint
with only slight differences. For every formula A ∈ Fm we define its algebraic
interpretation [A] in the free group FG generated by the variables: [p] = p, [p] =
p−1, p ∈ Pr, [A�B] = [A⊗B] = [A]# [B]. Also we define the function d : Fm →
ZZ that equals the difference between the number of �-s and ⊗-s in the formula.
For example, d((p1 ⊗ (p2�p3))⊗ p4) = −1.

Theorem 3 (Pentus, 1993). Formulae A and B are conjoinable in MCLL iff
[A] = [B] and d(A) = d(B).

We want to define an embedding ψ : Tp → Fm of types of the Lambek calculus
to formulae of MCLL (this translation is standard and was used, for example,
in [11] and [15]). The translation itself is very natural if we consider the divi-
sion connectives of the Lambek calculus as directed implications. We set ψ(p) =
p, ψ(A ·B) = ψ(A)⊗ψ(B), ψ(A/B) = ψ(A)�ψ(B)⊥, ψ(B\A) = ψ(B)⊥�ψ(A).

Lower and Upper Bounds for the Length of Joins in the Lambek Calculus 157

This mapping is extended to sequents by setting ψ(Γ → A) = ψ(Γ) → ψ(A).
The translation is conservative: the sequent ψ(Γ) → ψ(A) is derivable in the
calculus MCLL (with the ”two-formulae”-constraint) iff it is derivable in the
Lambek calculus L. The variant of multiplicative linear logic without this con-
straint corresponds to the Lambek calculus L∗ allowing empty antecedents.

Lemma 5. Two types A and B are conjoinable in the Lambek calculus iff their
images ψ(A) and ψ(B) are conjoinable in MCLL.

From left to right this lemma follows from the conservativity of MCLL above
L, the proof from right to left uses the criteria of conjoinability in these calculi.
Note that the shortest join of A and B in the Lambek calculus cannot be shorter
than the join of ψ(A) and ψ(B) in MCLL (ψ(C) has the same length as C and
it is a join of A and B due to conservativity). Therefore to prove that two types
do not have short joins in the Lambek calculus it suffices to show that there are
no short joins for their images in the multiplicative cyclic linear logic.

Now we are ready to define the notion of a proof net. Generally, a proof net
is a presentation of syntactic derivations in the form that disregards ”spurious
ambigiuty”. For example, if two derivations differ only in the order of rule ap-
plications, then they correspond to the same proof net. Usually proof nets are
defined as multigraphs that satisfy certain conditions. The notion of a proof net
originates in the fundamental work of Girard ([5]). Since that time many other
versions of proof nets were proposed for the Lambek calculus and its fragments,
as well as for various fragments of linear logic (see [10] for a survey and [15], [1],
and [16] for the original formulations). For our purposes we find the variant of
[15] the most useful.

The lemma below follows from the derivability criterion in [15] (we use only its
soundness part). In fact, we have also omitted one condition in the definition of a
proof net. We use only the planarity condition (first used in [1]) that corresponds
to the noncommutativity of the calculus and the requirement on the balance of
�-s and ⊗-s under the axiom links (perhaps it appeared for the first times in
[15]).

Lemma 6. If a sequent → A1 . . . An is derivable in MCLL then we can divide
the occurrences of literals in the sequent → A1� . . .�An in such a way that:

1. every pair includes the elements p and p for some variable p;
2. if we connect the elements in pairs by links in the upper half-plane, then the

links do not intersect;
3. under each link the number of �-s equals the number of ⊗-s plus 1.

We call the system of links from Lemma 6 the axiom links. Let α be an occurrence
of literal in a formula A. Then dA(α) denotes the difference between the number
of �-s and ⊗-s to the left of α. For, example, if the formula is ((p1�p2)⊗p2�p4)⊗
(p1⊗p3), and α2 and α3 are the only occurrences of p2 and p3 respectively, then
dA(α2) = 1, dA(α3) = −1.

Let A′ and B′ be two types conjoinable in the Lambek calculus and A,B their
translations to MCLL formulae. Let C be their join in the multiplicative cyclic

158 A. Sorokin

linear logic. Then the sequents → A⊥�C and → B⊥�C are derivable in MCLL.
The following lemmas are the main technical tool of the work. From this now on
|A|q denotes the number of occurrences of literal q (not of variable q) in formula
A.

Lemma 7

1. Let p be a variable such that |A|p = |B|p = 1 and |A|p = |B|p = 0. Let α
and β be the occurrences of p in A and B respectively. Then |B|p + |B|p ≥
|dA(α) − dA(β)| + 1.

2. Let p be a variable such that |A|p = |B|p = 0 and |A|p = |B|p = 1. Let α
and β be the occurrences of p in A and B respectively. Then |B|p + |B|p ≥
|dA(α) − dA(β)| + 1.

Proof. It suffices to prove the first statement. Let α1 be the occurrence of p in A⊥

that corresponds to the only occurrence of p in A, and let β1 be the occurrence
of p corresponding to the occurrence of p in B. It is not difficult to see that
dA⊥(α1) = −(d(A)−dA(α)) and dB⊥(β1) = −(d(B)−dA(β)). Since A and B are
conjoinable, it holds that d(B) = d(A) so |dA⊥(α1)−dB⊥(β1)| = |dA(α)−dA(β)|.

Let d(α1) = D, d(β1) = D+K. Let E1 be the set of axiom links for the sequent
→ A⊥C and E2 the set of axiom links for the sequent → B⊥C. We construct
the following path in (E1 × E2)+: starting from α1, we follow the link in E1 to
some occurrence α′ of p in C, then we follow the link in E2 from α′ to some
occurrence α′′ of p, then we continue the path in E1, and so on. The trip must at
last stop in some occurrence and it is not difficult to see that the final occurrence
could be only β1. Let the last link we traverse be (β′, β1) ∈ E2. Using Lemma
6 and the conjoinability criterion we conclude that dA⊥�C(β

′) = dB⊥�C(β
′) =

D +K + 1, dA⊥�C(α
′) = dB⊥�C(α

′) = D + 1. For every link the values of d for
its edges differ only by 1, so the path from α′ to β′ must contain at least K − 1
intermediate vertices. Since we never pass any vertex twice and there are no p-s
and p-s in A and B except for α1 and β1, there are at least K + 1 p-s or p-s in
C. The lemma is proved.

Lemma 8. Let p be a variable such that |A|p = |A|p = 1 and |B|p = |B|p = 0.
Let α and β be the occurrences of p and p. Then if |d(α) − d(β)| �= 1 then
|C|p + |C|p ≥ |d(α)− d(β)| + 1.

Proof. We use the same method of “links trip” as in the previous lemma. The
condition |d(α) − d(β)| �= 1 forbids the corresponding occurrences in A⊥ to
be directly linked. We omit the detailed proof, because it is similar to that of
Lemma 7.

We call a formula A simple, if for every variable p it holds that |A|p ≤ 1 and
|A|p ≤ 1. If |A|p = |A|p = 1 then we call p a twin variable for A. If p is a twin
variable for A we denote by αp the occurrence of p and by βp the occurrence of
p. We denote by D(A) the following sum:

∑
p
(|dA(αp) − dA(βp)| + 1), where p

ranges over all twin variables for A, such that |dA(αp) − dA(βp)| �= 1. We call

Lower and Upper Bounds for the Length of Joins in the Lambek Calculus 159

conjoinable formulae A and B a simple conjoinable pair if both A and B are
simple formulae that do not have common twin variables. We call a literal q a
single literal for the pair (A,B) if |A|q = |B|q = 1 and |A|q = |B|q = 0. If q is a
single literal we denote γA(q) and γB(q) its occurrences in A and B respectively.
We denote by E(A,B) the sum

∑
q
(|dA(γA(q))− dB(γB(q))|+1) where q ranges

over all single literals. The next lemma is a consequence of lemmas 7 and 8.

Lemma 9. Let (A,B) be a simple conjoinable pair. Then for every formula C
that is their join, it holds that |C| ≥ D(A) +D(B) + E(A,B).

The following lemma describes the construction of the family of the Lambek
calculus types {Tk, Uk | k ∈ IN} with large D(ψ(Tk)) and D(ψ(Uk)) and plays
the basic role in establishing the main result of the paper (recall that ψ is a
translation from the Lambek calculus types to linear logic formulae).

Lemma 10. There exists a family of types of the Lambek calculus {Tk, Uk | k ∈
IN} with the following properties:

1. For every k and l of the same parity Tk and Ul are conjoinable.
2. For every k the formulae ψ(Tk) and ψ(Uk) are simple.
3. [Tk] = [ψ(Tk)] = [Uk] = [ψ(Uk)] = ε if k is even. [Tk] = [ψ(Tk)] = [Uk] =

[ψ(Uk)] = p0 if k is odd.
4. For all k, l the formulae ψ(Tk) and ψ(Ul) do not have common twin variables.

5. For every even k it holds that D(Tk) ≥ k2

8 + k
2 − 4, D(Uk) ≥ k2

8 + k
2 − 4.

For every odd k it holds that D(Tk) ≥ k2

8 + k
4 − 9

2 , D(Uk) ≥ k2

8 + k
4 − 9

2 . For
every odd k and l it also holds that E(Tk, Ul) = 1, otherwise E(Tk, Ul) = 0.

Proof. We describe the construction of the types Tk and Uk and then show that
the lemma trivially follows from the construction. We suppose that the set Pr
contains types pi, ri, si, ti for every natural i and all such types are different. Let
Vm = (qm · . . . · q1)/(pm · . . . · p1), W1 = q1/p1, Wi+1 = qi+1/(pi+1/W1), i ∈ IN.
First we consider the case k = 4m for some natural m and then obtain the
remaining cases by slight modifications.

In the case k = 4m we define Tk = Vm\Wm, then Uk is constructed from
Tk by substituting all pi-s for ri-s and all the qi-s for si-s. Let us prove the
lemma in this case. The third statement can be directly verified and the first
statement follows from it by the conjoinability criterion. The second and the
fourth statement are obvious. So let us prove the fifth statement.

It is not difficult to prove that after omitting all the brackets ψ(Tk) has the
form pm⊗. . .⊗p1⊗q1� . . .�qm�qm� . . .�q1�p1⊗. . .⊗pm. So if we denote by αi

and αi the occurrences of qi and qi then |dψ(Tk)(αi)− dψ(Tk)(αi)| = 2(m− i)− 1
for every natural i. The occurrences of qi and qi have the same property, so a
simple calculation shows that D(ψ(Tk)) = (4+6+. . .+2m)·2 = 2m(m+1)−4 =
k2

8 + k
2 − 4. The lemma is proved in the case k = 4m.

In the case k = 4m + 2 we take as Tk the type Tk−2 where the primitive
type p1 is substituted with the type p1/pm+1 (if k = 2 then Tk = p1/p1). It
is easy to see that in this case ψ(Tk) after omitting the brackets equals pm ⊗

160 A. Sorokin

. . .⊗p1�pm+1⊗ q1� . . .�qm�qm� . . .�q1�pm+1⊗p1⊗ . . .⊗pm. Then D(Tk) =

4+ . . .+2m+2m+2+2m+ . . .+4 = 2m2+4m− 2 = k2

8 + k
2 −

7
2 . The type Uk

is obtained by the same replacement as in the previous case. Then the lemma
also holds.

In the case k = 4m+ 1 and k = 4m+ 3 we take Tk = p0 · Tk−1. So D(Tk) ≥
(k−1)2

8 + k−1
2 − 4 > k2

8 + k
4 − 9

2 . Uk is obtained by the same procedure as before.
Obviously E(Tk, Ul) = 1 for all odd k, l. The lemma is proved in all cases.

Below we formulate the main result. Note that the gap between the lower and
the upper bounds is fourfold. The author conjectures that in the case of MCLL
it is possible to achieve the same factor in leading terms of the lower and upper
bounds.

Theorem 4. For every natural k, l of the same parity there are types Tk, Ul such
that |Tk| = k, |Ul| = l, the types Tk and Ul are conjoinable and every join of this

types has length at least k2+l2

8 + k+l
4 − 8.

Proof. We take the types Tk and Ul from the previous lemma. Then by Lemma
9 for every join C of the formulae ψ(Tk) and ψ(Ul) this join has length at least

D(Tk)+D(Ul)+E(Tk+Ul). By Lemma 10 we conclude that |C| ≥ k2+l2

8 + k+l
4 −8.

The theorem is proved.

A quadratic lower bound on the length of joins implies the same lower bound
on the complexity of an algorithm that constructs the join. So the following
corollary holds:

Corollary 3. There is no algorithm that correctly constructs the join type for
types A and B given and works less than quadratic time in the worst case.

The author wants to thank Mati Pentus for helpful discussions during the work.
The author also thanks Simone Martini and anonymous referees for thoughtful
comments, which helped to improve the article.

5 Conclusion

We have proved that for the Lambek calculus both the upper and lower bounds
on the length of a join type are quadratic with respect to the lengths of con-
joinable types. In the case of the lower bound we used the method of proof
nets, which has never been used before for such purpose. The proof of the up-
per bound explicitly contains an algorithm constructing a short join and gives
a constructive proof of the conjoinability criterion from [12]. This method also
allows us to obtain the conjoinability criteria for the calculi where other tech-
niques are difficult to apply (such as the discontinuous Lambek calculus). No
bound on the possible length of joins is known in the case of the calculi where
the conjoinability criterion uses an interpretation in abelian groups, such as the
Lambek-Grishin calculus or the discontinuous Lambek calculus. So it is interest-
ing to study, whether the length of joins (and hence the complexity of algorithms
that construct such joins) depends on algebraic characteristics of conjoinability.

Lower and Upper Bounds for the Length of Joins in the Lambek Calculus 161

References

1. Abrusci, V.M.: Phase semantics and sequent calculus for pure non-commutative
classical linear logic. Journal of Symbolic Logic 56(4), 1403–1451 (1991)

2. Béchet, D.: Parsing pregroup grammars and Lambek calculus using partial com-
position. Studia Logica 87(2), 199–224 (2007)

3. Foret, A.: Conjoinability and unification in Lambek categorial grammars. In: Pro-
ceedings of the 5th ROMA Workshop on New Perspectives in Logic and Formal
Linguistics, Bulzoni, Roma (2001)

4. Foret, A.: On the computation of joins for non-associative Lambek categorial gram-
mars. In: Proceedings of the 17th International Workshop on Unification, UNIF,
vol. 3, pp. 25–38 (2003)

5. Girard, J.-Y.: Linear logic. Theoretical Computer Science 1, 1–101 (1987)
6. Grishin, V.: On a generalization of the Ajdukewicz-Lambek system. In: Studies on

Nonclassical Logics and Formal Systems, Nauka, Moscow (1983) (in Russian); En-
glish translation in: Proceedings of the 5th ROMA Workshop on New Perspectives
in Logic and Formal, Linguistics. Bulzoni Editore, Roma (2001)

7. Lambek, J.: Type grammar revisited. In: Lecomte, A., Perrier, G., Lamarche, F.
(eds.) LACL 1997. LNCS (LNAI), vol. 1582, pp. 1–27. Springer, Heidelberg (1999)

8. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

9. Moortgat, M., Pentus, M.: Type similarity for the Lambek-Grishin calculus. In:
Proceedings of the 12th Conference on Formal Grammar, Dublin (2007)

10. Moot, R., Retoré, C. (eds.): The Logic of Categorial Grammars. LNCS, vol. 6850.
Springer, Heidelberg (2012)

11. Pentus, M.: Equivalent types in Lambek calculus and linear logic. Preprint. De-
partment of mathematical logic, Steklov Mathematical Institute, Moscow 2 (1992)

12. Pentus, M.: The conjoinability relation in Lambek calculus and linear logic. ILLC
Prepublication Series ML-93-03. Institute for Logic, Language and Computation,
University of Amsterdam (1993)

13. Pentus, M.: Lambek grammars are context-free. In: Proceedings of the Logic in
Computer Science, LICS 1993, pp. 429–433 (1993)

14. Pentus, M.: Models of the Lambek calculus. Annals of Pure and Applied
Logic 75(1), 179–213 (1995)

15. Pentus, M.: Free monoid completeness of the Lambek calculus allowing empty
premises. In: Larrazabal, J.M., Lascar, D., Mints, G. (eds.) Proceedings of Logic
Colloquium 1996, pp. 171–209. Springer, Berlin (1998)

16. Roorda, D.: Resource logic: proof theoretical investigations. PhD thesis, FWI, Uni-
versiteit van Amsterdam (1991)

17. Safiullin, A.: Derivability of admissible rules with simple premises in the Lambek
calculus. Moscow University Mathematics Bulletin 62(4), 168–171 (2007)

18. Sorokin, A.: On the length of joins in Lambek calculus. Moscow University Math-
ematics Bulletin 66(3), 101–104 (2011)

19. Yetter, D.: Quantales and (noncommutative) linear logic. Journal of Symbolic
Logic 55(1), 41–64 (1990)

Graph Expansion, Tseitin Formulas

and Resolution Proofs for CSP

Dmitry Itsykson1,� and Vsevolod Oparin2,��

1 Steklov Institute of Mathematics at St.Petersburg
dmitrits@pdmi.ras.ru

2 St.Petersburg Academic University of Russian Academy of Sciences
oparin.vsevolod@gmail.com

Abstract. We study the resolution complexity of Tseitin formulas over
arbitrary rings in terms of combinatorial properties of graphs. We give
some evidence that an expansion of a graph is a good characterization
of the resolution complexity of Tseitin formulas. We extend the method
of Ben-Sasson and Wigderson of proving lower bounds for the size of
resolution proofs to constraint satisfaction problems under an arbitrary
finite alphabet. For Tseitin formulas under the alphabet of cardinality
d we provide a lower bound de(G)−k for tree-like resolution complexity
that is stronger than the one that can be obtained by the Ben-Sasson
and Wigderson method. Here k is an upper bound on the degree of the
graph and e(G) is the graph expansion that is equal to the minimal cut
such that none of its parts is more than twice bigger than the other.
We give a formal argument why a large graph expansion is necessary
for lower bounds. Let G = 〈V,E〉 be the dependency graph of the CSP,
vertices of G correspond to constraints; two constraints are connected by
an edge for every common variable. We prove that the tree-like resolution

complexity of the CSP is at most d
e(H)·log 3

2
|V |

for some subgraph H of
G.

1 Introduction

Backtracking algorithms are the most popular approach to solving NP-hard
problems. The execution of a backtracking algorithm for SAT on unsatisfiable
formulas is closely connected to the tree-like resolution proof system. Lower
bounds on the complexity of resolution proofs imply the same lower bounds on
the running time of backtracking algorithms. The first superpolynomial lower
bound for resolutions was proved by Tseitin [13]; Tseitin used formulas that
coded the following simple fact: in every graph the number of vertices with odd

� Partially supported by the grants MK-4108.2012.1 from the President of RF, by
RFBR grant 12-01-31239-mol-a, by the Programme of Fundamental Research of
RAS and by The Ministry of Education and Science of Russian Federation, project
8216.

�� Partially supported by RFBR grant 12-01-31239-mol-a, by Réseau STIC franco-russe
and ANR NAFIT 008-01.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 162–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Graph Expansion, Tseitin Formulas and Resolution Proofs for CSP 163

degree is even. The first exponential lower bound was proved by Urqhart [14].
The strongest known lower bounds were proved using the methods introduced
by Ben-Sasson and Wigderson in [4]. From the practical point of view it is more
interesting to have a lower bound for backtracking algorithms on satisfiable for-
mulas; there are several lower bounds on satisfiable formulas [1], [5], [9], [8] under
various restrictions on heuristics that choose a variable for splitting and a value
that is investigated first. However, all the known lower bounds on satisfiable
formulas are proved by reduction to lower bounds on unsatisfiable ones.

Baker [2] introduced a very natural extension of the resolution proof system for
constraint satisfaction problems (CSPs) and defined the system NG-RES. Baker
studied different backtracking algorithms for CSP; he introduced the notion
of the width of a CSP and proved that there exist resolution proofs of size
exponential only in the width and polynomial in the other parameters. Baker also
gave a hard distribution for backtracking algorithms for CSP and proved a super
polynomial lower bound for NG-RES. Mitchell [11] introduced the proof system
C-RES that is more powerful than NG-RES and proved an exponential lower
bound for the random CSP in C-RES. Mitchell [12] proved a superpolynomial
separation between C-RES and NG-RES and Hwang [6] proved an exponential
separation.

The paper [7] proves that a linear lower bound on the proof degree in Polyno-
mial Calculus implies an exponential lower bound on the proof size in Polynomial
Calculus under fields. The paper [3] presents a linear lower bound on the degree
of proofs of Tseitin formulas in Polynomial Calculus under fields and rings. This
lower bounds are proved only for alphabets of cardinality pm for prime p; and
this result is not claimed to be optimal.

In this paper we are interested in the precise complexity of backtracking al-
gorithms (or tree-like resolution) on Tseitin formulas under an arbitrary finite
alphabet. In the propositional case the strongest lower bound for Tseitin formu-
las follows from the paper of Ben-Sasson and Wigderson. Namely every tree-like
resolution proof of the Tseitin formula based on a graph with maximal degree at
most k has the size at least 2e(G)−k, where e(G) is the expansion of the graph.
Recall that the expansion of a graph equals the size of minimal cut such that
such that none of its parts is more than twice bigger than the other. Method
of Ben-Sasson and Wigderson consists of the following two steps: first, estab-
lishing a relationship between the proof size and the width of a proof; second,
establishing a relationship between the width of a proof and the expansion of
the CSP. Mitchell in [10] generalizes the relationship between the size and width
of a proof to a nonbinary case. The trivial case of such a generalization to the
alphabet of size d implies the lower bound 2ed(G)−k for the tree-like resolution
complexity of Tseitin formulas, where ed is the size of the minimal cut such that
none of its parts is more than d times bigger than the other. Generally speaking
ed(G) can be much smaller than e(G) = e2(G).

For an arbitrary CSP φ the results of [10] implies the following generalization
of [4]:

164 D. Itsykson and V. Oparin

1. ST (φ) ≥ 2e(φ)−k−1,

2. S(φ) ≥ exp
(
Ω

(
(e(φ)−k−1)2

n

))
,

where ST (φ) and S(φ) are the tree-like and general resolution complexity of φ,
respectively, and e(φ) is the expansion of CSP φ.

The latter inequality implies the lower bound 2e(G)−k−1 on the tree-like res-
olution complexity of Tseitin formulas. By means of a more specific analysis for
Tseitin formulas we improve this lower bound to d(e(G)−k).

It is well known that proofs of lower bounds for Tseitin formulas use the
graph with high expansion. We study the question whether high expansion is
indeed necessary for lower bounds. We give an answer for arbitrary CSP: let
G = 〈V,E〉 be the dependency graph of a CSP; the vertices of G correspond
to constraints;and two constraints are connected by an edge for every common
variable (thus, the dependency graph is actually a multigraph). We prove that

the tree-like resolution complexity of the CSP is at most d
e(H)·log 3

2
|V |

for some
subgraph H of G. Thus for the Tseitin formula φ based on the graph G =
〈V,E〉 we have that there is a subgraph H of G such that de(H)−k ≤ ST (φ) ≤
d
e(H)·log 3

2
|V |

.
In Section 2 we give definitions of basic concepts. In Section 3 we explain the

relationship between width of the proof and the expansion of the CSP. In Sec-
tion 4 we prove a stronger lower bound for the tree-like resolution complexity of
Tseitin formulas. In Section 5 we prove an upper bound on the tree-like resolution
complexity of the CSP in terms of the expansion of the dependency graph.

2 Preliminaries

2.1 The Constraint Satisfaction Problem (CSP)

Let X = {x1, x2, . . . , xn} be a finite set of variables that take values from a finite
set D, and S be a set of constraints; every constraint defines a subset of variables
X ′ and a set of possible values that variables of X ′ can take at the same time.
A triplet 〈X,D, S〉 is called a constraint satisfaction problem (CSP). If every
constraint restricts at most k variables than we call such problem k-CSP.

A partial substitution is a mapping ρ : X → D ∪ {∗}, where ‘∗’ means an
unspecified value; a support of a substitution is the set ρ−1(D). A substitution
is complete if its support equals to X .

A partial substitution ρ satisfies a constraint R ∈ S if after substituting
the variables from the support of ρ with their respective values constraint R is
satisfied regardless the values of the other variables. A substitution ρ satisfies
CSP 〈X,D, S〉 if ρ satisfies every constraint R ∈ S. CSP φ is satisfiable if there
exists at least one substitution that satisfies φ.

We call a constraint of the type ¬(x1 = a1∧· · ·∧xk = ak), where x1, . . . , xk ∈
X, a1, . . . , ak ∈ D, a nogood. The notion of a nogood is an extension of the notion
of a clause in the propositional case (D = {0, 1}). For example the nogood
¬(x1 = 0 ∧ x2 = 1) is equivalent to the clause (x1 ∨ x̄2).

Graph Expansion, Tseitin Formulas and Resolution Proofs for CSP 165

In what follows we consider only k-CSP and denote |D| by d. Every restriction
in k-CSP may be written as a conjunction of at most dk nogoods.

2.2 Backtracking Algorithms

Now we define backtracking algorithms for CSP.
A backtracking algorithm is parametrized by two heuristics B and C and a

simplification procedure S. A heuristic B takes a CSP φ and returns a variable
x for splitting. A heuristic C takes a pair (φ, x) and returns an order on D (this
is an order in which an algorithm substitutes values from D for the variable x).

The simplification procedure S(φ, x := a) removes from the φ[x := a] all
constraints that have been already satisfied.

A backtracking algorithm A(φ) is defined as follows

– If φ does not contain constraints, return SATISFIABLE.
– If φ contains already falsified constraint, return UNSATISFIABLE.
– Pick a variable x := B(φ). According to the order given by C(φ, x), for all

a ∈ D make a recursive call A(S(φ, x := a)). If one of recursive call re-
turns SATISFIABLE, immediately return SATISFIABLE, otherwise return
UNSATISFIABLE.

The running time of the backtracking algorithm is the size of the recursion tree.
We ignore the computational complexity of heuristics B and C.

2.3 Resolution Proof System

We consider only unsatisfiable instances of CSP.
We define a resolution proof system that generalizes the well known system

in the propositional case. This definition is due to [2].
The resolution proof system is a way to show that a given CSP is unsatisfiable.

We assume that constraints are represented as a set of nogoods.
Let {Na}a∈D be a set of nogoods such that Na = ¬(x = a ∧ αa) for every

a ∈ D. A nogood ¬(
∧

a∈D αa) is a resolvent of {Na}a∈D.

Definition 1. A sequence of nogoods π = {Ni} is a resolution proof for CSP φ
if

– every nogood Ni is either a nogood of φ or a resolvent of d nogoods that
precede Ni: Nj1 , . . . , Njd , where j1, . . . , jd < i;

– the last nogood in π is the empty nogood ¬() (i.e. contradiction).

Every resolution proof may be represented as a directed acyclic graph with
nogoods as vertices. There is an arc between Ni and Nj if Ni is in the premise
of the resolution rule that produced Nj . The proof is called tree-like if its graph
is a tree. A tree-like resolution proof system accepts only tree-like proofs.

Similarly to the propositional case, the running of backtracking algorithms on
unsatisfiable CSPs and tree-like resolution proofs are equivalent.

166 D. Itsykson and V. Oparin

Proposition 1 ([2,6]). The size of the smallest tree-like resolution refutation
is exactly the same as the size of the minimal recursion tree of a backtracking
algorithm.

Thus upper and lower bounds on the size of tree-like resolution proofs provide the
same upper and lower bounds on the running time of backtracking algorithms.

2.4 Tseitin Formulas and Expansion

The paper [3] generalizes Tseitin formulas [13] to the nonbinary case. Consider
a graph G = 〈V,E〉 and a function f : V → Zd. We associate every edge e ∈ E
with a variable xe. For every vertex u we have a constraint of type∑

(u,v)

γ(u,v) · x(u,v)∈E = f(u) mod d

where γ(u,v) ∈ {+1,−1}. Every edge (u, v) corresponds to a variable x(u,v) and
two values γ(u,v) and γ(v,u) that satisfy γ(u,v) + γ(v,u) = 0. Note that x(u,v) and
x(v,u) denote the same variable.

The following lemma is very similar to the propositional case.

Lemma 1. Tseitin formula φ(G, f) based on a connected graph G is satisfiable
if and only if

∑
v f(v) = 0.

Definition 2. The expansion of a graph G = 〈V,E〉 is e(G) =
minA⊆V, 1

3 |V |≤|A|≤
2
3 |V | |E(A, Ā)|.

Further we will see a relationship between the expansion of a graph and the sizes
of resolution proofs of Tseitin formulas.

3 Resolution Width and Expansion

The paper [4] introduced a technique of proving lower bounds in the propositional
resolution proof system, that are quite strong. We generalize that result to CSP.

Let us consider a k-CSP φ = 〈X,D, S〉 that is represented by a set of nogoods.
A width of a nogood is the number of variables that appear in it. If π is a

resolution proof of φ, then a width of π is the maximal width of a nogood in π;
we denote it by W (π). A width of refutation of CSP φ is the minimal width of
all resolution proofs of φ; we denote it by W (φ - 0).

Theorem 1 ([10]). For every k-CSP φ the following inequalities are satisfied

ST (φ) ≥ 2W (φ�0)−k,

S(φ) ≥ exp

(
Ω

(
(W (φ - 0)− k)2

n

))
,

where ST (φ) is the minimal size of a tree-like resolution proof of φ and Sφ is the
minimal size of a resolution proof of φ.

Graph Expansion, Tseitin Formulas and Resolution Proofs for CSP 167

Let us consider CSP φ; let S be the set of constraints of φ (the constraints are
no required to be nogoods). Let F be some subset of the set S; we denote by ∂F
the set of variables x such that there is exactly one constraint in F that depends
on x. The expansion of φ is defined as follows

e(φ) = min
F

|∂F |,

where the minimum is over all F ⊆ S such that 1
3 |S| ≤ |F | ≤ 2

3 |S|.

Definition 3. Let φ be an unsatisfiable CSP. We say that φ is minimally un-
satisfiable if φ becomes satisfiable after removing any of its constraints.

Theorem 2. Let φ be a minimally unsatisfiable CSP and S be a constraint set
of φ. Let φ satisfy the following property:

– for every constraint f ∈ S every two substitutions that violate f differ in at
least two variables.

Then W (φ - 0) ≥ e(φ)− 1.

Proof. We say that a nogood N is semantically implied by F ⊆ S, if every
substitution that satisfies F also satisfies N . We denote this implication by
F |= N . We define Ben-Sasson-Wigderson measure on the set of all nogoods.
For a nogood N we define μ(N) = min{|F | | F ⊆ S, F |= N}. The following
properties are straightforward:

– μ(N) ≤ 1 for every nogood N from φ;
– μ(¬()) = |S|;
– If N is the resolvent of {Na}a∈D, then μ(N) ≤

∑
a∈D μ(Na).

Lemma 2. Let F be a minimal set of constraints that semantically implies N .
Then the size of N is at least |∂F |.

Proof. Note that for every constraint f ∈ F there is an assignment ρf that
falsifies N and f , but ρf satisfies every other constraint g ∈ F . Otherwise we
can remove such constraint from F and this contradicts to the minimality of F .

For x ∈ ∂F let f ∈ F be the constraint that depends on x. Then there exists
a ∈ D such that the assignment obtained by changing the value of variable x in
ρf to a satisfies f and therefore satisfies N . Thus N depends on x. ��

In the propositional case this would finish the proof since the properties of a
measure μ imply that every resolution proof contains a nogoodN with a measure
in [13 |S|,

2
3 |S|]. Lemma 2 implies that N contains at least e(φ) variables. However

for arbitrary d we can’t guarantee that such nogood N exists. We take another
way.

Any resolution proof of the formula φ contains a nogoodN that is the resolvent
of nogoods Na on a variable x, a ∈ D, μ(N) > 1

3 |S|, and for every premise Na

the inequality μ(Na) ≤ 1
3 |S| holds.

168 D. Itsykson and V. Oparin

Let Fa be a minimal subset of constraints such that Fa |= Na. Since |Fa| ≤
1
3 · |S|, we can choose D′ ⊆ D in such a way that for F ′ defined as

⋃
a∈D′ Fa

we have 1
3 · |S| ≤ |F ′| ≤ 2

3 · |S|. Thus |∂F ′| ≥ e(φ), and by Lemma 2 for every
variable y ∈ ∂F ′ there exists a nogood Na (a ∈ D′) that depends on y. Therefore
(∂F ′\{x}) ⊆ Vars(N), hence |Vars(N)| ≥ e(φ) − 1, where Vars(N) is the set of
variables from the nogood N . ��
Corollary 1. If a Tseitin formula φ(G, f) is unsatisfiable, then W (φ(G, f) -
0) ≥ e(G)− 1.

Proof. Follows from Theorem 2 and Lemma 1. ��
Finally if the degree of all vertices in a graph G is at most k and Tseitin formula
φ(G, f) is unsatisfiable, then Corollary 1 and Theorem 1 imply the following
lower bounds:

1. ST (φ) ≥ 2e(G)−k−1,

2. S(φ) ≥ exp
(
Ω

(
(e(G)−k−1)2

n

))
.

Note that we have 2 in the base of the exponent in the tree-like case as it was
for a binary alphabet. But it is more natural to have number d in the base of the
exponent since every node of the tree has d children. In the next section we give
more accurate analysis for Tseitin formulas and prove a lower bound de(G)−k for
tree-like resolution.

4 Lower Bound for Tseitin Formulas

In this section we prove a lower bound for the size of tree-like resolution proofs of
Tseitin formulas that is stronger than the lower bound from the previous section.
Consider a graph G = 〈V,E〉 and the unsatisfiable Tseitin formula φ based on
it. Let the maximal degree of G be at most k. We assume that the domain D
equals Zd. We prove that ST (φ) ≥ de(G)−k, where ST is the size of a minimal
tree-like resolution proof of φ.

4.1 Reduced Splitting Tree

Let G = 〈V,E〉 be a connected graph with the maximal degree of vertices at
most k. We consider a protocol of a backtracking algorithm and define the notion
of the complexity of graph G. It equals the minimal size of resolution proofs of
φ(G, f). For a connected graph G we define

C(G) =

{
1, if |V | = 1
mine∈E T (G \ e) + 1, otherwise,

where T (G) is defined for all G with at most two connected components in the
following way:

T (G) =

{
d · C(G), if G is connected;
(d− 1) · C(G1) + C(G2), otherwise,

whereG1 andG2 are two connected components of graphG and C(G1) ≤ C(G2).

Graph Expansion, Tseitin Formulas and Resolution Proofs for CSP 169

Lemma 3. The minimal running time of a backtracking algorithm on an unsat-
isfiable Tseitin formula φ(G, f) based on a connected graph G does not depend
on the function f and equals C(G).

Proof. We prove it by induction on the number of edges. The base case of in-
duction is trivial. Consider now an arbitrary graph G = 〈V,E〉 and a function
f : V → Zd.

Let optimal backtracking algorithm start with splitting on a variable xe. In
the first case G\e is connected. Then we have to solve d subproblems of the type
φ(G \ e, f ′a), where the function f ′a differs from f on the ends of the edge e. By
the induction hypothesis the minimal running time of a backtracking algorithm,
on the formula φ(G \ e, f ′a) is equal to C(G \ e). Therefore the total number of
steps of the optimal backtracking algorithm is d · C(G \ e).

In the second case the edge e is a bridge of the graph G. Let G1 and G2 be
the two connected components of G \ e. After substitutiing xe := a, the formula
φ(G, f) splits into two independent subformulas φ1 and φ2, that correspond to
graphs G1, G2 and to functions f1,a, f2,a, respectively.

We show that there is exactly one value of xe that makes the formula φi satis-
fiable for i = 1, 2. The inductive hypothesis implies that the minimal complexity
of a backtracking algorithm is (d− 1) · C(G1) + C(G2) + 1.

Let an edge e connect vertices u and v and the vertex v belong toG1. Note that
the values of functions f1,a and f on the vertices of graphG1 candiffer only at vertex
v. Lemma 1 implies that if we fix the f1,a-values for all vertices inG1 except v, then
there exists exactly one value of f1,a(v) that makes φ1 satisfiable. ��
Lemma 3 allows one to present a protocol of a backtracking algorithm in an
economical way. We define a rooted tree; nodes of this tree are labeled with
connected graphs. For the Tseitin formula φ(G, f) our tree T looks as follows:

– The root of the tree is labeled with G.
– Every leaf of the tree is labeled with a graph with one vertex.
– Every node of the tree has either one or two children.
– Let node v be labeled with a graph Gv. If v has only one child then it is

labeled with Gv \ e for some edge e. If v has two children then each of them
is labeled with the corresponding connected component of Gv \ e for some
bridge e in Gv.

We call such a tree a reduced splitting tree.
We define a function f on the nodes of a reduced splitting tree.

f(v) =

⎧⎪⎪⎨⎪⎪⎩
1, if v is a leaf;
d · f(u) + 1, if u is a unique child of v;
(d− 1) · f(u1) + f(u2) + 1, where u1, u2 are children of v and

f(u1) ≤ f(u2);

For a reduced splitting tree T we define F (T) = f(r), where r is a root of T . It
is easy to see that

C(G) = min
T

F (T),

where the minimum is over all reduced splitting trees for a given graph G.

170 D. Itsykson and V. Oparin

4.2 Lower Bound

We define the notion of the width of a reduced splitting tree.
Let G = 〈V,E〉 be a connected graph and φ be an unsatisfiable CSP based on

G. Let T be a reduced splitting tree for φ. We consider a node v labeled with
Gv = 〈Vv , Ev〉. Let Eext = {(x, y) ∈ E|x ∈ V ∨ y ∈ Vv} be a number of edges
that have at least one end in the set Vv. We set w(v) = |Eext \ Ev|, that is, the
number of removed edges that are incident to some vertices from Vv. The width
of a tree T is W (T) = maxv w(v), where the maximum is over all nodes of T .

Lemma 4. For every connected graph G = 〈V,E〉 with expansion e(G) and
for every reduced splitting tree of an unsatisfiable formula φ(G, f) the inequality
W (T) ≥ e(G) holds.

Proof. Let T be a reduced splitting tree. T contains a node v labeled with
Gv = 〈Vv, Ev〉 such that

– |Vv| > 2
3 · |V |;

– v has two children;
– if u is a child of v, then |Vu| ≤ 2

3 · |V |.

There exists a node u, that is a child of v and |Vu| is between 1
3 |V | and 2

3 |V |.
Thus by the definition of the expansion w(u) ≥ e(G). ��

Lemma 5. Let T be a reduced splitting tree for Tseitin formula φ(G). Then
there exists a reduced splitting tree T ′ for φ(G) such that W (T ′) ≤ k+logd F (T).

Proof. By induction on the number of nodes in the tree T we show that if
F (T) ≤ db, then there exists a tree T ′ for φ(G) such that W (T ′) ≤ k + b. The
base case of induction is obvious.

Let the root r of T have only the one child v. Let Tv be a subtree of T with
the root v. If F (T) ≤ db, then F (Tv) ≤ db−1. By the induction hypothesis we
have a tree T ′v such that W (T ′) ≤ b− 1 + k. We attach the tree T ′v to r and get
a tree T ′ such that W (T ′) ≤ (b− 1 + k) + 1 = b+ k.

Let r have two children v1 and v2. Let T1 and T2 be subtrees with roots in
v1 and v2 respectively; G1 and G2 are labels of v1 and v2 respectively. By the
definition of F

F (T) = (d− 1) · F (T1) + F (T2) + 1,

We know that d · F (T1) < F (T). Thus if F (T) ≤ db, then F (T1) ≤ db−1 and
F (T2) ≤ db. Therefore by the induction hypothesis there exist reduced splitting
trees T ′1 and T ′2 for G1 and G2, respectively, such that W (T ′1) ≤ k + b − 1 and
W (T ′2) ≤ k+b. We show that T ′1 and T ′2 may be used in the construction of such
a reduced splitting tree T ′ for φ(G) that W (T) ≤ k + b.

Let the root r of the tree be labeled with G and children v1 and v2 be labeled
with the connected components of G \ e. Let an edge e connect a vertex z from
G1 with a vertex y from G2. We construct T ′ as follows.

We modify the tree T ′2: to every label that contains the vertex y we attach a
copy of the graph G1 to y by edge e. The original tree T ′2 contains a leaf that

Graph Expansion, Tseitin Formulas and Resolution Proofs for CSP 171

is labeled with the graph with only one vertex y; after the modification this leaf
is labeled with y with G1 attached by means of the edge e. We make a splitting
in this leaf on the variable xe. We get a leaf that is labeled with z and a leaf w
that is marked with G1. We attach a tree T ′1 to w. So we get a reduced splitting
tree T ′ for φ(G) such that W (T ′) ≤ max{W (T ′2),W (T ′1) + 1, k} ≤ k + b. ��

Corollary 2. e(G) ≤ k + logd C(G).

Finally we prove the following theorem:

Theorem 3. If the degrees of all vertices of a graph G are at most k, then the
size of a tree-like resolution proof of unsatisfiable Tseitin formula φ(G, f) is at
least de(G)−k.

5 Upper Bound for CSP

We consider an arbitrary unsatisfiable CSP φ = 〈X,D, S〉. Let |D| = d. For
every constraint C ∈ S we denote by Vars(C) the set of variables x such that C
depends on x.

We construct the dependency graph G = 〈V,E〉 of CSP φ. Vertices of this
graph correspond to constraints from S. Two constraintsCi and Cj are connected
with |Vars(Ci) ∩Vars(Cj)| edges, every edge is labeled with a common variable
of Ci and Cj .

Note that the dependency graph of a Tseitin formula based on a graph H is
isomorphic to H .

Theorem 4. In the dependency graph G = 〈V,E〉 of an unsatisfiable CSP φ

there is a subgraph H with the expansion e(H) ≥ logd ST (φ)
log 3

2
|V | , where ST (φ) is a

size of a minimal tree-like resolution refutation of φ.

Proof. We consider the following backtracking algorithm A(φ)

– It constructs a dependency graph G = 〈V,E〉 of φ.
– It finds a minimal cut U ⊆ V such that 1

3 · |V | ≤ |U | ≤ 2
3 · |V |.

– For all variables that correspond to edges that connect U with its comple-
ment, algorithm A chooses them for splitting one by one.

– Now graph contains several connected components. The algorithm chooses
an unsatisfiable component and makes a recursive call on it

Let T ime be the running time of the algorithm A; it equals to the size of some
tree-like resolution proof of φ.

The execution protocol of A can be represented by a tree T with weighted
edges (edges correspond to cuts and weights correspond to sizes of cuts). Vertices
of the tree T are labelled with CSPs, that are passed in the recursive calls. Let
the vertex v contain a formula φ and let the algorithm A find a cut U in the
dependency graph of φ.

172 D. Itsykson and V. Oparin

Let Xφ,U be the set of variables corresponding to edges in this cut. The weight
of the edge that corresponds to this cut is |Xφ,U |. A weighted height of T is the
maximal weight of the path from the root of T to a leaf. Let us denote the
weighted height of T by h. Note that Time ≤ dh.

The number of vertices in the dependency graph of CSP in the child of T is
at least 3

2 times smaller than the number of vertices in the parent. Let a vertex
u be the parent of a vertex v. Then the number of vertices in the dependency
graph of the CSP in the vertex u is at least 3

2 times the number of vertices in
the dependency graph of the CSP in the vertex v

Let us denote the unweighted height of T by hu; then hu is at most log 3
2
|V |.

Hence there exists an edge (v, u) with the weight at least h
log 3

2
|V | ≥

logd Time
log 3

2
|V | .

Let CSP in v correspond to a dependency graph H . Therefore: e(H) ≥
logd Time
log 3

2
|V | . ��

Corollary 3. Time ≤ d
e(H)·log 3

2
|V |

.

Corollary 4. For an unsatisfiable Tseitin formula φ over domain D = Zd based
on a graph G = 〈V,E〉 of maximal degree k, there exists a subgraph H of G such

that ST (φ) ≤ d
e(H)·log 3

2
|V |

.

Proof. The dependency graph of φ is isomorphic to G. Therefore by the Theo-

rem 4 there is a subgraph H in G such that ST (φ) ≤ d
e(H)·log 3

2
|V |

. ��
Thus the minimal running time of a backtracking algorithm on a Tseitin formula

based on a graphG satisfies inequalities de(G)−k ≤ Time ≤ d
e(H)·log 3

2
|V |

for some
subgraph H of G.

6 Open Questions

– Prove (or disprove) that there exists c > 1 such that the size of a dag-like
resolution proof of a Tseitin formula based on a graph G is at least ce(G).
Such a lower bound exists if e(G) = Ω(n). This is also true for doubled
graphs where every edge has a parallel copy.

– Reduce the gap between the upper and lower bounds.

Acknowledgements. The authors are grateful to Alexander Shen for draw-
ing attention to the case of arbitrary alphabets and to anonymous referees for
comments that improved the readability of the paper.

References

1. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. J. Autom. Reason.
35(1-3), 51–72 (2005)

2. Baker, A.B.: Intelligent backtracking on constraint satisfaction problems: Experi-
mental and theoretical results (1995)

Graph Expansion, Tseitin Formulas and Resolution Proofs for CSP 173

3. Buss, S., Grigoriev, D., Impagliazzo, R., Pitassi, T.: Linear gaps between degrees for
the polynomial calculus modulo distinct primes. Journal of Computer and System
Sciences, 547–556 (1999)

4. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow — resolution made simple.
Journal of ACM 48(2), 149–169 (2001)

5. Cook, J., Etesami, O., Miller, R., Trevisan, L.: Goldreich’s one-way function candi-
date and myopic backtracking algorithms. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 521–538. Springer, Heidelberg (2009)

6. Hwang, C.Y.J.: A Theoretical Comparison of Resolution Proof Systems for CSP
Algorithms. Master’s thesis, Simon Fraser University (2004)

7. Impagliazzo, R., Pudlak, P., Sgall, J.: Lower bounds for the polynomial calculus
and the grobner basis algorithm. Computational Complexity 8, 127–144 (1997)

8. Itsykson, D., Sokolov, D.: The complexity of inversion of explicit Goldreichs func-
tion by DPLL algorithms. Zapiski nauchnyh seminarov POMI 399, 88–109 (2012)

9. Itsykson, D.: Lower bound on average-case complexity of inversion of goldreich’s
function by drunken backtracking algorithms. In: Ablayev, F., Mayr, E.W. (eds.)
CSR 2010. LNCS, vol. 6072, pp. 204–215. Springer, Heidelberg (2010)

10. Mitchell, D.G.: The resolution complexity of constraint satisfaction (2002)
11. Mitchell, D.G.: Resolution complexity of random constraints. In: Van Hentenryck,

P. (ed.) CP 2002. LNCS, vol. 2470, pp. 295–309. Springer, Heidelberg (2002)
12. Mitchell, D.G.: Resolution and constraint satisfaction. In: Rossi, F. (ed.) CP 2003.

LNCS, vol. 2833, pp. 555–569. Springer, Heidelberg (2003)
13. Tseitin, G.S.: On the complexity of derivation in the propositional calculus. Zapiski

Nauchnykh Seminarov LOMI 8, 234–259 (1968); English translation of this volume:
Consultants Bureau, N.Y., pp. 115–125 (1970)

14. Urquhart, A.: Hard examples for resolution. JACM 34(1), 209–219 (1987)

Towards NEXP versus BPP?

Ryan Williams�

Stanford University

Abstract. We outline two plausible approaches to improving the mis-
erable state of affairs regarding lower bounds against probabilistic poly-
nomial time (namely, the class BPP).

1 Introduction

In recent years, researchers have been gradually developing methods for po-
tentially proving non-uniform circuit lower bounds against “large” complexity
classes, such as nondeterministic exponential time (NEXP). These methods grew
out of thinking about how to generically derandomize probabilistic algorithms:
given an algorithm A which makes random decisions and solves a problem with
high probability, can we construct a deterministic algorithm B with similar run-
ning time and equivalent behavior to A? Many non-trivial and surprising con-
nections have been discovered between this basic problem and that of proving
circuit lower bounds (e.g., [10,3,8,1,11,7,9]). Most of these papers show how
circuit lower bounds can imply interesting derandomizations. Impagliazzo, Ka-
banets, and Wigderson proved (among many other results) an implication in
the opposite direction: some derandomizations can in fact imply circuit lower
bounds for NEXP:

Theorem 1 ([7]). Suppose every problem in promiseBPP can be solved (even
nondeterministically) in 2n

ε

time, for every ε > 0. Then NEXP �⊂ P/poly.

That is, subexponential-time deterministic simulations of probabilistic polyno-
mial time imply that NEXP cannot be simulated with non-uniform polynomial-
size circuits. To be more precise, Theorem 1 boils down to the following claim. In
the Circuit Approximation Probability Problem (a.k.a. CAPP), a Boolean circuit
C is given, and one is asked to approximate the quantity Prx[C(x) = 1] within
an additive factor of 1/10. IKW show that if CAPP can always be solved in

2n
o(1)

time on circuits of size n, then NEXP �⊂ P/poly.
On a circuit with n inputs, the fastest known algorithm for CAPP is simply

exhaustive search, takingΩ(2n) time. It seems that an improvement from 2n time
to 2n

ε

time would be major, and far from something one might hope to establish

� Supported in part by a David Morgenthaler II Faculty Fellowship, and the National
Science Foundation under Grant Number CCF-1212372. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 174–182, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards NEXP versus BPP 175

in the near future. Fortunately, the hypothesis of Theorem 1 can be significantly
weakened. It has been shown that essentially any nontrivial improvement over
exhaustive search for CAPP would already yield the desired lower bounds:

Theorem 2 ([12]). Suppose for every k, CAPP on circuits of size nk and
n inputs can be solved (even nondeterministically) in O(2n/nk) time. Then
NEXP �⊂ P/poly.

Similarly, the paper [12] also shows how slightly faster circuit satisfiability algo-
rithms would also entail NEXP �⊂ P/poly. It is possible that Theorem 2 gives a
reasonable approach to proving NEXP �⊂ P/poly – to prove the lower bound, it
suffices to show that NEXP ⊂ P/poly (a strong assumption that is algorithmic
in nature) yields a nontrivial algorithm for approximating the acceptance prob-
abilities of circuits. This approach was met with skepticism until it was shown
how a variant of Theorem 2 can be applied (along with other ideas) to uncondi-
tionally prove that NEXP does not have polynomial-size ACC circuits [13]. The
approach has also been recently extended to prove ACC circuit lower bounds for
NEXP ∩ coNEXP as well [14].

This is all fine and good, and we are optimistic that circuit lower bounds will
continue to be developed by studying the connections between circuit-analysis
algorithms and circuit limitations. However, while NEXP �⊂ P/poly is one of the
many longstanding open questions in computational complexity theory, it is not
the most embarrassing one. Strictly more embarrassingly open questions arise
when we begin to discuss the status of lower bounds against probabilistic polyno-
mial time itself. The above results show that circuit lower bounds already follow
from tiny improvements on deterministic exhaustive search for problems that
are trivial with randomness. However, it is still consistent with current knowl-
edge that randomness is omnipotent! Complexity theory has not yet proved that
EXPNP �= BPP (exponential time with an NP oracle is different from probabilis-
tic polynomial time with two-sided error), nor have we established EXP �= ZPP
(exponential time is different from zero-error probabilistic polynomial time), yet
we believe that P = BPP [8].1

Troubled by this, we have recently been thinking about how the above theo-
rems and techniques developed for proving circuit lower bounds could potentially
apply to lower bounds against BPP and ZPP.2 This paper suggests two plausible
hypotheses, one of which is significantly weaker than solving the CAPP problem
in general. We prove that establishing the truth of either of these hypotheses
would yield NEXP �= BPP.

In the remainder of the paper, we assume a basic working knowledge of com-
plexity theory, at the level of Arora and Barak’s textbook [2]. For example, we

1 A separation problem like EXPNP
= BPP is strictly more embarrassing than circuit
lower bounds, because circuit lower bounds would already imply them, i.e., EXPNP
⊂
P/poly implies EXPNP
= BPP.

2 It is immediate from the ACC lower bounds work that NEXP
= BPACC, where BPACC
denotes probabilistic uniform ACC with two-sided error. Moreover, REXP
= BPACC
also holds, because REXP ⊆ BPP would imply NP = RP and hence NEXP = REXP.
We are after bigger fish than these.

176 R. Williams

expect the reader to understand complexity classes like P/poly, ZPP, BPP, EXP,
and NEXP, and possess a high-level familiarity with concepts such as probabilis-
tically checkable proofs and pseudorandomness.

2 Derandomizing CAPP over Simple Distributions of
Circuits

In this section, we will show that in order to separate NEXP and BPP, it suffices
to give deterministic heuristics for the CAPP problem which only barely improve
on exhaustive search, and only succeed with very low probability on polynomial-
time samplable distributions of circuits.

Given a Boolean circuit C on n inputs, let tt(C) be its truth table, the 2n-bit
string whose ith bit equals the value of the circuit on the ith n-bit string. First we
show that NEXP = BPP implies the existence of efficient probabilistic algorithms
that can print small circuits encoding witnesses to NEXP computations. This
basically follows from work of Impagliazzo, Kabanets, and Wigderson [7].

Lemma 1. Suppose NEXP = BPP. Then there is a k such that, for every � and
for every NEXP verifier V accepting a language L, there is a BPP algorithm AV

such that, for all x ∈ L, AV (x, r) outputs (with probability at least 1 − 1/2|x|
�

over all r) a circuit Cx of size at most |x|k such that V (x, tt(Cx)) accepts.
3

Proof. First observe thatNEXP = BPP implies NEXP ⊆ P/poly. By Impagliazzo,
Kabanets, and Wigderson, NEXP ⊆ P/poly implies that NEXP has succinct wit-
ness circuits : for every L ∈ NEXP, for every verifier algorithm V for L, and every
x ∈ L, there is a poly(|x|)-size circuit Cx such that V (x, tt(Cx)) accepts. We want
to show that these Cx can be constructed in BPP, under the assumptions.

For every NEXP verifier V that accepts a language L ∈ NEXP, there is a
k and an exponential-time algorithm A(x, i) which given a string x and index
i, enumerates all possible circuits D of size |x|k + k, checking if V (x, tt(D))
accepts. If this ever happens, A(x, i) then outputs the ith bit of the encoding of
D (otherwise, let A(x, i) output 0).

Under EXP = BPP, there must exist a BPP algorithm A′ equivalent to A:
given (x, i), A′ outputs (with high probability) the ith bit of such a circuit
D. By probability amplification (repeating A′ for poly(|x|) times, for each i =
1, . . . , |x|k+k, and taking the majority answer for each i), there is a probabilistic
polynomial-time algorithm A′′ which given x ∈ L prints a circuit D encoding a

witness for x, with 1/2|x|
�

probability of error. Let AV = A′′. �

Our next ingredient is the PCPs of Proximity of Ben-Sasson et al., which imply
succinct PCPs for NEXP.

3 An algorithm V is a verifier for L ∈ NEXP if there is a k such that for every string

x, we have x ∈ L if and only if there is a y of length 2|x|
k

such that V (x, y) accepts

within O(2|x|
k

) steps.

Towards NEXP versus BPP 177

Theorem 3 ([4]). Let T : Z+ → Z+ be a non-decreasing function. Then
for every s > 0 and every language L ∈ NTIME[T (n)] there exists a PCP
verifier V (x, y) with soundness s, perfect completeness, randomness complex-
ity r = log2 T (|x|)+O(log logT (|x|)), query complexity q = poly(logT (|x|)), and
verification time t = poly(|x|, log T). More precisely:

– V has random access to x and y, uses at most r random bits in any execution,
makes q queries to the candidate proof y. and runs in at most t steps.

– If x ∈ L then there is a string y of length T (|x|) logO(1) T (|x|) such that
Pr[V (x, y) accepts] = 1.

– If x /∈ L then for all y, Pr[V (x, y) accepts] ≤ s.

A standard perspective to take in viewing PCP results is to think of the
polynomial-time verifier V as encoding an exponentially long constraint sat-
isfaction problem, where each setting of the random bits in the verifier yields a
new constraint. For our purposes, we will want T (n) to be 2n, and s to be an
arbitrarily small constant (e.g., 1/10). Then Theorem 3 gives a PCP verifier with
n + O(log n) bits of randomness, poly(n) verification time, and poly(n) query
complexity. By converting this polynomial-time verifier to a polynomial-size cir-
cuit that takes randomness as input, we can produce a reduction from every
L ∈ NTIME[2n] to the so-called Succinct-CSP problem, with the properties:

– Every instance x of L is reduced to a poly(n)-size circuit Cx.
– The truth table of Cx, tt(Cx), encodes a constraint satisfaction problem with

2nnO(1) constraints and variables.
– Each constraint in tt(Cx) contains poly(n) variables and can be evaluated

in poly(n) time.
– If x ∈ L then the CSP tt(Cx) is satisfiable.
– If x /∈ L then for every variable assignment to the CSP, at most an s-fraction

of the constraints are satisfied.

A polynomial-time samplable distribution D = {D1,D2, . . .} on strings has the
property that there is an nk-time algorithm A(1n, r) such that for all n, the

probability of drawing a string x ∈ {0, 1}≤nk

from Dn is exactly

Prr∈{0,1}nk [A(1n, r) = x].

That is, the polynomial time algorithm A perfectly models the distribution D.
(Note that our ensemble of distributions {Dn} is a bit different from standard
practice: Dn does not contain only strings of length n but strings of length up
to nk for some fixed k.) A canonical example of a polynomial-time samplable
distribution is the uniform distribution on strings. Polynomial-time samplable
distributions are central to the study of average-case complexity theory.

We consider deterministic errorless heuristics for the CAPP problem, which
may print SAT, UNSAT, or FAIL. We pose very weak requirements on the
heuristic: if the satisfiable fraction of assignments to the circuit is at least 9/10,
the heuristic must output SAT or FAIL; when the circuit is unsatisfiable, the
algorithm always outputs UNSAT or FAIL.

Finally, we can state the main result of this section:

178 R. Williams

Theorem 4. Suppose for every k, and every polynomial-time samplable distri-
bution D, the CAPP problem on circuits of size nk and n inputs can be solved in
O(2n/nk) time by a deterministic heuristic H (possibly dependent on D) such
that PrE∈Dn [H(E) �= FAIL] > 1/2n. Then NEXP �= BPP.

That is, to separate NEXP from BPP, it suffices to design for every polynomial-
time samplable distribution of circuits a heuristic for the CAPP problem which
barely improves over exhaustive search, and only succeeds on a negligible mea-
sure of circuits from the given distribution. This is a significantly weaker require-
ment than designing a worst-case CAPP solver: here we get to see the efficient
distribution of circuits that the adversary will construct, and we are allowed to
fail on the vast majority of circuits output by the adversary.

It is useful to put Theorem 4 in perspective with another result on average-case
complexity. Buhrman, Fortnow, and Pavan [5] have shown that if every problem
in NP can be solved in polynomial time for every polynomial-time samplable
distribution, then P = BPP. That is, if all NP problems can be efficiently solved
in this way, we can separate EXP from BPP. Theorem 4 shows that a significantly
weaker assumption suffices to separate NEXP from BPP.

Proof of Theorem 4. Let L ⊆ {1n | n ≥ 0} be chosen so that L ∈ NTIME[2n] \
NTIME[2n/n]. (Such languages exist, due to the nondeterministic time hierarchy
of Žák [15].) By Theorem 3, there is a polynomial-time reduction from L to
Succinct-CSP, which outputs a circuit C1n on n+O(logn) inputs. If NEXP =
BPP then Lemma 1 says that for all NEXP languages L and verifiers V for L,
there is a probabilistic polynomial-time algorithm A that prints valid witness
circuits for V , with probability of error at most 1/3n on inputs of size n. Let
V be the verifier which, on input 1n, tries to check that its certificate is a
satisfying assignment for tt(C1n). Then A is then a probabilistic polynomial-
time algorithm that (with high probability) on input 1n prints a circuit D1n

such that tt(D1n) is a satisfying assignment for tt(C1n), for 1n ∈ L. We can
think of A as a deterministic algorithm A′ which takes 1n as one input, and a
poly(|x|)-bit random string r as a secondary input, where the overall output of
A′ is determined by the randomness r.

We design a polynomial-time samplable distribution D of circuits, as follows.
Given 1n, our polynomial-time algorithm B first runs the reduction of Theorem 3
to produce a circuit C1n such that 1n ∈ L if and only if C1n ∈ Succinct-CSP.
Then B picks a random seed r and runs A′(1n, r) which (with probability at
least 1 − 1/3n) prints a circuit D1n encoding a satisfying assignment for the
Succinct-CSP instance C1n . Using multiple copies of the two circuits C1n and
D1n , one can construct a polynomially larger circuit E with n+O(log n) inputs
and the following properties:

– If D1n encodes a satisfying assignment to tt(Cn) then E is unsatisfiable.
– If D1n does not encode a satisfying assignment to tt(Cn) then E is satisfiable

on at least 9/10 of its possible inputs.

(For a proof of this construction, see [12].) Algorithm B then outputs E.

Towards NEXP versus BPP 179

Suppose there is a heuristic H for the CAPP problem which runs in determin-
istic O(2n/nk) time for all desired k, outputs SAT or FAIL when the fraction
of assignments to the circuit which are satisfying is at least 9/10, UNSAT or
FAIL when the fraction is 0, and on circuits randomly drawn from D, H outputs
FAIL with probability at most 1− 1/2n. We wish to give a nondeterministic al-
gorithm N which recognizes the language L in nondeterministic time O(2n/n),
contradicting the choice of L.

On an input 1n, N nondeterministically guesses a random seed r for the
algorithm A′, and runs B(1n) with this choice of seed r for A′. B outputs a
circuit E, which is then fed to H . If H prints UNSAT then N accepts, otherwise
N rejects.

Note that N can be made to run in time O(2n/n): although the circuit E has
n+O(log n) inputs, we can choose k to be larger than the constant c in the big-O
term, so that the heuristic H runs in time O(2n+c logn/(n+c logn)k) ≤ O(2n/n).

We now argue that N is correct. If 1n ∈ L, then on at least (1 − 1/3n) of
the seeds r, A′(1n, r) outputs a circuit D1n encoding a satisfying assignment for
tt(C1n). When such an r is guessed, the circuit E drawn from Dn is unsatis-
fiable; hence in this case, at least a (1 − 1/3n) measure of the circuits in Dn

are unsatisfiable. The satisfiability algorithm H outputs FAIL on less than 1/2n

of the circuits drawn from Dn. Hence there is a random seed r� such that the
circuit E� output by Dn is unsatisfiable, and E� is declared UNSAT by H . Note
N accepts provided that such an r� is guessed by N .

If 1n /∈ L then for all seeds r, the circuit D printed by A′(1n, r) cannot encode
a satisfying assignment for tt(C1n), so the resulting circuit E is always satisfied
by at least 9/10 of its possible input assignments. The heuristic H on circuit E
will always print SAT or FAIL in this case, and N rejects in either of the two
outcomes. � �

So, NEXP �= BPP would follow from CAPP heuristics that barely beat exhaustive
search and output FAIL on all but a small fraction of inputs. Should we expect
the existence of such heuristics to be easier to establish than worst-case CAPP
algorithms? The answer is not clear. However it does seem plausible that one
may be able to show NEXP = BPP itself implies heuristic algorithms for CAPP,
which would be enough to prove the desired separation result.

3 Pseudorandomness for Deterministic Observers

Our second direction for randomized time lower bounds is a simple reflection
on Goldreich and Wigderson’s work regarding pseudorandomness with efficient
deterministic observers [6]. Informally, when one defines pseudorandomness, we
have a pseudorandom generator (a function that maps short strings to long
strings) along with a class of observers (efficient algorithms), and the generator
is said to be pseudorandom to that class if every observer exhibits extremely
similar behavior on the uniform distribution and the distributions of outputs of
the generator.

180 R. Williams

An alternative way to define pseudorandomness is via unpredictability: a gen-
erator is unpredictable if no observer, given i bits of a random output from
the generator, can predict the (i + 1)st bit with probability significantly better
than 1/2, for all i. A central theorem in the theory of pseudorandomness is that
the unpredictability criterion and the pseudorandomness criterion are essentially
equivalent, when the class of observers is the set of probabilistic polynomial-time
algorithms. That is, a generator which is unpredictable is also pseudorandom,
and vice-versa.

What if the class of observers consists of deterministic polynomial-time algo-
rithms? Then the connections between pseudorandomness and unpredictability
are actually open problems. For every polynomial p(n), Goldreich and Wigder-
son give an explicit distribution computable in time poly(p(n)) which is unpre-
dictable for all deterministic p(n)-time observers, by applying pairwise indepen-
dent distributions in a clever way. They pose as an open problem whether their
distribution is pseudorandom for all deterministic p(n)-time observers. We show
that exhibiting an exponential-time computable distribution that is pseudoran-
dom to linear-time observers implies EXP �= BPP. In fact, it suffices to construct
an exponential-time generator G that is given the code of a particular linear-time
observer A, and G only has to fool A.

Theorem 5. Suppose for every deterministic linear-time algorithm A, and all
ε > 0, there is a δ > 0 and algorithm G that runs in O(2m) time on inputs of
length m, produces outputs of length m1/ε, and∣∣Prx∈{0,1}n [A(x) = 1]− Pry∈{0,1}nε [A(G(y)) = 1]

∣∣ < 1/2− δ.

Then EXP �= BPP.

Proof. Assume EXP = BPP. Choose a language L ⊆ {1n | n ≥ 0} such that L ∈
TIME[2n] \ TIME[2n/2] (which can be easily derived by direct diagonalization).
By assumption, and by amplification, there is a deterministic nk-time algorithm
B(·, ·) such that

– If 1n ∈ L, then Pr
x∈{0,1}nk [B(1n, x) = 1] > 1− 1/2n.

– If 1n /∈ L, then Prx∈{0,1}nk [B(1n, x) = 1] < 1/2n.

Define the algorithm A(x) = B(1|x|
1/k

, x), which runs in linear time. Let ε =
1/(2k), and suppose there were a function G satisfying the hypotheses of the

theorem for algorithm A and ε. Then we could simulate L in TIME[2O(n1/2)] (a

contradiction), as follows: given 1n, compute the O(2n
1/2

)-size set of strings S =

{G(y) | y ∈ {0, 1}n1/2} ⊆ {0, 1}nk

in O(22n
1/2

) time, then output the majority

value of A(x) over all x ∈ S, in 2n
1/2

poly(n) time. This O(22n
1/2

) time algorithm
decides L, because if 1n ∈ L then Pr

y∈{0,1}n1/2 [A(G(y)) = 1] > 1/2 + δ/2, and

if 1n /∈ L then Pr
y∈{0,1}n1/2 [A(G(y)) = 1] < 1/2− δ/2. �

The above simple result shows that the ability to (slightly) fool deterministic
linear-time algorithms with exponential-time generators is already enough to

Towards NEXP versus BPP 181

separate EXP and BPP. The basic idea can be easily extended in several different
ways. For one, we could make the generator G very powerful, and still derive a
breakthrough lower bound: if G were also allowed to have free oracle access to
the SAT problem (asking exponentially long NP queries about the behavior of
A) in the above hypothesis, we could separate EXPNP from BPP. For another:

Theorem 6. Suppose for every deterministic linear-time algorithm A, and all
ε > 0, there is an algorithm G that runs in O(2m) time on inputs of length
m, produces outputs of length m1/ε, and for every n, if Prx∈{0,1}n [A(x) = 1] >

1− 1/n then there is a y ∈ {0, 1}nε

such that A(G(y)) = 1. Then EXP �= ZPP.

That is, we only require that, when A accepts the vast majority of n-bit strings,
the algorithm G prints at least one n-bit string (out of 2n

ε

) that is accepted by
A. The proof is analogous.

4 Conclusion

In this short paper, we outlined two potential directions for attacking the ba-
sic separation problems between exponential time and probabilistic polynomial
time. In general we believe that proving separations like NEXP �= BPP are not im-
possible tasks, but a couple of new ideas will probably be needed to yield the sep-
aration. The reader should keep in mind that such separation results will require
non-relativizing techniques (there are oracles relative to which NEXP = BPP
and NEXP �= BPP), so no simple black-box arguments are expected to yield new
lower bounds against BPP. However, in this day and age, non-relativizing tools
are not so hard to come by.

References

1. Andreev, A.E., Clementi, A.E.F., Rolim, J.D.P.: Worst-case hardness suffices for
derandomization: A new method for hardness-randomness tradeoffs. TCS: Theo-
retical Computer Science 221(1-2), 3–18 (1999)

2. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge
University Press (2009)

3. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complex-
ity 3(4), 307–318 (1993)

4. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Short PCPs
verifiable in polylogarithmic time. In: IEEE Conference on Computational Com-
plexity, pp. 120–134 (2005)

5. Buhrman, H., Fortnow, L., Pavan, A.: Some results on derandomization. Theory
Comput. Syst. 38(2), 211–227 (2005)

6. Goldreich, O., Wigderson, A.: On pseudorandomness with respect to deterministic
observers. In: ICALP Satellite Workshops 2000, pp. 77–84 (2000)

7. Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: Expo-
nential time vs. probabilistic polynomial time. JCSS 65(4), 672–694 (2002)

182 R. Williams

8. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In: Proceedings of the 29th Annual ACM Symposium
on the Theory of Computing, pp. 220–229 (1997)

9. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity 13(1-2), 1–46 (2004)

10. Nisan, N., Wigderson, A.: Hardness vs randomness. JCSS 49(2), 149–167 (1994)
11. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the xor

lemma. Journal of Computer System Sciences 62(2), 236–266 (2001)
12. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds.

In: ACM Symposium on Theory of Computing, pp. 231–240 (2010)
13. Williams, R.: Non-uniform ACC circuit lower bounds. In: IEEE Conference on

Computational Complexity, pp. 115–125 (2011)
14. Williams, R.: Natural proofs versus derandomization. In: ACM Symposium on

Theory of Computing (to appear, 2013)
15. Žák, S.: A Turing machine time hierarchy. Theoretical Computer Science 26(3),

327–333 (1983)

Information Lower Bounds via Self-reducibility

Mark Braverman1,�, Ankit Garg1, Denis Pankratov2, and Omri Weinstein1

1 Princeton University
2 University of Chicago

Abstract. We use self-reduction methods to prove strong information
lower bounds on two of the most studied functions in the communication
complexity literature: Gap Hamming Distance (GHD) and Inner Product
(IP). In our first result we affirm the conjecture that the information cost
of GHD is linear even under the uniform distribution, which strengthens
the Ω(n) bound recently shown by [15], and answering an open problem
from [10]. In our second result we prove that the information cost of IPn

is arbitrarily close to the trivial upper bound n as the permitted error
tends to zero, again strengthening the Ω(n) lower bound recently proved
by [9].

Our proofs demonstrate that self-reducibility makes the connection
between information complexity and communication complexity lower
bounds a two-way connection. Whereas numerous results in the past
[12,2,3] used information complexity techniques to derive new commu-
nication complexity lower bounds, we explore a generic way in which
communication complexity lower bounds imply information complexity
lower bounds in a black-box manner.

1 Introduction

The primary objective of this paper is to continue the investigation of the in-
formation complexity vs. communication complexity problem. Informally, in a
two-party setting, communication complexity (CC) measures the number of bits
two parties need to exchange to solve a certain problem. Information complex-
ity (IC) measures the average amount of information the parties need to reveal
each other about their inputs in order to solve it. IC is always bounded by CC
from above. A key open problem surrounding information complexity is actually
understanding the gap between the two:

Problem 1. Is it true that for all functions f it holds that IC(f) = Ω(CC(f))?

The problem, and where it fits more broadly within communication complexity is
discussed in [4]. The above question is a natural question in the context of coding
theory, where it can be re-interpreted as asking whether an analogue of Huffman
coding holds for interactive computation. Shannon’s original insight [19] was that
the (amortized) number of bits one needs to send in order to transmit a message

� Partially supported by an Alfred P. Sloan Fellowship, an NSF CAREER award, and
a Turing Centenary Fellowship.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 183–194, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

184 M. Braverman et al.

X equals to the amount of information it coveys – its entropy H(X). Huffman
coding [14] can be viewed as a one-copy version of this result: even when sending
one instance of the message, we can guarantee expected cost of ≤ H(X) + 1 –
i.e. messages can be compressed into their information content plus at most one
bit. Problem 1 can be viewed as a quest for an interactive analogue of Huffman
coding: can a long (interactive) communication protocol that solves f but only
conveys IC(f) information be compressed in a way that only requires O(IC(f))
communication?

Another direction which motivates Problem 1 are direct sum problems in ran-
domized communication complexity [12,2,3,8]. It turns out that the analogue of
the Shannon’s amortized coding theorem does in fact hold for interactive compu-
tation [8], asserting that limk→∞ CC(fk)/k = IC(f). Thus, understanding the
relationship between IC(f) and CC(f) is equivalent to understanding the rela-
tionship between computing one copy of f and the amortized cost of computing
many copies of f in parallel, which is the essence of the direct sum problem.

Yet another motivation for considering the information complexity of tasks
comes from the study private two-party computation [16,18,1]. In this setting
Alice and Bob want to compute a function f(x, y) on their private inputs x and y
respectively without “leaking” too much information to each other. This can be
accomplished using cryptography, assuming Alice and Bob are computationally
bounded. Without this assumption, the amount of information that Alice and
Bob must reveal to each other is exactly IC(f). In this context, an affirmative
answer for Problem 1 would mean that, up to a constant, a protocol minimizing
communication (with no special consideration for privacy) will reveal the same
amount of information as the most “private” protocol. Moreover, if for a family
{fn} of functions we have that IC(fn)/CC(fn) → 1 as n → ∞, it means that
as n grows, there is nothing the parties can do to perform the computation more
privately, and the most efficient protocol is also the most private. In this paper
we show, for example, that this is the case for the Inner Product function IPn,
whose communication complexity is n, and whose information complexity we
show to be n− o(n) (for negligible error).

In this paper we develop a new self-reducibility technique for deriving infor-
mation complexity lower bounds from communication complexity lower bounds.
The technique works for functions that have a “self-reducible structure”. In-
formally speaking f has a self-reducible structure, if for large enough inputs,
solving fnk essentially amounts to solving fk

n (fnk denotes the function f under
inputs of length nk, while fk

n denotes k independent copies of f under inputs
of size n). Our departing point is a communication complexity lower bound for
fnk (that may be obtained by any means). Assuming self-reducibility, the same
bound applies to fk

n , which through the connection between information com-
plexity and amortized communication complexity [8], implies a lower bound on
the information complexity of fn. In this paper we develop tools to make this
reasoning go through.

Information Lower Bounds via Self-reducibility 185

Ideas of self-reducibility are central in applications of information complexity
to communication complexity lower bounds, starting with the work of Bar-Yossef
et al. [2]. These argument start with an information complexity lower bound for
a (usually very simple) problem, and derive a communication complexity bound
on many copies of the problem. The logic of this paper is reversed: we start with
a communication complexity lower bound, which we use as a black-box, and use
self-reducibility to derive an amortized communication complexity bound, which
translates into an information complexity lower bound. An additional concep-
tual take-away from the present paper, is that to look for a counterexample for
Problem 1, one would likely need to consider problems that are highly non-self-
reducible.

1.1 Results

We use the self-reducibility technique to prove results about the information
complexity of Gap Hamming Distance and Inner Product. We prove that the
information complexity of the Gap Hamming Distance problem with respect to
the uniform distribution is linear. This was explicitly stated as an open problem
by Chakrabarti et al. [10]. Formally, let ICμ(GHDn,t,g, ε) denote the information
cost of the Gap Hamming promise problem, where inputs x, y are n-bit strings
distributed according to μ, and the players need to determine whether the Ham-
ming distance between x and y is at least t + g, or at most t− g, with error at
most ε under μ. We prove

Theorem 1. There exists an absolute constant ε > 0 for which

ICU (GHDn,n/2,
√
n, ε) = Ω(n)

where U is the uniform distribution.

For the Inner Product problem, where the players need to compute∑n
i=1 xiyi(mod 2), we prove a stronger bound on its information complexity.

Formally,

Theorem 2. For every constant δ > 0, there exists a constant ε > 0, and n0

such that ∀ n ≥ n0, ICUn(IPn, ε) ≥ (1−δ)n. Here Un is the uniform distribution
over {0, 1}n × {0, 1}n.

Note that ICUn(IPn, ε) ≤ (1− 2ε)(n+ 1), since the parties can always output a
random value ∈ {0, 1} with probability 2ε, and have one of the parties send its
entire input with probability 1−2ε (Indeed, this protocol has error (1/2)·2ε+(1−
2ε) ·1 = 1−ε, and information cost (1/2) ·0+(1−2ε) ·(n+1) = (1−2ε) ·(n+1)).
Also it is known that ICUn(IPn, ε) ≥ Ω(n), for all ε ∈ [0, 1/2) [9]. We prove that
the information complexity of IPn can be arbitrarily close to the trivial upper
bound n as we keep decreasing the error (though keeping it a constant).

186 M. Braverman et al.

1.2 Discussion and Open Problems

Although in Complexity Theory we often don’t care about the constants (and
often it is not necessary), proving theorems with the right constants can often
lead to deeper insights into the mathematical structure of the problem [5,7].
There are few techniques that allow us to find the right constants and there
are fewer problems for which we can. We believe that answering the following
problem will lead to development of new techniques and also reveal interesting
insights into the problem of computing the XOR of n copies of a function.

Open Problem 1. Is it true that for small constants ε and sufficiently large
n, ICUn(IPn, ε) ≥ (1 − 2ε − o(ε))n? As before Un is the uniform distribution.
If this is false, is there a different constant α > 2 such that as ε → 0 we get
ICUn(IPn, ε) ≥ (1− α · ε)n?

Solving this problem may require shedding new light on the rate of convergence
of the ICμ(•, ε) to ICμ(•, 0) as ε → 0, and better understanding the role error
plays in information complexity.

It is somewhat difficult to define the exact meaning of the “right” constant
for the Gap Hamming Distance problem, since it is a promise problem defined
by two parameters (gap and error). Nonetheless, there is a very natural regime
in which understanding the exact information complexity of GHDn is a natural
and interesting problem. Namely:

Open Problem 2. Is it true that for all ε > 0, there is a δ > 0 and a distribu-
tion μ such that ICμ(GHDn,n/2,δ

√
n, δ) > (1− ε)n?

In other words, does the information complexity of GHDn tends to the trivial
upper bound as we tighten the gap and error parameters? This is related to the
same (but weaker) question one can ask about the communication complexity
of GHDn in this regime.

2 Preliminaries

In this section we briefly survey the necessary background for this paper on infor-
mation theory and communication complexity. For a more thorough treatment
of these subjects see [8] and references therein.

Notation. We use capital letters for random variables, calligraphic letters for
sets, and small letters for elements of sets. For random variables A and B and
an element b we write Ab to denote the random variable A conditioned on the
event B = b. We write Δ(S) to denote the space of all distributions over the set
S.

2.1 Information Theory

Definition 1. The entropy of a random variable X, denoted by H(X), is de-
fined as H(X) =

∑
x Pr[X = x] log(1/Pr[X = x]). The conditional entropy of

X given Y , denoted by H(X |Y), is Ey[H(X|Y = y)].

Information Lower Bounds via Self-reducibility 187

Definition 2. The mutual information between two random variables A,B, de-
noted I(A;B), is defined to be the quantity H(A)−H(A|B) = H(B)−H(B|A).
The conditional mutual information I(A;B|C) is H(A|C) −H(A|BC).

Fact 1 (Chain Rule). Let A1, A2, B, C be random variables. Then I(A1A2;B|C)
= I(A1;B|C) + I(A2;B|A1C).

Definition 3. Kullback-Leibler Divergence between probability distributions A

and B is defined as D(A||B) =
∑

x A(x) log A(x)
B(x) .

Fact 2. For random variables A,B, and C we have I(A;B|C) =
Eb,c(D(Abc||Ac)).

Fact 3. Let X and Y be random variables. Then for any random variable Z we
have Ex[D(Yx||Y)] ≤ Ex[D(Yx||Z)].

Fact 4. Let A,B,C,D be four random variables such that I(B;D|AC) = 0.
Then I(A;B|C) ≥ I(A;B|CD)

Fact 5. Let A,B,C,D be four random variables such that I(A;C|BD) = 0.
Then I(A;B|D) ≥ I(A;C|D)

Definition 4. The statistical distance (total variation) between random vari-

ables D and F taking values in a set S is defined as |D−F |def= maxT ⊆S(|Pr[D ∈
T]− Pr[F ∈ T]|) = 1

2

∑
s∈S |Pr[D = s]− Pr[F = s]|.

2.2 Communication Complexity

We use standard definitions of the two-party communication model that was
introduced by Yao in [20]:

Definition 5. The distributional communication complexity of f : X ×Y → Z
with respect to a distribution μ on X × Y and error tolerance ε > 0 is the least
cost of a deterministic protocol computing f with error probability at most ε when
the inputs are sampled according to μ. It is denoted by Dμ(f, ε).

Definition 6. The randomized communication complexity of f : X × Y → Z
with error tolerance ε > 0, denoted by Rε(f), is the least cost of a public-coin
protocol computing f with error at most ε on every input.

For a thorough treatment of pre-1997 results in communication complexity see
an excellent monograph by Kushilevitz and Nisan [17].

188 M. Braverman et al.

2.3 Information + Communication: The Information Cost

We consider protocols with both private and public randomness. Let Π(X,Y)
(random variable) denote the transcript of the protocol π, i. e., the concatenation
of the public randomness with all the messages sent during the execution of π on
(X,Y). When X = x, Y = y, we write Π(x, y). When (X,Y) or (x, y) are clear
from the context, we shall omit them and simply write Π for the transcript.

The notion of internal information cost was implicit in [2] and was explicitly
defined in [3] as follows:

Definition 7. The internal information cost of a protocol π over inputs drawn
from a distribution μ on X × Y, is given by:

ICμ(π) := I(Π ;X |Y) + I(Π ;Y |X).

Intuitively, the information cost captures the amount of information the two
parties learn about each others’ inputs during communication. Note that the
information cost of a protocol π depends on the prior distribution μ. Naturally,
the information cost of a protocol over any distribution is a lower bound on the
communication cost.

Lemma 1. [8] For any distribution μ we have ICμ(π) ≤ CC(π).

Definition 8. The information complexity of f with respect to distribution μ
and error tolerance ε ≥ 0 is defined as

ICμ(f, ε) = inf
π

ICμ(π),

where the infimum ranges over all randomized protocols π solving f with error
at most ε when inputs are sampled according to μ.

3 Information Complexity of Gap Hamming Distance

Given two strings x, y ∈ {0, 1}n, the hamming distance x and y is defined to be
HAM(x, y) = |{i | xi �= yi}|. In the Gap Hamming Distance (GHD) problem,
Alice gets a string x ∈ {0, 1}n and Bob gets a string y ∈ {0, 1}n. They are
promised that either HAM(x, y) ≥ n/2 +

√
n or HAM(x, y) ≤ n/2−

√
n, and

they have to find which is the case. We can define a general version GHDn,t,g,
where Alice and Bob have to determine if HAM(x, y) ≥ t+ g or HAM(x, y) ≤
t− g, but the parameters t = n/2 and g =

√
n are the most natural as discussed

in [11]. In a technical tour-de-force, it was proved in [11] that the randomized
communication complexity of the Gap Hamming Distance problem is linear.
Formally,

Theorem 3. For all constants γ > 0, and ε ∈ [0, 1/2), Rε(GHDn,n/2,γ
√
n) ≥

Ω(n).

Information Lower Bounds via Self-reducibility 189

One can extend the formulation of GHD beyond the promise-problem setting.
This particularly makes sense in a distributional-complexity setting. In this set-
ting, we allow f to take the value �, which means that we don’t care about the
output. The error in this model is aggregated only over points on which the value
of f is not �. Chakrabarti and Regev [11] also prove a distributional version of
the linear lower bound over the uniform distribution U . Specifically, they prove

Theorem 4. [11] There exists an absolute constant ε > 0 for which

DU(GHDn,n/2,
√
n, ε) = Ω(n).

Kerenidis et al. [15] proved that the information complexity of Gap Hamming
Distance is also linear, at least with respect to some distribution. The proof
of Kerenidis et al. relies on a reduction that shows that a large class of com-
munication complexity lower bound techniques also translate into information
complexity lower bounds – including the lower bound for GHD:

Theorem 5. [15] There exists a distribution μ on {0, 1}n × {0, 1}n and an ab-
solute constant ε > 0 such that

ICμ(GHDn,n/2,
√
n, ε) = Ω(n).

Interestingly, while this approach yields an analogue of Theorem 3 for informa-
tion complexity, it does not seem to yield an analogue of the stronger Theorem 4.

We give an alternate proof of the linear information complexity lower bound
for GHD using the self reducibility technique. Unlike the proof in [15] we do not
need to dive into the details of the proof of the communication complexity lower
bound for GHD. Rather, our starting point is Theorem 4, which we use as a
black-box.

In fact, we will prove a slightly weaker lemma, with Theorem 1 following by
a reduction. The reduction is conceptually very simple, though the technical
details are somewhat lengthy. We refer the author to the full version of this
paper for the complete details [6]. We prove the following:

Lemma 2. There exists absolute constants ε > 0 and γ > 0 for which

ICU (GHDn,n/2,γ
√
n, ε) = Ω(n).

4 Proof of Theorem 1

4.1 Proof Idea

We use the self-reducibility argument. Assume that for some ε > 0,
ICU (GHDn, ε) = o(n). Then using information = amortized communication, we
can get a protocol τ that solves N copies of GHDn with o(nN) communication.

190 M. Braverman et al.

The heart of the argument is to use this to solve GHDnN with o(nN) communi-
cation, which is a contradiction. Say that Alice and Bob are given x, y ∈ {0, 1}nN
respectively. They sample c · nN random coordinates (for some constant c) and
then divide these into cN blocks and run GHDn on them all in parallel using
o(nN) communication. If HAM(x, y) = nN/2 +

√
nN , then the expected ham-

ming distance of each block is n/2+
√

n/N . Although the gain over n/2 is small,
the hamming distance is still biased towards being > n/2. We will see that on
each instance the protocol for GHDn must gain an advantage of Ω(1/

√
N) over

random guessing. This in turn implies that cN copies suffice to get the correct
answer with high probability.

4.2 Formal Proof of Lemma 2

Assume that for some ρ sufficiently small (to be specified later),
ICU (GHDn,n/2,

√
n, ρ) = o(n). Thus ∀ α > 0, for n sufficiently large

ICU (GHDn,n/2,
√
n, ρ) ≤ αn. We will need the following theorem from [8]:

Theorem 6. [8] Let f : X×Y → {0, 1} be a (possibly partial) function, let μ be
any distribution on X × Y , and let I = ICμ(f, ρ), then for each δ1, δ2 > 0, there
is an N = N(f, ρ, μ, δ1, δ2) such that for each n ≥ N , there is a protocol πn for
computing n instances of f over μn such that error on each copy is ≤ ρ. The
protocol has communication complexity < nI(1 + δ1). Moreover, if we let π be
any protocol for computing f with information cost ≤ I(1 + δ1/3) w.r.t. μ, then
we can design πn so that for each set of inputs, the statistical distance between
the output of πn and πn is < δ2, where πn denotes n independent executions of
π.

In other words, Theorem 6 allows us to take a low-information protocol for f
and turn it into a low-communication protocol for (sufficiently) many copies of
f .

Step 1: From GHD to a tiny advantage.
In the first step we show that a protocol for GHD over the uniform distribution
has a small but detectable advantage in distinguishing inputs from two distri-
butions that are very close to each other. Denote by μη the distribution where
X ∈ {0, 1}n is chosen uniformly, and Y is chosen so that Xi ⊕ Yi ∼ B1/2+η is
an i.i.d. Bernoulli random variable with bias η. Note that in this language the
GHD problem is essentially about distinguishing μ−1/

√
n from μ1/

√
n.

Lemma 3. There exists absolute constants τ > 0, γ > 0 and ρ > 0 with the
following property. Suppose that for all n large enough there is a protocol πn such
that πn solves GHDn,n/2,γ

√
n with error ρ w.r.t the uniform distribution. Then

for all n large enough for all ε < 1/n2 we have

Pr(x,y)∼με
[πn(x, y) = 1]− Pr(x,y)∼μ0

[πn(x, y) = 1] > τ · ε ·
√
n, (1)

and

Pr(x,y)∼μ−ε
[πn(x, y) = 0]− Pr(x,y)∼μ0

[πn(x, y) = 0] > τ · ε ·
√
n, (2)

Information Lower Bounds via Self-reducibility 191

Due to space constrains, we omit the proof of this Lemma. The proof can be
found in the full version of this paper [6].

Step 2: From tiny advantage to low-communication GHD.
We can now apply Lemma 3 together with Theorem 6 to show that a low-
information solution to GHDn,n/2,γ

√
n with respect to the uniform distribution

contradicts the communication complexity lower bound of Theorem 4.

Proof. (of Lemma 2). Assume for the sake of contradiction that for each α there
is an n and a protocol πn with ICU(πn) < αn and which solves GHDn,n/2,γ

√
n

with error ρ, where the parameters γ and ρ are from Lemma 3. Let N >
max(n7, N(GHDn,n/2,γ

√
n, ρ,U , δ1, δ2)), where δ1 = 1 and δ2 = ε/2, where ε

is the error parameter in Theorem 4. Then using Theorem 6, for each c > 1, cN
copies of πn can be executed with communication < 2αcn · N (as long as the
inputs to each πn are distributed according to U) such that on each copy the
error is at most ρ w.r.t U . Also for each set of inputs, the statistical distance
between the output of the execution and πcN

n ≤ ε/2.
Let t = Pr(x,y)∼U [πn(x, y) = 1]. W.l.o.g. we assume t = 1/2. We solve

GHDn·N,n·N/2,
√
n·N over the uniform distribution with a small constant error ε

using the protocol depicted in Figure 1.

Input: A pair x, y ∈ {0, 1}nN .
Output: GHDn·N,n·N/2,

√
n·N .

1. Create cN instances of GHDn by sampling n random coordinates each time (with
replacement): (x1, y1), . . . , (xcN , ycN) ∈ {0, 1}n × {0, 1}n.

2. Use compression (Theorem 6) to run πn(x1, y1), . . . , πn(xcN , ycN) in communica-
tion 2αcNn.

3. Return MAJORITY (πn(x1, y1), . . . , πn(xcN , ycN)).

Protocol 1: The protocol ΠnN (x, y)

The communication cost upper bound follows from the way the protocol
ΠnN (x, y) is constructed. To finish the proof we need to analyze its success prob-
ability. Suppose that the hamming distance between x and y is nN/2 + �

√
nN ,

where � > 1. Note that � < n except with probability e−Ω(n2). The samples
(xi, yi) are drawn iid according to the distribution μ

�·
√

1/(nN)
. Since N > n7 we

have � ·
√
1/nN < 1/n2. By Lemma 3, the output of πn on each copy is thus

τ · �/
√
N -biased towards 1. An application of the Chernoff bounds along with

the fact that, for each set of inputs, the statistical distance between the output
of the execution and πcN

n ≤ ε/2, implies that the probability that the protocol

ΠnN outputs 1 is at least 1− e−2τ
2�2c − ε/2. For constant τ , we can make this

expression as close to 1− ε/2 as we like by letting c be a sufficiently large con-
stant. But this means that for an arbitrarily small constant α > 0,ΠnN (x, y) will

192 M. Braverman et al.

solve GHDn·N,n·N/2,
√
n·N with error ≤ ε (the case when the hamming distance

between x and y is nN/2 − �
√
nN is symmetric) in communication O(αcNn),

which can be made arbitrarily small relatively to Nn, leading to a contradiction.
Note that we got a randomized protocol for solving GHDn·N,n·N/2,

√
n·N but we

can fix the randomness to get a deterministic algorithm.

5 Information Complexity of Inner Product

The inner product function IPn : {0, 1}n×{0, 1}n → {0, 1} is defined as follows:

IPn(x, y) =

n∑
i=0

xiyi (mod 2)

The proof exploits the self-reducible structure of the inner-product function. But
since, IPn is such a sensitive function, we will first prove a statement about the
0-error information cost, and then use continuity of information cost to argue
about non-zero errors.

We will need the following lemma from [8]. It is essentially the same as The-
orem 6, just that when dealing with 0 error, we cannot ensure that error on
each copy is 0. We just have an overall error which is the error introduced if
compression fails.

Lemma 4. Let f : X×Y → {0, 1} be a function, and let μ be a distribution over
the inputs. Let π be a protocol computing f with error 0 w.r.t μ, and internal
information cost ICμ(π) = I. Then for all δ > 0, ε > 0, there is a protocol πn

for computing fn with error ε w.r.t μn, with worst case communication cost

= n(I + δ/4) +O(
√

CC(π) · n · (I + δ/4)) +O(log(1/ε)) +O(CC(π))

≤ n(I + δ) (for n sufficiently large)

The following lemma from [3] relates the information cost of computing XOR of
n copies of a function f to the information cost of a single copy.

Lemma 5. Let f be a function, and let μ be a distribution over the inputs. Then
ICμn(⊕nf, ε) ≥ n(ICμ(f, ε)− 2)

The next lemma says that there is no 0-error protocol for IPn which conveys
slightly less information than the trivial protocol.

Lemma 6. ∀n, ICUn(IPn, 0) ≥ n, where Un is the uniform distribution over
{0, 1}n × {0, 1}n

Proof. It is known that DUnε (IPn) ≥ n−cε, for all constant ε ∈ (0, 1/2), where cε
is a constant depending just on ε [17,13]. Assume that for some n, ICUn(IPn, 0) ≤
n− c . Then using, Lemma 4 with δ = c/2 and ε = 1/3, we can get a protocol π
for solving N copies of IPn with overall error 1/3 w.r.t UN

n , and CC(π) ≤ N(n−
c + c/2). This gives us a protocol π′ for solving IPNn with error 1/3 w.r.t the
uniform distribution, and CC(π′) ≤ Nn−Nc/2 (divide the inputs intoN chunks,
solve the N chunks using π and XOR the answers). But CC(π′) ≥ Nn− c1/3, a
contradiction.

Information Lower Bounds via Self-reducibility 193

Proof. (of Theorem 2) We use the continuity of (internal) information cost in
the error parameter at ε = 0:

Theorem 7. ([5]) For all f : X × Y → Z and μ ∈ Δ(X × Y) we have

lim
ε→0

ICμ(f, ε) = ICμ(f, 0) (3)

Given δ > 0, let l = � 3
δ �. Then

ICUl(IPl, 0) ≥ l ≥ (1− δ)l + 3

Since limε→0 ICUl(IPl, ε) = ICUl(IPl, 0), ∃ ε(l, δ) = ε(δ) s.t.

ICUl(IPl, ε) ≥ (1 − δ)l + 2

Now using Lemma 5, we get that ICUN
l
(⊕NIPl, ε) ≥ (1 − δ)Nl. Thus

ICUNl
(IPNl, ε) ≥ (1−δ)Nl. Thus for sufficiently large n, ICUn(IPn, ε) ≥ (1−δ)n.

References

1. Ada, A., Chattopadhyay, A., Cook, S., Fontes, L., Koucky, M., Pitassi, T.: The
hardness of being private. In: 2012 IEEE 27th Annual Conference on Computa-
tional Complexity (CCC), pp. 192–202. IEEE (2012)

2. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. Journal of Computer and
System Sciences 68(4), 702–732 (2004),
http://dx.doi.org/10.1016/j.jcss.2003.11.006

3. Barak, B., Braverman, M., Chen, X., Rao, A.: How to compress interactive com-
munication. In: STOC, pp. 67–76 (2010)

4. Braverman, M.: Interactive information complexity. In: STOC, pp. 505–524 (2012)
5. Braverman, M., Garg, A., Pankratov, D., Weinstein, O.: From information

to exact communication. Electronic Colloquium on Computational Complexity
(ECCC) 19(171) (2012)

6. Braverman, M., Garg, A., Pankratov, D., Weinstein, O.: Information lower
bounds via self-reducibility. Electronic Colloquium on Computational Complex-
ity (ECCC) 19, 177 (2012)

7. Braverman, M., Moitra, A.: An information complexity approach to extended for-
mulations. Electronic Colloquium on Computational Complexity (ECCC) 19, 131
(2012)

8. Braverman, M., Rao, A.: Information equals amortized communication. CoRR
abs/1106.3595 (2010)

9. Braverman, M., Weinstein, O.: A discrepancy lower bound for information complex-
ity. Electronic Colloquium on Computational Complexity (ECCC) 18, 164 (2011)

10. Chakrabarti, A., Kondapally, R., Wang, Z.: Information complexity versus corrup-
tion and applications to orthogonality and gap-hamming. CoRR abs/1205.0968
(2012)

11. Chakrabarti, A., Regev, O.: An optimal lower bound on the communication com-
plexity of gap-hamming-distance. In: STOC, pp. 51–60 (2011)

http://dx.doi.org/10.1016/j.jcss.2003.11.006

194 M. Braverman et al.

12. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and the
direct sum problem for simultaneous message complexity. In: Werner, B. (ed.)
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science, October 14-17, pp. 270–278. IEEE Computer Society, Los Alamitos (2001)

13. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and prob-
abilistic communication complexity. SIAM Journal on Computing 17(2), 230–261
(1988)

14. Huffman, D.: A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE 40(9), 1098–1101 (1952)

15. Kerenidis, I., Laplante, S., Lerays, V., Roland, J., Xiao, D.: Lower bounds on
information complexity via zero-communication protocols and applications. CoRR
abs/1204.1505 (2012)

16. Klauck, H.: Quantum and approximate privacy. Theory Comput. Syst. 37(1),
221–246 (2004)

17. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University
Press, Cambridge (1997)

18. McGregor, A., Mironov, I., Pitassi, T., Reingold, O., Talwar, K., Vadhan, S.: The
limits of two-party differential privacy. In: 51st Annual Symposium on Foundations
of Computer Science (FOCS), pp. 81–90 (2010)

19. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27 (1948), monograph B-1598

20. Yao, A.C.C.: Some complexity questions related to distributive computing
(preliminary report). In: STOC, pp. 209–213 (1979)

On the Encoding Invariance of Polynomial Time

Computable Distribution Ensembles

Anton Makhlin�

Lomonosov Moscow State University

Abstract. The notion of polynomial time invertibly samplable distribu-
tions (PISamp) was introduced by Vereshchagin in [9] as a tool to prove
(NP,PSamp) completeness, which is more convenient than previously
used polynomial time computable distributions (PComp). The notion of
a PISamp distribution is encoding invariant, while PComp distributions
are not, if one-way permutations exist. Here we prove that PComp dis-
tributions are not encoding invariant under a weaker assumption that
one-way functions exist. This implies that the class of PISamp distribu-
tions is strictly larger than that of PComp distributions (under the same
assumption).

1 Introduction

One of the key concepts in average-case complexity theory is a distributional
decision problem, which consists of a regular decision problem P and an ensem-
ble {μ0, μ1, μ2, . . . } of probability distributions on its instances (represented by
binary strings). A particular class of such ensembles which is often considered
within the theory is the class of polynomial time computable distribution ensem-
bles (PComp). These are the ensembles for which the cumulative probability of
distribution μn over all strings preceding some given string x lexicographically
can be computed by an algorithm running in time polynomial in n. This class
was introduced by Levin in [7]. Levin has shown that there is a distributional
problem in NP with a simple (“nearly uniform”) instance distribution that is
complete in the class of NP problems with polynomial time computable distri-
butions on instances (i.e. the tractability of that problem implies tractability of
all problems within the class).

NP problems with polynomial time computable distributions on instances
were extensively studied in [1, 3–5, 7, 8]. Nice properties of PComp distribu-
tions were later used in [6] to show the existence of complete problems with a
simple instance distribution in the larger and more natural class of polynomial
time samplable ensembles (PSamp) introduced in [1]. However, as pointed out
in [9] the concept of PComp distributions has the following drawback. Instances
of most decision problems are not directly binary strings, but other objects

� The work was in part supported by the RFBR grant 12-01-00864 and the ANR grant
ProjetANR-08-EMER-008.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 195–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

196 A. Makhlin

(graphs, formulae etc.) encoded by binary strings in some way. Clearly the cho-
sen encoding determines which distribution on binary strings will correspond
to a fixed distribution on problem instances. The mentioned drawback is that
the polynomial time computability of an ensemble of instance distributions may
depend on this encoding, even if the considered encodings are equivalent in a
natural sense — they may be transformed into each other using an efficient (say,
polynomial time) algorithm.

Most definitions of classes in complexity theory are invariant under such en-
coding changes, for example a set of formulae which lies in P (NP, BPP) will
still belong to this class if we chose a different polynomially equivalent encod-
ing. It seems desirable to replace the definition of polynomial time computable
ensembles with a class, preserving its nice properties, while achieving encod-
ing invariance in the above sense. Such a class of ensembles, called PISamp was
proposed and discussed in [9].

Still it is interesting to determine whether the proposed class PISamp differs
from the class of polynomial time computable ensembles and if the latter is in-
deed not encoding invariant. It is impossible to answer any of these two questions
affirmatively without proving that P �= PSPACE since a negative answer to both
easily follows from P = PSPACE. Nevertheless we may settle these questions
under some plausible assumption.

The definitions of these classes imply that PComp ⊂ PISamp ⊂ PSamp. In [1,
Theorem 8] it was shown that if one-way functions exist then PComp is different
from PSamp in a strong sense: some ensemble in PSamp is not dominated by any
ensemble in PComp (see the definition of domination below). Under the same
assumption, [9] showed that even PISamp is different from PSamp (in the same
strong sense). In [9], it was also shown that PComp differs from PISamp and
that PComp is not encoding invariant (both in the strong sense). However, [9]
used a stronger assumption of the existence of a one-way function with specific
properties (the function is required to map no more than a polynomial number
of inputs to any one output). Our contribution consists in proving a positive
answer to both of the above questions under the assumption that any one-way
function exists. That is, we prove that in this case the class of polynomial time
computable ensembles is not encoding invariant (Theorem 3) and thus differs
from the encoding invariant class PISamp proposed in [9] (Theorem 2), both
statements hold in the strong sense.

2 Average-Case Complexity

In this section we remind some definitions from average-case complexity theory
and also mention some related statements. These can be found in the survey
paper [2], which contains an extensive overview of the theory. This theory stud-
ies the tractability of distributional decision problems — algorithmic decision
problems paired with a probability distribution over its inputs. The following
definition explains a possible way of specifying such a distribution and how the
tractability of the corresponding distributional problem is determined.

On the Encoding Invariance of PComp 197

Definition 1. Consider a language of binary strings L together with an ensem-
ble μ = {μ0, μ1, μ2, . . . } of distributions over strings. Let us call the distributional
problem (L, μ) tractable on average if there exists a randomized algorithm A and
polynomial p such that for any k ∈ IN and all n and x ∈ Supp(μn), A(n, x, k)
runs in time p(n, k) and

Pr x∼μn [A(n, x, k) = L(x)] > 1− 1

k
, (1)

where the probability is also taken over the internal randomness of A.

In order to define a class of distributional problems one must choose a class of
languages C and a class of input distribution ensembles D. The resulting class is
denoted (C,D). One class of ensembles, which is often considered to capture the
notion of a natural input distribution, is the class of polynomial time samplable
ensembles.

Definition 2. An ensemble {μ0, μ1, μ2, . . . } is polynomial time samplable if
there exists a randomized sampling algorithm G which on input n runs in time
polynomial in n and the distribution of its outputs coincides with μn. The class
of such ensembles is denoted PSamp.

The class (NP,PSamp) is well studied. Complete problems within this class are of
particular interest. To explain what completeness means in this case we define
a possible version of reducibility between distributional problems. This is the
definition of strong reductions, which is similar to Karp reductions in classical
complexity theory.

Definition 3. Ensemble {μ0, μ1, μ2, . . . } dominates ensemble {ν0, ν1, ν2, . . . } if
there exists a polynomial p for which

νn(x) ≤ p(n)μn(x) (2)

holds for all n and x.

Definition 4. A distributional problem (B, ν) reduces to a distributional prob-
lem (A, μ) if there exists a polynomial time computable function f : {0, 1}∗ →
{0, 1}∗ and a polynomial q : IN → IN, such that:

• x ∈ B ⇔ f(x) ∈ A;
• the pushforward measure ν′ defined as ν′n(y) =

∑
x:f(x)=y νn(x) is domi-

nated by {μq(n)}.

In brief, the intuition behind this definition is that the probability of any instance
must not become significantly lower after applying the reduction transformation
f . It is not hard to see that any problem which reduces in this way to another
problem which is tractable on average is itself tractable on average.

A well known result is the existence of a polynomial time samplable en-
semble {μ0, μ1, μ2, . . . } such that any other samplable ensemble is dominated

198 A. Makhlin

by {μq(0), μq(1), μq(2), . . . } for some polynomial q ([7]). It is immediate that
any NP complete problem paired with such a distribution will be complete for
(NP,PSamp). However one is often more interested in determining the complete-
ness of more practical distributional problems for which the input distribution
is relatively simple. This led to the introduction in [7] of the class of ensem-
bles PComp below defined, where it is shown that the class (NP,PComp) indeed
contains a complete problem (P, μ) with a simple instance distribution μ. This
result was then used in [6] to prove that the problem (P, μ) is complete even in
a seemingly larger class (NP,PSamp) by demonstrating that any problem in this
class reduces to a problem in (NP,PComp). Thus PComp was used as the main
tool for proving this fundamental result of average-case complexity theory.

Definition 5. For two binary strings x and y let x / y denote that x is not
greater than y lexicographically (we consider shorter strings preceding longer
ones). The ensemble {μ0, μ1, μ2, . . . } is called polynomial time computable if
there exists an algorithm A such that for all n A(1n, x) runs in time polynomial
in n for any x ∈ Supp(μn) and

A(1n, x) =
∑
y�x

μn(y) , (3)

where the output of A is interpreted as some number from [0, 1] in binary nota-
tion. The class of such ensembles is denoted PComp.

It follows from the definition that all instance probabilities across all distribu-
tions of a polynomial time computable ensemble are dyadic rationals. A more
relaxed definition may be considered which permits any rational probabilities.
However this definition would be equivalent to the one above in the sense of
problem reducibility, since for any ensemble μ with rational probabilities an en-
semble ν with dyadic rational probabilities exists such that μ and ν dominate
one another ([9]).

It is not hard to see that PComp ⊂ PSamp. Indeed, consider the unit segment
divided into parts of length μn(x) ordered with respect to the lexicographical
ordering of x. Then choose a dyadic rational α ∈ [0, 1] with as many digits as
any probability μn(x) and select the string x which corresponds to the segment
which contains α. The distribution of x chosen this way for uniformly chosen α
will be μn.

3 Encoding Invariance and Polynomial Time Invertibly
Samplable Ensembles

In this section we will present the results discussed in the introduction using
the above definitions. First let us define the notion of encoding invariance. We
will be dealing with classes of arbitrary mappings from {0, 1}∗. For instance,
these may be mappings into {0, 1}, which define languages, or mappings into
IRIN, which define distribution ensembles. These mappings from binary strings

On the Encoding Invariance of PComp 199

often correspond to mappings from some other set F of finite objects (such as
graphs or formulae), the elements of which are represented by binary strings in
order to formalize algorithmic treatment of such objects. This representation is
implemented via an effectively computable (in an informal sense) injective map-
ping e1 : F → {0, 1}∗ which is called an encoding. Suppose we now consider
another such encoding e2 and want to know whether these two encodings can be
efficiently translated into each other. We formalize the latter by requiring that
both e1 ◦ e−12 and e2 ◦ e−11 are polynomial time computable and call these encod-
ings polynomial time equivalent. (Here we understand a partial function to be
computable if there exists an algorithm which returns the corresponding value if
the input lies within the functions domain and a special message “undefined”
otherwise.) Then a class of mappings from binary strings is considered encoding
invariant if it contains a mapping from F encoded with e1 iff it contains this
mapping encoded with a polynomial time equivalent e2. This is stated in the fol-
lowing definition which disregards the initial set F and deals with the encodings
via the recoding procedure h.

Definition 6. Consider any class C of (partial) mappings defined on {0, 1}∗
with values in some fixed set. Consider any f ∈ C and (partial) injective function
h : {0, 1}∗ → {0, 1}∗ such that

• h is defined on the domain of f ;
• both h and h−1 are polynomial time computable.

We will call C encoding invariant if for any such f, h the function g which
is defined on {h(x) | x ∈ dom f} by g(y) = f(h−1(y)) is also in C. We will
say that g is obtained from f via the polynomially computable and invertible
transformation h.

It is not hard to verify that the complexity classes P, BPP, NP as well the class
of ensembles PSamp are all encoding invariant. However, the class PComp may
not be encoding invariant since the lexicographical order of codes corresponding
to different objects may alter when we change the encoding. Below we show that
PComp is indeed not encoding invariant if a one-way function exists. Because
of this in [9] a new class of ensembles is proposed as a replacement for PComp,
which is encoding invariant by definition.

To define this new class we need to introduce the notion of the preimage of
a sampling algorithm A for given n and x. The execution of our randomized
algorithm A is determined by an infinite binary string containing the outcomes
of coin flips which the algorithm performs in chronological order (since A always
terminates, only a finite prefix of this string will be used). Such a string s can
be identified with a real number on [0, 1] which is given by its binary expansion
‘0.s’. Let us denote the output of A(n) with coin flip outcomes determined by
α ∈ [0, 1] via A(n, α). Now we can define

A−1(n, x) = {α ∈ [0, 1] | A(n, α) = x}.

200 A. Makhlin

Definition 7. Consider a polynomial time samplable ensemble together with its
sampling algorithm G. We call G invertible if for all n and x the set G−1(n, x)
is either empty or consists of exactly one subsegment of [0, 1] which can be com-
puted, given n, x, in polynomial time in n (as specified by the values of its
end-points in binary notation). We call an ensemble polynomial time invertibly
samplable if it can be sampled by an invertible algorithm. The class of such en-
sembles is denoted PISamp.

In [9], it is shown that PComp ⊂ PISamp. It follows, that (NP,PSamp) con-
tains complete problems from (NP,PISamp), and the proof becomes substan-
tially simpler than in the (NP,PComp) case. In [9], it is also shown that under
the assumption that a “nearly injective” one-way function exists the inclusions
PISamp ⊂ PSamp and PComp ⊂ PISamp are proper. Let us state this result
precisely.

Definition 8. A polynomial time computable function f : {0, 1}∗ → {0, 1}∗ is
called one-way if for any polynomial p and randomized algorithm A such that
A(1n, y) runs in time polynomial in n and |y|

Pr[f(A(1n, f(x))) = f(x)] <
1

p(n)
, (4)

where the probability is taken over x uniformly distributed on {0, 1}n and the
internal randomness of A.

Theorem 1 ([9])

1. If a one-way function exists, then some ensemble in PSamp is not dominated
by any ensemble in PISamp.

2. If for some polynomial r there exists a one-way function f such that for all
n any string has no more than r(n) preimages in {0, 1}n under f , then some
ensemble in PISamp is not dominated by any ensemble in PComp.

It turns out that the second statement may be improved: the existence of any
one-way function is sufficient.

Theorem 2. If a one-way function exists, then some ensemble in PISamp is not
dominated by any ensemble in PComp.

Proof. Let f be one-way. Define ensemble {μn} in the following way:

μn(z) =

{
2−n, if z = f(x)x, |x| = n,

0, otherwise.

Here “f(x)x” denotes the concatenation of two strings. We will now show that
{μn} is an ensemble with the required properties.

Invertible samplability of {μn} is evident. Indeed, consider a sampling al-
gorithm G which on input n asks for n random bits which form the string x

On the Encoding Invariance of PComp 201

and outputs f(x)x. Then on input n, G only outputs strings of form f(x)x,
x ∈ {0, 1}n, each one after receiving the random bits forming x.

Now suppose that {μn} is dominated by some polynomial time computable
ensemble {νn}: there exists a polynomial q such that for all n and z we have

νn(z) ≥ μn(z)/q(n). (5)

Below we will construct an algorithm which uses the computability of {νn} to
find preimages under f and succeeds with probability 1/q(n).

Assume we are given some string y, y = f(x0), |x0| = n. Our randomized
inverting algorithm for f will output a string x with probability proportional
to νn(yx) on input n, y. That is, string x is returned with probability νyn(yx) =
νn(yx)/Pn(y), where Pn(y) =

∑
|x|=n νn(yx). Since we can compute νn(yx) as

well as Pn(y) in time polynomial in n using the computability of {νn}, the
ensemble {νyn} is itself polynomial time computable and thus polynomial time
samplable given y. Let us denote the algorithm which samples {νyn} on input
n, y via A(1n, y).

We now have to estimate the success probability Pr[f(A(1n, f(x))) = f(x)]
for x uniformly distributed on {0, 1}n. Let In(y) denote the set of all yx such
that x is a preimage of length n of y under f , and let In(y) denote the cardi-
nality of this set. For a fixed y the probability that f(A(1n, y)) = y is Sn(y) =
νn(In(y))/Pn(y). From (5), it follows that

νn(In(y)) ≥ μn(In(y))/q(n) , (6)

where the right-hand side is equal to In(y)/(2
nq(n)). Now the success probability

can be bounded in the following way:

1

2n

∑
x∈{0,1}n

Pr[f(A(1n, f(x))) = f(x)] =
1

2n

∑
y∈f({0,1}n)

In(y)Sn(y) ≥

≥ 1

22nq(n)

∑
y∈f({0,1}n)

I2n(y)

Pn(y)
. (7)

Note that
∑

y∈f({0,1}n) In(y) = 2n and
∑

y∈f({0,1}n) Pn(y) ≤ 1. It now follows

from the simple technical lemma below that the right-most sum in (7) is at least
22n and the success probability is thus at least 1/q(n) which contradicts f being
a one-way function.

Lemma 1. For any set of positive numbers a1, . . . , an, b1, . . . , bn such that∑n
i=1 ai = A and

∑n
i=1 bi = B the following holds:

n∑
i=1

a2i
bi

≥ A2

B
.

Proof. This can be proven by induction on n. For n = 2 we have:

a21
b1

+
a22
b2

≥ (a1 + a2)
2

b1 + b2
⇔ a21b

2
2 + a22b

2
1 ≥ 2a1a2b1b2 ⇔ (a1b2 − a2b1)

2 ≥ 0. (8)

202 A. Makhlin

Now let
∑n+1

i=1 ai = A,
∑n+1

i=1 bi = B, and let the statement be proven for sets of
smaller size. Then applying the inductive hypothesis twice we get

n+1∑
i=1

a2i
bi

=

n∑
i=1

a2i
bi

+
a2n+1

bn+1
≥ (A− an+1)

2

B − bn+1
+

a2n+1

bn+1
≥ A2

B
. (9)

��

From the proof of theorem 2 the following can be concluded:

Theorem 3. If a one-way function exists, then the class PComp is not encoding
invariant. Moreover, in this case there is an ensemble of distributions in PComp
and a polynomial time computable and invertible function that transforms that
ensemble into an ensemble which is not dominated by any ensemble in PComp.

Proof. Let f be one-way, and let h map any string x to the string f(x)x. Without
loss of generality we may assume that the length of f(x) is |x|k for some constant
k > 0 and all x. Therefore f(x)x can be parsed into f(x) and x and thus h is
both polynomial time computable and invertible. Now consider the ensemble
{μn} which consists of uniform distributions on strings of length n. If we change
the binary encoding using h, the polynomial time computable ensemble {μn} will
transform into an ensemble which is not dominated by any member of PComp
unless f is polynomial time invertible. ��

References

1. Ben-David, S., Chor, B., Goldreich, O., Luby, M.: On the Theory of Average Case
Complexity. Journal of Computer and System Sciences 44(2), 193–219 (1992)

2. Bogdanov, A., Trevisan, L.: Average-Case Complexity. Foundations and Trends in
Theoretical Computer Science 1(2), 1–106 (2006)

3. Gurevich, Y.: Complete and Incomplete Randomized NP Problems. In: Proceedings
of 28th Annual Symposium on Foundations of Computer Science, pp. 111–117 (1987)

4. Gurevich, Y.: Average Case Completeness. Journal of Computer and System Sci-
ences 42(3), 346–398 (1991)

5. Gurevich, Y., Shelah, S.: Expected computation time for Hamiltonian path problem.
SIAM Journal on Computing 16(3), 486–502 (1987)

6. Impagliazzo, R., Levin, L.A.: No Better Ways to Generate Hard NP Instances than
Picking Uniformly at Random. In: Proceedings of 31st Annual Symposium on Foun-
dations of Computer Science, pp. 812–821 (1990)

7. Levin, L.A.: Average Case Complete Problems. SIAM Journal on Computing 15(1),
285–286 (1986)

8. Venkatesan, R., Levin, L.: Random instances of a graph coloring problem are hard.
In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Comput-
ing, pp. 217–222 (1988)

9. Vereshchagin, N.: An Encoding Invariant Version of Polynomial Time Computable
Distributions. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072,
pp. 371–383. Springer, Heidelberg (2010)

Improving on Gutfreund, Shaltiel,

and Ta-Shma’s Paper “If NP Languages
Are Hard on the Worst-Case,

Then It Is Easy to Find Their Hard Instances”

Nikolay Vereshchagin�

Moscow State University
ver@mccme.ru

Abstract. Assume that NP
⊂ BPP. Gutfreund, Shaltiel, and Ta-Shma
in [Computational Complexity 16(4):412-441 (2007)] have proved that
for every randomized polynomial time decision algorithm D for SAT
there is a polynomial time samplable distribution such that D errs with
probability at least 1/6− ε on a random formula chosen with respect to
that distribution. A challenging problem is to increase the error proba-
bility to the maximal possible 1/2− ε (the random guessing has success
probability 1/2). In this paper, we make a small step towards this goal:
we show how to increase the error probability to 1/3− ε.

1 Introduction

Suppose that NP is worst-case hard, say, NP �⊂ BPP.1 This means that every
efficient algorithm D fails to solve SATISFIABILITY (SAT) correctly on an
infinite sequence of instances. A natural question is the following: given such
an algorithm D, how hard is it to generate such instances? I.e. given an input
length n, what is the complexity of finding a formula of length at least n on which
D errs. Clearly, by exhaustive search one can do that in exponential time (for
infinitely many n). Surprisingly, Gutfreund, Shaltiel and Ta-Shma [6] showed
that it can actually be done in probabilistic polynomial-time with a constant
probability of success.

More specifically the result of [6] is the following. Let D be a probabilistic
polynomial-time algorithm trying to decide SAT. We say that a distribution μ
over Boolean formulas is δ-hard for D, if with probability at least δ, D fails to
decide correctly whether a formula ϕ drawn from μ is satisfiable or not (where
the probability is over the choice of ϕ and the randomness of D). A sampler is
a polynomial-time probabilistic algorithm G that given 1n as input outputs a

� The work was in part supported by the RFBR grant 09-01-00709 and the ANR grant
ProjetANR-08-EMER-008.

1 NP
⊂ BPP means that there is no polynomial time randomized algorithm that
given any Boolean formula with probability at least 2/3 correctly decides whether
it is satisfiable.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 203–211, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

204 N. Vereshchagin

Boolean formula of length at least n. The result of [6] says that if NP �⊂ BPP,
then for every probabilistic polynomial-time algorithm D that tries to decide
SAT there exists a sampler G such that for infinitely many n the probability
distribution μn produced by G(1n) is δ-hard for SAT. Here 0 < δ < 1/2 is some
universal constant.

The authors of [6] do not try to optimize δ and do not even carefully compute
δ obtained in their proof. Instead they notice that δ derived from their proof is
certainly less that 1/3 and ask whether δ can be arbitrarily close to 1/2. (Note
that 1/2 is the best one can hope for since an algorithm that decides according
to an unbiased coin toss will always give a correct answer on every instance with
probability 1/2.) This question remains open.

In this paper, we will outline the proof of [6] and show that the proof yields
the result for every δ < 1/6. Then using an additional trick (Lemma 1) we show
how to prove the result for every δ < 1/3 (Theorem 3).

It turns out that the barrier of 1/3 can be broken for Σp
k predicates for every

k > 1. A result of [4] states that if Σp
k is not included in BPP then for every

probabilistic polynomial time algorithm D there is a sampler G such that for
infinitely many n, algorithm D errs on a random formula produced by G(1n)
with probability close to 1/2. As we said, for k = 1 (that is for NP), this is still
open.

For motivation of the study of this question and for its history we refer the
reader to an excellent introduction from [4].

2 Generating Hard Instances of Search Version of SAT

We start with presenting the main construction of [6] so that it be clear what
our contribution is.

In this paper, we consider Boolean formulas in the basis ¬,∨,∧, 0, 1. The
length |ϕ| of a formula ϕ is defined as the number of symbols in it: every variable
is counted as one symbol.

Definition 1. The search version of SAT is the following problem: given a
Boolean formula ϕ find an assignment that satisfies it. A (randomized) SAT
solver is a (randomized) polynomial time algorithm that for every input formula
ϕ either finds its satisfying assignment, or says “don’t know”. A SAT solver D
errs on ψ if ψ is satisfiable and D(ψ) =“don’t know”.

Theorem 1 ([6]). Assume that NP �= P. Given a deterministic SAT solver
S one can construct a deterministic polynomial time procedure that given 1n

produces a formula ψn of length at least n such that S errs on ψn for infinitely
many n.

Proof. Consider the following search problem in NP.

Search Problem P :
Instance: a string 1n over the unary alphabet.

Improving on Gutfreund, Shaltiel, and Ta-Shma’s Paper 205

Solution: a pair (ψ, a) where ψ is a satisfiable formula of length n such that
S(ψ) =“don’t know”, and a is its satisfying assignment.

We will call an instance 1n of P solvable if such pair (ψ, a) exists. As SAT is
NP complete, the search problem P reduces to the search version of SAT. This
means that there is a polynomial time algorithm that given 1n finds a formula,
called ϕn, such that:

(1) if the instance 1n of P is solvable then ϕn is satisfiable, and
(2) given any satisfying assignment of ϕn we can find (in polynomial time) a
solution to the instance 1n of problem P .

The length of ϕn is bounded by a polynomial nd and w.l.o.g. we may assume
that |ϕn| ≥ n, since SAT is paddable.

The desired procedure works as follows: given 1n, as input

(a) find the formula ϕn;
(b) run S(ϕn);
(c) if S(ϕn)=“don’t know”then output ϕn and halt;
(d) otherwise S(ϕn) produces a satisfying assignment for ϕn; given that assign-
ment, find in polynomial time a solution (ψ, a) to the instance 1n of the problem
P ; output ψ and halt.

Since we assume that P �= NP, for infinitely many n the instance 1n of P
is solvable. For such n either S(ϕn)=“don’t know”(and thus S errs on ϕn), or
(ψ, a) is a solution to 1n (and thus S errs on ψ).

The next construction of [6] allows one to generalize this theorem to randomized
SAT solvers. This is done as follows. Let S be a randomized SAT solver working
in time nc and let r be string of length at least nc. We will denote by Sr the
algorithm S that uses bits of r as coin flips. Note that Sr is a deterministic
algorithm.

Theorem 2 ([6]). Assume that NP �⊂ BPP. Then for some natural constant d
the following holds. Let S be a randomized SAT solver and let nc denote its running
time on formulas of length n. Then there is a deterministic polynomial time pro-
cedure that given any binary string r of length nc2d produces a formula ηr of length
between n and ncd, where for any positive ε for infinitely many n the following
holds. For a fraction at least 1− ε of r’s the algorithm Sr errs on ηr.

Notice that the length of ηr is at most ncd. Therefore the running time of S for
input ηr is at most nc2d. Hence Sr(ηr) is well defined.

Proof. The proof is very similar to that of the previous theorem. The only change
is that we have to replace the search problem P by the following problem P ′:
Instance: a binary string r′ of length nc (for some n).
Solution: a satisfiable formula ψ of length n and its satisfying assignment a such
that Sr′(ψ) =“don’t know”.

Let r′ 0→ ϕr′ be a reduction of P ′ to the search version of SAT. The length
of ϕr′ is bounded by a polynomial ncd of |r′| = nc and w.l.o.g. we may assume
that |ϕr′ | ≥ n.

206 N. Vereshchagin

The procedure required in the theorem, called Procedure A, works as fol-
lows: given r of length nc2d, as input,

(a) let r′ stand for the prefix of r of length nc;
(b) find the formula ϕr′ ; recall that satisfying assignments of ϕr′ are basi-
cally pairs (a formula ψ of length n, its satisfying assignment a) such that
Sr′(ψ) =“don’t know”;
(c) run Sr(ϕr′);
(d) if Sr(ϕr′)=“don’t know”then output ϕr′ and halt;
(e) otherwise Sr(ϕr′) produces a satisfying assignment for ϕr′ ; given that assign-
ment find in polynomial time a solution (ψ, a) to the instance r′ of the problem
P ′; output ψ and halt. (End of Procedure A.)

Let ηr stand for the formula output by the procedure. Since we assume that
NP �⊂ BPP, for every positive ε the randomized searching algorithm S errs with
probability at least 1 − ε for infinitely many input formulas. This implies that
for infinitely many n the number of solvable instances r′ of the problem P ′ is at
least (1−ε)2n

c

. For those r′s the formula ϕr′ is satisfiable. Therefore, for all but
a fraction ε of r’s the algorithm Sr errs on ϕr′ or Sr′ errs on ψ, which implies
that Sr errs on ψ as well.

Remark 1. Theorem 2 holds for ε = 1/nk for any constant k. Indeed, the as-
sumption NP �⊂ BPP implies that the randomized searching algorithm S errs
with probability at least 1− |ϕ|−k for infinitely many input formulas ϕ.

3 Generating Hard Instances of the Decision Version of
SAT

We start with defining samplers and samplable distributions. We will use the
framework of Bogdanov and Trevisan [1] rather than the original Levin’s one
from [2].

Definition 2. A sampler is a polynomial time probabilistic algorithm G that
given 1n as input outputs a Boolean formula of length at least n. If the length
of the output formula is always exactly n, we call the sampler proper. Sequences
μo, μ1, μ2, . . . of distributions for which there is a polynomial time sampler are
called polynomial time samplable ensembles of distributions.

We say that a randomized decision algorithm D with randomness r errs on a
formula ϕ if Dr(ϕ) =YES and ϕ is not satisfiable or vice verse.

Here is our result.

Theorem 3. If NP �⊂ BPP then for every probabilistic polynomial time decision
algorithm D and every positive ε there is a sampler G such that for infinitely
many n with probability at least 1 − ε the decision algorithm D errs on the
formula produced by G(1n) with probability at least 1/3− ε.

Improving on Gutfreund, Shaltiel, and Ta-Shma’s Paper 207

Remark 2. This result strengthens a result that is implicit in [6], which states the
same with 1/6 in place of 1/3. In the proof we will explain what is the difference
between the construction in [6] and ours. For proper samplers the constant 1/6
should be reduced to 1/24 by the following reason. Using padding we may assume
that the formula output by the sampler has length either n, or ncd (and not in

between). Consider a new sampler G̃ that runs G(1n) and G(1n
1/cd

) and if either
of the runs produces a formula of length n, then we output that formula (if both
runs produce a formula of length n then we output each of them with probability
1/2). This yields the constant 1/24− ε. Indeed, assume that G(1m) produces a
formula ϕ such that D(ϕ) errs with probability 1/6− ε. Then either the event
“D(ϕ) errs and the length of ϕ is m” or the event “D(ϕ) errs and the length of
ϕ is mcd” has probability at least 1/12− ε/2. In the first case the probability of
the event “D errs on the output of G(1m)” is at least 1/24− ε/4. In the second

case the probability of the event “D errs on the output of G(1m
cd

)” is at least
1/24− ε/4.

Proof (of Theorem 3). Let D and ε be given. First we use the standard ampli-
fication, as in [7], to transform the algorithm D into another decision algorithm
D̄ with a smaller error probability.

Given a formula ϕ of length n as input the algorithm D̄ invokes D(ϕ) poly-
nomial number K of times and outputs the most frequent result among all the
results obtained in those runs. If K is large enough (but still polynomial in n)
then the probability that the frequency of the result YES in those K runs differs
from the probability that D(ϕ) = YES by more than ε is exponentially small in
n. This follows from the Chernoff bound. Note that the number of formulas of
length n is also exponential in n. Moreover, we can choose K = poly(n) so that
with probability at least 1− 2−n there is no formula ϕ of length n for which the
frequency of the result YES deviates from the probability that D(ϕ) = YES by
at most ε.

Using the standard binary search techniques we transform the algorithm D̄
to a SAT solver S. That is, given a formula ϕ the algorithm S first runs D̄(ϕ).
If the result is YES then it substitutes first x = 0 and then x = 1 for the first
variable x in ϕ and runs D̄ on the resulting formulas ϕx=0, ϕx=1. If at least
one of these runs outputs YES, we replace ϕ by the corresponding formula and
recurse. Otherwise we return “don’t know”and halt.

If D̄ returns NO for the input formula ϕ, we return “don’t know”and halt.
Finally, if we have substituted 0s and 1s for all variables and the resulting formula
is true, we return the satisfying assignment we have found, and otherwise we
return “don’t know”.

Let nc be the upper bound of S’s running time for input formulas of length
n and let r be a string of length nc used as randomness for S. In its run for
input ϕ the algorithm Sr uses parts of r as coin flips for D̄. With some abuse
of notation we will denote by D̄r the algorithm D̄ with that randomness. The
notation Dr is understood in the same way.

208 N. Vereshchagin

The heart of the construction is a procedure that given any formula ψ and
randomness r such that Sr errs on ψ returns at most three formulas such that
the algorithm D errs on at least one of those formulas with high probability.

Procedure B.Given a satisfiable input formula ψ and r such that Sr(ψ) =“don’t
know”, run Sr(ψ) to find the place in the binary search tree where Sr is stuck.
By the construction of S this may happen in the following three cases:

(1) D̄r(ψ)=NO. In this case output ψ.
(2) Sr(ψ) performs binary search till the very end, it finds a formula η obtained

from original formula by substituting all its variables by 0,1 such that η is false
while D̄r claims that η is true. In this case output η.

(3) In the remaining case Sr(ψ) is stuck in the middle of the binary search
and thus it has found a formula ϕ and its variable x such that D̄r(ϕ) =YES
while both D̄r(ϕx=0) and D̄r(ϕx=1) are NO. In this case return ϕ, ϕx=0, ϕx=1.
(End of Procedure B.)

We will call formulas returned by this procedure by α, β, γ.2 They depend on
input formula ψ and on randomness r.

By Theorem 2 applied to the search algorithm S there is a polynomial pro-
cedure (called Procedure A in the proof) with the following property. Given a

string r of length nc2d the procedure returns a formula ηr of length between n
and ncd such that for infinitely many n, Sr errs on ηr (except for a fraction at
most ε of r’s).

The samplerG from [6] works as follows. For input 1n choose a random string r

of length nc2d. Then apply Procedure A to r to obtain ηr. Then apply Procedure
B to S, r and ηr to obtain three formulas α, β, γ. Finally choose one of these
formulas at random, each with probability 1/3, and output it.

Fix a positive ε. We claim that for infinitely many n with probability at least
1− 2ε the algorithm D errs on the formula produced by G(1n) with probability
at least 1/6 − ε. To prove this claim notice that Sr(ηr) calls D̄r at most 2ncd

times (two times for each variable). Each time D̄r is called on an input formula

ϕ of length between n and ncd. Call a string r of length nc2d bad if in at least
one of these runs of D̄r the frequency of YES answers of D for input ϕ differs
from the probability of the event D(ϕ)=YES by more than ε (recall that D̄r(ϕ)
runs D(ϕ) some K times). By construction of D̄ a fraction at most

ncd∑
l=n

2ncd2−l < ncd2−n+2 ≤ ε

r’s are bad (for all large enough n). If r is good and Sr errs on ηr then the error
probability of D on the formula output by Procedure B is at least 1/3(1/2− ε).
And for infinitely many n the probability that Sr does not err on ηr is at most
ε. Thus for infinitely many n with probability at least 1 − 2ε both Sr errs on

2 Without loss of generality we may assume that Procedure B always outputs three
formulas.

Improving on Gutfreund, Shaltiel, and Ta-Shma’s Paper 209

ηr and r is good hence D errs on the output formula with probability at least
1/3(1/2− ε).

Up to now we have just recited the arguments from [6]. Now we will present a
new trick, which improves the constant 1/6 to 1/3. We will change the very last
step in the work of this sampler. This time we will output α, β, γ with different
probabilities, which are carefully chosen based on the frequencies of YES/NO
answers of the algorithm D in the run of D̄r on inputs α, β, γ.

Recall that Procedure B has run the algorithm D̄r on inputs α, β, γ, and
algorithm D̄r has done majority vote among some number K of runs of the
algorithm D on α, β, γ, respectively (using in each run a part of r as randomness
for D). Let a, b, c be the answers obtained during those majority votes and
let ur, vr, wr stand for the frequencies of answers a, b, c of the runs of D with
randomness from r on α, β, γ, respectively. All numbers ur, vr, wr are thus at
least 1/2. For all good r’s ur is ε-close to the probability of the event D(α) =
a. Thus with probability at least 1 − ε (over the choice of r) we know an ε-
approximation to the probability of the event D(α) = a. The same applies to
b, c and β, γ, respectively. Thus it remains to prove the following lemma, which
is essentially our contribution.

Lemma 1. Assume that we are given bits a, b, c ∈ {YES,NO} and the probabil-
ities u, v, w ≥ 1/2 of the events D(α) = a, D(β) = b and D(γ) = c, respectively.
Assume further that at least one of the bits a, b, c is incorrect (we call a incorrect
if α is satisfiable and a = NO or the other way around, and similarly for b, c).
Based on this information we can find in polynomial time a probability distri-
bution over the set {α, β, γ} such that D errs on a random formula drawn from
that distribution with probability at least 1/3.

Proof. If u < 2/3, then consider the probability distribution concentrated on α.
In this case the probabilities of both events D(α) =NO, D(α) =YES are greater
than 1/3. We argue similarly, if v or w is less than 2/3.

Otherwise let probabilities of α, β, γ be equal to numbers p, q, s such that all
the numbers

pu+q(1−v)+s(1−w), p(1−u)+qv+s(1−w), p(1−u)+q(1−v)+sw (1)

are at least 1/3. We will argue later that such non-negative rational number
p, q, s that sum up to 1 exist. Distinguish now three cases.

Case 1: the bit a is wrong. Then the probability that D errs on α is equal to u.
The probability that D errs on β is at least 1 − v (indeed, if b is correct than
the error probability is equal to 1 − v; otherwise it is equal to v ≥ 1 − v, as
v ≥ 1/2). The same holds for c and β. Thus the overall probability that D errs
on the formula drawn from the constructed distribution is at least

pu+ q(1− v) + s(1− w) ≥ 1/3.

Case 2: the bit b is incorrect. In this case we argue in a similar way and use the
assumption that the second number in (1) is at least 1/3.

210 N. Vereshchagin

Case 3: the bit c is incorrect. In this case the statement follows from the assump-
tion that the third number in (1) is at least 1/3.

It remains to show that there are non-negative p, q, s such that p+ q + s = 1
and all the numbers in (1) are at least 1/3. Note that for all non-negative p, q, s
with p+ q + s = 1 the arithmetic mean of those numbers is equal to

1 + p(1− u) + q(1− v) + s(1− w)

3
≥ 1

3
.

Thus it suffices to show that there are non-negative p, q, s such that all the three
numbers in (1) are equal (and thus the maximum equals to the arithmetical
mean):

pu+ q(1− v) + s(1−w) = p(1− u) + qv + s(1−w) = p(1− u) + q(1− v) + sw.

The first equality means that p(2u − 1) = q(2v − 1) and the second one means
that q(2v − 1) = r(2w − 1). Thus all the three numbers are equal, if p, q, s are
proportional to 1/(2u − 1), 1/(2v − 1), 1/(2w − 1). As all u, v, w are bounded
away from 1/2 (we are assuming that these numbers are at least 2/3), all these
numbers are bounded by a constant. Thus we are able to find in polynomial time
the desired p, q, s.

Actually, we only know ε-approximation to the probabilities of events D(α) = a,
D(β) = b and D(γ) = c. However, from the proof of the lemma it is clear that,
if we use ε-approximation in place of true values, the probability of error of D
will decrease by at most ε. The last step of the algorithm G(1n) is thus the
following: we apply Lemma 1 to the ε-approximations we have and sample the
output formula with respect to the distribution from Lemma 1. If r is good and
Sr errs on ηr then D errs on the the output formula with probability at least
1/3− ε.

Take into account a fraction at most ε of bad r’s and also a fraction at most
ε of r’s such that Sr does not err on ηr. We obtain that with probability at least
1− 2ε the algorithm D errs on the formula produced by G(1n) with probability
at least 1/3− ε.

Remark 3. Theorem 3 remains true for ε = 1/nk for any constant k.

Remark 4. Say that NP �⊂ BPP everywhere if there is a constant c such that for
every randomized SAT solver S and all n > 1, S errs on a formula of length be-
tween n and nc. (A randomized SAT solver S errs on a formula ϕ if S(ϕ) =“don’t
know”with probability more 1/2.)

If instead of NP �⊂ BPP we assume that NP �⊂ BPP everywhere then all our
result holds in a stronger form: the quantifier “for infinitely many n” may be
replaced by the universal quantifier.

Theorem 4. If NP �⊂ BPP everywhere then for every probabilistic polynomial
time decision algorithm D and every positive ε there is a sampler G such that
for all n the decision algorithm D errs on G(1n) with probability at least 1/3−ε.

Improving on Gutfreund, Shaltiel, and Ta-Shma’s Paper 211

The proof of this theorem is entirely similar to that of Theorem 3 and thus
we omit it. We only have to replace, in the definition of the search problem P ,
the requirement “the length of ψ is n” by the requirement “the length of ψ is
between n and nc” (and make a similar change in the definition of problem P ′).
The constructed sampler will work for almost all n, which is enough, as we can
change its behavior for the remaining n’s.

References

1. Bogdanov, A., Trevisan, L.: Average-Case Complexity. Foundations and Trends in
Theoretical Computer Science 1(2), 1–106 (2006)

2. Leonid, A.: Levin, Average Case Complete Problems. SIAM J. Comput. 15(1),
285–286 (1986)

3. Ben-David, S., Chor, B., Luby, O.G.M.: On the Theory of Average Case Complexity.
In: STOC, pp. 204–216 (1989)

4. Gutfreund, D.: Worst-Case Vs. Algorithmic Average-Case Complexity in the
Polynomial-Time Hierarchy. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U.
(eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 386–397. Springer,
Heidelberg (2006)

5. Bogdanov, A., Talwar, K., Wan, A.: Hard instances for satisfiability and quasi-
one-way functions. In: Proceedings of Innovations in Computer Science (ICS 2009),
pp. 290–300. Tsinghua University Press (2009)

6. Gutfreund, D., Shaltiel, R., Ta-Shma, A.: If NP Languages are Hard on the Worst-
Case, Then it is Easy to Find Their Hard Instances. Computational Complexity
(CC) 16(4), 412–441 (2007)

7. Adleman, L.M.: Two Theorems on Random Polynomial Time. In: FOCS 1978,
pp. 75–83 (1978)

Amortized Communication Complexity
of an Equality Predicate

Vladimir Nikishkin

Moscow Institute of Physics and Technology

Abstract. We study the communication complexity of the direct sum
of independent copies of the equality predicate. We prove that the prob-
abilistic communication complexity of this problem is equal to O(N);
the computational complexity of the proposed protocol is polynomial in
the size of inputs. Our protocol improves the result achieved in 1991 by
Feder et al. Our construction is based on two techniques: Nisan’s pseu-
dorandom generator (1992, Nisan) and Smith’s string synchronization
algorithm (2007, Smith).

1 Introduction

In this paper we study the amortized communication complexity of the equality
predicate. We deal with the classic model of communication complexity with
two participants (Alice and Bob), who want to compute some function of the
data distributed between the participants. Alice and Bob can talk to each other
via a communication channel. We measure the number of bits that must be
transmitted between Alice and Bob to achieve the goal.

More specifically, let f : {0, 1}n × {0, 1}n → {0, 1} be a function of two
arguments. We assume that Alice is given the value of x, Bob is given the value
of y, and Alice and Bob communicate with each other to compute the value
f(x, y).

We use three standard models of communication complexity: deterministic
communication protocols, randomized communication protocols with public ran-
dom bits, and randomized communication protocols with private random bits,
see Kushilevitz and Nisan’s textbook [1]. We denote communication complexities
for these three models by Cdet, Cε

pub, and Cε
priv , respectively. In the randomized

versions, the superscript denotes the error probability and may be omitted if
unnecessary.

Further, let us denote by fN the direct sum of N independent copies of the
initial function f . More precisely, the two arguments of f are an N -tuple of
values (x1, . . . , xN) and an N -tuple of values (y1, . . . , yN), and

fN (x1, . . . , xN , y1, . . . , yN) = (f(x1, y1), . . . , f(xN , yN)).

We assume that Alice is given all values of the xi, and Bob is given all values
of the yi. Now Alice and Bob need to compute fN , i.e., to get all the values
f(xi, yi) for i = 1, . . . , N . It is natural to ask how the communication complexity

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 212–223, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Amortized Communication Complexity of an Equality Predicate 213

of the problem fN grows as N tends to infinity. The asymptotic behavior of
this complexity is called the amortized communication complexity of f . More
formally, the amortized communication complexity of f is defined as

AC(f) = lim sup
N→∞

C(fN)

N
.

This definition makes sense for each model of communication, i.e., the value of
C in the definition above can be substituted with Cdet, Cε

pub, or Cε
priv (or by any

other version of communication complexity known in the literature).
The question of communication complexity for the direct sum of several in-

dependent copies of the same problem is very natural, and it has been stud-
ied extensively for different models of communication complexity. This kind
of questions were first raised by Karchmer et al. in [14]. Later, Feder et al.
proved in [11] the first nontrivial lower bound for the deterministic model:
AC(f) = Ω(

√
Cdet(f) − logn). Since then, several interesting results were

achieved, mostly for more specific models of communication complexity (see [15–
17]). However, the case of the classical randomized communication complexity
remains not well understood. We only know that the gap between randomized
communication complexity of one single instance of a problem and the corre-
sponding amortized complexity can be rather large. E.g., such a gap was proven
in [11] for the equality predicate.

The equality predicate EQn : {0, 1}n × {0, 1}n → {0, 1} is defined as

EQn(x, y) =

{
1, if x = y,
0, if x �= y.

The communication complexity of the equality predicate is Cε
priv = Θ(log n) for

any constant ε > 0, see [1]. On the other hand, the amortized randomized com-
plexity of the equality predicate is only O(1) with error probability O(2−

√
N),

[11]. In this paper we revisit the amortized communication complexity of the
equality predicate. Our protocol achieves the same amortized communication
complexity O(1), and has a slightly better error probability ε = O(2

− N
log2 N).

Besides, our protocol has “modular” structure; it consists of several independent
gadgets, which makes the construction more flexible. So we hope that a simi-
lar technique can be applied to construct communication protocols with small
amortized complexity for other functions.

Our construction is based on ideas similar to the protocol from [11]: (a) use
random checksums to compare stings on Alice’s and Bob’s ends, (b) use a com-
munication protocol with a public coin to compare Alice and Bob’s checksums,
and (c) use a pseudorandom generator to convert a public coin protocol to a
private coin model. Still, the implementations of these ideas differ. The last
idea (substitute public truly random bits by pseudorandom bits with a privately
generated random seed) comes from the following classic theorem:
Theorem 1 ([1]). Let f : {0, 1}n × {0, 1}n → {0, 1} be a function of two argu-
ments. For every δ > 0 and every ε > 0, it holds

Cε+δ
priv(f) < Cε

pub(f) +O(log n+ log δ−1).

214 V. Nikishkin

The proof of this theorem is not constructive, i.e., the pseudorandom generator
used in the argument requires exponential (in the size of input) computations for
Alice and Bob. The generators used in [11] and in our work run in polynomial
(in n) time. However, the generator from [11] was created ad hoc for the EQ
predicate problem, while the generator used in this paper is a well known general
purpose generator, first described in [4].

Now let us formulate our main result.

Theorem 2 (the main result). The randomized communication complexity
(for the private coin model) of a direct sum of N equality predicates EQn is
equal to O(N) if n < N , with error probability Perr ≤ O(2

−c N
log2 N). Moreover, we

explicitly construct a communication protocol that achieves this communication
complexity and requires only polynomial time computations on Alice’s and Bob’s
sides.

In our construction, we use several classic tools (N. Nisan’s pseudorandom gen-
erator, BCH codes, deterministic synchronization protocol by A. Orlitsky, [3])
and one relatively new construction (probabilistic synchronization protocol by
A. Smith, [3]).

2 Classic Communication Protocols for EQ

2.1 Complexity of EQn for Different Types of Communication
Protocols

The predicate EQn is very well studied. Let us remind the three different com-
munication protocols for this predicate.

Deterministic Model. It is known that Cdet(EQn) = n + 1, see [1]. The
bound is achieved by a trivial protocol: Alice transmits her string x to Bob,
Bob compares the two strings x and y and sends back one-bit response, 1 if the
strings are equal and 0 otherwise. From the standard technique of fooling sets it
follows that this bound is tight, i.e., there are no protocols with communication
complexity less than n+ 1.

Private Coin Model. For the randomized communication complexity with
private sources of randomness Cε

priv(EQn) = O(log n
ε). This bound is achieved

by several classic communication protocols. Here we describe one of them. Alice
and Bob view their inputs x and y as n-digit binary representations of integers
(between 0 and 2n − 1). Alice chooses a prime number p at random among the
first (n/ε) primes. She sends to Bob both p and x mod p. Bob verifies whether x
mod p = y mod p. If x and y are equal modulo p, then Bob returns 1, otherwise
he returns 0. If x = y, then this protocol always returns the correct result. If
x �= y, then the difference (x−y) has at most n prime factors; hence, the protocol
returns the wrong answer with probability at most ε.

Amortized Communication Complexity of an Equality Predicate 215

Public Coin Model. For randomized communication complexity with public
source of randomness Cε

pub(EQn) = O(log 1
ε). This bound for communication

complexity is achieved by the following protocol. Alice and Bob jointly choose
a random n-bit string r. Then Alice computes the inner product b = 〈x, r〉 and
transmits the result (a single bit) to Bob. Bob checks whether b = 〈y, r〉 and
outputs "equal" if so and "not equal" otherwise. Obviously, if x = y, then the
output is always "equal." On the other hand, if x �= y, then by the properties
of the inner product, Pr[〈x, r〉 �= 〈y, r〉] = 1

2 . Thus, Bob outputs "not equal"
with probability 1

2 . To decrease the probability of a wrong answer, Alice and
Bob repeat these procedure several times with several independently chosen
random strings r. If Alice and Bob repeat (in parallel or sequentially) l times the
described procedure, then the probability that 〈x, ri〉 �= 〈y, ri〉 for all r1, . . . , rl is
equal to 2−l. So, for l = �log 1/ε� we reduce the probability of error to ε, while
communication complexity is O(log 1/ε).

2.2 Trivial Generalizations for EQN
n

The protocols from the previous section can be easily adapted to get some pro-
tocols for the direct sum of N copies of EQn, i.e., for the function EQN

n .

Adaptation of the Protocol from Paragraph 2.1. We run the protocol
independently for each pair of blocks(xi, yi). The probability of a wrong answer
for at least one pair of blocks must be bounded by ε. To this end we need to
reduce the probability of an error for each of the N pairs of blocks to be less
than ε′ = ε/N . This results in communication complexity O(N(log(n/ε′))) =
O(N(log n+logN +log 1/ε))). Thus, from the trivial adaptation of the protocol
from paragraph 2.1 we get Cε

priv(EQ
N) = O(N(log n+ logN + log 1/ε))).

Adaptation of the Protocol from Paragraph 2.1. We run the protocol
from section 2.1 for each pair of blocks (xi, yi) independently. To guarantee that
the total probability of error is bounded by ε, we need to reduce the probability
of error for each pair of blocks to ε′ = ε/N . Then we get

Cε
pub(EQ

N) = O(N(logN + log 1/ε)).

From Public to Private Randomness. The last protocol above can be trans-
formed into a protocol with private source of randomness. Indeed, from Theo-
rem 1 we get immediately

Cpriv = O(N · logN +N log
1

ε
+ log(n ·N) + log

1

δ
) = O(N · logN + log

1

ε
).

Note that this communication protocol requires exponential computational com-
plexity (at least for the standard proof of Theorem 1).

How to reduce the obtained (rather trivial) bound O(N · logN), hopefully to
O(N)? How to achieve this bound with a communication protocol that requires

216 V. Nikishkin

only poly-time computations? The construction of such a communication pro-
tocol is the main result of this paper. Loosely speaking, we plan to do it in two
steps. In the first step, we construct a more effective communication protocol for
the communication model with public randomness (this part of our construction
is based on ideas of A. Smith). In the second step, we reduce the protocol with
public randomness to a protocol with private randomness. In some sense, this
idea is similar to the usual proof of Theorem 1: we substitute the sequence of
random bits (shared by Alice and Bob) by a sequence of pseudorandom bits,
which can be obtained as an output of a pseudorandom generator. A random
seed of this generator is rather short. So, one of the participants can choose it
at random and then send to another participant. E.g., Alice chooses a random
seed and sends it to Bob; then Alice and Bob apply the pseudorandom gener-
ator to this same seed, and then both participants obtain the same long string
of pseudorandom bits. The sharp difference between our construction and the
standard general proof of Theorem 1 is that we use an explicit and effectively
computable generator (the generator of N. Nisan).

Before explaining the details of our construction, we remind the technical
tools used in our proof.

3 Pseudorandomness, Codes and String Synchronization

3.1 Pseudorandom Generator

In our construction we need a pseudorandom generator that fools tests with
bounded memory. Technically, we assume that a generator is a mapping G :
{0, 1}m → {0, 1}n, and a test is a randomized Turing machine with working
space of some size S. Technically, we define a test (for a pseudorandom generator)
as follows.

Definition. A statistical test with memory S is a deterministic Turing machine
M with three tapes: a finite working tape of size S, an auxiliary read-only tape
with some binary string a = (a1, ...an, ...) (an advice string), and a one-way input
tape with an n-bit input x (the reading head on the input tape can move from
the left to the right but cannot move back to the left). We always assume that
the length of a should not be greater than exp(S). This machine returns 1(true)
or 0(false). We denote machine’s output by Ma(x). Informally the output means
that test accepts/rejects x given an advice string a.

Definition. A function G : {0, 1}m → {0, 1}n is called a pseudorandom gener-
ator, ε-robust for tests with memory S(n), if for every statistical test A with S
bits of working memory

|Pry∈r{0,1}n [A accepts y]− Prx∈r{0,1}m [A accepts G(x)]| < ε.

Here the notation x ∈r X means x chosen uniformly at random from X. Note
that this definition involves several parameters: n, m, S, ε. In general, these
parameters can be chosen independnetly. But typically we use this definition
when m, S, ε are some functions of n.

Amortized Communication Complexity of an Equality Predicate 217

Nisan suggested in [4] an explicit construction of a pseudorandom generator
that fools tests with sufficiently small memory:

Theorem 3 ([4]). There exists a constant c > 0 such that for any R and S
there exists a pseudorandom generator G : cS logR → R (computable in time
poly(R)) that is 2−S-robust for all statistical tests with S bits of working memory.

In Section 4.6 we construct some statistical test (with small working memory
S) which is roughly equivalent to our communication protocol. Then, we use
the standard argument: the protocol with high probability returns the correct
answer when running on truly random public bits; futher, the generator of Nisan
fools our test; hence, given pseudorandom bits instead of truly random ones, the
communication protocol must also return the correct answer with high proba-
bility.

3.2 BCH Codes

Our construction involves implicitly the classic BCH-codes, see [12]. We do not
employ any specific properties of the construction of the BCH codes. We use only
the fact that ∀m > 3 and t < 2m−1 there exists an explicit construction of a
linear code with parameters [n, k, d] such that the codeword length is n = 2m−1,
the number of checksum bits is n − k ≤ mt, and the minimal distance between
codewords of the code is d ≥ 2t + 1. We also use the fact that BCH codes can
be decoded efficiently by the Berlekamp-Messy algorithm, [13].

The BCH codes are not used explicitly in our paper. However, we use a con-
struction by Orlitsky from Section 3.3. This construction involves a linear error
correcting code, which is not chosen explicitly in Section 3.3. In our applica-
tions, the BCH codes fits perfectly that construction. In what follows we refer
to Orlitsky’s protocol assuming that the codes used there are the BCH codes.

3.3 Strings Synchronization Protocols

In our communication protocol we will need to solve the following auxiliary
problem. Let Alice and Bob each hold an n-bit string, A and B, respectively.
We assume that A and B differ from each other in at most e positions. Alice
and Bob want to exchange their inputs, i.e., Alice should get string B, and Bob
should get string A. We will call this problem the string synchronization problem
(Alice and Bob want to synchronize their inputs).

Orlitsky suggested in [3] a deterministic communication protocol for the prob-
lem of synchronization of a pair of n-bit strings with the Hamming distance from
each other at most e. Communication complexity of this protocol is O(e log n).
All computations of Alice and Bob in this protocol run in polynomial time in
the length of the strings. More formally, the theorem (see [2]) is as follows:

Theorem 4. Assume there exists a linear error-correcting code with parameters
(α,R(α)), with a polynomial time decoding algorithms. Then there exists a one-
round communication protocol solving the string synchronization problem with

218 V. Nikishkin

communication complexity C = (1−R(α)) ·n. Computational complexity of this
protocol is polynomial.

If the BCH code is used (noted in section 3.2), the communication complexity of
this protocol is O(e logn). The protocol of Orlitsky makes sense if the distance e
between strings is very small. In case e = Ω(n), the communication complexity
of Orlitsky’s protocol is worse than the trivial upper bound 2n.

The parameters of the BCH code correspond to the ones of the synchronization
protocol code in the following way: α = d/n,R(α) = n− k

Adam Smith suggested in [9] a randomized communication protocol for the
problem of strings synchronization with an asymptotically optimal bound for
communication complexity for the case e = const · n. More precisely, Smith
proved that for every δ(n) = Ω(log logn√

logn
) there exists an explicit communica-

tion protocol (with a private source of randomness) that solves the problem of
synchronization of n bit strings that differ in at most e positions, with com-
munication complexity n(H(e

n) + δ) and error ε = 2−Ω(δ3n
log n), where H(p) =

p log2
1
p + (1 − p) log 1

1−p . Algorithms of Alice and Bob in this protocol run in
polynomial time.

4 Proof of the Main Theorem

In this section we present a protocol for EQN
n and prove Theorem 2.

4.1 Overview of the Protocol

Our protocol runs as follows. First of all, Alice generates a string of truly random
bits of length O(N) and sends this string to Bob. They both use Nisan’s generator
and produce pseudorandom bits from this seed. In what follows, Alice and Bob
use this long string of pseudorandom bits.

Then, Alice and Bob iteratively calculate "checksums" (inner products mod
2 with the pseudorandom string) for their n-bit blocks and synchronize strings
of the resulting checksums using the probabilistic or deterministic protocol from
Section 3.3. As soon as some pair of non-equal blocks X i, Y i is revealed (if some
checksums for these blocks are different), Alice and Bob remove these blocks from
the list of their bit strings and never test them again. Thus, in every consecutive
iteration the fraction of non-equal pairs of blocks (that are not discovered yet)
becomes smaller and smaller.

in every consecutive iteration, we make the length of the checksums larger
and larger, so for each pair of non-equal blocks the probability to be discovered
becomes closer and closer to 1. Hence, the fraction of (non-discovered) pairs
of non-equal blocks gradually reduces, and only pairs of equal blocks remain
untouched at their places. This means that in every consecutive iteration the
Hamming distance between arrays of checksums (obtained by Alice and Bob
respectively) becomes smaller and smaller.

Amortized Communication Complexity of an Equality Predicate 219

In each iteration Alice and Bob need to exchange the checksums computed for
their blocks of bits (inner products with the same pseudorandom bits). For sev-
eral initial iterations (technically, for log logN iterations) we use the randomized
synchronization protocol by Smith. Then we switch to the deterministic protocol
by Orlitsky. In what follows we explain this protocol in more detail.

4.2 Generation Stage

Alice generates r = log ((n ·N)4) · log(2
N

log (n·N)) = O(N) random bits and sends
them to Bob. Then Alice and Bob apply Nisan’s pseudorandom generator from
Section 3.1 and get R = n2N2 pseudorandom bits. The length of the seed r is
chosen so that the generator is ε-robust against tests with working memory of
size N

log (n·N) .

4.3 Probabilistic Synchronization Stage (steps i = 1, . . . , log logN)

The input of Alice is a sequence of N blocks X = (X1, . . . , XN), and the input
of Bob is a sequence of N blocks Y = (Y 1, . . . , Y N). Each block Xj or Y j is an
n-bits string.

We start the discussion with a minor technical difficulty. In our construction
we employ the synchronization protocols by Orlitsky and Smith; these protocols
need to know in advance the distance between the strings that should be syn-
chronized. As we may not know the initial distance between X and Y , we will
add N dummy equal blocks to both X and Y . This simple trick guarantees that
in the very first stage of the protocol the fraction of equal pairs of blocks is no
less than 1/2. This trick increases the total number of blocks from N to 2N , but
it will not affect the asymptotic complexity of our protocol.

Now we explain the main part of the protocol. For i = 1, . . . , log logN we
repeat the following procedure. We set λ (a constant to be fixed later). Alice and
Bob computes for each of their blocks (for all Xj and Y j) λ random checksums.
One checksum for each block Xj or Y j is the inner products modulo 2 between
this block and a new portion of pseudorandom bits generated in the previous
stage, e.g., for Xj = x1 . . . xn and Y j = y1 . . . yn the checksums are the bits

x1r1 + . . .+ xnrn (mod 2) and y1r1 + . . .+ ynrn (mod 2),

where r1 . . . rn is a block from the stream of pseudorandom bits, similar to the
protocol in Section 2.1 (Alice and Bob share the same sequence of pseudorandom
bits, so they can use the same bits r1 . . . rn in the checksums for both Xj and
Y j). Thus, the resulting string of checksums (for Alice and Bob) consists of
λ · [number of blocks] bits. E.g., at the very first iteration it makes λ · 2N bits
since Alice and Bob computes the checksums for all 2N blocks (N original blocks
and N dummy blocks).

Then Alice and Bob exchange their checksums using the randomized string
synchronization protocol by Smith. In the i-th step we run the synchronization
protocol assuming that Alice’s and Bob’s checksums differ from each other in

220 V. Nikishkin

a fraction at most 2−i of blocks (this threshold for the number of different
blocks should be given to the synchronization protocol). When the checksums
are exchanged, Alice and Bob remove from their lists all blocks Xj and Y j whose
checksums are not identical. Note that for a pair of equal blocks Xj, Y j , the
random checksums are always equal. If blocks are not equal to each other, then
the probability to get λ equal checksums is about 2−λ (this probability is not
exactly 2−λ since Alice and Bob use pseudorandom bits r1 . . . rn rather than
truly random ones to compute the checksums).

Typically, on each step the number of non-discovered pairs of non-equal blocks
Xj, Y j is reduced by a factor of about 2−λ. We say that the i-th step of the
described procedure fails, if in this stage Alice and Bob discover less than 50%
of the remaining pairs of non-equal blocks Xj, Y j . If at least one step fails, we
cannot guarantee the correctness of the result of the protocol. If no step fails,
then on the i-th step the arrays of checksums of Alice and Bob differ from each
other in a fraction at most 1/2i of all computed inner products.

The communication complexity of this stage of the protocol is the sum of com-
munication complexities of runs of Smith’s protocol at steps i = 1, . . . , log logN :

log logN∑
i=1

(H(1/2i) + δ)λN = O(N),

where δ = log lognN√
lognN

. The last equation follows from the property of Smith syn-
chronization protocol and from the asymptotic H(α) = α log(1 − α) + O(1) as
α tends to 0.

4.4 Deterministic Synchronization Stage
(i = log logN + 1, . . . , logN)

In this stage we continue essentially the same procedure as in the prevoius stage.
There are two important differences: now we use checksums of variable size λi,
and Alice and Bob apply the deterministic protocol of Orlitsky (instead or the
randomized protocol of Smith) to exchange their checksums.

At each step i = log logN, . . . , logN Alice and Bob compute λi = � 2i

log2 N
�

checksums for each remaining block Xj and Y j , respectively. Again, each check-
sum of a block is the inner product (mod 2) with a new portion of pseudorandom
bits. Then Alice and Bob exchange the computed lists of checksums. Now they
use the deterministic synchronization protocol by Orlitsky, see Section 3.3.

The communication complexity of the deterministic protocol is about logN
times greater than the complexity of the protocol by Smith. But nevertheless we
can use it since the Hamming distance between checksums is reasonably small.
The communication complexity of this stage is

logN∑
i=log logN

�Nλi logN

2i
� ≈

logN∑
i=log logN

logN · 2i

log2 N · 2i
·N = O(N).

Amortized Communication Complexity of an Equality Predicate 221

4.5 Summary

When the described stages are completed, we assume that Alice and Bob have
discovered all pairs of non-equal blocks. All the remaining pairs Xj , Y j (all
pairs of blocks whose checksums at all steps of the protocol remain equal to each
other) are considered equal.

4.6 Probability of Error

We need to estimate the probability of error in our protocol. For simplicity, let
us assume first that instead of R pseudorandom bits Alice and Bob share R
independent and uniformly distributed random bits (so, we temporarily switch
to the model with a public source of randomness). Then stages 4.3 and 4.4 make
sense, and we can estimate the probability of error of the protocol.

The protocol may return a wrong answer because of the following reasons:
(1) the probabilistic synchronization protocol of Smith fails at some stage; (2)
some of the steps i = 1, . . . , logN fail since more than 50% of random checksums
turn out to be equal for non-equal pairs of blocks Xj , Y j . Let us estimate the
probabilities of each of these two events.

Error in the Probabilistic Synchronization Protocol. Summing up the
probabilities of error in Smith’s synchronization in every step of our protocol we
obtain (for some constant c > 0)

P (Err) =

log logN∑
i=1

O(2−(
N

log N)) ≤ O(2−
cN

log N).

Failure of Checksum Verification. A step i = 1, . . . , logN fails if for more
than half of (not discovered yet) pairs of non-equal blocks Xj, Y j all the check-
sums turn out to be equal. We estimate the probability of this event using the
Chernoff bound. We may assume that after the first (i − 1) steps there remain
N/2i pairs of non-equal blocks.

For a pair of blocks Xj, Y j that are not equal, the probability that their inner
products with a random string r1 . . . , rn have the same parity, is equal to 1/2.
When we calculate λ independent checksums, the probability that all pairs of
checksums for Xj and Y j are equal to each other, is 1/2λ. We say that the whole
step of the protocol fails if the event all checksums are equal happens for more
than 50% of pairs of non equal Xj , Y j .

We assumed that after (i − 1) steps of the protocol the number of remain-
ing non equal pairs of blocks (Xj , Y j) is Ni = N

2i . For each of these pairs the
probability not to be discovered at step i is 2−λ. We estimate the probability of
failure, i.e., the probability that more than Ni/2 pairs remain not revealed. By
the Chernoff bound this probability is not greater than 2NiD(q,p), where

D(q, p) = q ln (
q

p
) + (1− q) ln (

1− q

1− p
) for q =

1

2
, p =

1

2λ
.

222 V. Nikishkin

In the first steps i = 1, . . . , log logN steps of the protocol λ = const (a large
enough constant), and later for i = log logN +1, . . . , logN we have λi =

2i

log2 N
.

Hence, the probability of failure P (Erri) = O(2
− N

log2 N). Sum up the error prob-
abilities for all steps of stages 2 and 3:

logN∑
i=1

O(2
− N

log2 N) ≈ logN · O(2
− N

log2 N) = O(2
−c N

log2 N)

for some c > 0.

Pseudorandom Generator. In this section we construct a statistical test (see
the definition in Section 3.1) that simulates one step of our protocol. In a sense,
this test verifies that (pseudo)random bits are “suitable” for our communication
protocol: they do not cause a failure of the protocol in the i-th iteration. The
"advice strings" of this statistical test contain a sequence of pairs of blocks Xj ,
Y j from the inputs of Alice and Bob that have passed the checksum tests in the
first i − 1 rounds. The input x is a string of (pseudo)random bits that should
be accepted or rejected. The test rejects x (for a given advice string a), if our
communication protocol fails in the i-th round with random bits x while Alice
and Bob are given the blocks Xj , Y j corresponding to the advice a.

The algorithm of the test is straightforward: it computes the checksums for
Xj and Y j as it is done by our communication protocol in the i-th round,
with random bits x shared by Alice and Bob, and compares the corresponding
checksums for Alice’s and Bob’s blocks. Note that the test does not simulate
the synchronization procedure (the sub-protocols following the construction of
Orlitsky and Smith).

The working space of our machine is O(N
log2 N

). This is enough to simulate
the computation of the checksums performed by our communication protocol.
The test accepts x, if in the simulation at least 50% of non-equal pairs of blocks
are successfully revealed, and rejects x otherwise. In other words, a teststring x
is rejected if it causes a failure in the i-th round of the protocol.

Theorem 3.1 guarantees that Nisan’s pseudorandom generator fools this test.
Hence, for our protocol the probability of failure with pseudorandom bits is not
much greater than the probability of failure for truly random bits. More precisely,
the difference between the probabilities of failure for random and pseudorandom
bits is at most

2−S(N) = O(2
−c N

log2 N).

We sum up these values for all steps i = 1, . . . , logN and get

P (Err) ≤
logN∑
i=1

O(2
− N

log2 N) = O(2
−c3 N

log2 N).

Summary. The probability of error of our protocol consists of three parts: (1)
the probability of error in Smith’s protocol, (2) the probability of failure with

Amortized Communication Complexity of an Equality Predicate 223

truly random checksums in some step i = 1, . . . , logN , and (3) the additional
probability of failure caused by the difference between truly random and pseu-
dorandom checksums. Therefore,

P (Err) = O(2−c1(
N

log N)) +O(2
−c2 N

log2 N) +O(2−c3
N

log N) = O(2
−C N

log2 N).

This concludes the proof of the correctness of our communication protocol.

References

1. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge Univ. Press
(1997)

2. Chuklin, A.: Effective protocols for low-distance file synchronization.
arXiv:1102.4712 (2011)

3. Orlitsky, A.: Interactive communication of balanced distributions and of correlated
files. SIAM Journal on Discrete Mathematics 6, 548–564 (1993)

4. Nisan, N.: Pseudorandom Generators for Spacebounded Computation. Combina-
torica 12(4), 449–461 (1992)

5. Nisan, N., Widgerson, N.: Hardness vs. Randomness. Journal of Computer and
System Sciences 49(2), 149–167 (1994)

6. Canetti, R., Goldreich, O.: Bounds on Tradeoffs between Randomness and Com-
munication Complexity. Computational Complexity 3(2), 141–167 (1990)

7. Newman, L.: Private vs. Common Random Bits in Communication Complexity.
Information Processing Letters 39(2), 67–71 (1991)

8. Impagliazzo, R., Nisan, N., Widgerson, A.: Pseudorandomness for Network Al-
gorithms. In: Proc. of the 26th ACM Symposium on Theory of Computing,
pp. 356–364 (1994)

9. Smith, A.: Scrambling Adversarial Errors Using Few Random Bits, Optimal Infor-
mation Reconciliation, and Better Private Codes. In: Proc. of the 18th ACM-SIAM
Symposium on Discrete Algorithms, pp. 395–404 (2007)

10. Nisan, N., Zukerman, D.: Randomness is Linear in Space. 1993 Journal of Com-
puter and System Sciences 52(1), 43–52 (1996)

11. Feder, T., Kushilevitz, E., Naor, M., Nisan, N.: Amortized Communication Com-
plexity. SIAM J. Comput. 24(4), 736–750 (1991)

12. Bose, R.C.M., Ray-Chaudhuri, D.K.: On A Class of Error Correcting Binary Group
Codes. Information and Control 3(1), 68–79 (1960)

13. Berlekamp, E.R.: Nonbinary BCH decoding. IEEE Transactions on in Information
Theory 14(2), 242 (1967)

14. Karchmer, M., Raz, R., Wigderson, A.: On Proving Super-Logarithmic Depth
Lower Bounds via the Direct Sum in Communication Complexity. In: Proc. of
6th IEEE Structure in Complexity Theory, pp. 299–304 (1991)

15. Parnafes, I., Raz, R., Wigderson, A.: Direct Product Results and the GCD Prob-
lem, in Old and New Communication Models. In: STOC 1997 Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 363–372
(1997)

16. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational Complexity and the
Direct Sum Problem for Simultaneous Message Complexity. In: Proceedings of
42nd IEEE Symposium on Foundations of Computer Science (2001)

17. Sherstov, A.: Strong Direct Produce Theorems for Quantum Communication and
Query Complexity. In: STOC 2011 Proceedings of the 43rd Annual ACM Sympo-
sium on Theory of Computing, pp. 41–50 (2011)

On Coloring of Sparse Graphs

Alexandr Kostochka1,2,� and Matthew Yancey1

1 University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
2 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

Abstract. Graph coloring has numerous applications and is a well-
known NP-complete problem. The goal of this paper is to survey recent
results of the authors on coloring and improper coloring of sparse graphs
and to point out some polynomial-time algorithms for coloring (not nec-
essarily optimal) of graphs with bounded maximum average degree.

Mathematics Subject Classification: 05C15, 05C35

Keywords: graph coloring, k-critical graphs, improper coloring.

1 Introduction

A proper k-coloring, or simply k-coloring, of a graph G = (V,E) is a function
f : V → {1, 2, . . . , k} such that for each uv ∈ E, f(u) �= f(v). A graph G is
k-colorable if there exists a k-coloring of G. The chromatic number, χ(G), of
a graph G is the smallest k such that G is k-colorable. The problem of graph
coloring with few colors has long been associated with resource assignment. One
of the often cited related problems is the problem of assigning radio frequencies
to a network of radio towers. The problem is known to be difficult: Determining
if a graph is k-colorable when k ≥ 3 was in Karp’s [11] original list of 21 NP-
complete problems. Furthermore, it is an NP-complete problem to even color a
graph G with 1000χ(G) colors [43]. This situation leads to constructing efficient
algorithms for approximate coloring of graphs in special classes and to studying
extremal problems on colorings.

What is said, relates also to improper colorings. A d-improper k-coloring of a
graph G is a vertex coloring of G using k colors such that the graph induced by
every color class has maximum degree at most d. By definition, a proper coloring
of a graph is exactly a 0-improper coloring. So, a d-improper coloring is a relax-
ation of a proper coloring. Havet and Sereni [9] describe applications of d-improper
k-colorings to frequency assignment problems. But improper colorings are even
more complicated than the ordinary coloring. While it is easy to check whether
a given graph is 2-colorable, Corrěa, Havet, and Sereni [10] proved that even the
problem of existence of a 1-improper 2-coloring in the class of planar graphs is
NP-complete.

It is natural that a graph G with a high average degree, 2 |E(G)|
|V (G)| , is harder to

color with few colors. So, a low average degree of a graph may indicate that it is

� Research of this author is supported in part by NSF grant DMS-0965587 and by
grants 12-01-00448 and 12-01-00631 of the Russian Foundation for Basic Research.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 224–234, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Coloring of Sparse Graphs 225

easier to color this graph. However, it could be that although the whole graph
has low average degree, some its part is much denser and cannot be colored.
A graph parameter controlling such anomalies is the maximum average degree,

mad(G) = maxH⊆G 2 |E(H)|
|V (H)| . Kurek and Rucin’ski [36] called graphs with low

maximum average degree globally sparse. In this paper, we describe some recent
results of the authors (some of them are joint with O. Borodin and B. Lidický) on
coloring and improper coloring of sparse graphs. These results imply polynomial-
time algorithms for coloring globally sparse graphs with few colors.

One of the key notions in graph coloring is the one of critical graphs. A graph
G is (d-improperly) k-critical if G is not (d-improperly) (k−1)-colorable, but ev-
ery proper subgraph of G is (d-improperly) (k−1)-colorable. Critical graphs were
first defined and used by Dirac [12–14] in 1951-52. A reason to study k-critical
graphs is that every k-chromatic graph (i.e. graph with chromatic number k)
contains a k-critical subgraph and k-critical graphs have more restricted struc-
ture. For example, k-critical graphs are 2-connected and (k−1)-edge-connected,
which implies that every k-chromatic graph contains a 2-connected and (k− 1)-
edge-connected subgraph. The only 1-critical graph is K1, and the only 2-critical
graph is K2. The only 3-critical graphs are the odd cycles. There are no k-critical
graphs with k + 1 vertices. For every k ≥ 4 and every n ≥ k + 2, there exists a
k-critical n-vertex graph.

One of the basic questions on k-critical graphs is:What is the minimum number
fk(n) of edges in a k-critical graphwith n vertices?This questionwas first asked by
Dirac [16] in 1957 and then was reiterated by Gallai [22] in 1963, Ore [37] in 1967
and others [27, 28, 42]. More generally, we may ask about fk,d(n) — the minimum
number of edges in a d-improperly k-critical graph with n vertices.

In this paper, we discuss results towards this problem and some applications
of these results.

2 Gallai’s Conjecture

Since the minimum degree of any k-critical graph is at least k − 1,

fk(n) ≥
k − 1

2
n (1)

for all n ≥ k, n �= k+1. Equality is achieved for n = k and for k = 3 and n odd.
Brooks’ Theorem [11] implies that for k ≥ 4 and n ≥ k+2, the inequality in (1)
is strict. In 1957, in order to to evaluate chromatic number of graphs embedded
into fixed surfaces, Dirac [16] proved that for k ≥ 4 and n ≥ k + 2,

fk(n) ≥
k − 1

2
n+

k − 3

2
. (2)

The bound is tight for n = 2k − 1 and yields fk(2k − 1) = k2 − k − 1. Later,
Kostochka and Stiebitz [30] improved (2) to

fk(n) ≥
k − 1

2
n+ k − 3 (3)

when n �= 2k − 1, k. This yields fk(2k) = k2 − 3 and fk(3k − 2) = 3k(k−1)
2 − 2.

226 A. Kostochka and M. Yancey

Gallai [22] has found the values of fk(n) for n ≤ 2k − 1 and proved the
following general bound for k ≥ 4 and n ≥ k + 2:

fk(n) ≥
k − 1

2
n+

k − 3

2(k2 − 3)
n. (4)

For large n, the bound is much stronger than bounds (2) and (3). Based on his
description of k-critical graphs with only one vertex of degree greater than k−1,
Gallai [21] conjectured the following.

Conjecture 1 (Gallai [21]). If k ≥ 4 and n = 1(mod k − 1), then

fk(n) =
(k2 − k − 2)n− k(k − 3)

2(k − 1)
.

Ore [37] observed that Hajós’ construction implies

fk(n+ k − 1) ≤ fk(n) +
(k − 2)(k + 1)

2
= fk(n) + (k − 1)(k − 2

k − 1
)/2, (5)

which yields that the limit φk := limn→∞
fk(n)

n exists and satisfies

φk ≤ k

2
− 1

k − 1
. (6)

Ore conjectured that his equation (5) is actually an equality:

Conjecture 2 (Ore [37]). If k ≥ 4, and n ≥ k + 2, then

fk(n+ k − 1) = fk(n) + (k − 1)(k − 2

k − 1
)/2.

Note that Conjecture 1 is equivalent to Conjecture 2 for n = 1(mod k − 1).
Some lower bounds on fk(n) were obtained in [16, 35, 21, 30, 31, 20]. Recently,
the authors [32] proved Conjecture 1 in full.

Theorem 3 ([32]). If k ≥ 4 and G is k-critical, then |E(G)| ≥⌈
(k+1)(k−2)|V (G)|−k(k−3)

2(k−1)

⌉
. In other words, if k ≥ 4 and n ≥ k, n �= k + 1,

then

fk(n) ≥ F (k, n) :=

⌈
(k + 1)(k − 2)n− k(k − 3)

2(k − 1)

⌉
.

The result also confirms Conjecture 2 in the following cases: (a) k = 4 and
every n ≥ 6, (b) k = 5 and n ≡ 2(mod 4), and (c) every k ≥ 5 and n ≡ 1(
mod k − 1). By examining known values of fk(n) when n ≤ 2k, it follows that
fk(n)− F (k, n) ≤ k2/8.

It is known that there are infinitely many k-extremal graphs, i.e. the k-critical

graphs G such that |E(G)| = (k+1)(k−2)|V (G)|−k(k−3)
2(k−1) . In particular, every graph

in the family of so called k-Ore graphs is k-extremal. Very recently, the authors
managed to describe all k-extremal graphs.

On Coloring of Sparse Graphs 227

Fig. 1. Comparison of the bounds when k = 7

Theorem 4. Let k ≥ 4 and G be a k-critical graph. Then G is k-extremal
if and only if it is a k-Ore graph. Moreover, if G is not a k-Ore graph, then

|E(G)| ≥ (k2−k−2)|V (G)|−yk

2(k−1) , where yk = max{2k − 6, k2 − 5k + 2}.

The message of Theorem 4 is that although for every k ≥ 4 there are infinitely
many k-extremal graphs, they all have a simple structure. In particular, every
k-extremal graph distinct from Kk has a separating set of size 2. The theorem
gives a slightly better approximation for fk(n) and adds new cases where we
now know the exact values of fk(n): They are now known for (a) k ∈ {4, 5} and
every n ≥ k + 2, (b) all k ≥ 6 and n ≡ 1(mod k − 1), (c) k = 6 and n ≡ 0, 2(
mod 5), and (d) k = 7 and n ≡ 2(mod 6) .

This value of yk in Theorem 4 is best possible in the sense that for every k ≥ 4,
there exists an infinite family of 3-connected k-critical graphs with |E(G)| =
(k2−k−2)|V (G)|−yk

2(k−1) . By (5), if we construct an n0-vertex k-critical graph for which

our lower bound on fk(n0) is exact, then the bound on fk(n) is exact for every
n of the form n0 + s(k − 1). So, we only need to construct

– a 4-critical 6-vertex graph with
⌈
9 2
3

⌉
= 10 edges,

– a 4-critical 8-vertex graph with �13� = 13 edges,
– a 5-critical 10-vertex graph with �22� = 22 edges,
– a 5-critical 7-vertex graph with

⌈
15 1

4

⌉
= 16 edges,

– a 5-critical 8-vertex graph with
⌈
17 3

4

⌉
= 18 edges,

– a 6-critical 10-vertex graph with
⌈
27 1

5

⌉
= 28 edges,

– a 6-critical 12-vertex graph with
⌈
32 4

5

⌉
= 33 edges, and

– a 7-critical 14-vertex graph with
⌈
45 1

3

⌉
= 46 edges.

These graphs are presented in Figure 2.

228 A. Kostochka and M. Yancey

Fig. 2. Minimal k-critical graphs

3 Applications

3.1 Algorithms

Since the proof of Theorem 3 is constructive, it yields the following algorithmic
counterpart.

Theorem 5. If k ≥ 4, then every n-vertex graph G with |E(H)| <
(k+1)(k−2)|V (H)|−k(k−3)

2(k−1) for each H ⊆ G can be (k−1)-colored in O(k3.5n6.5 log(n))
time.

The bound on complexity is not best possible. In particular, the algorithm finds
maximum flows in auxiliary networks many times, so if one uses the Orlin’s
bounds on the running time of max-flow problems, the bounds will be improved.

Since every k-Ore graph distinct from the complete graph Kk contains a
separating set of size 2 and decomposes into two k-Ore graphs of a smaller
order, there is a simple algorithm that in time O(n5) checks whether a given
n-vertex graph is a k-Ore graph. Together with an analog of the algorithm in
Theorem 5 that uses the proof of Theorem 4 instead of Theorem 3, this yields
the following

Theorem 6. Let k ≥ 4 and yk = max{2k − 6, k2 − 5k + 2}. Then there exists
a polynomial-time algorithm that for every n-vertex graph G with |E(H)| <
(k+1)(k−2)|V (H)|−yk

2(k−1) for each H ⊆ G either finds a (k− 1)-coloring of G or finds

a subgraph of G that is a k-Ore graph.

3.2 Local and Global Graph Properties

Krivelevich [35] presented nice applications of his lower bounds on fk(n) and
related graph parameters to finding complex graphs whose small subgraphs are
simple. Two his bounds can be improved using Theorem 3 as follows.

On Coloring of Sparse Graphs 229

Let f(
√
n, 3, n) denote the maximum chromatic number over n-vertex graphs

in which every
√
n-vertex subgraph is 3-colorable. Krivelevich proved that for

every fixed ε > 0 and sufficiently large n,

f(
√
n, 3, n) ≥ n6/31−ε. (7)

To show this, he applied his result that every 4-critical t-vertex graph with odd
girth at least 7 has at least 31t/19 edges. If instead of this, we simply use our
bound on f4(n), then repeating almost word by word Krivelevich’s proof of his
Theorem 4 (choosing p = n−0.8−ε

′
), we get that for every fixed ε and sufficiently

large n,
f(
√
n, 3, n) ≥ n1/5−ε. (8)

Another result of Krivelevich is:

Theorem 7 ([35]). There exists C > 0 such that for every s ≥ 5 there exists a

graph Gs with at least C
(

s
ln s

) 33
14 vertices and independence number less than s

such that the independence number of each 20-vertex subgraph at least 5.

He used the fact that for every m ≤ 20 and every m-vertex 5-critical graph H ,

|E(H)| − 1

m− 2
≥ �17m/8� − 1

m− 2
≥ 33

14
.

From Theorem 3 we instead get

|E(H)| − 1

m− 2
≥

⌈
9m−5

4

⌉
− 1

m− 2
≥ 43

18
.

Then repeating the argument in [35] we can replace 33
14 in the statement of

Theorem 7 with 43
18 .

3.3 Coloring Planar Graphs

Since planar graphs are sparse, Theorem 3 helps proving results on 3-coloring of
planar graphs with restrictions on the structure. The case k = 4 of Theorem 3
is as follows:

Theorem 8. If G is a 4-critical n-vertex graph then |E(G)| ≥ 5n−2
3 .

In [33], the authors gave a 3-page proof of Theorem 8. And this allows to give
a half-page proof of the classical Grötzsch’s Theorem [24] that all triangle-free
planar graphs are 3-colorable. The original proof of Grötzsch’s Theorem is some-
what sophisticated. The subsequent simpler proofs (see, e.g. [39] and references
therein) are still not too simple. The proof below from [33] is the shortest so far:

Proof of Grötzsch’s Theorem: Let G be a plane graph with the smallest
|E(G)| + |V (G)| for which the theorem does not hold. Then G is 4-critical.
Suppose G has n vertices, e edges and f faces.

230 A. Kostochka and M. Yancey

CASE 1: G has no 4-faces. Then 5f ≤ 2e and so f ≤ 2e/5. From this and Euler’s
Formula n− e+ f = 2, we obtain n− 3e/5 ≥ 2, i.e., e ≤ 5n−10

3 , a contradiction
to Theorem 8.

CASE 2: G has a 4-face (x, y, z, u). Since G has no triangles, xz, yu /∈ E(G). If
the graph Gxz obtained from G by gluing x with z has no triangles, then by the
minimality of G, Gxz is 3-colorable, and so G also is 3-colorable. Thus G has an
x, z-path (x, v, w, z) of length 3. Since G itself has no triangles, {y, u}∩{v, w} = ∅
and there are no edges between {y, u} and {v, w}. But then G has no y, u-path of
length 3, since such a path must cross the path (x, v, w, z). Thus the graph Gyu

obtained from G by gluing y with u has no triangles, and so, by the minimality
of G, is 3-colorable. Then G also is 3-colorable, a contradiction. ��
Borodin, Lidický and the authors [8] used Theorem 8 to present simple proofs
for some 3-coloring results on planar graphs, in particular, for the Grünbaum-
Axenov Theorem that every planar graph with at most 3 triangles is 3-colorable.
This theorem is sharp in the sense that there are infinitely many plane 4-critical
graphs with exactly four triangles. Moreover, Thomas and Walls [38] constructed
infinitely many such graphs without 4-faces.

Fig. 3. Some 4-critical graphs from the family described by Thomas and Walls [38]

Very recently, Borodin, Lidický and the authors using Theorem 4 described
all plane 4-critical graphs with exactly four triangles and no 4-faces. Using The-
orem 8 they also proved:

Theorem 9. Let G be a triangle-free planar graph and H be a graph such that
G = H − v for some vertex v of degree at most 4. Then H is 3-colorable.

The theorem sharpens the similar result by Jensen and Thomassen [26] where
the degree of v was at most 3 and is sharp in the sense that there are infinitely
many plane triangle-free graphs that are obtained from a 4-critical graph by
deleting a vertex of degree 5.

On Coloring of Sparse Graphs 231

4 Improper 2-Colorings

As it was mentioned in the introduction, even the problem whether a given
planar graph is 1-improperly 2-colorable is NP-complete. This motivates the
study of improper 2-colorings for globally sparse graphs. A (j, k)-coloring of a
graph G is a 2-coloring of V (G) such that every vertex of Color 1 has at most j
neighbors of Color 1 and every vertex of Color 2 has at most k neighbors of its
color. By definition, a (d, d)-coloring is simply a d-improper 2-coloring. Esperet,
Montassier, Ochem and Pinlou [19] proved that for every j ≥ 0 and k ≥ 1,
the problem of verifying whether a given planar graph has a (j, k)-coloring is
NP-complete. It is somewhat nonstandard but convenient to call a graph (j, k)-
critical if it is not (j, k)-colorable but after deleting any edge or vertex it becomes
(j, k)-colorable.

Glebov and Zambalaeva [23] proved that every planar graph G with girth,
g(G), at least 16 is (0, 1)-colorable. Then Borodin and Ivanova [1] proved that

every graph G with mad(G) < 7
3 is (0, 1)-colorable. Since mad(G) ≤ 2g(G)

g(G)−2 for

every planar graph G with girth g(G), this implies that every planar graph G
with g(G) ≥ 14 is (0, 1)-colorable. Borodin and the first author [6] proved that
every graph G with mad(G) < 12

5 is (0, 1)-colorable, and this is sharp. This also
implies that every planar graph G with g(G) ≥ 12 is (0, 1)-colorable. Dorbec,
Kaiser, Montassier, and Raspaud [18] have constructed a (0, 1)-critical graph
with girth 9.

Kurek and Ruciński [36] studied improper colorings within the more gen-
eral framework of vertex Ramsey probems. We say that G → (H1, . . . , Hk)
if for every coloring φ : V (G) → [k], there exists an i such that the sub-
graph of G induced by the vertices of Color i contains Hi. By definition, a
graph G is (K1,j,K1,k)-vertex Ramsey exactly when G has no (j, k)-coloring.
Kurek and Ruciński [36] considered the extremal function mcr(H1, . . . , Hk) =
inf{mad(F) : F → (H1, . . . , Hk)}. In particular, Kurek and Ruciński showed
that 8/3 ≤ mcr(K1,2,K1,2) ≤ 14/5. Ruciński offered 400,000 PLZ cash prize
for the exact value of mcr(K1,2,K1,2). Recently, Borodin and the authors solved
this problem.

Theorem 10 ([9]). If G is a (1, 1)-critical graph, then 5|E(G)| > 7|V (G)|.

The result is sharp in the sense that there are infinitely many (1, 1)-critical
graphs with 5|E(G)| = 7|V (G)|+ 1. One such graph is present in Fig. 4.

The proof of the result is algorithmic and yields a polynomial-time algorithm
that finds a (1, 1)-coloring for every graph G with mad(G) ≤ 14

5 . In a standard
manner, the theorem yields that every planar graph with girth at least 7 is (1, 1)-
colorable. It also refines a result by Borodin and Ivanova [2]: They showed that
every graph G with girth at least 7 and mad(G) < 14

5 can be partitioned into
two subsets such that every connected monochromatic subgraph has at most two
edges. Our result shows that each component contains at most 1 edge.

232 A. Kostochka and M. Yancey

� � � � �

� � �

� � �� � � �
�
�
�

�
�
�
�

��

�

y1

z
y2

y3

y4

y5y7

y6

u1

v1

w1 u6

v6

w6 u4

v4

w4

Fig. 4. A (1, 1)-critical graph G with 5|E(G)| = 7|V (G)|+ 1

For general j and k, the problem of (j, k)-coloring of planar and globally
sparse graphs was considered in [3–5]. Borodin and the first author [7] proved
that if k ≥ 2j + 2, then every graph with maximum average degree at most

2
(
2− k+2

(j+2)(k+1)

)
is (j, k)-colorable. On the other hand, they constructed graphs

with the maximum average degree arbitrarily close to 2
(
2− k+2

(j+2)(k+1)

)
(from

above) that are not (j, k)-colorable. Note that most likely if j ≤ k < 2j+2, then
the answer differs from that in the case k ≥ 2j+2. In particular, the answer for
(1, 1)-colorings in Theorem 10 differs from it.

References

1. Borodin, O.V., Ivanova, A.O.: Near-proper vertex 2-colorings of sparse graphs.
Diskretn. Anal. Issled. Oper. 16(2), 16–20 (2009) (in Russian); Translated in: Jour-
nal of Applied and Industrial Mathematics 4(1), 21–23 (2010)

2. Borodin, O.V., Ivanova, A.O.: List strong linear 2-arboricity of sparse graphs. J.
Graph Theory 67(2), 83–90 (2011)

3. Borodin, O.V., Ivanova, A.O., Montassier, M., Ochem, P., Raspaud, A.: Vertex
decompositions of sparse graphs into an edgeless subgraph and a subgraph of max-
imum degree at most k. J. Graph Theory 65, 83–93 (2010)

4. Borodin, O.V., Ivanova, A.O., Montassier, M., Raspaud, A. (k,j)-Coloring of sparse
graphs. Discrete Applied Mathematics 159(17), 1947–1953 (2011)

5. Borodin, O.V., Ivanova, A.O., Montassier, M., Raspaud, A.: (k,1)-Coloring of
sparse graphs. Discrete Math 312(6), 1128–1135 (2012)

6. Borodin, O.V., Kostochka, A.V.: Vertex partitions of sparse graphs into an in-
dependent vertex set and subgraph of maximum degree at most one (Russian).
Sibirsk. Mat. Zh. 52(5), 1004–1010 (2011); Translation in: Siberian Mathematical
Journal 52(5), 796–801

7. Borodin, O.V., Kostochka, A.V.: Defective 2-colorings of sparse graphs (submitted)

On Coloring of Sparse Graphs 233

8. Borodin, O.V., Kostochka, A.V., Lidický, B., Yancey, M.: Short proofs of coloring
theorems on planar graphs (submitted)

9. Borodin, O.V., Kostochka, A.V., Yancey, M.: On 1-improper 2-coloring of sparse
graphs (submitted)

10. Corrěa, R., Havet, F., Sereni, J.-S.: About a Brooks-type theorem for improper
colouring. Australas. J. Combin. 43, 219–230 (2009)

11. Brooks, R.L.: On colouring the nodes of a network. Math. Proc. Cambridge Philos.
Soc. 37, 194–197 (1941)

12. Dirac, G.A.: Note on the colouring of graphs. Math. Z. 54, 347–353 (1951)
13. Dirac, G.A.: A property of 4-chromatic graphs and some remarks on critical graphs.

J. London Math. Soc. 27, 85–92 (1952)
14. Dirac, G.A.: Some theorems on abstract graphs. Proc. London Math. 3(2), 69–81

(1952)
15. Dirac, G.A.: Map colour theorems related to the Heawood colour formula. J. Lon-

don Math. Soc. 31, 460–471 (1956)
16. Dirac, G.A.: A theorem of R. L. Brooks and a conjecture of H. Hadwiger. Proc.

London Math. Soc. 7(3), 161–195 (1957)
17. Dirac, G.A.: The number of edges in critical graphs. J. Reine Angew.

Math. 268(269), 150–164 (1974)
18. Dorbec, P., Kaiser, T., Montassier, M., Raspaud, A.: Limits of near-coloring of

sparse graphs. To Appear in J. Graph Theory
19. Esperet, L., Montassier, M., Ochem, P., Pinlou, A.: A Complexity Dichotomy for

the Coloring of Sparse Graphs. To Appear in J. Graph Theory
20. Farzad, B., Molloy, M.: On the edge-density of 4-critical graphs. Combinatorica 29,

665–689 (2009)
21. Gallai, T.: Kritische Graphen I. Publ. Math. Inst. Hungar. Acad. Sci. 8, 165–192

(1963)
22. Gallai, T.: Kritische Graphen II. Publ. Math. Inst. Hungar. Acad. Sci. 8, 373–395

(1963)
23. Glebov, A.N., Zambalaeva, D.Z.: Path partitions of planar graphs. Sib. Elektron.

Mat. Izv. 4, 450–459 (2007) (Russian)
24. Grötzsch, H.: Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für

dreikreisfreie Netze auf der Kugel. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg.
Math.-Nat. Reihe 8, 109–120 (1958/1959) (in Russian)

25. Havet, F., Sereni, J.-S.: Channel assignment and improper choosability of graphs.
In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 81–90. Springer, Heidelberg
(2005)

26. Jensen, T., Thomassen, C.: The color space of a graph. J. Graph Theory 34,
234–245 (2000)

27. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley-Interscience Series in Dis-
crete Mathematics and Optimization. John Wiley & Sons, New York (1995)

28. Jensen, T.R., Toft, B.: 25 pretty graph colouring problems. Discrete Math 229,
167–169 (2001)

29. Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer
Computations, pp. 85–103 (1972)

30. Kostochka, A.V., Stiebitz, M.: Excess in colour-critical graphs. In: Graph Theory
and Combinatorial Biology, Balatonlelle, Hungary (1996); Bolyai Society, Mathe-
matical Studies, Budapest, vol. 7, pp. 87–99 (1999)

31. Kostochka, A.V., Stiebitz, M.: A new lower bound on the number of edges in
colour-critical graphs and hypergraphs. Journal of Combinatorial Theory, Series
B 87, 374–402 (2003)

234 A. Kostochka and M. Yancey

32. Kostochka, A.V., Yancey, M.: Ore’s Conjecture on color-critical graphs is almost
true (submitted)

33. Kostochka, A.V., Yancey, M.: Ore’s Conjecture for k = 4 and Grötzsch Theorem.
Combinatorica (accepted)

34. Kostochka, A.V., Yancey, M.: A Brooks-type result for sparse critical graphs
(submitted)

35. Krivelevich, M.: On the minimal number of edges in color-critical graphs. Combi-
natorica 17, 401–426 (1997)

36. Kurek, A., Rucin’ski, A.: Globally sparse vertex-Ramsey graphs. J. Graph The-
ory 18, 73–81 (1994)

37. Ore, O.: The Four Color Problem. Academic Press, New York (1967)
38. Thomas, R., Walls, B.: Three-coloring Klein bottle graphs of girth five. J. Combin.

Theory Ser. B 92, 115–135 (2004)
39. Thomassen, C.: A short list color proof of Grötzsch’s theorem. J. Combin. Theory

Ser. B 88, 189–192 (2003)
40. Toft, B.: Color-critical graphs and hypergraphs. J. Combin. Theory 16, 145–161

(1974)
41. Toft, B.: 75 graph-colouring problems. In: Keynes, M. (ed.) Graph Colourings, pp.

9–35 (1988) Pitman Res. Notes Math. Ser., vol. 218. Longman Sci. Tech., Harlow
(1990)

42. Tuza, Z.: Graph coloring. In: Gross, J.L., Yellen, J. (eds.) Handbook of Graph
Theory, xiv+1167 pp. CRC Press, Boca Raton (2004)

43. Zuckerman, D.: Linear degree extractors and the inapproximability of Max Clique
and Chromatic Number. Theory of Computing 3, 103–128 (2007)

On Recognizing Words

That Are Squares for the Shuffle Product

Romeo Rizzi1 and Stéphane Vialette2

1 Dipartimento di Matematica ed Informatica, Università degli Studi di Udine, Italy
rrizzi@dimi.uniud.it

2 LIGM CNRS UMR 8049, Université Paris-Est, France
vialette@univ-mlv.fr

Abstract. The shuffle of two words u and v of A∗ is the language u�v
consisting of all words u1v1u2v2 . . . ukvk, where k ≥ 0 and the ui and
the vi are the words of A∗ such that u = u1u2 . . . uk and v = v1v2 . . . vk.
A word u ∈ A∗ is a square for the shuffle product if it is the shuffle of
two identical words (i.e., u ∈ v� v for some v ∈ A∗). Whereas, it can be
tested in polynomial-time whether or not u ∈ v1� v2 for given words u,
v1 and v2 [J.-C. Spehner, Le Calcul Rapide des Mélanges de Deux Mots,
Theoretical Computer Science, 1986], we show in this paper that it is
NP-complete to determine whether or not a word u is a square for the
shuffle product. The novelty in our approach lies in representing words as
linear graphs, in which deciding whether or not a given word is a square
for the shuffle product reduces to computing some inclusion-free perfect
matching.

1 Introduction

Let A be an alphabet. The shuffle u�v of words u and v over A is the finite set
of all words obtainable from merging the words u and v from left to right, but
choosing the next symbol arbitrarily from u or v [15]. The iterated shuffle of u is
the language ε∪u∪(u�u)∪(u�u�u)∪. . .These definitions naturally extend to
languages. It is known that the shuffle product is a commutative and associative
operation, which is also distributive over union. The operations of shuffle and
iterated shuffle have been used by many researchers to describe sequential com-
putation histories of concurrent programs [12]. Interestingly, it was observed in
[11] that some aspects of the shuffle product bear strong similarities with genetic
recombinations (a non-tree-like event that produces a child sequence by crossing
two parent sequences).

For the iterated shuffle, there are basically two kinds of questions that can
be addressed depending on whether or not the shuffled element is given as a
part of the input. This distinction basically reduces to the two following simpler
problems:

– “Given u, v ∈ A∗, is u in the iterated shuffle of v?”, and
– “Given u ∈ A∗, is u in the iterated shuffle of some v ∈ A∗?”.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 235–245, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

236 R. Rizzi and S. Vialette

If we focus on only one application of the shuffle product, we are left with the
two following problems:

– “Given u, v ∈ A∗, is u ∈ v� v?”, and

– “Given u ∈ A∗, does there exist v ∈ A∗ such that u ∈ v� v?”.

As we shall see soon, these two problems dramatically differ in complexity.
We briefly review the key results that arise in our context. Given words

u, v1 and v2, it can be tested in O
(
|u|2/ log(|u|)

)
time whether or not u ∈

v1 � v2 [13]. (To the best of our knowledge, the first O(|u|2) time algorithm
appeared in [17]. This algorithm can easily be extended to check in polynomial-
time whether or not a word is the shuffle of any fixed number of given words.)

The shuffle u� v of words u and v can be computed in O
(
(|u|+ |v|)

(|u|+|v|
|u|

))
time [19]. An improvement and generalization has been proposed in [1], where it
is proved that, given words u1, u2, . . . , uk, the shuffle �k

i=1ui can be computed

in O
((|u1|+|u2|+...+|uk|

|u1|,|u2|,...,|uk|
))

time.

Given words u, v1, v2, . . . , vn ∈ A∗, it is however NP-complete to decide
whether or not u ∈ �k

i=1vi. [17,6]. This remains true even if the alphabet has
size 3 [6]. Of particular interest, it is shown in [6] that this problem remains
NP-complete even if all words v1, v2, . . . , vn are identical, thereby proving that,
for two words u and v, it is NP-complete to decide whether or not u is in the
iterated shuffle of v. Again, this remains true even if the alphabet has size 3.

Strongly related is the problem of shuffling a word with its reverse. Let u ∈ A∗.
It is easily seen that if there exists v ∈ A∗ such that u ∈ v � vR, then u is an
abelian square (i.e., u = v v′, where v′ is a permutation of v). It is shown in [18]
that if u is a binary abelian square, then there exists v ∈ A∗ such that u ∈ v�vR,
thereby proving that it is polynomial-time solvable to decide whether or not a
binary word is the shuffle of another word with its reverse. The equivalence is no
longer true for larger alphabets. For example, abcabc is a ternary abelian square
that cannot be written as an element of v� vR for any word v ∈ A∗.

The novelty in our approach lies in the use of linear graphs (i.e, those graphs
with sets of vertices equipped with some total order), in which deciding whether
or not a given word is in the shuffle of another word with itself (or its reverse)
reduces to computing some constrained perfect matching. In this paper, we show
that, given u ∈ A∗, it is NP-complete to decide whether or not u is the shuffle
of some word v ∈ A∗ with itself (i.e., does there exist some v ∈ A∗ such that
u ∈ v � v?). It is worth mentioning that this result has been recently proved
independently by Buss and Soltys [3] (as an answer to Erickson [10] on the Stack
Exchange discussion board). Notice that this hardness result was first claimed
by Iwama [9], but it turns out that the proof has a serious flaw [5]. Furthermore,
we complete the result of [18] for any alphabet by proving that, given u ∈ A∗,
it is polynomial-time solvable to decide whether or not u is the shuffle of some
word v ∈ A∗ with its reverse (i.e., does there exist some v ∈ A∗ such that
u ∈ v� vR?).

On Recognizing Words That Are Squares for the Shuffle Product 237

2 Definitions

We follow standard terminology on words [4]. Let A be an alphabet. The empty
word is denoted ε. A word v = a1a2 . . . an ∈ An is a subsequence of u ∈ A∗ if there
exist n+1, not necessarily distinct and possibly empty, words u1, u2, . . . , un+1 ∈
A∗ such that u1 a1 u2 . . . un an un+1 = u, and we write v / u to denote this fact.
The reverse of u = a1 a2 . . . an with ai ∈ A is the word uR = an . . . a2 a1.

The shuffle (also sometimes referred to as ordinary shuffle) of two words u and
v, denoted u�v, is the language of all wordsw such that w = u1 v1 u2 v2 . . . un vn,
where ui, vi ∈ A∗, u1 u2 . . . un = u, and v1 v2 . . . vn = v. It may be defined in-
ductively on words by u� ε = u, ε�u = u, and ua�vb = (u�vb)a∪ (ua�v)b.
The iterated shuffle of u is the language ε ∪ u ∪ (u� u) ∪ (u� u� u) ∪ . . .

For a graph G, we denote V(G) as the set of vertices and E(G) as the
set of edges. Let u = u1 u2 . . . un ∈ An be a word on some alphabet A. The
graph associated to u, denoted Gu, is defined by V(Gu) = {u1, u2, . . . , un} and
E(Gu) = {{ui, uj} : i �= j ∧ ui = uj}. (We write (ui, uj) for an an edge of
E(Gu) if it is clear from the context that i < j, and {ui, uj} otherwise.) The
structure of this underlying graph is linear, i.e., the set of vertices is equipped
with a natural total order < defined by ui < uj if and only if i < j. In other
words, the vertices of Gu correspond to the letters of u in the left to right order
and there is an edge between any two identical distinct letter of u. Clearly, Gu is
the disjoint union of cliques, one clique for each distinct letter. The length of an
edge {ui, ij} ∈ E(Gu), denoted �({ui, uj}), is defined by |j − i|. The total edge-
length of Gu, denoted L(Gu), is defined by

∑
{ui,uj}∈E(Gu)

�({ui, uj}) = O(|u|2).
Recall that two edges of a graph are independent if they do not share a common
vertex, and that a matching M in G is a set of pairwise independent edges. A
matching is perfect if it covers all the vertices of the graph. In case the set of
vertices is equipped with a total order, a matching M is said to be inclusion-free
if there do not exist (independent) edges (ui, uj) and (uk, u�) in M such that
ui < uk < u� < uj or uk < ui < ij < u�. Similarly, a matching M is said to be
precedence-free if there do not exist (independent) edges (ui, uj) and (uk, u�) in
M such that ui < uj < uk < u� or uk < u� < ui < uj .

3 Being a Square for the Shuffle Product

This section is devoted to proving hardness of recognizing those words that are
squares for the shuffle product. At the heart of our approach is the following
property. (See Fig. 1 for an illustration.)

Lemma 1. Let u ∈ A∗ for some alphabet A, and Gu be the corresponding linear
graph. Then, there exists v ∈ A∗ such that u ∈ v � v if and only if there exists
an inclusion-free perfect matching in Gu.

Proof. Indeed, suppose first that there exists v ∈ A∗ such that u ∈ v � v. Let
2n = |u|. Fix the occurrences in u of the two copies of v and write

238 R. Rizzi and S. Vialette

I1 = {i11, i12, . . . , i1n}, i11 < i12 < . . . < i1n, for the positions in u of the first copy
of v and I2 = {i21, i22, . . . , i2n}, i21 < i22 < . . . < i2n, for the positions in u of the
second copy of v. It is easily seen that M = {{ui1j

, ui2j
} : 1 ≤ j ≤ n} is a

subset of E(Gu). Furthermore, M is a perfect matching since I1 ∩ I2 = ∅, and
I1 ∪ I2 = {1, 2, . . .2n}. It is also inclusion-free. Indeed, if it were not the case
then there would exist two edges e = {ui1j

, ui2j
} and e′ = {ui1k

, ui2k
}, j < k, in M

such that i1j < i1k < i2k < i2j . This is a contradiction since i2k > i2j if k > j.

Conversely, Let M ⊆ E(Gu) be an inclusion-free matching of Gu. Let I1 =
{i1j : ∃{uij , uik} ∈ M with j < k}, and I2 = {i2k : ∃{uij , uik} ∈ M with j < k}.
Assume i11 < i12 < . . . < i1n and I2 = {i21, i22, . . . , i2n}. Let v = ui11

ui12
. . . ui1n

and
v′ = ui21

ui22
. . . ui2n

. We claim that v = v′. Suppose, aiming at a contradiction,
that v �= v′. Let j − 1 be the length of the largest common prefix of v and v′.
Then it follows that

1. vj �= v′j ,
2. vj = v′k for some k > j,
3. v� = v′j for � > j,

and hence M is not inclusion-free. This is the sought contradiction. ��

Gu a b a b b b a a

M a b a b b b a a

Fig. 1. The linear graph Gu of u = ababbbaa together with an inclusion-free perfect
matching M. The perfect matching M denotes u ∈ v � v for v = abba and reads as

u =
a b b a

a b b a
with the first copy of v on top and the second on bottom.

On Recognizing Words That Are Squares for the Shuffle Product 239

We are now in position to prove our main result.

Proposition 1. It is NP-complete to determine whether or not a word is a
square for the shuffle product.

Proof. The problem is certainly in NP. To prove hardness, we propose a
polynomial-time reduction from the NP-complete Longest Common Subse-

quence for binary words (01-LCS for short) which is defined as follows: Given a
collection of words U = {u1, u2, . . . , um}, ui ∈ {0, 1}∗ for 1 ≤ i ≤ m, and a posi-
tive integer k, decide whether there exists a subsequence of size k common to all
sequences of U [16]. Without loss of generality, we may assume that |ui| = |uj |
for 1 ≤ i < j ≤ m, and that that we are looking for a common subsequence with
p letters 0 and q letters 1, k = p+ q. We write (U, p, q) for such an instance of
01-LCS.

Let (U, p, q), U = {u1, u2, . . . , um}, ui ∈ {0, 1}∗ for 1 ≤ i ≤ m and |ui| =
|uj| = n for 1 ≤ i < j ≤ m, be an arbitrary instance of 01-LCS. Let us
construct from this instance a word w over the (3m+6)-size alphabet A defined
as follows:

A = {0, 1} ∪̇ {s, s′} ∪̇ {t, t′} ∪̇ {xi, yi, zi : 1 ≤ i ≤ m}.

The word w is defined by

w = Ws W1 W2 . . . Wm Wt,

where Ws, W1, W2, . . ., Wm and Wt are words in A∗ (we refer to these words as
our gadget words).

Let us now detail the various gadget words. The source and sink gadget words,
denoted Ws and Wt respectively, are defined as follows

Ws = s′ 0pq s′ s (0p 1)q 0p s

Wt = t (0p 1)q 0q t t′ 0pq t′,

where s, s′, t and t′ are four letters that do not occur in any other gadget word.
To shorten the exposition, we shall speak about the (0p 1)q 0p-factor of Ws

(resp. Wt) to designate the factor of Ws (resp. Wt) that occurs between the two
occurrences of the letter s (resp. t), and about the 0pq-factor of Ws (resp. Wt) to
designate the factor of Ws (resp. Wt) that occurs between the two occurrences of
the letter s′ (resp. t′). For each input word ui = ui,1 ui,2 . . . ui,n, the associated
gadget word Wi is defined by

Wi = xi W
′
i xi yi W

′
i yi,

where

W ′i = ui,1 zi ui2 zi . . . ui,n−1 zi ui,n.

(Notice that letters xi, yi and zi only occur in the gadget word Wi.)

240 R. Rizzi and S. Vialette

With the corresponding linear graph Gw in mind, for any letter a ∈ A oc-
curring only twice in w, we shall write (a, a)-edge to designate (without any
ambiguity) the unique edge connecting the two occurrences of letter a in Gw.

We now claim that there exists a common subsequence with p letters 0 and
q letters 1 common to all sequences of U if and only if w is a square for the
shuffle product. It will convenient to see the reduction as a flow-like procedure,
where some piece of information (the common subsequence) emitted from gadget
Ws (the source) propagates lossless to gadget Wt (the sink) going through all
gadgets Wi, 1 ≤ i ≤ m (every such gadget being associated to an input word of
our input instance of 01-LCS).

For the forward direction, suppose that there exists a common subsequence v
of the words u1, u2, . . . , um with p occurrences of the letter 0 and q occurrence
of the letter 1. Write k = p + q and v = v1v2 . . . vk. According to Lemma 1, it
is enough to show that Gw has an inclusion-free perfect matching. Now, observe
that v is a subsequence of both the (0p 1)q 0p-factor of Ws and the (0p 1)q 0p-
factor of Wt. Furthermore, by hypothesis, v also occurs in each gadget word
W ′i , 1 ≤ i ≤ m. Fix any occurrence of v as a subsequence in the (0p 1)q 0p-
factor of Ws, the (0p 1)q 0p-factor of Wt, and in every W ′i gadget word, 1 ≤
i ≤ m (if W ′i contains several occurrences of v as a subsequence, we fix any
but the same occurrence in the two W ′i gadget words.) Having disposed of these
preliminary steps, we can now turn to defining an inclusion-free perfect matching
M of Gw. This perfect matching contains both intra-gadget edges (i.e., edges
connecting two identical letters that occur in the same gadget word), and inter-
gadget edges (i.e., edges connecting two identical letters that occur in distinct
- but consecutive - gadget words).

Intra-gadget Edges :

– M contains (i) the (s, s)-edge, (ii) the (s’, s’)-edge, and (iii) pq pairwise
crossing edges that connect the leftmost pq letters 0 of Ws to the pq letters 0
of the (0p 1)q 0p-factor ofWs that do not correspond to the chosen occurrence
of the common subsequence v in the (0p 1)q 0p-factor of Ws.

– For every 1 ≤ i ≤ m, M contains (i) the (xi, xi)-edge,, (ii) the (yi, yi)-edge,
(iii) n− 1 pairwise crossing edges connecting the n− 1 occurrences of letter
zi in the leftmost W ′i gadget word to the n − 1 occurrences of letter zi in
the rightmost W ′i gadget word, and (iv) n − p − q pairwise crossing edges
connecting the n− p− q letters of the leftmost W ′i gadget word that do not
correspond to the chosen occurrence of v in W ′i to the n − p − q letters of
the rightmost W ′i gadget word that do not correspond to the occurrence of
v in W ′i .

– M contains (i) the (t, t)-edge, (ii) the (t′, t′)-edge, and (iii) pq pairwise cross-
ing edges connecting the pq letters 0 of the (0p 1)q 0p factor of Ws that do
not correspond to the chosen occurrence of the common subsequence v in
the (0p 1)q 0p factor of Wt to the last pq letters 0 of Wt.

On Recognizing Words That Are Squares for the Shuffle Product 241

Inter-gadget Edges :

– M contains p + q pairwise crossing edges connecting the p + q letters of
the (0p 1)q 0p-factor of Ws that correspond to the chosen occurrence of the
common subsequence v in the (0p 1)q 0p-factor of Ws to the p+ q letters of
the leftmost W ′1 gadget word that correspond to the chosen occurrence of
the common subsequence v in W ′1.

– For every 1 ≤ i < m, M contains p + q pairwise crossing edges connecting
the p + q letters of the rightmost W ′i gadget word that correspond to the
chosen occurrence of v in W ′i to the p+ q letters of the leftmost W ′i+1 gadget
word that correspond to the chosen occurrence of v in W ′i+1.

– M contains pq pairwise crossing edges connecting the p + q letters of the
rightmost W ′m gadget word that correspond to the chosen occurrence of the
common subsequence v in W ′m to the p+ q letters of (0p 1)q 0p-factor of Wt

that correspond to the chosen occurrence of the common subsequence v.

It can be easily verified that M is a perfect inclusion-free matching. Indeed, all
inter-gadget edges in M are pairwise crossing, and no two intra-gadget edges
are in inclusion.

For the reverse direction, suppose that w is a square for the shuffle product.
Once again, according to Lemma 1, this amount to saying that Gw has an
inclusion-free perfect matching M. We begin by a sequence of easy observations.
First, observe that the letters s, s′, t, t′, xi (1 ≤ i ≤ m), and yi (1 ≤ i ≤ m)
occur exactly twice in w, and hence the 2m+ 4 edges connecting these vertices
two by two have to be in M since it is perfect. In other words, M contains
the (s, s)-edge, the (s′, s′)-edge, the (t, t)-edge, the (t′, t′)-edge, and the (xi, xi)-
edge and the (yi, yi)-edge for 1 ≤ i ≤ m. Let us now focus on the source Ws

gadget word. Since both the (s, s)-edge and the (s′, s′)-edge are in M, then it
follows that (i) no edge in M can connect two identical letters occurring in the
(0p 1)q 0p-factor of Ws, and (ii) no edge in M can connect two identical letters
occurring in the 0pq-factor of Ws. Moreover, M contains pq pairwise crossing
edges connecting all letters from the 0pq-factor of Ws to pq letters 0 occurring
in the (0p 1)q 0p-factor of Ws. Similar considerations apply to Wt yielding (i) no
edge in M can connect two identical letters occurring in the (0p 1)q 0p-factor
of Wt, and (ii) no edge in M can connect two identical letters occurring in the
0pq-factor of Wt. Hence, M contains pq pairwise crossing edges connecting pq
letters 0 occurring in the (0p 1)q 0p-factor of Wt to all letters from the 0pq-factor
of Wt. We now turn to the Wi gadget words. For every 1 ≤ i ≤ m, M has
to contain both the (xi, xi)-edge and (yi, yi)-edge, and hence M contains n− 1
pairwise crossing edges connecting the n− 1 letters zi of the leftmost W ′i gadget
word to the n − 1 letters zi of the rightmost W ′i gadget word (otherwise one
edge connecting two letters zi would be included in the (xi, xi)-edge or in the
(yi, yi)-edge).

According to the above, p+ q letters of Ws have to be involved in some inter-
gadget edges of M. But M contains the (x1, x1)-edge, an hence these p + q
inter-gadget edges are pairwise crossing and each connect a letter occurring in
the (0p 1)q 0p-factor of Ws to a letter in the leftmost W ′1 gadget word. Since the

242 R. Rizzi and S. Vialette

2(n − 1) occurrences of letter zi are involved in n − 1 pairwise crossing edges,
then it follows that M contains n− p− q pairwise crossing edges connecting the
n−p− q letters u1,j of the leftmost W ′1 gadget word that are not involved in the
leftmost p + q inter-gadget edges to n − p − q letters u1,j of the rightmost W ′1
gadget word. Of particular importance, these n−p− q edges have to be position
preserving, i.e., each edge connect a letter u1,j of the leftmost W ′1 gadget word
to a letter u1,j of the rightmost W ′1 gadget word for a same position j. At this
point, p+q letters of the rightmost W ′1 gadget are yet to be involved in M. Since
M contains both the (y1, y1)-edge and the (x2, x2)-edge, the only solution is that
M contains p+ q pairwise crossing edges connecting letters from the rightmost
W ′1 gadget word to the leftmost W ′2 gadget word. The same process continues
until p+ q pairwise crossing edges connecting the rightmost W ′m gadget word to
the Wt sink gadget word.

It follows from the examination of M that the p + q pairwise crossing edges
connecting p + q letters of the (0p 1)q 0p-factor of Ws to p + q letters of the
leftmost W ′1 gadget word define a word with p letters 0 and q letters 1 that
occurs as a subsequence in each input word ui. ��

It is worth noticing that Li and Li [14] proved that computing the largest
inclusion-free matching in a linear graph is NP-complete. However, their quite
complicated proof involves general linear graphs and not linear graphs that are
unions of cliques, and hence cannot be used in the context of shuffling words
(the above proposition may, however, be seen as a much simpler proof of Li and
Li’s result).

We also notice that in the proof of Proposition 1, some letters occur exactly
two times in the constructed word w. Clearly, in this case, w cannot be the
shuffle of k ≥ 3 identical copies of some word v ∈ A∗. In other words, if w is
in the iterated shuffle of some distinct word v ∈ A∗, then w is a square for the
shuffle product. We have thus proved the following.

Proposition 2. It is NP-complete to decide whether or not a word u ∈ A∗ is
in the iterated shuffle of some word v ∈ A∗ with u �= v.

4 Being the Shuffle of a Word with Its Reverse

As we mentioned in Section 1, for a given u over some binary alphabet A, it is
polynomial-time solvable to determine whether or not there exists v ∈ A∗ such
that u ∈ v�vR. Indeed, if there exists v ∈ A∗ such that u ∈ v�vR, then u is an
abelian square (i.e., u = v v′, where v′ is a permutation of v). Furthermore, if u is
a binary abelian square, then there exists v ∈ A∗ such that u ∈ v� vR [18]. The
equivalence is, however, no longer true for larger alphabets. As a complementary
result, we use again linear graphs to show that the result holds for any alphabet.
We need the following equivalence which is the analogous of Lemma 1 (proof
omitted). (See Fig. 2 for an illustration.)

On Recognizing Words That Are Squares for the Shuffle Product 243

Lemma 2. Let u ∈ A∗ for some alphabet A, and Gu be the corresponding linear
graph. Then, there exists v ∈ A∗ such that u ∈ v� vR if and only if there exists
an precedence-free perfect matching in Gu.

Gu a b a b b b a a

M′ a b a b b b a a

Fig. 2. The linear graph Gu of u = ababbbaa together with and a precedence-free
perfect matching M′. The perfect matching M′ denotes u ∈ v � vR for v = abba and

reads as u =
a b b a

a b b a
with the first copy of v on top and the second on bottom.

Precedence-free matchings in linear graphs arose in the context of 2-intervals
[21], and the following proposition makes use of an algorithm for pattern match-
ing in point support 2-intervals [8] that improves on [20].

Proposition 3. Let u ∈ A∗. It can be checked in O(|u| log |u| + L(Gu)) =
O(|u|2) time whether or not there exists v ∈ A∗ such that u ∈ v� vR.

Proof. In the context of multiple intervals, Erdong et al. [8] have proposed a
O(n log n+L) time algorithm for computing a maximum cardinality precedence-
free matching in a linear graph, where L is the total sum of the edge lengths.
The Proposition now follows from Lemma 2. ��

244 R. Rizzi and S. Vialette

5 Conclusion and Open Problems

In this paper we have used a (union of cliques) linear graph framework to show
that it is NP-complete to recognize those words that squares for the shuffle
product. Using the same framework, we have proved that recognizing those words
that are the shuffle of another word with its reverse is polynomial-time solvable.
There are a number of further directions of investigation in this general subject.
We mention several open problems that are, in our opinion, the most interesting.

How hard is the problem of detecting squares for the shuffle product for
bounded alphabet words? It is proved in [3] that the problem is NP-complete
for an alphabet with 9 symbols (it is claimed that this can be improved to 7 let-
ters). Notice that it is claimed without proof in [2] (Fact 2 Subsection 2.2) that
detecting squares for the shuffle product is NP-complete for binary words. This
result – that would be an important improvement over [3] and Proposition 1 –
is yet to be confirmed.

It is NP-complete to decide whether or not a word u ∈ A∗ is in the iterated
shuffle of some word v ∈ A∗ with u �= v (see Proposition 2). Is this problem
equally hard for bounded alphabets?

Given words u, v1, v2, . . . , vk ∈ A∗, it is NP-complete to decide whether or not
u ∈ �k

i=1vi [17,6]. Going further, it would make sense to precisely characterize
hardness. In particular, under parameterized complexity [7], where does fall this
problem in the W-hierarchy for parameter k?

Acknowledgment. The authors wish to express their sincere thanks to the
referees for their important comments, especially for indicating the relevant ref-
erence [3] (as an answer to Erickson [10] on the Stack Exchange discussion board)
and for pointing out an error in the original manuscript.

References

1. Allauzen, C.: Calcul efficace du shuffle de k mots. Tech. rep., Institut Gaspard
Monge, Université Marne-la-Vallé (2000)

2. Aoki, H., Uehara, R., Yamazaki, K.: Expected length of longest common subse-
quences of two biased random strings and its application. Tech. Rep. 1185, RIMS
Kokyuroku (2001)

3. Buss, S., Soltys, M.: Unshuffling a square is NP-hard (2012) (submitted)
4. Choffrut, C., Karhumäki, J.: Combinatorics of Words. In: Rozenberg, G., Salomaa,

A. (eds.) Handbook of Formal Languages. Springer (1997)
5. Iwama, K.: Personal communication (2012)
6. Warmuth, M.K., Haussler, D.: On the complexity of iterated shuffle. Journal of

Computer and System Sciences 28(3), 345–358 (1984)
7. Downey, R., Fellows, M.: Parameterized Complexity. Springer (1999)
8. Erdong, C., Linji, Y., Hao, Y.: Improved algorithms for 2-interval pattern problem.

Journal of Combinatorial Optimization 13, 263–275 (1983)
9. Iwama, K.: Unique decomposability of shuffled strings: A formal treatment of asyn-

chronous time-multiplexed communication. In: Proc. 15th Annual ACM Sympo-
sium on Theory of Computing (STOC), Boston, Massachusetts, USA, pp. 374–381.
ACM (1983)

On Recognizing Words That Are Squares for the Shuffle Product 245

10. Erickson, J.: How hard is unshuffling a string? Theoretical Computer Science,
http://cstheory.stackexchange.com/q/34 (version: 2010-12-01)

11. Kececioglu, J.D., Gusfield, D.: Reconstructing a history of recombinations from a
set of sequences. Discrete Applied Mathematics 88(1-3), 239–260 (1998)

12. Kimura, T.: An algebraic system for process structuring and interprocess com-
munication. In: Chandra, A., Wotschke, D., Friedman, E., Harrison, M.A. (eds.)
Proc. 8th Annual ACM Symposium on Theory of Computing (STOC), Hershey,
Pennsylvania, USA, pp. 92–100. ACM (1976)

13. van Leeuwen, J., Nivat, M.: Efficient recognition of rational relations. Information
Processing Letters 14(1), 34–38 (1982)

14. Li, S., Li, M.: On two open problems of 2-interval patterns. Theoretical Computer
Science 410(24-25), 2410–2423 (2009)

15. Lothaire, M.: Applied Combinatorics on Words. Encyclopedia of Mathematics and
its Applications, vol. 105. Cambridge university press (2005)

16. Maier, D.: The complexity of some problems on subsequences and supersequences.
Journal of the ACM 25(2), 322–336 (1978)

17. Mansfield, A.: On the computational complexity of a merge recognition problem.
Discrete Applied Mathematics 5, 119–122 (1983)

18. Rampersad, D.H.N., Shallit, J.: Shuffling and unshuffling (2011),
http://arxiv.org/abs/1106.5767

19. Spehner, J.C.: Le calcul rapide des melanges de deux mots. In: Theoretical Com-
puter Science pp. 171–203 (1986)

20. Vialette, S.: On the computational complexity of 2-interval pattern matching prob-
lems. Theoretical Computer Science 312(2-3), 223–249 (2004)

21. Vialette, S.: Two-interval pattern problems. In: Kao, M.Y. (ed.) Encyclopedia of
Algorithms, pp. 985–989. Springer (2008)

http://cstheory.stackexchange.com/q/34
http://arxiv.org/abs/1106.5767

Cyclic Shift on Prefix-Free Languages

Jozef Jirásek 1,� and Galina Jirásková 2,��

1 Institute of Computer Science, Faculty of Science, P.J. Šafárik University,
Jesenná 5, 040 01 Košice, Slovakia

jozef.jirasek@upjs.sk
2 Mathematical Institute, Slovak Academy of Sciences,

Grešákova 6, 040 01 Košice, Slovakia
jiraskov@saske.sk

Abstract. We prove that the cyclic shift of a prefix-free language rep-
resented by a minimal complete n-state deterministic finite automaton is
recognized by a deterministic automaton of at most (2n− 3)n−2 states.
We also show that this bound is tight in the quaternary case, and that it
cannot be met by using any smaller alphabet. In the ternary and binary
cases, we still get exponential lower bounds.

1 Introduction

Cyclic shift is a unary operation on formal languages defined as shift(L) =
{w|w = uv and vu ∈ L}. The operation preserves regularity since the cyclic shift
of a regular language may be expressed as a union of n concatenations [9]. Us-
ing such a representation, an upper bound (n·2n−2n−1)n on the state complexity
of cyclic shift has been proved already by Maslov [9] in 1970. He also provided a
lower bound (n− 2)n−2 · 2(n−2)(n−2) for incomplete deterministic automata over
a growing alphabet of size 2n − 2. It follows that a lower bound for complete
deterministic automata over a growing alphabet is (n− 3)n−3 · 2(n−3)(n−3).

The Maslov’s lower bound has been improved by Jirásková and Okhotin [7]
by presenting a regular language recognized by a complete n-state deterministic
finite automaton, defined over a fixed four-letter input alphabet, that requires
at least (n−1)! ·2(n−1)(n−2) deterministic states for its cyclic shift. Nevertheless,
the new lower bound does not match the above mentioned upper bound.

In the case of prefix-free regular languages, concatenation is a simple opera-
tion. While the state complexity of concatenation is m · 2n− 2n−1 in the general
case [9,14], it is only m+ n− 2 if the operands are prefix-free [3,6]. Now a ques-
tion arises whether such an easy concatenation on prefix-free languages could be
used to get the exact value of the state complexity of cyclic shift on this subclass
of regular languages. In our paper, we answer this question positively, and prove
the tight bound (2n− 3)n−2 on the state complexity of cyclic shift on prefix-free
languages.

� Research supported by grants VEGA 1/0832/12 and APVV-0035-10.
�� Research supported by grants VEGA 2/0183/11 and APVV-0035-10.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 246–257, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Cyclic Shift on Prefix-Free Languages 247

Our witness languages are defined over a four-letter alphabet. We also prove
the optimality of the size of an input alphabet by showing that the upper bound
(2n−3)n−2 on the state complexity of cyclic shift on prefix-free languages cannot
be met by any language defined over a ternary (or any smaller) alphabet. How-
ever, in the ternary and binary cases, we still are able to prove exponential lower
bounds (n− 2)! · 2n−2 and (n− 2) · (3n−2 − 1)+ 1, respectively. Our calculations
show that these lower bounds can be exceeded.

The study of cyclic (or circular) shift has applications in coding theory. Cyclic
codes are block codes, in which the cyclic shift of a codeword always yields
another codeword. Thus L = shift(L) for a cyclic code L. It is known that the
operation of cyclic shift preserves context-freeness [10,11], and that the cyclic
shift of a language described by a regular expression of length n can be described
by a regular expression of length O(n3) [2].

In prefix codes, like variable-length Huffman codes or country calling codes,
there is no codeword that is a proper prefix of any other codeword. With such
a code, a receiver can identify each codeword without any special marker be-
tween words. Motivated by prefix codes, the class of prefix-free regular languages
have been recently investigated. It is known that every minimal deterministic
automaton recognizing a prefix-free regular language must have exactly one final
state, from which all transitions go to a dead state. Using this property, tight
bounds on the state complexity of basic operations such as union, intersection,
concatenation, star, and reversal have been obtained in [3] and strengthened
in [6,8]. The nondeterministic state complexity of basic regular operations has
been studied in [4,6], while the complexity of combined operations on prefix-free
regular languages has been investigated in [5].

2 Preliminaries

We assume that the reader is familiar with basic concepts of regular languages
and finite automata and for unexplained notions we refer to [12,13].

For an alphabet Σ, let Σ∗ be the set of all strings over Σ, including the empty
string ε. A language is any subset of Σ∗. We denote the power-set of a set X by
2X . For an integer m, let [m] = {0, 1, . . . ,m− 1} .

A deterministic finite automaton (DFA) is a quintuple M = (Q,Σ, ·, s, F),
where Q is a finite non-empty set of states, Σ is an input alphabet, · : Q×Σ → Q
is the transition function, s ∈ Q is the initial (start) state, and F ⊆ Q is the set of
final states. In this paper, all DFAs are assumed to be complete. The transition
function · is extended to the domain Q × Σ∗ in a natural way. The language
accepted by the DFA M is the set of strings L(M) = {w ∈ Σ∗ | s · w ∈ F}.
A state q of M is called a dead state if no string is accepted by M from q.

A nondeterministic finite automaton (NFA) is a quintupleM = (Q,Σ, ·, S, F),
where Q,Σ, and F are defined in the same way as for a DFA, S is the set of
initial states, and · is the nondeterministic transition function that maps Q×Σ

248 J. Jirásek and G. Jirásková

to 2Q. The transition function can be naturally extended to the domain 2Q×Σ∗.
The language accepted by NFA M is L(M) = {w ∈ Σ∗ | S · w ∩ F �= ∅}.

Two automata are equivalent if they recognize the same language. A DFA
M is minimal if every DFA equivalent to M has at least as many states as M .
It is well-known that a DFA is minimal if all of its states are reachable and
pairwise distinguishable. The state complexity of a regular language L, sc(L), is
the number of states in the minimal DFA recognizing the language L.

The cross-product automaton [1] for the union of two languages recognized by
DFAs (QA, Σ, ◦, sA, FA) and (QB, Σ, •, sB, FB), respectively, is the DFA

(QA ×QB, Σ, · , (sA, sB), F),

where (p, q) · a = (p ◦ a, q • a) and F = (FA ×QB) ∪ (QA × FB).

2.1 Prefix-Free Languages

If u, v, w are strings in Σ∗ and w = uv, then u is a prefix of w. If, moreover,
v �= ε, then u is a proper prefix of w. A language is prefix-free if it does not
contain two strings, one of which is a proper prefix of the other.

It is well known that a minimal DFA recognizes a non-empty prefix-free lan-
guage if and only if it has a dead state and a unique final state, from which all
transitions go to the dead state.

3 Cyclic Shift on Prefix-Free Languages

The cyclic shift of a language L is defined as

shift(L) = {uv | vu ∈ L}.

Assume that the language L is recognized by a DFA A. By definition, a string
w is in shift(L) if it can be partitioned as w = uv so that the string vu is
in L. This means that there is a state q, such that the computation of A on the
string v ends in the state q, while the string u is accepted by A from the state q.
This gives the following result from [9].

Lemma 1 (Maslov [9]). Let A = (Q,Σ, ·, q0, F) with Q = {q0, q1, . . . , qn−1}
be an n-state DFA. For i = 0, 1 . . . , n − 1, let Bi = (Q,Σ, ·, qi, F) and Ci =
(Q,Σ, ·, q0, {qi}) be the DFAs that have the same state set and the same tran-
sitions as the DFA A, and differ from A only in their initial and final states.
Then

shift(L(A)) =
n−1⋃
i=0

L(Bi)L(Ci).

Cyclic Shift on Prefix-Free Languages 249

3.1 Upper Bound for Cyclic Shift on Prefix-Free Languages

Using the above mentioned Maslov’s result we now get an upper bound on the
number of states of deterministic finite automata recognizing the cyclic shift of
prefix-free languages.

Lemma 2 (Upper Bound). Let n ≥ 3 and let L be a prefix-free language
accepted by a minimal n-state DFA. Then the language shift(L) is accepted by
a DFA of at most (2n− 3)n−2 states.

Proof. Let A = (Q,Σ, ·, q0, {qn−2}) with Q = {q0, q1, . . . , qn−1} be a minimal
DFA for a prefix-free language L, in which qn−1 is the dead state, and qn−2
is the sole final state. Then, by Lemma 1, shift(L) = ∪n−1

i=0 L(Bi)L(Ci), where
Bi = (Q,Σ, ·, qi, {qn−2}) and Ci = (Q,Σ, ·, q0, {qi}). Since qn−1 is the dead state
of A, and all transitions defined in the unique final state qn−2 go to the dead
state qn−1, the language L(Bn−1) is empty and L(Bn−2) = {ε}. Therefore, the
language L(Bn−1)L(Cn−1) is empty and

L(Bn−2)L(Cn−2) = L(Cn−2) = L(B1) ⊆ L(B1)L(C1)

since ε ∈ L(C1). Hence shift(L) = ∪n−3
i=0 L(Bi)L(Ci).

For i = 0, . . . , n − 3, the language L(Bi)L(Ci) is accepted by a DFA Di

obtained from the DFAs Bi and Ci as follows. First, since all transitions defined
in the unique final state qn−2 of Bi go to the dead state, the state qn−2 can
be merged with the initial state q0 of Ci. Next, the state qn−1 in Bi as well as
the states qn−1 and qn−2 in Ci are all dead, and therefore can be merged into a
single dead state. The resulting DFA Di is deterministic and has 2n− 3 states.

Now the language shift(L) = ∪n−3
i=0 L(Bi)L(Ci) is accepted by the cross-

product automaton D0 ×D1 × · · · ×Dn−3 that has at most (2n− 3)n−2 states.
The construction is illustrated in Fig. 1. ��

3.2 Lower Bound in Quaternary Case

Throughout this subsection assume that n ≥ 4 and Σ = {a, b, c, d}. Recall that
[m] = {0, 1, . . . ,m− 1}. Our aim is to prove that the upper bound on the state
complexity of cyclic shift of prefix-free languages given in the previous lemma is
tight in the case of a four-letter alphabet.

To this aim define a quaternary n-state DFA A = ([m+2], Σ, ·, 0, {m}), where
m = n− 2. For each state i in [m],

i · a = i+ 1 mod m,

i · b =

⎧⎨⎩1, if i = 0,
0, if i = 1,
i, otherwise,

i · c =
{
0, if i ∈ {0, 1},
i, otherwise,

i · d = i+ 1,

250 J. Jirásek and G. Jirásková

a,b,c,d

A

b,c

a,b,c,da,b,d
b,c

da,d

a

43210

a,b,d
b,c

da,d

a

a,b,c,d

a,b,d
b,c

da,d

a

a,b,c,d

a,b,d
b,c

da,d

a

D

D

D

a,b,d
b,c

da,d

a

a,b,c,d

a,b,d
b,c

da,d

a

a,b,d
b,c

da,d

a
0

1

2

20 1 3 4 5 6

b,c b,c

b,c b,c

b,c b,c

320 1 4 5 6

3210 4 5 6

Fig. 1. A five-state DFA A and the resulting DFAs Di for L(Bi)L(Ci) for i = 0, 1, 2

and m · σ = (m+ 1) · σ = m+ 1 for each input σ in Σ. The DFA A is depicted
in Fig. 2. Since all transitions defined in the unique final state m go to the dead
state m+ 1, the language L(A) is prefix-free.

Note that on states in [m], input a causes a great permutation, input b causes a
transposition, and input c causes a contraction. Thus, the semigroup of functions
of [m] into itself is generated by the inputs a, b, c.

For i = 0, 1, . . . ,m − 1, construct the DFA Di = ([2m + 1], Σ, ◦, i, {m+ i})
accepting the language L(Bi)L(Ci) as described in the proof of the previous
lemma. All the automata Di’s have the same transition function ◦, defined by
2m ◦ σ = 2m and i ◦ σ = (m + i) ◦ σ = i · σ for each i in [m] and σ in Σ, and
these automata differ only in the initial and final states. Fig. 1 shows the DFAs
D0, D1, and D2 corresponding to the DFA A in the case of m = 3.

Then the language shift(L) = ∪m−1
i=0 L(Di) is recognized by the cross-product

automaton D0×· · ·×Dm−1. Our aim is to prove that the cross-product automa-
ton has (2n− 3)n−2 = (2m+ 1)m reachable and pairwise distinguishable states.

m m+10 1 2 ... m−1
a,d a,d a,b,c,d

a,b,c,db,cb,c

a,d
a,b,d

c

d

b,c
a

Fig. 2. The quaternary n-state witness DFA A; m = n− 2

Cyclic Shift on Prefix-Free Languages 251

Let us start with reachability. The state set of the cross-product automaton
consists of m-tuples in [2m + 1]m, and the initial m-tuple is (0, 1, . . . ,m − 1).
The next lemma shows that every m-tuple in [2m+ 1]m is reachable.

Lemma 3 (Reachability). Every m-tuple in [2m + 1]m is reachable in the
cross-product automaton D0 ×D1 × · · · ×Dm−1.

Proof. Let (k0, k1, . . . , km−1) be an arbitrary but fixed m-tuple in [2m + 1]m.
We will show that there is a string w that moves the cross-product automaton
from its initial state (0, 1, . . . ,m− 1) to the state (k0, k1, . . . , km−1).

For the m-tuple (k0, k1, . . . , km−1), consider the two disjoint sets of indices I
and J defined by

I = {i ∈ [m] | ki = 2m},
J = {i ∈ [m] |m ≤ ki ≤ 2m− 1},

that is, the i-th component of the m-tuple is the dead state 2m of Di whenever
i ∈ I, it is a state in {m,m+ 1, . . . , 2m− 1} whenever i ∈ J , and it is a state in
[m] otherwise. Next, define a function f : [m] → [m] by

f(i) =

⎧⎨⎩1, if i ∈ I,
ki −m, if i ∈ J,
ki, otherwise.

Since the symbols a, b, c perform the three basic functions on [m] in the DFA A,
there is a string vf over {a, b, c} that moves every state i in [m] to f(i) in A.

Finally, for each � in [m] consider the string u� = am−1−� d a�, and define

w = (
∏
i∈I

uiui

∏
i∈J

ui) · vf , (1)

where
∏

stands for concatenation (in an arbitrary order).
Our goal is to prove that w is the desired string that moves the cross-product

automaton from the initial state (0, 1, . . . ,m− 1) to the state (k0, k1, . . . , km−1).
First, notice that each D� goes from its initial state � to the state m + � by

the string u� = am−1−�da� and then to the dead state 2m by the next u� since

�
am−1−�

−−−−−→ m− 1
d−→ m

a�

−→ m+ �
am−1−�

−−−−−→ 2m− 1
d−→ 2m

a�

−→ 2m.

On the other hand, if j �= �, then Dj remains in its initial state j upon reading
u� since Dj moves by am−1−� from j to state (j +m− 1− �) mod m, in which
the transition on d is defined the same way as on a, and therefore reading u�

from j with j �= � results in the same state as reading am from j:

j
am−1−�

−−−−−→ (j +m− 1− �) mod m
d−→ (j +m− �) mod m

a�

−→ j.

Now consider the string
∏

i∈I uiui

∏
i∈J ui, that is, the first part of the string w

in (1). Recall that the sets of indices I and J are disjoint, and therefore

252 J. Jirásek and G. Jirásková

• every D� with � ∈ I goes from � to 2m by
∏

i∈I uiui and remains in 2m upon
reading

∏
i∈J ui;

• every D� with � ∈ J remains in its initial state � upon reading
∏

i∈I uiui and
then goes to m+ � by

∏
i∈J ui;

• every D� with � /∈ I ∪ J remains in � upon reading
∏

i∈I uiui

∏
i∈J ui.

It follows that the string
∏

i∈I uiui

∏
i∈J ui moves the cross-product automaton

from its initial state (0, 1, . . . ,m− 1) to the state (k′0, k
′
1, . . . , k

′
m−1), where

k′� =

⎧⎨⎩
2m, if � ∈ I,
m+ �, if � ∈ J,
�, otherwise.

Then, after reading the second part of the string w in (1), that is the string vf ,
which moves every state i in [m] to state f(i) in the DFA A, each dfa D� with
� ∈ I remains in its dead state 2m, each dfa D� with � ∈ J goes from m+ � to
m+ f(�) = m+ (k� −m) = k�, while each DFA D� with � /∈ I ∪ J goes from �
to f(�) = k�.

Hence the string w = (
∏

i∈I uiui

∏
i∈J ui) · vf moves the cross-product au-

tomaton from its initial state (0, 1, . . . ,m − 1) to the state (k0, k1, . . . , km−1).
This proves the lemma. ��

The following lemma proves the distinguishability of all the states in the cross-
product automaton. Note that only symbols a and d are needed to get this result,
which will be used later in the paper when dealing with smaller alphabets.

Lemma 4 (Distinguishability). Every two distinc states of the cross-product-
product automaton D0 ×D1 × · · · ×Dm−1 can be distinguished by a string over
{a, d}.

Proof. Let (k0, k1, . . . , km−1) and (k′0, k
′
1, . . . , k

′
m−1) be two distinct m-tuples in

[2m+1]m. Then there is an i in [m] with ki �= k′i, and without loss of generality
we may assume that ki �= 2m. Set

w = d2m−1−ki a dm−1 a dm−1 ai+1,

and let us show that the string w is accepted by the cross-product automaton
from (k0, k1, . . . , ki, . . . , km−1) and rejected from (k′0, k

′
1, . . . , k

′
i, . . . , k

′
m−1).

The DFA Di goes from ki to the accepting state m+ i by the string w since

ki
d2m−1−ki−−−−−−→ 2m− 1

a−→ m
dm−1

−−−→ 2m− 1
a−→ m

dm−1

−−−→ 2m− 1
a−→ m

ai

−→ m+ i.

Therefore, the string w is accepted by the cross-product automaton from the
state (k0, k1, . . . , ki, . . . , km−1).

On the other hand, let us show that the DFA Di rejects the string w from
each state � different from ki. If � > ki, the Di moves from � to the dead state 2m

Cyclic Shift on Prefix-Free Languages 253

by w since it is already in 2m after reading d2m−1−ki . If � < ki, then Di moves
from � to �′ = �+2m−1−ki by d2m−1−ki . If m ≤ �′ < 2m−1 or �′ < m−1, then
Di moves from �′ to the dead state 2m by adm−1 or adm−1adm−1, respectively.
If �′ = m− 1, the Di moves from �′ to its rejecting state i by adm−1adm−1ai+1.
Hence Di rejects the string w from each state � with � �= ki.

The transitions in each Dj with j �= i are the same as in Di, however, the
states m+ i and i are rejecting in Dj . Therefore, the DFA Dj rejects the string
w from each of its states.

Thus the cross-product automaton rejects w from (k′0, k
′
1, . . . , k

′
i, . . . , k

′
m−1),

which concludes the proof. ��

Hence, in the quaternary case, we get a lower bound that matches our upper
bound (2n − 3)n−2 given by Lemma 2. Our next aim is to show that the four-
letter alphabet cannot be decreased, that is, to show that the upper bound
cannot be met by using any smaller alphabet. On the other hand, we will get
still exponential lower bounds in the ternary and binary cases.

3.3 Small Alphabets

Let us start with an upper bound in the ternary case.

Lemma 5. Let n ≥ 5. If L is a prefix-free language recognized by a minimal
n-state DFA over a ternary input alphabet, then the minimal DFA for shift(L)
has less than (2n− 3)n−2 states.

Proof. Let L be accepted by a minimal n-state DFA A over the alphabet {a, b, c}.
Let m = n− 2. Let the state set of A be [m+ 2], with the unique final state m
and the dead state m+ 1. Then, since the final state m is reachable in A, there
must be a symbol σ in {a, b, c} and a state j, from which A goes to m by σ.
Without loss of generality, we may assume that σ = c.

Let D0 × · · · ×Dm−1 be the cross-product automaton for shift(L) described
above. Consider those of its states, in which all the components are less than m,
that is, the states in [m]m, and let us show that at least one of them must be
unreachable in the cross-product automaton.

For each permutation ϕ of [m], the state (ϕ(0), ϕ(1), . . . , ϕ(m− 1)) may only
be reached from the initial state (0, 1, . . . ,m − 1) by reading a string w over
{a, b, c}, in which all symbols permute the set [m] in the DFA A. Therefore, no
c occurs in w. To reach all such permutation states, the symbols a and b must
cause two permutations on [m] generating the group of all permutations on [m]
since m ≥ 3. However, in such a case, no state (f(0), f(1), . . . , f(m−1)) in [m]m,
where f is a function from [m] to [m] which is not a permutation, can be reached
in the cross-product automaton.

If at least one of the symbols a or b does not cause a permutation on [m],
then it is not possible to reach all the states (ϕ(0), ϕ(1), . . . , ϕ(m− 1)) where ϕ
is a permutation on [m] and m ≥ 3. This concludes the proof. ��

254 J. Jirásek and G. Jirásková

Now, using a subautomaton of our quaternary witness automaton defined in
subsection 3.2 and shown in Fig. 2, we prove an exponential lower bound for the
ternary case.

Lemma 6. For every n with n ≥ 4, there exists a prefix-free language recognized
by an n-state DFA over a ternary alphabet such that every DFA for the language
shift(L) requires at least (n− 2)! 2n−2 states.

Proof. Consider the DFA B obtained from the DFA A in Fig. 2 by considering
only the input symbols a, b, d. Since the symbols a and b cause a great permu-
tation and a transposition on [m], respectively, for each permutation ϕ on [m],
there is a string vϕ over {a, b} that moves every state i in [m] to the state ϕ(i).

As shown in the proof of Lemma 3, for each set J of [m] and each permutation
ϕ on [m], the state (k0, k1, . . . , km−1) with

ki =

{
m+ ϕ(i), if i ∈ J,
ϕ(i), otherwise

is reached in the cross-product automaton from the initial state (0, 1, . . . ,m− 1)
by the string ∏

i∈J
(am−1−i d ai) · vϕ.

This gives (n − 2)! 2n−2 reachable states. All these states are pairwise distin-
guishable by Lemma 4. ��

Let us continue with the binary case. By using another subautomaton of our
quaternary witness, the next lemma shows that the lower bound on the state
complexity of cyclic shift of prefix-free languages is exponential even in the case
of a two-letter alphabet.

Lemma 7. For every n with n ≥ 4, there exists a prefix-free language recognized
by an n-state DFA over a binary alphabet such that every DFA for the language
shift(L) requires at least (n− 2)(3n−2 − 1) + 1 states.

Proof. Consider the DFA C obtained from the DFA A in Fig. 2 by considering
only the input symbols a and d. Recall that m = n− 2.

There are 3m possibilities of choosing two disjoint subsets I and J of [m]. For
each of them, as shown in the proof of Lemma 3, the state (k0, k1, . . . , km−1)
with

ki =

⎧⎨⎩2m, if i ∈ I,
m+ i, if i ∈ J,
i, otherwise

is reached in the cross-product automaton from the initial state (0, 1, . . . ,m− 1)
by the string ∏

i∈I
(ui ui)

∏
i∈J

ui

Cyclic Shift on Prefix-Free Languages 255

with ui = am−1−i d ai. From every such state (k0, k1, . . . , km−1), except for the
state with I = [m], the cross-product automaton moves after reading aj with j
in [m] to the state (k′0, k

′
1, . . . , k

′
m−1) with

ki =

⎧⎨⎩
2m, if i ∈ I,
m+ (i+ j) mod m, if i ∈ J,
(i+ j) mod m, otherwise.

This gives (n − 2)(3n−2 − 1) + 1 reachable states. The distinguishability again
follows from Lemma 4. ��

Recall that the state complexity of a regular language L, sc(L), is defined as the
smallest number of states in any DFA recognizing the language L. Denote by
fk(n) the state complexity function of cyclic shift on prefix-free regular languages
over a k-letter alphabet defined by

fk(n) = max{sc(shift(L)) | L ⊆ Σ∗, |Σ| = k, L is prefix-free, and sc(L) = n}.

Using this notation, we can summarize our results in the following theorem.

Theorem 1 (State Complexity). Let n ≥ 5 and fk(n) be the state complexity
of cyclic shift on prefix-free regular languages over a k-letter alphabet. Then

(i) f1(n) = n;
(ii) f2(n) ≥ (n− 2)(3n−2 − 1) + 1;
(iii) (n− 2)! · 2n−2 ≤ f3(n) < (2n− 3)n−2;
(iv) f4(n) = fk(n) = (2n− 3)n−2 for every k with k ≥ 4.

Proof. The equality in (i) holds since the cyclic shift of every unary language
is the same language. The lower bound on f2(n) in (ii) is given by Lemma 7,
while the bounds on f3(n) in (iii) follow from Lemmata 5 and 6. The upper
bound on fk(n) in (iv) is given by Lemma 2, and its tightness for k = 4 is
proved in Lemmata 3 and 4. Since adding new symbols to the quaternary witness
automata does not change the proofs of reachability and distinguishability in the
quaternary case, the upper bound is tight for every k with k ≥ 4. ��

Hence the tight bound on the state complexity of cyclic shift on prefix-free
languages over an alphabet of at least four symbols is (2n − 3)n−2. Moreover,
the alphabet of size at least four is necessary for the tightness. Using any smaller
alphabet, the upper bound (2n−3)n−2 cannot be met. However, the lower bounds
in the binary and ternary cases are still exponential, namely (n−2)·(3n−2−1)+1
and (n − 2)! · 2n−2, respectively. Our calculations given in Table 1 show that
the state complexity of cyclic shift on prefix-free languages in the binary and
ternary cases is greater than the above mentioned lower bounds. Its exact value
in these two cases remains open. The hardest binary and ternary automata for
n = 4, 5, 6, 7 are shown in Fig. 3 and Fig. 4, respectively.

256 J. Jirásek and G. Jirásková

Table 1. The state complexity of cyclic shift on prefix-free languages

n f2(n) f3(n) f4(n) = (2n− 3)n−2

4 17 25 25

5 121 319 343

6 1709 6193 6561

7 36256 154976 161051

10

10

0 1 2 3 4a a ba,ba,b36256

b
b

a

10 a,b

a,b

a,b

a,b

a,b

a,b

a,b

a,b

121 2 3

b

a,ba b

2 3 4a a a b1709

b
b b

a

a

a,b b
17 2

a

5

4

6

5

3

Fig. 3. The hardest binary DFAs; n = 4, 5, 6, 7

1 2

a

aaa
a

c c c c c
...

a,b,c

b b b b

0

a,b,c

a,b,c
n−1n−3 n−2n−4

Fig. 4. The hardest ternary DFAs; for n = 4, 5, 6, 7

Cyclic Shift on Prefix-Free Languages 257

4 Conclusions

We investigated the state complexity of cyclic shift operation in the class of
prefix-free regular languages. We obtained the upper bound (2n − 3)n−2, and
we showed that it is tight in the case of a four-letter alphabet. We also proved
that this upper bound cannot be met by any prefix-free language defined over
a smaller alphabet. In the ternary and binary cases, we were still able to get
exponential lower bounds (n− 2)! ·2n−2 and (n− 2) · (3n−2− 1)+1, respectively.
Our calculations showed that these lower bounds can be exceeded.

Notice that for incomplete deterministic finite automata, the tight bound for
an alphabet of at least four symbols is (2n− 1)n−1 − 1.

The exact values of the state complexity of cyclic shift on binary and ternary
prefix-free languages remain open, and are of interest to us. We also conjecture
that the state complexity of cyclic shift on prefix-free languages in the binary
case is smaller than that in the ternary case.

References

1. Birget, J.-C.: Intersection and union of regular languages and state complexity.
Inform. Process. Letters 43, 185–190 (1992)

2. Gruber, H., Holzer, M.: Language operations with regular expressions of polyno-
mial size. Theoret. Comput. Sci. 410, 3281–3289 (2009)

3. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free reg-
ular languages. In: Automata, Formal Languages, and Related Topics, pp. 99–115.
University of Szeged, Hungary (2009)

4. Han, Y.-S., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic
operations for prefix-free regular languages. Fund. Inform. 90, 93–106 (2009)

5. Han, Y.-S., Salomaa, K., Yu, S.: State complexity of combined operations for prefix-
free regular languages. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.)
LATA 2009. LNCS, vol. 5457, pp. 398–409. Springer, Heidelberg (2009)

6. Jirásková, G., Krausová, M.: Complexity in prefix-free regular languages. In:
McQuillan, I., Pighizzini, G., Trost, B. (eds.) Proc. 12th DCFS, pp. 236–244. Uni-
versity of Saskatchewan, Saskatoon (2010)

7. Jirásková, G., Okhotin, A.: State complexity of cyclic shift. Theor. Inform.
Appl. 42, 335–360 (2008)

8. Krausová, M.: Prefix-free regular languages: Closure properties, difference, and left
quotient. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D.
(eds.) MEMICS 2011. LNCS, vol. 7119, pp. 114–122. Springer, Heidelberg (2012)

9. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Dokl. 11, 1373–1375 (1970)

10. Maslov, A.N.: The cyclic shift of languages. Problemy Peredači Informacii 9, 81–87
(1973) (Russian)

11. Oshiba, T.: Closure property of the family of context-free languages under the
cyclic shift operation. Electron. Commun. Japan 55, 119–122 (1972)

12. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

13. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. I, ch. 2, pp. 41–110. Springer, Heidelberg (1997)

14. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

Weak Abelian Periodicity of Infinite Words

Sergey Avgustinovich1 and Svetlana Puzynina1,2,�

1 Sobolev Institute of Mathematics, Russia
avgust@math.nsc.ru

2 University of Turku, Finland
svepuz@utu.fi

Abstract. We say that an infinite word w is weakly abelian periodic
if it can be factorized into finite words with the same frequencies of
letters. In this paper we study properties of weak abelian periodicity,
and its relations with balance and frequency. We establish necessary
and sufficient conditions for weak abelian periodicity of fixed points of
uniform binary morphisms. Also, we discuss weak abelian periodicity in
minimal subshifts.

The study of abelian properties of words dates back to Erdös’s question whether
there is an infinite word avoiding abelian squares [7]. Abelian powers and their
avoidability in infinite words is a natural generalization of analogous questions
for ordinary powers. The answer to Erdös’s question was given by Keränen, who
provided a construction of an abelian square-free word [10]. From that time till
nowadays, many problems concerning different abelian properties of words have
been studied, including abelian periods, abelian powers, avoidability, complexity
(see, e. g., [2], [4], [5], [13]).

Two words are said to be abelian equivalent, if they are permutations of each
other. Similarly to usual powers, an abelian k-power is a concatenation of k abelian
equivalent words.We define a weak abelian power as a concatenation of words with
the same frequencies of letters. So, in a weak abelian power we admit words with
different lengths; if all words are of the same length, thenwe have an abelian power.
Earlier some questions about avoidability of weak abelian powers have been con-
sidered. In [11] for given integer k the author finds an upper bound for length
of binary word which does not contain weak abelian k-powers. In [8] the authors
build an infinite ternary word having no weak abelian (511 + 1)-powers.

The notion of abelian period is a generalization of the regular notion of period,
and it is closely related to abelian powers. A periodic infinite word can be defined
as an infinite power. Similarly, we say that a word is (weakly) abelian periodic,
if it is a (weak) abelian ∞-power. In the paper we study the property of weak
abelian periodicity for infinite words, in particular, its connections with related
notions of balance and frequency. We establish necessary and sufficient conditions
for weak abelian periodicity of fixed points of uniform binary morphisms. Also,
we discuss weak abelian periodicity in minimal subshifts.

� Supported in part by the Academy of Finland under grant 251371, by Russian
Foundation of Basic Research (grant 12-01-00448), and by RF President grant MK-
4075.2012.1.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 258–270, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Weak Abelian Periodicity of Infinite Words 259

The paper is organized as follows. In Section 2 we fix our terminology, in
Section 3 we discuss some general properties of weak abelian periodicity and its
connections with other notions, such as balance and frequencies of letters. In
Section 4 we give a criteria for weak abelian periodicity of fixed points of prim-
itive binary uniform morphisms. In Section 5 we study weak abelian periodicity
of points in shift orbit closure of uniform recurrent words.

1 Preliminaries

In this section we give some basics on words following terminology from [12] and
introduce the concepts used in this paper.

Given a finite non-empty set Σ (called the alphabet), we denote by Σ∗ and
Σω, respectively, the set of finite words and the set of (right) infinite words over
the alphabet Σ. Given a finite word u = u1u2 . . . un with n ≥ 1 and ui ∈ Σ, we
denote the length n of u by |u|. The empty word will be denoted by ε and we
set |ε| = 0.

Given words w, x, y, z such that w = xyz, x is called a prefix, y is a factor
and z a suffix of w. The factor of w starting at position i and ending at position
j will be denoted by w[i, j] = wiwi+1 . . . wj . The prefix (resp., suffix) of length n
of w is denoted prefn(w) (resp., suffn(w)). The set of all factors of w is denoted
by F (w), the set of all factors of length n of w is denoted by Fn(w).

An infinite word w is ultimately periodic, if for some finite words u and v it
holds w = uvω; w is purely periodic (or briefly periodic) if u = ε. An infinite
word is aperiodic if it is not ultimately periodic.

An infinite word w = w1w2 . . . is recurrent if any of its factors occurs infinitely
many times in it. The word w is uniformly recurrent if for each its factor u there
exists C such that wheneverw[i, j] = u, there exists 0 < k ≤ C such that w[i, j] =
w[i + k, j + k] = u. In other words, factors occur in w in a bounded gap.

Given a finite word u = u1u2 . . . un with n ≥ 1 and ui ∈ Σ, for each a ∈ Σ,
we let |u|a denote the number of occurrences of the letter a in u. Two words u
and v in Σ∗ are abelian equivalent, denoted u ∼ab v, if and only if |u|a = |v|a
for all a ∈ Σ. It is easy to see that abelian equivalence is indeed an equivalence
relation on Σ∗.

An infinite word w is called abelian (ultimately) periodic, if w = v0v1 . . . ,
where vk ∈ Σ∗ for k ≥ 0, and vi ∼ab vj for all integers i, j ≥ 1.

For a finite word w ∈ Σ∗, we define frequency ρa(w) of a letter a ∈ Σ in w as

ρa(w) =
|w|a
|w| .

Definition 1. An infinite word w is called weakly abelian (ultimately) periodic,
if w = v0v1 . . . , where vi ∈ Σ∗, ρa(vi) = ρa(vj) for all a ∈ Σ and all integers
i, j ≥ 1.

In other words, a word is weakly abelian periodic if it can be factorized into
words of possibly different lengths with the same frequencies of letters. In what
follows we usually omit the word “ultimately”, meaning that there can be a

260 S. Avgustinovich and S. Puzynina

prefix with different frequencies. Also, we often write WAP instead of weakly
abelian periodic for brevity.

Definition 2. An infinite word w is called bounded weakly abelian periodic, if
it is weakly abelian periodic with bounded lengths of blocks, i. e., there exists C
such that for every i we have |vi| ≤ C.

We mainly focus on binary words, but we also make some observations in the
case of general alphabet. One can consider the following geometric interpretation
of weak abelian periodicity. Let w = w1w2 . . . be an infinite word over a finite
alphabet Σ. We translate w to a graph visiting points of the infinite rectangular
grid by interpreting letters of w by drawing instructions. In the binary case, we
assign 0 with a move by vector v0 = (1,−1), and 1 with a move v1 = (1, 1). We
start at the origin (x0, y0) = (0, 0). At step n, we are at a point (xn−1, yn−1) and
we move by a vector corresponding to the letter wn, so that we come to a point
(xn, yn) = (xn−1, yn−1) + vwn , and the two points (xn−1, yn−1) and (xn, yn) are
connected with a line segment. Thus, we translate the word w to a path in Z2.
We denote corresponding graph by gw. Therefore, for any word w, its graph is
a piece-wise linear function with linear segments connecting integer points (see
Example 1). It is easy to see that weakly abelian periodic word w has graph with
infinitely many integer points on a line with rational slope (we will sometimes
write that w is WAP along this line). A bounded weakly abelian periodic word
has a graph with bounded differences between letters. Note also that instead
of vectors (1,−1) and (1, 1) one can use any other pair of noncollinear vectors
v0 and v1, and sometimes it will be convenient for us to do so. For a k-letter
alphabet one can consider a similar graph in Zk. Note that the graph can also
be defined for finite words in a similar way, and we will sometimes use it.

Definition 3. We say that a word w is of bounded width, if there exist two
lines with the same rational slope, so that the path corresponding to w lies between
these two lines. Formally, there exist rational numbers a, b1, b2, so that ax+b1 ≤
gw(x) ≤ ax+ b2.

Note that we focus on rational a, because words of bounded irrational width
cannot be weakly abelian periodic. Equivalently, bounded width means that
graph of the word lies on finitely many lines with rational coefficients.

We will also need the notions of frequency and balance, which are closely
related to abelian periodicity. Relations between these notions are discussed in
the next section. A word w is called C-balanced if for each two its factors u and
v of equal length ||u|a−|v|a| ≤ C for any a ∈ Σ. Actually, the notion of bounded
width is equivalent to the notion of balance (see, e.g., [1]). We say that a letter a ∈
Σ has frequency ρa(w) in an infinite word w if ρa(w) = limn→∞ ρa(prefn(w)).
Note that for some words the limit does not exist, and we say that such words
do not have letter frequencies. Note also that we define here a prefix frequency,
though sometimes another version of frequency of letters in words is studied
(see Section 5 for definitions). Observe that if a WAP word has a frequency of a
letter, then this frequency coincides with the frequency of this letter in factors
of corresponding factorization.

Weak Abelian Periodicity of Infinite Words 261

A morphism is a function ϕ : Σ∗ → B∗ such that ϕ(ε) = ε and ϕ(uv) =
ϕ(u)ϕ(v), for all u, v ∈ Σ∗. Clearly, a morphism is completely defined by the
images of the letters in the domain. For most of morphisms we consider, Σ = B.
A morphism is primitive, if there exists k such that for every a ∈ Σ the image
ϕk(a) contains all letters from B. A morphism is uniform, if |ϕ(a)| = |ϕ(b)| for
all a, b ∈ Σ, and prolongeable on a ∈ Σ, if |ϕ(a)| ≥ 2 and a = pref1(ϕ(a)). If
ϕ is prolongeable on a, then ϕn(a) is a proper prefix of ϕn+1(a), for all n ∈ N.
Therefore, the sequence (ϕn(a))n≥0 of words defines an infinite word w that is
a fixed point of ϕ.

Remind the definition of Toeplitz words. Let ? be a letter not in Σ . For a
word w ∈ Σ(Σ ∪ {?})∗, let

T0(w) =?ω, Ti+1(w) = Fw(Ti(w)),

where Fw(u), defined for any u ∈ (Σ ∪ {?})ω, is the word obtained from wω by
replacing the sequence of all occurrences of ? by u; in particular, Fw(u) = wω if
w contains no ?.

Clearly,

T (w) = lim
i→∞

Ti(w) ∈ Σω

is well-defined, and it is referred to as the Toeplitz word determined by the
pattern w. Let p = |w| and q = |w|? be the length of w and the number of ?’s in
w, respectively. Then T (w) is called a (p, q)-Toeplitz word (see, e. g., [3]).

Example 1. Paperfolding word:

00100110001101100010011100110110 . . .

This word can be defined, e.g., as a Toeplitz word with pattern w = 0?1?. The
graph corresponding to the paperfolding word with v0 = (1,−1), v1 = (1, 1)
is in Fig. 1. The paperfolding word is not balanced and is WAP along the line
y = −1 (and actully along any line y = C, C = −1,−2, . . .). See Proposition 2
(2) for details.

���
�
���

��
��

�
��

���
��

�
���

��
�
��

��
���

��

Fig. 1. The graph of the paperfolding word with v0 = (1,−1), v1 = (1, 1)

Example 2. A word obtained as an image of the morphism 0 0→ 01, 1 0→ 0011
of any nonperiodic binary word is bounded WAP.

262 S. Avgustinovich and S. Puzynina

2 General Properties of Weak Abelian Periodicity

In this section we discuss the relations between notions defined in the previ-
ous section and observe some simple properties of weak abelian periodicity. We
start with the property of bounded width and its connections to weak abelian
periodicity.

Proposition 1. 1. If an infinite word w is of bounded width, then w is WAP.
2. There exists an infinite word w of bounded width which is not bounded WAP.
3. If an infinite word w is bounded WAP, then w is of bounded width.

Proof. 1. Since w is of bounded width, its graph lies on a finite number of lines
with rational coefficients. By the pigeonhole principle it has infinitely many
points on one of these lines and hence is WAP.

2. Consider

w = 01110100010101110101010 · · · = (01)11(10)20(01)31(10)4 . . . (01)2i−11(10)2i0 . . .

Taking its graph with v0 = (−1, 1) and v1 = (1, 1) we see that it lies on the
lines y = 0,−1, 1, 2 and hence w is of bounded width. The graph intersects each
of these lines infinitely many times, but each of them with growing gaps.

3. Again, take graph of w with v0 = (−1, 1) and v1 = (1, 1). Bounded WAP
means that it intersects some line y = ax+ b with a, b rational and gap at most
C for some integer C, i. e., the difference between two consecutive points xi and
xi+1 is at most C. Therefore, the graph lies between lines y = ax+ b−C/2 and
y = ax+ b+ C/2, and hence w is of bounded width.

In the following proposition we discuss the connections between uniform recur-
rence and WAP.

Proposition 2. 1. If w is uniformly recurrent and of bounded width, then w is
bounded WAP.
2. There exists a uniformly recurrent WAP word w which is not of bounded
width.

Proof. 1. Take graph of w with some vectors, e. g., v0 = (−1, 1) and v1 = (1, 1).
Bounded width means that the graph gw satisfies ax+ b1 ≤ gw(x) ≤ ax+ b2 for
some rational numbers a, b1, b2. Take the biggest such b1 and the smallest b2, i.
e., there are integers x1 and x2 such that gw(x1) = ax1 + b1, gw(x2) = ax2 + b2.
Without loss of generality suppose x1 ≤ x2 and consider the factor w[x1, x2].
Since w is uniformly recurrent, this factor occurs infinitely many times in it
with bounded gap. Every position i corresponding to an occurrence of this factor
satisfies gw(i) = ai+ b1, otherwise gw(i+ x2 − x1) > a(i + x2 − x1) + b2, which
contradicts the choice of b2. Hence the word is bounded WAP along the line
y = ax+ b1 (and moreover along y = ax+ b2 and any rational line in between).

2. One of such examples is the paperfolding word w. It can be defined in several
equivalent ways, we define it as a Toeplitz word with pattern 0?1? [3]. It is not

Weak Abelian Periodicity of Infinite Words 263

difficult to see that |pref4k−1(w)|0 = 4k/2, |pref4k−1(w)|1 = 4k/2−1. Hence, the
word is WAP with frequencies ρ0 = ρ1 = 1

2 along the line y = −1. On the other

hand, taking n = 2k +2k−2+ · · ·+2k−2

k
2 �, one gets |prefn(w)|0 −|prefn(w)|1 =

k + 1. Thus, the word is not of bounded width.

Next, we study the relation between WAP property and frequencies of letters.

Proposition 3. 1. There exists an infinite word w with rational frequencies of
letters which is not WAP.
2. If an infinite word w has irrational frequency of some letters, then w is not
WAP.
3. If a binary infinite word w does not have frequencies of letters, then w is
WAP.
4. There exists a ternary infinite word w which does not have frequencies of
letters and which is not WAP.

Proof. 1. Consider

w = 01001010(01)4 . . . 0(01)2
n

. . .

This word has letter frequencies ρ0 = ρ1 = 1/2. Suppose it is weakly abelian
periodic. If a word has frequencies of letters and is WAP, then these frequencies
coincide with frequencies of letters in the corresponding factorization. So, if w
is WAP, then there is a sequence k1, k2, . . . (the sequence of lengths of factors
in the corresponding factorization), such that |prefki

w|0 = ki/2+C, where C is
defined by the first factor of length k1: C = k1/2 − |prefk1

w|0/2. For the word
w, the number of 0’s in a prefix of length n is |prefnw|0 = n/2 + θ(log n). For
n = ki large enough one has θ(logn) > C, a contradiction. Thus, w is not WAP.

For uniformly recurrent examples see Section 5.

2. Assume that the word w is WAP, then for every letter a there exists a

rational partial limit limnk→∞
|prefnk

(w)|a
|prefnk

(w)| . For w having irrational frequency of

some letter all such partial limits corresponding to this letter exist and are equal
to this irrational frequency. A contradiction.

3. Consider a sequence (|prefn(w)|a
|prefn(w)|)n≥1. This sequence is bounded, and has a

lower and upper partial limits r = limn→∞
|prefn(w)|a
|prefn(w)| andR = limn→∞

|prefn(w)|a
|prefn(w)| .

Since the sequence does not have a limit, these partial limits do not coincide:
r < R. Using the graph of w, one gets that the graph intersects every line with
slope corresponding to the frequency between r and R. For rational frequencies
one gets that the graph intersects the line infinitely many times. Hence there
are infinitely many integer points on it (or its shift, depending on the choice of
v0 and v1). Thus, we proved that w is WAP, and moreover, it is WAP with any
rational frequency ρ, r < ρ < R in factors in the corresponding factorization.

4. Consider the word

w = 0120122406110216 . . . 0ni1ni+12ni+2 . . . ,

264 S. Avgustinovich and S. Puzynina

where ni = ni−1 + ni−2 for every i ≥ 5, n1 = n2 = n3 = n4 = 1. The word
is organized in a way that after each block ani the frequency of the letter a in
the prefix ending in this block is equal to 1/2, i. e., ρa(01201

224 . . . ani) = 1
2 for

a ∈ {0, 1, 2}. Hence, the frequencies of letters do not exist.
Now we will prove that it is not weakly abelian periodic. Suppose it is,

with points k1, k2 . . . and rational frequencies ρ0, ρ1, ρ2 in the blocks, i. e. w =

w1w2 . . . , and |w1 . . . wn| = kn and |wi|a
|wi| = ρa for every a ∈ {0, 1, 2} and i > 1.

By the pigeonhole principle there exists a letter a such that infinitely many ki
are in the blocks of a-s, meaning that at least one of the letters wki , wki+1 is
a. Without loss of generality suppose a = 2. Using the recurrence relation for

ni, one can find limn→∞
|prefknw|0
|prefknw|1 = 1

λ1
, where λ1 = 1+

√
5

2 is the larger root of

the equation λ2 = λ+1 corresponding to the recurrence relation. Therefore, the
limit is irrational, and hence w cannot be equal to ρ0

ρ1
. Thus, w is not WAP.

Thus, we obtain the following corollary:

Corollary 1. If a binary word w is not WAP, then it has frequencies of letters.

This simple corollary, however, is unexpected: from the first glance weak abelian
periodicity and frequencies of letters seem to be very close notions. But it turns
out that one of them (WAP) does not hold, then the other one should necessarily
hold.

We end this section with an observation about WAP of non-binary words. We
will show that contrary to ordinary and abelian periodicity, the property WAP
cannot be checked from binary words obtained by unifying letters of the original
word.

For a word w over an alphabet of cardinality k define wa∪b to be the word
over the alphabet of cardinality k− 1 obtained from w by unifying letters a and
b. In other words, wa∪b is an image of w under a morphism b 0→ a, c 0→ c for
every c �= b.

Proposition 4. There exists a ternary word w, such that w0∪1, w0∪2, w1∪2 are
WAP, and w itself is not WAP.

Proof. We use the example we built in the proof of Proposition 3(3), i. e., we take
w = 0120122406110216 . . . 0ni1ni+12ni+2 . . . , where ni = ni−1 + ni−2 for every i.
Due to space limitations, we omit the calculations.

3 Weak Abelian Periodicity of Fixed Points of Binary
Uniform Morphisms

In this section we study the weak abelian periodicity of fixed points of uniform
binary morphisms.

Consider a binary uniform morphism ϕ with matrix

(
a b
c d

)
. This means that

|ϕ(0)|0 = a, |ϕ(0)|1 = b, |ϕ(1)|0 = c, |ϕ(1)|1 = d, and a+ b = c+ d = k, since we

Weak Abelian Periodicity of Infinite Words 265

consider a uniform morphism. In a fixed point w of the binary uniform morphism
ϕ the frequencies exist and they are rational. It is easy to see that ρ0(w) =

c
b+c ,

ρ1(w) =
b

b+c . It will be convenient for us to consider a geometric interpretation
with v0 = (1,−b), v1 = (1, c). If w is WAP, then the frequency inside the blocks
is equal to the frequency in the whole word. Thus, WAP can be reached along a
horizontal line y = C.

The following theorem gives a characterization of weak abelian periodicity for
fixed points of non-primitive binary uniform morphisms. Observe that the theo-
rems in this section are stated for non-primitive morphisms, since for primitive
binary uniform morphisms it is easy to check (bounded) WAP directly.

Theorem 1. Consider a non-primitive binary uniform morphism ϕ with matrix(
a b
c d

)
having a fixed point w starting with letter 0. For any u ∈ {0, 1}∗∪{0, 1}∞

let gu be its graph with vectors v0 = (1,−b), v1 = (1, c).
1. If gϕ(0)(x) = 0 for some x, 0 < x ≤ k, then w is WAP.
2. If gϕ(0)(k) ≥ −b, then w is WAP.
3. Otherwise we need the following parameters. Denote Δ = gϕ(0)(k), A =
max{gϕ(0)(i)|i = 1, . . . k, wi = 1}, t = max{gϕ(1)(i)|i = 1, . . . k, wi = 1}.

If ϕ does not satisfy conditions 1 and 2, then its fixed point w is WAP if and
only if ΔA−c

−b + t ≥ A.

Proof. 1. If in the condition gϕ(0)(x) = 0, 0 < x ≤ k, the number x is integer,
then for every i it holds gϕi(0)(k

i−1x) = 0, so the word is WAP. If x is not
integer, then we have either gϕ(0)(�x�) < 0 and gϕ(0)(�x�) > 0 or gϕ(0)(�x�) > 0
and gϕ(0)(�x�) < 0. Without loss of generality consider the first case. For any
i, one has gϕi(0)(k

i−1�x�) < 0 and gϕi(0)(k
i−1�x�) > 0, hence there exists xi,

ki−1�x� < xi < ki−1�x�, such that gϕi(0)(xi) = 0. Hence, we have an infinite
sequence of points (xi)

∞
i=1 such that gw(xi) = 0. By the definition of gw and

the pigeonhole principle we obtain that there is an infinite number of integer
points from the set �xi�, �xi�, i = 1, . . . ,∞, on one of the lines x = C, C =
−max(b, c) + 1,−max(b, c) + 2, . . . ,max(b, c)− 1. So, w is WAP.

2. If gϕ(0)(k) ≥ 0, we are in the conditions of the case 1, so the word is
WAP. If 0 > gϕ(0)(k) ≥ −b, then the only possible case is gϕ(0)(k) = −b. This
follows from the fact that the condition 0 > gϕ(0)(k) ≥ −b means that a > c, or,
equivalently, a − c ≥ 1, and therefore gϕ(0)(k) = a(−b) + bc = −b(a− c) ≥ −b.
Hence c = a − 1, and so gϕi(0)(k

i) = −b, and thus w is WAP along the line
y = −b.

3. Suppose that ΔA−c
−b + t ≥ A. We need to prove that w is WAP.

Let j be such that gϕ(1)(j) = t. Under these conditions we will prove the
following claim: If for some m one has wm = 1 and gw(m) ≥ A, then wkm+j = 1
and gw(k(m− 1) + j) ≥ A.

Consider the occurrence of 1 at the position m. By the definition of the graph
of w, one has that gw(m− 1) ≥ A− c, and hence prefm−1(w) contains at least
c

b+c (m− 1)− 1
b+c (A− c) letters 0 and at most b

b+c (m− 1) + 1
b+c(A− c) letters

266 S. Avgustinovich and S. Puzynina

1. Therefore, for the image of this prefix one has gw(k(m − 1)) ≥ ΔA−c
−b . Since

wm = 1, one has w[k(m−1)+1, km] = ϕ(1). Then gw(k(m−1)+j) = gw(k(m−
1)) + t ≥ ΔA−c

−b + t, and we have ΔA−c
−b + t ≥ A, and so gw(k(m− 1) + j) ≥ A.

The claim is proved.
Now consider the occurrence of 1 corresponding to the value A defined in the

theorem, i. e., we consider wi = 1 such that gw(i) = A. Applying the claim we
just proved to m = i we have wk(i−1)+j = 1, gw(k(i − 1) + j) ≥ A. Now we
can apply the claim to m = k(i − 1) + j and obtain that wk(k(i−1)+j)+j = 1,
gw(k(k(i − 1) + j)) ≥ A. Continuing this line of reasoning, one gets infinitely
many positions n for which gw(n) ≥ A. On the other hand, it is easy to see that
gw(k

l) < 0 for all integers l. Hence, w is WAP along one of the lines y = C,
A−max(b, c) + 1 ≤ C ≤ max(b, c)− 1. Additional term ±max(b, c) is added to
guarantee integer points, since the graph ”jumps” by b and c.

Now suppose that ΔA−c
−b + t < A. We need to prove that w is not WAP.

Let j be such that gϕ(1)(j) = t. Under these conditions we prove the following
claim: If for all m in the prefix of w of length N such that wm = 1 one has
gw(m) ≤ A, then for all N + 1 ≤ l ≤ Nk such that wl = 1 we have gw(l) <
maxm{gw(m)|1 ≤ m ≤ N,wm = 1}, or, equivalently, gw(l) ≤ maxm{gw(m) −
1|1 ≤ m ≤ N,wm = 1}. Roughly speaking, the claim says that maximal values
are decreasing. The claim is proved in a similar way as the previous claim, so we
omit the proof.

Now consider occurrences of 1 from ϕ(0), i. e., we consider wi = 1 such that
1 ≤ i ≤ k. By the conditions of the part 3 of the theorem we have gw(i) ≤ A.
Applying the latter claim to m = i we have that for all occurrences l of 1 in
w[k + 1, k2] it holds gw(l) ≤ A − 1. By the definition of the graph gw, maximal
values are attained immediately after the occurrences of 1-s, hence we actually
have gw(l) ≤ A− 1 for all k + 1 ≤ l ≤ k2. Continuing this line of reasoning, we
obtain that for kn + 1 ≤ i ≤ kn+1 it holds gw(l) ≤ A − n. Thus, the word w is
not WAP (since w can be WAP only along horizontal lines).

Now we are going to show that a fixed point of a uniform morphism is bounded
WAP iff it is abelian periodic. This is probably known or follows from some gen-
eral characterizations of balance of morphic words (e. g., [1]), but we nevertheless
provide a short combinatorial proof to be self-contained.

Theorem 2. Let w be a fixed point of binary k-uniform morphism ϕ. The fol-
lowing are equivalent:
1. w is bounded WAP
2. w is abelian periodic

3. ϕ(0) ∼ab ϕ(1) or k is odd and ϕ(0) = (01)
k−1
2 0, ϕ(1) = (10)

k−1
2 1.

Proof. We prove the theorem in the following way. Starting with a bounded
WAP word w, we step by step restrict the form of w and prove that the mor-

phism should satisfy either ϕ(0) ∼ab ϕ(1) or k is odd and ϕ(0) = (01)
k−1
2 0,

ϕ(1) = (10)
k−1
2 1. These conditions clearly imply abelian periodicity, and abelian

periodicity implies bounded WAP. So, we actually prove 1 ⇒ 3 ⇒ 2 ⇒ 1, and
the only implication to be proved is 1 ⇒ 3.

Weak Abelian Periodicity of Infinite Words 267

Suppose that w is bounded WAP and ϕ(0) is not abelian equivalent to ϕ(1),
i. e., a �= c. Without loss of generality we may assume that the fixed point starts
with 0 and that a > c. If a < c, we consider a morphism ϕ2, so that one has
gϕ2(0) ≤ 0. We will prove that either the fixed point is not of bounded width or

the morphism is of the form ϕ(0) = (01)
k−1
2 0, ϕ(1) = (10)

k−1
2 1, k odd.

In the proof we will use the following terminology. For a factor u of w such

that ρ0(u) > ρ0(w), we say that u has m extra 0’s, if |u|0−m|u|−m = ρ0(w). In other

words, deleting m letters 0 from u gives a word with frequency ρ0(w). We also
admit non-integer values of m. E. g., if ρ0(w) = 1

3 and u = 01, then u has 1
2

extra 0’s.
Suppose a > c + 1. In this case ϕi(0) contains (a − c)i extra zeros. Since

(a − c)i increases as i increases, w is not of bounded width. Hence, the fixed
point is not bounded WAP in this case, and hence for bounded WAP one should
have a = c+ 1.

Suppose that ϕ(0) has a prefix x with more than one extra zero. Without loss
of generality we assume that x ends with 0, otherwise we may take a smaller
prefix. So, x = x′0, and x′ has m > 0 extra 0-s. It is not difficult to show that
under the condition a = c + 1 the image ϕ(x′) also contains m extra 0. An
image of x starts with ϕ(x′)x′0. An image of this word starts in ϕ2(x′)ϕ(x′)x′0.
Continuing taking images, we obtain that for every i the word w has a prefix
of the form ϕi(x′)ϕi−1(x′) . . . ϕ(x′)x′0. This word contains (i + 1)m + 1 extra
0-s, and this amount grows as i grows. Hence word w is not of bounded width,
a contradiction. Therefore, we have that every prefix of ϕ(0) has at most one
extra 0, in particular, ϕ(0) starts in 01.

In a similar way we show that every suffix of ϕ(0) has at most one extra 0.
The only difference is that we obtain a series of factors (not prefixes) of w with
growing amount of extra 0-s.

Now consider an occurrence of 0 in ϕ(0), i. e., wj = 0, 1 ≤ j ≤ k. By what
we just proved, ρ0(prefj−1(ϕ(0)) ≥ ρ0(w), and ρ0(suffk−j(ϕ(0)) ≥ ρ0(w). Since
ϕ(0) has one extra 0, we have ρ0(prefj−1(ϕ(0)) = ρ0(suffk−j(ϕ(0)) = ρ0(w).
Hence, wj can be equal to 0 only if in the prefix prefj−1(ϕ(0)) the frequency of
0 is the same as in w.

On the other hand, if the frequencies in the prefj−1(ϕ(0)) are the same as
in w, then wj cannot be equal to 1. Suppose the converse; let wj = 1, then all
wl = 1, l = j, . . . , k − 1, since by induction in all the prefixes prefl(ϕ(0)) the
frequency of 0 is less than ρ0(w). Therefore, in ϕ(0) there will be less than one
extra 0, a contradiction.

Thus, each time we have ρ0(prefj−1(ϕ(0)) = ρ0(w), we necessarily have wj =
0, otherwise wj = 1. Since |ϕ(0)|0 = a, the frequency ρ0(w) is reached a times,
and ϕ(0) consists of a− 1 blocks with one 0 and with frequency ρ0(w), and one
extra block 0. Therefore, a−1 divides a−1+b, i. e., b = i(a−1) for some integer
i. By a similar argument applied to ϕ(1) we get that d− 1 divides c− 1, which
means i(a − 1) divides a − 1. Hence i = 1, and the matrix of the morphism is

268 S. Avgustinovich and S. Puzynina(
a a− 1

a− 1 a

)
. Combining this with the conditions for positions of 0 in ϕ(0),

we obtain ϕ(0) = (01)
k−1
2 0, ϕ(1) = (10)

k−1
2 1.

4 On WAP of Points in a Shift Orbit Closure

In this section we consider the following question: if a uniformly recurrent word
w is WAP, what can we say about WAP of other words whose language equals
F (w)?

As a corollary from Theorem 1 we obtain the following proposition:

Proposition 5. There exists a binary uniform morphism having two infinite
fixed points, such that one of them is WAP, and the other one is not.

Proof. Consider the morphism ϕ : 0 → 0001, 1 → 1011. Using Theorem 1 (3),
one gets that the fixed point starting from 0 is not WAP. Using Theorem 1 (1),
one gets that the fixed point starting from 1 is WAP.

Remark. In particular, this means that there exist two words with same sets of
factors such that one of them is WAP while the other one is not.

In this section we need some more definitions.
Let T : Σω → Σω denote the shift transformation defined by T : (xn)n∈N →

(xn+1)n∈ω. The shift orbit of an infinite word x ∈ Σω is the set O(x) =
{T i(x)|i ≥ 0} and its closure is given by O(x) = {y ∈ Σω|Pref(y) ⊆
{Pref(T i(x))|i ∈ N}}, where Pref(w) denotes the set of prefixes of a finite or
infinite word w. For a uniformly recurrent word w any infinite word x in O(w)
has the same set of factors as w.

We say that w ∈ Σω has uniform frequency ρa of a letter a, if in every
word from O(w) the frequency of the letter a exists and is equal to ρa. In
other words, a letter a ∈ Σ has uniform frequency ρa in w if its minimal fre-

quency ρ
a
= limn→∞ infx∈Fn(w)

|x|a
|x| is equal to its maximal frequency ρa =

limn→∞ supx∈Fn(w)
|x|a
|x| , i. e. ρa = ρa.

Theorem 3. Let w be an infinite binary uniformly recurrent word.
1. If w has irrational frequencies of letters, then every word in its shift orbit
closure is not WAP.
2. If w does not have uniform frequencies of letters, then there is a point in a
shift orbit closure of w which is WAP.
3. If w has uniform rational frequencies of letters, then there is a point in a shift
orbit closure of w which is WAP.
4. There exists a non-balanced word w with uniform rational frequencies of let-
ters, such that every point in a shift orbit closure of w is WAP.

Weak Abelian Periodicity of Infinite Words 269

Proof. 1. Follows from Proposition 3 (2).

2. Follows from Proposition 3 (3).

3. In the proof we use the notion of a return word. For u ∈ F (w), let n1 <
n2 < . . . be all integers ni such that u = wni . . . wni+|u|−1. Then the word
wni . . . wni+1−1 is a return word (or briefly return) of u in w [6], [9], [13].

We now build a WAP word u from O(w). Start with any factor u1 of w, e. g.
with a letter. Without loss of generality assume that ρ0(u1) ≥ ρ0(w). Consider
factorization of w into first returns to u1: w = v11v

1
2 . . . v

1
i . . . , so that v1i is a

return to u1 for i > 1. Then there exists i1 > 1 satisfying ρ0(v
1
i1) ≥ ρ0. Suppose

the converse, i. e., for all i > 1 ρ0(v
1
i) < ρ0. Due to uniform recurrence, the

lengths of the v1i ’s are uniformly bounded, and hence ρ0(w) < ρ0, a contradiction.
Take u2 = v1i1 , then u1 = pref(u2). Now consider a factorization of w into first
returns to u2: w = v21v

2
2 . . . v

2
i Then there exists i2 > 1 satisfying ρ0(v

2
i2
) ≤

ρ0, take u3 = v2i2 . Continuing this line of reasoning to infinity, we build a word
u = limn→∞ ui, such that ρ0(u2i) ≥ ρ0, ρ0(u2i+1) ≤ ρ0. So, the graph of w
with vectors v0 = (1,−1) and v0 = (1,−1) intersects the line y = ρ0x infinitely
many times. Since ρ0 is rational, by a pigeonhole principle the graph intersects in
integer points infinitely many times one of finite number (actually, a denominator
of ρ0) of lines parallel to y = ρ0x. It follows that u is WAP with frequency ρ0,
and by construction u ∈ O(w).

4. Due to space limitations, we omit the proof of this item.

References

1. Adamczewski, B.: Balances for fixed points of primitive substitutions. Theoret.
Comput. Sci. 307, 47–75 (2003)

2. Avgustinovich, S., Karhumäki, J., Puzynina, S.: On abelian versions of critical
factorization theorem. RAIRO - Theoretical Informatics and Applications 46, 3–15
(2012)

3. Cassaigne, J., Karhumäki, J.: Toeplitz Words, Generalized Periodicity and Period-
ically Iterated Morphisms. Eur. J. Comb. 18(5), 497–510 (1997)

4. Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding Abelian powers in
binary words with bounded Abelian complexity. Int. J. Found. Comput. Sci. 22(4),
905–920 (2011)

5. Constantinescu, S., Ilie, L.: Fine and Wilf’s theorem for abelian periods. Bull. Eur.
Assoc. Theor. Comput. Sci. EATCS 89, 167–170 (2006)

6. Durand, F.: A characterization of substitutive sequences using return words. Dis-
crete Mathematics 179(1-3), 89–101 (1998)

7. Erdös, P.: Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6,
221–254 (1961)

8. Gerver, J.L., Ramsey, L.T.: On certain sequences of lattice points. Pacific J.
Math. 83(2), 357–363 (1979)

270 S. Avgustinovich and S. Puzynina

9. Holton, C., Zamboni, L.Q.: Geometric Realizations Of Substitutions. Bull. Soc.
Math. France 126, 149–179 (1998)

10. Keränen, V.: Abelian squares are avoidable on 4 letters. In Automata, languages
and programming. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 41–52.
Springer, Heidelberg (1992)

11. Krajnev, V.A.: Words that do not contain consecutive factors with equal frequen-
cies of letters. Metody Discretnogo Analiza v Reshenii Kombinatornyh Zadach 34,
27–37 (1980)

12. Lothaire, M.: Algebraic combinatorics on words. Cambridge University Press
(2002)

13. Puzynina, S., Zamboni, L.Q.: Abelian returns in Sturmian words. J. Combin.
Theory, Ser. A, V. 120(2), 390–408 (2013)

Universality of Regular Realizability Problems

Mikhail N. Vyalyi�

Dorodnitsyn Computing Center of Russian Academy of Science
vyalyi@gmail.com

Abstract. A regular realizability (RR) problem is to test nonemptiness
of the intersection of some fixed language (filter) with a given regular
language. We show that RR problems are universal in the following sense.
For any language L there exists an RR problem equivalent to L under
disjunctive reductions on nondeterministic log space.

We deduce from this result the existence of RR problems complete
under polynomial reductions for many complexity classes including all
classes of the polynomial hierarchy.

It is well-known that the class of languages recognized by deterministic multi-
head 2-way automata is exactly the class LOG of languages recognized by Turing
machines with logarithmically bounded work space.

This remarkable characterization of a resource-bounded complexity class in
terms of a computational model without restrictions on resources was general-
ized in [11] to various classes of automata using auxiliary memory as a source of
nondeterminism. Generalized nondeterministic automata models (GNA) intro-
duced in [12] express these computational models in a more convenient way. In
particular, each GNA class has a complete regular realizability (RR) problem un-
der log space reductions [13]. The RR problems are parameterized by languages.
The problem RR(L) for a language L (called a filter) is the question about real-
izability of regular properties in L. More precisely, the language RR(L) consists
of descriptions of regular languages R such that R ∩ L �= ∅.

There exist RR problems complete under log space reductions for complexity
classes such as LOG, NLOG, P, NP, PSPACE, EXP, Σ1, see [3,11,12].

In this paper we address the following natural question: what are possible
complexities of RR problems?

The motivation behind the question is to find a specific class of algorithmic
problems that represents in a unified way all known complexity classes (there
are hundreds of them now). We pursue two (somewhat contradictory) goals:
a specific class of problems should be wide enough and it should be useful. The
latter requirement reflects a hope that analysis of a specific problem might be
easier than a general case.

We give a partial answer to this question. It turns out that RR problems are
universal: for any problem there exists an equivalent RR problem.

To make precise statements we need to fix a format for descriptions of regular
languages and an equivalence relation.

� Partially supported by RFBR grants 11–01–00398 and 12–01–00864.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 271–282, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

272 M.N. Vyalyi

We represent a regular language R by a deterministic finite automaton (DFA)
A recognizing the language R (and denote this fact as R = L(A)). DFAs are
described in a natural way by their transition tables. Details of the format used
can be found in [13]. Important features for this work are: (i) each binary word
w is a description of some DFA A(w), and (ii) testing membership for a regular
language L(w) = L(A(w)) can be done using deterministic log space. So the
formal definition of the language RR(L) corresponding to the RR problem with
the filter L is

w ∈ RR(L) ⇔ L ∩ L(A(w)) �= ∅.

Equivalence relations considered here are induced by algorithmic reductions. For
any language X an RR-representative of X (under reductions of some type) is
a language L such that RR(L) is equivalent to X under reductions of this type.

We can prove the universality result mentioned above for disjunctive reduc-
tions using nondeterministic log space (see the definition below in Section 1).
The choice of the reduction type needs explanations.

It is obvious that the stronger reductions are used, the easier universality
proofs become.

The most natural reductions in the context of regular realizability problems
are m-reductions using log space (�log

m -reductions). But there are some argu-
ments against universality for these reductions (see Remark 1 below).

On the other hand, universality is rather easy to prove for exponential time
reductions. But these reductions do not say anything about the most interesting
realm of complexities: the class PSPACE and below.

For polynomial time reductions we need the same constructions that are used
in our proof below. The algorithmic facts become easier.

FNL reductions cover the class P and below. Note that as shown in [1] basic
counting log space classes are closed under �FNL

dtt -reductions.
For many cases, disjunctive nlog space reductions are weaker than polynomial

reductions. In this way we extend a list of classes having complete RR problems
under polynomial reductions. In particular, there exist RR problems complete
for the classes of the polynomial hierarchy. Note that it is a rather surprising
even for the class co-NP: RR problems are formulated by use of the existential
quantifier (existence of an accepting path possessing specific properties) and
there is no direct way to express them using the universal quantifier.

Thus RR problems are universal. Are they useful in a sense explained above?
The proof of universality suggests a negative answer. Reductions used in the
proof cut off almost all properties of regular languages and put ‘the hard part’
of a problem into instances corresponding to finite languages. Of course, nlog
space reductions say nothing about languages inside NLOG.

The rest of the paper is organized as follows. In Section 1 we discuss disjunctive
nlog space reductions and compare them with polynomial reductions.

In Section 2 we introduce a special class of reductions— monoreductions—
and present an easy example of a universality result: RR universality in the class
of promise problems.

Universality of Regular Realizability Problems 273

Section 3 contains the proof of the main result. In Section 4 we extend uni-
versality to the GNA classes. The idea of the proof is the same. But its imple-
mentation involves more technicalities.

All proofs omitted here can be found in the arXiv version of this paper [14].

1 Reductions Used in Universality Results

We recall basic definitions concerning algorithmic reductions. Let C be a function
class. A language A is reduced to a language B under m-reductions by functions
from this class (notation �Cm) if there exists a function f ∈ C such that x ∈ A iff
f(x) ∈ B. If the class C contains the identity map and is closed under composi-
tions, then the m-reduction relation is a preorder, i.e. a transitive and reflexive
relation. Languages are equivalent (notation A ∼Cm B) if they are reduced to
each other under �Cm-reductions.

The most known reductions of this type are polynomial reductions (see,
e.g. [4,10]).

Weaker �log
m -reductions are defined by the class of functions that are com-

putable by deterministic Turing machines using space logarithmically bounded
w.r.t. the input length. It easy to check that the relation �log

m is transitive (see
textbooks on complexity theory, say, [4,10]).

The second important type of reductions is Turing reductions. A language A
is Turing reducible to a language B if there exists an oracle algorithm recog-
nizing A that uses the oracle B. There are several restricted forms of Turing
reductions. In truth-table reductions the reducing algorithm generates a list of
oracle queries q1, . . . , qs and a Boolean function α depending on s arguments.
Then the algorithm asks all queries and outputs α(χB(q1), . . . , χB(qs)).

Note that for log space, Turing reductions and truth-table reductions are
equivalent [7].

We use in the main result a weaker form of truth-table reductions, namely,
disjunctive reductions (notation �dtt). In this case the function α is disjunction.

Disjunctive reductions can be expressed viam-reductions in the following way.
Given a language X , define the language Seq(X) as the collection of all words
of the form #x1#x2# . . . xn#, where xi ∈ X for some i and # is a delimiter
(an additional symbol that does not belong to the alphabet of the language X).
The following statement is clear from the definition.

Proposition 1. A�dtt B iff A�m Seq(B).

Words from Seq(X) can be identified with finite sequences of words from Σ∗ in
a natural way. Hereinafter we assume this correspondence.

Definition 1. A class of languages C is normal if it is closed under the map
X 0→ Seq(X) and �log

m -reductions: if X ∈ C and Y �log
m X then Seq(X) ∈ C and

Y ∈ C.

Definition 2. A language X is �m-normal if X ∼m Seq(X).
If a function class is not indicated we assume log space reductions.

274 M.N. Vyalyi

We list several simple properties of normal classes and normal languages.

Proposition 2. Seq(X) is normal for any X.

Lemma 1. Let Seq(X)�log
m Y and Y �log

m Seq(X). Then Y is normal.

Corollary 1. If a normal class contains �log
m -complete languages then all �log

m -
complete languages in this class are normal.

For disjunctive reductions we will use functions computable using nondetermin-
istic log space (the class FNL). It means that machines computing FNL func-
tions are nondeterministic Turing machines equipped with the logarithmically
bounded work tape and the unbounded oracle tape which is one way and write
only. An oracle puts its answer on the oracle tape and overwrites the query.
More details on the class FNL and its companions can be found in [2]. In par-
ticular, the FNL reductions are transitive and the size of output is polynomially
bounded by the input size.

We denote FNL disjunctive reductions by �FNL
dtt . The FNL m-reduction is

denoted by �FNL
m .

It is clear from the definition that �FNL
dtt -reductions are stronger than log space

reductions and are weaker than polynomial time disjunctive reductions.
We will apply Corollary 1 and �FNL

dtt -universality results to prove that a com-
plexity class contains complete RR problems. To apply Corollary 1 the class
should be normal.

A majority of known complexity classes is normal. We give several examples.
In definitions of complexity classes and computational models we follow Arora
and Barak’s book [4].

A straightforward algorithm for recognizing the language Seq(X) is to check
xi ∈ X for all xi taken from the input

#x1# . . .#xm#

and to output the disjunction of the results.
Let X ∈ DSPACE(f(n)), where f(n) = Ω(log n). Then the above algorithm

uses O(f(n)) space. Thus the class DSPACE(f(n)) is normal (it is closed under
�log

m -reductions by obvious reasons).
With small modifications the same argument is applied to nondeterministic

space classes. A nondeterministic algorithm guesses i such that xi ∈ X and calls
the algorithm recognizing X on the instance xi. So the classes NSPACE(f(n))
with f(n) = Ω(logn) also are normal.

For time complexity classes, closeness under �log
m -reductions holds for the class

P of polynomial time and more powerful classes. The running time of the above
algorithm recognizing Seq(X) is upperbounded by

T̃ (n) = n+ max
n=n1+···+nm

(T (n1) + · · ·+ T (nm)), (1)

where T (n) is the running time of the algorithm recognizing X . It is clear that

T (n) = poly(n) implies T̃ (n) = poly(n). So P is normal. For more powerful

Universality of Regular Realizability Problems 275

classes, normality holds whenever time limitations are closed under the map
T (n) 0→ T̃ (n). There is a simple sufficient condition for closeness: if T (n) satis-
fies time limitations then nT (n) is also satisfies time limitations. Applying this
observation we get normality for the classes of quasipolynomial time, exponential
time, simple exponential time etc.

It is easy to see that under the same conditions nondeterministic time classes
are also normal.

The last example consists of classes of the polynomial hierarchy.

Proposition 3. Each class of the polynomial hierarchy is normal.

Proof. Closeness under �log
m -reductions is clear for each class of the polynomial

hierarchy. So it remains to show closeness under the map X 0→ Seq(X).
Let ISeq(X) be the language consisting of strings of the form

#i#x1 . . .#xm#

such that xi ∈ X . It is clear that X ∼log
m ISeq(X). Indeed, using log space one

can extract the ith list element.
By the definition of ISeq(X) we have

(w ∈ Seq(X)) ⇐⇒ ∃i(#iw ∈ ISeq(X)). (2)

Note that if X ∈ Σp
k then ISeq(X) is in Σp

k . Thus Seq(X) is in Σp
k due to (2).

Suppose now that X ∈ Πp
k . In this case ISeq(X) is in Πp

k and we have for
some V ∈ Σp

k−1 and polynomial p(·)

(#iw ∈ ISeq(X)) ⇐⇒ ∀y(|y| � p(|w|)) ∧ (#iw#y ∈ V).

So we need to interchange quantifiers in (2). It is possible because the outer
quantifier is polynomially bounded. ��

2 Monoreductions

Without loss of generality we consider languages in the binary alphabet.
Let f be an injective map {0, 1}∗ → {0, 1}∗. A monoreduction is a map

x 0→ Af(x), (3)

where Af(x) is the description of the minimal DFA1 recognizing the 1-element
language {f(x)}. Note that the number of states in the minimal DFA coincides
with the number of Myhill–Nerode classes [6]. It is easy to verify that the number
of Myhill–Nerode classes for the language {w} is just |w|+ 2 (all prefixes of the
word w plus one) and the function w 0→ Aw is computable on deterministic log
space.

1 We assume that a construction of the minimal automaton is fixed. For minimization
algorithms see textbooks on formal languages, e.g. [6].

276 M.N. Vyalyi

Informally speaking, the map (3) assigns to a binary word a ‘name’ in the
form of an automaton description. The injectivity condition implies that names
of different words are different.

If a map f(x) is log space computable then the corresponding monoreduc-
tion is also log space computable. It is easy to see that the map f(x) reduces
a nonempty language X ⊆ {0, 1}∗ to an RR problem RR(Y) iff

Y ∩ f(X) = ∅, Y ⊇ f(X). (4)

In other words, Y separates images of X and X and Y contains the image of X .
Complexity of a reduction in the opposite direction depends heavily on Y .
Take for example Y = f(X). It is not a good choice because complexity of the

language RR(f(X)) varies in wide range w.r.t. complexity of the language X . It
can be illustrated in the simplest case f = id.

There exists a filter L such that (a) the membership problem for L is in the
class of languages recognized by RAM in linear time; (b) RR(L) is complete for
the class Σ1 of recursively enumerable languages under m-reductions [12].

On the other hand for X = {0n} the language RR(X) is in LOG. It was
shown in [13] that LOG is �log

m -reducible to any RR problem with an infinite
filter.

Nevertheless, the reduction X �log
m RR(f(X)) can be inverted if we consider

reductions among promise problems. A promise problem is a problem of com-
puting a partially defined predicate. In other words, there are two languages L1

and L0 such that L1 ∩ L0 = ∅. The question is to test membership w ∈ L1

provided either w ∈ L1 or w ∈ L0.
Promise problems have more expressive power than languages (which corre-

spond to total predicates). For many complexity classes, say NP∩co-NP or BPP,
the existence of complete languages in a class is an open problem. But there are
simple and natural examples of complete promise problems for these classes.

The question about complete RR promise problems is also much easier than
the question about complete RR languages.

Theorem 1. Any promise problem (L1, L0) with L1 �= ∅ is equivalent to an RR
promise problem under nlog space reductions.

Proof. Define RR(L1 : |R| = 1) as the RR problem with the promise |L(A)| = 1,
where A is an input DFA. Then the promise problem (L1, L0) is �log

m -reduced
to the problem RR(L1 : |R| = 1) by the map w 0→ Aw.

In the opposite direction we can prove a weaker reduction

RR(L1 : |R| = 1)�FNL
m (L1, L0). (5)

To construct the reduction (5) we need a procedure that finds a word accepted
by a DFA A provided A recognizes a 1-element language. This procedure is easily
implemented in the class FNL: it nondeterministically guesses2 the word symbol
by symbol maintaining the current state of the automaton reading the word. ��
2 Hereinafter a guess is a nondeterministic choice.

Universality of Regular Realizability Problems 277

Remark 1. Is it necessary to use an NLOG-oracle in the reduction (5)? The
question is open but the negative answer is more plausible. In the non-uniform
settings the class of unambiguous nondeterministic log space coincides with the
class of nondeterministic log space [9]. It is quite natural to suggest that sim-
plicity test does not belong to LOG if LOG �= NLOG.

Remark 2. A unique word accepted by DFA can be easily recovered from special
forms of DFA description (say, description of the minimal DFA accepting a 1-
element language). But it does not help to improve the reduction (5) because
we are interested in regular realizability problems (the answer depends on a
language and should be the same for all automata recognizing the language).

3 Universality of RR Problems

In the case of language reductions we are able to prove a weaker version of
Theorem 1 using disjunctive reductions.

Theorem 2. For any nonempty language X there exists a filter L such that

X �log
m RR(L)�FNL

dtt X. (6)

In the proof of Theorem 2 we use the other extreme case of conditions (4).

Namely, we choose Y = Xf
def
= f(X).

The idea behind the proof is to approximate the inversion of a monoreduction
as close as possible. The difficulty of inversion stems from the fact mentioned in
Remark 2: instances of an RR problem are all regular languages and the RR prob-
lemmight be hard for languages that are not 1-element languages constituting the
image of the monoreduction. To overcome this difficulty we choose a filter Xf for
a map f such that for most regular languages the problem RR(Xf) is trivial.

The first step toward implementation of this idea is to make an RR problem
trivial for all infinite languages.

Definition 3. An infinite language is regularly immune if it does not contain
any infinite regular language.

Suppose that f({0, 1}∗) is contained in a regularly immune language. Then any

infinite regular language intersects f({0, 1}∗) ⊂ f(X) = Xf . Thus for any infinite
instance of RR(Xf) the answer is positive.

For a finite instance of RR(Xf) an m-reducing algorithm should indicate
a word from X . It seems too hard for arbitrary X .

By this reason the second step is to use disjunctive reductions. In this case
a reducing algorithm should just produce the list of all words accepted by an
automaton and this task is much easier.

Note that the cardinality of a finite language can be exponentially larger than
the number of states in a DFA recognizing the language.

Thus the next step is to choose a regularly immune set D possessing a special
property: the cardinality of any regular language in D is polynomially upper-
bounded by the number of states in a DFA recognizing the language.

278 M.N. Vyalyi

Last but not least, all actions mentioned above should be efficiently imple-
mented. We are going to construct a �FNL

dtt -reduction. So we need FNL imple-
mentations.

To implement the plan outlined above we start from specification of D. Let
β be the Thue–Morse morphism β(0) = 01, β(1) = 10 and let sq(·) be the map

sq: x 0→ β(x)120|x|
2+3β(x)120|x|

2+3. (7)

We choose D = Im(sq), i.e. the image of all binary words under the map sq.
To prove that D is regularly immune one can use the Parikh theorem [6,8].

It says that the lengths of words from a regular (or even context-free) language
form a semilinear set , i.e. a finite union of arithmetic progressions.

Lemma 2. D is regularly immune.

Proof. The lengths of words from D form the set {2n2 + 4n+ 10 : n ∈ N}. It is
clear that its intersection with any arithmetic progression is finite. ��

To give an upper bound on the cardinality of a regular language contained in D
we make a couple of observations. By definition words from D are squares.
Moreover, they are incomparable in the following sense.

Proposition 4. Let pq1, pq2 ∈ D. Then p ∈ β({0, 1}∗)(ε ∪ {0, 1}).

Proof. Note that w = sq(x) can be recovered from the prefix β(x)11: the first
occurrence of 11 starting at an even position3 signals that the prefix β(x) is
completed and x is uniquely determined by this prefix. ��

Proposition 4 plays an important role in our arguments. Typically we will use the
fact that a common prefix of words from D does not contain 03 (easily follows
from Proposition 4). Just now we indicate another simple corollary.

Corollary 2. No word from D is a prefix of another word from D.

Now we are ready to prove an upper bound required in the outlined above plan
of the proof of Theorem 2.

Lemma 3. Let A be a DFA such that L(A) ⊂ D. Then |L(A)| � |Q|, where Q
is the state set of A.

Proof. It is sufficient to consider the minimal DFA B recognizing L(A). The
states of B are in one-to-one correspondence with Myhill–Nerode classes. Con-
sider two words u1u1 �= u2u2 in L(A). We prove that u1u2 /∈ L(A). It implies
that u1 and u2 are not equivalent and the number of Myhill–Nerode classes is
not less than |L(A)|.

Suppose that u1u2 = vv ∈ L(A). Either u1 is a prefix of v or v is a prefix
of u1. In both cases we come to a contradiction with Proposition 4: both u1 and
v contain 03 as a subword. ��

To prove Theorem 2 we also need several algorithmic facts.

3 We enumerate positions in a word starting with 0.

Universality of Regular Realizability Problems 279

At first, note that the binary representation of the length of a word x has
size O(log |x|). So arithmetic operations with numbers of this magnitude can be
performed using log space. This fact is widely used below.

The following statements are proved easily.

Proposition 5. Infiniteness of a regular language is in NLOG provided a lan-
guage is represented by a DFA recognizing it.

Proposition 6. Halves of words from D, i.e. words in the form β(u)120|u|
2+3,

can be recognized using log space. Moreover, a recognizing algorithm can read
input in one way.

Proposition 7. The membership problem for the language D is in LOG. The
map sq and the inverse map sq−1 are log space computable.

Our next goal is an algorithm that extracts words accepted by an automaton
recognizing a finite language and outputs their images under the inverse map
sq−1 provided the regular language in question is contained in the set D.

Let A be a DFA such that L(A) ⊂ D, and let Q be the state set, s the initial
state, and t an accepting state of A. We denote by δA the transition function
δ : Q×{0, 1}∗ → Q of A extended to the set of words in the input alphabet of A
in a natural way.

We define the set Qk(t) ⊆ Q of states as follows: q ∈ Qk(t) iff δA(s, u) = q
and δA(q, u) = t for u such that uu ∈ D and |u| = k.

Note that for any q ∈ Qk(t) the word uu is unique. Indeed, if two words uu, vv
with u �= v satisfy the conditions listed above with the same q, then uv ∈ L(A)
and the word is not a square. But this contradicts the assumption L(A) ⊂ D.

We will call this unique word uu an (A, t, q, k)-word.

Proposition 8. The set of quadruples 〈A, t, q, k〉 such that A is a DFA descrip-
tion, t, q are states of A, k � |Q|, q ∈ Qk(t), is in NLOG.

Moreover, there exists an FNL algorithm that decodes (A, t, q, k)-words, i.e.
running on an input 〈A, t, q, k〉 the algorithm outputs x such that sq(x) is a
(A, t, q, k)-word.

Proof. The recognizing algorithm guesses symbols of uu one by one (uu is the
word from the definition of the set Qk(t)). While reading a symbol the following
actions are performed:

– simulating actions of the automaton A that reads u starting from two states:
s and q (the whole computation paths are not stored, the algorithmmaintains
current states only);

– counting the length of u;
– simulating an operation of the algorithm from Proposition 6.

After guessing k symbols the algorithm checks conditions δA(s, u) = q and
δA(q, u) = t. It also checks that the algorithm from Proposition 6 gives the posi-
tive answer. If all checks are successful, then the algorithm accepts the quadruple
〈A, t, q, k〉.

280 M.N. Vyalyi

Correctness of the algorithm is clear as well as the required log space bound.
To construct a decoding algorithm we modify the recognizing algorithm.
Let u = β(x)120|x|

2+3 be the half of an (A, t, q, k)-word.
Guessing a symbol is replaced in the decoding algorithm by two trials. For

each possible variant α of the next symbol (there are two of them) the modified
algorithm simulates reading the pair αᾱ and asks an NLOG oracle about pos-
sibility of successful completion of the recognizing algorithm with current data
(this can be done using nlog space). The oracle answers positively for exactly
one value of α. This value is the next symbol of x and the decoding algorithm
outputs it. ��

Finally, the reducing algorithm needs to detect trivial cases.

Lemma 4. Testing conjunction |L(A)| < ∞ and L(A) ⊂ D is in NLOG.

We use the well-known equality NLOG = co-NLOG [5,10]. So it is sufficient to
test disjunction |L(A)| = ∞ or L(A) \D �= ∅.

The first check is Proposition 5.
The second is based on the following observation. If L(A) \D �= ∅, then

– either there exists w ∈ L(A) of odd length;
– or there exists w ∈ L(A) of even length that is not a square;
– or there exists ww ∈ L(A) \D.

All three conditions are in NLOG. The last can be verified by proper modifica-
tions of the algorithms from Propositions 6 and 8. So the algorithm for Lemma 4
should nondeterministically choose one of them and test the chosen condition.

Tying up loose ends we get the proof of the main result.

Proof (of Theorem 2). Let us prove that

X �log
m RR(Xsq)�FNL

dtt X. (8)

The first reduction is the monoreduction by the map sq. By Proposition 7 this
monoreduction is log space computable.

Now we construct the second reduction. Let A be an instance of RR(Xsq).
The reducing algorithm checks infiniteness of L(A) and L(A) \ D �= ∅ using
Lemma 4. If L(A) is infinite or it contains a word from D, then the reducing
algorithm forms a query list of length 1 containing a fixed element x0 ∈ X and
outputs the list.

Otherwise the algorithm tries all possible values of k from 0 to |Q| − 1, all
accepting states t and all states q ∈ Qk(t) (to check this condition the recognizing
algorithm from Proposition 8 is used).

For each triple k, t, q, where q ∈ Qk(t), there exists a unique word uu =
sq(x) ∈ D. The algorithm outputs x using the decoding algorithm from Propo-
sition 8 and places x in the query list.

To prove correctness of the reduction recall that D is regularly immune. So
every infinite regular language has a common word with Xsq. If L(A) is finite and

Universality of Regular Realizability Problems 281

contains a word from D̄, then it has nonempty intersection with Xsq. Finally, if
a finite language L(A) is contained in D then L(A)∩Xsq �= ∅ iff the output list
contains a word from X . ��

Corollary 3. Each class Σp
k , Πp

k of the polynomial hierarchy contains an RR
problem that is complete for the class under �FNL

m -reductions (and under poly-
nomial reductions).

4 Universality of Generalized Nondeterministic Models

As it mentioned above, RR problems are closely related to the models of gener-
alized nondeterminism (GNA) introduced in [12]. GNA classes are parametrized
by languages of infinite words (certificates). It was shown in [13] that each GNA
class contains an RR problem complete for the class under �log

m -reductions. The
filter of the RR problem consists of prefixes of certificates for the GNA class.

Note that filters in the proof of Theorem 2 are not prefix closed. So they
do not correspond to any GNA class. What RR problems correspond to GNA
classes? To be prefix closed is a necessary condition only. The second condition
is the following: each filter word is a proper prefix of a filter word. These two
conditions guarantee that the filter is the prefix set for some set of certificates.

To satisfy the second condition a very simple modification of a filter is needed.

Proposition 9. If L ⊆ Σ∗ and # /∈ Σ, then

RR(L)�log
m RR(L#∗)�log

m RR(L).

Thus for any RR problem with a prefix closed filter there exists an equivalent
RR problem with a filter that is the prefix set of a language of infinite words.

So universality of GNA classes follows from the following generalization of
Theorem 2.

Theorem 3. For any nonempty language X there exists a prefix closed filter P
such that

X �log
m RR(P)�FNL

dtt X. (9)

We follow in the proof of Theorem 3 the same plan as for Theorem 2. Again
we use monoreductions. We choose the filter P in the form X ′f for a map f and

a language X ′ which is �log
m -equivalent to X .

The map f is chosen to satisfy the following conditions: the image of f is the
set D↑ of all extensions of words of D (i.e. words uv, u ∈ D); f(X ′) ⊂ D; f(X ′)
contains all extensions with nonempty suffixes (thus f(X ′) is suffix closed and

f(X ′) is prefix closed).
The set D↑ is not regularly immune. But in the crucial case L(A) ⊂ D↑ the

set of D-prefixes RD = {w : w ∈ D and wv ∈ L(A)} is finite. In the proof
of Theorem 3 this set plays a role of a finite regular language. In particular,
the cardinality of RD is polynomially upperbounded by the number of states of

282 M.N. Vyalyi

the automaton A and the list of elements of RD can be produced by an FNL
algorithm.

Technical details of the proof are omitted in this extended abstract.
Taking into account normality of classes in the polynomial hierarchy we get

the following corollary.

Corollary 4. For each k, the classes Σp
k , Π

p
k contain RR problems with prefix-

closed filters that are complete for the corresponding classes under polynomial
reductions.

Acknowledgments. The author is grateful to the anonymous referees for their
valuable and helpful comments.

References

1. Allender, E., Ogihara, M.: Relationships among PL, #L, and the determinant.
Informatique Théorique et Applications 30, 1–21 (1996)

2. Àlvarez, C., Balcázar, J.L., Jenner, B.: Adaptive logspace reducibility and parallel
time. Mathematical Systems Theory 28(2), 117–140 (1995)

3. Anderson, T., Loftus, J., Rampersad, N., Santean, N., Shallit, J.: Detecting palin-
dromes, patterns and borders in regular languages. Information and Computa-
tion 207, 1096–1118 (2009)

4. Arora, S., Barak, B.: Computational complexity: a modern approach. Cambridge
Univ. Press, Cambridge (2009)

5. Immerman, N.: Nondeterministic space is closed under complement. SIAM Journal
on Computing 17(5), 935–938 (1988)

6. Kozen, D.: Automata and Computability. Springer, New York (1997)
7. Ladner, R.E., Lynch, N.A.: Relativization of questions about log space computabil-

ity. Mathematical Systems Theory 10(1), 19–32 (1976)
8. Parikh, R.J.: On context-free languages. Journal of the ACM 13(4), 570–581 (1966)
9. Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. SIAM Journal

on Computing 29(4), 1118–1131 (2000)
10. Sipser, M.: Introduction to the theory of computation, 3rd edn. Cengage Learning,

Boston (2012)
11. Vyalyi, M.N.: On models of a nondeterministic computation. In: Frid, A., Morozov,

A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675, pp. 334–345.
Springer, Heidelberg (2009)

12. Vyalyi, M.N.: On nondeterminism models for two-way automata. In: Proc. VIII
Int. Conf. on Discrete Models in Control System Theory, pp. 54–60. MAKS Press,
Moscow (2009) (in Russian)

13. Vyalyi, M.N.: On regular realizability problems. Problems of Information Trans-
mission 47(4), 342–352 (2011)

14. Vyalyi, M.N.: On complexity of regular realizability problems. arXiv:1211.0606v2

Potential Functions in Strategic Games�

Paul G. Spirakis1,2 and Panagiota N. Panagopoulou2

1 Computer Engineering and Informatics Department, University of Patras
2 Computer Technology Institute & Press “Diophantus”

{spirakis,panagopp}@cti.gr

Abstract. We investigate here several categories of strategic games and
antagonistic situations that are known to admit potential functions, and
are thus guaranteed to either possess pure Nash equilibria or to stabilize
in some form of equilibrium in cases of stochastic potentials. Our goal is
to indicate the generality of this method and to address its limits.

1 Introduction

A strategic game is a model of interactive decision making, helping us in analyz-
ing situations in which two or more individuals, called players, make decisions (or
choose actions) that will influence one another’s welfare. The most important
solution concept of a strategic game is the well-known Nash equilibrium [14],
which captures a steady state of the game, in the sense that no player has an in-
centive to change her action if all the other players preserve theirs. The classical
theorem of Nash [14] proves that every finite game has a randomized Nash equi-
librium, i.e., there exists a combination of mixed strategies, one for each player,
such that no player can increase her expected payoff by unilaterally deviating.
A mixed strategy for a player is actually a probability distribution over the set
of her available actions. However, Nash’s proof of existence is non-constructive,
and the problem of computing a Nash equilibrium has been identified among the
“inefficient proofs of existence” [15], and it was eventually shown to be complete
for the complexity class PPAD [2].

The apparent difficulty of computing a randomized Nash equilibrium,
together with the fact that the concept of non-deterministic strategies has re-
ceived much criticism in game theory, raises the natural question of what kind
of games possess a pure Nash equilibrium, i.e., a Nash equilibrium where each
player chooses deterministically one of her available actions. In this paper we

� This work was supported by the project Algorithmic Game Theory, co-financed
by the European Union (European Social Fund – ESF) and Greek national funds
through the Operational Program “Education and Lifelong Learning” of the National
Strategic Reference Framework (NSRF) – Research Funding Program: Thales, In-
vesting in knowledge society through the European Social Fund, and by the EU
FP7/2007-2013 (DG CONNECT – Communications Networks, Content and Tech-
nology Directorate General, Unit H5 – Smart Cities & Sustainability), under grant
agreement no. 288094 (project eCOMPASS).

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 283–297, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

284 P.G. Spirakis and P.N. Panagopoulou

discuss strategic games that are guaranteed to have pure Nash equilibria via the
existence of potential functions, which enable the application of optimization
theory to the study of pure Nash equilibria. More precisely, a potential func-
tion for a game is a real-valued function, defined on the set of possible action
combinations (or outcomes) of the game, such that the pure equilibria of the
game are precisely the local optima of the potential function. If a game admits a
potential function, there are nice consequences for the existence and tractability
of pure Nash equilibria. In particular, if the game is finite, i.e., the player set and
actions sets are finite, then the potential function achieves a global optimum,
which is also a local optimum, and hence the game has at least one equilibrium
in pure strategies. Going one step further, in any such game, the Nash dynam-
ics converges. This means that the directed graph with outcomes as nodes and
payoff-improving defections by individual players as edges has no cycles, imply-
ing that it has a sink corresponding to a pure Nash equilibrium, and that if we
start with an arbitrary action combination and let one player at a time perform
an improvement step, i.e., change her action to increase her payoff, then such a
sink will be eventually reached.

We survey here several categories of strategic games that are known to admit
potential functions (or some kind of generalization of a potential). Our goal is
to give some insight on both the characterization of games guaranteed to pos-
sess pure Nash equilibria and the complexity of reaching such an equilibrium
via a sequence of selfish payoff-improving steps. We note that potential games
are not the only class of games known to possess pure Nash equilibria; another
well-studied one is the class of games of strategic complementarities, introduced
in [21]. Roughly speaking, a game has strategic complementarities if there is
an order on the set of the players’ pure strategies such that an increase in one
player’s strategy makes the other players want to increase their strategies as
well. Based on a fixpoint theorem due to Tarski [20], games of strategic comple-
mentarities are known to possess at least one equilibrium in pure strategies, and
furthermore, the set of pure Nash equilibria has a certain order structure. Uno
[22] revealed an important relation between potential games and games with
strategic complementarities: any finite game with strategic complementarities
admits a nested pseudo-potential (which are extensions of potentials). A couple
of natural questions are raised here: (1) How exactly are these two classes of
games related, i.e., does the existence of (even a generalized notion of) a poten-
tial function is equivalent to the existence of strategic complementarities? (2)
Are these two notions necessary in order to characterize the existence of pure
Nash equilibria, or do there exist classes of games neither admitting any kind
of potential nor having complementarities that are nevertheless guaranteed to
have pure equilibria? The answer to these questions could give us more insight in
order to better understand the nature of games that have pure Nash equilibria.

2 Games and Potential Functions

Strategic Games and Nash Equilibria. A game refers to any situation
in which two or more decision-makers interact. We focus on finite games in

Potential Functions in Strategic Games 285

strategic form: A finite strategic form game is any Γ of the form Γ =
〈N, (Ci)i∈N , (ui)i∈N 〉 where N is a finite nonempty set, and, for each i ∈ N ,
Ci is a finite nonempty set and ui is a function from C = ×j∈NCj into the
set of real numbers R. In the above definition, N is the set of players in the
game Γ . For each player i ∈ N , Ci is the set of actions available to player i.
When the strategic form game Γ is played, each player i must choose one of the
actions in the set Ci. For each combination of actions, or pure strategy profile
c = (cj)j∈N ∈ C (specifying one action for each player), the number ui(c) repre-
sents the payoff that player i would get in this game if c were the combination
of actions implemented by the players. When we study a strategic form game,
we assume that all the players choose their actions simultaneously.

A pure Nash equilibrium of a strategic game is a combination of actions, one
for each player, from which no player has an incentive to unilaterally deviate.

Definition 1. A pure Nash equilibrium of game Γ = 〈N, (Ci)i∈N , (ui)i∈N 〉
is a pure strategy profile c = (cj)j∈N ∈ C such that, for all players i ∈ N ,

ui(c) ≥ ui(c
′
i, c−i) ∀c′i ∈ Ci .

Not all games are guaranteed to possess a pure Nash equilibrium; however, if we
extend the strategy set of each player to include any probability distribution on her
set of actions, then a (mixed strategy) Nash equilibrium is guaranteed to exist [14].

Potential Games. Potential games, defined in [13], are games with the prop-
erty that the incentive of all players to unilaterally deviate from a pure strategy
profile can be expressed in one global function, the potential function.

Fix an arbitrary game in strategic form Γ = 〈N, (Ci)i∈N , (ui)i∈N 〉 and some

vector b = (b1, . . . , b|N |) ∈ R
|N |
>0 . A function P : C → R is called

– An ordinal potential for Γ if, ∀c ∈ C, ∀i ∈ N , ∀a ∈ Ci,

P (a, c−i)− P (c) > 0 ⇐⇒ ui(a, c−i)− ui(c) > 0 . (1)

– A b-potential for Γ if, ∀c ∈ C, ∀i ∈ N , ∀a ∈ Ci,

P (a, c−i)− P (c) = bi · (ui(a, c−i)− ui(c)) . (2)

– An exact potential for Γ if it is a b-potential for Γ where bi = 1 for all i ∈ N .

It is straightforward to see that the existence of an ordinal, exact, or b-potential
function P for a finite game Γ guarantees the existence of at least one pure
Nash equilibrium in Γ : each local optimum of P corresponds to a pure Nash
equilibrium of Γ and vice versa. Thus the problem of finding pure Nash equilibria
of a potential game Γ is equivalent to finding local optima for the optimization
problem with state space the pure strategy space C of the game and objective
the potential function of the game.

Furthermore, the existence of a potential function P for a game Γ = 〈N,
(Ci)i∈N , (ui)i∈N 〉 implies a straightforward algorithm for constructing a pure

286 P.G. Spirakis and P.N. Panagopoulou

Nash equilibrium of Γ : The algorithm starts from an arbitrary strategy profile
c ∈ C and, at each step, one single player performs a selfish step, i.e., switches to
a pure strategy that strictly improves her payoff. Since the payoff of the player
increases, P increases as well. When no move is possible, i.e., when a pure strat-
egy profile ĉ is reached from which no player has an incentive to unilaterally
deviate, then ĉ is a pure Nash equilibrium and a local optimum of P . This pro-
cedure however does not imply that the computation of a pure Nash equilibrium
can be done in polynomial time, since the improvements in the potential can be
very small and too many.

3 Congestion Games and Selfish Routing

Congestion games, introduced in [19], are games in which each player chooses
a particular subset of resources out of a family of allowable subsets for her
(her strategy set), constructed from a basic set of primary resources for all the
players. The delay associated with each primary resource is a non-decreasing
function of the number of players who choose it, and the total delay received by
each player is the sum of the delays associated with the primary resources she
chooses. In [19] it was shown that any game in this class possesses at least one
Nash equilibrium in pure strategies, and this result follows from the existence of
a potential function. Later, Monderer and Shapley [13] showed that every finite
potential game is isomorphic to a congestion game.

3.1 Congestion Games

A congestion model 〈N,E, (Πi)i∈N , (de)e∈E〉 is defined as follows. N denotes the
set of players {1, . . . , n}. E denotes a finite set of resources. For i ∈ N let Πi

be the set of strategies of player i, where each !i ∈ Πi is a nonempty subset of
resources. For e ∈ E let de : {1, . . . , n} → R denote the delay function, where
de(k) denotes the cost (e.g. delay) to each user of resource e, if there are exactly
k players using e. The congestion game associated with this congestion model
is the game in strategic form 〈N, (Πi)i∈N , (ui)i∈N 〉, where the payoff functions
ui are defined as follows: Let Π ≡ ×i∈NΠi. For all ! = (!1, . . . , !n) ∈ Π and
for every e ∈ E let σe(!) be the number of users of resource e according to the
configuration !: σe(!) = |{i ∈ N : e ∈ !i}| . Define ui : Π → R by ui(!) =
−

∑
e∈�i

de(σe(!)). In a network congestion game the families of subsets Πi are
represented implicitly as paths in a network. We are given a directed network
G = (V,E) with the edges playing the role of resources, a pair of nodes (si, ti) ∈
V × V for each player i and the delay function de for each e ∈ E. The strategy
set of player i is the set of all paths from si to ti. If all origin-destination pairs
(si, ti) of the players coincide with a unique pair (s, t) we have a single-commodity
network congestion game and then all users share the same strategy set, hence
the game is symmetric.

Potential Functions in Strategic Games 287

In a weighted congestion model we allow the users to have different demands,
and thus affect the resource delay functions in a different way, depending on their
own weights. The weighted congestion game associated with a weighted conges-
tion model is the game in strategic form 〈(wi)i∈N , (Πi)i∈N , (ui)i∈N 〉, where the
payoff functions ui are defined as follows. For any configuration ! ∈ Π and
for all e ∈ E, let Λe(!) = {i ∈ N : e ∈ !i} be the set of players using re-
source e according to !. The cost λi(!) of user i for adopting strategy !i ∈ Πi

in a given configuration ! is equal to the cumulative delay λ�i(!) on the re-
sources that belong to !i: λi(!) = λ�i (!) =

∑
e∈�i

de(θe(!)), where, for
all e ∈ E, θe(!) ≡

∑
i∈Λe(�) wi is the load on resource e with respect to the

configuration !. The payoff function for player i is then ui(!) = −λi(!). A
configuration ! ∈ Π is a pure Nash equilibrium if and only if, for all i ∈ N ,
λ�i(!) ≤ λπi(πi, !−i) ∀πi ∈ Πi, where (πi, !−i) is the same configuration as
! except for user i that has now been assigned to path πi. In a weighted network
congestion game the strategy sets Πi are represented implicitly as si − ti paths
in a directed network G = (V,E).

Since the payoff functions ui of a congestion game can be implicitly computed
by the resource delay functions de, in the following we will denote a general
(weighted or unweighted) congestion game by 〈N, E, (Πi)i∈N , (wi)i∈N , (de)e∈E〉.

The following theorem [19], [13] proves the strong connection of unweighted
congestion games with the exact potential games.

Theorem 1 ([19], [13]). Every (unweighted) congestion game is an exact po-
tential game.

Proof. Fix an arbitrary (unweighted) congestion game Γ = 〈N, E, (Πi)i∈N ,
(de)e∈E〉. For any pure strategy profile ! ∈ Π , the function

Φ(!) =
∑

e∈∪i∈N�i

σe(�)∑
k=1

de(k) (3)

(introduced in [19]) is an exact potential function for Γ . ��
The converse of Theorem 1 does not hold in general, however in [13] it was proven
that every (finite) exact potential game Γ is isomorphic to an unweighted con-
gestion game. In [9] it was shown that this does not hold for the case of weighted
congestion games. In particular, it was shown that there exist weighted single
commodity network congestion games with resource delays being either linear
or 2-wise linear functions of the loads, for which pure Nash equilibria cannot
exist. Furthermore, there exist weighted single-commodity network congestion
games which admit no exact potential function, even when the resource delays
are identical to their loads. On the other hand, it was shown that any weighted
(multi-commodity) network congestion game with linear resource delays admits
a weighted potential function, yielding the existence of a pure Nash equilibrium
which can be constructed in pseudo-polynomial time:

Theorem 2 ([9]). For any weighted multi-commodity network congestion game
〈N, E, (Πi)i∈N , (wi)i∈N , (de)e∈E〉 with linear resource delays, i.e., de(x) =

288 P.G. Spirakis and P.N. Panagopoulou

aex + be, e ∈ E, ae, be ≥ 0, function Φ : Π → R defined for the configuration
! ∈ Π as

Φ(!) =
∑
e∈E

de(θe(!))θe(!) +

n∑
i=1

∑
e∈�i

de(wi)wi

is a b-potential for bi = 1/2wi, i ∈ N .

In [16], it was shown that weighted (multi-commodity) network congestion games
with resource delays exponential to their loads also admit a weighted potential
function:

Theorem 3 ([16]). For any weighted multi-commodity network congestion
game 〈N, E, (Πi)i∈N , (wi)i∈N , (de)e∈E〉 with exponential resource delays, i.e.,
de(x) = exp(x), function Φ : Π → R defined for the configuration ! ∈ Π as

Φ(!) =
∑
e∈E

exp(θe(!))

is a b-potential for bi =
exp(wi)

exp(wi)−1 , i ∈ N .

3.2 Concurrent Congestion Games and Coalitions

In this section we study the effect of concurrent greedy moves of players in atomic
congestion games where n selfish agents (players) wish to select a resource each
(out of m resources) so that their selfish delay there is not much. This problem of
“maintaining” global progress while allowing concurrent play is examined and
answered in [7] with the use of potential functions. Two orthogonal settings
are examined: (i) A game where the players decide their moves without global
information, each acting “freely” by sampling resources randomly and locally
deciding to migrate (if the new resource is better) via a random experiment.
Here, the resources can have quite arbitrary latency that is load dependent. (ii)
An “organised” setting where the players are pre-partitioned into selfish groups
(coalitions) and where each coalition does an improving coalitional move.

Concurrent Congestion Games. A setting where selfish players perform
best improvement moves in a sequential fashion and eventually reach a Nash
equilibrium is not appealing to modern networking, where simple decentralized
distributed protocols better reflect the essence of the networks liberal nature. In
fact, it is unrealistic to assume that global coordination between the players can
be enforced and that the players are capable of monitoring the configuration of
the entire network. Furthermore, even if a player can grasp the whole picture, it
is computationally demanding to decide her best move.

In [7], the advantages and the limitations of such a distributed protocol for
congestion games on parallel edges under very general assumptions on the la-
tency functions are investigated. A restricted model of distributed computation
that allows a limited amount of global knowledge is adopted. In each round, every

Potential Functions in Strategic Games 289

player can only select a resource uniformly at random and check its current
latency. Migration decisions are made concurrently on the basis only of the
current latency of the resource to which a player is assigned and the current
latency of the resource to which the player is about to move. Migration decisions
take advantage of local coordination between the players currently assigned to
the same resource, in the sense that at most one player is allowed to depart from
each resource. The only global information available to the players is an upper
bound α on the slope of the latency functions.

In this setting, an (ε, α)-approximate equilibrium ((ε, α)-EQ), which is dic-
tated by the very limited information available to the players, is a state where
at most εm resources have latency either considerably larger or considerably
smaller than the current average latency. This definition relaxes the notion of
exact pure Nash equilibria and introduces a meaningful notion of approximate
(bicriteria) equilibria for the myopic model of migrations described above. In
particular, an (ε, α)-EQ guarantees that unless a player uses an overloaded re-
source (i.e., a resource with latency considerably larger than the average latency),
the probability that she finds (by uniform sampling) a resource to migrate and
significantly improve her latency is at most ε. Furthermore, it is unlikely that
any (ε, α)-EQ reached by the protocol assigns a large number of players to over-
loaded resources (even though this possibility is allowed by the definition of an
(ε, α)-EQ).

A simple oblivious protocol for this restricted model of distributed computa-
tion is presented in [7]. According to this myopic protocol, in parallel each player
selects a resource uniformly at random in each round and checks whether she
can significantly decrease her latency by moving to the chosen resource. If this
is the case, the player becomes a potential migrant. The protocol uses a simple
local probabilistic rule that selects at most one (this is a local decision between
players on the same resource) potential migrant to defect from each resource.

If the number of players is Θ(m) and they start from a random initial allo-
cation, the protocol reaches an (ε, α)-EQ in O(log(E[Φ(0)]/Φmin)) time, where
E[Φ(0)] is Rosental’s expected potential value as the game starts and Φmin is
the corresponding value at a Nash equilibrium. The proof of convergence given
in [7] is technically involved and is omitted here.

Congestion Games with Coalitions. In many practical situations, the com-
petition for resources takes place among coalitions of players instead of indi-
viduals. In such settings, it is important to know how the competition among
coalitions affects the rate of convergence to an (approximate) pure Nash equilib-
rium. A congestion game with coalitions is a natural model for investigating the
effects of non-cooperative resource allocation among static coalitions. In conges-
tion games with coalitions, the coalitions are static and the selfish cost of each
coalition is the total delay of its players.

In this setting, [7] present an upper bound on the rate of (sequential) conver-
gence to approximate Nash equilibrium in single-commodity linear congestion
games with static coalitions. The restriction to linear latencies is necessary

290 P.G. Spirakis and P.N. Panagopoulou

because this is the only class of latency functions for which congestion games
with static coalitions is known to admit a potential function and a pure Nash
equilibrium. Sequences of ε-moves are considered, i.e., selfish deviations that
improve the coalitions’ total delay by a factor greater than ε. Combining the
approach of [3] with the potential function of [8], it is shown that if the coali-
tion with the largest improvement in its total delay moves in every round, an
approximate Nash equilibrium is reached in a small number of steps.

More precisely, for any initial configuration s0, every sequence of largest
improvement ε-moves reaches an approximate Nash equilibrium in at

most kr(r+1)
ε(1−ε) logΦ(s0) steps, where k is the number of coalitions, r =⌈

maxj∈[k]{nj}/minj∈[k]{nj}
⌉
denotes the ratio between the size of the largest

coalition and the size of the smallest coalition, and Φ(s0) is the initial potential.
This bound holds even for coalitions of different size, in which case the game is
not symmetric. This bound implies that in network congestion games, where a
coalition’s best response can be computed in polynomial time, an approximate
Nash equilibrium can be computed in polynomial time. Moreover, in the special
case that the number of coalitions is constant and the coalitions are almost eq-
uisized, i.e. when, k = Θ(1) and r = Θ(1), the number of ε-moves to reach an
approximate Nash equilibrium is logarithmic in the potential of the initial state.

3.3 Social Ignorance in Congestion Games

Most of the work on congestion games focuses on the full information setting,
where each player knows the precise weights and the actual strategies of all play-
ers, and her strategy selection takes all this information into account. In many
typical applications of congestion games however, the players have incomplete
information not only about the weights and the strategies, but also about the
mere existence of (some of) the players with whom they compete for resources.
In fact, in many applications, it is both natural and convenient to assume that
there is a social context associated with the game, which essentially determines
the information available to the players. In particular, one may assume that each
player has complete information about the set of players in her social neighbor-
hood, and limited (if any) information about the remaining players.

In this section we investigate how such social-context-related information
considerations affect the inefficiency of pure Nash equilibria and the convergence
rate to approximate pure Nash equilibria. To come up with a manageable setting
that allows for some concrete answers, we make the simplifying assumption that
each player has complete information about the players in her social neighbor-
hood, and no information whatsoever about the remaining players. Therefore,
since each player is not aware of the players outside her social neighborhood,
her individual cost and her strategy selection are not affected by them. In fact,
this is the model of graphical congestion games, introduced by Bilò et al. [1].
The new ingredient in the definition of graphical congestion games is the social
graph, which represents the players social context. The social graph is defined
on the set of players and contains an edge between each pair of players that know

Potential Functions in Strategic Games 291

each other. The basic idea (and assumption) behind graphical congestion games
is that the individual presumed cost of each player only depends on the players
in her social neighborhood, and thus her strategy selection is only affected by
them.

The social graph G(V,E) is defined on the set of players V = N and contains
an edge {i, j} ∈ E between each pair of players i, j that know each other. We
consider graphical games with weighted players and simple undirected social
graphs.

Given a graphical congestion game with a social graph G(V,E), a configura-
tion s and a resource e, let Ve(s) = {i ∈ V : e ∈ si} be the set of players using
e in s, let Ge(s)(Ve(s), Ee(s)) be the social subgraph of G induced by Ve(s),
and let ne(s) = |Ve(s)| and me(s) = |Ee(s)|. For each player i (not necessarily
belonging to Ve(s)), let Γ i

e(s) = {j ∈ Ve(s) : {i, j} ∈ E} be i’s social neigh-
borhood among the players using e in s. In any configuration s, a player i is
aware of a presumed congestion sie = wi +

∑
j∈Γ i

e (s)
wj on each resource e, and

of her presumed cost pi(s) =
∑

e∈si wi(aes
i
e + be). We note that the presumed

cost coincides with the actual cost if the social graph is complete. For graphical
congestion games, a configuration s is a pure Nash equilibrium if no player can
improve her presumed cost by unilaterally changing her strategy.

In [1] it is shown that graphical linear congestion games with unweighted
players are potential games:

Theorem 4. Every graphical linear congestion game defined over an undirected
social graph is an exact potential game, and thus always converges to a Nash
equilibrium.

Proof. The potential function establishing the result is

Φ(s) =
∑
e∈E

[ae(me(s) + ne(s)) + bene(s)] .

��

In [6] it is shown that graphical linear congestion games with weighted players
also admit a potential function:

Theorem 5. Every graphical linear congestion game with weighted players ad-
mits a potential function, and thus a pure Nash equilibrium.

Proof. The potential function establishing the result is

Φ(s) =
∑
e∈R

⎡⎣ae
⎛⎝ ∑

i∈Ve(s)

w2
i +

∑
{i,j}∈Ee(s)

wiwj

⎞⎠+ be
∑

i∈Ve(s)

wi

⎤⎦ .

��

292 P.G. Spirakis and P.N. Panagopoulou

4 Potential Functions in Population Dynamics:
Generalized Moran Process

In this section we consider the Moran process, as generalized by Lieberman et
al. [12]. A population resides on the vertices of a finite, connected, undirected
graph and, at each time step, an individual is chosen at random with probability
proportional to its assigned “fitness” value. It reproduces, placing a copy of itself
on a neighboring vertex chosen uniformly at random, replacing the individual
that was there. The initial population consists of a single mutant of fitness r > 0
placed uniformly at random, with every other vertex occupied by an individual
of fitness 1. The main quantities of interest are the probabilities that the de-
scendants of the initial mutant come to occupy the whole graph (fixation) and
that they die out (extinction); almost surely, these are the only possibilities. In
general, exact computation of these quantities by standard Markov chain tech-
niques requires solving a system of linear equations of size exponential in the
order of the graph so is not feasible. In [4] a potential function is used to show
that, with high probability, the number of steps needed to reach fixation or ex-
tinction is bounded by a polynomial in the number of vertices in the graph. This
bound allows to construct fully polynomial randomized approximation schemes
(FPRAS) for the probability of fixation (when r ≥ 1) and of extinction (for all
r > 0).

In the following, we consider only finite, connected, undirected graphs G =
(V,E) of order n = |V |, and r denotes the fitness of the initially introduced
mutant in the graph. Given a set X ⊆ V , we denote by W (X) = r|X |+ |V \X |
the total fitness of the population when exactly the vertices of X are occupied
by mutants.

We first show that the Moran process on a connected graph G of order n is
expected to reach absorption in a polynomial number of steps. To do this, we
use the potential function given by Φ(X) =

∑
x∈X

1
deg(x) for any state X ⊆ V .

Note that 1 < Φ(V) ≤ n and that, if (Xi)i≥0 is a Moran process on G then
Φ(X0) =

1
deg(x) ≤ 1 for some vertex x ∈ V (the initial mutant). The following

lemma shows that the potential strictly increases in expectation when r > 1 and
strictly decreases in expectation when r < 1.

Lemma 1. Let (Xi)i≥0 be a Moran process on a graph G = (V,E) and let ∅ ⊂
S ⊂ V . If r ≥ 1, then E [Φ(Xi+1)− Φ(Xi)|Xi = S] >

(
1− 1

r

)
· 1
n3 . Otherwise,

E [Φ(Xi+1)− Φ(Xi)|Xi = S] < r−1
n3 .

Proof. Write W (S) = n + (r − 1)|S| for the total fitness of the population. For
∅ ⊂ S ⊂ V , and any value of r, we have

E [Φ(Xi+1)− Φ(Xi)|Xi = S] =
r − 1

W (S)

∑
xy∈E,x∈S,y∈S

1

deg(x) deg(y)
.

The sum is minimized by noting that there must be at least one edge between
S and S and that its endpoints have degree at most (n − 1) < n. The greatest

Potential Functions in Strategic Games 293

weight configuration is the one with all mutants if r ≥ 1 and the one with no
mutants if r < 1. Therefore, if r ≥ 1, we have E [Φ(Xi+1)− Φ(Xi)|Xi = S] >
r−1
rn · 1

n2 =
(
1− 1

r

)
1
n3 and, if r < 1, E [Φ(Xi+1)− Φ(Xi)|Xi = S] < (r − 1) 1

n3 .
��

Martingale techniques are used to bound the expected absorption time. It is well
known how to bound the expected absorption time using a potential function
that decreases in expectation until absorption. This has been made explicit by
Hajek [10] and [4] uses the following formulation based on that of He and Yao
[11].

Theorem 6. Let (Yi)i≥0 be a Markov chain with state space Ω, where Y0 is
chosen from some set I ⊆ Ω. If there are constants k1, k2 > 0 and a non-negative
function ψ : Ω → R such that

– Ψ(S) = 0 for some S ∈ Ω,
– Ψ(S) ≤ k1 for all S ∈ I and
– E[Ψ(Yi)− Ψ(Yi+1)|Yi = S] ≥ k2 for all i ≥ 0 and all S with Ψ(S) > 0,

then E[τ] ≤ k1/k2, where τ = min{i : Ψ(Yi) = 0}.

The above theorem is useful in bounding the absorption time of the Moran
process:

Theorem 7. Let G = (V,E) be a graph of order n. For r < 1, the absorption
time τ of the Moran process on G satisfies E[τ] ≤ 1

1−rn
3 .

Proof. Let (Yi)i≥0 be the process on G that behaves identically to the Moran
process except that, if the mutants reach fixation, we introduce a new non-
mutant on a vertex chosen uniformly at random. That is, from the state V ,
we move to V − x, where x is chosen u.a.r., instead of staying in V . Writing
τ ′ = min{i : Yi = ∅} for the absorption time of this new process, it is clear
that E[τ] ≤ E[τ ′]. The function Φ meets the criteria for Ψ in the statement of
Theorem 6 with k1 = 1 and k2 = (1 − r)n−3. The first two conditions of the
theorem are obviously satisfied. For S ⊂ V , the third condition is satisfied by
Lemma 1 and we have

E[Φ(Yi)− Φ(Yi+1)|Yi = V] =
1

n

∑
x∈V

1

deg(x)
>

1

n
> k2 .

Therefore, E[τ] ≤ E[τ ′] ≤ 1
1−rn

3. ��

The following corollary is immediate from Markov’s inequality.

Corollary 1. The Moran process on G with fitness r < 1 reaches absorption
within t steps with probability at least 1 − ε, for any ε ∈ (0, 1) and any t ≥
1

1−rn
3/ε.

294 P.G. Spirakis and P.N. Panagopoulou

For r > 1, the proof needs slight adjustment because, in this case, Φ increases
in expectation, and we obtain:

Corollary 2. The Moran process on G with fitness r > 1 reaches absorption
within t steps with probability at least 1 − ε, for any ε ∈ (0, 1) and any t ≥
r

r−1n
3Φ(G)/ε.

We refer to [4] for detailed proofs.

5 Bounding the Chromatic Number of Graphs

One of the central optimization problems in Graph Theory and Computer Sci-
ence is the problem of vertex coloring of graphs: Given a graph G = (V,E) with
n vertices, assign a color to each vertex of G so that no pair of adjacent vertices
gets the same color (i.e., so that the coloring produced is proper) and so that
the total number of distinct colors used is minimized. The global optimum of
vertex coloring is the chromatic number χ(G), defined as the minimum number
of colors required to properly color the vertices of graph G.

The problem of coloring a graph using the minimum number of colors is NP-
hard, and the chromatic number cannot be approximated to within Ω(n1−ε) for
any constant ε > 0, unless NP ⊆ co-RP [5]. Despite these negative approximation
results, several upper bounds on the chromatic number have been proven in the
literature; these bounds are related to various graph-theoretic parameters. In
particular, given a graph G = (V,E), let n and m denote the number of vertices
and number of edges of G. Let Δ(G) denote the maximum degree of a vertex in
G, and let Δ2(G) be the maximum degree that a vertex v ∈ V can have subject
to the condition that v is adjacent to at least one vertex of degree no less than
the degree of v (note that Δ2(G) ≤ Δ(G)). Denote by ω(G) the clique number
of G, i.e., the maximum size of a clique in G, and by α(G) the independence
number of G, i.e., the maximum size of an independent set in G. Then, it is
known that

χ(G) ≤ min

{
Δ2(G) + 1,

n+ ω(G)

2
, n− α(G) + 1,

1 +
√
1 + 8m

2

}
. (4)

A different, potential-based method for proving all the above bounds on the
chromatic number in a unified manner is given in [17]. The method is construc-
tive, in the sense that it actually computes in polynomial time a proper coloring
using a number of colors that satisfies these bounds. In particular, the vertices
of a graph G = (V,E) are viewed as players in a strategic game. Given a fi-
nite, simple, undirected graph G = (V,E) with |V | = n vertices, we define the
graph coloring game Γ (G) as the game in strategic form where the set of players
is the set of vertices V , and the action set of each vertex is a set of n colors
X = {x1, . . . , xn}. A configuration or pure strategy profile c = (cv)v∈V ∈ Xn

is a vector representing a combination of actions, one for each vertex. That is,
cv is the color chosen by vertex v. For a configuration c ∈ Xn and a color
x ∈ X , we denote by nx(c) the number of vertices that are colored x in c,

Potential Functions in Strategic Games 295

i.e., nx(c) = |{v ∈ V : cv = x}|. The payoff that vertex v ∈ V receives in the
configuration c ∈ Xn is

λv(c) =

{
0 if ∃u ∈ N(v) : cu = cv
ncv(c) else

.

A configuration c ∈ Xn of the graph coloring game Γ (G) is a pure Nash equi-
librium, or an equilibrium coloring, if, for all vertices v ∈ V and for all colors
x ∈ X , λv(x, c−v) ≤ λv(c). A vertex v ∈ V is unsatisfied in the configuration
c ∈ Xn if there exists a color x �= cv such that λv(x, c−v) > λv(c); else we say
that v is satisfied. For an unsatisfied vertex v ∈ V in the configuration c, we say
that v performs a selfish step if v unilaterally deviates to some color x �= cv such
that λv(x, c−v) > λv(c).

For any graph coloring game Γ (G), define the function Φ : P → R, where
P ⊆ Xn is the set of all configurations that correspond to proper colorings of
the vertices of G, as Φ(c) = 1

2

∑
x∈X n2

x(c), for all proper colorings c.

Theorem 8. Φ is an exact potential function for Γ (G).

Proof. Fix a proper coloring c. Assume that vertex v ∈ V can improve its
payoff by deviating and selecting color x �= cv. This implies that the number
of vertices colored cv in c is at most the number of vertices colored x in c,
i.e., ncv (c) ≤ nx(c). If v indeed deviates to x, then the resulting configura-
tion c′ = (x, c−v) is again a proper coloring (vertex v can only decrease its
payoff by choosing a color that is already used by one of its neighbors, and
v is the only vertex that changes its color). The improvement on v’s payoff
will be λv(c

′) − λv(c) = nx(c
′) − ncv (c) = nx(c) + 1 − ncv (c) . Moreover,

Φ(c′)− Φ(c) = 1
2

(
n2
x(c
′) + n2

cv (c
′)− n2

x(c)− n2
cv (c)

)
= λv(c

′)− λv(c) . ��

Therefore, if any vertex v performs a selfish step (i.e., changes its color so that
its payoff is increased), then the value of Φ is increased as much as the payoff
of v is increased. Now, the payoff of v is increased by at least 1. So after any
selfish step the value of Φ increases by at least 1. Now observe that, for all proper
colorings c ∈ P and for all colors x ∈ X , nx(c) ≤ α(G). Therefore

Φ(c) =
1

2

∑
x∈X

n2
x(c) ≤

1

2

∑
x∈X

(nx(c) · α(G)) =
1

2
α(G)

∑
x∈X

nx(c) =
n · α(G)

2
.

Moreover, the minimum value of Φ is 1
2n. Therefore, if we allow any unsatisfied

vertex (but only one each time) to perform a selfish step, then after at most
n·α(G)−n

2 steps there will be no vertex that can improve its payoff. This implies
that a pure Nash equilibrium will have been reached. Of course, we have to start
from an initial configuration that is a proper coloring so as to ensure that the
procedure will terminate in O(n · α(G)) selfish steps; this can be found easily
since there is always the trivial proper coloring that assigns a different color to
each vertex of G.

296 P.G. Spirakis and P.N. Panagopoulou

In [17] it was also shown that any equilibrium coloring of Γ (G) uses a number
of colors that satisfies all the bounds given in 4. This, combined to the existence of
the potential function, implies that, for any graph G, a proper coloring that uses

at most k ≤ min
{
Δ2(G) + 1, n+ω(G)

2 , 1+
√
1+8m
2 , n− α(G) + 1

}
colors can be

computed in polynomial time.

References

1. Bilò, V., Fanelli, A., Flammini, M., Moscardelli, L.: Graphical Congestion Games.
In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 70–81.
Springer, Heidelberg (2008)

2. Chen, X., Xiaotie, D.: Settling the complexity of two-player Nash equilibrium. In:
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), pp. 261–272 (2006)

3. Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion
games. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA 2007), pp. 169–178 (2007)

4. Dı́az, J., Goldberg, L.A., Mertzios, G.B., Richerby, D., Serna, M.J., Spirakis,
P.G.: Approximating fixation probabilities in the generalized Moran process. In:
Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2012), pp. 954–960 (2012)

5. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. System
Sci. 57(2), 187–199 (1998)

6. Fotakis, D., Gkatzelis, V., Kaporis, A.C., Spirakis, P.G.: The Impact of Social
Ignorance on Weighted Congestion Games. In: Leonardi, S. (ed.) WINE 2009.
LNCS, vol. 5929, pp. 316–327. Springer, Heidelberg (2009)

7. Fotakis, D., Kaporis, A.C., Spirakis, P.G.: Atomic congestion games: fast, myopic
and concurrent. Theory Comput. Syst. 47(1), 38–59 (2010)

8. Fotakis, D., Kontogiannis, S., Spirakis, P.G.: Atomic congestion games among coali-
tions. ACM Transactions on Algorithms (TALG) 4(4), article No. 52 (2008)

9. Fotakis, D., Kontogiannis, S., Spirakis, P.G.: Selfish unsplittable flows. Theoretical
Computer Science 348(2), 226–239 (2005)

10. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with
applications. Advances in Applied Probability 14(3), 502–525 (1982)

11. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artificial Intelligence 127, 57–85 (2001)

12. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Na-
ture 433, 312–316 (2005)

13. Monderer, D., Shapley, L.: Potential games. Games and Economic Behavior 14,
124–143 (1996)

14. Nash, J.F.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)
15. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-

cient proofs of existence. Journal of Computer and System Sciences 48(3), 498–532
(1994)

16. Panagopoulou, P.N., Spirakis, P.G.: Algorithms for pure Nash equilibria in
weighted congestion games. ACM Journal of Experimental Algorithmics 11 (2006)

17. Panagopoulou, P.N., Spirakis, P.G.: A game theoretic approach for efficient graph
coloring. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS,
vol. 5369, pp. 183–195. Springer, Heidelberg (2008)

Potential Functions in Strategic Games 297

18. Panagopoulou, P.N., Spirakis, P.G.: Playing a game to bound the chromatic num-
ber. The American Mathematical Monthly 119(9), 771–778 (2012)

19. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Inter-
national Journal of Game Theory 2, 65–67 (1973)

20. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nals of Mathematics 5, 285–308 (1955)

21. Topkis, D.: Equilibrium points in nonzero-sum n-person submodular games. SIAM
Journal of Control and Optimization 17, 773–787 (1979)

22. Uno, H.: Strategic complementarities and nested potential games. Journal of Math-
ematical Economics 47(6), 728–732 (2011)

The Probabilistic Min Dominating Set Problem�

Nicolas Boria1, Cécile Murat1, and Vangelis Th. Paschos1,2

1 Paris Sciences et Lettres Research University, Université Paris-Dauphine,
LAMSADE CNRS, UMR 7243

2 Institut Universitaire de France

Abstract. We present a natural wireless sensor network problem, which
we model as a probabilistic version of the min dominating set problem.
We show that this problem, being a generalization of the classical min

dominating set, is NP-hard, even in bipartite graphs. We first study
the complexity of probabilistic min dominating set in graphs where
min dominating set is polynomial, mainly in trees and paths and then
we give some approximation results for it.

1 Wireless Sensor Networks and Probabilistic
Dominating Set

Very frequently, in wireless sensor networks [1], one wishes to identify a subset
of sensors, called “master” sensors, that will have a particular role in messages
transmission, namely, to centralize and process messages sent by the rest of
the sensors, called “slave” sensors, in the network. These latter sensors will be
only nodes of intermediate messages transmission, while the former ones will be
authorized to make several operations on messages received and will be, for this
reason, better or fully equipped and preprogrammed.

Hence, in order to design such a network, one must identify a subset of sensors
(the master sensors) such that, every other sensor is linked to some sensor of this
set. In other words, one wishes to find a dominating set in the graph of sensors.
If we suppose that equipment of master sensors induces some additional cost
with respect to that of the slave ones, if this cost is the same for all master sen-
sors, we have a minimum cardinality dominating set problem (min dominating

set), while if any master sensor has its own cost, we have a minimum weight
dominating set problem.

In this paper, we consider a more general setting where any sensor is allowed
to break down with a given probability, and one must be able to
recompute a new set of master sensors very quickly (and in any case as quickly
as solution from scratch is not allowed). The framework of probabilistic com-
binatorial optimization that we adopt in this paper was introduced by [2, 3].
In [2–10], restricted versions of routing and network-design probabilistic min-
imization problems (in complete graphs) have been studied under the robust-
ness model dealt here (called a priori optimization). In [11–14], the analysis

� Research supported by the French Agency for Research under the program TODO,
ANR-09-EMER-010.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 298–309, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Probabilistic Min Dominating Set Problem 299

of the probabilistic minimum travelling salesman problem, originally performed
in [2, 3], has been revisited. Several other combinatorial problems have been
also handled in the probabilistic combinatorial optimization framework, includ-
ing minimum coloring ([15, 16]), maximum independent set and minimum vertex
cover ([17, 18]), longest path ([19]), Steiner tree problems ([20, 21]), minimum
spanning tree [6, 22].

For simplicity, we deal with master sensors of uniform equipment cost (hope-
fully, it will be clear later that this assumption is not restrictive for the model)
and we suppose that any sensor is actually present in the network, with proba-
bility pi (so that its probability to be broken down is 1 − pi) depending on its
construction, proper equipment, age, etc. Informally, the approach we propose,
in order to maintain the network operational at any time, is the following:

– design an algorithm M that, given a set D of master sensors of the network, if
some sensors of D fail, it adapts D to the surviving network (in other words,
the new D becomes the new master set of sensors for the surviving part of
the network); this algorithm must be as efficient as possible, so that long
idle periods for the network are avoided;

– given the network, its sensors’ surviving probabilities pi and M, compute a
solution D∗, called “a priori” solution that, informally, will ”resist” in the
best possible way to node failures.

It is clear that given a network of sensors, identifying a master set of them
is equivalent to determining a dominating set in the associated graph where
vertices are the sensors of the network and, for any linked pair of them, an edge
links the corresponding vertices. The min dominating set problem is formally
defined as follows. Let G(V,E) be a connected undirected graph defined on a
set V of vertices with a set E ⊆ V × V of edges. A vertex-set D is said to be a
dominating set of G if, for any v ∈ V \D, v has at least one neighbor in D. In the
min dominating set problem, the objective is to determine a minimum-size
dominating set in G. The decision version of min dominating set problem is
one of the first 21 NP-complete problems [23] and remains NP-complete even
in bipartite graphs, while it is polynomial in trees.

Here, we associate a probability pi to every vertex vi ∈ V (the probability
that sensor i remains operational). We specify also a strategy M, called mod-
ification strategy, that when given a dominating set D of G and a subgraph
G′ = G[V ′] induced by a set V ′ ⊆ V (the surviving sensors), it transforms D
into a set D′ that is a dominating set of G′. Let us note that the simplest mod-
ification strategy, consisting of just returning D′ = D ∩ V ′ is not feasible since
it does not always produces feasible dominating sets for G′. For example, con-
sider the graph of Figure 1 for which the set D = {v3, v6} is dominating. If we
consider V ′ = {v1, v2, v4, v6, v7}, thenD′ = D∩V ′ = {v6} is no longer a dominat-
ing set of G′. Hence, we will consider the following somewhat more complicated
modification strategy M associated with our problem: given a graph G(V,E), a
dominating set D of G and a subgraph G′, set D′ := ∅; for any vi ∈ V ′: if vi ∈ D,
set D′ := D′∪{vi}; otherwise, if Γ (vi)∩(D∩V ′) = ∅, set D′ := D′∪{vi}, where,

300 N. Boria, C. Murat, and V.T. Paschos

Fig. 1. A graph together with a dominating set (bold-circled vertices)

for any vertex v, Γ (v) denotes the set of its neigbors. In other words, M first takes
D ∩ V ′ in D′ and then completes it with all the non-dominated vertices of V ′.
It is easy to see that the complexity of M is polynomial, since it is bounded by
the sum of the degrees of the vertices of V ′ \D that is at most O(|E|).

Consider now a graph G(V,E), a probability pi for every vertex vi ∈ V ,
a dominating set D of G and the modification strategy M just specified. The
functional of M can be expressed by:

E(G,D, M) =
∑

V ′⊆V
Pr [V ′] |D′| (1)

where Pr[V ′] is the probability of V ′ (i.e., the probability that only the vertices
of V ′ will not be broken down) and D′ is the dominating set returned by M

for G[V ′]. Following M, if a vertex vi ∈ D, then it will be always in D′ if it
belongs to V ′; hence, its contribution to E(G,D, M) in (1) will be equal to pi.
On the other hand, if vi /∈ D but vi ∈ V ′, it will be included in D′ only if all
its neigbors in G that belonged to D are not in V ′; in this case, its contribution
to E(G,D, M) in (1) will be equal to pi

∏
vj∈Γ (vi)∩D(1 − pj). Based upon these

remarks, starting from (1) we get:

E(G,D, M) =
∑

V ′⊆V
Pr [V ′]

∑
vi∈V

1vi∈D′ =
∑
vi∈V

∑
V ′⊆V

Pr [V ′] 1vi∈D′

=
∑
vi∈D

∑
V ′⊆V

Pr [V ′] 1vi∈V ′

+
∑
vi /∈D

∑
V ′⊆V

Pr [V ′] 1(vi∈V ′)∩(Γ (vi)∩(D∩V ′)=∅)

=
∑
vi∈D

pi +
∑
vi /∈D

∑
V ′⊆V

Pr [V ′] 1(vi∩V ′=vi)1Γ (vi)∩(D∩V ′)=∅

=
∑
vi∈D

pi +
∑
vi /∈D

pi
∏

vj∈Γ (vi)∩D
(1− pj) (2)

It is easy to see that, from (2), E(G,D, M) can be computed in polynomial time.
Also, setting pi = p, i.e., considering that vertices of G have identical probabili-
ties (this is quite natural if we assume identical sensors), one gets:

The Probabilistic Min Dominating Set Problem 301

E(G,D, M) = p|D|+
∑
vi /∈D

p(1− p)|Γ (vi)∩D| (3)

We consider E(G,D, M) as the objective function of the problem handled here
which, by symmetry, we call probabilistic min dominating set. Its goal
is to determine a dominating set D∗ of G, called a priori dominating set, that
minimizes E.

In other words, for our wireless sensor network design problem, the a priori
solution D∗ has the property that, under the modification strategy M described
above, the solution constructed on the surviving network minimizes in average
the additional cost needed so that this network remains operational.

Proposition 1. probabilistic min dominating set is NP-hard, even in bi-
partite graphs and inapproximable in polynomial time within ratio O(log n).

As we have already mentioned, min dominating set is polynomial in trees.
In Section 2, we explore complexity of probabilistic min dominating set

in those graphs, while in Section 3, we give approximation results in general
graphs. The main results in Section 2 imply that probabilistic min domi-

nating set is polynomial in trees with degrees bounded by O(log n) and in
general trees assuming identical probabilities. Remains however open if it is
polynomial in general trees with distinct vertex-probabilities, which seems to be
a difficult problem. Results of Section 3 are quite pessimistic since, for instance,
although the classical min dominating set problem is approximable within ra-
tio O(log n), probabilistic min dominating set is approximable within ratio
Δ − lnΔ, in the case of identical sensors, and within ratio Δ2/ lnΔ when het-
erogeneous sensors are assumed, where Δ denotes the maximum degree of the
input graph. But this is due to the fact that probabilistic min dominating

set is much harder than its deterministic counterpart.
For reasons of paper’s size, some of the results presented in what follows are

given without detailed proofs, or without proofs at all. All these proofs can be
found in [24].

2 Probabilistic Dominating Set on Paths, Cycles and
Trees

We handle in this section probabilistic dominating set on paths, cycles and
trees. Let us recall that min dominating set in these graphs is polynomial.
We prove that probabilistic dominating set on paths and cycles remains
polynomial for any vertex-probability, while probabilistic min dominating

set in trees is polynomial either when the maximum degree of the input tree is
bounded, or when the vertex-probabilities are all equal.

Recall that the contribution of a node refers to the probability for this node
to be present in D′ for a given a priori solution D and for the modification
strategy M adopted in Section 1. Let us recall that the contribution of a node vi

302 N. Boria, C. Murat, and V.T. Paschos

that belongs to D is pi, and for a node that does not belong to D, its contribution
amounts to pi

∏
vj∈Γ (vi)∩D(1 − pj). This notion will be extended to a set: the

contribution C(V ′) of a node-set V ′ is the expected number of nodes of V ′ in D′.
In other words, C(V ′) is the sum of the contributions of all the nodes in V ′.

We first handle paths and cycles. Given a path we consider its nodes labeled
in the following way: the leftmost endpoint of the path is labelled by v1 (which
might be referred as the first, or left end node), while the rightmost endpoint
will be labelled by vn (last or right end node). Of course, all nodes in between
will be labelled in increasing order from left to right.

Proposition 2. probabilistic dominating set on paths can be solved in
polynomial time.

Proof. We show how probabilistic dominating set on paths can be solved
by dynamic programming. First, let us make some preliminary remarks that will
help us to build the final algorithm. First, for a given node vi in a dominating
set, the “next” dominating node (if any) will be vi+1, vi+2 or vi+3. Indeed, if
none of them is in the dominating set, then vi+2 wouldn’t be dominated. Then,
The last dominating node is either vn or vn−1. Considering these two facts, one
can see that, except the very last node of the path, any dominating set D on a
path can be partitioned in elementary patterns of shapes D1, D2 or D3, which
are illustrated in Figure 2.

Fig. 2. Partitionning nodes with elementary patterns

At this point, it is interesting to notice that the contribution of a given pattern
can be determined, regardless the rest of the sequence, but depending on its
position in the path. To be more precise, denoting by Dj(i) the pattern Dj with
its dominating node being vi:

C (D1(i)) = pi ∀i
C (D2(i)) = pi + pi−1 (1− pi) i = 2 (4a)

C (D2(i)) = pi + pi−1 (1− pi) (1− pi−2) i � 3 (4b)

C (D3(i)) = pi + pi−1 (1− pi) + pi−2 (1− pi−3) i � 4 (4c)

The Probabilistic Min Dominating Set Problem 303

One notices that the contribution of each pattern is defined regardless of the
rest of the pattern sequence. This will be very useful for the method. Indeed,
if a pattern has no impact in terms of contribution neither on the preceding
sequence, nor on the following one, then it is quite easy to give a recursive
definition of Wi which is the sequence up to node vi of minimum contribution,
where vi is a dominating node:

C (Wi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 i = 0
p1 i = 1
min
j=1,2

(C (Wi−j) + C (Dj(i))) i = 2, 3

min
j=1,2,3

(C (Wi−j) + C (Dj(i))) 4 � i � n

(5)

Indeed, a sequence Wi always ends with a dominating node. So, leaving aside
particular cases when i � 3, it ends necessarily with one of the three patterns
defined earlier. If it ends with D1 (resp., D2 or D3) then it should be completed
with a minimal sequence up to node vi−1 (resp., vi−2 or vi−3), namely Wi−1
(resp., Wi−2 or Wi−3). That among these three possibilities that returns the
minimal contribution, is that chosen for Wi.

At this point, we only have a set of optimal sequences, but these are not
necessarily optimal dominating sets. Indeed, a dominating set can end with a
dominated (i.e., non-dominating) node, whereas a sequence cannot. To take this
distinction into account, and allow our final solution to end with a dominated
node, we define the contribution of an optimal dominating set D∗ as follows:

C (D∗) = min (C (Wn) , C (Wn−1) + pn (1− pn−1))

In all, 3n contributions C(Dj(i)) have to be computed and, in order to compute
a Wi, one basically compares 3 possible values, which amounts to 6n operations
to get an optimal anticipatory solution for probabilistic dominating set on
paths. This concludes the proof. �

By adapting the previous method, one can extend the result of Proposition 2 to
cycles.

Proposition 3. probabilistic dominating set on cycles can be solved in
polynomial time.

With a similar, yet more complex method, one can generalize the result of Propo-
sition 2 from paths (trees of maximum degree bounded by 2) to trees with
bounded maximum degrees. In what follows, v1 will denote the root of the input
tree T , Ti will denote the subtree rooted at node vi (so, T1 = T), Fi will denote
the set of children of given node vi, and vfi the father of vi. The depth D(Ti) of
a subtree Ti will refer to the minimum number of edges on a path between the
root and a leaf of the subtree.

Proposition 4. probabilistic min dominating set in trees of maximum
degree bounded by k can be solved in O∗(2k), where O∗(·) notation ignores the
polynomial terms.

304 N. Boria, C. Murat, and V.T. Paschos

Proof. Consider a tree T and a dominating set D on T . For any subtree Ti of T ,
there are only three possible configurations regarding its root vi:

1. vi ∈ D;
2. vi /∈ D, and vfi /∈ D; in this case, the root has to be dominated in the

subtree Ti (i.e., dominated by at least one of its children);
3. vi /∈ D and vfi ∈ D; in this case, the root might be non-dominated in the

subtree Ti (i.e., not dominated by any of its children).

Considering Cases 1 to 3, for a given dominating set D in a tree T , it is always
possible to partition nodes of T into three sets: D, S and N , where D is the
dominating set itself, S is the set of nodes that are dominated, but not by their
fathers, and N is the set of nodes dominated by their fathers (and also possibly
by some of their children). Figure 2 gives an example of such a partition.

Fig. 3. Partitioning nodes in three subsets

Now, let us analyze what possible cases can occur for nodes of Fi with respect
to the status of vi. The following cases can occur:

– vi ∈ D; then children of vi (if any) might be in D, or in N ;
– vi ∈ S; then children of vi might be in D or in S, and at least one of them

should be in D;
– vi ∈ N ; in this case, children of vi might be in D or in S.

It is interesting to notice that the situation of a given node impacts only its
own contribution if the status of its children is known, so that, once more,
it is possible to run a dynamic programming method. It will be based upon
three partial solutions for each subtree Ti, namely, Wi, W

′
i and W ′′i , where Wi

(resp., W ′i , W
′′
i) is the partial solution of minimum contribution for subtree Ti

rooted at vi when vi ∈ D (resp., vi ∈ S, vi ∈ N).
Partial solution Wi can be computed on a tree of any depth. Children of vi

can belong either to D, or to N , so that there are 2|Fi| possible combinations to
evaluate (bounded by 2k). The combination minimizing the overall contribution
leads to the structure we are trying to define, namely Wi. Setting Di = D ∩ Fi

(the subset of children of vi that are dominating nodes), Wi is defined by:

The Probabilistic Min Dominating Set Problem 305

C (Wi) = min
Di⊆Fi

⎛⎝pi +
∑

vj∈Di

C (Wj) +
∑

vj∈Fi\Di

C
(
W ′′j

)⎞⎠ (6)

This value is quite easy to initialize with leaves where Wi = pi.
Let us now consider W ′′i , which can also be initialized on leaves (unlike W ′i).

Indeed, if a leaf is dominated, then its father has to be dominating, or else it
would not be dominated. So that a leaf can only be in D or in N . As we said
earlier, children of vi in a partial solution W ′′i can belong either to D or to S.
Thus, the following holds:

C (W ′′i) =

min
Di⊆Fi

⎛⎝pi (1− pfi)
∏

vj∈Di

(1− pj) +
∑

vj∈Di

C (Wj) +
∑

vj∈Fi\Di

C
(
W ′j

)⎞⎠ (7)

Note there are also at most 2k combinations to examine in this case.
Finally, let us specify W ′i . In this case, children of vi should be in S or in D

and at least one of them should be in D. Of course, by definition, none of them
can be in N . Once more, each combination of sons in S or in D (at most 2k

combinations) leads to a specific contribution for the subtree Ti. The partial
solution W ′i is the one minimizing this contribution. Thus, the following holds:

C (W ′i) =

min
Di⊆Fi,|Di|�1

⎛⎝pi
∏

vj∈Di

(1− pj) +
∑

vj∈Di

C (Wj) +
∑

vj∈Fi\Di

C
(
W ′j

)⎞⎠ (8)

Note that such a value can be computed for any subtree Ti of depth at least 1
(not on leaves). This might be a problem when computing a value W ′i or W ′′i
on a tree Ti of depth 1 since, according to (7) and (8), in order to compute W ′i
and W ′′i , one needs values W

′
j for all the children vj of vi but these values do not

exist for leaves. To keep all formulæ valid and still ensure that a leaf will never
be in S, we will initialize W ′j to an arbitrarily large value M for any vj that is
a leaf. Thus, when applying (7) and (8), all leaf-children of vi will be forced to
be in Di.

Note also, that definitions of C(W ′i) and C(W ′′i) differ only by a factor (1−pfi)
in the contribution of vi.

The dynamic programming method runs in a “bottom up” way. It is initial-
ized with leaves where values Wi, W

′
i and W ′′i are equal to pi , M and pi(1−pfi),

respectively. Then, each subtree Ti is associated with structures Wi, W
′
i and W ′′i

(apart from leaves that are associated only with Wi and W ′′i , and the overall
tree which will be associated only with Wi and W ′i for obvious reasons), whose
computation relies on the same structures on subtrees induced by children of
the root vi. In other words, in order to compute, for instance, a value Wi, one

306 N. Boria, C. Murat, and V.T. Paschos

needs to have already computed values Wj and W ′′j for all children vj of vi. Since
the method is easily initialized with leaves, all values can be computed for all
subtrees, starting from leaves and ending with the whole tree.

Finally, the optimum D∗ is given by D∗ = argminW=Wi,W ′
i
(C(W)). In all,

O(2kn) = O∗(2k) operations are necessary to compute D∗. �

Corollary 1. ie probabilistic min dominating set in trees with maximum
degree bounded by O(log n) can be solved in polynomial time.

Based on the idea that the complexity of the dynamic programmig algorithm
is actually exponential in the number of distinct probabilities among the neigh-
bors of a given vertex, we also show the following result, whose proof has been
excluded from the paper due to lenght constraints.

Proposition 5. probabilistic min dominating set is polynomial in general
trees with equiprobable nodes.

3 Polynomial Approximation of Probabilistic Min
Dominating Set

3.1 Networks with Identical Sensors

We consider in this section that the probability that a sensor fails is the same
for all of them.

As we have already mentioned, min dominating set is approximate equiv-
alent to min set cover, in the sense that an approximation algorithm for one
of them can be transformed in polynomial time into an approximation algo-
rithm for the other one achieving the same approximation ratio. Recall also that
the natural greedy algorithm for min set cover achieves approximation ratio
either 1 + ln |Smax| where |Smax| is the cardinality of the largest set Smax in
the set-system describing the instance of min set cover [25, 26], or O(log n)
where n is the cardinality of the ground set describing this instance [27]. In the
transformation of min dominating set into min set cover, any set S of the
set-system becomes a vertex with degree |S| + 1. So, in the derived instance of
min dominating set, Δ = |Smax| + 1, where Δ denotes the maximum degree
of the derived graph. For facility and because of the form of the functional given
in (3), we will use in what follows the former of the above ratios.

The following two easy lemmata that will be used later hold. The proof of the
second one (Lemma 2) is immediate.

Lemma 1. For any instance of min dominating set of size n and maximum
degree Δ, any minimal (for inclusion) solution (hence, the minimum-size one
also) has size bounded below by n/(Δ+ 1).

Lemma 2. Let D be a minimal dominating set in a connected graph G(V,E).
Then, V \ D is also a dominating set and, moreover, the smallest of them is
smaller than n/2.

The Probabilistic Min Dominating Set Problem 307

Proposition 6. The set D selected to be the smallest between the (1 + lnΔ)-
approximate solution computed by the greedy algorithm in G and the complement
of it with respect to V achieves for probabilistic min dominating set ap-
proximation ratio bounded above by Δ − lnΔ, where Δ is the maximum degree
of G, when sensors have identical failure probabilities.

Proof (Sketch). Revisit (3) and observe that the following expressions can be
easily derived for E(G,D, M): E(G,D, M) � p2|D| + pn(1 − p) and E(G,D, M) �
p(1− (1− p)Δ)|D|+ pn(1− p)Δ.

Denote by D∗ and D̂ an optimal solution for probabilistic min dominating

set and for min dominating set in G, respectively. Remark that since D∗ is
a feasible solution for min dominating set, we have |D∗| � |D̂|.

Remark that the size of D (as it is selected) guarantees the ratio 1+lnΔ and,
simultaneously, according to Lemma 2, it is smaller than n/2. Then, it holds
that E(G,D, M) � p2(1 + lnΔ)|D̂| + p(1 − p)n and E(G,D∗, M) � p(1 − (1 −
p)Δ)|D∗|+ pn(1− p)Δ.

Putting all the above together, we get:

E(G,D, M)

E (G,D∗, M)
� min

(
Δ+ 1− p(Δ− lnΔ),

Δ+ 1

1 +Δ(1− p)Δ

)
� Δ− lnΔ

as claimed. �

3.2 Networks with Heterogeneous Sensors

Let us now suppose that the sensors of the network are heterogeneous so that
each of them has its own failure probability that can be different from that of
another sensor in the network. We will show that, in this case, any probabilis-

tic min dominating set-solution achieves approximation ratio bounded above
by O(Δ2/ logΔ).

Proposition 7. Any probabilistic min dominating set-solution achieves
approximation ratio bounded above by O(Δ2/ logΔ), in networks with distinct
sensor failure probabilities.

Proof (Sketch). Revisit (2) and observe that any dominating set D satisfies the
trivial inequality E(G,D, M) �

∑
vi∈V pi.

Fix an optimal a priori dominating set D∗ and, for a probability p′ that will
be fixed later, partition the vertices of G into four subsets:

D∗1 : the set of vertices of D∗ whose probabilities are at least p′; furthermore,
set |D∗1 | = κ;

D∗2 : the rest of vertices of D∗, i.e., D∗2 = D∗ \D∗1 ;

D̄∗1 : the set ΓD̄∗(D∗1) of neighbours of D
∗
1 in D̄∗ = V \D∗, i.e., D̄∗1 = Γ (D∗1)∩D̄∗;

D̄∗2 : the set ΓD̄∗(D∗2)\D̄∗1 , i.e., the vertices of D̄∗ that have no neighbours in D∗1 ,
i.e., D̄∗2 = D̄∗ \ ΓD̄∗(D∗1).

308 N. Boria, C. Murat, and V.T. Paschos

Denote, for simplicity, by p the largest vertex-probability. With respect to the
partition above, using some algebraic and combinatorial arguments, one can
prove that:

E(G,D, M)

E (G,D∗, M)
� min

(
x

(1− p′)
Δ
,
x(Δ + 1)

(x − 1)p′

)
for some properly chosen x. If one fixes p′ = lnΔ/Δ and x = Δ/ lnΔ, then both
ratios become ≈ Δ2/ lnΔ. �

4 Conclusion

In this paper we have studied a generalization of a wireless sensor network prob-
lem modelled as a probabilistic version of min dominating set. This has led
to a problem that is quite more difficult to handle than its original deterministic
version, in particular when trying to approximately solve it. We have proposed
algorithms for paths, cycles and trees (cases where min dominating set is
polynomial), as well as we have tried a first study of approximability of prob-
abilistic min dominating set in general graphs.

References

1. Sandos, A.C., Bendali, F., Mailfert, J., Duhamel, C., Hou, K.M.: Heuristics for de-
signing energy-efficient wireless sensor network topologies. J. Networks 4, 436–444
(2009)

2. Jaillet, P.: Probabilistic traveling salesman problem. Technical Report 185, Oper-
ations Research Center. MIT, Cambridge Mass., USA (1985)

3. Bertsimas, D.J.: Probabilistic combinatorial optimization problems. Phd thesis,
Operations Research Center. MIT, Cambridge Mass., USA (1988)

4. Averbakh, I., Berman, O., Simchi-Levi, D.: Probabilistic a priori routing-location
problems. Naval Res. Logistics 41, 973–989 (1994)

5. Bertsimas, D.J.: On probabilistic traveling salesman facility location problems.
Transportation Sci. 3, 184–191 (1989)

6. Bertsimas, D.J.: The probabilistic minimum spanning tree problem. Networks 20,
245–275 (1990)

7. Bertsimas, D.J., Jaillet, P., Odoni, A.: A priori optimization. Oper. Res. 38,
1019–1033 (1990)

8. Jaillet, P.: A priori solution of a traveling salesman problem in which a random
subset of the customers are visited. Oper. Res. 36, 929–936 (1988)

9. Jaillet, P.: Shortest path problems with node failures. Networks 22, 589–605 (1992)
10. Jaillet, P., Odoni, A.: The probabilistic vehicle routing problem. In: Golden, B.L.,

Assad, A.A. (eds.) Vehicle Routing: Methods and Studies. North-Holland, Ams-
terdam (1988)

11. Balaprakash, P., Birattari, M., Stützle, T., Dorigo, M.: Estimation-based meta-
heuristics for the probabilistic traveling salesman problem. Computers and Oper-
ations Research 37, 1939–1951 (2010)

12. Bianchi, L., Knowles, J., Bowler, N.: Local search for the probabilistic traveling
salesman problem: correlation to the 2-p-opt and 1-shift algorithms. European
J. Oper. Res. 161, 206–219 (2005)

The Probabilistic Min Dominating Set Problem 309

13. Birattari, M., Balaprakash, P., Stützle, T., Dorigo, M.: Estimation-based local
search for stochastic combinatorial optimization using delta evaluations: a case
study on the probabilistic traveling salesman problem. INFORMS J. Comput-
ing 20, 644–658 (2008)

14. Campbell, A.M., Thomas, B.W.: Probabilistic traveling salesman problem with
deadlines. Transportation Sci. 42, 1–21 (2008)

15. Murat, C., Paschos, V.T.: On the probabilistic minimum coloring and minimum
k-coloring. Discrete Appl. Math. 154, 564–586 (2006)

16. Bourgeois, N., Della Croce, F., Escoffier, B., Murat, C., Paschos, V.T.: Probabilistic
coloring of bipartite and split graphs. J. Comb. Optimization 17, 274–311 (2009)

17. Murat, C., Paschos, V.T.: A priori optimization for the probabilistic maximum
independent set problem. Theoret. Comput. Sci. 270, 561–590 (2002)

18. Murat, C., Paschos, V.T.: The probabilistic minimum vertex-covering problem.
Int. Trans. Opl. Res. 9, 19–32 (2002)

19. Murat, C., Paschos, V.T.: The probabilistic longest path problem. Networks 33,
207–219 (1999)

20. Paschos, V.T., Telelis, O.A., Zissimopoulos, V.: Steiner forests on stochastic metric
graphs. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616,
pp. 112–123. Springer, Heidelberg (2007)

21. Paschos, V.T., Telelis, O.A., Zissimopoulos, V.: Probabilistic models for the
steiner tree problem. Networks 56, 39–49 (2010)

22. Boria, N., Murat, C., Paschos, V.T.: On the probabilistic min spanning tree

problem. J. Mathematical Modelling and Algorithms (to appear)
23. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,

Thatcher, J.W. (eds.) Complexity of computer computations, pp. 85–103. Plenum
Press, New York (1972)

24. Boria, N., Murat, C., Paschos, V.T.: An emergency management model for a wire-
less sensor network problem. In: Cahier du LAMSADE 325, LAMSADE, Université
Paris-Dauphine (2012)

25. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
System Sci. 9, 256–278 (1974)

26. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13,
383–390 (1975)

27. Slav́ık, P.: A tight analysis of the greedy algorithm for set cover. In: Proc. STOC
1996, pp. 435–441 (1996)

Dichotomy of the H-Quasi-Cover Problem�

Jǐŕı Fiala�� and Marek Tesař���

Department of Applied Mathematics and DIMATIA, Charles University,
Malostranské nám. 25, 118 00 Prague, Czech Republic

{fiala,tesar}@kam.mff.cuni.cz

Abstract. We show that the problem whether a given simple graph G
admits a quasi-covering to a fixed connected graph H is solvable in poly-
nomial time if H has at most two vertices and that it is NP-complete
otherwise.

As a byproduct we show constructions of regular quasi-covers and
of multi-quasi-covers that might be of independent interest.

Keywords: Computational complexity, dichotomy, graph cover.

1 Introduction

A homomorphism between two graphs G and H is an edge-preserving mapping
f : V (G) → V (H). We focus on homomorphisms f that satisfy local constraints.
For instance it might be required for each vertex u of G that all neighbors of
its image f(u), are used when the mapping f is restricted on the neighborhood
of u, formally |f−1(v) ∩ NG(u)| ≥ 1 for each v ∈ NH(f(u)). In other words f
should act surjectively between NG(u) and NH(f(u)) for each u ∈ V (G). In such
a situation we say that f is a locally surjective homomorphism.

We focus in a particular case of locally surjective homomorphisms, called quasi-
coverings. These satisfy that for every vertex u of G there exists a positive integer
c such that |f−1(v) ∩ NG(u)| = c for every v ∈ NH(f(u)) — in such a case we
say that f |NG(u) is c-fold between NG(u) andNH(f(u)). Note that the constant c
may vary for different vertices of G. If such a quasi-covering projection from G to
H exists, we say that G quasi-coversH or that G is a quasi-cover of H .

Locally surjective homomorphisms and quasi-covers are closely related to ho-
momorphisms that are locally injective (bijective, resp.), i.e. those edge-preserving
mappings satisfying that for every vertex u it holds that NG(u) is mapped to
NH(f(u)) injectively (bijectively, resp.). Locally bijective homomorphisms are
also known as covering projections. Similarly, locally injective homomorphisms
are sometimes called partial covering projections, while locally surjective homo-
morphisms are also known as role assignments.

Covers and quasi-covers are discrete variants of the corresponding notions
in algebraic topology. To obtain a quasi-cover consider a 2-cell embedding of

� Supported by Charles University as GAUK 95710.
�� Supported by MŠMT ČR grant LH12095 and GAČR grant P202/12/G061.

��� Supported by the grant SVV-2012-265313.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 310–321, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Dichotomy of the H-Quasi-Cover Problem 311

Covering — primal embedding Quasi-covering — dual embedding

G

H H̃

G̃

SH = sphere

SG = torus

Fig. 1. Example of obtaining a quasi-covering from G = Q3 that covers H = K4. The
mappings are indicated by vertex colors.

a graph H in an orientable surface SH and a graph G covering H via f (see
Figure 1 for an example). By using an 2-cell embedding of G where every vertex
u uses the same neighbor ordering as f(u), we obtain a surface SG with the
following property: the covering f extends to a mapping between SG and SH

which respects edges and faces of both embeddings. In addition this mapping
is a local homeomorphism except of those faces whose length is a multiple of
the length of its image (the length is measured in the number of vertices on the
face). The mapping on these faces contains singularity of degree being equal to
the ratio of the two face lengths.

We construct duals G̃ and H̃ from the two 2-cell embeddings of G andH in SG

and SH , resp. and factor the mapping between SG and SH to a homomorphism
between G̃ and H̃ . Moreover, as the boundary of each face of G (in SG) must
be mapped homeomorphically onto the boundary of the appropriate face of H
(in SH), we get that the resulting mapping between duals G̃ and H̃ is c-fold on
the neighborhood of any vertex of G̃.

We follow the usual scenario for the question whether a graph G admits a
possibly specific homomorphism to H . Since such tests allow no simple criterion,
we define several classes of decision problems: H-Hom, H-QCover, H-LIHom,
H-LSHom, and H-LBHom, resp. In all of them H is a fixed target graph and
the query is whether a graph G on the input admits a homomorphism to H
of the appropriate constraint: being a homomorphism, a quasi-covering, locally
injective, locally surjective, and locally bijective, resp.

The computational complexity of H-Hom was fully determined by Hell and
Nešetřil [11]. They show that the problem is solvable in polynomial time only
for bipartite H and that it is NP-complete otherwise.

The study of H-LSHom was initiated by Kristiansen and Telle [16] and a
full dichotomy was completed by Fiala and Paulusma [9]. For connected H they

312 J. Fiala and M. Tesař

showed that H-LSHom is NP-complete whenever H has at least three vertices;
for disconnected H the condition is more elaborate.

The complexity of locally bijective homomorphisms was first studied by Bod-
laender [3] and by Abello et al. [1]. Despite the subsequent effort of several
authors (see e.g. papers by Kratochv́ıl et al. [13–15] or a survey by Fiala and
Kratochv́ıl [8]) the complete characterization has not been settled yet.

The dichotomy for the computational complexity of the H-LIHom problem is
also not known. Some partial results can be found in [4–6, 17, 2]. It might be of
independent interest that locally injective homomorphisms generalize the notion
of L(2, 1)-labelings, which are motivated by the frequency assignment problem.
Fiala and Kratochv́ıl [7] also considered the list version of the H-LIHom problem
and provided a dichotomy.

In our paper we show that the H-QCover problem yields for connected
graphs H the same dichotomy as the H-LSHom problem:

Theorem 1. Let H be a connected graph. If H has at least three vertices, then
the H-QCover problem is NP-complete. Otherwise, it is solvable in linear time.

This is in contrast with the well known fact that testing the existence of a cover-
ing between two embedded graphs that locally extends to a homeomorphism of
the embedding admits a straightforward quadratic-time algorithm: if the map-
ping is determined for any edge, it has a unique extension to adjacent edges
given by the ordering of the edges around a vertex in the embedding. Therefore
also the corresponding problem for the quasi-coverings between the associated
duals is polynomially solvable with the same time complexity.

2 Preliminaries

Unless said otherwise, we consider simple and connected graphs. We denote
the set of vertices of a graph G by V (G) and its edge set by E(G). We denote
the degree of a vertex v in G by degG(v) and the set of all neighbors of v — the
neighborhood of v — by NG(v). In a d-regular graph all vertices are of the same
degree d.

For the definition of other standard graph theoretic terms (like paths, com-
plete bipartite graphs), see e.g. a monograph by Nešetřil and Matoušek [18].

We call a mapping f : X → Y between two sets c-fold if for all y ∈ Y it holds
that |f−1(y)| = c.

Recall that a homomorphism f : G → H is a quasi-covering if for each vertex
v ∈ V (G) there exists an integer c such that f |NG(v) is c-fold between NG(v)
and NH(f(v)). Note that quasi-covering which is 1-fold on every vertex of G is
indeed a covering projection.

Observe that the composition of a c-fold and a d-fold mapping is a cd-fold
mapping. Hence a composition of two quasi-coverings is also a quasi-covering.
We use this fact also in the case when one of these two mappings is a covering
projection or an automorphism.

Dichotomy of the H-Quasi-Cover Problem 313

By a boundary δH of an induced subgraph H of a graph G we mean the set
of vertices of H that are adjacent to a vertex outside H .

The symbol lcmd(G) stands for the least common multiple of degrees of all
non-isolated vertices in G.

Fig. 2. Construction of the graph H ′ for a graph H with d = 4. Copies of vertices of
graph H are in horizontal lines.

Proposition 1. For every graph H there exists a regular connected graph H ′

such that H ′ quasi-covers H.

Proof. Without loss of generality assume that E(H) is not empty, as otherwiseH
itself is 0-regular andH ′ could be chosen to consist of a single isolated vertex. Let
d = lcmd(H). We construct a d-regular graph H ′ and quasi-covering h : H ′ → H
as follows.

For every vertex x ∈ V (H) we insert into V (H ′) vertices x1, x2, . . . , xd degH(x).
All these d degH(x) vertices are mapped onto x by h (see Figure 2). For every
edge xy ∈ E(H) we add d2 edges between sets h−1(x) and h−1(y) in such a way
that every xi ∈ h−1(x) is incident with d

degH (x) of these d2 edges. Analogously

every yi ∈ h−1(y) is incident with d
degH(y) of them. This can be done e.g. by

using degH(x) degH(y) copies of the complete bipartite graph K d
degH (y)

, d
degH (x)

.

If H ′ is not connected, we restrict H ′ to any of its connected component
containing at least one edge. The obtained graph H ′ is d-regular since for every
xi ∈ V (H ′) it holds that degH′ (xi) = degH(x) d

degH(x) = d.

By the construction, for every neighbor v of h(xi) = x in H we have that
|h−1(v) ∩NH′ (xi)| = d

degH(x) . Therefore, h is d
degH(x) -fold between NH′(xi) and

NH(x), i.e. a quasi-covering as required. ��

Kratochv́ıl, Proskurowski, and Telle [13] proved existence of a cover with a special
property, which we also use in our paper.

Proposition 2 ([13]). For every d-regular connected graph H ′, there exists
a d-regular graph A with a specified vertex a, such that any bijective mapping be-
tween NA(a) and NH′(xi) for arbitrary xi ∈ V (H ′) can be extended to a covering
projection g : A → H ′ satisfying g(a) = xi.

We use the Proposition 2 to construct an analogous graph, called multi-quasi-
cover of H as follows:

314 J. Fiala and M. Tesař

Lemma 1. Let H be a connected graph with at least two vertices and let d =
lcmd(H). There exists a d-regular graph A with specified vertex a, such that
for any vertex x ∈ V (H) it holds that any d

degH(x) -fold mapping ϕ : NA(a) →
NH(x) can be extended to a quasi-covering f : A → H, such that f(a) = x.

A
a

H ′

xi

H
xhg

ϕ

ψ

Fig. 3. Construction of multi-quasi-cover A of H

Proof. According to Proposition 1 we first construct a d-regular connected graph
H ′ and a quasi-covering h : H ′ → H . Then we use Proposition 2 for H ′ and
obtain the desired d-regular graph A with a specified vertex a (see Figure 3).

For the given x ∈ V (H) and d
degH(x) -fold mapping ϕ : NA(a) → NH(x) we

choose arbitrarily xi ∈ h−1(x) and determine a bijective mapping ψ : NA(a) →
NH′(xi) such that h◦ψ = ϕ. Such ψ exists since both ϕ and h|NH′(xi) are

d
degH (x) -

fold, hence it suffices to match arbitrarily vertices of ϕ−1(y) and h−1(y)∩NH′(xi)
for each neighbor y of x.

Let g be the extension of ψ according to Proposition 2. Then f = h ◦ g is
a composition of two quasi-coverings, i.e. a quasi-covering as well. Since g|NA(a) =
ψ, we get that f |NA(a) = h ◦ g|NA(a) = h ◦ ψ = ϕ, i.e. f extends ϕ. Finally,
f(a) = h(g(a)) = h(xi) = x as required. ��
We involve arguments already used by Fiala and Paulusma [9].

Let Nd
G(u) be the set of vertices at distance at most d from u in the graph G.

By induction on d one gets:

Observation 1. If f : G → H is locally surjective homomorphism then f is
also a surjective mapping between sets Nd

G(u) and Nd
H(f(u)) for any u ∈ V (G)

and any d.

Definition 1. We say that x is a maximal distance vertex in a connected graph
H, if there exists a vertex z ∈ V (H) such that the distance between x and z
attains the maximum among distances between all possible pairs of vertices in H.
This maximum distance is called the diameter of H, and is denoted by diam(H).

Observation 1 provides the following corollaries:

Corollary 1 ([9]). Let H be a graph and let x be a maximal distance vertex
in H. If G contains H as an induced subgraph such that δH = {x}, then any
locally surjective homomorphism f : G → H has the property that f restricted
to H is an automorphism of H.

Dichotomy of the H-Quasi-Cover Problem 315

Corollary 2. Let H be a graph, x be its maximal distance vertex, and let M be
the set of vertices at distance diam(H) from x. If G contains H as an induced
subgraph such that δH ⊆ M then any locally surjective homomorphism f : G →
H satisfying that f(x) is a maximal distance vertex, has the property that f
restricted to H is an automorphism of H.

Proof. By the choice of x we get that |Ndiam(H)
G (x)| = |Ndiam(H)

H (f(x))| = |VH |.
A surjective mapping between sets of the same size is a bijection.

3 Coloring Gadgets

For the purpose of our NP-hardness reductions we build a specific gadget ac-
cording to the following needs:

Definition 2. Let H be a connected graph and let x be its vertex of degree k ≥ 1.
We say that the graph F = CGH(x,m) with m specified vertices u1, . . . , um

is a coloring gadget for H of size m and for k colors if it has the following
properties:

– F allows at least one quasi-covering f : F → H that maps all specified
vertices ui to x,

– whenever a graph G contains F as an induced subgraph with δF ⊆ {u1, . . . ,
um} and whenever f : G → H is a quasi-covering, then
i) f restricted to F is a quasi-covering projection as well,
ii) degH(f(u1)) = k,
iii) NH(f(ui)) = NH(f(u1)) for each specified vertex ui

In this section we show that a coloring gadget exists for every connected graph
H on at least three vertices.

Lemma 2. Let H be a connected graph on at least three vertices whose all max-
imal distance vertices are of degree one. Then, for any neighbor x of a maximal
distance vertex and any positive integer m the CGH(x,m) exists.

In particular, the above lemma applies on every path or a tree on at least three
vertices.

Proof. Let z1 be a maximal distance vertex in H , let x be its neighbor, and let
y be a vertex at the maximal distance from z1. Let z2, . . . , zt be the neighbors
of x other than z1 that are also at the maximal distance from y (see Figure 4).

We take m+2 copies H1, . . . , Hm+2 of the graph H and merge all copies of y
into a new vertex w. Then, we merge the first m+1 copies of each zi into a new
vertex vi, and obtain the coloring gadget F . For specified vertices u1, . . . , um we
choose the first m copies of x.

A quasi-covering F → H can be obtained if we project each Hi onto H .
It means that to show that F is a coloring gadget we only need to prove the
conditions i), ii), and iii) from the Definition 2. Assume that F is an induced

316 J. Fiala and M. Tesař

F

w
v1

u1

u2

um

Hm+2

H1, . . . , Hm+1

v2

vt

δF

y
z2

H
xz1

zt

Fig. 4. The coloring gadget F for H with all maximal distance vertices of degree one

subgraph of G, such that δF ⊆ {u1, . . . , um} and that f : G → H is a quasi-
covering.

Since Hm+2 is an induced subgraph of G with boundary δHm+2 = {w}, we
apply Corollary 1 and get that f(w) is a maximal distance vertex in H and also
that f |Hm+2 is an isomorphism to H .

We split w back into m+2 vertices w1, . . . , wm+2. Denote the resulting graph
by G′. We also alter f on the new vertices w1, . . . , wm+2, which we map onto
f(w). The resulting mapping is denoted by f ′. Since f(w) is a maximal distance
vertex in H , it has a unique neighbor. Hence f ′ is a 1-fold on each NG′(wi), i.e.
a quasi-covering G′ → H .

We focus on the copy Hm+1 in G′ and apply Corollary 2 with respect to f ′

and obtain that v1, . . . , vt are mapped on maximum distance vertices of H . Since
maximum distance vertices have unique neighbor and f coincides with f ′ on
NG(v1), we get that f(u1) = · · · = f(um) and moreover degH(f(u1)) = degH(x).
This shows that conditions ii) and iii) from the definition of coloring gadget hold.

By the construction of F and by the fact that f(w) and y can be exchanged
by an automorphism of H we get that for each i ∈ {1, . . . ,m} it holds that

|Ndiam(H)−1
G′ (wi)| = |Ndiam(H)−1

H (f(w))|. By Observation 1 we get that both
f ′|Hi and f |Hi are bijections between V (Hi) and V (H). This means that neigh-
bors of ui inside the copy Hi must be mapped to degH(x) distinct neighbors of
f(u1) in H . Hence f |Hi is an isomorphism between Hi and H . Therefore, f |F is
a quasi-covering and the condition i) holds. ��

Lemma 3. Let H be a connected graph with a maximal distance vertex x of de-
gree at least two. For every positive integer m a coloring gadget CGH(x,m)
exists.

Proof. Let k = degH(x) and d = lcmd(H)
k .

To construct F = CGH(x,m) we first take (m+ 1)d mutually disjoint copies
of H and denote them Ht

i with i ∈ {1, . . . ,m+1} and t ∈ {1, . . . , d}. Intuitively,
the symbol xt

i will denote the vertex of Ht
i corresponding to x in H .

Separately we construct a dk-regular multi-quasi-coverA ofH with a specified
vertex a according to Lemma 1. Denote the dk neighbors of a in A by wt

j where
j ∈ {1, . . . , k} and t ∈ {1, . . . , d}. We now remove the vertex a from A to obtain
the graph B.

Dichotomy of the H-Quasi-Cover Problem 317

In the next step we insert into F the disjoint union of m + 1 copies B1, . . . ,
Bm+1 of the graph B (see Figure 5). For every j ∈ {1, . . . , k} and t ∈ {1, . . . , d}
we merge all m+ 1 copies of the vertex wt

j in B1, . . . , Bm+1 into a single vertex
vtj .

We finalize the construction of the graph F by adding edges xt
iv

t
j for all

i ∈ {1, . . . ,m+ 1}, j ∈ {1, . . . , k}, and t ∈ {1, . . . , d}.

x1
1

. . .
x1

m x1
m+1 x2

1

. . .
x2

m+1 xd
1

. . .
xd

m+1

H1
1 H1

m H1
m+1 H2

1 H2
m+1 Hd

1. . .
Hd

m+1

v1
1 v1

k v2
1 v2

k vd
1 vd

k.

. . .

. . .

F

δF

B1 Bm+1

Fig. 5. Example of the construction of CGH(x,m) for maximal vertex x of degree
k ≥ 2

For the m specified vertices u1, . . . , um of the coloring gadget we use the
vertices x1

1, . . . , x
1
m.

To show that F quasi-covers H we define a quasi-covering f : F → H as
follows:

– on every Ht
i let f act as an isomorphism to H , such that f(xt

i) = x,
– let f act as a bijection between vt1, v

t
2, . . . , v

t
k and NH(x) for each t,

– since the so far defined mapping f is d-fold between each δBi and NH(x)
(and all the neighbors of vertices in δBi out of Bi are mapped to x) we may
extend it to a quasi-covering inside each subgraph Bi according to Lemma 1.

Note that the quasi-covering fA : A → H obtained by Lemma 1 is dk
degH(y) -

fold between NA(w
t
j) and NH(y), where y = fA(w

t
j). Hence, the mapping f is

(m+1)dk
degH (y) -fold between NA(v

t
j) and NH(y), i.e. a quasi-covering.

Assume now that F is an induced subgraph of G that allows a quasi-covering
f : G → H and such that δF ⊆ {x1

1, . . . , x
1
m}. We show that conditions i), ii) and

iii) from the Definition 2 hold. Since x is a maximal distance vertex, Corollary 1
yields that f restricted to each H1

i is an isomorphism of H1
i and H . Hence

degH(f(x1
i)) = degH(x) = k for each i ∈ {1, . . . ,m}, i.e. ii) holds.

Let x′ = f(x1
m+1). Observe that the vertex x1

m+1 has also exactly k neigh-
bors outside H1

m+1 (in contrast with vertices x1
1, . . . , x

1
m that might have further

neighbors outside F), the vertices v11 , . . . , v
1
k must be mapped bijectively onto

the k neighbors of x′. Hence NH(f(x1
i)) = NH(x′) for each i, i.e. iii) holds.

Consequently, the restriction of f to F is 2-fold on the vertices x1
1, . . . , x

1
m, i.e.

a quasi-covering and i) holds as well. This argument concludes the proof that F
with specified vertices u1, . . . , um is a coloring gadget for H . ��

318 J. Fiala and M. Tesař

4 The NP-Hardness Reduction

Recall that for a fixed graph H the problem H-QCover is defined as follows:

Problem: H-QCover

Input: A graph G
Query: Does G allow a quasi-covering to H?

Note that for all graphs H the problem H-QCover belongs to the class NP,
since the properties of a quasi-covering can be verified in polynomial time.

In order to prove Theorem 1 we distinguish several cases according to the
structure of the graph H . We first show an NP-hardness reduction from the
following well-known NP-complete problem [10, problem LO6]:

Problem: 2-in-4 SAT

Input: A formula Φ in CNF where every clause contains exactly four literals
Query: Could Φ be satisfied such that every clause contains exactly two posi-
tively valued literals?

Since 2-in-4 SAT is the only version of SAT problem we use, we reserve the
word satisfiable for formulas which are 2-in-4 satisfiable.

Lemma 4. Let H be a connected graph on at least three vertices. If H has
a maximal distance vertex x ∈ V (H) of degree two or if all maximal vertices
of H are of degree one and some maximal vertex has neighbor x of degree two,
then the H-QCover problem is NP-complete.

Proof. Let Φ be an instance of 2-in-4 SAT. Denote the clauses of Φ by C1, . . . , Cm

and its variables by v1, . . . , vn. We construct a graph GΦ,H as follows:
We start with a disjoint union of a copy of the coloring gadget CGH(x, n)

with specified vertices u1, u2, . . . , un and a copy of CGH(x, 2m) with specified
w1, w

′
1, w2, w

′
2, . . . , wm, w′m. The existence of these gadgets is guaranteed by Lem-

mata 2 and 3. Then we include extra 2n new vertices p1, q1, p2, q2, . . . , pn, qn and
connect each vertex ui with vertices pi and qi.

If any variable vi is one of the positive literals of Cj , then we join wj with pi
and also w′j with qi . As a counterpart, if ¬vi ∈ Cj then we insert edges wjqi
and w′jpi. This step concludes the construction of GΦ,H (see Figure 6).

Claim. If GΦ,H is an induced subgraph of a quasi-cover G of H such that
δ(GΦ,H) ⊆ {p1, q1, . . . , pn, qn}, then Φ is satisfiable.

Suppose that f : G → H is a quasi-covering. The properties of both coloring
gadgets yield that the images of both sets of specified vertices are in H of degree
2 — the same as deg(x). Denote the two neighbors of f(u1) by y and z.

Then we know that for all i ∈ {1, . . . , n} it holds that {f(pi), f(qi)} = {y, z}.
Consequently, the vertices y and z are the two neighbors of each f(wj). We
assign vi = true if and only if f(pi) = y (thus vi = false ⇐⇒ f(pi) = z).

As f restricted to each coloring gadget is a quasi-covering, it must be a quasi-
covering also on the subgraph remaining after the removal of both gadgets except

Dichotomy of the H-Quasi-Cover Problem 319

u1 u2 u3 un

p1 q1 p2 q2 p3 q3 pn qn

w1 w′
1 wj w′

j wm w′
m CG(x, 2m)

CG(x, n)

P2t−1

......

. . .

.

Fig. 6. An example of the construction of the graph G for H = Pt. The edges depicted
are related with the clause Cj = ¬v1 ∨ v2 ∨ ¬v3 ∨ vn. The graph GΦ,Pt differs from G
only by the presence of the paths P2t−1.

their boundaries. Therefore, two neighbors of each wj are mapped on y and two
of them on z. Since these neighbors correspond to literals in Cj , we know that
there are exactly two positive literals in every clause Cj . Therefore, we have
obtained the desired satisfying assignment and proved the claim.

Now we resume the proof of Lemma 4 and extend GΦ,H into a graph G such
that G quasi-covers H if Φ is satisfiable.

According to Lemma 1 we construct a 2d-regular multi-quasi-cover of H with

a specified vertex a and d = lcmd(H)
2 . Let B be the graph resulting by the deletion

of a from the multi-quasi-cover.
We start the construction of G with d copies of GΦ,H . To obtain G, we then

perform the following steps for each i ∈ {1, . . . , n}:

– First we determine oi to be the number of occurrences of vi in Φ.
– Then we insert in the so far constructed graph exactly oi + 1 copies of B.
– Now we identify oi+2 sets, each of size 2d: the first set consists of the copies

of vertices pi and qi while the others are formed by neighbors of the deleted
vertex a in the oi + 1 copies of B.

– On this set system we build 2d disjoint transversals1 and merge vertices of
each transversal into a single vertex. (See Figure 7) In other words, we merge
2d (oi + 2)-tuples of distinct vertices into 2d single vertices, such that the
boundary of each GΦ,H and of each B is preserved.

Suppose now that Φ is satisfiable. Let y and z be the neighbors of x. We define
f : V (G) → V (H) as follows:

– f(ui) = f(wj) = f(w′j) = x for all i and j in all d copies.
– if vi = true then f(pi) = y and f(ni) = z, otherwise f(pi) = z and f(ni) = y;
– extend the so far defined f to all copies of B by Lemma 1;
– extend f to a quasi-covering of all coloring gadgets of all GΦ,H by Lemma 2

or 3.

1 By a transversal of a set system S we mean the range of an injective map ϕ : S →⋃
S such that ∀S ∈ S : ϕ(S) ∈ S.

320 J. Fiala and M. Tesař

BB B

d copies of GΦ,H

p1 q1 pn qn

pi qi

GΦ,H GΦ,H GΦ,H

oi + 1 copies of B

Fig. 7. The result of the i-th iteration, when d = 3 and when variable vi has two
occurrences

The obtained mapping is (oi + 1)-fold on each N(pi) and N(qi), hence a quasi-
covering. ��

Note that for H = Pt the above construction yields d = 1 and B = P2t−1. Hence
the graph G consists from a single copy of GΦ,H , where each pair of vertices pi
and qi is joined by oi + 1 paths of length 2t− 1, as depicted in Figure 6.

Lemma 5. Let H be a connected graph on at least three vertices. If H has
a maximal distance vertex x ∈ V (H) of degree k > 2 or if all maximal vertices
of H are of degree one and some maximal vertex has neighbor x of degree k > 2,
then the H-QCover problem is NP-complete.

We skip the proof of Lemma 5 due to the space limitation.
Lemmas 4 and 5 constitute the NP-hardness part of the proof of Theorem 1.

The polynomial part is straightforward: only edgeless graphs quasi-cover P1;
while a graph quasi-covers P2 if and only if it is bipartite without isolated ver-
tices. Both these classes could be recognized in linear time.

5 Conclusion

We have proved the dichotomy for the computational complexity of H-QCover

problem when the graph H is connected. This can be combined with a con-
struction of Fiala and Paulusma [9, Proposition 5] to get a classification also for
disconnected simple graphs:

Corollary 3. The H-QCover problem is polynomially solvable if either H is
edgeless or if H is bipartite and at least one of its components is isomorphic
to K2. Otherwise, it is NP-complete.

Dichotomy of the H-Quasi-Cover Problem 321

The construction provides a quasi-cover of a chosen component, while it for-
bids all locally surjective homomorphisms to other components. Note that the
other constructions presented in that paper do not provide quasi-covers, so our
classification of connected graphs was a key ingredient for Corollary 3.

The classification is open for multigraphs with possible semi-edges; these ap-
pear naturally in the topological models.

References

1. Abello, J., Fellows, M.R., Stillwell, J.C.: On the complexity and combinatorics of
covering finite complexes. Australian Journal of Combinatorics 4, 103–112 (1991)

2. B́ılka, O., Lidický, B., Tesař, M.: Locally injective homomorphism to the simple
Weight graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648,
pp. 471–482. Springer, Heidelberg (2011)

3. Bodlaender, H.L.: The classification of coverings of processor networks. Journal of
Parallel Distributed Computing 6, 166–182 (1989)

4. Fiala, J., Kratochv́ıl, J.: Complexity of partial covers of graphs. In: Eades, P.,
Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 537–549. Springer, Heidelberg
(2001)

5. Fiala, J., Kratochv́ıl, J.: Partial covers of graphs. Discussiones Mathematicae
Graph Theory 22, 89–99 (2002)

6. Fiala, J., Kratochv́ıl, J., Pór, A.: On the computational complexity of partial covers
of Theta graphs. Discrete Applied Mathematics 156, 1143–1149 (2008)

7. Fiala, J., Kratochv́ıl, J.: Locally injective graph homomorphism: Lists guarantee
dichotomy. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 15–26. Springer,
Heidelberg (2006)

8. Fiala, J., Kratochv́ıl, J.: Locally constrained graph homomorphisms — structure,
complexity, and applications. Computer Science Review 2(2), 97–111 (2008)

9. Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment
problem. Theoretical Computer Science 349(1), 67–81 (2005)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co. Ltd. (1979)

11. Hell, P., Nešetřil, J.: On the complexity of H-colouring. Journal of Combinatorial
Theory, Series B 48, 92–110 (1990)

12. Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Comput-
ing 10(4), 718–720 (1981)

13. Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. Journal of
Combinatorial Theory B 71, 1–16 (1997)

14. Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Covering directed multigraphs I. col-
ored directed multigraphs. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335,
pp. 242–257. Springer, Heidelberg (1997)

15. Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Complexity of graph covering prob-
lems. Nordic Journal of Computing 5, 173–195 (1998)

16. Kristiansen, P., Telle, J.A.: Generalized H-coloring of graphs. In: Lee, D.T., Teng,
S.-H. (eds.) ISAAC2000. LNCS, vol. 1969, pp. 456–466. Springer, Heidelberg (2000)

17. Lidický, B., Tesař, M.: Complexity of Locally Injective Homomorphism to the
Theta Graphs. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2010. LNCS,
vol. 6460, pp. 326–336. Springer, Heidelberg (2011)

18. Matoušek, J., Nešetřil, J.: Invitation to Discrete Mathematics. Oxford University
Press (2008)

QCSP on Partially Reflexive Cycles –

The Wavy Line of Tractability

Florent Madelaine1 and Barnaby Martin2,�

1 Clermont Université, Université d’Auvergne, LIMOS, BP 10448, F-63000
Clermont-Ferrand, France

2 CNRS / LIX UMR 7161, École Polytechnique, Palaiseau, France

Abstract. We study the (non-uniform) quantified constraint satisfac-
tion problem QCSP(H) as H ranges over partially reflexive cycles. We
obtain a complexity-theoretic dichotomy: QCSP(H) is either in NL or
is NP-hard. The separating conditions are somewhat esoteric hence the
epithet “wavy line of tractability” (see Figure 5 at end).

1 Introduction

The quantified constraint satisfaction problem QCSP(B), for a fixed template
(structure) B, is a popular generalisation of the constraint satisfaction problem
CSP(B). In the latter, one asks if a primitive positive sentence (the existential
quantification of a conjunction of atoms) Φ is true on B, while in the former this
sentence may be positive Horn (where universal quantification is also permitted).
Much of the theoretical research into CSPs is in respect of a large complexity
classification project – it is conjectured that CSP(B) is always either in P or NP-
complete [11]. This dichotomy conjecture remains unsettled, although dichotomy
is now known on substantial classes (e.g. structures of size ≤ 3 [20,3] and smooth
digraphs [12,1]). Various methods, combinatorial (graph-theoretic), logical and
universal-algebraic have been brought to bear on this classification project, with
many remarkable consequences. A conjectured delineation for the dichotomy was
given in the algebraic language in [4].

Complexity classifications for QCSPs appear to be harder than for CSPs.
Indeed, a classification for QCSPs will give a fortiori a classification for CSPs (if
B 1 K1 is the disjoint union of B with an isolated element, then QCSP(B 1 K1)
and CSP(B) are polynomially equivalent). Just as CSP(B) is always in NP, so
QCSP(B) is always in Pspace. However, no overarching polychotomy has been
conjectured for the complexities of QCSP(B), as B ranges over finite structures,
but the only known complexities are P, NP-complete and Pspace-complete (see
[2,17] for some trichotomies). It seems plausible that these complexities are the
only ones that can be so obtained (for more in this see [6]).

In this paper we study the complexity of QCSP(H), where H is a partially
reflexive cycle. In this respect, our paper is a companion to the similar classifica-
tion for partially reflexive forests in [16]. We derive a classification between those

� The author is supported by ANR Blanc International ALCOCLAN.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 322–333, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

QCSP on Partially Reflexive Cycles 323

cases that are in NL and those that are NP-hard. For some of the NP-hard cases
we are able to demonstrate Pspace-completeness. The dichotomy, as depicted
in Figure 5 at the end, is quite esoteric and deviates somewhat from similar
classifications (e.g. for retraction as given in [10]). To our minds, this makes it
interesting in its own right. Some of our hardness proofs come from judicious
amendments to the techniques used in [16]. Several others use different elaborate
encodings of retraction problems, known to be hard from [10]. All but one of our
NL-membership results follow from a majority polymorphism in an equivalent
template (indeed – the so-called Q-core of [14]), as they did in [10]. However,
C0111 is special. It has no QCSP-equivalent that admits a majority (indeed, it
omits majority and is a Q-core), so we have to give a specialised algorithm, based
on ideas from [13], to demonstrate that QCSP(C0111) is in L. Indeed, and in light
of the observations in [14], this is the principal news from the partially reflexive
cycles classification that removes it from being simply a sequel to partially re-
flexive forests: for a partially reflexive forest H, either the Q-core of H admits a
majority polymorphism and QCSP(H) is in NL, or QCSP(C) is NP-hard. The
same can not be said for partially reflexive cycles, due to the odd case of C0111.

This paper is organised as follows. After the preliminaries, we address small
cycles in Section 3. Then we deal with reflexive cycles, cycles whose loops induce
a path and cycles with disconnected loops in Sections 4, 5 and 6, respectively.
Finally we give our classification in Section 7 and our conclusions in Section 8.
For reasons of space, many proofs are omitted.

2 Definitions and Preliminaries

Let [n] := {1, . . . , n}. A graph G has vertex set G, of cardinality |G|, and edge set
E(G). For a sequence α ∈ {0, 1}∗, of length |α|, let Pα be the undirected path on
|α| vertices such that the ith vertex has a loop iff the ith entry of α is 1 (we may
say that the path P is of the form α). We will usually envisage the domain of
a path with n vertices to be [n], where the vertices appear in the natural order.
Similarly, for α ∈ {0, 1}∗, let Cα be the |α| cycle with domain [n] and edge set
{(i, j) : |j− i| = 1 mod n}∪ {(i, i) : α[i] = 1} (note |n− 1| = |1−n| = 1 mod n).
If α and α′ are sequences in {0, 1}n such that α[i] = α′[i+1 mod n] then Cα and
Cα′ are isomorphic.

A partially reflexive cycle is one that may include some self-loops. For such
an m-cycle C, whose vertices we will imagine to be v1, . . . , vm in their natural
mod m adjacencies, let [vi ⇒ vj] be shorthand for a conjunction specifying a
path, whichever is the fastest way mod m, from vi to vj . For example, if m = 5,
then 1.) [v1 ⇒ v3] is E(v1, v2) ∧ E(v2, v3), 2.) [v3 ⇒ v1] is E(v3, v2) ∧ E(v2, v1),
and 3.) [v4 ⇒ v1] is E(v4, v5) ∧ E(v5, v1). We ask the reader to endure the
following relaxation of this notation; [vi, vi+1 ⇒ vj] indicates an edge from vi to
vi+1 then a path to vj (which may not be the same as [vi ⇒ vj] as the latter
may take the other path around the cycle). Finally, let Ref(vi, . . . , vj) indicate
E(vi, vi)∧. . .∧E(vj , vj), whichever is the quickest way around the cycle mod m.
All graphs in this paper are undirected, so edge statements of the form E(x, y)
should be read as asserting E(x, y) ∧ E(y, x).

324 F. Madelaine and B. Martin

The problems CSP(T) and QCSP(T) each take as input a sentence Φ, and
ask whether this sentence is true on T . For the former, the sentence involves the
existential quantification of a conjunction of atoms – primitive positive logic. For
the latter, the sentence involves the arbitrary quantification of a conjunction of
atoms – positive Horn logic. By convention equalities are permitted in both
of these, but these may be propagated out by substitution in all but trivial
degenerate cases. The retraction problem Ret(B) takes as input some G, with
H an induced substructure of G, and asks whether there is a homomorphism
h : G → H such that h is the identity on H. It is important that the copy of H
is specified in G; it can be that H appears twice as an induced substructure and
there is a retraction from one of these instances but not to the other. The problem
Ret(H) is easily seen to be logspace equivalent with the problem CSP(Hc), where
Hc is H expanded with all constants (one identifies all elements assigned to the
same constant and enforces the structure H on those constants).

The direct product G × H of two graphs G and H has vertex set {(x, y) :
x ∈ G, y ∈ H} and edge set {((x, u), (y, v)) : x, y ∈ G, u, v ∈ H, (x, y) ∈
E(G), (u, v) ∈ E(H)}. Direct products are (up to isomorphism) associative and
commutative. The kth power Gk of a graph G is G × . . . × G (k times). A ho-
momorphism from a graph G to a graph H is a function h : G → H such that,
if (x, y) ∈ E(G), then (h(x), h(y)) ∈ E(G). A k-ary polymorphism of a graph is
a homomorphism from Gk to G. A ternary function f : G3 → G is designated a
majority operation if f(x, x, y) = f(x, y, x) = f(y, x, x) = x, for all x, y ∈ G.

A positive Horn sentence Φ in the language of graphs induces naturally a graph
GΦ whose vertices are the variables of Φ and whose edges are the atoms of Φ. In
the case of primitive positive Φ one would call GΦ the canonical database and Φ
its canonical query. With positive Horn Φ there is additional extra structure and
one may talk of a vertex-variable as being existential/ universal and as coming
before/ after (earlier/ later), in line with the quantifier block and its order in
Φ. Variables in the same quantifier block will not need their orders considered
(there is commutativity within a block anyway). A typical reduction from a
retraction problem Ret(C), where |C| = m, builds a positive Horn Φ sentence
involving variables v1, . . . , vm where we want GΦ restricted to {v1, . . . , vm} (itself
a copy of C) to map automorphically to C. Typically, we can force this with some
evaluation of the variables (some of which might be universally quantified). The
other valuations are degenerate and we must ensure at least that they map GΦ

restricted to {v1, . . . , vm} homomorphically to C.

3 Small Cycles

The classification for QCSP for cycles of length ≤ 4 is slightly esoteric, although
it does match the analogous classification for Retraction (the former is a di-
chotomy between NL and Pspace-complete; the latter is a dichotomy between P
and NP-complete). The following has appeared in [15], where it was given as an
application of counting quantifiers in QCSPs. We review it now because we will
need to generalise it later in Section 4.

QCSP on Partially Reflexive Cycles 325

Proposition 1 ([15]). QCSP(C1111) is Pspace-complete.

Proof. We will reduce from the problem QCSP(K4) (known to be Pspace-
complete from, e.g., [2]). We will borrow heavily from the reduction of CSP(K4)
to Ret(C1111) in [9]. We introduce the following shorthands (x′, x′′ must appear
nowhere else in φ, which may contain more free variables than just x).

∃≥1x φ(x) := ∃x φ(x)
∃≥2x φ(x) := ∀x′∃x E(x′, x) ∧ φ(x)
∃≥3x φ(x) := ∀x′′∀x′∃x E(x′′, x) ∧ E(x′, x) ∧ φ(x)

On C1111, it is easy to verify that, for each i ∈ [4], ∃≥ix φ(x) holds iff there exist
at least i elements x satisfying φ. Thus our borrowing the notation of counting
quantifiers is justified.

We now reduce an instance Φ of QCSP(K4) to an instance Ψ of QCSP(C1111).
We begin with a cycle C1111 on vertices 1, 2, 3 and 4, which we realise through

their canonical query (without quantification) as θ(v1, v2, v3, v4) := E(v1, v2) ∧
E(v2, v3) ∧ E(v3, v4) ∧ E(v4, v1) (recall that the canonical query is in fact the
reflexive closure of this, but this will not be important in this case or many future
cases – when it is important it will be stated explicitly). If Φ contains an atom
E(x, y), then this gives rise to a series of atoms in Ψ as dictated by the gadget
in Figure 1 (for each atom we add many new vertex-variables, corresponding to
the vertices in the gadget that are not x, y, 1, 2, 3, 4). These atoms can be seen
to join up with the atoms of θ as in the right end of the figure. Build Ψ ′′′ from Φ
by this process and conjunction with θ. Then make Ψ ′′ from Ψ ′′′ by existentially
quantifying all of the variables other than those associated to atoms of Φ (x, y in
the figure) and v1, v2, v3, v4 (1, . . . , 4 in the figure). Now, we build Ψ ′ from Ψ ′′, by
copying the quantifier order of Φ on the outside of the existential quantifiers that
we already have. Thus Ψ ′(v1, v2, v3, v4) is a positive Horn formula with precisely
four free variables.

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��

����

����

�
�
�
�

��

����

����

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��y

1

3

4

2

x

Fig. 1. Edge gadget in reduction from QCSP(K4) to QCSP(C1111)

It is not hard to see that when v1, v2, v3, v4 are evaluated as (an automorphism
of) 1, 2, 3, 4, then we have a faithful simulation of QCSP(K4). This is because
x and y, as in the gadget drawn, may evaluate precisely to distinct vertices on
C1111. Finally, we build Ψ := ∃v1∃≥2v2∃≥3v3∃≥2v4 Ψ ′(v1, v2, v3, v4). It is not
hard to see that Ψ forces on some evaluation of v1, v2, v3, v4 that these map
isomorphically to 1, 2, 3, 4 in C1111. Further, a rudimentary case analysis shows

326 F. Madelaine and B. Martin

us that when they do not, we can still evaluate the remainder of Ψ ′, if we could
have done when they did. In fact, if v1, v2, v3, v4 are not mapped isomorphically
(but still homomorphically, of course) to 1, 2, 3, 4 then we can extend each of the
edge gadgets to homomorphism under all maps of vertices x and y to 1, 2, 3, 4
(not just ones in which x and y are evaluated differently).

Proposition 2. QCSP(C0111) is in L.

Proof. Recall C0111 has vertices {1, 2, 3, 4} in cyclic order and 1 is the only non-
loop. Consider an input Φ for QCSP(C0111), w.l.o.g. without any equalities, and
its evaluation on C0111 as a game on Φ between Prover, playing (evaluating on
C0111) existential variables, and Adversary, playing universal variables. Adver-
sary never gains by playing 3, as any existential edge witness to anything from
{4, 1, 2} is already an edge-witness to 3. That is, if E(x, 3) then already each of
E(x, 4), E(x, 1) and E(x, 2). Similarly, Prover never gains by playing 1. Thus, Φ
is true on C0111 iff it is true with all universal variables relativised to {4, 1, 2}
and all existential variables relativised to {2, 3, 4}. (This intuition is formalised
in the notion of U -X-surjective hyper-endomorphism in [13]. What we are say-

ing is that
1 13
2 2
3 3
4 4

is a surjective hyper-endomorphism of C0111.) Henceforth, we will

make this assumption of relativisation in our inputs.
Given an input Φ we will describe a procedure to establish whether it is true

on C0111 based around a list of forbidden subinstances.

(i.) An edge E(x, y) in GΦ with the later of x and y being universal.
(ii.) A 3-star E(x1, y), E(x2, y), E(x3, y) where x1, x2, x3 are universal vari-

ables coming before y existential.
(iii.) A path y1, . . . , ym of existential variables, where: both y1 and ym have

edges to two earlier universal variables, and y2, . . . , ym−1 have edges each
to one earlier universal variable.

(iv.) A path y1, . . . , ym of existential variables, where y1 comes before ym,
and y1 has an edge to an earlier universal variable. ym has edges to two
earlier universal variables at least one of which comes after y1. Finally,
y2, . . . , ym−1 each have edges to an earlier universal variable.

These cases are illustrated in Figure 2. Using the celebrated result of [19] it
can be seen that one may recognise in logspace whether or not Φ contains any
of these forbidden subinstances. It is not hard to see that if Φ contains such
a subinstance then Φ is false on C0111 (the universal variables adjacent and
before ym can be played as either 1, 2 or 1, 4 to force ym to be either 2 or 4).
We now claim all other instances Φ are true on C0111 and we demonstrate this
by giving a winning strategy for Prover on such an instance. Owing to Case
(i) being omitted, Adversary has no trivial win. Prover will now always play 3
if she can. Owing to the omission of Case (ii), Prover never has to answer a
variable adjacent to more than two elements. It can be seen that there are few
circumstances in which she can not play 3. Indeed, the only one is if she is forced
at some point to play 2 or 4 as a neighbour to Adversary’s having played 1. In

QCSP on Partially Reflexive Cycles 327

this case, Adversary can force this response to be propagated as in the chain of
cases (iii) and (iv), but because these cases are forbidden, Adversary will never
succeed here in winning the game.

�� ��

��

�
�
�
�

����

����

�
�
�
�

��
��
��
��

�
�
�
�

����

����

��

����

��

�
�
�
�

��

��

��

��

����

��
��
��
��

����

�
�
�
�

��

�
�
�
�

����������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

...
∀ ∃

∃∀∀ ∀ ∀∃

(i.)

(ii.) (iii.) (iv.)

...

∃

Fig. 2. Cases from proof of Proposition 2

4 The Reflexive Cycles

We will use similar edge gadgets to those of Figure 1 to prove NP-hardness of
QCSP(C1m), for m ≥ 4. If m ≥ 4 is even, then the edge gadget Em consists of
m copies of C1m where each copy – with vertices 1, . . . ,m, is connected to its
successor by edges joining vertex k with vertices k and k + 1 (mod m). In the
first of the copies, the vertex m

2 + 1 is labelled y and a reflexive path of length
m
2 − 1 is added to the vertex labelled 1, which culminates in a vertex labelled x.
The last of the copies of C1m retains the vertex labelling 1, . . . ,m – we consider
the other vertices (except for x and y) to become unlabelled. Of course, E4 is
already drawn in Figure 1. The left end of E6 is drawn in Figure 3 (to the right).
If m ≥ 4 is odd, then the edge gadget Em is drawn in a similar manner, except
vertex m+1

2 +1 becomes y and the reflexive path of length m−3
2 that culminates

in x at one end and at the other end a vertex that makes a triangle with vertices
1 and 2, respectively. The left end of E5 is drawn in Figure 3 (to the left). These
gadgets are borrowed from [9] and have the property that when the right-hand
cycle C1m is evaluated automorphically to itself then the rest of the cycles are

����
��
��
��

����

��

��

�
�
�
�

��
��
��
��

x

y

����

��

��
��
��
��
�
�
�
�

��

��

��������x

y

Fig. 3. Left ends of the edge gadgets in reductions from QCSP(K5) to QCSP(C15) and
QCSP(K6) to QCSP(C16). In the former case, the full gadget contains a chain of five
copies of C15 ; in the latter case it is a chain of six copies of C16 .

328 F. Madelaine and B. Martin

also evaluated automorphically (but may twist 1
m th each turn – this is why we

have m copies; m is a minimum number, more copies would still work). Finally,
in the left-hand cycle it can be seen that x can be evaluated anywhere except y.

Just as in Proposition 1, we want to try to force vertex-variables v1, . . . , vm,
corresponding to 1, . . . ,m, to be evaluated (up to isomorphism) around C1m .

Proposition 3. QCSP(C1m), for any m ≥ 4 is NP-hard.

5 Cycles Whose Loops Induce a Path

We begin by recalling the result for QCSP(P101) from [16], on which our proof
for Propositions 5 and Corollary 1 will be based. In this proof we introduce the
notions of pattern and ∀-selector that will recur in the sequel.

��

��

��
��
��
��

�
�
�
�

������ ��

��������

�� ��

��

���� ����

��

�
�
�
�

�� �
�
�
�

�
�
�
�
�
�
�
�

�� ��

�
�
�
�
�
�
�
�

��
��
��
��

��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

������

���� ����������������������������

���������� ����������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
�� +

⊥

l1

l2

l3
v1 v2

∀

Fig. 4. Variable and clause gadgets in reduction to QCSP(P101)

Proposition 4. QCSP(P101) is Pspace-complete.

Proof. For hardness, we reduce from quantified not-all-equal 3-satisfiability, whose
Pspace-completeness is well known [18], where we will ask for the extra condition
that no clause has three universal variables (of course, any such instance would
be trivially false). From an instance Φ of QNAESAT we will build an instance
Ψ of QCSP(P101) such that Φ is in QNAE3SAT iff Ψ in QCSP(P101). We will
consider the quantifier-free part of Ψ , itself a conjunction of atoms, as a graph,
and use the language of homomorphisms.

Our reduction involves a graph GΦ, whose vertices will give rise to the variables
of Ψ , and whose edges will give rise to the atoms listed in the quantifier-free part
of Ψ . Most of these variables will be existentially quantified, but a small handful
will be universally quantified. GΦ consists of two reflexive paths, labelled + and
⊥ which contain inbetween them gadgets for the clauses and variables of Φ. We
will be able to assume that the paths + and ⊥ are evaluated to vertices 1 and 3
in P101, respectively (the two ends of P101). The gadgets are drawn in Figure 4.
The pattern is the path P101, that forms the edges of the diamonds in the clause
gadgets as well as the tops and bottoms of the variable gadgets. The ∀-selector
is the path P10, which travels between the universal variable node v2 and the
labelled vertex ∀. For this proof in full, please see the long version of this paper
or the arxiv version of [16].

QCSP on Partially Reflexive Cycles 329

Proposition 5. Let C0d1e be a cycle in which e > d+3 (d odd) or e > d+2 (d
even). Then QCSP(C0d1e) is Pspace-complete.

Proof. The reduction is similar to that employed for Proposition 4. We use the
pattern P10d1 and ∀-selector P

0�
e
2
�1. The key part to the reduction is how we

get v� and v⊥ to evaluate suitably. Let x1, . . . , y1, . . . , z1, . . . be variables not
appearing in Ψ ′(v�, v⊥) (cf. proof of Proposition 4). In the following, interpret
� e−d−5

2 � to be 0, if e−d−5
2 < 0. For d odd, set Ψ := ∀x1∃x2, . . . , x d+1

2

∃x d+3
2

, . . . , x d+3
2 +
 e−d−5

2 �, ∃v�∀y1∃y2, . . . , y d+1
2
∃y d+3

2
, . . . , y d+3

2 +
 e−d−5
2 �, ∃v⊥

∃z1, . . . , zd
[x1 ⇒ x d+3

2 +
 e−d−5
2 �, v�] ∧ [y1 ⇒ y d+3

2 +
 e−d−5
2 �, v⊥] ∧ [v�, z1, . . . , zd, v⊥]∧

Ref(x d+3
2

, . . . , x d+3
2 +
 e−d−5

2 �) ∧ Ref(y d+3
2

, . . . , y d+3
2 +
 e−d−5

2 �) ∧ Ψ ′(v�, v⊥)

For d even, set Ψ := ∀x1∃x2, . . . , x d
2

∃x d+2
2

, . . . , x d
2+

e−d−5
2 �, ∃v�∀y1∃y2, . . . , y d

2
∃y d+2

2
, . . . , y d

2+

e−d−5

2 �, ∃v⊥
∃z1, . . . , zd
[x1 ⇒ x d

2+

e−d−5

2 �, v�] ∧ [y1 ⇒ y d
2+

e−d−5
2 �, v⊥] ∧ [v�, z1, . . . , zd, v⊥]∧

Ref(x d+2
2

, . . . , x d
2+

e−d−5
2 �) ∧ Ref(y d+2

2
, . . . , y d

2+

e−d−5

2 �) ∧ Ψ ′(v�, v⊥)

Note how the previous proof breaks down in boundary cases, for example on the
cycle C0213 .

The following proofs make use of reductions from Ret(C), where |C| = m.
It is ultimately intended that the variables v1, . . . , vm in the created instance
map automorphically to the cycle. The cycle will be found when the universally
quantified v1 is mapped to a non-looped vertex at maximal distance from the
looped vertices (sometimes this is unique, other times there are two). We then
require that the universally quantified x1 be mapped to a neighbour of v1 at
maximal distance from the loops (given v1’s evaluation, this will either be unique
or there will be two). All other maps of v1 and x1 lead to degenerate cases.

Proposition 6. Let C be an odd m-cycle which contains an induced P11100 (or
is C0213). Then QCSP(C) is NP-hard.

Proposition 7. Let C be an even m-cycle which contains an induced P11100.
Then QCSP(C) is NP-hard.

We note that the previous two propositions do not quite use the same techniques
as one another. All cases of Proposition 5 involving more than one non-loop are
weakly subsumed by Propositions 6 and 7 in the sense that Pspace-completeness
only becomes NP-hardness.

It is interesting to note that the Proposition 7 breaks down on even cycles
with two consecutive loops only. It is no longer possible to ensure to encircle the
cycle. For these cases we will need yet another specialised construction.

Proposition 8. For m ≥ 6, let C be an even m-cycle which contains only two
consecutive loops. Then QCSP(C) is NP-hard.

330 F. Madelaine and B. Martin

6 Cycles in Which the Loops Induce a Disconnected
Graph

Let DC := {{�d1

2 �, . . . , �dm

2 �}} be the multiset (of two or more elements), where
d1, . . . , dm are the maximal non-looped induced sections (paths) of a cycle C in
which the loops induce a disconnected graph. E.g. a single non-loop between two
loops contributes a value �1/2� = 1 to DC . We need to split into three cases.

Proposition 9. Let C be a partially reflexive m-cycle in which the loops in-
duce a disconnected graph. If DC contains a unique maximal element �d

2�, then
QCSP(C) is Pspace-complete.

Proposition 10. Let C be a partially reflexive m-cycle in which the loops induce
a disconnected graph. If DC contains only one value, then QCSP(C) is Pspace-
complete.

Corollary 1. Let C be a partially reflexive m-cycle in which the loops induce a
disconnected graph. Then QCSP(C) is Pspace-complete.

7 Classification

Theorem 1. Let m = d + e ≥ 5. Then QCSP(C0d1e) is in NL if I.) m is odd
and e = 1 or 2, or II.) m is even and e = 0 or 1. Otherwise, QCSP(C0d1e) is
NP-hard.

Proof. Pspace-hardness for irreflexive odd cycles is well-known (see [17]). Hard-
ness for cycles with disconnected loops follows from Corollary 1. Otherwise, for
most cycles hardness follows from Propositions 6 and 7. For reflexive cycles see
Proposition 3 and for cycles with a single non-loop see Proposition 5. Finally, the
outstanding cases of even cycles with two loops are taken care of in Proposition 8.

Now we address the NL cases. For even cycles with no loops, we are equivalent
to QCSP(K2) (in NL – see [17]). For even cycles C02i+11, QCSP(C02i+11) is equiv-
alent to QCSP(P0i+11) (in NL – see [16]). This is because there are surjective
homomorphisms from both (P0i+11)

2 to C02i+11 and C02i+11 to P0i+11 (see [7]). For
odd cycles, there are surjective homomorphisms from (P0i1)

2 to C02i1 and from
(P0i1)

2 to C02i−111. Thus, QCSP(C02i1) is equivalent to both QCSP(C02i−111) and
QCSP(P0i1) and the result follows from [16].

Theorem 2. For C a partially reflexive cycle, either QCSP(C) is in NL or it is
NP-hard.

Proof. Owing to Theorem 1, it remains only to consider partially reflexive cycles
on four or fewer vertices.

Firstly, we consider NL-membership. Each of C := C001, C011, C111, C0000, C0001
and C0011 admits a majority polymorphism. It follows form [5] that QCSP(C)
reduces to the verification of a polynomial number of instances of CSP(Cc), each
of which is in NL by [8]. Finally, the case C0111 is taken care of in Proposition 2.

For hardness, it is well-known that quantified 3-colouring QCSP(K3) is Pspace-
complete [18]. And the like result for C1111 appears as Proposition 1.

QCSP on Partially Reflexive Cycles 331

�
�
�
�

���� ����

��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

����

�
�
�
�
��
��
��
��

�
�
�
�

���� ��

��
��
��
��

��
��
��
��

��

��
��
��
��

�
�
�
�

������
��
��
��

��

��
��
��
��

�
�
�
�

���
�
�
�

�
�
�
�

�� ����

�
�
�
�

��
��
��
��

��
��
��
��

�� ����

�
�
�
�

��
��
��
��

��

��
��
��
��

�
�
�
�

������
��
��
��

��
��
��
��
�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

������

����

���
�
�
�

����

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��

��

������

��

������

����

���
�
�
�

����

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

������

����

������
��
��
��

��

��
�� ��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
�� ����

�
�
�
�

��
��
��
��

��
��
��
��
�
�
�
�

��
��
��
��

���� ����

����
��
��
��

��
��
��
��

��
��
��
��

����
���� ��

����

�
�
�
�

�
�
�
�

��
��
��
��

���� ����

������

��
��
��
��

��
��
��
��

��
�� ����

�
�
�
�

��
��
��
��

��
��
��
��
�
�
�
�

����
�
�
�
�

�
�
�
�

������

�
�
�
�

��
��
��
��

�
�
�
�

�� ��

������

�
�
�
�

�
�
�
�

�
�
�
�

����

����

�
�
�
�

��

��

��

��
��
��
��

��

����

����

��

��

��

��

��
��
��
��

�
�
�
�

����

����

��
��
��
��

��

����

��
��
��
��

��
��
��
��

�
�
�
�

��

��

�
�
�
�

��

����

����

��
��
��
��

�
�
�
�

����

����

�
�
�
�

��

��

��

�
�
�
�

�
�
�
�

��

��

��
��
��
��

��

����

��
��
��
��

�
�
�
�

�
�
�
�

��

��

�
�
�
�

��

����

��
��
��
��

�
�
�
�

��

��

��

��

��

����

����

��
��
��
��

�
�
�
�

����

����

�
�
�
�

��

��

��
��
��
��

�
�
�
�

Intractable!Tractable!

Fig. 5. The wavy line of tractability

8 Conclusion

We have given a systematic classification for the QCSP of partially reflexive
cycles. Many of the tractable cases can be explained by the notion of Q-core –
a minimal equivalent QCSP template (see [14]) – and this is done implicitly in
Theorem 1. All NP-hard cases we have seen in this paper have templates that
are already Q-cores, with the sole exception of C0101, whose Q-core is P101. By
contrast, all of the tractable cases are not Q-cores, except C0011 and C0111.

Since finding an algorithm for QCSP(C0111) we became aware of a polymor-
phism enjoyed by this structure. C0111 has a ternary polymorphism f so that
there is c ∈ C0111 such that each of the three binary functions f(c, u, v), f(u, c, v)
and f(u, v, c) is surjective. The code from Figure 6 will verify such a polymor-
phism and is intended to run on the excellent program of Miklós Maróti1. The

naming of the vertices has been altered according to the bijection
1 3
2 0
3 1
4 4

(vertices are

numbered from 0 for the computer). If follows from [5] that C0111 is 2-collapsible,
and hence QCSP(C0111) may be placed in NL by other means.

arity 3; size 4; idempotent; preserves 01 10 12 21 23 32 30 03 00 11 22;

value 302=0; value 320=2; value 311=1; value 123=1; value 223=2;

value 003=0; value 032=0; value 030=1; value 230=2

Fig. 6. Code for Maróti’s program (semicolons indicate new line)

1 See: http://www.math.u-szeged.hu∼maroti/applets/GraphPoly.html

332 F. Madelaine and B. Martin

We would like to improve the lower bound from NP-hardness to Pspace-
hardness in the cases of Propositions 3, 6, 7 and 8. This might be quite messy in
the last three cases, involving careful consideration of the hardness proof for the
retraction problem. For the reflexive cycles, though, it just requires more careful
analysis of the degenerate cases. This is because we may only have a homomor-
phic image under f of the cycle for v1, . . . , vm, but the universal variables may
be evaluated outside of the image of f({v1, . . . , vm}). We will require something
of the following form (Em is defined at the beginning of Section 4).

Conjecture 1. Let f be a function from {1, . . . ,m} in Em to C1m that is a non-
surjective homomorphism. Let fij , for some i, j ∈ {1, . . . ,m}, be the partial
function that extends f from {1, . . . ,m, x, y} in Em to C1m , by mapping x 0→ i
and y 0→ j. Then fij can be extended to a homomorphism from Em to C1m .

The proof of this seems to be rather technical. For those who doubt it, let us
remind ourselves that the length of the chain in Em may be any fixed function
of m, and the reduction of Propositions 1 and 3 will still work. The conjecture
is surely easier to prove if we make the chains much longer (say exponential in
m).

Finally, we conjecture that none of the NL cases are NL-hard, and that most
likely our dichotomy can be perfected to L/ Pspace-complete.

Acknowledgements. The authors thank the referees and are grateful to St.
Catherine.

References

1. Barto, L., Kozik, M., Niven, T.: The CSP dichotomy holds for digraphs with no
sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell).
SIAM Journal on Computing 38(5), 1782–1802 (2009)

2. Börner, F., Bulatov, A.A., Chen, H., Jeavons, P., Krokhin, A.A.: The complexity
of constraint satisfaction games and qcsp. Inf. Comput. 207(9), 923–944 (2009)

3. Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a
3-element set. J. ACM 53(1), 66–120 (2006)

4. Bulatov, A., Krokhin, A., Jeavons, P.G.: Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing 34, 720–742 (2005)

5. Chen, H.: The complexity of quantified constraint satisfaction: Collapsibility, sink
algebras, and the three-element case. SIAM J. Comput. 37(5), 1674–1701 (2008)

6. Chen, H. Meditations on quantified constraint satisfaction. CoRR abs/1201.6306
(2012), Appeared in Festschrift for Dexter Kozen 60th.

7. Chen, H., Madelaine, F., Martin, B.: Quantified constraints and containment prob-
lems. In: 23rd Annual IEEE Symposium on Logic in Computer Science, pp. 317–328
(2008)

8. Dalmau, V., Krokhin, A.A.: Majority constraints have bounded pathwidth duality.
Eur. J. Comb. 29(4), 821–837 (2008)

9. Feder, T., Hell, P.: List homomorphisms to reflexive graphs. J. Comb. Theory, Ser.
B 72(2), 236–250 (1998)

QCSP on Partially Reflexive Cycles 333

10. Feder, T., Hell, P., Jonsson, P., Krokhin, A.A., Nordh, G.: Retractions to pseudo-
forests. SIAM J. Discrete Math. 24(1), 101–112 (2010)

11. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory. SIAM Journal
on Computing 28, 57–104 (1999)

12. Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B 48, 92–110 (1990)

13. Madelaine, F., Martin, B.: A tetrachotomy for positive equality-free logic. In: Pro-
ceedings of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS
2011 (2011)

14. Madelaine, F., Martin, B.: Containment, equivalence and coreness from CSP to
QCSP and beyond. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 480–495.
Springer, Heidelberg (2012)

15. Madelaine, F., Martin, B., Stacho, J.: Constraint satisfaction with counting quan-
tifiers. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012.
LNCS, vol. 7353, pp. 253–265. Springer, Heidelberg (2012)

16. Martin, B.: QCSP on partially reflexive forests. In: Lee, J. (ed.) CP 2011. LNCS,
vol. 6876, pp. 546–560. Springer, Heidelberg (2011)

17. Martin, B., Madelaine, F.: Towards a trichotomy for quantified H-coloring. In:
Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988,
pp. 342–352. Springer, Heidelberg (2006)

18. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
19. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–24 (2008)
20. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of

STOC 1978, pp. 216–226 (1978)

Quantum Alternation�

Abuzer Yakaryılmaz

University of Latvia, Faculty of Computing, Raina bulv. 19, R̄ıga, LV-1586, Latvia
abuzer@lu.lv

Abstract. We introduce the concept of quantum alternation as a gen-
eralization of quantum nondeterminism. We define the first quantum
alternating Turing machine (qATM) by augmenting alternating Turing
machine (ATM) with a fixed-size quantum register. We focus on space-
bounded computation, and obtain the following surprising result: One-
way qATMs with constant-space (one-way alternating quantum finite
automata (1AQFAs)) are Turing-equivalent. Then, we introduce strong
version of qATM: The qATM that must halt in every computation path.
We show that strong qATMs (similar to private ATMs) can simulate
deterministic space with exponentially less space. This leads to shifting
the deterministic space hierarchy exactly by one level. We also focus on
realtime versions of 1AQFAs (rtAQFAs) and obtain many interesting
results: (i) any language recognized by a rtAQFA is in quadratic deter-
ministic space, (ii) two-alternation is better than one-alternation, (iii)
two-alternation is sufficient to recognize a NP-complete language and so
any language in NP can be recognized by a poly-time log-space qATM
with two alternations, (iv) three-alternation is sufficient to recognize a
language that is complete for the second level of the polynomial hierarchy
and so any language in the second level of the polynomial hierarchy can
be recognized by a poly-time log-space qATM with three alternations.

1 Introduction

Anne Condon, in her famous PhD thesis [6], introduced a general computational
model, i.e. probabilistic game automaton, that unifies many important compu-
tational models and concepts: Alternation of Chandra, Kozen, and Stockmeyer
[4], private alternation of Reif [15], Arthur-Merlin games of Babai [2], interac-
tive proof systems of Goldwasser, Micali, and Rackoff [8], game against nature of
Papadimitriou [12], etc. In this framework, Arthur-Merlin (AM) proof systems
and alternation are the “weakest” ones since both are the games with complete
information. Recently, Yakaryılmaz [18] showed that if the game automaton is
augmented with a fixed-size quantum register, then the obtained AM proof sys-
tems, called qAM, becomes Turing equivalent by using constant space and, in
the case of strong soundness, i.e. the nonmembers are always rejected with high
probability, they seem more powerful than private-coin interactive proof systems.
Parallel to this work, we examine alternation counterpart of qAM in this paper.

� This work was partially supported by FP7 FET-Open project QCS. A preliminary
report on some contents of this paper was [19].

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 334–346, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Quantum Alternation 335

Alternation was introduced by Chandra and Stockmeyer [5] and Kozen [9]
as a generalization of nondeterminism. It was shown that alternation shifts the
deterministic hierarchy L ⊆ P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE by exactly
one level [4]. On the other hand, the class of languages recognized by alternating
finite automata is still the regular languages [4]. Reif [15] introduced private
alternation by assuming that universal player can hide some information from the
existential player, and showed that private alternation shifts the deterministic
space hierarchy L � PSPACE � EXPSPACE by exactly one level.

We introduce quantum alternation for the first time, namely q-alternation.
The main result is that one-way q-alternating finite automata can recognize
any Turing-recognizable language. In the classical case, the class of languages
recognized by any space-bounded (private) ATMs is a proper subset of decidable
languages [15]. Since q-alternating machines may not halt the computation in
every path, we also introduce the strong version of q-alternation by forbidding
infinite computations. Then, we show that strong q-alternation, similar to private
alternation, shifts the deterministic space hierarchy by exactly one level.

Since 1AQFAs are too powerful, we also focus on realtime versions of one-way
AQFAs (rtAQFA) and then obtain many interesting results: (i) any language
recognized by a rtAQFA is in quadratic deterministic space, (ii) two-alternation
is better than one-alternation, (iii) two-alternation is sufficient to recognize a
NP-complete language and so any language in NP can be recognized by a poly-
time log-space qATM with two alternations, (iv) there-alternation is sufficient to
recognize a language which is complete for second level polynomial hierarchy and
so any language in the second level of polynomial hierarchy can be recognized
by a poly-time log-space qATM with three alternations.

We refer the reader to [1] and [11] for some references on computational com-
plexity and quantum computation, respectively. We refer the reader to [18] for
a related work. Some of our proofs are based on the ones given in [18]. We will
define our model based on Turing machine and we assume the reader familiar
with the basics of alternating Turing machines (ATM). After giving the formal
definitions of models in Section 2, we present all the results in Section 3.

2 Definition of q-Alternation

As mentioned earlier, alternation and AM systems are games with complete
information. Moreover, they could be obviously related to each other, e.g. alter-
nation can be “inherited” from AM systems as follows: The verifier is replaced
by a universal player and all provers are represented by an existential player.
(We refer the reader to Condon [6] for the technical details.)

In this section, we introduce the notion of quantum alternation for the first
time. We define quantum alternation similar to qAM system [18]: Its quantum
part is only a fixed-size quantum register. But, different from qAM systems, this
register can be accessible by both players (the universal and existential states).
We call the model q-alternation due to its “very” limited quantum part, and
give the definition based on ATM: q-alternating Turing Machine (qATM).

336 A. Yakaryılmaz

The most general quantum operator is a superoperator, which generalizes stochastic
and unitary operators and also includes measurement. Formally, a superoperator E
is composed by a finite number of operation elements, E = {E1, . . . , Ek}, satisfying

k∑

i=1

E†
iEi = I, (1)

where k ∈ Z+ and the indices are the measurement outcomes. When a superoper-
ator, say E , is applied to the quantum register in state |ψ〉, i.e. E(|ψ〉), we obtain

the measurement outcome i with probability pi = 〈ψ̃i|ψ̃i〉, where |ψ̃i〉, the uncondi-

tional state vector, is calculated as |ψ̃i〉 = Ei|ψ〉 and 1 ≤ i ≤ k. (Note that using
unconditional state vector simplifies calculations in many cases.) If the outcome i

is observed (pi > 0), the new state of the system is obtained by normalizing |ψ̃i〉,
which is |ψi〉 = |ψ̃i〉√

pi
. Moreover, the quantum register can be initialized to a prede-

fined quantum state by a special operator called initialize operator. In this paper,
the entries of quantum operators are defined by rational numbers.

Fig. 1. The details of superoperators

A qATM is an ATM augmented with a fixed-size quantum register, based
on which existential and universal branches are determined. Any configuration
of a qATM can be represented by a pair (c, |ψ〉), where c represent the classi-
cal configuration of the machine and |ψ〉 is the state of quantum register. Let
{c1, . . . , ckc} be the transitions determined by the classical transition function
of the machine with respect to the classical state and the symbol(s) under the
tape head(s) in configuration c, where kc is the total number branches. In each
step, the machine implements one quantum and one classical transitions as de-
scribed below. The machine applies a superoperator (see Figure 1) determined
by the classical state and the symbol(s) under the tape head(s) in configuration
c, Ec = {Ec,1, . . . , Ec,kc}, to the register, i.e.

|ψi〉 =
|ψ̃i〉√
pi

if pi �= 0, where pi = 〈ψ̃i|ψ̃i〉, |ψ̃i〉 = Ec,i|ψ〉, and 1 ≤ i ≤ kc,

and then the following transition(s) is (are) implemented:

(c, |ψ〉) → {(ci, |ψi〉) | pi > 0, 1 ≤ i ≤ kc}.

Note that, the transitions having zero probability (pi = 0) are not implemented.
(In terms of two-person games [6], we can say that a player who makes the uni-
versal or existential choices uses a quantum register to make its choices, therefore
any choice with zero probability can never be a part of this player’s strategy. We
can also formalize this issue by assuming the players having capability of postse-
lection on the outcomes of the computation. The details will be given in the full
version this paper.) The computation starts when the machine is in the initial
classical configuration and the initial quantum state. The computation is ter-
minated with the decision of “accepting” (“rejection”) if the machine enters an

Quantum Alternation 337

accepting (rejecting) configuration. The accepting criteria of qATM is the same
as ATM. For any given input, we have a computation tree representing all moves
of the machine. The input is accepted if and only if there exists a finite accepting
subtree1 for a nondeterministic strategy in this computation tree. If we remove
the work tape of a qATM, and restrict the input head to one-way, we obtain
a one-way q-alternating finite automaton (1QAFA). As a further restriction, if
the tape head is allowed to be stationary on the same tape square at most a
fixed number of steps, then we obtain a realtime q-alternating finite automaton
(rtQAFA). We can also limit the number of alternation between universal and
existential states. More specifically, Σk (resp., Πk) represents that there can be
at most k − 1 alternation starting with existential (resp., universal) one, where
k ≥ 1. In any model (and also any complexity class), we can replace the “A” that
stands for alternation with Σk or Πk to represent such a restriction. rtΣ1QFA
is also called realtime nondeterministic quantum finite automaton (rtNQFA).
Note that rtNQFAs were originally defined as realtime QFAs with one-sided
unbounded error setting [20]. But, both models can simulate each other.

3 Main Results

We present our results in five subsections. We begin with a basic algorithm in
order to give some intuitions to the reader. As can be seen from this algorithm,
due to negative transitions, some predefined branches can disappear during the
computation. This phenomena was shown to increase (or seemingly increase)
in the computational power of nondeterministic quantum models [7,17,21,20].
In this paper, we show that this phenomena actually can lead to significantly
increase in the computational power of quantum models if universal branching
is allowed as well (even the quantum resource is very limited).

3.1 A rtΣ2QFA Example

We give a rtΣ2QFA for nonstochastic language NH = {axbay1bay2b · · · aytb |
x, t, y1, . . . , yt ∈ Z+ and ∃k (1 ≤ k ≤ t), x =

∑k
i=1 yi} [10], based on which

we will also show a separation result soon.

Theorem 1. NH can be recognized by a rtΣ2QFA.

Proof. Let A be the rtΣ2QFA. We assume that the input is of the form

axbay1bay2b · · ·aytb | x, t, y1, . . . , yt ∈ Z+ for some t > 1. (2)

It is rejected deterministically in all branches, otherwise. The quantum register
is set to (1 0)T at the beginning. A makes an existential move for each a but

1 Each leaf of an accepting subtree is an accepting leaf, a leaf in which the decision of
“accepting” is given.

338 A. Yakaryılmaz

uses different superoperators before and after the first b. Before reading the first
b, A applies the following superoperator for each a:

{
Ec =

1

2

(
1 0
1 1

)
, Er1 =

1

2

(
1 −1
1 0

)
, Er2 =

1

2

(
0 1
0 1

)}
.

After the first b, A applies the following superoperator for each a:

{
Ec =

1

2

(
1 0

−1 1

)
, Er1 =

1

2

(
1 1
1 0

)
, Er2 =

1

2

(
0 1
0 1

)}
.

In both cases, the computation continues whenever outcome “c” is observed and
it is halted with decision of “rejection”, otherwise.A does not apply any operator
to the quantum register when reading the first b. Thus, after reading the first

b, the state of the quantum register becomes
(
1
2

)x (
1
x

)
in the only non-halting

branch of A. This quantum state changes for each new a as follows:

(
1

2

)i (
1
j

)
→

(
1

2

)i+1 (
1

j − 1

)
, where i ∈ Z+ and j ∈ Z.

On each b except the first one, A firstly makes an existential move based on the
following superoperator

{
Ec =

1

2

(
1 0
0 1

)
, Er1 =

1

2

(
1 0
0 1

)
, Er2 =

1

2

(
1 0
0 1

)
, Eu =

1

2

(
1 0
0 1

)}

such that the computation continues as usual if the outcome “c” is observed, it
is halted with the decision of “rejection” if the outcome “r1” or “r2” is observed,
and a universal transition is implemented based on the following superoperator
if the outcome “u” is observed:

{
Ea =

(
1 0
0 0

)
, Er =

(
0 0
0 1

)}

such that the computation is halted with the decision of “accepting” (“rejec-
tion”) if the outcome “a” (“r”) is observed. (Note that the branch leading to
“accepting” continues until to the right end-marker and the input is accepted
only if the input is of the form as given in Equation (2).) If the second compo-
nent of the quantum state is zero, then this universal transition has only one
child which leads to “accepting”. The other branch is not implemented since the
resulting quantum state is zero vector. Therefore, if the number of a’s before
the first b equals to the number of other a’s until the current b, this univer-
sal transition returns “accept”, and it returns “reject”, otherwise. That is, for
the members, one of the existential path ends with the decision of “accepting”
and so the input is accepted by A; and, for the non-members, each existential
path before the right end-marker ends with the decision of “rejection”, and so
the input can be rejected by A by also giving the decision of “rejection” in the
existential path surviving until the right end-marker.

Quantum Alternation 339

3.2 1AQFAs Are Turing-Equivalent

In [18], the simulation of a given DTM by a constant-space qAM proof system
was given. We give our result based on this simulation after making some certain
modifications. Therefore, we first review this simulation:

Let D be the simulated DTM and x be the given input. In an infinite loop, the
verifier requests the computation ofD on x from the prover, i.e. w = c1$$c2$$ · · · ,
where c1 is the initial configuration and ci+1 is the legal successor of ci for
i ≥ 1. But, against the cheating provers, the verifier checks the correctness
of w. The verifier can check the first configuration by reading the input once.
Let next(ci) be the legal successor of ci. To check whether ci+1 is the legal
successor of ci, the verifier encodes next(ci) and ci+1 into the amplitudes of two
states on the quantum register, and then compares them by subtracting these
two amplitudes and rejects the input with the result amplitude. (Note that the
rejecting probability is the square of the result amplitude.) So, if next(ci) �=
ci+1, the input is rejected with some probability, and it is rejected with zero
probability, otherwise. If w leads to an accepting (rejecting) computation, the
verifier also accepts (rejects) the input at the end. Each encoding operation is
implemented with some superoperators having more than one outcome such that
the encoding is succeed with some probabilities in one branch and a new round
is initiated (by returning to the beginning of the protocol) with the remaining
probabilities in all the other branches. Therefore, after processing a symbol from
w, the protocol continues only with some small probabilities. The analysis of a
single round is as follows:

– For the members, after communicating with an honest prover, the verifier
accepts the input with a non-zero probability and restart the protocol with
the remaining probability; and,

– For the non-members, (i) if the prover lies about w, then the verifier rejects
the input with some probability by detecting a defect on w, (ii) if the prover
is honest and w is infinite, the verifier never makes a decision and a new
round is initiated with probability 1, and (iii) the verifier rejects the input
with some probability, otherwise.

Theorem 2. Any Turing-recognizable language can be recognized by a 1AQFA.

Proof. Let L be a Turing-recognizable language, D be a DTM recognizing L,
and (P, V) be the constant-space qAM system for L as described above, where
P is an honest prover and V is the verifier. Since the input head is used only
at the beginning of each round to check whether the prover sends the valid
initial configuration, V never needs to move its input head to the left in a single
round. We define a new one-way finite state verifier V ′ based on V . The only
difference between V and V ′ is that when the outcome originally corresponding
to “restarting a new round” is observed, V ′ terminates the computation with
decision of “accepting” instead of initiating a new round. Thus, V ′ executes only
a single round (and so V ′ never needs to move its input head to the left).

340 A. Yakaryılmaz

The analysis of (P, V ′) is as follows. Let x be an input string. If x ∈ L, the
computation is terminated in every branch, and the input is accepted by V ′ with
probability 1 by the help of P . If x /∈ L, there are two cases depending on the
prover (P ∗) strategy and also the behaviour of D on x: (1) the computation may
run forever in some branches, and, (2) the computation is terminated in every
branch and the input is rejected by V ′ with some non-zero probability.

Now, based on V ′, we can easily construct a 1AQFA A recognizing L. The
universal states of A simulate V ′ and the existential states of A simulate the
communications with all possible provers. If x ∈ L, there exists a finite accepting
subtree whose existential moves correspond to the communication with P . If
x /∈ L, the finite subtree(s) can only be possible in the second case given above.
Obviously, at least one leaf of such a subtree ends with the decision of rejection.
Therefore, there is no finite accepting subtree for the nonmembers.

Corollary 1. For any space bound s(n), 1AQFAs are strictly more powerful
than any s(n) space-bounded private ATM.

Proof. This follows from Theorem 2 and the fact that the class of languages
recognized by any space-bounded private ATM is a proper subset of decidable
languages [15].

Theorem 3. Any language recognized by a qATM is Turing-recognizable.

Proof. Since the entries of any operation element are rational numbers, any
space-bounded qATM can be simulated by a ATM (and so by a DTM) in a
straightforward way.

Corollary 2. 1QFAs are Turing-equivalent.

3.3 Strong q-Alternation

Due to Corollary 2, we cannot mention a space hierarchy for q-alternation. More-
over, the computation of qATMs may not halt in some paths. Therefore, we de-
fine a restricted version of q-alternation: strong q-alternation. Any q-alternating
machine is a strong one if it halts on every computational path. We will denote
the related space-bounded complexity classes by qASPACE(·): qASPACE(s(n)) is
the class of languages recognized by s(n) space-bounded strong qATMs. qAL and
qAPSPACE are strong q-alternating counterparts of AL and APSPACE, respec-
tively. We show that strong q-alternation (similar to private alternation [15])
shifts the deterministic space hierarchy by exactly one level.

Theorem 4. For any space-constructible s(n) ∈ Ω(log(s(n))),

DSPACE(2O(s(n))) = qASPACE(s(n)).

Quantum Alternation 341

Proof. From Lemma 3 (see below) and Savitch’s theorem [16], we can deduce
that

qASPACE(s(n)) ⊆ NSPACE(2O(s(n))) ⊆ DSPACE(2O(s(n))).

From Lemma 4 (see below) and Chandra and Stockmeyer [4], we can deduce
that

DSPACE(2O(s(n))) ⊆ ATIME(2O(s(n))) ⊆ qASPACE(s(n)).

Corollary 3. L � qAL = PSPACE � qAPSPACE = EXPSPACE.

In the remaining part, we give some technical lemmas used in the proof of The-
orem 4. We begin with showing an upper bound on the running time of a space-
bounded strong qATM.

Lemma 1. For any s(n) ∈ Ω(log(n)), the running time of a s(n) space-bounded
strong qATM can be at most 2O(s(n)).

Proof. See Appendix D of [19].

Lemma 2. Any t(n) time-bounded qATM can be exactly simulated by a O(t2(n))
time-bounded ATM.

Proof. A qATM can be exactly simulated by an ATM by tracing the content
of the quantum register. The simulation of the classical part of a t(n) time-
bounded given qATM can be implemented in O(t(n)) steps. After each quantum
operation, the precisions of amplitudes on the quantum register increase by a
constant. And so, the time needed to trace it can also increase by a constant.
Therefore, the ATM can use O(1) + O(2) + · · · + O(t(n)) = O(t2(n)) steps to
trace the state of the quantum register. Therefore, the overall runtime of the
ATM is O(t2(n)).

Thus, due to Lemma 1, we can also provide a deterministic space simulation of
a given space-bounded strong qATM by exponential blow-up.

Lemma 3. For any space-constructible s(n) ∈ Ω(log(n)), a given s(n) space-
bounded strong qATM can be simulated by a 2O(s(n)) space-bounded DTM.

Proof. Due to Lemma 1, the length of any computation path of a given s(n)
space-bounded strong qATM can be at most 2c1s(|x|) for a suitable constant c1.
Then, due to Lemma 2, it can be simulated by a 2O(s(n)) time-bounded ATM
which can be simulated by a 2O(s(n)) space-bounded DTM [5].

Now, we show that the bound given in Lemma 3 is actually tight.

342 A. Yakaryılmaz

Lemma 4. For any log-space constructible t(n) ∈ Ω(n), if a language is recog-
nized by an ATM running in time t(n), then there exists a O(log(t(n))) space-
bounded strong qATM recognizing the same language.

Proof. By modifying the proof of Theorem 2, we can show that 1AQFAs can
also simulate the computation of an ATM on a given input. The computation of
an ATM on a given input can be represented by a tree. A 1AQFA can simulate
each path of such a tree as given in the proof of Theorem 2 by providing the
related existential and universal choices on the tree. The 1AQFA can also relate
these paths conveniently to each other.

The length of any configuration of a t(n) time-bounded ATM can be at most
O(t(n)), and so the length of the computation of a path in the tree can be at
most O(t2(n)). So, if the 1AQFA can have O(log(n)) space, then it can simulate
the computation tree of a given t(n) time-bounded ATM by not allowing the
length of any path to exceed O(t2(n)). Thus, we can obtain a O(log(t(n))) space-
bounded strong qATM simulating the t(n) time-bounded ATM.

3.4 QFA Counterpart of Polynomial Hierarchy

We denote the class of languages recognized by rtAQFA as AQAL (alternating
quantum automaton languages). We begin with an upper bound for AQAL.

Theorem 5. AQAL ⊆ ATIME(n2) = DSPACE(n2).

Proof. We can follow the results due to Lemma 2 since any rtAQFA is a linear-
time qATM.

We introduce a QFA counterpart of the polynomial hierarchy, PH = ∪i≥0ΣkP:
For any k ≥ 0, ΣkQAL and ΠkQAL are the class of languages recognized by
ΣkQFAs and ΠkQFAs, respectively.

Σ1QAL has already been defined as NQAL (nondeterministic quantum au-
tomaton languages) and it was shown to be equivalent to exclusive stochastic
languages (S�=) [20], which is a proper superset of regular languages (REG) [14].
Moreover, rtΣ0QFAs and rtΠ0QFAs are one-way deterministic finite automata.
Then we have the following relations for the initial levels:

– Σ0QAL = Π0QAL = REG
– Σ1QAL �= Π1QAL.

Since NH is a nonstochastic language [10] and S�=(Σ1QAL) is a proper subset
of stochastic languages [14], we can say that NH /∈ Σ1QAL and NH /∈ Π1QAL.
Therefore, we can separate the second level from the first level by Theorem 1.

Corollary 4. Σ1QAL � Σ2QAL and Π1QAL � Π2QAL.

Quantum Alternation 343

We continue with a rtΣ2QFA algorithm for the well-known NP-complete lan-
guage SUBSETSUM, which is the collection of all strings of the form S$a1$ · · · an
such that S and the ai’s are numbers in binary (1 ≤ i ≤ n), and there exists a
set I ⊆ {1, . . . , n} satisfying

∑
i∈I ai = S, where n > 0.

Theorem 6. SUBSETSUM ∈ Σ2QAL.

Proof. For SUBSETSUM, Yakaryılmaz presented a constant-space qAM system in
[18]. By modifying this protocol, we can also give a rtΣ2QFAs, say A. We can
assume the input to be of the form S#a1# · · ·#an#, where S and the ai’s are
numbers in binary (1 ≤ i ≤ n), and n > 0. Otherwise, the input is rejected
deterministically in all branches.

The initial quantum state is (1 0 0)T . A encodes S into the amplitude of
a state on the quantum register. We can use the following two superoperators
called E0 and E1 for this purpose where Ej is applied when j ∈ {0, 1} is read and
the computation continues (is terminated with the decision of “rejection”) when
the outcome “c” (“r1” or “r2”) is observed.

E0 =

⎧⎨⎩Ec =
1

3

⎛⎝1 0 0
0 2 0
0 0 1

⎞⎠ , Er1 =
1

3

⎛⎝2 0 −2
2 0 2
0 2 0

⎞⎠ , Er2 =
1

3

⎛⎝0 1 0
0 0 0
0 0 0

⎞⎠⎫⎬⎭
E1 =

⎧⎨⎩Ec =
1

3

⎛⎝1 0 0
1 2 0
0 0 1

⎞⎠ , Er1 =
1

3

⎛⎝2 −1 0
1 0 2
1 0 −2

⎞⎠ , Er2 =
1

3

⎛⎝1 0 0
0 2 0
0 0 0

⎞⎠⎫⎬⎭
Thus, S is encoded into the amplitudes of the second state, i.e. after reading S,
the quantum state becomes 3−|S|(1 S 0)T on the non-halting path. After that, for
each block of ai#, A nondeterministically splits into two non-halting branches:
It does nothing on the quantum register in the first branch, and it encodes ai into
the amplitudes of the third state and then subtract it from the amplitudes of the
second state in the second branch. Let P be the set of all subsets of {1, . . . , n}
and, for the subset p ∈ P , Tp be the summation of all aj ’s, where j ∈ p. At the end
of the computation, A has 2n non-halting branches. The branch corresponding
to the subset p ∈ P has the quantum state cp(1 (S−Tp) 0)T , where cp depends
on the lengths of aj ’s (j ∈ p). Note that, if the input is a member, then S − Tp

is equal to 0 for some p, and it is nonzero for any p, otherwise. On the right
end-marker, A applies the following superoperator when it is an universal state
such that the input is accepted (rejected) if the outcome “a” (“r”) is observed.

E$ =

⎧⎨⎩Ea =

⎛⎝1 0 0
0 0 0
0 0 1

⎞⎠ , Er =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠⎫⎬⎭ .

344 A. Yakaryılmaz

This transition leads to “accepting” only if the second entry of the quantum
state is equal to 0. Otherwise, the outcome “r” is always observed with some
nonzero probability, and so it leads to “rejection”. Therefore, only the members
are accepted by A.

Now, we give a rtΣ3QFA algorithm for a Σ2P-complete (under log-space reduc-
tion) language [3]: GENERALIZED-SUBSETSUM = {u#v#t | (∃x)(∀y)[ux+vy �= t]},
where u and v are integer vectors, t is an integer, and x and y are binary vectors
of the same length as u and v, respectively.

Theorem 7. GENERALIZED-SUBSETSUM ∈ Σ3QAL.

Proof. We present a rtΣ3QFA, say A, for GENERALIZED-SUBSETSUM similar to
the rtΣ2QFA for SUBSETSUM given above. A nondeterministically selects some
entries of u and then universally selects some entries of v. Let x (y) represent the
nondeterministic (universal) selection. For each (x, y) pair, A encodes ux+vy−t
into the amplitudes of a state on the quantum register. It is not hard to show
that a quantum register with 3 states is sufficient (see the proof of Theorem 6).
Thus, the quantum state of the (x, y)-branch can be as c(x,y)(1 (ux+vy−t) 0)T ,
where c(x,y) is the coefficient depending on (x, y). On the right end-marker, A
applies the following superoperator when it is an existential state such that the
input is rejected (accepted) if the outcome “r” (“a”) is observed.

E$ =

⎧⎨⎩Er =

⎛⎝1 0 0
0 0 0
0 0 1

⎞⎠ , Ea =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠⎫⎬⎭ .

This transition leads to “accepting” only if the second entry of the quantum
state is not equal to 0. Otherwise, only the outcome “r” is observed with some
nonzero probability, and so it leads to “rejection”. Therefore, for the members,
for some x, (ux+ vy− t) is non-zero for all y, and each universal branches ends
with the decision of “accepting”. That is, all members are accepted by A. For
the nonmembers, for any x, there exists a y such that (ux+ vy − t) is zero. So,
for any x, some universal branches end with the decision of “rejection”. That is,
none of the nonmembers can be accepted.

3.5 Log-Space q-Alternation Counterpart of Polynomial Hierarchy

We have already known that qAL = PSPACE. In this section, we focus on the
classes of languages recognized by limited alternation of log-space strong qATMs.
We begin with an upper bound for each level.

Theorem 8. qΣiL ⊆ ΣiP and qΠiL ⊆ ΠiP for each i ≥ 0.

Quantum Alternation 345

Proof. The proof is similar to the proof of Lemma 2. The computation of a log-
space qΣiTM can be simulated by a poly-time ΣiTM, i.e. the precision on the
quantum register can be at most polynomial since any log-space strong qATM
must halt in polynomial time.

By using Theorems 6 and 7, we can also give a lower bound for the second and
third level.

Theorem 9. NP ⊆ qΣ2L and Σ2P ⊆ qΣ3L.

Proof. Since any language in NP, say L, is log-space reducible to SUBSETSUM [13],
we can design a log-space qΣ2TM for L as follows: The qΣ2TM can implement
a log-space reduction from L to SUBSETSUM and parallelly runs the rtΣ2QFA
given in the proof of Theorem 6 on the output string. The qΣ2TM follows the
decisions of the rtΣ2QFA. The proof for the second relation is the same.

We left open whether such a relation exists also for the other levels.

Acknowledgements. We would like to thank Andris Ambainis and A. C. Cem
Say for their many helpful comments on some contents of this paper. We are
grateful to the anonymous reviewers.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press (2009)

2. Babai, L.: Trading group theory for randomness. In: STOC 1985: Proceedings of
the 17th Annual ACM Symposium on Theory of Computing, pp. 421–429 (1985)

3. Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W., Ryttere, W.: On the
complexity of pattern matching for highly compressed two-dimensional texts. Jour-
nal of Computer and System Sciences 65(2), 332–350 (2002)

4. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the
ACM 28(1), 114–133 (1981)

5. Chandra, A.K., Stockmeyer, L.J.: Alternation. In: FOCS 1976: Proceedings of the
17th IEEE Symposium on Foundations of Computer Science, pp. 98–108 (1976)

6. Condon, A.: Computational Models of Games. MIT Press (1989)
7. Fenner, S., Green, F., Homer, S., Puim, R.: Quantum NP is hard for PH. In: Sixth

Italian Conference on Theoretical Computer Science, pp. 241–252. World Scientific,
Singapore (1998)

8. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

9. Kozen, D.C.: On parallelism in Turing machines. In: FOCS 1976: Proceedings of
the 17th IEEE Symposium on Foundations of Computer Science, pp. 89–97 (1976)

10. Nasu, M., Honda, N.: A context-free language which is not acceptable by a prob-
abilistic automaton. Information and Control 18(3), 233–236 (1971)

11. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

12. Papadimitriou, C.H.: Games against nature. Journal of Computer and System
Sciences 31(2), 288–301 (1985)

346 A. Yakaryılmaz

13. Papadimitriou, C.H.: Computational Complexity. Addison Wesley (1994)
14. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)
15. Reif, J.H.: The complexity of two-player games of incomplete information. Journal

of Computer and System Sciences 29(2), 274–301 (1984)
16. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-

plexities. Journal of Computer and System Sciences 4(2), 177–192 (1970)
17. Watrous, J.: Space-bounded quantum complexity. Journal of Computer and System

Sciences 59(2), 281–326 (1999)
18. Yakaryılmaz, A.: Public-qubits versus private-coins. Tech. Rep. ECCC:TR12–130

(2012), http://eccc.hpi-web.de/report/2012/130/
19. Yakaryılmaz, A.: Turing-equivalent automata using a fixed-size quantum memory.

Tech. Rep. arXiv:1205.5395v1 (2012)
20. Yakaryılmaz, A., Say, A.C.C.: Languages recognized by nondeterministic quan-

tum finite automata. Quantum Information and Computation 10(9&10), 747–770
(2010)

21. Yamakami, T., Yao, A.C.C.: NQP
C

= co-C=P. Information Processing Letters
71(2), 63–69 (1999)

http://eccc.hpi-web.de/report/2012/130/

Real Numbers, Chaos, and the Principle

of a Bounded Density of Information

Gilles Dowek

INRIA, 23 avenue d’Italie, CS 81321, 75214 Paris Cedex 13, France
gilles.dowek@inria.fr

Abstract. Two definitions of the notion of a chaotic transformation are
compared: sensitivity to initial conditions and sensitivity to perturba-
tions. Only the later is compatible with the idea that information has a
finite density.

1 The Notion of Information in Physics

Information is not a new notion in Physics, as Ludwig Boltzmann already defined
the entropy of a system as the logarithm of the number of microscopic states
corresponding to its macroscopic state, that is, in modern terms, as the amount
of information necessary to describe its microscopic state when its macroscopic
state is known.

This definition presupposes that the number of microscopic states correspond-
ing to a macroscopic state is finite, an hypothesis that would only be clarified
later by quantum theory, and still in a very partial way.

After Bolzmann, this idea of a bound on the number of possible states of a
given system, that is on the amount of information contained in such a system, or
equivalently on the density of information in the Universe has slowly emerged.
It is, for instance, one of the hypotheses assumed by Robin Gandy [5] in his
“proof” of the physical Church-Turing thesis. It is also a thesis proposed by Jacob
Bekenstein [2] in his investigation of back hole entropy. Bekenstein even proposes
a bound, that is, unfortunately, not a bound on the amount of information
contained in a system, but on the ratio between this amount of information and
the energy of the system.

2 Physics without Real Numbers

This hypothesis of a bound on the density of information in Universe, is how-
ever inconsistent with the most common formulations of Physics, for instance
Newtonian theory.

In Newtonian theory, just like information travels at an infinite velocity be-
cause the motion of a mass induces an instantaneous modification of the gravi-
tational field in the whole Universe, an object as simple as a pencil contains an
infinite amount of information, because its length is a real number, containing
an infinite number of digits.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 347–353, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

348 G. Dowek

This idea that a magnitude, such as the length of a pencil, is a real number
comes from an idealization of the process of measurement. The measure of the
length of a segment, for instance the length of a pencil, is defined as the number
of times a yardstick fits in this segment. More precisely, this natural number is
a lower approximation of the length of the segment, with an accuracy which is
the length of the yardstick—or twice this length, if the last fit is uncertain. A
more precise measure is obtained by dividing this yardstick in ten equal parts,
and counting the number of tenths of yardsticks that fit in the segment. Dividing
again this tenth of yardstick in ten parts, an even more precise measure is ob-
tained, and so on. The result of each individual measurement is thus a rational
number, and only the hypothetical possibility to repeat this process indefinitely
leads to the idea that the measured magnitude, per se, is the limit of an bounded
increasing sequence of rational numbers, that is a real number.

In theory, the fact that the length of a pencil is a real number permits to
record an infinite amount of information by sharpening the pencil to give it
definite length. However, this idea is inconsistent with a principle, I will call
the caliper principle, that, although it does not exactly have the status of a
fundamental principle of Physics, is used as if it were one: the principle that
a measuring instrument yields only an approximation of the measured magni-
tude, and that it is therefore impossible, except according to this idealization,
to measure more than the first digits of a physical magnitude. Historically, this
caliper principle might be one of the first formulations of the idea of a bounded
density of information in the Universe, even if it only prevents the access to an
infinite amount of information and not the existence of this infinite amount of
information itself. According to this principle, this idealization of the process
of measurement is a fiction. This suggests the idea, reminiscent of Pythagoras’
views, that Physics could be formulated with rational numbers only.

We can therefore wonder why real numbers have been invented and, moreover,
used in Physics. A hypothesis is that the invention of real numbers is one of the
many situations, where the complexity of an object is increased, so that it can
be apprehended more easily [3,4]. Let us illustrate this idea with an example.

If we restrict to rational numbers, the parabola of equation y = x2 − 2 does
not intersect the x-axis, because there exists no rational number whose square
is equal to 2. But, because the continuous function x 0→ x2 − 2 takes a negative
value at 1.4 and a positive one at 1.5, it can be proved that, for all positive
rational numbers ε, there exists a rational number x such that the absolute value
of this function at x is smaller than ε. It is even possible to build a bounded
and increasing sequence of rational numbers 1.4, 1.41, 1.414, ... such that the
image of this sequence by the function x 0→ x2 − 2 goes to 0 at infinity. We have
here two relatively complex formulations of the intermediate value theorem.
But postulating a limit

√
2 to this sequence permits to give a much simpler

formulation to this theorem: there exists a number whose image by this function
is 0.

Real Numbers, Chaos, and the Principle of a Bounded Density of Information 349

Thus, according to the caliper principle, real numbers area fictions that permit
to apprehend the Universe more easily, but there is no reason to think that
physical magnitudes, per se, are real numbers.

3 The Status of the Principle of a Bounded Density of
Information

If we have very few reasons to believe that physical magnitudes, per se, are real
numbers, that is that they contain an infinite amount of information, we must
admit that we have also few reasons to believe that, on the opposite, the density
of information in the Universe is bounded.

This thesis is a hypothesis.
However this thesis is not a metaphysical hypothesis, that would only depend

on the way we decide to describe the Universe—that we could decide to describe
in a discrete or continuous way—and not of the properties of the Universe itself.
Indeed, once a bound is fixed, the principle of a bounded density of information
is a falsifiable statement: it is sufficient to record b + 1 bits of information in a
system included in a sphere of radius 1m and to read it back to refute the thesis
that the amount of information contained in a sphere of radius 1m is bounded
by b, that is that the number of states of such a system is bounded by 2b.

In the same way, it would be sufficient to transmit some information faster
than light to refute the thesis that the velocity of propagation of information is
bounded by the speed of light.

These two theses have a similar status. The only difference is that the bound
is known in one case and not in the other.

4 Sensitivity to Initial Conditions

The introduction of real numbers in Physics has had the advantage to simplify
the way we apprehend the Universe. But postulating that real numbers are more
than just fictions, and that physical magnitudes are, per se, real numbers, has a
remarkable consequence: it becomes possible, for a physical transformation, to
be sensitive to initial conditions. It becomes possible, for instance, for the flap
of a butterfly’s wings in Brazil to set off a tornado in Texas.

An example of a process that is sensitive to initial conditions is the baker’s
transformation b, that maps each real number x, between 0 and 1, to the real
number, also between 0 and 1, 2x when x is between 0 and 1/2 and 2− 2x when
it is between 1/2 and 1. This transformation is sensitive to initial conditions,
because its iteration magnifies, step by step, small differences between two initial
values x and x′. For instance, this transformation iterated on the two initial
values 0 and a/2N , that can be made as close as desired by taking N large
enough, will lead in N steps to 0 and a respectively. Iterating this transformation
progressively unfolds an infinite amount of information present in the initial state
of the system.

350 G. Dowek

The definition of the notion of sensitivity to initial conditions assumes that
the initial values x and x′ are slightly different, but that the processes applied to
these values are rigorously identical: the flap of a butterfly’s wings can modify
the “initial” state of the atmosphere, but the butterflies must stop flapping their
wings during the later evolution of the atmosphere.

The existence of transformations that are sensitive to initial conditions and
unfold, step by step, an infinite amount of information present in the initial state
of the system seems to be inconsistent with the principle of a bounded density of
information. But more annoying is that the existence of non perturbed evolutions
assumed by the definition of sensitivity to initial conditions is inconsistent with
the much weaker and more consensual caliper principle, that no measurement
can give, say, more that twenty relevant digits.

Indeed, is we assume physically possible to apply a perfect baker’s transfor-
mation to a physical magnitude, and we have a measuring instrument I1 that
permits to measure this magnitude with an accuracy 2−10, that is three decimal
digits, it becomes possible to build an other measuring instrument I2 that per-
mits to measure some magnitudes with an accuracy 2−100, that is thirty decimal
digits.

This instrument just iterates the baker’s transformation 100 times on the
magnitude x to be measured and measures with the first instrument the 101
results x = s0, ..., s100 of these iterations. If one of the 101 measures yields a
result that it between 1/2−2−10 and 1/2+2−10, so that we cannot decide if the
measured magnitude is smaller or larger of 1/2, the global measurement with
the instrument I2 fails. Otherwise, it is possible to determine whether each of
these magnitudes is smaller or larger than 1/2 and, in this case, the magnitude
x is can be determined with an accuracy 2−102. Indeed, it is easy to prove, by
induction on i, that knowing if each of the terms s0, ..., s100 is smaller or greater
than 1/2 is sufficient to determine si with an accuracy 2−(102−i). For i = 100, if
s100 is smaller than 1/2, then 1/4 is an approximation of si, and if it is larger,
3/4 is an approximation. In both cases, the accuracy is 1/4 = 2−2. Otherwise,
by induction hypothesis, we know si+1 with an accuracy 2−(102−(i+1)). If si
is smaller than 1/2 then si+1 = 2si, that is si = si+1/2, and if it is larger,
si+1 = 2 − 2si, that is si = 1 − si+1/2. In both cases we obtain si with an
accuracy 2−(102−(i+1))/2 = 2−(102−i). Thus, at the end, we obtain x with an
accuracy 2−102.

The success rate of the instrument I2 is larger than eighty percent. To prove
this, we prove that the measurement always succeeds when the number x does
not have a sequence of 9 identical digits among the 110 first digits of its binary
development. Indeed, the baker’s transformation acts on the binary development
of a number z in the following way: if the first digit of the number z is a zero,
that is if z ≤ 1/2, then it shifts all digits to the left, that is multiplies it by 2,
if its is a one, that is if z ≥ 1/2, then it replaces each one by a zero and each
zero by a one, that is takes the opposite and adds 1, and shifts all the digits
to the left, that is multiplies it by 2. Thus, applying the baker’s transformation

Real Numbers, Chaos, and the Principle of a Bounded Density of Information 351

100 times to the initial state x, that does not contain a sequence of 9 identical
digits in the first 110 digits of its binary development, yields a sequence of 101
numbers s0, ..., s100, such that no element of this sequence contains a sequence
of 9 identical digits in the first 10 digits of its binary development. Note that
a number z such that 1/2 − 2−10 = 0.0111111111 < z ≤ 1/2 = 0.011111111...
has a sequence of 9 ones in its first 10 digits and that a number z such that
1/2 = 0.1000000000... ≤ z < 1/2 + 2−10 = 0.1000000001 has a sequence of
9 zeros in its first 10 digits. Thus, as none of the s0, ..., s100 has a sequence
of 9 identical digits in its first 10 digits, none is in the grey area of numbers
between 1/2 − 2−10 and 1/2 + 2−10. Finally, the probability for a real number
not to have a sequence 9 identical digits among the 110 first digits of its binary
development is 0.815..., as the number kl of sequences of l digits not containing a
sequence of 9 identical digits verifies the induction relation: k0 = 1, for l+1 ≤ 8:
kl+1 = 2kl, k9 = 2k8 − 2, and for l + 1 ≥ 10: kl+1 = 2kl − kl−8, from which we
get k110 = 1.058... 1033 and k110/2

110 = 0.815...
Thus, the success rate of I2 is larger than or equal to 0.815... and the mere

existence of a magnitude x for which this measurement can be performed is
sufficient to contradict the caliper principle.

5 Sensitivity to Perturbations

Thus, a consequence of the caliper principle is that the a physical dynamical
system must always be slightly perturbed. The course of its evolution is defined
neither by

s0 = x

si+1 = f(si)

nor by
s0 = x+ p0

si+1 = f(si)

where p0 would be a modification of the initial state x, but by

s0 = x+ p0

si+1 = f(si) + pi+1

where p0, p1, ... is a perturbation sequence.
It thus becomes difficult to distinguish, in the causes of a tornado in Texas,

the role of a modification of the “initial” state of the atmosphere, due to a flap
of a butterfly’s wings, from later perturbations due, for instance, to other flaps
of butterflies’ wings.

A transformation f that is sensitive to perturbations is sensitive to initial
conditions, as the sequence p0, 0, 0, ... is a perturbation sequence. Shadowing
lemmas show that for many dynamical systems, the converse also holds: if a

352 G. Dowek

system is sensitive to initial conditions, then it is also sensitive to perturbations:
the information brought by perturbations during the evolution of the system can
be aggregated in its initial state, to produce almost the same evolution.

For instance, consider N iterations s0, ..., sN of the baker’s transformation,
perturbed by a sequence p0, p1, ..., such that for all i, |pi| ≤ ε and si is between
0 and 1. Then it is easy to prove, by decreasing induction on i, that for all i,
there exists a element s′i, such that |s′i−si| ≤ ε and the non perturbed evolution
starting at step i with s′i yields at sN at step N . For i = N just take s′N = sN .
Assume the property holds at i+1. From |si+1−s′i+1| ≤ ε, si+1 = b(si)+pi, and
|pi| ≤ ε, we get |s′i+1 − b(si)| ≤ 2ε. If si is smaller than 1/2, we let s′i = s′i+1/2.
As s′i+1 is smaller than 1, s′i is smaller than 1/2 and b(s′i) = 2s′i = s′i+1. Then,
from |s′i+1 − b(si)| ≤ 2ε, we get |2s′i − 2si| ≤ 2ε and |s′i − si| ≤ ε. And if si is
larger than 1/2, we let s′i = 1 − s′i+1/2. As s′i+1 is smaller than 1, s′i is larger
than 1/2 and b(s′i) = 2 − 2s′i = s′i+1. Then, from |s′i+1 − b(si)| ≤ 2ε, we get
|(2 − 2s′i) − (2 − 2si)| ≤ 2ε and |s′i − si| ≤ ε. Thus, in both cases we have
b(s′i) = s′i+1 and |s′i − si| ≤ ε.

Thus, there exists an initial value s′0 such that |s′0 − x| ≤ 2ε and the non
perturbed evolution from s′0 yields sN after N steps.

This equivalence between sensitivity to initial conditions and sensitivity to
perturbations explains why the definition of a chaotic transformation speaks only
about sensitivity to initial conditions and not about sensitivity to perturbations
brought during the evolution of the system.

But this aggregation, in the initial state, of an unbounded amount of infor-
mation, brought during the evolution of the system is not possible for systems
where the amount of information is bounded. For example, the baker’s transfor-
mation on the finite set {0, 0.1, ..., 0.9, 1} is not sensitive to initial conditions: by
modifying the initial value 0 of a quantity less than or equal to 0.1, it is possible
to reach the values 0, 0.1, 0.2, 0.4 and 0.8, but not, unlike in the continuous case,
the values 0.9 and 1, for instance—of course this example has only an didactic
value, the size of a cell of a discrete physical system would be rather on the order
of magnitude of Planck’s length, and the number of states rather on the order
of magnitude 1035 than 10.

In contrast, this transformation is sensitive to perturbations: it is possible to
reach all the values a in the set {0, 0.1, ..., 0.9, 1} starting from 0 and perturbing
the system of a quantity at most 0.1 at each step—of course, a smaller pertur-
bation would not mean anything. For instance, the value 0.9 is obtained by the
sequence: 0, 0.1, 0.2, 0.4, 0.9. More generally, if a = p 0.1 where p is a natural
number, we let N be a natural number such that p/2N = 0, where / is the integer
division, and si = (p/2N−i) 0.1. We have s0 = 0, sN = a and for all i between 0
and n− 1, si ≤ 1/2, si+1 = 2si or si+1 = 2si + 0.1. Thus si+1 = b(si) + pi, with
|pi| ≤ 0.1.

This transformation is sensitive to perturbations but not to initial conditions,
which shows that these two conditions are not equivalent in this case.

Real Numbers, Chaos, and the Principle of a Bounded Density of Information 353

6 The Definition of the Notion of a Chaotic
Transformation

Thus, there are at least two different reasons for the perturbed baker’s trans-
formation to produce the value 0.9 after four iterations, starting from 0. One is
that the initial value was not 0, but 0.9/16 = 0.05625, an other is that at the
second and fourth iteration, a perturbation of 0.1 has been brought.

The first explanation—sensitivity to initial conditions—postulates a non per-
turbed evolution that is inconsistent with the caliper principle and the existence
of a punctual cornucopia that provides an infinite amount of information not
accessible to measurement, but appearing during the evolution of the system.
And it provides no explanation why this evolution cannot itself be considered as
a measurement.

In contrast, the second—sensitivity to perturbations—does not assume the
existence of a non perturbed transformation, remains possible even if we assume
that information has a bounded density, and locates the source of the information
that appears during the evolution in the environment of the system, with which
it always interacts. Sensitivity to perturbations seems therefore to be a good
alternative to sensitivity to initial conditions, when defining the notion of a
chaotic transformation.

This clarification of the definition of the notion of a chaotic transformation is
one of the benefits of using a notion of information, and a principle of a bounded
density of information in Sciences, such as Physics, besides its obvious use in
Computer Science.

Acknowledgements. Thanks to Pablo Arrighi, Ali Assaf, Raphaël Cauderlier,
Simon Cruanes, Guiseppe Longo, Jean-Baptiste Joinet, Thierry Paul, and Maël
Pegny.

References

1. Arrighi, P., Dowek, G.: The principle of a finite density of information. In: Zenil,
H. (ed.) Irreducibility and Computational Equivalence: Wolfram Science 10 Years
After the Publication of A New Kind of Science (2012)

2. Bekenstein, J.D.: Universal upper bound to entropy-to-energy ratio for bounded
systems. Phys. Rev. D 23, 287–298 (1981)

3. Berthoz, A., Simplexité, L., Jacob, O. (2009)
4. Dowek, G.: La notion de nombre réel : une solution simplexe? (to appear)
5. Gandy, R.: Church’s thesis and principles for mechanisms. In: The Kleene Sympo-

sium. North-Holland (1980)

Random Selection in Few Rounds

Timofey Stepanov

Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991,
Yandex, Leo Tolstoy St. 16, Moscow 119021

Abstract. We consider protocols for two parties to select a random
string of a given length n. We are interested in protocols in which the
resulting distribution is close to the uniform one even if one party devi-
ates from the protocol. For 2 and 3 round protocols we prove tight upper
bounds for the Shannon entropy that such protocols can guarantee for
the honest party. We also prove some upper bound for r round protocols
for every r.

Keywords: Cryptography, distributed computing, random selection
protocols.

1 Introduction

We study the following problem. Two players, Alice and Bob, want to agree on
a random string. They stay in different places, so none of them can see what the
other does. To this end they send messages to each other using some probabilistic
algorithms. Afterwards they compute some function of sent messages and return
its value as a result.

Each message depends only on previous messages and random bits of the
respective player (each player has its own private randomness source). A player
cannot check whether another player follows the algorithm they have agreed
on. So each player can abandon the protocol to change the distribution of the
resulting string. We study protocols that ensure high Shannon entropy of the
resulting distribution if at least one player is honest.

In this model it is impossible to generate a random bit, as for every finite
game with 0,1 outcomes either Alice has a strategy forcing the outcome 0, or
Bob has a strategy that forces the outcome 1. Thus we consider protocols that
output random strings of length n > 1. The quality of the output distribution
is usually measured by either its Shannon entropy, or by min-entropy, or by
statistical distance from the uniform distribution, or by resiliency.

The protocol is called (μ, ε)-resilient if for every set S ⊂ {0, 1}n with density
μ, the output of the protocol falls into S with probability at most ε if at least
one player is honest.

In [1], Goldreich et al. constructed a protocol that is (μ,
√
μ)-resilient for

all μ > 0. The protocol runs in O(n) rounds, communicates O(n2) bits and
guarantees Shannon entropy n−O(1).

In [2], Sanghvi and Vadhan for each δ > 0 have presented a protocol running
in 2 log∗ n+O(1) rounds that is (μ,

√
μ+ δ)-resilient for all μ. They also showed

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 354–365, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Random Selection in Few Rounds 355

a lower bound log∗ n−log∗ log∗ n−O(1) on the number of rounds of any protocol
that achieves constant positive statistical distance from the uniform distribution.
By log∗ n we denote the iterated logarithm, which is the minimal number k, such
that log(k) n = 1, where log(i) n = log . . . log︸ ︷︷ ︸

i

n and logn = �log2 n�.

In [3], Buhrman et al. have presented a protocol which runs in r rounds,
where r ≥ 3 is an arbitrary odd integer, and guarantees Shannon entropy n −
log((r−1)/2) n. In particular, for r = 2 log∗ n+1 rounds their protocol guarantees
Shannon entropy n − O(1). They also showed that any protocol guaranteeing
Shannon entropy n−O(1) must run in Ω(log∗ n) rounds.

The natural question that arises in connection with the last two results is the
following. Let n and r be given. What is the largest Shannon entropy Hr(n)
which protocols with r rounds can guarantee? In this paper we present tight
bounds for Hr(n) for r = 2, 3 and an upper bound for any r, n. More specifically,

– we show that H2(n) = n/2 + O(log log n),
– we prove that the bound H3(n) > n − logn − O(1) from [3] is tight up to

O(log logn), that is, H3(n) = n− logn+O(log logn).

– we show the bound Hr(n) < n− 1
8 log

(log∗ log∗ n+r) n+O(1) for all n and all
r.

Notice that log∗ log∗ n ≤ 3 for all n that the mankind will ever use in practice
(the maximal number n with log∗ log∗ n ≤ 3 is the tower of 2s of height 16).
The question whether the number of iterations r+ log∗ log∗ n can be reduced to
(r − 1)/2 to meet the lower bound of [3] remains open.

In the proofs we use the techniques and the results from [2] and [3].

2 Definitions

Definition 1. An r round protocol Π for generating n-bit strings is specified by
integers n1, . . . , nr, probabilistic algorithms A and B, the indication who starts
the communication and a function f : Bn1 × . . .×Bnr → Bn, where B = {0, 1}.
The random variable f(M1, . . . ,Mr), where M1, . . . ,Mr stand for the messages
sent by communicating algorithms A,B is called the protocol’s result (or output)
and is denoted by Π(A,B). If a player, say Alice, deviates from the protocol and
uses an algorithm A∗ in place of A, the resulting random variable is denoted by
Π(A∗, B).

In this definition we assume that the first message M1 is computed by applying
the algorithm A (if Alice starts the communication) to the empty string, the
second message M2 is computed by applying B to M1 and so on: Mi is computed
by applying A or B (depending on i mod 2) to the concatenation the of previous
messages. We also assume that algorithms A and B halt in finite time on all
inputs and all outcomes of their randomness generators.

In other words, we use the regular model of randomized communication pro-
tocols with fixed lengths of messages and private randomness. As we do not care

356 T. Stepanov

about the communication length, we can also use the variable length model. The
crucial distance between the model used in communication complexity and ours
is this: we will allow one player to cheat.

Definition 2. The Shannon entropy of a random variable with N outcomes with
probabilities p1, . . . , pN is defined by the formula

H = −
N∑
i=1

pi log2 pi,

(if pi = 0 then the corresponding term in the sum is considered to be zero).

Definition 3. We say that the protocol Π guarantees Shannon entropy h if in
the case when at least one player is honest the entropy of the output is at least
h, that is, Shannon entropy of both random variables Π(A∗, B) and Π(A,B∗) is
at least h for all algorithms A∗, B∗.

Recall that Shannon entropy of any random variable with values in the set
of strings of length n is at most n (and the value n is attained for the random
variable uniformly distributed over this set). Thus the guaranteed entropy cannot
exceed n. Moreover, the following simple observation shows that it even cannot
exceed n− 1. Indeed, Zermelo’s theorem [4] for finite games of two players with
two outcomes states that for every such game either the first or the second
player has a winning strategy. For every r-round protocol Π consider the r-
moves game where moves are strings of length n1, . . . , nr and the first player
wins if the first bit of f(M1, . . . ,Mr) is zero. By Zermelo’s theorem either Alice
has a deterministic strategy forcing the first bit of the result be 0, or Bob has
a deterministic strategy forcing the first bit of the result be 1. In both cases
Shannon entropy of the outcome is at most n− 1.

Another randomness measure used in this context is called resiliency:

Definition 4. A distribution on a finite set U is called (μ, ε)-resilient if proba-
bility of the result to fall into any subset of U of density not greater than μ is not
greater than ε. We call a protocol (μ, ε)-resilient, if in case at least one player
is honest the result distribution is (μ, ε)-resilient.

3 Upper Bounds for 2- and 3-Round Protocols

3.1 2-Round Protocols

There is a 2-round protocol which guarantees entropy 1
2n: the players send ran-

dom strings of length 1
2n to each other and the output is their concatenation.

Next theorem shows, that this is essentially the best protocol.

Theorem 1. For any 2-round protocols generating n-bit strings the guaranteed
Shannon entropy is at most 1

2n+O(log logn).

In the proof we will use the following simple lemma.

Random Selection in Few Rounds 357

Lemma 1. Let μ be a probability distribution over a family of at most s-element
subsets of a “universe” U of cardinality N . For any b, there is a subset A of U
of size at most Nb

s , such that a random set S in the family chosen according to
distribution μ intersects A with probability at least 1− e−b.

Proof. Select at random Nb
s elements from U in A (all elements of U are equiprob-

able and the choices are independent). The probability that the resulting set A

does not intersect a fixed set of size ≤ s is at most (1− s
N)

Nb
s < e−b. Therefore,

the average probability over A of the probability of the event “S does not inter-
sect A” is less than e−b. Hence, there is A for which that probability is less than
e−b. ��

The following lemma is a well known property of Shannon entropy.

Lemma 2. Assume X is a random variable in the set U and A is a subset of
U . Then

H(X) ≤ p log |A|+ (1− p) log(|U | − |A|) + 1,

where p = Pr[X ∈ A].

Proof (of Theorem 1). Assume Bob starts the protocol. He sends a message β.
Let Sβ denote the set of all n-bit strings x such that f(β, α) = x for some α.
Sending a message, Alice selects a string from Sβ. We will show that if all Sβ are
large, then Alice is able to force the small output entropy. On the other hand, if
at least one Sβ is small then Bob can do so.

Fix a natural number s (in this proof we will use s = 2n/2) and distinguish
the following two cases: (a) there is β0 with |Sβ0 | ≤ s and (b) for all β, |Sβ | > s.

In case (a) Bob, sending the message β0, can force the output to belong to
Sβ0 . Thus Bob has a strategy such that the entropy of the outcome is at most
log2 s.

In case (b) Alice also can force the protocol output to belong to a small set,
with probability close to 1. To show this, we use Lemma 1 for the family of
subsets Sβ (where β ranges over all Bob’s messages) and b = lnn. By the lemma
there is a set R of size 2n lnn

s which intersects with 1 − e− lnn = 1 − 1
n subsets

from the family. Whatever message Bob sends, Alice can choose a message such
that the outcome of the protocol is in R. By Lemma 2, Alice has a strategy that
ensures the entropy of the outcome be at most(

1− 1

n

)
log2

2n lnn

s
+

1

n
log2 2

n + 1.

The second term here is equal to 1 and in the first term we drop the −1/n. In
this way we obtain the bound log2(2

n lnn/s) + 2 and

H2(n) ≤ max {log2 s, n− log2 s+ log2 lnn+ 2}

for every s. For s = 2n/2 we get the bound we need. ��

358 T. Stepanov

3.2 3-Round Protocols

A 3-round protocol that guarantees the entropy n− log2 n was presented in [3].
In this section we show that one cannot do better.

Theorem 2. H3(n) < n− log2 n+O(log logn).

In the proof we will use the following lemma from [2].

Lemma 3 ([2]). Assume we are given a collection of disjoint subsets S1, . . . , Sm

of a finite “universe” U of cardinality N . Assume further that for all i, |Si| ≤ s.
Then the probability that a set R ⊂ U chosen at random among all sets of density

μ includes at least one set Si from the collection is at least 1− 1
m

(
e
μ

)s

.

Proof (of Theorem 2). Assume Alice starts the communication. Let γ denote
her fist message, β the first message of Bob, and α the second message of Alice.
Sending α Alice selects the output from the set Sγβ of all x such that there is α
with f(γ, β, α) = x. Again we distinguish two cases:

(a) For all γ there are m pairwise disjoint sets of the form Sγβ, each of size at
most s.

(b) There is γ0, for which such m sets Sγβ do not exist. Here m, s stand for
natural numbers to be chosen later.

In case (a) we claim that there is a set R of n-bit strings of density 1
n that has the

following property. With probability at least p = 1 − (en)s

m Alice’s message γ is
good for R, which means that there is Bob’s message β with Sγβ ⊂ R. The claim
is proved by probabilistic arguments. Choose both R and Alice’s message at
random. The set R is chosen uniformly among all sets of density 1/n and Alice’s
message is chosen independently of R according to her randomized algorithm.
As we are in the case (a), any Alice’s message γ, by Lemma 3 is good for R with
probability at least p. Thus, the overall probability that γ is good for R is at
least p. Hence, there is a set R with probability at least p.

Bob’s strategy is the following: he picks R of density 1/n satisfying the claim
and for every good Alice’s message forces the outcome to fall into R (if Alice’s
message is bad, he sends any message). By Lemma 2, this Bob’s strategy ensures
that the entropy of the outcome is at most

H ≤ p log2
2n

n
+ (1− p)n+ 1 = n− p log2 n+ 1

= n− log2 n+
(en)s

m
log2 n+ 1

In case (b) Alice first sends message γ0. As we are in case (b), there is a set X of
size ms that intersects every small Sγ0β (“small” means “of cardinality at most
s). Indeed, let X be the union of any maximal disjoint family of small sets.

Random Selection in Few Rounds 359

By Lemma 1 there is a set Y of size 2n lnn
s which intersects a randomly chosen

large Sγ0β (of size more than s) with probability at least 1 − e− lnn = 1 − 1/n.
Here we mean the probability under condition that Sγ0β is large. Thus, with
(unconditional) probability at least 1−1/n a randomly chosen set Sγ0β intersects
X ∪Y . Thus, Alice can force the output to fall into X ∪Y with that probability.
By Lemma 2 this implies that the entropy of the outcome is at most:

H ≤
(
1− 1

n

)
log2

(
2n lnn

s
+ sm

)
+

1

n
n+ 1

≤ log2

(
2n lnn

s
+ sm

)
+ 2

Combining cases (a) and (b) we see that H3(n) does not exceed

max{n− log2 n+ (en)s(log2 n)/m, log2(2
n lnn/s), log2(sm)}+O(1)

(we have replaced the logarithm of the sum by the maximum of logarithms, as up
to adding 1 they are equal). Now we need to adjust s andm so that this maximum
is minimal. It is hard to find optimal m and s. However, it is not hard to see that
whatever m, s we choose, the maximum is at least n− log2 n+ log2 lnn. Indeed,
if m ≤ (en)s, then the first term is larger than n. If s ≤ n, then log2(2

n lnn/s)
is greater than n − log2 n + log2 lnn. And otherwise log2(sm) is greater than
log2 m > s log2 n > n log2 n.

Guided by these hints we let m = (en)s log2 n, say, so that the first term
becomes n− log2 n+ 1. Then let s = n/(2 log2 n). Then

log2(2
n lnn/s) = n− log2 n+O(log logn)

and

log2(sm) = log2 s+ s log2(en) = n/2 + o(n),

and we are done. ��

4 Protocols with More Than 3 Rounds

Definition 5. The iterated logarithm of a number n ∈ R, n ≥ 1 to base d, log∗d n,
is defined as minimal natural number k, such that

�logd . . . �logd︸ ︷︷ ︸
k

n� . . .� = 1.

In other words, log∗d n ≤ k iff n is not larger than the tower

dd
...d

of d’s of height k. If d = 2 we will skip the index d and write log∗ n.

360 T. Stepanov

In [3], for all odd r ≥ 3 a protocol was constructed that runs in r rounds and

guarantees the entropy at least n − log(
r−1
2) n. Here log(i) n = log . . . log︸ ︷︷ ︸

i

n and

logn = �log2 n�. In this paper we establish an upper bound for the entropy
guaranteed by r-round protocols.

Theorem 3. For all r and all n, Hr(n) < n− 1
8 log

(log∗ log∗ n+r) n+O(1).

In the proof of this theorem we will use lower bounds from [2] for the number of
rounds of resilient protocols. First, we remind the definition.

Definition 6. The distribution on a finite set U is (μ, ε)-resilient if the proba-
bility of the result to fall in any subset of U of density not greater than μ is at
most ε. We call a protocol (μ, ε)-resilient, if in case at least one player is honest
the output distribution is (μ, ε)-resilient.

Theorem 4 (Sanghvi and Vadhan, [2]). For any ν, ε > 0, there exists a
constant c such that any (ν, 1− ε)-resilient protocol runs in more than log∗ n−
log∗ log∗ n− c rounds.

To prove our result, we need to understand how the constant c depends on ν
and ε. To this end we will sketch the proof of this theorem from [2].

Proof (A scetch of the proof of Theorem 4). Given any positive μ, ε and r, define
sequence of reals s0, . . . , sr by induction:

s0 = 1 and sk =
r

ε

(
re

μ

)sk−1

sk−1.

The result from [2] (Theorem 4.5 from that paper) states that for any r-round
protocol there is a set X of density at most μ+ sr/2

n such that either Alice or
Bob can force the outcome of the protocol to fall into X with probability more
than 1 − ε. Hence, there is no (μ + sr/2

n, 1 − ε)-resilient protocol running in r
rounds.

We apply this result to μ = ν/2 and show that if r is less than log∗ n −
log∗ log∗ n− c (for some c = c(ν, ε)), then sr/2

n is less than μ = ν/2, thus, there
is no r-round (ν, 1− ε)-resilient protocol either. ��

To find the value of c we need to upper bound sk.

Lemma 4. If μ ≤ 1/2, then sk can be upper bounded by the tower of d’s of

height k where d = r2e
εμ .

Proof. We have to show that sk ≤ dsk−1 . For k = 1, the left hand side and the
right hand side of this inequality coincide. For all x, y ≥ 2 we have xy ≤ xy and
by assumption μ ≤ 1/2. It follows that

sk =

(
re

μ

)sk−1 r

ε
sk−1 ≤

(
re

μ

)sk−1 (r

ε

)sk−1

=

(
r2e

εμ

)sk−1

for all k ≥ 2. ��

Random Selection in Few Rounds 361

Theorem 5 (Refined version of Theorem 4). For any ε > 0 and ν ≥ 2n/2n,

every (ν, 1−ε)-resilient protocol runs in more than log∗ n− log∗ log∗ n− log∗ 4e2

ε2ν2

rounds.

Proof. We start with the following

Lemma 5. If r ≤ log∗ n− log∗ log∗ n− log∗ e2

ε2μ2 then sr ≤ n.

In the proof of this lemma we will use the following facts about the iterated
logarithm:

Lemma 6. If a, b > 1 then log∗(a+ b) ≤ log∗ a+ log∗ b.

Proof. Obvious. ��

Lemma 7. If a, b > 2 then log∗(ab) ≤ log∗ a+ log∗ b− 1.

Proof.

log∗(ab) = log∗�log(ab)�+ 1 ≤ log∗(�log a�+ �log b�) + 1

(Using Lemma 6) ≤ log∗�log a�+ log∗�log b�+ 1 = log∗ a+ log∗ b− 1

��

Lemma 8. For all integer a > 2, log∗(a4) ≤ log∗ a+ 2.

Proof. For a = 3 and a = 4 this can be verified manually. For a ≥ 5 we obtain
a slightly stronger bound:

log∗(a4) = log∗�4 log a�+ 1
(Lemma 7)

≤ log∗ 4 + log∗�log a� = log∗ a+ 1

��

The next two lemmas were proved in [2]. For the sake of completeness we prove
them here.

Lemma 9 ([2]). If d ≥ 4 and k ≤ log∗d a, then log(k) a ≤ (2 log d) log
(k)
d a.

Proof. The base case k = 0 is clear. Assume, then, that log(k−1) a ≤
(2 log d) log

(k−1)
d a. Applying log to both sides, we have:

log(k) a ≤ log(2 log d) + log(log
(k−1)
d a) = log(2 log d) + (log

(k)
d a)(log d)

≤ (2 log d)(log
(k)
d a)

where the last line follows because for d ≥ 4, d ≥ 2 log d and for k ≤ log∗ a,
log(k) a ≥ 1. ��

362 T. Stepanov

Lemma 10 ([2]). If d ≥ 4 then log∗d a ≥ log∗ a− log∗(2 log d).

Proof. By Lemma 9 with k = log∗d a, we have log(log
∗
d a) a ≤ 2 log d. Applying

log∗(2 log d) logarithms to both sides, we have log(log
∗ da+log∗(2 log d)) a ≤ 1. Since

log∗ a is defined to be the least k such that log(k) a ≤ 1, it follows that log∗ a ≤
log∗d a+ log∗(2 log d). ��

Proof (of Lemma 5). By Lemma 4 sr ≤ n provided r ≤ log∗d n. It remains to
lower bound the right hand side of this inequality using Lemma 10:

log∗d n ≥ log∗ n− log∗(2 log d) = log∗ n− log∗
(
2 log

r2e

εμ

)
= log∗ n− log∗ log

(
r2e

εμ

)2

= log∗ n− log∗
(
r2e

εμ

)2

+ 1

(Using r ≤ log∗ n) ≥ log∗ n− log∗
(
(log∗ n)4

e2

ε2μ2

)
+ 1

(Using Lemma 7) ≥ log∗ n− log∗(log∗ n)4 − log∗
e2

ε2μ2
+ 2

(Using Lemma 8) ≥ log∗ n− log∗ log∗ n− log∗
e2

ε2μ2
.

Lemma 5 is proved. ��

Let us continue the proof of Theorem 5. Let Π be an r-round (ν, 1− ε)-resilient
protocol. Let μ = ν/2. By assumption μ ≥ n/2n. We get a contradiction, if r is
so small that sr ≤ n (and hence μ+ sr/2

n ≤ ν). And by Lemma 5 this happens
whenever

r ≤ log∗ n− log∗ log∗ n− log∗
e2

ε2μ2
.

Theorem 5 is proved. ��

To use the lower bound of Theorem 5, we have to show that protocol producing
high entropy is resilient for appropriate parameters. This can be done, following
[3], by means of the notion of statistical distance.

Definition 7. The statistical distance between random variables X and Y with
values in the same set U is defined as

max
A⊂U

|Pr[X ∈ A]− Pr[Y ∈ A]|

The following theorem was proved in [3]. For the sake of completeness we prove
it.

Random Selection in Few Rounds 363

Theorem 6 ([3]). If the entropy of a distribution is less than n − c, then the
statistical distance between that distribution and the uniform one is not greater
than 1− 2−2c+O(1).

Proof. Fix c. Let ξ be a random variable with range {0, 1}n such that H(ξ) ≥
n− c.

For x ∈ {0, 1}n let px = Pr[ξ = x]. For all integer i ≤ n let Nidenote the
number of x with

2−n+i−1 < px ≤ 2−n+i (1)

and let wi denote their total probability.
The statistical distance between ξ and the uniformly distributed random vari-

able is equal to∑
x:px>2−n

(px − 2−n) =
n∑

i=1

wi −
n∑

i=1

Ni2
−n ≤

n∑
i=1

wi −
n∑

i=1

2−iwi.

Here the last inequality holds, as wi ≤ Ni2
i−n.

Thus it suffices to prove the inequality

n∑
i=1

(1 − 2−i)wi ≤ 1− 2−2c−7

provided H(ξ) ≥ n− c.
The contribution −px log px to the entropy of ξ of each x satisfying (1) is

−px log px < −px log 2
−n+i−1 = px(n+ 1− i).

Therefore we can estimate the entropy of ξ as

H(ξ) ≤
∑
i≤n

wi(n+ 1− i) = n+ 1−
∑
i≤n

iwi

hence ∑
i≤n

iwi ≤ c+ 1 (2)

Here i ranges over all integers i ≤ n, including negative ones. However, the
contribution of negative i is bounded by a constant. Indeed, as 2n−iwi ≤ Ni ≤ 2n

we can conclude that wi ≤ 2i hence

0 ≥
∑
i<0

iwi ≥
∑
i<0

i2i = 2.

Thus, inequality (2) implies that the sum of the iwi over positive i is bounded
by a constant:

n∑
i=1

iwi ≤ c+ 3� d.

364 T. Stepanov

Divide the sum
∑n

i=1(1 − 2−i)wi into two groups: the sum over all i ≥ 2d and
the rest. The first sum is small by the last inequality. Indeed, the factors i in the
iwi are at least 2d, hence the sum of all terms with i ≥ 2d is at least

∑
i≥2d 2dwi

and at most d. This implies
∑n

i=2d wi ≤ 1/2. In the second sum the coefficient
(1− 2−i) is small:

1− 2−i ≤ 1− 2−2d.

Thus the total sum can be upper bounded by

1− 2−2d−1 = 1− 2−2c−7.

Theorem 6 is proved. ��

Now we can finish the proof of the main result.

Proof (of Theorem 3). If the statistical distance between a random variable ξ
and the random variable uniformly distributed over the same set is δ, then ξ
is (μ, μ + δ)-resilient for every μ. Thus, Theorem 6 implies the following: if a
protocol guarantees entropy H ≥ n−d, then it is (μ, 1− 2−2d+O(1)+μ)-resilient
for all μ. According to Theorem 4 it runs in more than

log∗ n− log∗ log∗ n− log∗
4e2

μ2(2−2d+O(1) − μ)2

rounds. It remains to choose μ such that this value is maximal. To this end let
μ = 2−2d+O(1)/2. We may apply Theorem 4 provided μ ≥ 2n/2n. It will certainly
be the case if d ≤ n/2.

Thus, we obtain the following lower bound for the number of rounds r of
protocols guaranteeing the entropy n− d:

r > log∗ n− log∗ log∗ n− log∗
4e2

2−8d+O(1)

= log∗ n− log∗ log∗ n− log∗ 28d+O(1)

= log∗ n− log∗ log∗ n− log∗(8d+O(1)) − 1.

It remains to derive an upper bound for d as a function of r from this inequality.
We have

log∗(8d+O(1)) ≥ log∗ n− log∗ log∗ n− r

hence

8d+O(1) ≥ log(log
∗ log∗ n+r) n,

which implies

Hr(n) ≤ n− 1

8
log(log

∗ log∗ n+r) n+O(1)

��

Random Selection in Few Rounds 365

References

1. Goldreich, O., Goldwasser, S., Linial, N.: Fault-tolerant computation in the full
information model. SIAM Journ. on Computing 27(2), 506–544 (1998)

2. Sanghvi, S., Vadhan, S.: The Round Complexity of Two-Party Random Selection.
In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing.
Baltimore, MD, USA, pp. 338–347

3. Buhrman, H., Christandl, M., Koucký, M., Lotker, Z., Patt-Shamir, B., Vereshcha-
gin, N.K.: High Entropy Random Selection Protocols. In: Charikar, M., Jansen,
K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS,
vol. 4627, pp. 366–379. Springer, Heidelberg (2007)

4. Schwalbe, U., Walker, P.: Zermelo and the Early History of Game Theory. Games
and Economic Behavior 34(1), 123–137 (2001)

One-Counter Verifiers for Decidable Languages�

Abuzer Yakaryılmaz

University of Latvia, Faculty of Computing, Raina bulv. 19, R̄ıga, LV-1586, Latvia
abuzer@lu.lv

Abstract. Condon and Lipton (FOCS 1989) showed that the class of
languages having a space-bounded interactive proof system (IPS) is a
proper subset of decidable languages, where the verifier is a probabilistic
Turing machine. In this paper, we show that if we use architecturally re-
stricted verifiers instead of restricting the working memory, i.e. replacing
the working tape(s) with a single counter, we can define some IPS’s for
each decidable language. Such verifiers are called two-way probabilistic
one-counter automata (2pca’s). Then, we show that by adding a fixed-
size quantummemory to a 2pca, called a two-way one-counter automaton
with quantum and classical states (2qcca), the protocol can be space ef-
ficient. As a further result, if the 2qcca uses a quantum counter, then the
protocol can even be public, also known as Arthur-Merlin games.

We also investigate the computational power of 2pca’s and 2qcca’s as
language recognizers. We show that bounded-error 2pca’s can be more
powerful than their deterministic counterparts by giving a bounded-error
simulation of their nondeterministic counterparts. Then, we present a
new programming technique for bounded-error 2qcca’s and show that
they can recognize a language which seems not to be recognized by any
bounded-error 2pca. We also obtain some interesting results for bounded-
error 1-pebble quantum finite automata based on this new technique.
Lastly, we prove a conjecture posed by Ravikumar (FSTTCS 1992) re-
garding 1-pebble probabilistic finite automata, i.e. they can recognize
some nonstochastic languages with bounded error.

1 Introduction

The only known interactive proof systems (IPS) having a restricted verifier for
decidable languages were given by Feige and Shamir [8] (and independently by
Condon and Lipton [4]). Although the verifier is a one-way probabilistic finite
automaton, the protocols require to communicate with two provers. Therefore,
the question remains open for IPS with one prover. In fact, Condon and Lipton
[4] showed that the class of languages having a space-bounded interactive proof
system (IPS) is a proper subset of decidable languages, where the verifier is
a probabilistic Turing machine (PTM). In this paper, we show that if we use
architecturally restricted verifiers instead of restricting the working memory, i.e.
replacing the working tape(s) with a single counter, we can define some IPS’s
for each decidable language.

� This work was partially supported by FP7 FET-Open project QCS.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 366–377, 2013.
© Springer-Verlag Berlin Heidelberg 2013

One-Counter Verifiers for Decidable Languages 367

We present four new protocols for decidable languages. In the first protocol,
the verifier is a two-way probabilistic one-counter automaton (2pca). By relax-
ing the requirement of having arbitrary small error bound, we obtain another
protocol, in which the verifier does not need to move its input head to the left.
In the third protocol, we show that if the verifier uses a fixed-size quantum regis-
ter, called a two-way one-counter automaton with quantum and classical states
(2qcca), then the protocol can also be space efficient. In all of these protocols, the
verifiers hide some information from the prover. In the fourth protocol, we show
that if we replace the classical counter of the verifier with a quantum counter,
called a two-way quantum one-counter automaton (2qca), then the third pro-
tocol turns out to be public (Arthur-Merlin games), i.e. the prover always has
a complete information about the verifier. The techniques behind these proto-
cols are inspired from the previous weak-protocols, i.e. the nonmembers does
not need to be rejected with high probability by the verifier, given for Turing
recognizable languages by Condon and Lipton [4] and Yakaryılmaz [20].

We also examine 2pca’s and 2qcca’s as recognizers. We show that 2pca’s form
a bigger class than two-way deterministic one-counter automata (2dca’s). We
obtain this result by giving a bounded-error simulation of two-way nondeter-
ministic one-counter automata. Then, we present a new programming technique
for bounded-error 2qcca’s and show that they can recognize a language which
seems not to be recognized by any bounded-error 2pca. We also obtain some in-
teresting results for bounded-error 1-pebble quantum finite automata based on
this new technique. Moreover, we prove a conjecture posed by Ravikumar [16]
regarding 1-pebble probabilistic finite automata, i.e. they can recognize some
nonstochastic languages with bounded error.

To our knowledge, 2pca’s have never been investigated. The only related work
that we know is [9], in which Hromkovic and Schnitger examined two-way prob-
abilistic multi-counter machines that are restricted to polynomial time, but,
they did not present any result related to 2pca’s. 2qca’s, on the other hand,
are examined only by Yamasaki et. al. [25] as language recognizers, in which the
authors presented some bounded-error 2qca algorithms for some languages. How-
ever, these languages are known to be recognized by 2dca’s and bounded-error
2qcca’s without a counter [14]. Therefore, our results seem the first interesting
results on 2qca’s.

We provide the necessary background in Section 2. The four protocols for
decidable languages are given in Section 3. The language recognition powers
of probabilistic and quantum counter automata are investigated in Section 4.
Lastly, the results on probabilistic and quantum finite automata with 1-pebble
are given in Section 5.

2 Background

Throughout the paper, Σ not containing ¢ and $ denotes the input alphabet
and Σ̃ = Σ ∪ {¢, $}. For a given string x, |x| is the length of x and xi is the ith

368 A. Yakaryılmaz

symbol of x, where 1 ≤ i ≤ |x|. The string ¢x$ is represented by x̃. P(·) denotes
all subsets of a given set.

Each model defined in the paper has a two-way infinite read-only input tape
whose squares are indexed by integers. Any given input string, say x ∈ Σ∗, is
placed on the tape as x̃ between the squares indexed by 1 and |x̃|. The tape has
a single head, and it can stay in the same position (↓) or move to one square to
the left (←) or to the right (→) in one step. It must always be guaranteed that
the input head never leaves x̃. Some models in the paper have also a counter,
an infinite storage having two status, i.e. zero (0) or nonzero (±), and being
updated by a value from {−1, 0,+1} in one step. We assume that the reader
familiar with the modes of language recognition with errors (see [19]).

Classical Models. A two-way deterministic one-counter automaton (2dca) is
a two-way deterministic finite automaton with a counter. Formally, a 2dca D
is a 6-tuple D = (S,Σ, δ, s1, sa, sr), where S is the set of states, s1 ∈ Q is the
initial state, sa ∈ S and sr ∈ S (sa �= sr) are the accepting and rejecting states,
respectively, and δ is the transition function governing the behaviour of D in
each step, i.e. δ : S × Σ̃ × {0,±} → S ×{←, ↓,→}× {−1, 0,+1}. Specifically,
δ(s, σ, θ) → (s′, di, c) means that when D is in state s ∈ S, reads symbol σ ∈ Σ̃,
and the status of its counter is θ ∈ {0,±}, then it updates its state to s′ ∈ S,
the position of the input head with respect to di ∈ {←, ↓,→}, and the value of
the counter by c ∈ {−1, 0,+1}.

At the beginning of the computation, D is in state s1, the input head is placed
on symbol ¢, and the value of the counter is set to zero. A configuration of D on
a given input string is represented by a triple (s, i, v), where s is the state, i is the
position of the input head, and v is the value of the counter. The computation is
terminated and the input is accepted (rejected) by D when it enters to sa (sr).
The class of languages recognized by 2dca’s is denoted 2DCA.

We will use the same terminology also for the other models unless otherwise
is specified. A two-way nondeterministic one-counter automaton (2nca), say N ,
is a 2dca having capability of making nondeterministic choices in each step. The
transition function of N is extended as δ : S × Σ̃ × {0,±} → P(S × {←,↓,→}×
{−1, 0,+1}). In other words, for each triple (s, σ, θ) (see above), there may be
more than one transition. Thus, N can follow more than one path during the
computation, and if any path ends with a decision of acceptance, then the input
is accepted. The class of languages recognized by 2nca’s is denoted 2NCA.

A two-way probabilistic one-counter automaton (2pca), say P , is a 2dca hav-
ing capability of making probabilistic choices in each step. In order to explicitly
represent the probabilistic part the machine, each step is divided into two tran-
sitions. Formally, δ = (δp, δd). For each triple (s, σ, θ) (see above), there are
some predefined outcomes, i.e. Δ(s,σ,θ) = {1, . . . , k(s,σ,θ)}. Each outcome is se-
lected with some (rational) probability: δp(s, σ, θ, τ) = pτ ∈ Q, where τ ∈ Δ
and

∑
τ∈Δ pτ = 1. After observing the outcome (τ), the deterministic transi-

tion is implemented as follows: δd(s, σ, θ)
τ→ (s′, di, c) (see above). Note that δd

must be defined for each possible τ . The class of languages recognized by 2pca’s

One-Counter Verifiers for Decidable Languages 369

with bounded error is denoted 2PCA. If we remove the counter, then we obtain
a 2pfa (two-way probabilistic finite automaton). If the input head of a 2pca is
not allowed to move to left, then we obtain a one-way probabilistic one-counter
automaton (1pca).

A one-way deterministic two-counter automaton (1d2ca) is a one-way deter-
ministic finite automaton with two counters. It was shown that any deterministic
Turing machine (DTM) can be simulated by a 1d2ca[12]. We denote the class of
decidable languages DECIDABLE.

Quantum Models. A two-way finite state automaton with quantum and clas-
sical states [1,24] (2qcfa) is a 2pfa using a finite quantum register instead of a
classical random generator. Note that the quantum register can keep some in-
formation by its (pure) quantum state as well as making probabilistic choices.1

Formally, a 2qcfa2 Q is a 8 tuple (S,Q,Σ, δ, s1, sa, sr, q1), where, apart from a
classical model, there are two different components: Q is the state set of quantum
register and q1 is its initial state. Similar to probabilistic models, δ = (δq, δd),
where δq governing the quantum part. In each step, firstly, δq determines a
superoperator (see Figure 1 for the details) depending on the current classical
state (s ∈ S) and scanning symbol (σ ∈ Σ̃), i.e. Es,σ, and then it is applied to
the quantum register and one outcome, say τ , is observed. Secondly, the classical
part of Q is updated depending on s, σ, and τ , which is formally represented as
δd(s, σ)

τ→ (s′, di), where s′ ∈ S is the new classical state and di ∈ {←, ↓,→} is
the update of the position of input tape. Note that δd must be defined for each
possible τ .

A two-way one-counter automaton with quantum and classical states (2qcca)
is a 2pca using a finite quantum register instead of a classical random generator.
The formal definition of a 2qcca is exactly the same as a 2qcfa. In fact, a 2qcca
is a 2qcfa with a classical counter. So, the transition functions of a 2qcfa (δq and
δd) can be extended for a 2qcca with the following modifications:

– The superoperator is determined by also the status of the counter (θ ∈
{0,±}), i.e. Es,σ,θ.

– The classical part of Q is updated depending on s, σ, θ, and τ , which is for-
mally represented as δd(s, σ, θ)

τ→ (s′, di, c), where s′ ∈ S is the new classical
state, di is the update of the position of input tape, and c ∈ {−1, 0,+1} is
the update on the counter.

A generalization of 2qcca is a two-way quantum counter automaton (2qca) that
uses a quantum counter instead of a classical one. (Note that this model is still
not the most general one, but it is sufficiently general for our purpose.) We can
see 2qca as the combination of a 2qcfa and a realtime quantum one-counter

1 It was shown that 2qcfa’s are more powerful than 2pfa’s by Ambainis and Watrous
[1]. Moreover, Yakaryılmaz and Say [22,23] showed that they can also recognize many
interesting languages.

2 Although the formal definition of 2qcfa given here is a bit different than the ones
given in [1,24], all the models are equivalent.

370 A. Yakaryılmaz

The most general quantum operator is a superoperator, which generalizes stochas-
tic and unitary operators and also includes measurement. Formally, a superoper-
ator E is composed by a finite number of operation elements, E = {E1, . . . , Ek},
satisfying that

k∑

i=1

E†
iEi = I, (1)

where k ∈ Z+ and the indices are the measurement outcomes. When a superoper-
ator, say E , is applied to the quantum register in state |ψ〉, i.e. E(|ψ〉), we obtain

the measurement outcome i with probability pi = 〈ψ̃i|ψ̃i〉, where |ψ̃i〉, the uncon-

ditional state vector, is calculated as |ψ̃i〉 = Ei|ψ〉 and 1 ≤ i ≤ k. (Note that using
unconditional state vector simplifies calculations in many cases.) If the outcome i

is observed (pi > 0), the new state of the system is obtained by normalizing |ψ̃i〉,
which is |ψi〉 = |ψ̃i〉√

pi
. Moreover, as a special operator, the quantum register can

be initialized to a predefined quantum state. This initialize operator, which has
only one outcome, is denoted É . In this paper, the entries of quantum operators
are defined by rational numbers. Thus the probabilities of the outcomes are always
rational numbers.

Fig. 1. The details of superoperators [20]

automaton (rt-qca) [18]: The 2qcfa part governs the computation, and access
the counter through the rt-qca by feeding some input to it and also observing
the outcomes. We will use this model in one of our results (Theorem 3), and our
simple definition will also simplify the proof.

Interactive Proof Systems. In this part, we provide the necessary back-
ground, based on [7,3], for the proof systems. An interactive proof system (IPS)
consists of a prover (P) and a verifier (V). The verifier is a restricted/resource-
bounded machine. The classical states of the verifier are partitioned into reading,
communication, and halting (accepting or rejecting) states, and it has a special
communication cell for communicating with the prover, where the capacity of
the cell is finite.

The one-step transitions of the verifier can be described as follows. When
in a reading state, the verifier implements its standard transition. When in a
communication symbol, the verifiers writes a symbol on the communication cell
with respect to the current state. Then, in response, the prover writes a symbol
in the cell. Based on the state and the symbol written by prover, the verifier
defines the next state of the verifier. Note that the communication is always
classical even though the verifier can use some quantum memory.

The prover P is specified by a prover transition function, which determines
the response of the prover to the verifier based on the input and the verifier’s
communication history until then. Note that this function does not need to be
computable.

One-Counter Verifiers for Decidable Languages 371

The prover-verifier pair (P, V) is an IPS for language L with error probability
ε < 1

2 if (i) for all x ∈ L, the probability that (P, V) accepts x is greater than
1− ε, (ii) for all x /∈ L, and all provers P ∗, the probability that (P ∗, V) rejects x
is greater than 1−ε. These conditions are known as completeness and soundness,
respectively.

An Arthur-Merlin (AM) proof system is a special case of IPS such that after
each probabilistic or quantum operation, the outcome is automatically written on
the communication cell, and so the prover can have complete information about
the computation of the verifier.3 We also refer them as public proof systems.

IP(v) represents the class of languages having an IPS with some error prob-
ability ε < 1

2 , where the verifier is v-type. Moreover, IP∗(v) is a subset of IP(v)
providing that each language in IP∗(v) has an IPS for any error bound. AM(v)
and AM∗(v) are defined similarly.

3 Counter Automata Verifiers for Decidable Languages

In this section, we will present four different protocols for decidable languages.
We begin with the classical verifiers.

Theorem 1. IP∗(2pca) = DECIDABLE.

Proof. 4 The relation IP(2pca) ⊆ DECIDABLE is trivial. We will give the proof
for the other direction. The proof idea is inspired from the protocol given by
Condon and Lipton [4].

Let L be a decidable language. Then there exists a 1d2ca D, which halts on
every input, recognizing L [13]. Any configuration of D on an input, say x ∈ Σ∗,
can be represented by (s, i, u, v), where s is the state, i is the head position, and
u and v are contents of the counters.

We will describe an IPS (P, V) for L by giving a simulation of D on the
given input, say x, where V is a 2pca. If V accesses the status of both counters
in each step, then it can easily simulate D on x by tracing the state and the
head position updates of D. The prover can provide the contents of the counters
for each step. But, the verifier should be careful about the cheating provers.
For this purpose, V can use its counter. That is, in each step, the verifier can
determine the changes on the counters, and so can compare the current value
and the next value of a counter. Therefore, before starting the simulation, V
equiprobably selects a counter of D to test the changes on it. Moreover, V
should also compare the contents of the selected counter not only for (2i− 1)th

and (2i)th steps but also for (2i)th and (2i + 1)th steps, where i ≥ 1. Thus, V
can start the comparisons from either the first step or the second step, which
can also be decided equiprobably at the beginning of the simulation. Therefore,

3 Note that all the verifiers defined in the paper are allowed to use only rational
number transitions.

4 One of the anonymous reviewers proposed a simpler proof which will appear in the
full version of the paper.

372 A. Yakaryılmaz

we can identify four comparison strategies, i.e. Cj
i (V selects the ith counter

of D and starts to compare from the step-j), where 1 ≤ i, j ≤ 2. This is the
base strategy of V . However, as described below, it is not sufficient to define a
protocol for any error bound.

The simulation of D on x by (P, V) is executed in an infinite loop. In each
round, a new simulation is started. V requests the contents of the counters for
each step from the prover. Let w be the string obtained from the prover in a
single round. The verifier expects w as au1bv1#au2bv2# · · ·#autbvt# such that
uj (vj) is the content of the first (the second) counter after jth step, where
1 ≤ j ≤ t and t ≥ 1. On the other hand, there are four disjoint cases for w as
listed below:

– (C1) w is of the form (a∗b∗#)+ ,

– (C2) there is an a after b in w,

– (C3) w is infinite and of the form (a∗b∗#)+aaa · · · or (a∗b∗#)+a∗bbb · · · ,
or

– (C4) w is infinite and of the form (a∗b∗#)(a∗b∗#)(a∗b∗#) · · · .

It is obvious that V can check C2 deterministically, and reject the input if there
exists an a after b in w. In other words, such a round is certainly terminated
with the decision of rejection. Therefore, in the remaining part, we assume that
w satisfies one of the other cases.

If w is valid (correct), then V can exactly simulate D on x. Otherwise, V
may give a wrong decision. Moreover, V may also enter an infinite loop. Note
that since P is honest and provides the valid w, we specifically focus on the
strategies of cheating provers on the nonmembers: In each round, V should
deal with infinite loops and should also guarantee that, for the nonmembers,
the probability of accepting the input, which can only be given based on the
simulation, is sufficiently smaller than the probability of rejecting the input
due to detecting the defects on w. The aforementioned (base) strategy of V is
quite strong, and so any invalid w is detected by at least one of Cj

i . But the
prover can still mislead the verifier in the other choices. Thus, the defect can
be detected with a probability at least 1

4 , and the verifier can follow an invalid
w with a probability at most 3

4 . Therefore, when V is convinced to accept the
input, it gives the decision of acceptance with probability 1

k , and terminates
the current round with the remaining probability 1− 1

k . So, the total accepting
probability of an invalid computation (3

4k) can be sufficiently small compared
to the rejecting probability due to the defect (14) by setting k to an appropriate
value. However, there is still the problem of infinite loop. We can solve this
problem by terminating the round with probability 1

2 after obtaining a symbol
w from the prover. Thus, any infinite loop can be terminated with probability
1. Although the probability of making decisions is dramatically decreased due
to this new restart strategy, the ratio of accepting and rejecting probabilities for
the nonmembers can still be preserved since any decision of acceptance can only
be given after a defect.

Now, we can analyse the overall protocols. Let l be the length of the valid
w. If x ∈ L, then V accepts x with probability 1

k2l in each round, and so it is

One-Counter Verifiers for Decidable Languages 373

accepted with probability 1. If x /∈ L, if there is no defect in a round, then it is
rejected with probability 1

2l
. If there is a defect in a round, then, it is detected

by V after obtaining (l1)
th symbol of w, where l1 ≤ l. Moreover, the input can

be accepted by V after obtaining l2 ≥ l1 symbol of w. Then, the input is rejected
with a probability at least 1

4·2l1 , and it is accepted with a probability at most
3

4k·2l2 . Thus, the input is rejected with high probability depending on the value
of k. Moreover, the protocol is always terminated with probability 1.

In the protocol above, if we allow the infinite loops, we can still obtain an IPS
for any decidable language by using the base strategy. Besides, it is sufficient to
simulate D once. Thus, the verifier does not need to move its input head to the
left.

Corollary 1. IP(1pca) = DECIDABLE.

Proof. The input is rejected with probability 3
7 by the verifier at the beginning

of the computation. Then the verifier follows its base strategy once. Therefore,
the members are accepted with probability 4

7 by the help of a honest prover, and
the non-members are rejected with a probability at least 3

7 + 4
7

(
1
4

)
= 4

7 . The
error bound is 3

7 < 1
2 .

We continue with the quantum verifiers. Recently, Yakaryılmaz [20] showed that
for each Turing-recognizable language, say L, there exists an AM proof systems
with a 2qcfa verifier, say (P, V), such that each x ∈ L is accepted by V exactly
and each x /∈ L is accepted with a small probability. Such proof systems are also
known as weak-IPS [7,3].

By combining the protocol given in [20] with the first protocol given above
(given in the proof of Theorem 1), we present two more protocols for decidable
languages. A review of the protocol given in [20] is as follows. Let L be a decid-
able language, and D be a DTM, which halts on every input, recognizing L. In
this protocol (P, V) simulates the computation of D on a given input, say x. In
an infinite loop, V requests the computation of D on x, as w = c1$$c2$$c3$$ · · · ,
where ci>0’s are some configurations of D on x and c1 is the initial one. If x ∈ L,
P provides the valid w, and V accepts the input with some probability in each
round, then it is accepted exactly. If x /∈ L, then the input is always rejected
with a bigger probability than the accepting probability in a single round as
long as the prover sends $$ symbols. If the prover does not send $$ after some
point, the round is still terminated with probability 1, but probably with no de-
cision. This is why the system is “weak”. From a given configuration, the length
of the next valid configuration can be easily determined, which can be differ
at most one. So, if the verifier uses a classical counter, it can detect when the
prover does not send $$ with some probability, i.e. instead of terminating the
round with “no decision”, the round is terminated with some nonzero “rejecting”
probability. Similar to the first protocol given above, the verifier equiprobably

374 A. Yakaryılmaz

decides to compare the lengths of which configurations, i.e. (2i− 1)th and (2i)th

configurations or (2i)th and (2i + 1)th configurations, at the beginning of each
round, where i ≥ 1. Although the protocol given in [20] is a public one, the
computations on the classical counter must be hidden from the prover in the
new protocol. We can formalize this result as follows.

Theorem 2. IP∗(2qcca) = DECIDABLE.

It is a well-known fact that the simulation of a DTM by a 1d2ca is space (and
time) inefficient [11]. Therefore, we can say that for the same language, the
latter protocol (Theorem 2) can be more space efficient than the former protocol
(Theorem 1) for the members of the language since the latter protocol directly
simulates a DTM. This can be seen as an advantage of using a few quantum
states.

Corollary 2. For any language recognized by a s(n)-space DTM, there exists
an IPS with a 2qcca verifier such that the verifier uses s(n)-space on its counter
for the members.

Our fourth result is to make the third protocol (given for 2qcca) public.

Theorem 3. AM∗(2qca) = DECIDABLE. (See [19] for the proof)

4 Counter Machines as Recognizer

In this section, we examine the bounded-error computational powers of 2pca’s
and 2qcca’s as language recognizers. We begin with a useful lemma and a lower
bound to 2PCA.

Lemma 1. Let N = (S,Σ, δ, s1, sa, sr) be a 2nca, x be an input, and M =
|S||x̃|. If s ∈ S is reachable from s1 by N on x, then there is a path of length no
more than M2 from (s1, 1, 0) to (s, i, u) for some 1 ≤ i ≤ |x̃| and u ≤ M such
that the value of counter never exceeds M . (See [19] for the proof)

Theorem 4. Let L be a language recognized by a 2nca N , then there exists a
2pca P recognizing L with one-sided bounded-error. (See [19] for the proof)

Remark that if a language is recognized by a 2nca, then it is recognized by a
2pca with one-sided unbounded error, vice versa. Therefore, in case of one-sided
error, the language recognition power of 2pca’s remain the same.

Corollary 3. A language is recognized by a 2nca if and only if it is recognized
by a 2pca with one-sided bounded-error.

Moreover, due to the fact that 2DCA � 2NCA [2] and Theorem 4, we can say
that bounded-error 2pca’s are more powerful than 2dca’s.

Corollary 4. 2DCA � 2NCA ⊆ 2PCA.

One-Counter Verifiers for Decidable Languages 375

Now, we turn our attention to the language recognition power of bounded-
error 2qcca’s. We begin with the definitions of two languages: TWIN = {u#u |
u ∈ {a, b}∗} and EXIST-TWIN = {u#v1# · · ·#vk | k ≥ 1, u ∈ {a, b}∗, vi ∈
{a, b}∗(1 ≤ i ≤ k), and ∃i ∈ {1, . . . , k}(u = vi)}. Ďurǐs and Galil [5,6] showed
that EXIST-TWIN cannot be recognized by any 2dca. Moreover, Chrobak stated
[2] that EXIST-TWIN does not seem to be in 2NCA. We show that 2qcca’s can
recognize EXIST-TWIN for any error bound by using a new technique which uses
some 2qcfa’s as black boxes. In the next section, we will also show that this
programming technique can also be used by 2qcfa’s having a pebble.

Theorem 5. EXIST-TWIN can be recognized by a 2qcca Q with bounded error.

Proof. Recently, Yakaryılmaz and Say [22,23] showed that TWIN can be recog-
nized by any 2qcfa for any negative one-sided error bound. Let QTWIN be such
a 2qcfa for error bound 1

5 . (We also refer the reader to [19] for the details of
QTWIN.) We will use QTWIN as a black box. As a special remark, QTWIN reads the
input from left to right in an infinite loop.

Let x be an input. We assume that x is of the form u#v1# · · ·#vk for some
k ≥ 1, where u, vi ∈ {a, b}∗ (1 ≤ i ≤ k). Otherwise, it is deterministically
rejected. The idea behind the algorithm is that Q selects v1, and then simulates
QTWIN by feeding u#v1 as the input. QTWIN gives the decision of rejection only if
u �= v1. So, whenever QTWIN gives the decision of rejection, then Q continues by
selecting v2, and so on. We call each such selection, in which Q gives the decision
of rejection, completed. If x /∈ EXIST-TWIN, then Q can obtain k completed-
selection with some nonzero probability. Otherwise, this probability becomes
zero since Q can obtain at most (k−1) completed-selection. So, by accepting the
input with some carefully tuned probability, we can obtain the desired machine.
Note that Q always remembers its selection by using its counter. The pseudo
code of the algorithm is given below.

FOR i = 1 TO k (vi is selected)
RUN QTWIN on x′ = u#vi

IF QTWIN accepts x′ THEN TERMINATE FOR-LOOP
IF QTWIN rejects x′ AND i = k THEN REJECT the input

END FOR
ACCEPT x with probability

(
1
5

)k

RESTART the algorithm

As can be seen from the pseudo code, the algorithm is actually executed in an
infinite loop. We begin with analysing a single round of the algorithm. It is
straightforward that if x ∈ EXIST-TWIN, the input is accepted with probability(
1
5

)k
, and it is rejected with zero probability. If x /∈ EXIST-TWIN, QTWIN halts

with the decision of rejection with a probability at least 4
5 in each iteration of

the for-loop, and so the input is rejected with a probability at least
(
4
5

)k
, and

it is accepted with a probability no more than
(
1
5

)k
. Therefore, the members

are accepted exactly. Since the rejecting probability is at least 4k times bigger
than the accepting probability in a single round, the input is rejected with a
probability at least 4

5 . The error bound can be reduced to any desired value.

376 A. Yakaryılmaz

Note that since PTM’s cannot recognize TWIN in sublogarithmic space [21], we
cannot use the same idea for 2pca’s. In fact, we believe that EXIST-TWIN /∈ 2PCA.

Another interesting language is a unary one: USQUARE = {bn2 | n ≥ 1}. It
is still not known whether USQUARE can be recognized by 2dca’s [14,15]. Since

2qcfa’s can recognize SQUARE = {anbn2 | n ≥ 1} with negative one-sided bounded
error [23], we can also obtain the following result.

Theorem 6. USQUARE can be recognized by a 2qcca with bounded error. (See [19]
for the proof)

5 Pebble Automata

A 1-pebble finite automaton has the capability of placing a pebble to at most one
tape square, of sensing whether a tape square has a pebble or not, and removing
the pebble from the marked tape square. The algorithms given for 2qcca’s in the
previous section can also be implemented by 1-pebble 2qcfa. In these algorithms,
the counter is actually used to remember some positions on the input. A pebble
can also be used in the same way by marking those positions. Therefore, we
can conclude that EXIST-TWIN and USQUARE can be recognized by some 1-pebble
2qcfa’s with bounded error.

Similarly, we can also show that SIAM-TWINS = {uu | u ∈ {a, b}∗} can be
recognized by 1-pebble 2qcfa’s. This is an interesting language since it cannot
be recognized by any 1-pebble NTM using sublogarithmic space [10].

Theorem 7. EXIST-TWIN can be recognized by a 1-pebble 2qcfa Q with bounded
error. (See [19] for the proof)

Ravikumar [17] showed that 1-pebble 2pfa’s are more powerful than 2pfa’s in
the unbounded error case by giving an unbounded-error 1-pebble 2pfa for non-
stochastic language CENTER = {ubv | u, v ∈ {a, b}∗ and |u| = |v|}. We show the
same separation for the bounded-error machines as conjectured by him [16].

Theorem 8. 1-pebble 2pfa’s are more powerful than 2pfa’s in the bounded error
case. (See [19] for the proof)

Acknowledgements. We would like to thank A. C. Cem Say not only for his
useful comments on a draft of this paper but also for many helpful discussions
on the subject matter of this paper; Juraj Hromkovič and Holger Petersen for
kindly answering our questions; and, Holger Petersen for giving an idea used in
the proof of Lemma 1. We are grateful to the anonymous reviewers.

References

1. Ambainis, A., Watrous, J.: Two–way finite automata with quantum and classical
states. Theoretical Computer Science 287(1), 299–311 (2002)

2. Chrobak, M.: Nondeterminism is essential for two-way counter machines. In:
Chytil, M.P., Koubek, V. (eds.) MFCS 1984. LNCS, vol. 176, pp. 240–244. Springer,
Heidelberg (1984)

One-Counter Verifiers for Decidable Languages 377

3. Condon, A.: Complexity Theory: Current Research, chap. The complexity of space
bounded interactive proof systems, pp. 147–190. Cambridge University Press (1993)

4. Condon, A., Lipton, R.J.: On the complexity of space bounded interactive proofs
(extended abstract). In: FOCS 1989: Proceedings of the 30th Annual Symposium
on Foundations of Computer Science, pp. 462–467 (1989)

5. Ďurǐs, P., Galil, Z.: Fooling a two-way automaton or one pushdown store is better
than one counter for two way machines (preliminary version). In: STOC 1981:
Proceedings of the 13th Annual ACM Symposium on Theory of Computing,
pp. 177–188 (1981)

6. Ďurǐs, P.,Galil, Z.: Fooling a twoway automaton or one pushdown store is better than
one counter for two way machines. Theoretical Computer Science 21, 39–53 (1982)

7. Dwork, C., Stockmeyer, L.: Finite state verifiers I: The power of interaction. Journal
of the ACM 39(4), 800–828 (1992)

8. Feige, U., Shamir, A.: Multi-oracle interactive protocols with space bounded veri-
fiers. In: Structure in Complexity Theory Conference, pp. 158–164 (1989)

9. Hromkovic, J., Schnitger, G.: On the power of randomized multicounter machines.
Theoretical Computer Science 330(1), 135–144 (2005)

10. Inoue, A., Ito, A., Inoue, K., Okazaki, T.: Some properties of one-pebble Tur-
ing machines with sublogarithmic space. Theoretical Computer Science 341(1-3),
138–149 (2005)

11. van Emde Boas, P.: Machine models and simulations. In: Handbook of Theoretical
Computer Science, vol. A, pp. 1–66 (1990)

12. Minsky, M.: Recursive unsolvability of Post’s problem of “tag” and other topics in
theory of Turing machines. Annals of Mathematics 74(3), 437–455 (1961)

13. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
14. Petersen, H.: Two-way one-counter automata accepting bounded languages.

SIGACT News 25(3), 102–105 (1994)
15. Petersen, H.: Private communication (June 2012)
16. Ravikumar, B.: Some observations on 2-way probabilistic finite automata. In:

Shyamasundar, R.K. (ed.) FSTTCS 1992. LNCS, vol. 652, pp. 392–403. Springer,
Heidelberg (1992)

17. Ravikumar, B.: On some variations of two-way probabilistic finite automata mod-
els. Theoretical Computer Science 376(1-2), 127–136 (2007)

18. Say, A.C.C., Yakaryılmaz, A.: Quantum counter automata. International Journal
of Foundations of Computer Science 23(5), 1099–1116 (2012)

19. Yakaryılmaz, A.: One-counter verifiers for decidable languages. Tech. Rep. ECCC:
TR12-091 (2012)

20. Yakaryılmaz, A.: Public-qubits versus private-coins. Tech. Rep. ECCC: TR12-130
(2012)

21. Yakaryılmaz, A., Freivalds, R., Say, A.C.C., Agadzanyan, R.: Quantum computa-
tion with write-only memory. Natural Computing 11(1), 81–94 (2012)

22. Yakaryılmaz, A., Say, A.C.C.: Languages recognized by nondeterministic quan-
tum finite automata. Quantum Information and Computation 10(9&10), 747–770
(2010)

23. Yakaryılmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum
finite automata. Discrete Mathematics and Theoretical Computer Science 12(2),
19–40 (2010)

24. Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small
space bounds. Information and Computation 279(6), 873–892 (2011)

25. Yamasaki, T., Kobayashi, H., Imai, H.: Quantum versus deterministic counter
automata. Theoretical Computer Science 334(1-3), 275–297 (2005)

More on the Complexity of Quantifier-Free

Fixed-Size Bit-Vector Logics
with Binary EncodingÆ

Andreas Fröhlich, Gergely Kovásznai, and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Abstract. Bit-precise reasoning is important for many practical appli-
cations of Satisfiability Modulo Theories (SMT). In recent years, efficient
approaches for solving fixed-size bit-vector formulas have been developed.
From the theoretical point of view, only few results on the complexity
of fixed-size bit-vector logics have been published. Most of these results
only hold if unary encoding on the bit-width of bit-vectors is used.

In previous work [1], we showed that binary encoding adds more ex-
pressiveness to bit-vector logics, e.g. it makes fixed-size bit-vector logic
without uninterpreted functions nor quantificationNExpTime-complete.

In this paper, we look at the quantifier-free case again and propose
two new results. While it is enough to consider logics with bitwise opera-
tions, equality, and shift by constant to derive NExpTime-completeness,
we show that the logic becomes PSpace-complete if, instead of shift by
constant, only shift by 1 is permitted, and even NP-complete if no shifts
are allowed at all.

1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical appli-
cations of Satisfiability Modulo Theories (SMT), particularly for hardware and
software verification. Examples of state-of-the-art SMT solvers with support for
bit-precise reasoning are Boolector, MathSAT, STP, Z3, and Yices.

Syntax and semantics of fixed-size bit-vector logics do not differ much in the
literature [2–6]. Concrete formats for specifying bit-vector problems also exist,
e.g. the SMT-LIB format [7] or the BTOR format [8].

Working with non-fixed-size bit-vectors has been considered for instance in
[4, 9], and more recently in [10], but is not the focus of this paper. Most industrial
applications (and examples in the SMT-LIB) have fixed bit-width.

We investigate the complexity of solving fixed-size bit-vector formulas. Some
papers propose such complexity results, e.g. in [3] the authors consider quantifier-
free bit-vector logic and give an argument for theNP-hardness of its satisfiability
problem. In [5], a sublogic of the previous one is claimed to be NP-complete.
Interestingly, in [11] there is a claim about the full quantifier-free bit-vector

Æ Supported by FWF, NFN Grant S11408-N23 (RiSE).

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 378–390, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics 379

logic without uninterpreted functions (QF BV) being NP-complete, however,
the proposed decision procedure confirms this claim only if the bit-widths of the
bit-vectors in the input formula are written/encoded in unary form. In [12, 13],
the quantified case is addressed, and the satisfiability problem of this logic with
uninterpreted functions (UFBV) is proved to be NExpTime-complete. Again,
the proof only holds if we assume unary encoded bit-widths. In practice, a more
natural and exponentially more succinct logarithmic encoding is used, such as
in the SMT-LIB, the BTOR, and the Z3 format.

In previous work [1], we already investigated how complexity varies if we con-
sider either a unary or a logarithmic, actually without loss of generality, binary
encoding. Apart from this, we are not aware of any work that investigates how
the particular encoding of the bit-widths in the input affects complexity (as an
exception, see [14, Page 239, Footnote 3]). Tab. 1 summarizes the completeness
results we obtained in [1].

Table 1. Completeness results of [1] for various bit-vector logics and encodings

quantifiers
no yes

uninterpreted functions uninterpreted functions
no yes no yes

encoding
unary NP NP PSpace NExpTime

binary NExpTime NExpTime ? 2-NExpTime

In this paper, we revisit QF BV2, the quantifier-free case with binary encod-
ing and without uninterpreted functions. We then put certain restrictions on the
operations we use (in particular on the shift operation). As a result, we obtain
two new sublogics which we show to be PSpace-complete resp. NP-complete.

2 Motivation

In practice, state-of-the-art bit-vector solvers rely on rewriting and bit-blasting.
The latter is defined as the process of translating a bit-vector resp. word-level
description into a bit-level circuit, as in hardware synthesis. The result can then
be checked by a (propositional) SAT solver. In [1], we gave the following example
(in SMT2 syntax) to point out that bit-blasting is not polynomial in general. It
checks commutativity of adding two bit-vectors of bit-width 1000000:

(set-logic QF_BV)

(declare-fun x () (_ BitVec 1000000))

(declare-fun y () (_ BitVec 1000000))

(assert (distinct (bvadd x y) (bvadd y x)))

380 A. Fröhlich, G. Kovásznai, and A. Biere

Bit-blasting such formulas generates huge circuits, which shows that checking
bit-vector logics through bit-blasting cannot be considered to be a polynomial
reduction. This also disqualifies bit-blasting as a sound way to argue that the
decision problem for (quantifier-free) bit-vector logics is in NP. We actually
proved in [1], that deciding bit-vector logics, even without quantifiers, is much
harder. It turned out to be NExpTime-complete in the general case.

However, in [1] we then also defined a class of bit-width bounded problems
and showed that under certain restrictions on the bit-widths this growth in
complexity can be avoided and the problem remains in NP.

In this paper, we give a more detailed classification of quantifier-free fixed-
size bit-vector logics by investigating how complexity varies when we restrict
the operations that can be used in a bit-vector formula. We establish two new
complexity results for restricted bit-vector logics and bring together our previous
results in [1] with work on linear arithmetic on non-fixed-size bit-vectors [10, 15]
and work on the reduction of bit-widths [16, 17]. The formula in the given
example only contains bitwise operations, equality, and addition. Solving this
kind of formulas turns out to be PSpace-complete.

3 Definitions

We assume the usual syntax for (quantifier-free) bit-vector logics, with a re-
stricted set of bit-vector operations: bitwise operations, equality, and (left) shift
by constant.

Definition 1 (Term). A bit-vector term t of bit-width n (n � N, n � 1) is
denoted by t�n�. A term is defined inductively as follows:

term condition bit-width

bit-vector constant: c�n� c � N, 0 � c � 2n n

bit-vector variable: x�n� x is an identifier n

bitwise negation: � t�n� t�n� is a term n

bitwise and/or/xor: �
t1
�n� � t2

�n�
�

t1
�n� and t2

�n� are terms n
� � �&, 	,
�

equality:
�
t1
�n� � t2

�n�
�

t1
�n� and t2

�n� are terms 1

shift by constant:
�
t�n� c�n�

� t�n� is a term,

c�n� is a constant
n

We also define how to measure the size of bit-vector expressions:

Definition 2 (Size). The size of a bit-vector term t�n� is denoted by 	t�n�	 and
is defined inductively as follows:

More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics 381

term size

natural number: enc�n� �log2 �n� 1��� 1

bit-vector constant: 	c�n�	 enc�c� � enc�n�

bit-vector variable: 	x�n�	 1� enc�n�

bitwise negation: 	 � t�n�	 1� 	t�n�	

binary operations:
	
�
t1
�n� � t2

�n�
�
	 1� 	t1

�n�	 � 	t2
�n�	

� � �&, 	,
,�,�

A bit-vector term t�1� is also called a bit-vector formula. We say that a bit-vector
formula is in flat form if it does not contain nested equalities. It is easy to see that
any bit-vector formula can be translated to this form with only linear growth in
the number of variables. In the rest of the paper, we may omit parentheses in a
formula for the sake of readability.

Let Φ be a bit-vector formula and α an assignment to the variables in Φ. We
use the notation α�Φ� to denote the evaluation of Φ under α, with α�Φ� � �0, 1�.
α satisfies Φ if and only if α�Φ� � 1. We define three different bit-vector logics:

- QF BV2�c: bitwise operations, equality, and shift by any constant are allowed
- QF BV2�1: bitwise operations, equality, and shift by only c � 1 are allowed
- QF BV2bw: only bitwise operations and equality are allowed

Obviously, QF BV2bw � QF BV2�1 � QF BV2�c. In Sec. 4, we investigate
the complexity of the satisfiability problem for these logics:

- QF BV2�c is NExpTime-complete.
- QF BV2�1 is PSpace-complete.
- QF BV2bw is NP-complete.

Adding uninterpreted functions does not change expressiveness of these logics,
since in the quantifier-free case, uninterpreted functions can always be replaced
by new variables. To guarantee functional consistency, Ackermann constraints
have to be added to the formula. However, even in the worst case, the number
of Ackermann constraints is only quadratic in the number of function instances.
Without loss of generality, we therefore do not explicitly deal with uninterpreted
functions.

4 Complexity Results

Theorem 1. QF BV2�c is NExpTime-complete.

Proof. The claim directly follows from our previous work in [1]. We informally
defined QF BV2 as the quantifier-free bit-vector logic that uses the common

382 A. Fröhlich, G. Kovásznai, and A. Biere

bit-vector operations as defined for example in SMT-LIB, including bitwise op-
erations, equality, shifts, addition, multiplication, concatenation, slicing, etc.,
and then showed that QF BV2 is NExpTime-complete.

Obviously, QF BV2�c � QF BV2 and therefore, QF BV2�c � NExpTime.
To show theNExpTime-hardness ofQF BV2, we gave a (polynomial) reduction
from DQBF (which is NExpTime-complete [18]) to QF BV2. Since we only
used bitwise operations, equality, and shift1 by constant in our reduction, we also
immediately get the NExpTime-hardness of QF BV2�c.

Theorem 2. QF BV2�1 is PSpace-complete.

Proof. In Lemma 1, we give a (polynomial) reduction from QBF (which is
PSpace-complete) to QF BV2�1. This shows the PSpace-hardness of
QF BV2�1. In Lemma 2, we then prove that QF BV2�1 � PSpace by giv-
ing a translation from QF BV2�1 to (polynomial sized) Sequential Circuits. As
pointed out for example in [19], the symbolic reachability problem is PSpace-
complete as well.

Lemma 1. QBF can be (polynomially) reduced to QF BV2�1.

Proof. To show the PSpace-hardness of QF BV2�1, we give a polynomial re-
duction fromQBF similar to the one from DQBF to QF BV2 that we proposed
in [1]. For our reduction, we again use the so-called binary magic numbers (or
magic masks in [20, p. 141]).

Given m,n � N with 0 � m � n, a binary magic number can be written in
the following form:

binmagic �2m, 2n� �

2n���������������������������������������
0 . . . 0���	��

2m

1 . . . 1���	��

2m

. . . 0 . . . 0���	��

2m

1 . . . 1���	��

2m

Note that in [1], we used shift by constant to construct the binary magic numbers,
as done in the literature [20]. This is not permitted in QF BV2�1. We therefore
give an alternative construction using only bitwise operations, equality, and shift
by 1 :

Given n � 0, for all m, 0 � m � n, add the following equation to the
formula:

b�m
�2n�

�

� �
0�i�m

bi
�2n�

 bm

�2n�

Consider all the bit-vector variables b0
�2n�, . . . , bn�1

�2n� as column vectors in a

matrix B�2n�n� and all the bit-vector variables b�0
�2n�

, . . . , b�n�1
�2n�

as column

vectors in a matrix B��2n�n�. If each row of B is interpreted as a number 0 �
c � 2n in binary representation, the corresponding row of B� is equal to c� 1.

1 Note, logical right shifts were used in the proof in [1]. However, by applying negated
bit masks throughout the proof, all right shifts can be rewritten as left shifts.

More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics 383

Now, again for all m, 0 � m � n, add another constraint:

b�m
�2n�

� bm
�2n� 1�2

n�

Together with the previous n equations, those n constraints force the rows of B
to represent an enumeration of all binary numbers 0 � c � 2n. Therefore, the
columns of B, i.e. the individual bit-vectors b0

�2n�, . . . , bn�1
�2n�, exactly define

the binary magic numbers: binmagic �2m, 2n� :� bm
�2n�.

Of course, all b�m, for 0 � m � n, can be eliminated and the two sets of
constraints can be replaced by a single set of constraints:� �

0�i�m

bi
�2n�

 bm

�2n� � bm
�2n� 1�2

n�

Now let φ :� Q.M denote a QBF formula with quantifier prefix Q and matrix
M . Since φ is a QBF formula (in contrast to DQBF in [1]), we know that Q
defines a total order on the universal variables. We now assume the universal
variables u0, . . . , un�1 of φ are ordered according to their appearance in Q, with
u0 (resp. un�1) being the innermost (resp. outermost) variable.

Translate φ to a QF BV2�1 formula Φ by eliminating the quantifier prefix
and translating the matrix as follows:

Step 1. Replace Boolean constants 0 and 1 with 0�2
n� resp. � 0�2

n� and logical
connectives with corresponding bitwise bit-vector operations (e.g. � with &). Let

Φ� denote the formula generated so far. Extend it to the formula
�
Φ� � �0�2

k�
�
.

Step 2. For each universal variable um � �u0, . . . , un�1�,

1. translate (all the occurrences of) um to a new bit-vector variable Um
�2n�;

2. in order to assign a binary magic number to Um
�2n�, add the following equa-

tion (i.e., conjunct it with the current formula):

Um
�2n� � binmagic �2m, 2n�

Step 3. For an existential variable e depending on Deps�e� � �um, . . . , un�1�,
with um being the innermost universal variable that e depends on,

1. translate (all the occurrences of) e to a new bit-vector variable E�2n�;
2. if Deps�e� � � add the following equation:

�E & �1� � �E 1� (1)

otherwise, if m � 0 add the two equations:

U �
m � �

�
�Um 1�
 Um

�
(2)

�E & U �
m� �

�
�E 1� & U �

m

�
(3)

384 A. Fröhlich, G. Kovásznai, and A. Biere

Note that we omitted the bit-widths in the last equations to improve read-
ability. Each bit position of Φ corresponds to the evaluation of φ under a spe-
cific assignment to the universal variables u0, . . . , un�1, and, by construction of
U0

�2n�, . . . , Un�1
�2n�, all possible assignments are considered. Eqn. (2) creates a

bit-vector U �
m
�2n�

for which each bit equals to 1 if and only if the corresponding
universal variable changes its value from one universal assignment to the next.

Of course, Eqn. (2) does not have to be added multiple times, if several exis-
tential variables depend on the same universal variable. Eqn. (3) (resp. Eqn. (1))
ensures that the corresponding bits of E�2n� satisfy the dependency scheme of
φ by only allowing the value of e to change if an outer universal variable takes
a different value. If m � 0, i.e. if e depends on all universal variables, Eqn. (2)

evaluates to U �
0
�2n�

� 0, and as a consequence Eqn. (3) simplifies to true. Be-
cause of this no constraints need to be added for m � 0. A similar approach
used for translating QBF to Symbolic Model Verification (SMV) can be found
in [21]. See also [19] for a translation from QBF to Sequential Circuits.

Lemma 2. QF BV2�1 can be (polynomially) reduced to Sequential Circuits.

Proof. In [10, 15], the authors give a translation from quantifier-free Presburger
arithmetic with bitwise operations (QFPAbit) to Sequential Circuits. We can
adopt their approach in order to construct a translation for QF BV2�1. The
main difference betweenQFPAbit andQF BV2�1 is the fact that bit-vectors of
arbitrary, non-fixed, size are allowed in QFPAbit while all bit-vectors contained
in QF BV2�1 have a fixed bit-width.

Given Φ � QF BV2�1 in flat form. Let x�n�, y�n� denote bit-vector variables,
c�n� a bit-vector constant, and t1

�n�, t2
�n� bit-vector terms only containing bit-

vector variables and bitwise operations. Following [10, 15] we further assume
w.l.o.g that Φ only consists of three types of expressions: t1

�n� � t2
�n�, x�n� � c�n�,

and x�n� � y�n� 1�n�, since any QF BV2�1 formula can be written like this
with only a linear growth in the number of original variables.

We encode each equality in Φ separately into an atomic Sequential Circuit.
Compared to [10, 15], two modifications are needed. First, we need to give a
translation for x � y 1 to Sequential Circuits. This can be done for example
by using the Sequential Circuit for x � 2 � y in QFPAbit. However, a direct
translation can also easily be constructed.

The second modification relates to dealing with fixed-size bit-vectors. Let n
be the bit-width of all bit-vectors in a given equality. We extend each atomic
Sequential Circuit to include a counter (circuit). The counter initially is set to
0 and is incremented by 1 in each clock cycle up to a value of n.

When the counter reaches a value of n, it does not change anymore and the
output of the atomic Sequential Circuit is set to the same value as the output
in the previous cycle. A counter like this can be realized with �log2�n�� gates,
i.e. polynomially in the size of Φ. In contrast to the implementation described
in [15], we assume that the input streams for all variables start with the least
significant bit. However, as already pointed out by the authors in [15], their

More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics 385

choice was arbitrary and it is no more complicated to construct the circuits the
other way round.

Finally, after constructing atomic circuits, their outputs are combined by logi-
cal gates following the Boolean structure of Φ, in the same way as for unbounded
bit-width in [10, 15]. Due to adding counters, we ensure that for every input
stream xi, only the first ni bits of xi influence the result of the whole circuit.

For the proof of Thm. 3, we need the following definition and lemma from [1]:

Definition 3 (Bit-Width Bounded Formula Set [1]). Given a formula Φ,
we denote the maximal bit-width in Φ with maxbw �Φ�. An infinite set S of bit-
vector formulas is (polynomially) bit-width bounded, if there exists a polynomial
function p : N �� N such that �Φ � S. maxbw �Φ� � p�	Φ	�.

Lemma 3 ([1]). S � NP for any bit-width bounded formula set S � QF BV2.

Theorem 3. QF BV2bw is NP-complete.

Proof. Since Boolean Formulas are a subset of QF BV2bw, NP-hardness follows
directly. To show that QF BV2bw � NP, we give a reduction from QF BV2bw

to a bit-width bounded set of formulas. The claim then follows from Lemma 3.
Given a formula Φ � QF BV2bw in flat form. If Φ contains any constants

c�n� � 0�n�, we remove those constants in a (polynomial) pre-processing step.
Let cmax

�n� � bk�1 . . . b1b0 be the largest constant in Φ denoted in binary rep-
resentation with bk�1 � 1 and arbitrary bits bk�2, . . . , b0. We now replace each
equality t1

�m� � t2
�m� in Φ with

�t1,k��1
�1� � t2,k��1

�1�� & . . . & �t1,0
�1� � t2,0

�1��

where k� � min�m, k�, and, if m � k, we additionally add

& �t1,hi
�m�k� � t2,hi

�m�k��

For 0 � i � k, we use �t1,i
�1� � t2,i

�1�� to express the ith row of the original
equality. All occurrences of a variable x�m� are replaced with a new variable
xi
�1�. All occurrences of a constant c�m� are replaced with 0�1� if the ith bit of

the constant is 0, and by �0�1� otherwise.
In a similar way, if m � k, �t1,hi

�m�k� � t2,hi
�m�k�� represents the remaining

�m�k� rows of the original equality corresponding to the most significant bits. All
occurrences of a variable x�m� are replaced with a new variable xhi

�m�k� and all
occurrences of a constant c�m� are replaced with 0�m�k�. Since this pre-processing
step is logarithmic in the value of cmax, it is polynomial in 	Φ	. Without loss of
generality, we now assume that Φ does not contain any bit-vector constants
different from 0�n�.

We now construct a formula Φ� by reducing the bit-widths of all bit-vector

terms in Φ. Each term t�n� in Φ with bit-width n is replaced with a term t�n
��,

with n� :� min�n, 	Φ	�. Apart from this, Φ� is exactly the same as Φ. As a
consequence, maxbw �Φ

�� � 	Φ	. The set of formulas constructed in this way is
bit-width bounded according to Def. 3.

386 A. Fröhlich, G. Kovásznai, and A. Biere

To complete our proof, we now have to show that the proposed reduc-
tion is sound, i.e. out of every satisfying assignment to the bit-vector vari-
ables x1

�n1�, . . . , xk
�nk� for Φ we can also construct a satisfying assignment to

x1
�n�

1�, . . . , xk
�n�

k� for Φ� and vice versa.
It is easy to see that whenever we have a satisfying assignment α� for Φ�,

we can construct a satisfying assignment α for Φ. This can be done by simply
setting all additional bits of all bit-vector variables to the same value as the most
significant bit of the corresponding original vector, i.e. by performing a signed
extension. Since all equalities still evaluate to the same value under the extended
assignment, α�F � � α��F �� for all equalities F (resp. F �) of Φ (resp. Φ�). As a
direct consequence, α�Φ� � α��Φ� � 1.

The other direction needs slightly more reasoning. Given α, with α�Φ� � 1, we
need to construct α�, with α��Φ�� � 1. Again, we want to ensure that α��F �� �
α�F � for all equalities F (resp. F �) in Φ (resp. Φ�).

In each variable xi
�ni�, i � �1, . . . , k�, we are going to select some of the

bits. For each equality F with α�F � � 0, we select a bit-index as a witness for
its evaluation. If α�F � � 1, we select an arbitrary bit-index. We then mark the
selected bit-index in all bit-vector variables contained in F , as well as in all other
bit-vector variables of the same bit-width. Having done this for all equalities, we
end up with sets Mi of selected bit-indices, for all i � �1, . . . , k�, where

	Mi	 � min�ni, 	Φ	�

Mi �Mj �j � �1, . . . , k� with ni � nj

The selected indices contain a witness for the evaluation of each equality. We now
add arbitrary further bit-indices, again selecting the same indices in bit-vector
variables of the same bit-width, until 	Mi	 � min�ni, 	Φ	� �i � �1, . . . , k�.

Finally, we can directly construct α� using the selected indices and get α��Φ�� �
α�Φ� � 1 because of the fact that we included a witness for every equality in
our index-selection process. Note, that we only had to choose a specific witness
for the case that α�F � � 0. For α�F � � 1, we were able to choose an arbitrary
bit-index because every satisfied equality will trivially still be satisfied when only
a subset of all bit-indices is considered.

Remark 1. A similar proof can be found in [16, 17]. While the focus of [16, 17]
lies on improving the practical efficiency of SMT-solvers by reducing the bit-
width of a given formula before bit-blasting, the author does not investigate
its influence on the complexity of a given problem class. In fact, the author
claims that bit-vector theories with common operators are NP-complete. As we
have already shown in [1], this only holds if unary encoding on the bit-widths is
used. However, unary encoding leads to the fact that the given class of formulas
remains NP-complete, independent of whether a reduction of the bit-width is
possible. While the arguments on bit-width reduction given in [16, 17] still hold
for binary encoded bit-vector formulas when only bitwise operators are used, our
proof considers the complexity of the problem class.

More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics 387

5 Discussion

The complexity results given in Sec. 4 provide some insight in where the expres-
siveness of bit-vector logics with binary encoding comes from. While we assume
bitwise operations and equality naturally being part of a bit-vector logic, if and
to what extent we allow shifts directly determines its complexity. Shifts, in a cer-
tain way, allow different bits of a bit-vector to interact with each other. Whether
we allow no interaction, interaction between neighbouring bits, or interaction
between arbitrary bits is crucial to the expressiveness of bit-vector logics and
the complexity of their decision problem.

Additionally, we directly get classifications for various other bit-vector opera-
tions: for example, we still remain in PSpace if we add linear modular arithmetic
to QF BV2�1. This can be seen by replacing expressions x�n� � y�n� � z�n� by�

x�n� � y�n�
 z�n�
 cin
�n�
�

&
�
cin

�n� � cout
�n� 1�n�

�
&�

cout
�n� �

�
x�n� & y�n�

�
	
�
cin

�n� & y�n�
�
	
�
x�n� & cin

�n�
��

with new variables cin
�n�, cout

�n�, and by splitting multiplication by constant into
several multiplications by 2 (resp. shift by 1), similar to [10, 15]. However, this
is not surprising since QFPAbit is already known to be PSpace-complete [15].

More interestingly, we can also extend QF BV2�1 (resp. QFPAbit) by in-
dexing (denoted by x�n��i�) without growth in complexity. The counter we in-
troduced in our translation from QF BV2�1 to Sequential Circuits can be used
to return the value at a specific bit-index of a bit-vector. Extending QF BV2�1

with additional relational operators like e.g. unsigned less than (denoted by
x�n� �u y�n�) does not increase complexity, either. For instance, the above ex-
pression can be replaced by checking whether x� y � 0 holds, which can simply
be done by constructing an adder for x�n��

�
�y�n� � 1�n�

�
, as shown above, and

then check whether overflow occurs, i.e.,
�
y�n� � 0�n�

�
&
�
cout

�n��n� 1� � 0�1�
�
.

On the other hand, slicing (denoted by x�n� �i : j�) cannot be added without
growth in complexity. To prove this, consider�

x�n� �n� 1 : c� � y�n� �n� c� 1 : 0�
�

&
�
x�n� �c� 1 : 0� � 0�c�

�
which is equivalent to

x�n� � �y�n� c�n��

and shows that slicing can be used to express shift by constant. Therefore, the
resulting logic becomes NExpTime-complete. The same result holds for general
multiplication. We can use

x�n� � �y�n� � 2c�n��

to replace shift by constant and use exponentiation by squaring to calculate 2c�n�

with �log2�n�� multiplications.

388 A. Fröhlich, G. Kovásznai, and A. Biere

Note that those results only hold for fixed-size bit-vector logics. For exam-
ple, allowing multiplication (in combination with addition) makes non-fixed-size
bit-vector logics undecidable [22]. We are not aware of any complexity results
concerning non-fixed-size bit-vector logics with slicing or shift by constant.

6 Conclusion

In this paper, we discussed the complexity of fixed-size bit-vector logics with bi-
nary encoding on numbers. In contrast to existing literature, except for [1], where
usually it is not distinguished between unary or binary encoding, we argued that
it is important to make this distinction. Our results apply to the actually much
more natural binary encoding as it is also used in standard formats, e.g. in the
SMT-LIB format. In previous work [1], we already showed the quantifier-free
case of those bit-vector logics to be NExpTime-complete. We now extended our
previous work by analyzing the quantifier-free case in more detail and gave two
new complexity results.

In particular, we showed that the complexity of deciding quantifier-free bit-
vector logics with bitwise operations and equality depends on whether we al-
low shift by constant (QF BV2�c), shift by 1 (QF BV2�1), or no shifts at
all (QF BV2bw). While deciding QF BV2�c remains NExpTime-complete, we
proved that QF BV2�1 is PSpace-complete, and QF BV2bw even becomes
NP-complete.

In addition to the already previously proposed concept of bit-width bound-
edness, this gives an alternative way to avoid the increase in complexity that
comes with binary encoding in the general case. To be more specific for prac-
tical logics, we then looked at the effect some other common operations have
on this complexity results. We discussed why logics with addition, multipli-
cation by constant, indexing, and relational operations still can be decided in
PSpace, and showed that allowing general multiplication or slicing already leads
to NExpTime-completeness.

On the one hand, our theoretical results give an argument for using more
powerful solving techniques when dealing with bit-vector logics. Currently the
most common approach used in state-of-the-art SMT solvers for bit-vectors is
based on simple rewriting, bit-blasting, and SAT solving. We have shown this
can possibly produce exponentially larger formulas when a logarithmic encoding
is used in the input. As already argued in [1], possible candidates for the general
case are techniques used in EPR and/or DQBF solvers (see e.g. [23, 24]).

On the other hand, we described various logics that remain in lower complexity
classes. For QF BV2bw this shows the importance of bit-width reduction as
proposed in [16, 17] before bit-blasting. For formulas in QF BV2�1 or one of
the related classes, only using shift by 1, addition, multiplication by constant,
and indexing, techniques used in state-of-the-art QBF solvers [25] or symbolic
model checking on Sequential Circuits [19] might be of interest.

More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics 389

References

1. Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector
logics with binary encoded bit-width. In: Proc. SMT 2012, pp. 44–55 (2012)

2. Cyrluk, D., Möller, O., Rueß, H.: An efficient decision procedure for the theory
of fixed-sized bit-vectors. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp.
60–71. Springer, Heidelberg (1997)

3. Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for bit-vector arith-
metic. In: Proc. DAC 1998, pp. 522–527 (1998)

4. Bjørner, N., Pichora, M.C.: Deciding fixed and non-fixed size bit-vectors. In:
Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 376–392. Springer, Heidelberg
(1998)

5. Bruttomesso, R., Sharygina, N.: A scalable decision procedure for fixed-width bit-
vectors. In: Proc. ICCAD 2009, pp. 13–20. IEEE (2009)

6. Franzén, A.: Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and
Some Extensions to SMT. PhD thesis, University of Trento (2010)

7. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. In: Proc.
SMT 2010, Edinburgh, UK (2010)

8. Brummayer, R., Biere, A., Lonsing, F.: BTOR: bit-precise modelling of word-level
problems for model checking. In: Proc. BPR 2008, pp. 33–38. ACM, New York
(2008)

9. Ayari, A., Basin, D.A., Klaedtke, F.: Decision procedures for inductive boolean
functions based on alternating automata. In: Emerson, E.A., Sistla, A.P. (eds.)
CAV 2000. LNCS, vol. 1855, pp. 170–186. Springer, Heidelberg (2000)

10. Spielmann, A., Kuncak, V.: Synthesis for unbounded bit-vector arithmetic. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364,
pp. 499–513. Springer, Heidelberg (2012)

11. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.:
Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007)

12. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified
bit-vector formulas. In: Proc. FMCAD 2010, pp. 239–246. IEEE (2010)

13. Wintersteiger, C.M.: Termination Analysis for Bit-Vector Programs. PhD thesis,
ETH Zurich, Switzerland (2011)

14. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function syn-
thesis for bit-vector relations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 236–250. Springer, Heidelberg (2010)

15. Spielmann, A., Kuncak, V.: On synthesis for unbounded bit-vector arithmetic.
Technical report, EPFL, Lausanne, Switzerland (February 2012)

16. Johannsen, P.: Reducing bitvector satisfiability problems to scale down design sizes
for RTL property checking. In: Proc. HLDVT 2001, 123–128 (2001)

17. Johannsen, P.: Speeding Up Hardware Verification by Automated Data Path Scal-
ing. PhD thesis, CAU Kiel, Germany (2002)

18. Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: Proc. FOCS 1979,
pp. 348–363 (1979)

19. Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-based
formal verification. STTT 7(2), 156–173 (2005)

20. Knuth, D.E.: The Art of Computer Programming, Volume 4A: Combinatorial
Algorithms. Addison-Wesley (2011)

390 A. Fröhlich, G. Kovásznai, and A. Biere

21. Donini, F.M., Liberatore, P., Massacci, F., Schaerf, M.: Solving QBF with SMV.
In: Proc. KR 2002, pp. 578–589 (2002)

22. Davis, M., Matijasevich, Y., Robinson, J.: Hilbert’s tenth problem: Diophantine
equations: positive aspects of a negative solution. In: Proc. Sympos. Pure Mathe-
matics, vol. 28, pp. 323–378 (1976)

23. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF. In:
Proc. POS 2012 (2012)

24. Korovin, K.: iProver – an instantiation-based theorem prover for first-order
logic (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

25. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers.
In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171.
Springer, Heidelberg (2010)

Composition with Algebra at the Background�

On a Question by Gurevich and Rabinovich
on the Monadic Theory of Linear Orderings

Thomas Colcombet

Liafa/Cnrs/Université Denis Diderot, Paris 7
thomas.colcombet@liafa.univ-paris-diderot.fr

Abstract. Gurevich and Rabinovich raised the following question: given
a property of a set of rational numbers definable in the real line by a
monadic second-order formula, is it possible to define it directly in the
rational line? In other words, is it true that the presence of reals at the
background do not increase the expressive power of monadic second-order
logic?

In this paper, we answer positively this question. The proof in itself is a
simple application of classical and more recent techniques. This question
will guide us in a tour of results and ideas related to monadic theories of
linear orderings.

1 In Which the Legacy Is Acknowledged

Büchi, Elgot, Kleene, Rabin, Scott, Shelah, Schützenberger, Trakhtenbrot and
others shaped the notion of regular languages as we know it. In less than two
decades, a beautiful theory involving computability, logic, algebra and topology
has emerged. Today’s researcher still walk on this path and are far from its end.

Most of the attention in this theory is put on monadic second-order logic.
Monadic logic (we will drop the second-order from now) is the extension of first-
order logic with the possibility to quantify over sets of elements. For comparison,
full second-order logic would allow to quantify over relations of all arities, while
in monadic logic, only 1-ary relations are allowed, and these can be interpreted
as sets. 1-ary relations are called monadic.

Monadic logic allows for instance to express properties of directed graph. In
this case, we assume that the elements are vertices of the graph and the only
available symbol edge(x, y) expresses the existence of an edge from vertex x to
vertex y. The existence of a path starting from a node i and reaching a node f
can be expressed in monadic logic, as follows:

All sets of vertices that contain i and are closed under the edge relation
also contain f .

� The research leading to these results has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n 259454.
The author also acknowledges support from the project ANR 2010 BLAN 0202 02
FREC.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 391–404, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

392 T. Colcombet

Of course, this is to be translated in mathematical symbols, as follows:

path(i, f)
def
= ∀Z(i ∈ Z ∧ ∀x∀y (x ∈ Z ∧ edge(x, y) → y ∈ Z))

→ f ∈ Z .

The important convention here is that lower case letter (here i, f, x, y) implicitly
range over elements, while upper case letters (here Z) range over sets of such
elements. We also see that a membership relation is available, such as in x ∈ Z,
with an obvious meaning. In some works, emphasizing on the fact that sets are
1-ary relations, this is denoted as Z(x).

(In this example, the power of monadic logic compared to first-order logic,
is already transparent. Indeed, it is a classical fact that reachability, i.e., the
existence of a path, is not expressible in first-order logic. This is usually the first
application that is given to Ehrenfeucht-Fräıssé games.)

The view we have on monadic logic is the one of algorithmic model theory,
i.e., the aim is to develop algorithms that can “solve” the logic. Solving has
several meaning depending on the situation. The first is satisfiability which
means, given a formula, to determine the existence of a structure for which it
holds (a model). The second is model-checking which means, given a formula
and some description of a structure (possibly infinite), to determine if the formula
holds on this specific structure. Grand expectations have to be immediately
lowered: satisfiability of monadic logic is undecidable as such. This is inherited
from first-order logic, that it is extending, which is already undecidable [11].

The interest of monadic logic appears when it is considered on structures of
specific shapes, namely words and trees or resemblant models. We will not de-
velop the tree-like structures in this paper. By words, we mean structures that
are linearly ordered, and in which each element is decorated by some finite local
information. These are also referred to as chains. These two terminologies de-
scribe properties of exactly the same nature, but differ concerning many choices
of notations. In particular the notations for chains are consistent with the view
of logic, while the notations for words are consistent with language theory. We
adopt in this paper the word terminology and stick to it, even if it is rightfully
arguable.

Let us explain how a word can be encoded as a relational structure: a word
can be seen as a linearly ordered set of positions enriched with unary predicates
that describe what letter is carried by each position. Formally, a word over an
alphabet A is a structure (L,≤, (a)a∈A) where ≤ equips L of a total order – we
call (L,≤) the domain of the word, and refer to (L,≤) as a linear ordering
– and for all elements x of L there exists one and exactly one letter a ∈ A such
that a(x) holds. Remark here that we did not make any assumption concerning
the finiteness of the linear ordering. This is important since we will eventually
be entering the realm of infinite structures. We will refer to countable words
or ω-words if the underlying linear ordering is countable or isomorphic to ω
respectively.

A language of finite words over the alphabet A∗ is monadic definable if
there is a monadic sentence ϕ such that L = {u ∈ A∗ : u |= ϕ} (where, as

Composition with Algebra at the Background 393

is usual u |= ϕ is pronounced “u models ϕ” and means that ϕ holds over the
relational structure encoding the word u). If ϕ(X1, . . . , Xk) is a monadic formula
of free monadic variables X1, . . . , Xk, and A1, . . . , Ak are subsets of the domain
of a word u, then u |= ϕ(A1, . . . , Ak) is true if ϕ is satisfied on u when its free
variables X1, . . . , Xk take A1, . . . , Ak as respective value.

For instance, over finite words, a property ϕ(X) expressing that “between any
two occurrences of the letter a, at least one point belongs to X” can be written
as ∀x∀y (x < y ∧ a(x) ∧ a(y)) → ∃z(z ∈ X ∧ x < z < y).

The starting point in the description of monadic logic is its equivalence over fi-
nite words with regular languages, as it has been found independently by Trakht-
enbrot on the one side, and Elgot and Büchi on the other side:

Theorem 1 (Büchi, Elgot and Trakhtenbrot [1,4,10]). A language of fi-
nite words is definable in monadic logic if and only if it is regular1.
Furthermore, the translations are effective, and as a consequence, satisfiability
of monadic logic over finite words is decidable.

The decidability result means that we can symbolically test the formula toward
an infinite number of potential inputs, here words. But Büchi made a further
step by showing that in such results, even the input can be infinite. Here, an
ω-word is a word such that the underlying linear ordering is isomorphic to ω, or
equivalently (N,≤).

Theorem 2 (Büchi [2]). A language of ω-words is definable in monadic logic
if and only if it is recognized by a Büchi-automaton2.
Furthermore, the translations are effective, and as a consequence, satisfiability
of monadic logic over ω-words is decidable.

This result was the first success in the decidability of the monadic theory of
some infinite models.

Remark 1. The original result of Büchi establishes the decidability of the monadic
theory of (N,≤). Of course, (N,≤) can be seen as an instance of a word over
a unary alphabet. Thus, from Theorem 2, we can deduce the decidability of
(N,≤). The converse also holds. Indeed, a word over the finite alphabet A can
be encoded, e.g., as the linear ordering of its domain together with sets (Xa)a∈A
such that a position i belongs to Xa if and only if i carries the letter a. Using
this encoding, a monadic formula over ω can guess on ω-word using existential
quantifiers over sufficiently many monadic variables. Using this technique, the
decidability of the satisfiability of monadic logic over ω-words can be deduced
from the decidability of the theory of ω. These kind of encodings are doable for
all linear orderings.

Of course, we can go further. The two landmark linear orderings are the rational
line (Q,≤) (sometimes denoted η of Q), and the real line (R,≤) (sometimes
denoted λ or R).

1 Say, recognized by a finite state automaton.
2 We do not present this very classical model here.

394 T. Colcombet

Theorem 3 (Rabin [8]). The monadic theory of the rational line is decid-
able, or equivalently the satisfiability of monadic logic over words of domain the
rational line is decidable.

In fact, the proof of Rabin concerns the infinite binary tree, which is a richer
structure than the rational line. The proof of Rabin establishes that, over infinite
trees, monadic logic is equivalent to a certain form of automata. The decidability
of the rational line is then obtained by interpreting the rational line inside the
infinite binary tree. This allows to decide the monadic theory of the rational line,
but it is not at all informative concerning the expressive power of monadic logic
over the rational line. In particular, one cannot deduce, say, a model of automata
that would have the expressive power of monadic logic over the rational line.

Example 1. In order to illustrate the above theorem, let us try to give some intu-
ition of what can be defined using monadic logic over linear orderings in general.
We do not try to be exhaustive, and merely list some classical constructions and
examples.

Relativisation. Given a monadic formula Ψ and a set X , the relativisation
of Ψ to X is the formula ΨX in which all first-order quantifiers are required to
range overX and all monadic quantifiers are required to range over subsets of X .
This can be done by a simple syntactic transformation of Ψ . The formula ΨX holds
over a structure if the formula Ψ holds over the structure restricted to the set X .

As a consequence, Theorem 3 can be used to decide monadic logic over the
class of all countable linear orderings. Indeed, remark that any countable linear
ordering is isomorphic to a sub-ordering of the rational line. As a consequence,
Theorem 3 can be used to decide the existence of a countable linear ordering that
satisfy a formula Ψ : such a linear ordering exists if and only if (Q,≤) |= ∃X ΨX .

Finiteness. Remark that a non-empty linear ordering that has no maximal
point is infinite. Furthermore, this property is expressible in monadic logic (in
fact in first-order logic). Now, it is easy to see that conversely, if a linear ordering
is infinite, then either it has a non-empty sub-ordering that has no maximal
point, or a non-empty sub-ordering that has no minimal point. This is expressible
in monadic logic.

Using relativisation, this allows to express properties such as “X is finite” for
X a monadic variable. As a consequence we can express properties such as “every
finite sub-words belong to L”, where L is a regular language of finite words.

Digression. Let us recall that finiteness is not first-order definable in linear or-
derings. This is a straightforward consequence of compactness, as follows. For
the sake of contradiction, assume that the property “the linear ordering is finite”
is expressible in first order, then the property Pn =“the linear ordering is finite
and contains at least n distinct elements” would be expressible in first-order logic
too. But any finite sets of properties Pn has a model (the finite linear ordering of
length m where m is the maximal of the n’s involved in the Pn’s under consider-
ation). Thus by compactness, there exists a linear ordering that satisfies all Pn’s
simultaneously. This is obviously impossible since this would be a linear ordering
that is at the same be finite and contains more than n points for all n.

Composition with Algebra at the Background 395

Density. A linear ordering is said dense if for any two points x < y there
exists another point z ∈ (x, y). The rational line is dense, while ω (and more
generally any ordinal) is not dense. As an extra example, the integer line (Z,≤)
is also not dense, and it is not isomorphic to an ordinal either.

In particular, assuming that a linear ordering is countable, then being iso-
morphic to (Q,≤) is expressible in monadic logic (in fact first-order). Indeed,
up to isomorphism, (Q,≤) is the only countable linear ordering that is dense,
contains at least two points, and has no minimal nor maximal point.

Scatteredness. A linear ordering is said scattered if none of its sub-
orderings are dense. This is definable directly in monadic logic using relativi-
sation.

Remark that it may happen that a linear ordering is neither dense nor scat-
tered: imagine for instance a copy of the rational line in which every point is
replaced by a copy of (Z,≤).

In his seminal paper [9], Shelah uses another technique – the composition
method – and use it to prove the decidability of the monadic theory of the
rational line. However, the most impressive result he obtains is the undecidability
of the monadic theory of the real line.

Theorem 4 (Shelah [9]). The monadic theory of the real line is undecidable3.

This is a intriguing result that in some sense contradicts the intuition.
At this point, we have seen the key results concerning the decidability of the

monadic theory of linear orderings. Though both the result of decidability and of
undecidability can be improved, these improvements do not help understanding
the picture better.

2 In Which the Problem Is Exposed and Some of Its
Intriguing Characteristics Appear

As we have seen, the central problems of decidability are solved for most of
them. The questions we are really interested in this paper are more related to
expressivity.

Question 1. Given a monadic formula ϕ(X1, . . . , Xk), does there exist another
formula ϕ∗(X1, . . . , Xk) such that for all sets of rationals A1, . . . , Ak ⊆ Q,

(R,≤) |= ϕ(A1, . . . , Ak) if and only if (Q,≤) |= ϕ∗(A1, . . . , Ak) .

In other words, the question is whether the ability to use all points of the real
line does give more expressive power for stating properties of predicates over the
rational line. Notice here that implicitely, we use the fact that there is a fixed
embedding of (Q,≤) into (R,≤) (the usual one).

Gurevich and Rabinovich use the nice and suggestive terminology that the
formula ϕ has access to the reals at the background [6]. The open above
question is thus a rephrasing of the following open question in [6]:

3 Originally under a weak version of the continuum hypothesis, which has then be
removed in collaboration with Gurevich [7].

396 T. Colcombet

“Is it true that a family of point-sets is definable in the chain (Q,≤) of
rationals if and only if it is definable in (Q,≤) with the chain of reals at
the background?”

Gurevich and Rabinovich solved this question for the integers.

Theorem 5 (Theorem 1 in [6]). For all monadic formula ϕ(X1, . . . , Xk),
there exists a formula ϕ∗(X1, . . . , Xk) such that for all A1, . . . , Ak ⊆ N,

(R,≤) |= ϕ(A1, . . . , Ak) if and only if (N,≤) |= ϕ∗(A1, . . . , Ak) .

We will not go into this proof which is superseded by what follows. However,
already in this case a very interesting phenomenon occurs: the existence of the
formula is inherently non-effective. Even if one allows the produced formula to
use extra predicates of decidable monadic theory.

Theorem 6 (variant of Theorem 2 in [6]). Let Q1, · · · ⊆ N be monadic
predicates such that (N,≤, Q̄) has a decidable monadic theory. There exists no
algorithm which, given a monadic formula ϕ, constructs ϕ∗ such that:

(R,≤) |= ϕ(X1, . . . , Xk) if and only if (N,≤, Q̄) |= ϕ∗(X1, . . . , Xk) .

Proof. Assume that such an algorithm exists, and consider some monadic sen-
tence ϕ. We apply the algorithm to ϕ, and obtain a sentence ϕ∗ such that
(R,≤) |= ϕ if and only if (N,≤, Q̄) |= ϕ∗. Since the monadic theory of (N,≤, Q̄)
is decidable, we could decide (R,≤) |= ϕ. This contradicts Theorem 4. ��

Despite this inherent difficulty due to non-effectiveness of the construction, we
shall provide a positive answer to Question 1.

3 In Which the Composition Theorem Is Introduced

In the same seminal paper as the one showing the undecidability of the monadic
theory of the real line [9], Shelah develops a technique referred to as the com-
position method. This is a variant for monadic logic of techniques developed
originally by Feferman and Vaught for first-order logic [5]. It becomes particu-
larly relevant in the context of monadic logic. The versatility of this approach
lies in its central theorem (known as the composition theorem, Theorem 7 be-
low) which is not in itself a decidability result, but provides the skeleton for a
decision procedure.

We need some notations first. Let α be a linear ordering and ui for all i ∈ α
be words. Then, we denote: ∏

i∈α
ui

the word consisting of copies of the ui’s arranged according to the linear order-
ing α. Formally, assume that α = (L,≤) and that the domain of ui is (Ki,≤i)

Composition with Algebra at the Background 397

for all i ∈ α, then the domain of the word
∏

i∈α ui is the set of pairs (i, x) where
i ∈ L and x ∈ Ki, ordered by (i, x) ≤ (j, y) if i < j or i = j and x ≤i y.
Furthermore, the letter at position (i, x) is the letter at position x in ui. In the
terminology of Shelah, this is denoted as a sum. The product notation reflects
the fact that it extends the concatenation product used for words.

Example 2. Before stating it, let us try to give an intuitive meaning to the com-
position theorem. Consider that you are interested in the following property of a
word u: “there is an even number of occurrences of the letter a”. For simplicity,
we denote from now by |u|a the number of occurrences of the letter a in the
word u. Let us distinguish four formulae:

– none holds over u if |u|a = 0,
– even holds over u if |u|a > 0 is even,
– odd holds over u if |u|a > 0 is odd,
– infinite holds over u if |u|a is infinite.

Over any word, exactly one of these four formulae holds, and the property we
are interested in is a disjunction of such formulae, namely empty∨ even.

Now consider a word u =
∏

i∈α ui, where the ui’s are themselves words. It is
easy to check that:

– u |= none if and only if ui |= none for all i ∈ α,
– u |= even if and only if

1. ui �|= infinity for all i ∈ α,
2. either ui |= even or ui |= odd for some i ∈ α, and finitely many of them,

and;
3. there is a finite even number of i ∈ α such that ui |= odd,

– u |= odd if and only if [...as above, replacing even by odd in 3...].
– u |= infinite if and only if either ui |= infinite for some i ∈ α or there

are infinitely many i ∈ α such that ui |= even or there are infinitely many
I ∈ α such that ui |= odd.

For all words u there is one and only one formula ϕ among none, even, odd and
infinity such that u |= ϕ: let us call this formula the type of u, and denote it
type(u). What we have seen in this example is that in order to know the type
of

∏
i∈α ui, it is sufficient to know the type of each of the ui’s. What is crucial

is that there are only finitely many types that are sufficient. The composition
theorem (Theorem 7) generalizes this example. It states that in order to know
the truth value of any monadic formula it is sufficient to consider only finitely
many types that have properties similar to this example.

Let us fix now a constant k ∈ N. A monadic formula has quantifier rank k if
there are at most k nested quantifiers.

Proposition 1. Over a fixed finite signature with only relational symbols (the
case of words over a fixed finite alphabet), there are only finitely many formulas

398 T. Colcombet

up to syntactic equivalence. Here, the syntactic equivalence involves the usual
associativity, commutativity, idempotency, and distributivity of conjunctions and
disjunctions, the renaming of bound variables, and

∃s(ϕ ∨ ψ) ≡ (∃s ϕ) ∨ (∃s ψ) and ∀s(ϕ ∧ ψ) ≡ (∀s ϕ) ∧ (∀s ψ) ,

for t a first-order variable or a monadic variable.

From now, all formulae will be considered modulo this syntactic equivalence,
and since we fix k, by the above fact, we only have to consider finitely many
formulae.

Now, given a word u, its (k-)type is the set of sentences ϕ of quantifier rank
at most k such that u |= ϕ.

Theorem 7 (composition [9]). If typek(ui) = typek(vi) for all i ∈ α, then

typek

(∏
i∈α

ui

)
= typek

(∏
i∈α

vi

)
.

This completely reflects the intuition of Example 2, in which only four possible
types were distinguished for simplicity.

Remark 2. In fact the real composition theorem is more precise in that it ex-
presses how typek(

∏
i∈α ui) can be defined from

∏
i∈α typek(ui). Formally, it

states that for all type t of quantifier rank k, there exists a monadic formula t∗

such that:

typek

(∏
i∈α

ui

)
= t iff

∏
i∈α

typek(ui) |= t∗ .

This implies Theorem 7 as if typek(ui) = typek(vi) for all i ∈ α, this means that∏
i∈α typek(ui) =

∏
i∈α typek(vi). However, this more complete presentation is

quite misleading since the quantifier rank of t∗ may be (much) higher than k.
In practice, the decision procedures using the composition method do not make
use of this formula t∗.

4 In Which Algebraic Recognizability for Countable
Words Is Defined

In this section, we introduce a notion of recognizability that is suitable for captur-
ing monadic logic over countable words [3]. It is highly related to the composition
method as shall be shown below.

Let us denote by M◦ the set of words of countable length over the alphabet
M . We call them M◦-words from now. Consider an application ⊗ : M◦ → M .
We will often use, for α a countable linear ordering, and ai ∈ M for all i ∈ α,
the notation ⊗

i∈α
ai

Composition with Algebra at the Background 399

to denote ⊗u where u is the word of domain α that carries at position i the
letter ai for all i ∈ α. This operation ⊗ is associative, or a product, if

– ⊗(a) = a for all a ∈ M , and;
– for all countable linear orderings α and all families of M◦-words (ui)i∈α,

⊗
(∏

i∈α
ui

)
=

⊗
i∈α

⊗(ui) .

A ◦-monoid M = (M,⊗) is a set M equipped with a product ⊗.

Remark 3. A consequence of the above definition is that for a, b, c in M :

⊗(a⊗ (bc)) = ⊗(⊗(a)⊗ (bc)) = ⊗(abc) = ⊗(⊗(ab)⊗ (c)) = ⊗(⊗(ab)c) .

Thus, if you denote ⊗(ab) as a · b, this means a · (b · c) = (a · b) · c. Hence this
generalizes the usual notion of associativity. Also, notice that the empty-word
ε belonging to M◦, it has a value ⊗(ε) under ⊗. Let us denote by 1 this value.
Still using associativity, we get for all a ∈ M ,

a · 1 = ⊗(a1) = ⊗(⊗(a)⊗ (ε)) = ⊗(aε) = ⊗(a) = a ,

and similarly 1 · a = a. Thus, every ◦-monoid is in particular a monoid.

Of course, the free ◦-monoid generated by a set M is simply (M◦,
∏
).

The notion of a morphism of ◦-monoids is also natural. Given two ◦-monoids
M = (M,⊗) and M′ = (M ′,⊗′), a morphism from M to M′ is a function f
from M to M ′ such that for all countable linear orderings α and (ai)i∈α elements
of M ,

f

(⊗
i∈α

ai

)
=

⊗
i∈α

′
f(ai) .

We are now ready to define the notion of a recognizable set of countable words. A
set of words L ⊆ A◦ is recognizable if there exist a finite ◦-monoidM = (M,⊗),
a morphism f from A◦ to M and a set F ⊆ M such that for all words u ∈ A◦,

u ∈ L if and only if f(u) ∈ F .

Remark here that clearly, the finiteness refers to the carrier M of M (even if
M is finite, ⊗ is a mapping of infinite domain). The fact that the product ⊗
is “infinite” means that, as such, a finite ◦-monoid cannot be represented in a
computer.

In fact, the very strong properties of associativity of the product have as effect
that only a finite quantity of information is sufficient for representing a finite
◦-monoid. Concretely, it is sufficient to know the value of ⊗ over a finite number
of words for being able to reconstruct ⊗ uniquely over all countable words [9,3].
This is very similar to the fact that once the product of two elements is known
in a monoid, the product can be extended uniquely to arbitrarily long finite
sequences of elements. Decidability results and effective constructions are done
manipulating this representation.

400 T. Colcombet

Example 3. Let us consider the set of {a, b}◦-words that have a finite and even
number of occurrences of the letter a (this corresponds to Example 2), and show
that it is recognizable.

We consider as carrier of the monoid the set M = {1, e, o, 0}. We start by
giving the morphism f that sends {a, b}◦ to M :

f(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if |u|a = 0,

e if |u|a > 0 is finite and even,

o if |u|a > 0 is finite and odd,

0 otherwise.

With this morphism in mind, it is simple to uniquely define the product over
M . Consider for instance the M◦-word oo, since o = f(a), this means ⊗(oo) =
⊗(f(a)f(a)) = ⊗(f(aa)) = e. Using similar arguments, we can complete the
product as:

– ⊗(u) = 1 if u contains only 1’s,

– ⊗(u) = e if u does not contain the letter 0, it contains at least one non-1
letter, finitely many e letters, and a finite even number of o letters,

– ⊗(u) = e if u does not contain the letter 0, it contains at least one non-1
letter, finitely many e letters, and a finite odd number of o letters,

– ⊗(u) = 0 otherwise.

The intuition behind the previous example generalizes. A direct consequence
of the composition theorem is the recognizability of all monadic definable lan-
guages.

Theorem 8. All monadic definable languages of ◦-words are recognizable.

Proof. Let ϕ be a monadic formula defining L ⊆ A◦. Let k be the quantifier
rank of ϕ.

We shall construct a ◦-monoid M and a morphism f from A◦ to M. Define

M = {typek(v) : v ∈ A◦} .

Since typek is surjective from A◦ onto M , there exists a mapping g : M → A◦

such that typek ◦ g is the identity over M . We extend it to M◦-words letter by
letter, yielding a mapping g̃ from M◦ to A◦ (formally g̃(

∏
i∈α ai) =

∏
i∈α g(ai)).

We now equip M with an operation ⊗ as follows. Let u be a word in M◦, define

⊗(u) = typek(g̃(u)) .

Composition with Algebra at the Background 401

We have for all A◦-words (vi)i∈α indexed by a countable linear ordering α,

typek

(∏
i∈α

vi

)
= typek

(∏
i∈α

g(typek(vi))

)
(Theorem 7)

= typek

(
g̃

(∏
i∈α

typek(vi)

))
=

⊗
i∈α

typek(vi) ,

in which the first equality is by the composition theorem (Theorem 7) since by
construction of g, typek(vi) = typek(g(typek(vi))).

We do not know yet that ⊗ is a product. However, since typek is surjective
from A◦ onto M and satisfies the properties of a morphism, it follows that the
fact that (A◦,

∏
) is a ◦-monoid is automatically transferred to (M,⊗). Thus

(M,⊗) is also a ◦-monoid, and typek is a morphism from (A◦,
∏
) to (M,⊗).

Let now F = {typek(u) : u ∈ L}. Let us show that M, typek, F recognize L.
Let u ∈ A◦ be a word. We have that u ∈ L if and only if u |= ϕ if and only if
ϕ ∈ typek(u) if and only if typek(u) ∈ F . Hence M, typek, F recognize L. ��

One of the main contributions in [3] is to provide a form of converse to Theorem 8.

Theorem 9. All recognizable languages of ◦-words are monadic definable.

This direction relies on completely different techniques. It involves in particular
the theory of ideals of the monoid underlying the ◦-monoid and special forms
of factorizations of the words. In particular, it heavily relies on the fact that
the ◦-monoids used to recognize languages are finite, an assumption that was
not used so far (in fact, it is already crucial in Shelah’s work, but for different
reasons, for decidability). We will use this result as a black-box.

5 In Which the Question Is Answered

Let us consider now Question 1 again. We will see that the situation is not much
different from the previous section.

In order to deal with the real line, we need to describe a bit more precisely
the relationship between the rational line and the real line. For technical reasons
it is not very convenient to work directly with the real line, but rather on the
expansion of the rational line with all “Dedekind cuts”. The real line itself is
slightly different: it is obtained from the rational line using a similar expansion,
but keeping only the so-called “natural cuts”. Nevertheless, as far as logic is
concerned, this difference is very minor.

Given a linear ordering (E,≤), a (Dedekind) cut is an ordered pair (A,B) of
sets A,B ⊆ E such that A ∪ B = E and x < y for all x ∈ A and y ∈ B. Cuts
are ordered by (A,B) ≤ (A′, B′) if A ⊆ A′. Cuts can also be compared with the

402 T. Colcombet

elements of E by x < (A,B) if x ∈ A and (A,B) < x if x ∈ B. Equipped with
this relation, the (disjoint) union of the elements of E with the cuts form a linear
ordering. A cut (A,B) is extremal if either A = ∅ or B = ∅. Given a linear
ordering α = (L,≤), denote by α̂ the completion of α, which is obtained from
α by adding to it all non-extremal cuts. Remark that to every element in x ∈ E
corresponds three copies x− < x < x+ in the the completed linear orderings,
where x− = ((−∞, x), [x,∞)) and x+ = ((−∞, x], (x,∞)). Cuts that are not
of the form x− or x+ are called natural. As mentioned above, the real line is
obtained from the rational line by adding to it the non-extremal natural cuts
only.

The completion of a word is done as follows. We fix ourselves a dummy letter
ι that is intended to label cuts. The (cut) completion comp(u) of a word u
over the alphabet A is a word over the alphabet A∪{ι} defined as

∏
i∈α̂ bi where

bi = ai for all i ∈ α and bi = ι otherwise (i.e., if i is a cut).
A simple, yet important, point is the relationship between the completion and

the product
∏
. The following lemma discloses this point. It essentially states

that the completion of the product is equivalent to a variant product of the
completion, where the variant product “fills the missing cuts”.

Lemma 1. For all linear orderings α and words (vi)i∈α,

comp

(∏
i∈α

vi

)
≡

∏̂
i∈α

ι

comp(vi) ,

where for all words (wi) indexed by a linear ordering α we set∏̂
i∈α

ι

wi =
∏
i∈α̂

w′i

with for all i ∈ α̂, w′i =

{
wi if i ∈ α,

ι otherwise, i.e., if i is a cut.

A language L of countable words is called monadic definable with cuts at
the background if there exists a monadic formula ϕ such that u ∈ L if and
only if û |= ϕ.

The following key proposition follows exactly the same proof scheme as the
one of Theorem 8.

Proposition 2. Languages of countable words that are monadic definable with
cuts at the background are ◦-recognizable.

Proof. Let ϕ be a monadic formula defining with cuts at the background a
language of countable words L ⊆ A◦. Let k be the quantifier rank of ϕ.

We shall construct a ◦-monoid M and a morphism f from A◦ to M. Let first
set typeck(v) to be typek ◦ comp(v) for all v ∈ A◦. Define

M = {typeck(v) : v ∈ A◦} .

Composition with Algebra at the Background 403

Since typeck is surjective from A◦ onto M , there exists a mapping g : M → A◦

such that typeck ◦ g is the identity over M . We extend it to M◦-words letter by
letter, yielding a mapping g̃ from M◦ to A◦ (formally g̃(

∏
i∈α ai) =

∏
i∈α g(ai)).

We now equip M with an operation ⊗̂ as follows. Let u be a word in M◦, define

⊗̂(u) = typeck(g̃(u)) .

We show now that typeck has the properties of a morphism from A◦ to M
(though we do not know yet that ⊗̂ is a product). Consider a family of A◦-words
(vi)i∈α indexed by a countable linear ordering α, we have:

typeck

(∏
i∈α

vi

)
= typek

(∏̂
i∈α

ι

comp(vi)

)
(Lemma 1)

= typek

(∏̂
i∈α

ι

comp(g(typeck(vi)))

)
(Theorem 7)

= typeck

(∏
i∈α

g(typeck(vi))

)
(Lemma 1)

= typeck

(
g̃

(∏
i∈α

typeck(vi)

))

=
⊗̂
i∈α

typeck(vi) .

in which the equality between the first and second line is by the composition
theorem using the fact that typeck(vi) = typeck(g(typeck(vi)).

We do not know yet that ⊗̂ is a product. However, since typeck is surjective
from A◦ onto M and satisfies the properties of a morphism, it follows that the
fact that (A◦,

∏
) is a ◦-monoid is automatically transferred to (M, ⊗̂). Thus

(M, ⊗̂) is also a ◦-monoid, and typeck is a morphism from (A◦,
∏
) to (M, ⊗̂).

Let now F = {typeck(u) : u ∈ L}. Let us show that M, typeck, F recog-
nize L. Let u ∈ A◦ be a word. We have that u ∈ L if and only if comp(u) |= ϕ
if and only if ϕ ∈ typeck(u) if and only if typeck(u) ∈ F . Hence M, typek, F
recognize L. ��

Thus, in combination with Theorem 9, we get the following corollary.

Corollary 1. Every language of countable words monadic definable with cuts at
the background is monadic definable.

If we restate this corollary in terms of relational structures, we get:

Corollary 2. Given a monadic formula ϕ(X1, . . . , Xk), there exists a formula
ϕ∗(X1, . . . , Xk) such that for all countable linear orderings α and all sets of
rationals A1, . . . , Ak ⊆ α,

α̂ |= ϕ(A1, . . . , Ak) if and only if α |= ϕ∗(A1, . . . , Ak) .

404 T. Colcombet

Indeed, a countable linear ordering α labeled with A1, . . . , Ak can be seen as a
countable word over the alphabet 2k.

Now, recall that the reals are the completion of the rationals with natural cuts.
The only reason that the above theorem does not exactly solve Question 1 as it
stands is that α̂ also contains cuts that are not natural. Thus, it is sufficient to
remark that given a linear ordering α of domain A, there is a first-order formula
ϕ(X, x) such that α̂ |= ϕ(A, a) if and only if a is a non-natural cut (recall that
the non-natural cuts are the ones that are predecessors or successors of elements
of A; a property that makes them easily definable). Thus, using Corollary 2
together with a relativisation to the natural cuts and the original ordering, we
finally answer positively Question 1.

Theorem 10. Given a monadic formula ϕ(X1, . . . , Xk), there exists a formula
ϕ∗(X1, . . . , Xk) such that for all A1, . . . , Ak ⊆ Q,

(R,≤) |= ϕ(X1, . . . , Xk) if and only if (Q,≤) |= ϕ∗(X1, . . . , Xk) .

Acknowledgments. I am grateful to Alexander Rabinovich who introduced
me to the question of reals at the background, and for all the discussions we
had on the subject. I also thank Olivier Carton and Gabriele Puppis for many
discussions we had together.

References

1. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundlagen Math. 6, 66–92 (1960)

2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), pp. 1–11.
Stanford Univ. Press, Stanford (1962)

3. Carton, O., Colcombet, T., Puppis, G.: Regular languages of words over countable
linear orderings. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part
II. LNCS, vol. 6756, pp. 125–136. Springer, Heidelberg (2011)

4. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc. 98, 21–51 (1961)

5. Feferman, S., Vaught, R.L.: The first order properties of products of algebraic
systems. Fund. Math. 47, 57–103 (1959)

6. Gurevich, Y., Rabinovich, A.M.: Definability and undefinability with real order at
the background. J. Symb. Log. 65(2), 946–958 (2000)

7. Gurevich, Y., Shelah, S.: Monadic theory of order and topology in zfc. In: Ann. of
Math. Logic, vol. 23, pp. 179–198. North-Holland Publishing Compagny (1982)

8. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc. 141, 1–35 (1969)

9. Shelah, S.: The monadic theory of order. Ann. of Math. (2) 102(3), 379–419 (1975)
10. Trakhtenbrot, B.A.: Finite automata and monadic second order logic (Russian).

Siberian Math. J 3, 103–131 (1962)
11. Trakthenbrot, B.A.: The impossibility of an algorithm for the decision problem for

finite domains (Russian). Doklady Academii Nauk SSSR 70, 569–572 (1950)

Model-Checking Bounded

Multi-Pushdown Systems�

Kshitij Bansal1 and Stéphane Demri1,2

1 New York University, USA
2 LSV, CNRS, France

Abstract. We provide complexity characterizations of model checking
multi-pushdown systems. We consider three standard notions for bound-
edness: context boundedness, phase boundedness and stack ordering. The
logical formalism is a linear-time temporal logic extending well-known
logic CaRet but dedicated to multi-pushdown systems in which abstract
operators are parameterized by stacks. We show that the problem is
ExpTime-complete for context-bounded runs and unary encoding of the
number of context switches; we also prove that the problem is 2ExpTime-
complete for phase-bounded runs and unary encoding of the number of
phase switches. In both cases, the value k is given as an input, which
makes a substantial difference in the complexity.1

1 Introduction

Verification problems for pushdown systems, systems with a finite automaton
and an unbounded stack, have been extensively studied and decidability can be
obtained as in the case for finite-state systems. For instance, computing pre�(X)
(set of configurations reaching a regular set X), post�(X) (correspondingly, con-
figurations accessible from X), reachability and LTL model checking have been
shown to be decidable [8,18]. These have also been implemented, for instance in
the model-checker Moped [18]. It can be argued that they are natural models
for modeling recursive programs. Two limitations though of the model are the
inability to model programs with infinite domains (like integers) and modeling
concurrency. Having an infinite automaton to handle the former limitation leads
to undecidability. An approach to tackle this has been to abstract infinite-state
programs to Boolean programs using, for instance, predicate abstraction. The
model is repeatedly refined, as needed, like in tools SLAM, SatAbs etc. For
concurrency, a natural way to extend this model would be to consider pushdown
automata with multiple stacks, which has seen significant interest in the recent
past [2,6,9,10]. This is the main object of study in this paper which we call
multi-pushdown systems (MPDS).

The difficulty of model-checking MPDS is that a pushdown system with even
two stacks and with a singleton stack alphabet is sufficient to model a Turing

� Work partially supported by projects ARCUS IdF/Inde and EU Seventh Framework
Programme under grant agreement No. PIOF-GA-2011-301166 (DATAVERIF).

1 Omitted proofs and additional material can be found in the technical report [5].

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 405–417, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

406 K. Bansal and S. Demri

machine, hence making the problem of even testing reachability undecidable.
This is not a unique situation and similar issues exists with other abstractions,
like model-checking problems on counter systems; other models of multithreaded
programs are also known to admit undecidable verification problems. That is
why subclasses of runs have been introduced as well as problems related to the
search for ‘bounded runs’ that may satisfy a desirable or undesirable property.
For instance, context-bounded model-checking (bound on the number of context
switches) [17] allows to regain decidability.

This paper focuses on the study of model-checking problems for MPDS based
on LTL-like dialects, naturally allowing to express liveness properties, when some
bounds are fixed. Though decidability of these problems has been established in
some recent works we aim to provide optimal computational complexity anal-
ysis for LTL-like properties. In particular, we consider a LTL-like specification
language based on CaRet [1], which strikes to us as fitting given the interest
of the model in program verification. As in [14], CaRet generalized to multiple
stacks and called Multi-CaRet is considered. Under this logic, we show model-
checking problem of MPDS restricted to k-context bounded runs is in Exp-

Time, when k is encoded in unary. Since this problem is a generalization of
LTL model checking pushdown systems which is known to be ExpTime-hard,
this is an optimal result. Viewed as an extension of [8], we consider both a
more general model and a more general logic, while still preserving the com-
plexity bounds. At a technical level, we focus on combining several approaches
in order to achieve optimal complexity bounds. In particular, we combine the
approach taken in CaRet model-checking of recursive state machines machines,
ideas from reachability analysis of multi-pushdown systems [18] and the tech-
niques introduced in [8,18]. We also consider less restrictive notions, showing
optimal 2-ExpTime for k-phase bounded runs [12] when k is in unary. Note
that in all restrictions we consider, k is given as an input and not as a parameter
of the problem, which makes a substantial difference when complexity analysis
is provided. When k is encoded in binary, the bounds are 2-ExpTime and 3-
ExpTime for context and phase boundedness respectively. For a third notion of
ordered multi-pushdown systems [3], model-checking is in 2ExpTime.

Related Work. In [16], decidability results are found for classes of automata with
auxiliary storage based on MSO property, see also [15]. This includes MPDS
with bounded context and ordered MPDS. Unlike our ExpTime bound, the
complexity is non-elementary in the size of the formula. This stems from the use
of celebrated Courcelle’s Theorem, which has parameterized complexity non-e-
lementary, the parameter being the size of formula plus the tree-width.

More closely related to our approach of generalizing the automata-based ap-
proach for LTL are two recent works [4,14]; indeed model-checking of linear-time
properties for MPDS under several boundedness hypothesis has been the sub-
ject of several recent studies. In [4], LTL model-checking on multi-pushdown
systems when runs are k-scope-bounded is shown ExpTime-complete. Scope-
boundedness strictly extends context-boundedness and therefore Corollary 2(I)
and [4, Theorem 7] are closely related even though Corollary 2(I) deals with the

Bounded Multi-Pushdown Systems 407

richer Multi-CaRet and it takes into account specifically context-boundedness.
By contrast, [14] introduces an extension of CaRet that is expressively identical
to the variant we consider in our paper (models are multiply nested words).
Again, it deals with scope-boundedness and Corollary 2(I) and [14, Theorem
6] are closely related even though Corollary 2(I) takes into account context-
boundedness specifically, which leads to a slightly different result. Similarly, up-
per bounds [14, Theorem 7] about ordered multiply nested words, is related to
upper bound we provide in Corollary 3 for OBMC. Nevertheless, as technical
contributions, we first deal with context-boundedness, phase-boundedness and
ordered MPDS uniformly independent of the notion of boundedness by following
an automata-based approach reducing to the corresponding repeated reachabil-
ity problem. In second step, we provide optimal complexity bounds by building
on analysis for context-boundedness on [8,18] whereas for ordered MPDS it relies
on [2]. Finally, our construction allows us to add regularity constraints on stack
contents, extending notions from [11], that are known to go beyond first-order
language, by an adaptation of the case for Multi-CaRet.

2 Preliminaries

We write [N] to denote the set {1, 2, . . . , N}. We also use a boldface as a short-
hand for elements indexed by [N], for e.g., a = {ai | i ∈ [N]}. For a finite
word w = a1 . . . ak over the alphabet Σ, we write |w| to denote its length k. For
0 ≤ i < |w|, w(i) represents the (i+ 1)-th letter of the word, here ai+1.

Pushdown systems provide a natural execution model for programs with re-
cursion. A generalization with multiple stacks allows us to model threads, for-
mally defined next. A multi-pushdown system (MPDS) is a tuple of the form
P = (G,N, Γ,Δ1, . . . , ΔN), for some N ≥ 1 such that G is a non-empty finite
set of global states, Γ is the finite stack alphabet containing the distinguished
letter ⊥, for every s ∈ [N], Δs is the transition relation acting on the s-th stack
where Δs is a relation included in G × Γ × G × A(Γ) with A(Γ) defined as

A(Γ)
def
=

⋃
a∈Γ {call(a), return(a), internal(a)}. Elements of the set A(Γ) are to

be thought of as actions modifying the stack with alphabet Γ . A configuration
c of P is the global state along with contents of the N stacks, i.e. c belongs
to G × (Γ ∗)N . For every s ∈ [N], we write −→s to denote the one-step rela-
tion w.r.t. the s-th stack. Given two configurations c = (g, w1, . . . , wsa, . . . wN)
and c′ = (g′, w1, . . . , w

′
s, . . . , wN), c −→s c′ iff (g, a, g′, a(b)) ∈ Δs where a(b) re-

flects the change in the stack enforcing one of the conditions below: ws = w′s,
a = return and a = b, or w′s = wsb and a = internal, or w′s = wsab and a = call.
The letter ⊥ from the stack alphabet plays a special role; indeed the initial
content of each stack is precisely ⊥. Moreover, ⊥ cannot be pushed, popped or
replaced by any other symbol. This is a standard way to constrain the transi-
tion relations and to check for ‘emptiness’ of the stack. We write −→P to denote
the relation (

⋃
s∈[N] −→s). Given a configuration c, there may exist c1, c2 and

i1 �= i2 ∈ [N] such that c −→i1 c1 and c −→i2 c2, which is the fundamental prop-
erty to consider such models as adequate for modeling concurrency. An infinite

408 K. Bansal and S. Demri

run is an ω-sequence of configurations c0, c1, c2, . . . s.t. for every i ≥ 0, we have
ci −→P ci+1. If ci −→s ci+1, then we say that for that step, the s-th stack is active.
Similar notions can be defined for finite runs. A standard problem on MPDS is
the state reachability problem: given a MPDS P , a configuration c and a global
state g, is there a run from c to some configuration c′ s.t. the state of c′ is g?

An enhanced multi-pushdown system is a multi-pushdown system of the form
P = (G × [N] , N, Γ,Δ1, . . . , ΔN) s.t. for every s ∈ [N], Δs ⊆ (G × {s})× Γ ×
(G× [N])×A(Γ). In such systems, the global state contains enough information
to determine the next active stack. Observe that the way the one-step relation
is defined, we do not necessarily need to carry this information as part of the
finite control (see Lemma 1). We do that in order to enable us to assert about
active stack in our logic (see Section 3), and for technical convenience.

Lemma 1. Given P = (G,N, Γ,Δ), one can construct in polynomial time an
enhanced P ′ = (G × [N] , N, Γ,Δ′) such that (I) for every infinite run of P
of the form c0 −→s0 c1 −→s1 · · · ct −→st ct+1 · · · there is an infinite run c′0 −→s0

c′1 −→s1 · · · c′t −→st c′t+1 · · · of P ′ such that (�) for t ≥ 0, if ct = (gt, {wt
s}s),

then c′t = ((gt, st) , {wt
s}s) and (II) similarly, for every infinite run of P ′ of the

form c′0 −→s0 c′1 −→s1 · · · c′t −→st c′t+1 · · · there is an infinite run c0 −→s0 c1 −→s1

· · · ct −→st ct+1 · · · of P such that (�).

The proof is by an easy verification. In the sequel, w.l.o.g., we consider enhanced
MPDS only since all the properties that can be expressed in our logical languages
are linear-time properties. For instance, there is a logspace reduction from the
state reachability problem to its restriction to enhanced MPDS.

State reachability problem is known to be undecidable by a simple reduction
from the non-emptiness problem for intersection of context-free grammars. This
has motivated works on restrictions on runs so that decidability can be regained
(for state reachability problem and for model-checking problems). We recall be-
low standard notions for boundedness; other notions can be found in [13,9].
Definitions are provided for infinite runs but they can be adapted to finite runs.

For the notion of k-boundedness, a phase is understood as a sub-run such that
a single stack is active (see e.g. [17]). Let ρ = c0 −→s0 c1 −→s1 · · · ct −→st ct+1 · · ·
be an infinite run and k ≥ 0. We say that ρ is k-bounded if there exist positions
i1 ≤ i2 ≤ . . . ≤ ik−1 such that st = st+1 for all t ∈ N \ {i1 . . . ik−1}. In the
notion of k-phase-boundedness defined below, a phase is understood as a sub-
run such that return actions are performed on a single stack, see e.g. [12]. Let
ρ = c0 −→s0 c1 −→s1 · · · ct −→st ct+1 · · · be an infinite run and k ≥ 0. We say that
ρ is k-phase-bounded if there is a partition Y1, . . . , Yα of N with α ≤ k such that
for every j ∈ [1, α] there is s ∈ [N] s.t. for every i ∈ Yj , if a return action is
performed from ci to ci+1, then it is done on the sth stack. Finally, in the notion
of order-boundedness defined below, the stacks are linearly ordered and a return
action on a stack can only be performed if the smallest stacks are empty, see
e.g. [3]. Let P be a multi-pushdown system and /= ([N] ,≤) be a total ordering.
Let ρ = c0 −→s0 c1 −→s1 · · · ct −→st ct+1 · · · be an infinite run. We say that ρ is
/-bounded if for every t ∈ N that a return is performed on the s-th stack, all the
stacks strictly smaller than s w.r.t. / are empty.

Bounded Multi-Pushdown Systems 409

3 Specification Language Multi-CaRet

Below, we introduce Multi-CaRet, an extension of the logic CaRet proposed in [1],
and dedicated to runs of MPDS (instead of for runs of recursive state machines
as done in [1]). The logic below can be seen as a fragment of MSO and therefore
the decidability results from [6,16] apply to the forthcoming model-checking
problems. However, our definition makes a compromise between a language of
linear properties that extends the logic from [1] and the most expressive logic for
which our model-checking problems are known to be decidable. The logic below
is expressively identical as well as syntactically and semantically similar to one
in [14], except for the presence of regular constraints.

Models of Multi-CaRet are infinite runs of multi-pushdown systems. For each
(enhanced) multi-pushdown system P = (G × [N] , N, Γ,Δ1, . . . , ΔN), the frag-
ment Multi-CaRet(P) of CaRet that uses syntactic resources from P (namely G
and [N]). Multi-CaRet is defined as the union of all the sub-languages Multi-
CaRet(P). The grammar φ := g | s | call | return | internal | φ ∨ φ | ¬φ | Xφ
| φ Uφ | Xa

sφ | φ Ua
sφ | Xc

sφ | φ Uc
sφ, defines formulas of Multi-CaRet(P),

with s ∈ [N], g ∈ G. Models of Multi-CaRet(P) formulae are ω-sequences in(
G× [N]× (Γ ∗)N

)ω
, which can be obviously understood as infinite runs of P .

Semantics. Given an infinite run ρ = c0c1 . . . ct . . . with ct = (gt, st, w
t
1, . . . , w

t
N)

for every position t ∈ N, the satisfaction relation ρ, t |= φ with φ in Multi-
CaRet(P) is defined inductively as follows (successor relations are defined just
below and obvious clauses are omitted):

ρ, t |= g iff gt = g and ρ, t |= s iff st = s

ρ, t |= a iff
(
a,

∣∣wt+1
st

∣∣− ∣∣wt
st

∣∣) ∈ {(call, 1) , (internal, 0) , (return,−1)}
ρ, t |= φ1 Uφ2 iff there is a sequence of positions i0 = t, i1 . . . , ik, s.t.

for j < k, ij+1 = succρ(ij), ρ, ij |= φ1 and ρ, ik |= φ2

For b ∈ {a, c} and s ∈ [N]:

ρ, t |= Xb
sφ iff succb,sρ (t) is defined and ρ, succb,sρ (t) |= φ

ρ, t |= φ1 Ua
sφ2 iff there exists a sequence of positions t ≤ i0 < i1

· · · < ik, where i0 smallest such with si0 = s, for

j < k, ij+1 = succa,sρ (ij), ρ, ij |= φ1 and ρ, ik |= φ2

ρ, t |= φ1 Uc
sφ2 iff there exists a sequence of positions t ≥ i0 > i1

· · · > ik, where i0 greatest such with si0 = s, for

j < k, ij+1 = succc,sρ (ij), ρ, ij |= φ1 and ρ, ik |= φ2

Definition for |= uses three successor relations: global successor relation, abstract
successor relation that jumps to the first future position after a return action
at the same level, if any, and the caller successor relation that jumps to the
latest past position before a call action at the same level, if any. Here are the

definitions: succρ(t)
def
= t + 1 for every t ∈ N; succc,sρ (t) (caller of s-th stack):

410 K. Bansal and S. Demri

largest t′ < t s.t. st′ = s and
∣∣∣wt′

s

∣∣∣ = |wt
s| − 1. If such a t′ does not exist, then

succc,sρ (t) is undefined; and succa,sρ (t) is defined when s is active at position t:

1. If
∣∣wt+1

s

∣∣ = |wt
s| + 1 (call), then succa,sρ (t) is the smallest t′ > t such that

st′ = s and
∣∣∣wt′

s

∣∣∣ = |wt
s|. If there is no such t′ then succa,sρ (t) is undefined.

2. If
∣∣wt+1

s

∣∣ = |wt
s| (internal), then succa,sρ (t) is the smallest t′ > t such that

st′ = s (first position when sth stack is active).
3. If

∣∣wt+1
s

∣∣ = |wt
s| − 1 (return), then succa,sρ (t) is undefined.

In the sequel, we write ρ |= φ whenever ρ, 0 |= φ.

Adding Regularity Constraints. We define Multi-CaRetreg as the extension of
Multi-CaRet in which regularity constraints on stack contents can be expressed.
Logic Multi-CaRetreg is defined from Multi-CaRet by adding atomic formulae of
the form in(s,A) where s is a stack identifier and A is a finite-state automaton
over the stack alphabet Γ . The satisfaction relation |= is extended accordingly:
ρ, t |= in(s,A) iff wt

s ∈ L(A) where L(A) is the set of finite words accepted by
A. Note that regularity constraints can be expressed on each stack.

Let us introduce the model-checking problems considered herein. The model-
checking problem for MPDS (MC) is defined s.t. it takes as inputs a MPDS P ,
a configuration

(
g, (⊥)N

)
and a formula φ in Multi-CaRet(P) and asks whether

there is an infinite run ρ from
(
g, (⊥)N

)
such that ρ |= φ. We know that the

model-checking problem for MPDS is undecidable whereas its restriction to a sin-
gle stack is ExpTime-complete [1]. Now, let us turn to bounded model-checking
problems. Bounded model-checking problem for MPDS (BMC) is defined such
that it takes as inputs P , a configuration

(
g, (⊥)N

)
, a formula φ in Multi-

CaRet(P) and a bound k ∈ N and it asks whether there is an infinite k-bounded
run ρ from

(
g, (⊥)N

)
such that ρ |= φ. Note that k ∈ N is an input and not

a parameter of BMC. This makes a significant difference for complexity since
usually complexity can increase when passing from being a constant to being an
input. Phase-bounded model-checking problem (PBMC) is defined similarly by
replacing in the above definition ’k-bounded run’ by ’k-phase-bounded run’. Sim-
ilarly, we can obtain a definition with order-boundedness. Order-bounded model-
checking problem for multi-pushdown systems (OBMC) is defined such that it
takes as inputs P , a configuration

(
g, (⊥)N

)
, a formula φ in Multi-CaRet(P) and

a total ordering /= ([N] ,≤) and it asks whether there is an infinite /-bounded
run ρ from

(
g, (⊥)N

)
such that ρ |= φ.

The problem of repeated reachability of MPDS, written REP, is defined in the
expected way with a generalized Büchi acceptance condition related to states.
We refer to the problem restricted to k-bounded runs by BREP. Obviously,
the variants with other notions of boundedness can be defined too. Now, the
simplified version of Multi-CaRet consists of the restriction of Multi-CaRet in
which atomic formulae are of the form (g, s) when enhanced MPDS are involved.
For every P in {MC,BMC,PBMC,OBMC}, there is a logspace reduction to P
restricted to formulae from the simplified language. The proof idea consists in
adding to global states information about the next active stack and about the

Bounded Multi-Pushdown Systems 411

type of action. In the sequel, w.l.o.g., we restrict ourselves to the simplified
languages. By [16], we conclude that BMC, PBMC and OBMC are decidable (use
of Courcelle’s Theorem). However, it provides non-elementary upper bounds. As
a main result of our paper, we show that BMC is ExpTime-complete when k is
encoded in unary even in presence of regular constraints.

4 From Model-Checking to Repeated Reachability

Herein, we reduce the problem of model checking (MC) to the problem of re-
peated reachability (REP) while noting complexity features that are helpful
later on (Theorem 1). This generalizes Vardi-Wolper reduction from LTL model-
checking into non-emptiness for generalized Büchi automata, similarly to the ap-
proach followed in [14]; not only we have to tailor the reduction to Multi-CaRet
and to MPDS but also we aim at getting tight complexity bounds afterwards.
The instance of MC that we have is a MPDS P , a formula φ and initial state
(g0, i0). For the instance of REP we will reduce to, we will denote the MPDS by

P̂ , the set of acceptance sets by F and the set of initial states by I0.

Augmented Runs. Let ρ be a run of the multi-pushdown system P = (G ×
[N] , N, Γ,Δ) with ρ ∈ (G × [N] × (Γ ∗)N)ω . The multi-pushdown system P̂
is built in such a way that its runs correspond exactly to runs from P but
augmented with pieces of information related to the satisfaction of subformulas
(taken from the closure set Cl(φ) elaborated on shortly), whether a stack is dead
or not (using a tag from {alive, dead}) and whether the current call will ever
be returned or not (using a tag from {noreturn,willreturn}). These additional
tags will suffice to reduce the existence of a run satisfying φ to the existence
of a run satisfying a generalized Büchi condition. First, we define from ρ an
“augmented run” γ(ρ) which is an infinite sequence from (Ĝ × [N] × (Γ̂ ∗)N)ω

where Ĝ = G × P(Cl(φ))N × {noreturn,willreturn}N × {alive, dead}N and Γ̂ =
Γ ×P(Cl(φ))×{noreturn,willreturn}. By definition, an augmented run is simply
an ω-sequence but it remains to check that indeed, it will be also a run of the
new system. We will see that Ĝ× [N] is the set of global states of P̂ and Γ̂ is the

stack alphabet of P̂ . Before defining γ(·) which maps runs to augmented runs, let
us introduce the standard notion for closure but slightly tailored to our needs.
Each global state is partially made of sets of formulas that can be viewed as
future obligations. This is similar to what is done for LTL and is just a variant
of Fischer-Ladner closure. An obligation for a stack is a set of subformulas that
is locally consistent; such consistent sets are called atoms and they are defined
below as well as the notion of closure. Given a formula φ, its closure, denoted
Cl(φ), is the smallest set that contains φ, the elements of G×[N], and satisfies the
following properties (b ∈ {a, c} and s ∈ [N]): (i) if ¬φ′ ∈ Cl(φ) or Xφ′ ∈ Cl(φ) or
Xb
sφ
′ ∈ Cl(φ) then φ′ ∈ Cl(φ); (ii) if φ′ ∨ φ′′ ∈ Cl(φ), then φ′, φ′′ ∈ Cl(φ); (iii) if

φ′ Uφ′′ ∈ Cl(φ), then φ′, φ′′, and X(φ′ Uφ′′) are in Cl(φ); (iv) if φ′ Ub
sφ
′′ ∈ Cl(φ),

then φ′, φ′′, and Xb
s(φ
′ Ub

sφ
′′) are in Cl(φ); (v) if φ′ ∈ Cl(φ) and φ′ in not of the

form ¬φ′′, then ¬φ′ ∈ Cl(φ). The number of formulas in Cl(φ) is linear in the

412 K. Bansal and S. Demri

size of φ and P . An atom of φ, is a set A ⊆ Cl(φ) that satisfies the following
properties: (a) for ¬φ′ ∈ Cl(φ), φ′ ∈ A iff ¬φ′ /∈ A; (b) or φ′ ∨ φ′′ ∈ Cl(φ),
φ′ ∨ φ′′ ∈ A iff (φ′ ∈ A or φ′′ ∈ A); (c) or φ′ Uφ′′ ∈ Cl(φ), φ′ Uφ′′ ∈ A iff
φ′′ ∈ A or (φ′ ∈ A and X(φ′ Uφ′′) ∈ A); (d) A contains exactly one element from
G× [N]. Let Atoms(φ) denote the set of atoms of φ, along with empty set (used
as special atom, use will become clear later). Note that there are 2O(|φ|) atoms
of φ.

We write ((gt, st),wt) to denote the t-th configuration of ρ. We define the

augmented run γ(ρ) so that its t-th configuration is of the form ((ĝt, st), ŵt)

with ĝt = (gt,At, rt,dt) and ŵt
j = (wt

j , v
t
j , u

t
j) for every j in [N]. We say that

the stack j is active at time t if st = j. Then, we define dead-alive tag to be dead
if and only if the stack is not active at or after the corresponding position. The
idea of the closure as we discussed is to maintain the set of subformulas that hold
true at each step. We will expect it to be the empty set if the stack is dead. As for
willreturn-noreturn tag, it reflects whether a call action has a “matching” return.
This is similar to the {∞, ret} tags in [1]. This may be done by defining tag to
be noreturn if stack will never become smaller than what it is now. Finally, the
formulas and willreturn-noreturn tag on the stack are defined to be what they
were in the global state at the time when the corresponding letter was pushed.

∀t ≥ 0, j ∈ [N] : (dtj = dead)
def⇔ (∀t′ ≥ t, st

′ �= j). (1)

∀t ≥ 0, j ∈ [N] with dtj = alive, ψ ∈ Cl(φ):

ψ ∈ At
j

def⇔ ρ, t′ |= ψ where t′ is the least t′ ≥ t with st
′
= j. (2)

∀t ≥ 0, j ∈ [N] with dtj = dead: At
j

def
= ∅. (3)

∀t ≥ 0, j ∈ [N] : (rtj = noreturn)
def⇔ (∀t′ ≥ t,

∣∣∣wt′
j

∣∣∣ ≥ ∣∣wt
j

∣∣). (4)

∀t ≥ 0, j ∈ [N] : vtj
def
= At1

j At2
j . . . Atl

j and ut
j

def
= dt1j dt2j . . . dtlj ,

where for k in [l]: tk is largest tk ≤ t such that
∣∣wtk

j

∣∣ = k − 1. (5)

Construction. We construct a system which simulates the original system with
accepting runs having augmentations faithful to the semantics described above
in (1)-(5). We define the multi-pushdown system P̂ as (Ĝ× [N] , N, Γ̂ , Δ̂) with

the states and alphabet as defined earlier, and each transition relation Δ̂s is

defined s.t. (ĝ, s, â, ĝ′, s′, a(â′)) is in Δ̂s
def⇔ conditions from Fig. 1 are satisfied.

The set F is defined by the following sets of accepting states:

(a) For each ψ = φ1 Uφ2 ∈ Cl(φ), we define F 1
ψ

def
= {(ĝ, s) | φ2 ∈ As or ψ /∈ As}.

(b) For each abstract-until formula ψ = φ1 Ua
sφ2 ∈ Cl(φ), we define F 2

ψ
def
=

{(ĝ, s) | rs = noreturn and (φ2 ∈ As or ψ /∈ As)}.
(c) For each j ∈ [N], we define F 3

j
def
= {(ĝ, s) | j = s} ∪ {(ĝ, s) | dj = dead}.

(d) For each j ∈ [N], F 4
j

def
= {(ĝ, s) | dj = dead} ∪ {(ĝ, s) | j = s, ds = noreturn}.

Lemma 2. Let ρ be a run of P . Then, γ(ρ) is a run of P̂ such that for every
F ∈ F , there is a global state in F that is repeated infinitely often.

Bounded Multi-Pushdown Systems 413

1. ((g, s), aS, (g
′, s′), a(a′

S)) ∈ Δs

2. ds = alive
3. ∀j
= s, dj = d′j
4. If a = call, then rs = willreturn ⇒

r′s = willreturn and a′
r = rs

5. If a = internal, then r′s = rs and
a′
r = ar

6. If a = return, then rs = willreturn and
r′s = ar

7. ∀j
= s, rj = r′j
8. (g, s) ∈ As

9. ∀j
= s, Aj = A′
j

10. XAs ⊆ A′
s′ (= As′)

11. If a = call, then a′
A = As

12. If a = internal, then Xa
sAs ⊆ A′

s and
a′
A = aA.

13. If a = return, then Xa
saA ⊆ A′

s

14. Further, Xa
sAs = ∅ if

(a) a = call and rs = noreturn, or
(b) a = return, or
(c) d′s = dead

15. If a = call, Xc
sA

′
s′ = (Xc

s Atoms(φ)) ∩
As

16. If a = internal, then Xc
sA

′
s′ = Xc

sAs.
17. Let b ∈ {a, c}. Let ψ ∈ Cl(φ), ψ =

φ1 Ub
sφ2. Then, ψ ∈ As iff either

φ2 ∈ As or (φ1 ∈ As and Xa
sψ ∈ As).

18. Let b ∈ {a, c}. Let ψ ∈ Cl(φ), ψ =
φ1 Ub

jφ2 with j
= s. Then ψ ∈ As iff
ψ ∈ A′

s.
19. ∀j: If dj = dead, then Aj = ∅ and

rj = noreturn.

Fig. 1. Conditions for Δ̂s. XA = {ψ | Xψ ∈ A}, Xa
1A = {ψ | Xa

1ψ ∈ A} and â =
(aS, aA, ar) (similarly, â′).

Lemma 3. Let ρ̂ be a run of P̂ satisfying the acceptance condition F . Then, ρ̂
projected over states of P , denoted Π(ρ̂), is a run of P and γ(Π(ρ̂)) = ρ̂.

From Lemmas 2 and 3 the soundness and completeness of the reduction follow if
we define the set of new initial states I0 for the REP problem as states with initial
state (g0, i0) for the MC problem and φ present in the part tracking formulas
that hold true: I0 = {((g0,A,d, r), i0) | φ ∈ Ai0}. This gives an exponential-
time reduction from MC to REP as well as their bounded variants. Theorem 1
below can be viewed as a counterpart of [14, Theorem 3].

Theorem 1. Let P be a MPDS with initial configuration (g, (⊥)N) and φ be

a Multi-CaRet formula. Let P̂ be the system built from P , g and φ, I0 be the
associated set of initial states and F be the acceptance condition. (I) If ρ1 is a

run of P from (g, (⊥)N) then ρ2 = γ(ρ1) is a run of P̂ satisfying F and (A)-(C)

hold true. (II) If ρ2 is a run of P̂ from some configuration with global state in
I0 and satisfying F , then Π(ρ2) is a run of P and (A)-(C) hold true too.

Conditions (A)–(C) are defined as follows: (A) ρ1 is k-bounded iff ρ2 is k-
bounded, for all k ≥ 0; (B) ρ1 is k-phase-bounded iff ρ2 is k-phase-bounded, for
all k ≥ 0; (C) ρ1 is /-bounded iff ρ2 is /-bounded, for all total orderings of the
stacks /= ([N] ,≤).

Note that at each position, ρ1 and ρ2 work on the same stack and perform the
same type of action (call, return, internal move), possibly with slightly different
letters. This is sufficient to guarantee the satisfaction of the conditions (A)–(C).

414 K. Bansal and S. Demri

5 Complexity Analysis with Bounded Runs

Bounded Repeated Global State Reachability Problem. We evaluate
the complexity of BREP as well as its variant restricted to a single accepting
global state, written BREPsingle. There is a logspace reduction from BREP to
BREPsingle by copying the MPDS as many times as the cardinality of F (as
done to reduce non-emptiness problem for generalized Büchi automata to non-
emptiness problem for standard Büchi automata). This allows us to conclude
about the complexity upper bound for BMC itself but it is worth noting that
the MPDS obtained by synchronization has an exponential number of global
states and therefore a refined complexity analysis is required to get optimal
upper bounds. In order to analyze the complexity for BREPsingle, we take ad-
vantage of proof techniques that are introduced earlier and for which we provide
a complexity analysis that will suit our final goal. Namely, existence of an infi-
nite k-bounded run s.t. a final global state (gf , if) is repeated infinitely often is
checked: (1) by first guessing a sequence of intermediate global states witness-
ing context switches of length at most k + 1, (2) by computing the (regular)
set of reachable configurations following that sequence and then (3) by verifying
whether there is a reachable configuration leading to an infinite run s.t. (gf , if) is
repeated infinitely often and no stack switch is performed. The principle behind
(2) is best explained in [17] but we provide a complexity analysis using the com-
putation of post�(X) along the lines of [18]. Sets post�(X) need to be computed
at most k times, which might cause an exponential blow-up (for instance if at
each step the number of states were multiplied by a constant). Actually, comput-
ing post� adds an additive factor at each step, which is essential for our analysis.
Let us define BREPsingle: it takes as inputs P , a configuration

(
(g, i) , (⊥)N

)
, a

global state (gf , if) and k ∈ N and it asks whether there is an infinite k-bounded
run ρ from

(
(g, i) , (⊥)N

)
s.t. (gf , if) is repeated infinitely often.

Proposition 1. BREPsingle can be solved in time O(|P |k+1×p(k, |P |)) for some
polynomial p(·, ·).

The proof of Proposition 1 is at the heart of our complexity analysis and it relies
on constructions from [8,18]. We take advantage of it with the input system P̂ .

Corollary 1. (I) BMC with k encoded with a unary representation is Exp-

Time-complete. (II) BMC with k in binary encoding is in 2ExpTime.

Note that [6, Theorem 15] would lead to an ExpTime upper bound for BMC
if k is not part of the input, see the ExpTime upper bound for the problem
NESTED-TRACE-SAT(L−, k) from [6]; in our case k is indeed part of the input
and in that case, the developments in [6] will lead to a 2ExpTime bound by using
the method used for NESTED-TRACE-SAT(L−, k) even if k is encoded in unary.
Indeed, somewhere in the proof, the path expression succ≤k is exponential in the
value k. Hence, Corollary 1(I) is the best we can hope for when k is part of the
input of the model-checking problem. We write BMCreg to denote the extension
of BMC in which Multi-CaRet is replaced by

Bounded Multi-Pushdown Systems 415

Corollary 2. (I) BMCreg with k encoded with an unary representation is Exp-

Time-complete. (II) BMCreg with k in binary encoding is in 2ExpTime.

Complexity Results for Other Boundedness Notions. We focus on the
complexity analysis for OBMC and PBMC. Let OREPsingle be the variant of
BREPsingle with ordered MPDS: it takes as inputs an ordered multi-pushdown
system P , a configuration

(
(g, i) , (⊥)N

)
, a global state (gf , if) and it asks

whether there is an infinite run ρ from
(
(g, i) , (⊥)N

)
such that (gf , if) is re-

peated infinitely often. According to [2, Theorem 11], OREPsingle restricted to

ordered multi-pushdown systems with k stacks can be checked in time O(|P |2
d k

)

where d is a constant. Our synchronized product P̂ is exponential in the size of
formulas (see Section 4), whence OBMC is in 2ExpTime too (k is linear in the
size of our initial P). Condition (C) from Theorem 1 needs to be used here.

Corollary 3. OBMC is in 2ExpTime.

The same complexity upper bound can be shown with regularity constraints.
Now, let us consider k-bounded-phase runs. Let us define PBREPsingle in a

similar way: it takes as inputs a MPDS P , a configuration
(
(g, i) , (⊥)N

)
, a global

state (gf , if) and k ∈ N and it asks whether there is an infinite k-phase-bounded
run ρ from

(
(g, i) , (⊥)N

)
such that (gf , if) is repeated infinitely often. In [3,

Section 5], it is shown that non-emptiness for k-phase MPDS can be reduced to
non-emptiness for ordered MPDS with 2k stacks. By inspecting the proof, we
can conclude: a similar reduction can be performed for reducing the repeated
reachability of a global state, and non-emptiness of k-phase P with N stacks is
reduced to non-emptiness of one of Nk instances of P ′ with 2k stacks and each
P ′ is in polynomial-size in k + |P |. Therefore, PBREPsingle is in 2ExpTime.
Indeed, there is an exponential number of instances and checking non-emptiness
for one of them can be done in double exponential time. By combining the
different complexity measures above, checking an instance of PBREPsingle with

P̂ requires time in O(Nk ×
∣∣∣P̂ ∣∣∣2d 2k

) which is double-exponential in the size

of P . Consequently, bounded model-checking with bounded-phase MPDS is in
2ExpTime too if the number of phases is encoded in unary.

Corollary 4. (I) PBMC where k is encoded in unary is in 2ExpTime. (II)
PBMC where k is encoded in binary is in 3ExpTime.

Again, the same complexity upper bounds apply when regularity constraints are
added. Note that an alternative proof of Corollary 4(I) can be found in the recent
paper [7] where fragments of MSO are taken into account.

6 Conclusion

We showed that model-checking over MPDS with k-bounded runs is ExpTime-
complete when k is an input bound encoded in unary, otherwise the problem
is in 2ExpTime with a binary encoding. The logical language is a version of

416 K. Bansal and S. Demri

CaRet in which abstract temporal operators are related to calls and returns and
parameterized by the stacks, and regularity constraints on stack contents are
present too. A 2ExpTime upper bound is also established with ordered MPDS
or with k-phase bounded runs.

Acknowledgments. We thank the reviewers for their time and helpful com-
ments. K. Bansal also thanks LSV & ENS Cachan (France), and Clark Barrett
in New York, for making the internship in Summer 2011 and hence, this work,
possible.

References

1. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988,
pp. 467–481. Springer, Heidelberg (2004)

2. Atig, M.: Global model checking of ordered multi-pushdown systems. In: FST&TCS
2010. LIPICS, pp. 216–227 (2010)

3. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is
2ETIME-complete. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257,
pp. 121–133. Springer, Heidelberg (2008)

4. Atig, M.F., Bouajjani, A., Narayan Kumar, K., Saivasan, P.: Linear-time model-
checking for multithreaded programs under scope-bounding. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 152–166. Springer, Heidelberg
(2012)

5. Bansal, K., Demri, S.: A note on the complexity of model-checking bounded multi-
pushdown systems. Technical Report TR2012-949, NYU (December 2012)

6. Bollig, B., Cyriac, A., Gastin, P., Zeitoun, M.: Temporal logics for concurrent
recursive programs: Satisfiability and model checking. In: Murlak, F., Sankowski,
P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 132–144. Springer, Heidelberg (2011)

7. Bollig, B., Kuske, D., Mennicke, R.: The complexity of model-checking multi-stack
systems (2012) (submitted)

8. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown au-
tomata: application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.)
CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

9. Cyriac, A., Gastin, P., Kumar, K.N.: MSO decidability of multi-pushdown sys-
tems via split-width. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS,
vol. 7454, pp. 547–561. Springer, Heidelberg (2012)

10. Esparza, J., Ganty, P.: Complexity of pattern-based verification for multithreaded
programs. In: POPL 2011, pp. 499–510. ACM (2011)

11. Esparza, J., Kučera, A., Schwoon, S.: Model-checking LTL with regular valuations
for pushdown systems. In: Kobayashi, N., Babu, C. S. (eds.) TACS 2001. LNCS,
vol. 2215, pp. 316–339. Springer, Heidelberg (2001)

12. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: LICS 2007, pp. 161–170. IEEE (2007)

13. La Torre, S., Napoli, M.: Reachability of multistack pushdown systems with scope-
bounded matching relations. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 203–218. Springer, Heidelberg (2011)

Bounded Multi-Pushdown Systems 417

14. La Torre, S., Napoli, M.: A temporal logic for multi-threaded programs. In: Baeten,
J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol. 7604, pp. 225–239.
Springer, Heidelberg (2012)

15. La Torre, S., Parlato, G.: Scope-bounded multistack pushdown systems: fixed-
point, sequentialization and tree-width. In: FSTTCS 2012. LIPICS, pp. 173–184
(2012)

16. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: POPL 2011,
pp. 283–294. ACM (2011)

17. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

18. Schwoon, S.: Model-checking pushdown systems. PhD thesis, TUM (2002)

Multi-weighted Automata and MSO Logic

Manfred Droste and Vitaly Perevoshchikov�

Universität Leipzig, Institut für Informatik,
04109 Leipzig, Germany

{droste,perev}@informatik.uni-leipzig.de

Abstract. Weighted automata are non-deterministic automata where
the transitions are equipped with weights. They can model quantitative
aspects of systems like costs or energy consumption. The value of a run
can be computed, for example, as the maximum, limit average, or dis-
counted sum of transition weights. In multi-weighted automata, transi-
tions carry several weights and can model, for example, the ratio between
rewards and costs, or the efficiency of use of a primary resource under
some upper bound constraint on a secondary resource. Here, we introduce
a general model for multi-weighted automata as well as a multi-weighted
MSO logic. In our main results, we show that this multi-weighted MSO
logic and multi-weighted automata are expressively equivalent both for
finite and infinite words. The translation process is effective, leading to
decidability results for our multi-weighted MSO logic.

Keywords: Multi-priced automata, quantitative logic, average behav-
ior, power series.

1 Introduction

Recently, multi-priced timed automata [6,5,17,20] have received much attention
for real-time systems. These automata extend priced timed automata by featur-
ing several price parameters. This permits to compute objectives like the optimal
ratio between rewards and costs [6,5], or the optimal consumption of several re-
sources where more than one resource must be restricted [20]. Arising from the
model of timed automata, the multi-weighted setting has also attracted much
notice for classical non-deterministic automata [1,3,16,18].

The goal of the present paper is to develop a multi-weighted monadic sec-
ond order (MSO) logic and to show that it is expressively equivalent to multi-
weighted automata.

Büchi’s and Elgot’s fundamental theorems [7,15] established the expressive
equivalence of finite automata and MSO logic. Weighted MSO logic with weights
taken from an arbitrary semiring was introduced in [12,10] and it was shown that
a fragment of this weighted logic and semiring-weighted automata on finite and
infinite words have the same expressive power [10]. Chatterjee, Doyen, and Hen-
zinger [8,9] investigated weighted automata modeling the average and long-time

� Partially supported by DFG Graduiertenkolleg 1763 (QuantLA).

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 418–430, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Multi-weighted Automata and MSO Logic 419

behavior of systems. The behavior of such automata cannot be described by
semiring-weighted automata. In [13,14], valuation monoids were presented to
model the quantitative behaviors of these automata. Their logical characteriza-
tion was given in [14]. In this paper, we establish, both for finite and infinite
words, the Büchi-type result for multi-weighted automata; these do not fit into
the framework of other weighted automata like semiring automata [2,11,19,22],
or even valuation monoid automata [13,14].

First, we develop a general model for multi-weighted automata which incorpo-
rates several multi-weighted settings from the literature. Next, we define a multi-
weighted MSO logic by extending the classical MSO logic with constants which
could be tuples of weights. The semantics of formulas should be single weights
(not tuples of weights). Different from weighted MSO logics over semirings or
valuation monoids, this makes it impossible to define the semantics inductively
on the structure of an MSO formula. Instead, for finite words, we introduce an
intermediate semantics which maps each word to a finite multiset containing
tuples of weights. The semantics of a formula is then defined by applying to the
multiset semantics an operator which evaluates a multiset to a single value. Our
Büchi-type result for multi-weighted automata on finite words is established by
reducing it to the corresponding result of [14] for the product valuation monoid
of finite multisets.

In the case of infinite words, it is usually not possible to collect all the infor-
mation about weights of paths in finite multisets. Therefore, we cannot directly
reduce the desired result to the proof given in [14] for infinite words. But we can
use the result of [14] to translate each multi-weighted formula of our logic into
an automaton over the product ω-valuation monoid of multisets, and we show
that the weights of transitions in this automaton satisfy certain properties which
allow us to translate it into a multi-weighted automaton.

All our automata constructions are effective. Thus, decision problems for
multi-weighted logic can be reduced to decision problems of multi-weighted au-
tomata. Some of these problems for automata can be solved whereas for others
the details still have to be explored.

2 Multi-weighted Automata on Finite Words

The model of multi-weighted (or multi-priced) automata is an extension of
the model of weighted automata over semirings [2,11,19,22] and valuation
monoids [13,14] by featuring several price parameters. In the literature, dif-
ferent situations of the behaviors of multi-weighted automata were considered
(cf. [1,3,6,5,16,17,18,20]) to model the consumption of several resources. For in-
stance, the model of multi-priced timed automata introduced in [6] permits to
describe the optimal ratio between accumulated rewards and accumulated costs
of transitions. In this section, we introduce a general model to describe the be-
haviors of multi-weighted automata on finite words.

420 M. Droste and V. Perevoshchikov

Consider an automaton in which every transition carries a reward and a cost.
For paths of transitions, we are interested in the ratio between accumulated
rewards and accumulated costs. The automaton should assign to each word
the maximal reward-cost ratio of accepting paths on w. The idea is to model
the weights by elements of the set M = �× �≥0. We use a valuation function
val : M+ → M to associate to each sequence of such weights a single weight
in M . Since our automata are nondeterministic and a word may have several
accepting paths, we obtain a multiset of weights of these paths, hence a multiset
of elements from M . We use an evaluator function Φ which associates to each
multiset of M a single value. The mapping Φ can be considered as a general
summation operator. Now we turn to formal definitions.

To cover also the later case of infinite words, we let � = � ∪ {∞}. Let M be
a set. A multiset over M is a mapping r : M → �. For each m ∈ M , r(m) is the
number of copies of m in r. We let supp(r) = {m ∈ M | r(m) �= 0}, the support
of r. We say that a multiset r is finite if supp(r) is finite and ∞ /∈ r(M). We
denote the collection of all multisets by �〈〈M〉〉 and the collection of all finite
multisets by �〈M〉.

Definition 1. Let K be a set. A K-valuation structure (M, val, Φ) consists of
a set M , a valuation function val : M+ → M with val(m) = m for all m ∈ M ,
and an evaluator function Φ : �〈M〉 → K.

A nondeterministic automaton over an alphabet Σ is a tuple A = (Q, I, T, F)
where Q is a set of states, I, F ⊆ Q are sets of initial resp. final states and
T ⊆ Q×Σ ×Q is a transition relation. Finite paths π = (ti)0≤i≤n of A are
defined as usual as finite sequences of matching transitions, say ti = (qi, ai, qi+1).
Then we call the word w = a0a1...an ∈ Σ+ the label of the path π and π a path
on w. A path is accepting if it starts in I and ends in F . We denote the set of
all accepting paths of A on w ∈ Σ+ by AccA(w).

Definition 2. Let Σ be an alphabet, K a set and M = (M, val, Φ) a K-valuation
structure. A multi-weighted automaton over Σ and M is a tuple (Q, I, T, F, γ)
where (Q, I, T, F) is a nondeterministic automaton and γ : T → M .

Let A be a multi-weighted automaton over Σ and M, w ∈ Σ+ and π = t0...tn
a path on w. The weight of π is defined by WeightA(w) = val(γ(ti))0≤i≤n. Let
|A|(w) ∈ �〈M〉 be the finite multiset containing the weights of all accepting
paths in AccA(w). Formally, |A|(w)(m) = |{π ∈ AccA(w) | WeightA(π) = m}|
for all m ∈ M . The behavior ||A|| : Σ+ → K of A is defined for all w ∈ Σ+ by
||A||(w) = Φ(|A|(w)).

Note that every weighted automaton over a valuation monoid (M,+, val, �)
(cf. [13,14]) can be considered as a multi-weighted automaton over the K-
valuation structure (M, val, Φ) with K = M and Φ : �〈M〉 → M defined by
Φ(r) =

∑
(m | m ∈ supp(r) and 1 ≤ i ≤ r(m)) (as usual,

∑
∅ = �). Moreover,

multi-weighted automata extend the model of weighted automata over valu-
ation monoids in two directions. First, whereas the weights of transitions in
multi-weighted automata are taken from M , the behavior is a mapping with the

Multi-weighted Automata and MSO Logic 421

codomain K where K and M do not necessarily coincide. Second, we resolve
the nondeterminism in multi-weighted automata using an evaluator function Φ
defined on finite multisets.

Next, we consider several examples how to describe the behavior of multi-
weighted automata known from the literature using valuation structures. In each
of the three examples below, let Σ be an alphabet, M = (M, val, Φ) a K-
valuation structure, and A a multi-weighted automaton over Σ and M.

Example 1. Let � = � ∪ {−∞,∞}. Let M = � × �≥0, K = �,

val((x1, y1), ..., (xk, yk)) =
(∑k

i=1 xi,
∑k

i=1 yi

)
be the componentwise sum, and

Φ defined by Φ(r) = max
(x,y)∈supp(r)

x
y where we put x

0 = ∞ and max(∅) = −∞.

For instance, for every transition weight (x, y) ∈ M , x might mean the reward
and y the cost of the transition. Then ||A||(w) is the maximal ratio between
accumulated rewards and costs of accepting paths on w. The ratio setting was
considered first for multi-priced timed automata [6,5] and also for nondetermin-
istic automata [3,18].

Example 2. LetM = �×�, K = �∪{∞} and p ∈ �. Let val be as in the previous
example and Φ(r) = min{x | (x, y) ∈ supp(r) and y ≤ p}, for r ∈ �〈M〉, with
min(∅) = ∞. Let t be a transition and γ(t) = (x, y). We call x the primary
and y the secondary cost. Then ||A||(w) is the cheapest primary cost of reaching
with w some final state under the given upper bound constraint p ∈ � on the
secondary cost. The optimal conditional reachability problem for multi-priced
timed automata was studied in [20].

Example 3. Let M = �n for some n ≥ 1, K = �, and val be the component-
wise sum of vectors. We define Φ : �〈M〉 → � as follows. Let r ∈ �〈M〉 and

S = supp(r). Then Φ(r) = 0 if S = ∅ and Φ(r) =
∑

v∈S r(v)·||v||∑
v∈S r(v) otherwise. Here,

for v = (v1, ..., vn), ||v|| =
√

v21 + ...+ v2n is the length of v. Suppose that A
controls the movement of some object in �n and each transition t carries the
coordinates of the displacement vector of this object. Then, ||A||(w) is the value
of the average displacement of the object after executing w.

3 Multi-weighted MSO Logic on Finite Words

In this section, we wish to develop a multi-weighted MSO logic where the weight
constants are elements of a set M . Again, if weight constants are pairs of a re-
ward and a cost, the semantics of formulas must reflect the maximal reward-cost
ratio setting, so the weights of formulas should be single weights. Then, there
arises a problem to define the semantics function inductively on the structure of
a formula as in [10,14]. We solve this problem in the following way. We associate
to each word a multiset of elements of M . Here, for disjunction and existential
quantification, we use the multiset union. For conjunction, we extend a product
operation given on the set M to the Cauchy product of multisets. Similarly, for

422 M. Droste and V. Perevoshchikov

universal quantification, we extend the valuation function on M+ to �〈M〉+.
Then, we use an evaluator function Φ which associates to each multiset of ele-
ments a single value (e.g. the maximal reward-cost ratio of pairs contained in a
multiset).

As in the case of weighted MSO logics over product valuation monoids [14],
we extend a valuation structure (cf. Definition 1) with a unit element and a
binary operation in order to define the semantics of atomic formulas and of the
conjunction.

Definition 3. Let K be a set. A productK-valuation structure (K-pv-structure)
(M, val, 3, �, Φ) consists of a K-valuation structure (M, val, Φ), a constant � ∈ M
with val(m�...�) = m for m ∈ M , and a multiplication 3 : M × M → M such
that m 3 � = � 3m = m for all m ∈ M .

For the rest of this section, we fix an alphabet Σ and a K-pv-structure
M = (M, val, 3, �, Φ). Let V be a countable set of first and second order variables.
Lower-case letters like x, y denote first order variables whereas capital letters like
X,Y etc. denote second order variables. The syntax of multi-weighted MSO logic
over Σ and M is defined as in [4] by the grammar:

β ::= Pa(x) | x ≤ y | x ∈ X | ¬β | β ∧ β | ∀xβ | ∀Xβ

ϕ ::= m | β | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃Xϕ

where a ∈ Σ, m ∈ M , x, y,X ∈ V . The formulas β are called boolean formu-
las and the formulas ϕ multi-weighted MSO-formulas. Note that negation and
universal second order quantification are allowed in boolean formulas only. Note
also that the boolean formulas have the same expressive power as (unweighted)
MSO logic.

The class of almost boolean formulas over Σ and M is the smallest class
containing all constants m ∈ M and all boolean formulas and which is closed
under ∧ and ∨. A multi-weighted MSO formula ϕ is syntactically restricted if
whenever it contains a sub-formula ∀xψ, then ψ is almost boolean, and if for
every subformula ϕ1 ∧ ϕ2 of ϕ either both ϕ1 and ϕ2 are almost boolean, or ϕ1

or ϕ2 is boolean.
The set Free(ϕ) of free variables in ϕ is defined as usual. For w ∈ Σ+, let

dom(w) = {0, ..., |w|-1}. Let V be a finite set of variables with Free(ϕ) ⊆ V .
A (V , w)-assignment is a mapping σ : V → dom(w) ∪ 2dom(w) where every
first order variable is mapped to an element of dom(w) and every second order
variable to a subset of dom(w). The update σ[x/i] for i ∈ dom(w) is defined as:
σ[x/i](x) = i and σ[x/i]|V\{x} = σ|V\{x}. The update for second order variables
can be defined similarly. Each pair (w, σ) of a word and (V , w)-assignment can
be encoded as a word over the extended alphabet ΣV = Σ × {0, 1}V . Note that
a word (w, σ) ∈ Σ+

V represents an assignment if and only if, for every first order
variable in V , the corresponding row in the extended word contains exactly one
1; then (w, σ) is called valid. The set of all valid words in Σ+

V is denoted by NV .
We also denote by Σϕ the alphabet ΣFree(ϕ).

Multi-weighted Automata and MSO Logic 423

Consider again the collection �〈M〉 of all finite multisets over M . Here, we
consider the set of natural numbers as the semiring (�,+, ·, 0, 1) where + and
· are usual addition and multiplication. The union (r1 ⊕ r2) ∈ �〈M〉 of finite
multisets r1, r2 ∈ �〈M〉 is defined by (r1 ⊕ r2)(m) = r1(m) + r2(m) for all
m ∈ M . We define the Cauchy product (r1 · r2) ∈ �〈M〉 of two finite multisets
r1, r2 ∈ �〈M〉 by

(r1 · r2)(m) =
∑

(r1(m1) · r2(m2) | m1,m2 ∈ M,m1 3m2 = m) .

Note that in the equation above there are finitely many non-zero summands,
because the multisets r1 and r2 are finite. Let n ≥ 1 and r1, ..., rn ∈ �〈M〉. We
also define the valuation val(r1, ..., rn) ∈ �〈M〉 by

val(r1, ..., rn)(m) =
∑(∏n

i=1
ri(mi) | m1, ...,mn ∈ M, val(m1, ...,mn) = m

)
.

Note that the right side of the equation above also contains only finitely many
non-zero summands. The empty multiset ε is the finite multiset whose support
is empty. A simple multiset over M is a finite multiset r ∈ �〈M〉 such that
supp(r) = {mr} and r(mr) = 1, so r(m) = 0 for all m �= mr. We denote such
a simple multiset r by [mr]. The collection of all simple multisets over M is
denoted by Mon(M).

As opposed to the case of pv-monoids [14], the pv-structure M does not
contain a commutative and associative sum operation to define the semantics of
the disjunction and the existential quantification. For this, we employ the sum of
multisets. Let ϕ be a multi-weighted formula over Σ and M, and V ⊇ Free(ϕ).
We define the auxiliary multiset semantics function 〈ϕ〉V : Σ+

V → �〈M〉 relying
on the ideas of [10] (cf. also [14]) as follows: for all (w, σ) /∈ NV , 〈ϕ〉V (w, σ) = ε
and, for all (w, σ) ∈ NV , 〈ϕ〉V (w, σ) is defined inductively as shown in Table 1.

Here, x, y,X ∈ V , a ∈ Σ, m ∈ M , β is a boolean formula and ϕ, ϕ1, ϕ2 are
multi-weighted formulas. In Table 1, for the semantics of ∀Xϕ the subsets I ⊆
dom(w) are enumerated in some fixed order, e.g. lexicographically. For a formula
ϕ, we put 〈ϕ〉 = 〈ϕ〉Free(ϕ). Then, we define the semantics 〈〈ϕ〉〉 : Σ+

ϕ → K as
the composition 〈〈ϕ〉〉 = Φ ◦ 〈ϕ〉.

Example 4. Let A be an object on the plane whose displacement is managed
by two types of commands: ↔ and 5. After receiving the command ↔ the
object moves one step to the left or to the right; after receiving 5 one step
up or down. Consider the �-valuation structure (�2, val, Φ) from Example 3.
We define 3 as the componentwise sum of vectors and put � = (0, 0). Then,
M = (�2, val, 3, �, Φ) is an �-pv-structure. Consider the following multi-weighted
MSO sentence over the alphabet Σ = {↔, 5} and the �-pv-structure M:

ϕ = ∀x((P↔(x) → ((−1, 0) ∨ (1, 0))) ∧ (P!(x) → ((0,−1) ∨ (0, 1))))

where, for a boolean formula ϕ and a multi-weighted formula ψ, β → ψ is
an abbreviation for (β ∧ ψ) ∨ ¬β. For every sequence of commands w ∈ Σ+,
the multiset 〈ϕ〉(w) contains all possible displacement vectors of the object.

424 M. Droste and V. Perevoshchikov

Table 1. The auxiliary multiset semantics of multi-weighted MSO formulas over a
pv-structure

〈m〉V(w,σ)=[m]

〈Pa(x)〉V(w,σ)=

{
[�], if wσ(x) =a,

ε, otherwise

〈x≤y〉V(w,σ)=

{
[�], if σ(x) ≤ σ(y),

ε, otherwise

〈x∈X〉V(w,σ)=

{
[�], if σ(x) ∈ σ(X),

ε, otherwise

〈¬β〉V(w,σ)=

{
[�], if 〈β〉V(w,σ)=ε,

ε, otherwise

〈ϕ1∨ϕ2〉V(w,σ)=〈ϕ1〉V(w,σ)⊕〈ϕ2〉V(w,σ)

〈ϕ1∧ϕ2〉V(w,σ)=〈ϕ1〉V(w,σ)·〈ϕ2〉V(w,σ)

〈∃xϕ〉V(w,σ)=
⊕

i∈dom(w)

〈ϕ〉V∪{x}(w, σ[x/i])

〈∃Xϕ〉V(w,σ)=
⊕

I⊆dom(w)

〈ϕ〉V∪{X}(w, σ[X/I])

〈∀xϕ〉V(w,σ)=val
(
〈ϕ〉V∪{x}(w,σ[x/i])

)
i∈dom(w)

〈∀Xβ〉V(w,σ)=val
(
〈β〉V∪{X}(w,σ[X/I])

)
I⊆dom(w)

For example, let w =↔↔. The object has 4 possibilities to move: 1) two steps
to the right; 2) one step to the right and then to the home position; 3) one
step to the left and then to the home position; 4) two steps to the left. Then
〈ϕ〉(w) = [(2, 0), (0, 0), (0, 0), (−2, 0)]. The average displacement of the object is
given by 〈〈ϕ〉〉 for each sequence of commands w. For example, 〈〈ϕ〉〉(↔↔) = 1,
〈〈ϕ〉〉(↔5) =

√
2.

Note that the multi-weighted MSO logic over K-pv-structures contains the
case of weighted MSO logic over semirings (cf. [12,10]). Hence, in general, multi-
weighted MSO logic is expressively more powerful than multi-weighted automata.

Our main result for finite words is the following theorem.

Theorem 1. Let Σ be an alphabet, K a set, M = (M, val, 3, �, Φ) a K-pv-
structure and s : Σ+→K. Then s = ||A|| for some multi-weighted automaton
A over Σ and M iff s = 〈〈ϕ〉〉 for a syntactically restricted multi-weighted MSO
sentence ϕ over Σ and M.

The proof is similar to the proof of the corresponding Theorem 2 for infinite
words. For lack of space, we skip it.

We consider examples of decision problems for multi-weighted MSO logic.

Example 5. Let Σ be an alphabet and M = (�× �≥0, val, 3, (0, 0), Φ) the �-pv-
structure where 3 is the componentwise sum, and val and Φ are defined as in
Example 1. Let ϕ be a multi-weighted MSO sentence over Σ and M, and ν ∈ �

a threshold. The ≥ν-emptiness problem is whether there exists a word w ∈ Σ+

such that 〈〈ϕ〉〉(w) ≥ ν. If ϕ is syntactically restricted, then, using our Theo-
rem 1, we can effectively translate ϕ into a multi-weighted automaton over Σ
and M. Then ≥ν-emptiness for these multi-weighted automata can be decided
in the following way. First, we use a shortest path algorithm to decide whether

Multi-weighted Automata and MSO Logic 425

there exists a path with cost 0, i.e. ||A||(w) =∞≥ ν for some w. If this is not
the case (i.e. the costs of all accepting paths in A are strictly positive), we use
the same technique as for the ≥ν-emptiness problem for ratio automata with
strictly positive costs (cf. [18], Theorem 3). We replace the weight (r, c) of every
transition by the single value r − νc and obtain a weighted automaton A′ over
the max-plus semiring � ∪ {−∞}. Then, ||A||(w) ≥ ν iff the semiring-behavior
of A′ on w is not less than zero. Then, the decidability of our problem follows
from the decidability of the ≥0-emptiness problem for max-plus automata.

Example 6. Let Σ be an alphabet and M = (�2, val, 3, (0, 0), Φ) where 3 is the
componentwise sum, and val and Φ are as in Example 2. Again, using our Theo-
rem 1, we can reduce the ≤ν-emptiness problem (defined similarly as in Example
5) for syntactically restricted multi-weighted MSO logic over Σ and M to the
emptiness problem for multi-weighted automata. This problem is decidable, since
the optimal conditional reachability for multi-priced timed automata is decidable
[20].

4 Multi-weighted Automata and MSO Logic on Infinite
Words

In this section, we develop a general model for both multi-weighted automata
and MSO logic on infinite words. Recall that, for a setM , �〈〈M〉〉 is the collection
of all multisets over M . Let Mω denote the set of all ω-infinite words over M .

Definition 4. Let K be a set. A product K-ω-valuation structure (K-ω-pv
structure) is a tuple (M, valω, 3, �, Φ) where

– M is a set, � ∈ M and Φ : �〈〈M〉〉 → K;
– valω : Mω → M with valω(m�ω) = m for all m ∈ M ;
– 3 : M ×M → M such that m 3 � = � 3m = m for all m ∈ M .

A Muller automaton over an alphabet Σ is a tuple A = (Q, I, T,F) where
Q is a set of states, I ⊆ Q is a set of initial states, T ⊆ Q × Σ × Q is a
transition relation and F ⊆ 2Q is a Muller acceptance condition. Infinite paths
π = (ti)i∈ω of A are defined as infinite sequences of matching transitions, say
ti = (qi, ai, qi+1). Then we call the word w = (ai)i∈ω the label of the path π and
π a path on w. We say that a path π = (qi, ai, qi+1)i∈ω is accepting if q0 ∈ I
and {q ∈ Q | q = qi for infinitely many i ∈ ω} ∈ F . Let AccA(w) denote the set
of all accepting paths of A on w.

For the rest of this section, we fix an alphabet Σ and a K-ω-pv structure
M = (M, valω, 3, �, Φ).

Definition 5. A multi-weighted Muller automaton over Σ and M is a tuple
A = (Q, I, T,F , γ) where (Q, I, T,F) is a Muller automaton and γ : T → M .

Let A be a multi-weighted Muller automaton over Σ and M, w ∈ Σω and
π = (ti)i∈ω an accepting path on w. The weight of π is defined by WeightA(π) =

426 M. Droste and V. Perevoshchikov

valω(γ(ti))i∈ω . Let |A|(w) ∈ �〈〈M〉〉 be the multiset containing the weights of
paths in AccA(w). Formally, |A|(w)(m) = |{π ∈ AccA(w) | WeightA(w) = m}|
where, for an infinite set X , we put |X | = ∞. The behavior of A is the ω-series
||A|| : Σω → K defined by ||A||(w) = Φ(|A|(w)).

Remark 1. The multiplication 3, the unital element � and the condition
valω(m�ω) = m are irrelevant for the definition of the behaviors of multi-
weighted automata. However, they will be used to describe the semantics of
multi-weighted MSO formulas.

We consider several examples of multi-weighted automata A over Σ and M, and
their behaviors.

Example 7. Consider the reward-cost ratio setting of Example 1 for infinite
words. For a sequence (ri, ci)i∈ω ∈ (� × �≥0)

ω of reward-cost pairs, the supre-

mum ratio (cf. [6]) is defined by lim sup
n→∞

∑n
i=0 ri∑n
i=0 ci

∈ � where r
0 = ∞. Unfortu-

nately, since
∑∞

i=0 ri and
∑∞

i=0 ci may not exist or may be infinite, we cannot
proceed as for finite words by considering pairs of accumulated rewards and
costs and their ratios. Instead, we can define M as follows. Let M = � × �≥0,
K = � and � = (0, 0). Let μ = (ri, ci)i∈ω ∈ (� × �≥0)

ω. If
∑∞

i=0 ri and∑∞
i=0 ci are finite, then we put valω(μ) = (

∑∞
i=0 ri,

∑∞
i=0 ci). Otherwise, we put

valω(μ) =

(
lim sup
n→∞

∑n
i=0 ri∑
n
i=0 ci

, 1

)
. For sequences μ ∈ Mω \ (� × �≥0)

ω , we define

valω(μ) arbitrarily keeping valω(m�ω) = m. Let also 3 be the componentwise
sum where ∞+(-∞) is defined arbitrarily. The evaluator function Φ is defined by
Φ(r) = sup

(x,y)∈supp(r)

x
y . Then, ||A||(w) is the maximal supremum ratio of accept-

ing paths of w. The corresponding model for timed automata was considered in
[6,5].

Example 8. Let Emax = (E1
max, ..., E

n
max) ∈ �n where Ei

max > 0 for all i, and
M = [−Emax, Emax] ⊆ �n, i.e. M consists of all vectors (v1, ..., vn) ∈ �n such
that −Ei

max ≤ vi ≤ Ei
max for each i ∈ {1, ..., n}. Let K = � = {false, true}, the

boolean semiring and � = (0, ..., 0). For u1 = (u1
1, ..., u

n
1) and u2 = (u1

2, ..., u
n
2) ∈

M , we put u1 3 u2 = (v1, ..., vn) where vi = max{min{ui
1 + ui

2, E
i
max},−Ei

max}.
For (mi)i∈ω ∈ Mω we define the sequence (vi)i∈ω in M as follows. We put
v0 = (0, ..., 0) and vi+1 = vi 3 mi for all i ∈ ω. Then, let valω((mi)i∈ω) =
(x1, ..., xn) ∈ M where xj = inf{vji | i ∈ ω} for all 1 ≤ j ≤ n. Let Φ be
defined by Φ(r) = true iff there exists (m1, ...,mn) ∈ supp(r) with mj ≥ 0 for all
1 ≤ j ≤ n. This model corresponds to the one-player energy games considered
in [16].

The syntax of the multi-weighted MSO logic over Σ and M is defined exactly as
for finite words (cf. Section 3). To define the semantics of this logic, we proceed
similarly as for finite words, i.e. by means of the auxiliary multiset semantics. For
this, we consider � as the totally complete semiring (�,+, ·, 0, 1) (cf. [10]) where
0 · ∞=∞ · 0 = 0. The sum ⊕ and the Cauchy product · for infinite multisets

Multi-weighted Automata and MSO Logic 427

from �〈〈M〉〉 are defined as for finite words. The ω-valuation valω(ri)i∈ω for
ri ∈ �〈〈M〉〉 is defined for all m ∈ M by

valω((ri)i∈ω)(m) =
∑(∏

i∈ω
ri(mi) | (mi)i∈ω ∈ Mω and valω(mi)i∈ω = m

)
.

The empty multiset ε ∈ �〈〈M〉〉 and simple multisets [m] ∈ �〈〈M〉〉 (for m ∈ M)
are defined in the same way as for finite words. Let Mon(M) = {[m] | m ∈ M}.

Let ϕ be a multi-weighted MSO formula over Σ and M, and V ⊇ Free(ϕ). We
define the auxiliary multiset semantics 〈ϕ〉V : Σω

V → �〈〈M〉〉 inductively on the
structure of ϕ as in Table 1 where we have to replace val by valω. For w ∈ Σω,
we let dom(w) = ω. To define the semantics 〈∀Xϕ〉, we have to extend valω for
multisets to index sets of size continuum such that valω((ri)i∈I) = ε whenever
ri = ε for some i ∈ I, and valω(([�])i∈I) = [�]. The semantics of ϕ is defined by
〈〈ϕ〉〉 = Φ ◦ 〈ϕ〉.

Example 9. Assume that a bus can operate two routes A and B which start and
end at the same place. The route R lasts tR time units and profits pR money
units on the average per trip, for R ∈ {A,B}. We may be interested in making
an infinite schedule for this bus which is represented as an infinite sequence from
{A,B}ω. This schedule must be fair in the sense that both routes A and B must
occur infinitely often in this timetable (even if the route A or B is unprofitable).
The optimality of the schedule is also preferred (we wish to profit per time unit
as much as possible). We consider the K-ω-pv structure M from Example 7 and
a one-element alphabet Σ = {τ} which is irrelevant here. Now we construct a
weighted MSO sentence ϕ over Σ and M to define the optimal income of the
bus per time unit (supremum ratio between rewards and time):

ϕ = ∃X
(∞
∃x(x∈X) ∧

∞
∃x(x /∈X) ∧ ∀x((x∈X→(pA, tA)) ∧ (x /∈X→(pB, tB))

)
where

∞
∃ xψ is an abbreviation for a boolean formula ∀y(¬∀x(¬(y ≤ x ∧ ψ))).

Here, the second order variable X corresponds to the set of positions in an
infinite schedule which can be assigned to the route A. Then,

|ϕ|(τω) = sup

{
lim sup
n→∞

pA · |I ∩ n|+ pB · |Ic ∩ n|
tA · |I ∩ n|+ tB · |Ic ∩ n| | I ⊆ � with I, Ic infinite

}
where n = {0, ..., n} and Ic = � \ I.

Now we state our main result for infinite words.

Theorem 2. Let Σ be an alphabet, K a set and M = (M, valω, 3, �, Φ) a K-ω-
pv structure. Let s : Σω → K be an ω-series. Then s = ||A|| for some multi-
weighted Muller automaton A over Σ and M iff s = 〈〈ϕ〉〉 for some syntactically
restricted multi-weighted MSO sentence ϕ over Σ and M.

In the rest of this section, we give the proof idea of this theorem. Let
mwMA(Σ,M) denote the collection of all multi-weighted Muller automata

428 M. Droste and V. Perevoshchikov

mwMA(Σ,M) wMA(Σ,Mon(M)) wMA(Σ,�〈M〉)

wMSOres(Σ,Mon(M))mwMSOres(Σ,M)

(i)

(ii)

(v)

(iii)
(iv)

Fig. 1. The proof scheme of Theorem 2

over Σ and M. Let A ∈ mwMA(Σ,M). We can consider |A| as an ω-series
|A| : Σω → �〈〈M〉〉. We call |A| the multiset-behavior of A. Then ||A|| =
Φ ◦ |A|. Let mwMSOres(Σ,M) denote the set of all syntactically restricted
multi-weighted MSO sentences over Σ and M. Since, for any multi-weighted
formula ϕ, 〈〈ϕ〉〉 = Φ ◦ 〈ϕ〉, it suffices to show that mwMA(Σ,M) with the
multiset-behavior and mwMSOres(Σ,M) with the multiset-semantics are ex-
pressively equivalent.

For this, we can show that (�〈〈M〉〉,⊕, valω, ·, ε, [�]) is an ω-pv monoid as
defined in [14]. Let D ⊆ �〈〈M〉〉. We denote by wMA(Σ,D) the collection of
weighted automata over Σ and the ω-pv monoid �〈〈M〉〉 where the weights of
transitions are taken fromD. LetwMSOres(Σ,D) denote the set of syntactically
restricted sentences over Σ and the ω-pv monoid �〈〈M〉〉 with constants from D.
Let [[ϕ]] denote the semantics of ϕ ∈ wMSOres(Σ,M) as defined in [14]. The
proof scheme of our result is depicted in Fig. 1. Here, ↔ means the expressive
equivalence and → the expressive inclusion.

(i) If we replace the weight m ∈ M of every transition of a multi-weighted
automaton A by the simple multiset [m] ∈ Mon(M), we obtain a weighted
automaton A′ over the pv monoid �〈M〉 such that the pv-monoid behavior
of A′ is equal to |A|. Conversely, we can replace the weights [m] in A′ by
m to obtain a multi-weighted automaton with the same behavior.

(ii) Similarly to (i), we replace the constants m occurring in MSO formulas by
simple multisets [m] and vice versa.

(iii) The proof is based on the proof of Theorem 6.2 (a) of Droste and Meinecke
[14]. We proceed inductively on the structure of ϕ ∈ wMSOres(Σ,Mon(M)).
Using the property valω(m�ω) = m for m ∈ M , we show that every almost
boolean formula is equivalent to a weighted Muller automaton with weights
from Mon(M) ⊆ �〈M〉. Let ϕ, ϕ1 and ϕ2 be weighted MSO formulas with
constants from Mon(M) such that [[ϕ]], [[ϕ1]] and [[ϕ2]] are recognizable
by weighted Muller automata with weights from D ⊆ �〈〈M〉〉. Let β be
any boolean formula. It can be shown that [[ϕ1 ∨ ϕ2]], [[∃xϕ]], [[∃Xϕ]] and
[[ϕ ∧ β]] = [[β ∧ ϕ]] are also recognizable by weighted Muller automata with
weights from D. If ϕ is almost boolean, then [[ϕ]] is an ω-recognizable step
function with coefficients from �〈M〉. Using the construction of Lemma
8.11 of [10], cf. Theorem 6.2 of [14], we establish that [[∀xϕ]] is recognizable
by a weighted automaton with weights from �〈M〉.

Multi-weighted Automata and MSO Logic 429

(iv) The proof follows from Theorem 6.2 of [14] where a weighted automaton
with weights in D ⊆ �〈〈M〉〉 was translated into an MSO sentence with
weights in D.

(v) Let A = (Q, I, T,F , γ) ∈ wMA(Σ,�〈M〉). We construct an automaton
A′ = (Q′, I ′, T ′,F ′, γ′) ∈ wMA(Σ,Mon(M)) with the same behavior by
unfolding each single transition of A labeled by a finite multiset into several
transitions labeled by elements of this multiset as follows.
• Q′ = I ∪ {(q,m, i) : t = (p, a, q) ∈ T,m ∈ supp(γ(t)), 1 ≤ i ≤ γ(t)(m)}
• I ′ = I, F ′ = {{(q1,m1, k1), ..., (qn,mn, kn)} ⊆ Q′ \ I | {q1, ..., qn} ∈ F}.
• T ′ = T1 ∪ T2, where T1 consists of all transitions (p, a, (q,m, i)) from

I × Σ × (Q′ \ I) with (p, a, q) ∈ T ; T2 consists of all transitions
((q1,m1, i1), a, (q2,m2, i2)) from (Q′\I)×Σ×(Q′\I) with (q1, a, q2) ∈ T .

• For all t = (q′, a, (q,m, i)) ∈ T ′, let γ′(t) = [m].

5 Conclusion

We have extended the use of weighted MSO logic to a new class of multi-weighted
settings. We just note that, as in [14], for K-pv-structures and K-ω-pv struc-
tures with additional properties there are larger fragments of multi-weighted
MSO logic which are still expressively equivalent to multi-weighted automata.
Since our translations from formulas to automata are effective, we can reduce
the decidability problems for multi-weighted logics to the corresponding prob-
lems for multi-weighted automata. Decidability results of, e.g., [6,16,18,20] lead
to decidability results for multi-weighted nondeterministic automata. However,
for infinite words, the authors did not consider Muller acceptance condition
for automata. Therefore, our future work will investigate decision problems for
multi-weighted Muller automata. Also, weighted MSO logic for weighted timed
automata was investigated in [21]. In our further work, we wish to combine the
ideas of [21] and the current work to obtain a Büchi theorem for multi-weighted
timed automata.

References

1. Bauer, S., Juhl, L., Larsen, K., Legay, A., Srba, J.: A logic for accumulated-weight
reasoning on multiweighted modal automata. In: Proc. of the 6th Int. Symp. on
Theoret. Aspects of Software Engineering (TASE 2012), pp. 77–84. IEEE Computer
Society Press (2012)

2. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Mono-
graphs on Theoretical Computer Science, vol. 12. Springer (1988)

3. Bloem, R., Greimel, K., Henzinger, T.A., Jobstmann, B.: Synthesizing robust sys-
tems. In: Proc. of 9th Int. Conf. on Formal Methods in Computer-Aided Design
(FMCAD 2009), pp. 85–92. IEEE (2009)

4. Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: Diekert, V., Nowotka,
D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 18–38. Springer, Heidelberg (2009)

5. Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced
timed automata. Formal Methods in System Design 32(1), 3–23 (2008)

430 M. Droste and V. Perevoshchikov

6. Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In:
Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer,
Heidelberg (2004)

7. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
und Grundl. Math. 6, 66–92 (1960)

8. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski,
M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg
(2008)

9. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. Logical Methods in Comp. Sci. 6(3) (2010)

10. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Droste et.al.:
[11], ch. 5

11. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
EATCS Monographs on Theoretical Computer Science. Springer (2009)

12. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoret. Comp.
Sci. 380(1-2), 69–86 (2007)

13. Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation
monoids. Int. J. Found. Comput. Sci. 22(8), 1829–1844 (2011)

14. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average
and long-time behaviors. Inf. Comput. 221, 44–59 (2012)

15. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc. 98, 21–51 (1961)

16. Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted
automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916,
pp. 95–115. Springer, Heidelberg (2011)

17. Fahrenberg, U., Larsen, K.G., Thrane, C.R.: Model-based verification and anal-
ysis for real-time systems. In: Software and Systems Safety - Specification and
Verification, NATO Science for Peace and Security Series - D: Information and
Communication Security, vol. 30, pp. 231–259. IOS Press (2011)

18. Filiot, E., Gentilini, R., Raskin, J.F.: Quantitative languages defined by functional
automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454,
pp. 132–146. Springer, Heidelberg (2012)

19. Kuich, W., Salomaa, A.: Semirings, Automata and Languages. EATCS Mono-
graphs on Theoretical Computer Science, vol. 5. Springer (1986)

20. Larsen, K.G., Rasmussen, J.I.: Optimal conditional reachability for multi-priced
timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 234–249.
Springer, Heidelberg (2005)

21. Quaas, K.: MSO logics for weighted timed automata. Form. Methods Syst.
Des. 38(3), 193–222 (2011)

22. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer (1978)

Overlapping Tile Automata

David Janin�

Université de Bordeaux, LaBRI UMR 5800,
351, cours de la Libération, F-33405 Talence, France

janin@labri.fr

Abstract. Premorphisms are monotonic mappings between partially
ordered monoids where the morphism condition ϕ(xy) = ϕ(x)ϕ(y) is
relaxed into the condition ϕ(xy) ≤ ϕ(x)ϕ(y). Their use in place of mor-
phisms has recently been advocated in situations where classical alge-
braic recognizability collapses. With languages of overlapping tiles, an
extension of classical recognizability by morphisms, called quasi-recogni-
zability, has already proved both its effectiveness and its power. In this
paper, we complete the theory of such tile languages by providing a no-
tion of (finite state) non deterministic tile automata that capture quasi-
recognizability in the sense that quasi-recognizable languages correspond
to finite boolean combinations of languages recognizable by finite state
non deterministic tile automata. As a consequence, it is also shown that
quasi-recognizable languages of tiles correspond to finite boolean combi-
nation of upward closed (in the natural order) languages of tiles definable
in Monadic Second Order logic.

Introduction

Motivations and Background. There are many ways to describe one-dimensional
overlapping tiles : the objects which are studied in this paper. Arising in inverse
semigroup theory, they can be defined as (representations of) elements of a
McAlister monoid [15], i.e. linear and unidirectional birooted trees. Then they
are used in studies [11,12] of the structure of tiling (in the usual sense with no
overlaps) of the d-dimensional Euclidian space Rd.

Overlapping tiles can also be seen as two way string objects extended by
extra history recording capacities that prevent a new letter from being placed in
a position where another distinct letter has already been positioned in the past.

For instance, starting from a given string object, say ab with two distinct
letters a and b, one can remove letter b from the right of that object. The
resulting object is denoted by abb−1. If these objects are treated just as standard
string objects, b−1 acts as the group inverse of b, and thus bb−1 = 1 henceforth
abb−1 = a. If these string objects are treated as strings extended with recording
capacity as mentioned above, then abb−1 �= a. In that case, b−1 acts as the
pseudo-inverse of b and bb−1 is seen rather as sort of a footprint of letter b that
is kept on the right side of letter a.

� Partially funded by the project CONTINT 2012 - ANR 12 CORD 009 02 - INEDIT.

A.A. Bulatov and A.M. Shur (Eds.): CSR 2013, LNCS 7913, pp. 431–443, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

432 D. Janin

Now if one adds that same letter b to the right of abb−1 again, this leads
to build again the object abb−1b which, in both cases, equals the string object
ab. Indeed, adding letter b to the right of its footprint bb−1 merely amounts to
rebuilding b, i.e. we have bb−1b = b.

On the contrary, if one tries to add letter a - distinct from b - to the right of
abb−1 then the resulting object abb−1a equals 0: the undefined tile. Indeed, with
standard string objects the resulting value would be aa but with overlapping
tiles, no other letter than the original can be positioned on the right footprint
bb−1 of b hence bb−1a = 0 and thus abb−1a = 0.

Surprisingly, this extension of the string data type turns out to be a mathe-
matically well-founded and structurally rich extension of that type. Adding and
removing letters to the right or to the left of an extended string induces an
associative product: the underlying algebraic structure is the monoid of overlap-
ping tiles. The history recording mechanism induces a partial order relation: the
natural order defined on tiles.

Recent modeling experiments in computational music [1,10], conducted with
variants of overlapping tiles, further illustrate how the structural richness of the
monoid of tiles can be used to great benefit. Indeed many derived operators,
e.g. sequential or parallel compositions, can be defined from the inverse monoid
structure.

There is thus a need to develop a language theory for overlapping tiles. Such
a study has been initiated in [9].

Doing so, an immediate difficulty is that, as already observed for inverse
monoids [16,19], classical language theory tools are not directly applicable. In-
deed, on birooted trees [19] or on positive overlapping tiles [9], the notion of rec-
ognizability defined via morphisms into finite monoids or, equivalently, defined
by via classical finite state (two way) automata, collapses in terms of expressive
power.

As a remedy, the use of premorphisms instead of morphisms has been suc-
cessfully proposed [7]. Indeed, this variant of algebraic recognizability, called
quasi-recognizability, is shown to essentially captures the expressive power of
Monadic Second Order Logic (MSO) over tiles [9]. The purpose of the present
paper is to extend and strengthen such an emerging algebraic theory by provid-
ing it with an automata theoretical counterpart.

Outline. Overlapping tile automata are non deterministic finite state word au-
tomata with a semantics (acceptance condition) that is now defined in terms of
overlapping tiles.

We first show that languages of tiles recognized by such finite state automata
correspond to upward closed (in some natural order) languages definable in MSO.
Then, we prove that they capture the notion of quasi-recognizable languages of
tiles [7] in the sense that quasi-recognizable languages of tiles correspond to finite
boolean combination of languages of tiles definable by finite state tile automata.

Overlapping Tile Automata 433

It must be mentioned that our former definition of recognizability by pre-
morphisms was only defined for languages of positive tiles. This new automata
theoretical approach induces a refined definition that, equivalent to our former
proposal on positive tiles, is now applicable to languages of arbitrary positive
and negative tiles.

The paper is organized as follows. Monoids of overlapping tiles and the re-
lated notion of tile automata are presented in Section 1. They are shown to
capture upward closed (in the natural order) MSO definable languages of tiles
(Theorem 1).

Special classes of premorphisms and partially ordered monoids, referred to as
adequate, are defined and studied in Section 2. They provide the appropriate
concepts for defining an effective notion of quasi-recognizability (Lemma 2).

Tile automata and quasi-recognizable languages are then related in Section 3.
It is shown that quasi-recognizable languages of tiles exactly correspond to finite
boolean combinations of languages recognizable by finite tile automata (Theo-
rem 3) or, equivalently, finite boolean combinations of upward MSO definable
languages of tiles (Corollary 1).

1 Overlapping Tiles and Their Automata

Here we briefly give a description of the McAlister monoid [15] on the alphabet
A, or, as presented and studied in [9], the monoid of one-dimensional overlapping
tiles. Then we define and study the notion of overlapping tile automata.

1.1 Preliminaries

Let A be a finite alphabet A and let A∗ be the free monoid generated by A with
neutral denoted by 1. The concatenation of two words u and v is denoted by
u · v or simply uv. The monoid A∗0 is defined as the extension of the free monoid
A∗ with a zero with 0 · u = u · 0 = 0 for every u ∈ A∗0.

Let ≤p (resp. ≤s) be the prefix (resp. the suffix) order over A∗0, that is, for
every u and v ∈ A∗0, u ≤p v (resp. u ≤s v) when there exists w ∈ A∗0 such
that uw = v (resp. wu = v). Observe that for every u ∈ A∗0, we have u ≤p 0
(resp. v ≤s 0). Let then ∨p be the (prefix) join operator defined, for every u and
v ∈ A∗0, by u∨p v = v when u ≤p v, by u∨p v = u when v ≤p u and by u∨p v = 0
otherwise. One can check that ∨p is indeed the join for the set A∗0 ordered by
the prefix order. The (suffix) join operator ∨s is defined symmetrically.

Given Ā a disjoint copy of A, let u 0→ ū be the syntactic dual mapping defined
by 1̄ = 1 and, for every every letter a ∈ A and every u ∈ (A+ Ā)∗, by ua = ū · ā
and uā = ū · a. The free group FG(A) generated by A is defined as the quotient
of (A+ Ā)∗ by the least congruence 6 such that, for every letter a ∈ A, aā 6 1
and āa 6 1. As usual, every element [u] ∈ FG(A) is represented by the unique
word v ∈ [u] that contains no factors of the form aā or āa.

434 D. Janin

1.2 Overlapping Tiles

A one-dimensional overlapping tile, or just tile, over the alphabet A is a triple of
words x = (u1, u2, u3) ∈ A∗× (A∗+ Ā∗)×A∗ such that, if u2 ∈ Ā∗, the syntactic
inverse u2 ∈ A∗ is a suffix of the word u1 and a prefix of the word u3.

When u2 ∈ A∗ we say that x is a positive tile. When u2 ∈ Ā∗ we say that x is
a negative tile. When u2 = 1, i.e. when x is both positive and negative, we say
that x is a context tile. Sets TA, T

+
A , T−A and CA will respectively denote the set

of tiles, the set of positive tiles, the set of negative tiles and the set of context
tiles over A.

The (syntactic) inverse of a tile x ∈ TA is defined to be the tile x−1 =
(u1 · u2, ū2, u2 · u3), with the product defined in the free group FG(A). One
can easily check that the induced mapping x 0→ x−1 is an involution that maps
positive (resp. negative) tiles to negative (resp. positive) tiles and that, restricted
to context tiles, is the identity mapping.

The word domain of a tile x = (u1, u2, u3) is the word u1 · u2 · u3 ∈ A∗

with product performed in FG(A). The directed root of the tile x is the word
u2 ∈ A∗ + Ā∗. A positive tile x = (u1, u2, u3) is conveniently drawn as a (linear,
unidirectional and left to right) Munn’s birooted word tree [17] with dangling
arrows to identify the input vertex and the output vertex that marks the ex-
tremities of the directed root of x.

• • • •
u1 u2 u3

(x)

The negative tile x−1 = (u1u2, u2, u2u3) is obtained from x by just inverting the
input and the output vertices.

• • • •
u1 u2 u3

(x−1)

The product x ·y of two tiles x = (u1, u2, u3) and y = (v1, v2, v3) ∈ TA is defined
in two steps: the output vertex of x is first positioned (or synchronized) with
the input vertex of y, then, if possible, the word domains of x and y are merged
letter by letter. The input vertex (resp. output vertex) of the resulting product
x · y is then defined to be the input vertex of x (resp. the output vertex of y).

In the case x = (u1, u2, u3) ∈ T+
A and y = (v1, v2, v3) ∈ T+

A , these two phases
can be depicted as follows:

(x) • • • •
u1 u2 u3

(y) • • • •
v1 v2 v3

(x · y) • • • •
(u1u2 ∨s v1)ū2 u2v2 v̄2(u3 ∨p v2v3)

Overlapping Tile Automata 435

Formally, the (partial) product of two non-zero tiles x = (u1, u2, u3) and y =
(v1, v2, v3) is defined as

x · y = ((u1u2 ∨s v1)u2, u2v2, v2(u3 ∨p v2v3))

when both pattern matching conditions, u1u2 ∨s v1 �= 0 and u3 ∨p v2v3 �= 0,
when evaluated in FG(A), are satisfied.

Adding an undefined tile denoted by 0, this product is completed by x · y = 0
when any of the pattern matching condition is not satisfied with x · 0 = 0 = 0 ·x
for every x ∈ TA.

For instance, with A = {a, b, c} we have (a, b, a) · (b, a, c) = (a, ba, c) while
(a, b, a)·(a, a, c) = 0 since a �= b. Another example is given by (1, a, 1)·(ba, c, ab) =
(b, ac, ab). It illustrates the fact that the left and the right parts of the resulting
product can arbitrarily come from any of the two product components.

As a special case of product, when x = (u1, u2, 1) and y = (1, v2, v2) the
product x · y is always non zero. In that case, we say that the product x · y is a
disjoint product.

The resulting set T 0
A equipped with the above product is a monoid with unit

1 = (1, 1, 1) that is shown [9,4] to be isomorphic to the McAlister monoid [15]
generated by A. Extending the inverse mapping to 0 by taking 0−1 = 0, for
every tile x ∈ T 0

A, the tile x−1 is the unique tile such that both xx−1x = x and
x−1xx−1 = x−1. The monoid T 0

A is thus an inverse monoid [14].
As such, the idempotent elements are the elements of the form xx−1 (equiv-

alently x−1x) and the natural order associated with the inverse monoid T 0
A is

defined by x ≤ y when x = xx−1y (or, equivalently x = yx−1x). One can easily
check that for every non zero tile x = (u1, u2, u3) and y = (v1, v2, v3), we have
x ≤ y if and only if u1 ≥s v1, u2 = v2 and u3 ≥p v3. One can also check that for
every x ∈ T 0

A, x ≤ 1 if and only if x · x = x. In the sequel, idempotent tiles are
thus also called subunits.

For every non zero tile x = (u1, u2, u3) ∈ TA, we define the left projection
xL = x−1x = (u1u2, 1, u3) and the right projection xR = xx−1 = (u1, 1, u2u3).
One can check that xR · x = x = x · xL. Even more, the tile xR (resp. xL)
is the least (in the natural order) idempotent tile z ∈ T 0

A such that z · x = x
(resp. x = x · z). As an immediate consequence of the definition, for every x and
y ∈ T 0

A, the product x · y is a disjoint product if and only if x · y �= 0 and 1
is the unique idempotent element that is both above xL and yR in the natural
order. These notions of projections and disjoint products play a central role in
the notion of adequately ordered monoid and adequate premorphism that are
presented below.

Last, one can observe that the mapping u 0→ (1, u, 1) from A∗ to TA is a
one-to-one morphism. In other words, the free monoid A∗ is embedded into the
McAslister monoid T 0

A of overlapping tiles. In the remainder of the text we may
use the same notation for words of A∗ and their images in T 0

A.

436 D. Janin

1.3 Tile Automata

Definition 1. A non deterministic (finite) overlapping tile automaton is a triple
A = 〈Q, δ,K〉 with a (finite) set of states Q, a non deterministic transition func-
tion δ : A → P(Q×Q) and an accepting set K ⊆ Q×Q.

An run of the automaton A on a word u = a1 · · · an ∈ A∗ from state p to state
q, which is denoted by p

u→ q, is a sequence of n + 1 states q0 = p, q1, q2, . . . ,
qn = q ∈ Q such that for every 1 ≤ i ≤ n, we have (qi−1, qi) ∈ δ(ai).

A run of the automaton A on a positive tile x = (u, v, w) ∈ T+
A (resp. a

negative tile x = (uv, v̄, vw) ∈ T−A) is quadruple of states (s, p, q, e) ∈ Q × Q ×
Q × Q: a start state s, an input state p, an output state q and an end state e,
such that s

u→ p, p
v→ q and q

w→ e (resp. s
u→ q, q

v→ p and p
w→ e).

Such a run is an accepting run when (p, q) ∈ K. The set of tiles over which
there is an accepting run of the automaton A is denoted by L(A) ⊆ TA. It is the
language of tiles recognized by the automaton A.

Examples. Let us consider the tile automaton (graph) defined with the set of
states Q = {1, 2, 3} and transitions δ(a) = {(1, 1), (1, 2), (2, 3), (3, 3)} for every
a ∈ A. With K+ = {(1, 2)} or K+ = {(2, 3)} we recognize the language of
all strictly positive tiles. With K− = {(2, 1)} or K− = {(3, 2)} we recognize
the language of all strictly negative tiles. With K0 = {(2, 2)} we recognize the
language of all idempotent tiles.

As an immediate consequence of tile automata semantics, every language of
tiles recognized by a tile automaton is upward closed in the natural order. The
following theorem shows that this is actually the characteristic property of these
languages.

Theorem 1. For every language of tiles L ⊆ TA, the language L is recognizable
by a finite state overlapping tile automaton if and only if the language L is upward
closed (in the natural order) and definable in monadic second order logic.

Proof. This essentially follows from the characterization of MSO definable lan-
guages that is provided by Theorem 4 in [9].

As far as complexity issues are concerned, one can easily check that, as for a non
deterministic word automaton, deciding if a tile x ∈ TA belongs to the language
L(A) for some finite state automaton can be done in time 2n · 2p with n the
size of x and p the number of states in A. Similarly, the language emptyness
problem can be solved in linear time in the size of automaton A. Indeed, this
just amounts to check that there is a path in the automaton graph from a state
p to a state q with (p, q) ∈ K.

2 Quasi-Recognizable Languages of Tiles

We define in this section a notion of quasi-recognizability extending the one
proposed in [7]. The major difference is that in [7] our proposal was only defined
for languages of positive tiles.

Overlapping Tile Automata 437

2.1 Adequately Ordered Monoids

Let S be a monoid partially ordered by a relation ≤S (or just ≤ when there is no
ambiguity). We always assume that the order relation ≤ is stable under product,
i.e. if x ≤ y then xz ≤ yz and zx ≤ zy for every x, y and z ∈ S. The set U(S) of
subunits of the partially ordered monoid S is defined by U(S) = {y ∈ S : y ≤ 1}.

Definition 2 (Adequately ordered monoid). A partially ordered monoid S
is an adequately ordered monoid when all subunits of S are idempotents, and, for
every x ∈ S, both xL =

∧
{y ∈ U(S) : xy = x} and xR =

∧
{y ∈ U(S) : yx = x}

exist in U(S) with xRx = xxL = x. The subunit xL (resp. xR) is called the left
projection (resp. the right projection) of the element x.

Since subunits are assumed to be idempotents, one can check that they commute
and thus, ordered by the monoid order, form a meet semilattice with the product
as the meet operator. It follows that when x is itself a subunit, we have x = xL =
xR, i.e. both left and right projection mappings are indeed projection mappings
from S onto U(S).

Examples. Every monoid S extended with the trivial order x ≤ y only when
x = y is a adequately ordered monoid with xL = xR = 1 for every x ∈ S. Every
inverse monoid S ordered by the natural order relation defined by x ≤ y when
x = xx−1y (or equivalently y = yx−1x) for every x and y ∈ S is a adequately
ordered monoid with xL = x−1x and xR = xx−1. Especially, the monoid T 0

A

is an adequately ordered monoid. As shown in the next section, the relation
monoid P(Q×Q) ordered by inclusion is also an adequately ordered monoid.

Remark 1. For the reader familiar with the work initiated by Fountain [5], an
ordered monoid S is adequately ordered exactly when it is U(S)-semiadequate in
the sense of [13]. This suggests that, conversely, a U -semiadequate can be called
adequately ordered when its natural order defined by x / y when x = xRyxL can
be extended into a partial order ≤ that is stable under product with U = U(S).
This is not necessarily the case. However, when such a extension exists, both
orders / and ≤ coincide on subunits.

In [7], only U -semiadequate monoids with stable natural order were considered
and shown to suffice for languages of positive tiles. Of course, every such monoid
is also an adequately ordered monoid. The more relaxed definition proposed here
copes with the fact that the natural order on the relation monoid P(Q×Q) is not
stable under product while the inclusion order, that extends the natural order,
is stable.

Lemma 1. Let S be an adequately ordered monoid. For every x and y ∈ S, if x
and y are R-equivalent (i.e. if x · S = y · S) then xR = yR and, symmetrically,
if x and y are L-equivalent (i.e. if S · x = S · y) then xL = yL.

In other words, left and right canonical local identities of a given element can
be seen as some approximation of its left and right Green’s classes.

438 D. Janin

Remark 2. We prove in [7] that every monoid S can be embedded into an ade-
quately ordered monoid Q(S): the quasi-inverse expansion of S, in such a way
that, for every (images of) two elements x and y ∈ S, we have xL = yL (resp.
xR = yR) in Q(S) if and only if x and y are L-equivalent (resp. R-equivalent).
We will use a similar idea in the proof of Theorem 3 below.

2.2 Premorphisms and Adequate Premorphisms

A mapping ϕ : S → T between two adequately ordered monoids is a premor-
phism (or ∨-premorphism in [6]) when ϕ(1) = 1 and, for every x and y ∈ S, we
have ϕ(xy) ≤T ϕ(x)ϕ(y) and if x ≤S y then ϕ(x) ≤T ϕ(y).

Definition 3 (Adequate premorphisms). A premorphism ϕ is an adequate
premorphism when, for every x ∈ S, we have ϕ(xL) = (ϕ(x))L and ϕ(xR) =
(ϕ(x))R, and for every x and y ∈ S, if xy �= 0 and xL ∨ yR = 1 then ϕ(xy) =
ϕ(x)ϕ(y). In that latter case we say that the product xy is disjoint.

Lemma 2. Let ϕ : T 0
A → S be an adequate premorphism. The restriction of ϕ

to (the overlapping tile image of) A∗ is a morphism and, for every positive tile
(u, v, w) ∈ T+

A one has ϕ((u, v, w)) = (ϕ(u))L · ϕ(v) · (ϕ(w))R.
Symmetrically, the restriction of ϕ to the inverses of (the overlapping tile

image of) A∗ is also a morphism and, for every negative tile (uv, v̄, vw) one has
ϕ((uv, v̄, vw)) = (ϕ(w))R · ϕ(v−1) · (ϕ(u))L = (ϕ(w−1))L · ϕ(v−1) · (ϕ(u−1))R.

As a consequence, when S is finite, for every tile x ∈ T 0
A, the image ϕ(x) of

x by ϕ is effectively computable, in time linear in the size of the tile x, from the
images of ϕ(A), ϕ(Ā) combined by product and right (or left) projection in S.

Proof. For every u ∈ A∗ we have ϕ((1, u, 1)) inductively computable by ϕ(1) = 1
and, for every v ∈ A∗ and a ∈ A, ϕ((1, av, 1)) = ϕ((1, a, 1)) · ϕ((1, v, 1)) since
the product (1, av, 1) = (1, a, 1) · (1, v, 1) is a disjoint product. By symmetry, the
same holds for inverses. Indeed, for every tile x and y, if xy is a disjoint product
then so is (xy)−1 = y−1x−1. It follows that ϕ((u, ū, u)) is also computable for
every u ∈ A∗,

Then, one can observe that for every tile x = (u, v, w) we have x = (u, 1, 1) ·
(1, v, 1) · (1, 1, w) with disjoint products and (u, 1, 1) = (1, u, 1)L and (1, 1, w) =
(1, w, 1)R. The adequacy assumption enables us to conclude. that ϕ((u, v, w)) =
(ϕ((1, u, 1)))L · ϕ((1, v, 1)) · (ϕ((1, w, 1)))R wich is thus computable. By symme-
try, we also have x−1 = (1, 1, w) · (v, v̄, v) · (u, 1, 1) with disjoint products and
(1, 1, w) = (w, w̄, w)L and (u, 1, 1) = (u, ū, u)R hence we conclude similarly.

In these computations, right projections (or left projections) suffice since
(u, ū, u)L = (1, u, 1)R and (u, ū, u)R = (1, u, 1)L for every u ∈ A∗.

2.3 Quasi-Recognizable Languages

Definition 4 (Quasi-recognizable languages). A language of tiles L ⊆ TA

is quasi-recognizable when there exists an adequate premorphism ϕ : T 0
A → S in

a finite adequately ordered monoid S such that L = ϕ−1(ϕ(L)).

Overlapping Tile Automata 439

As far as computability and complexity issues are concerned, the Lemma 2 en-
sures that this notion of quasi-recognizability is effective in the sense that mem-
bership in a quasi-recognizable language L of tiles is computable. Deciding if a
tile x ∈ TA belongs to the language L can even be done in bilinear time in the
size of the tile x and in the size of the ordered monoid that quasi-recognizes the
language L.

It is also quite an immediate consequence of Lemma 2 above that the quasi-
recognizable languages of tiles are definable in MSO (see [9] for a definition
of MSO logic over tiles). What about the converse? It is a consequence of [7]
that quasi-recognizability essentially capture MSO in the following sense. Given
a new letter # �∈ A, given #(L) ⊆ TA+# defined for every language L⊆TA

by #(L) = {(#u, v, w#) : (u, v, w) ∈ L}, we have: language #(L) is quasi-
recognizable if and only if L is definable in MSO. Corollary 1, proved in the
next section, provides a complete logical characterization of quasi-recognizable
languages of tiles.

3 Tile Automata vs Quasi-Recognizability

In this section, we relate the notions of finite state tile automata and the notion
of quasi-recognizable languages of tiles.

3.1 From Tile Automata to Quasi-Recognizability

Let A = 〈Q, δ,K〉 be a finite non deterministic tile automaton. The run image
of the positive tile x = (u, v, w) ∈ T+

A is defined as the set of pairs of states

ϕA((u, v, w)) = {(p, q) ∈ Q ×Q : ∃s, e ∈ Q, s
u→ p, p

v→ q, q
w→ e}, i.e. the set of

all runs of the tile automaton A over u.

Theorem 2. Every language of tiles definable by a finite state tile automaton
is quasi-recognizable.

Proof. Let A = 〈Q, δ,K ⊆ Q × Q〉 be a tile automaton and let ϕA : TA →
P(Q×Q) be the run mapping induced by A. We essentially have to prove that
P(Q×Q) equipped with the product

X · Y = {(p, q) ∈ Q×Q : ∃r ∈ Q, (p, r) ∈ X, (r, q) ∈ Y }

and ordered by inclusion is an adequately ordered monoid and that ϕA extended
to 0 by taking ϕA(0) = ∅ is an adequate premorphism.

The fact that P(Q×Q) equipped with the relation product is a stable ordered
monoid with neutral element IQ = {(q, q) ∈ Q×Q : q ∈ Q} and inclusion ordered
is a classical result [18]. Since subunits are obviously idempotents, it suffices thus
to prove that canonical left and right identities exist.

Let X ∈ P(Q × Q) and let XR = {(p, p) ∈ Q × Q : ∃q ∈ Q, (p, q) ∈ X}
and let XL = {(q, q) ∈ Q ×Q : ∃p ∈ Q, (p, q) ∈ X}. One can easily check that
X = XR · X = X · XL for every X ⊆ Q × Q. Let then Y ⊆ IQ such that

440 D. Janin

Y ·X = X (resp. X · Y = X). It is an immediate observation that this implies
XR ⊆ Y (resp. XL ⊆ Y). In other words, XL (resp. XR) is indeed the least
right (left) local unit for X .

The fact that ϕA extended to zero as defined above is an premorphism raises
no real difficulty. By definition, we have ϕA(1) = IQ and it is rather immediate
that ϕA(u) ⊆ ϕA(v) whenever u ≤ v in TA. The fact that we also have ϕA(uv) ≤
ϕA(u)ϕA(v) for every u and v ∈ T 0

A is a little more complex to check but with
no special difficulty.

The fact that ϕA is also adequate is somehow simpler and essentially fol-
lows from the definition. In particular, the disjoint product case just mimics the
classical case where ϕA is defined over words only.

As an immediate consequence of the definition of ϕA, writing X−1 = {(q, p) ∈
Q×Q : (p, q) ∈ X} for every relation X ⊆ Q×Q, we have ϕA(u

−1) = (ϕA(u))
−1

and thus we also have L−(A) = {u ∈ T−A : (ϕA(u
−1))−1 ∈ K}. In general,

this property is not satisfied by an arbitrary adequate premorphism. However,
we prove in Theorem 3 below that every adequate premorphism can still be
translated into an equivalent premorphism of the form ϕA for some finite state
automaton A.

3.2 From Quasi-Recognizability to Tile Automata

Theorem 3. For every quasi-recognizable language of tiles L ⊆ TA there exists
a finite state non deterministic tile automaton A such that L = ϕ−1A (ϕA(L)),
i.e. the adequate premorphism induced by A recognizes the language L.

Proof. Let ψ : T 0
A → S be an adequate premorphism into a finite adequately

ordered monoid S let Kψ ⊆ S and let L = ψ−1(Kψ). We want to build a finite
state automaton A = 〈Q, δ,K〉 such that ϕ−1A (K) = ψ−1(Kψ).

To achieve this goal it is sufficient to define an automaton A that, given
any positive tile x = (u, v, w) (resp. negative tile x−1 = (uv, v̄, vw)) as input,
computes, via ϕA(x) (resp. ϕA(x

−1)), the left ideal S · ψ(u) associated to ψ(u),
the right ideal ψ(w) · S associated to ψ(w) and the image ψ(v) of the root v of
x (resp. the image ψ(v−1) of the root v̄ of x−1).

Indeed, by Lemma 1, computing these left and right ideals is enough to com-
pute the expected left and right canonical identities ψ(uL) and ψ(wR). Then,
by applying Lemma 2, together with the value of ψ(v) (resp. ψ(v−1)), we can
compute the value ψ(x) of x (resp. ψ(x−1) of x−1) by the premorphism ψ.

Extending the idea described in the automata section in order to distinguish
positive from negative tiles, the automaton A is defined as follows.

The set of states Q is defined to be Q = S × S × S × M with set of modes
M = {P, S, PR,NR, c, p1, p2, n1, n2} where P , S, PR andNR respectively stand
for the “stable” automaton mode prefix, suffix, positive root and negative root
automaton modes, and c, p1, p2, n1 and n2 stand for the “frontier” modes that
occur at most once in between stable modes.

Overlapping Tile Automata 441

For every a ∈ A, the set δ(a) of transitions labeled by a is defined to be the
union of the following sets of transitions:

% “prefix” transitions, from states in mode P to states in mode m ∈
{P, c, p1, n1}, of the form {((x, y, z, P), (x · ϕ(a), y, z,m) : x, y, z ∈ Q},

% “positive root” transitions, from states in mode m ∈ {PR, p1} to states in
mode k ∈ {PR, p2}, of the form {((x, y, z,m), (x, y ·ϕ(a), z, k)) : x, y, z ∈ S},

% “negative root” transitions, from states in mode m ∈ {PN, n1} to states in
mode k ∈ {PN, n2}, of the form {((x, y, z,m), (x, ϕ(a−1) · y, z, k)) : x, y, z ∈
S},

% “suffix” transitions, from states in mode m ∈ {S, c, p2, n2} to states in mode
S, of the form {((x, y, ϕ(a) · z,m), (x, y, z, S)) : x, y, z ∈ S}.

Of course, such an automaton will run freely on tiles regardless of whether it is
running on the prefix, the root or the suffix part of a tile. However, by watching
the states in frontier modes occurring at the extremities of the root, we can
collect all the information we need.

More precisely, the next step is then to keep from the set of all runs ϕA(x)
of A on any given input tile x ∈ TA only the relevant data. This is achieved by
the following mapping. For every X ⊆ P(Q ×Q), we define the relevant image
f(X) ⊆ S × S × S of X “in” S by taking:

f(X) = {(x, 1, z) ∈ S × S × S : ((x, 1, z, c), (x, 1, z, c)) ∈ X} (1)

∪{(x, y, z) ∈ S × S × S : ((x, 1, z, p1), (x, y, z, p2)) ∈ X} (2)

∪{(x, y, z) ∈ S × S × S : ((x, 1, z, n2), (x, y, z, n1)) ∈ X} (3)

where line (1) treats the case of context tiles, line (2) treats the case of (strictly)
positive tiles and line (3) treats the case of (strictly) negative tiles.

With this construction, one can show that for every x = (u, v, w) ∈ T+
A we

have: f(ϕA(x)) = S ·ψ(u)×{ψ(v)}×ψ(w) ·S and, for every x−1 = (uv, v̄, vw) ∈
T−A we have f(ϕA(x

−1)) = S · ψ(u) × {ψ(v−1)} × ψ(w) · S. In other words, for
every x ∈ TA, the finite value of f(ϕA(x)) completely characterizes ψ(x) thus
we conclude the proof by taking

K = f−1
(
{S · ψ(u)× {ψ(v)} × ψ(w) · S : ψ(uL) · ψ(v) · ψ(wR) ∈ Kψ}

)
f−1

(
{S · ψ(u)× {ψ(v−1)} × ψ(w) · S : ψ(wR) · ψ(v−1) · ψ(uL) ∈ Kψ}

)
By construction, for every tile x ∈ TA, we indeed have x ∈ ϕ−1A (K) if and only
if x ∈ ψ−1(Kψ).

Observe that if we consider a language L ⊆ T+
A of positive tiles that is recog-

nizable by a premorphism ψ from the monoid of positive tiles T+
A into an ade-

quately ordered monoid S then the above proof can easily be adapted so that
ϕA : T 0

A → P(Q × Q) still recognizes L. In other words, a quasi-recognizable
language of positive tiles is also quasi-recognizable as a language of arbitrary
tiles. This proves that the work presented here indeed generalizes the results
formerly obtained in [7].

442 D. Janin

Corollary 1. For every language of tiles L ⊆ TA, the language L ⊆ TA is
quasi-recognizable if and only if L is a finite boolean combination of upward
closed MSO-definable languages of tiles.

Proof. Immediate consequence of Theorem 1 and Theorem 3.

Conclusion

We have shown that the emerging notion of quasi-recognizability, defined in [7]
as a remedy to the collapse of classical recognizability by monoid morphisms, can
be equipped with quite a simple notion of finite state automata that, applied to
languages of overlapping tiles, captures its expressiveness. Extending the theory
of languages of words, this new theory of languages of tiles inherits several and
significantly robust features of that classical language theory.

Compared to our former proposal [7], the notion of quasi-recognizability has
also been refined - especially via the notion of disjoint products - and can now
be applied to more general settings. Forthcoming studies [8] even show that
the notion of recognizability by adequate premorphisms and the related notion
of non deterministic finite state automata can even be extended, with similar
logical characterizations, to languages of labeled birooted trees generalizing thus
the known algebraic characterizations of regular languages of finite trees.

Based on the notion of U -semiadequate monoids [13], the present work also
provides a rather unexpected application of the study of non regular semigroups
initiated by Fountain [5] in the 70’s. Our proposal still need to be further related
with the research lines developed in that field such as, for instance, the notion
of partial actions [2,3].

References

1. Berthaut, F., Janin, D., Martin, B.: Advanced synchronization of audio or sym-
bolic musical patterns: an algebraic approach. International Journal of Semantic
Computing 6(4), 1–19 (2012)

2. Cornock, C.: Restriction Semigroups: Structure, Varieties and Presentations. PhD
thesis, Departement of Mathematics University of York (2011)

3. Cornock, C., Gould, V.: Proper two-sided restriction semigroups and partial ac-
tions. Journal of Pure and Applied Algebra 216, 935–949 (2012)

4. Dicky, A., Janin, D.: Two-way automata and regular languages of overlapping tiles.
Technical Report RR-1463-12, LaBRI, Université de Bordeaux (2012)

5. Fountain, J.: Adequate semigroups. Proc. Edinburgh Math. Soc. 22(2), 113–125
(1979)

6. Hollings, C.D.: The Ehresmann-Schein-Nambooripad Theorem and its successors.
European Journal of Pure and Applied Mathematics 5(4), 414–450 (2012)

7. Janin, D.: Quasi-recognizable vs MSO definable languages of one-dimensional over-
lapping tiles. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS,
vol. 7464, pp. 516–528. Springer, Heidelberg (2012)

8. Janin, D.: Algebras, automata and logic for languages of labeled birooted trees.
Technical Report RR-1467-13, LaBRI, Université de Bordeaux (2013)

Overlapping Tile Automata 443

9. Janin, D.: On languages of one-dimensional overlapping tiles. In: van Emde Boas,
P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013.
LNCS, vol. 7741, pp. 244–256. Springer, Heidelberg (2013)

10. Janin, D., Berthaut, F., DeSainte-Catherine, M., Orlarey, Y., Salvati, S.: The T-
calculus: towards a structured programming of (musical) time and space. Technical
Report RR-1466-13, LaBRI, Université de Bordeaux, (to appear, 2013)

11. Kellendonk, J.: The local structure of tilings and their integer group of coinvariants.
Comm. Math. Phys. 187, 115–157 (1997)

12. Kellendonk, J., Lawson, M.V.: Universal groups for point-sets and tilings. Journal
of Algebra 276, 462–492 (2004)

13. Lawson, M.V.: Semigroups and ordered categories. i. the reduced case. Journal of
Algebra 141(2), 422–462 (1991)

14. Lawson, M.V.: Inverse Semigroups: The theory of partial symmetries. World Sci-
entific (1998)

15. Lawson, M.V.: McAlister semigroups. Journal of Algebra 202(1), 276–294 (1998)
16. Margolis, S.W., Pin, J.-E.: Languages and inverse semigroups. In: Paredaens, J.

(ed.) ICALP 1984. LNCS, vol. 172, pp. 337–346. Springer, Heidelberg (1984)
17. Munn, W.D.: Free inverse semigroups. Proceeedings of the London Mathematical

Society 29(3), 385–404 (1974)
18. Pin, J.-E.: Syntactic semigroups. In: Handbook of formal languages, vol. I, ch. 10,

pp. 679–746. Springer (1997)
19. Silva, P.V.: On free inverse monoid languages. ITA 30(4), 349–378 (1996)

Author Index

Avgustinovich, Sergey 258

Bansal, Kshitij 405
Bednárová, Zuzana 100
Biere, Armin 378
Boria, Nicolas 298
Braverman, Mark 183

Colcombet, Thomas 391

Dantchev, Stefan 139
De Felice, Sven 88
Demri, Stéphane 405
Diekert, Volker 24
Dowek, Gilles 347
Droste, Manfred 418

Fiala, Jǐŕı 310
Friedman, Luke 127
Fröhlich, Andreas 378

Garg, Ankit 183
Gawrychowski, Pawe�l 36
Geffert, Viliam 100

Itsykson, Dmitry 162

Janin, David 431
Jansen, Klaus 12
Jirásek, Jozef 246
Jirásková, Galina 246

Kostochka, Alexandr 224
Kovásznai, Gergely 378
Kraft, Stefan 12

Madelaine, Florent 322
Makhlin, Anton 195
Manuel, Amaldev 64
Martin, Barnaby 139, 322
Martyugin, Pavel V. 76

Mereghetti, Carlo 100
Murat, Cécile 298
Muscholl, Anca 64

Nicaud, Cyril 88
Nikishkin, Vladimir 212

Oparin, Vsevolod 162

Palano, Beatrice 100
Panagopoulou, Panagiota N. 283
Pankratov, Denis 183
Paschos, Vangelis Th. 298
Perevoshchikov, Vitaly 418
Puppis, Gabriele 64
Puzynina, Svetlana 258

Rizzi, Romeo 235

Schweikardt, Nicole 112
Shallit, Jeffrey 49
Sorokin, Alexey 150
Spirakis, Paul G. 283
Stepanov, Timofey 354
Szegedy, Mario 1

Tesař, Marek 310

Vereshchagin, Nikolay 203
Vialette, Stéphane 235
Vyalyi, Mikhail N. 271

Weinstein, Omri 183
Weiß, Armin 24
Williams, Ryan 174

Xu, Yixin 127

Yakaryılmaz, Abuzer 334, 366
Yancey, Matthew 224

	Preface
	Organization
	Table of Contents
	Opening Lecture
	The Lov´asz Local Lemma – A Survey
	1 Introduction
	2 VersionsoftheLov´asz Local Lemma
	3 Applications in Computer Science and Mathematics
	4 TheLov´asz Local Lemma and Statistical Mechanics
	References

	Session 1: Algorithms
	An Improved Knapsack Solverfor Column Generation
	1 Introduction
	1.1 Known Results
	1.2 Our Result
	1.3 Techniques
	1.4 Notation and Remarks

	2 Observations
	3 Adapting Lawler’s Algorithm
	3.1 Dynamic Programming
	3.2 Bounds for the Optimum: A Simple
	3.3 Scaling and Dividing: The Basic FPTAS
	3.4 Improved FPTAS: Reducing Running Time and Storage Space

	4 VariantsofKPIP
	4.1 The Unbounded KPIP
	4.2 The Bounded KPIP

	5 A Faster AFPTAS for Variable-Sized Bin Packing
	6 Concluding Remarks
	References

	QuickHeapsort: Modificationsand Improved Analysis
	1 Introduction
	2 QuickHeapsort
	3 Analysis of QuickHeapsort
	3.1 Heap Construction
	3.2 Heap Extraction
	3.3 Partitioning

	4 Modifications of QuickHeapsort Using Extra-Space
	5 Experimental Results and Conclusion
	References

	Alphabetic Minimax Trees in Linear Time
	1 Introduction
	2 Preliminaries
	3 Linear Time Algorithm for Integer Weights
	4 O(nd) Time Algorithm for Real Weights
	5 Linear Time Algorithm for Real Weights
	References

	Invited Lecture 1
	Decidability and Enumerationfor Automatic Sequences: A Survey
	1 Introduction
	2 Logic
	3 Periodicity
	4 Repetitions
	5 CriticalExponent
	6 Mirror Invariance
	7 Recurrence
	8 OrbitClosure
	9 Unbordered Factors
	10 Enumeration
	11 Synchronization
	12 Paperfolding
	13 Implementation
	14 Inexpressible Predicates
	15 Open Questions
	References

	Session 2: Automata
	Walking on Data Words
	1 Introduction
	2 Preliminaries
	3 Automata Walking on Data Words
	4 Deterministic vs Non-deterministic DWA
	5 Decision Problems on DWA
	6 Discussion
	References

	Careful Synchronization of Partial Automatawith Restricted Alphabets
	1 Introduction
	2 Arbitrary Alphabet
	3 Fixed Alphabet Size
	4 Binary Alphabet
	References

	Random Generation of Deterministic AcyclicAutomata Using the Recursive Method
	1 Introduction
	2 Definition and Notations
	3 Combinatorics of Acyclic Automata
	3.1 Liskovet’s Formula
	3.2 Decomposition Using Sources and Secondary Sources
	3.3 Another Description for βk(n, s, u)
	3.4 Remark on Labelled Combinatorial Structures

	4 Random Generator
	4.1 The Recursive Method
	4.2 Application to Acyclic Automata
	4.3 Using γ Instead of β
	4.4 Algorithms and Complexity
	4.5 A Lazy Strategy

	5 Conclusion and Experiments
	References

	Boolean Language Operationson Nondeterministic Automatawith a Pushdown of Constant Height
	1 Introduction
	2 Preliminaries
	3 Intersection for Constant Height NPDAs
	4 Union and Complement for Constant Height NPDAs
	5 Concluding Remarks
	References

	Invited Lecture 2
	A Short Tutorial on Order-Invariant First-Order Logic
	1 Introduction
	2 Preliminaries
	3 Order-Invariant Logic and Arb-Invariant Logic
	4 Three Examples Showing That Order-Invariant FO Is MoreExpressive Than FO
	5 Limitations of the Expressive Power of Arb-Invariant FO
	6 Some Open Questions
	References

	Session 3: Logic, Proof Complexity
	Exponential Lower Boundsfor Refuting Random FormulasUsing Ordered Binary Decision Diagrams
	1 Introduction
	2 Preliminaries and Notations
	3 Proof of the OBDD* Case
	4 Proof of the OBDD+ Case
	5 Future Work
	References

	Parameterized Resolutionwith Bounded Conjunction
	1 Introduction
	2 Preliminaries
	3 Separating p-Res∗(j) and p-Res∗(j + 1)
	3.1 Lower Bound: A Strategy for Adversary over RVIPn
	3.2 Upper Bound: A Res(

	4 Separating p-Res(1) and p-Res(2)
	4.1 Lower Bound: A Strategy for Adversary over RLNPn

	5 Concluding Remarks
	References

	Lower and Upper Boundsfor the Length of Joins in the Lambek Calculus
	1 Introduction
	2 Preliminaries
	3 Upper Bound
	4 Lower Bound
	5 Conclusion
	References

	Graph Expansion, Tseitin Formulasand Resolution Proofs for CSP
	1 Introduction
	2 Preliminaries
	2.1 The Constraint Satisfaction Problem (CSP)
	2.2 Backtracking Algorithms
	2.3 Resolution Proof System
	2.4 Tseitin Formulas and Expansion

	3 Resolution Width and Expansion
	4 Lower Bound for Tseitin Formulas
	4.1 Reduced Splitting Tree
	4.2 Lower Bound

	5 Upper Bound for CSP
	6 Open Questions
	References

	Invited Lecture 3
	Towards NEXP versus BPP
	1 Introduction
	2 Derandomizing CAPP over Simple Distributions of Circuits
	3 Pseudorandomness for Deterministic Observers
	4 Conclusion
	References

	Session 4: Complexity 1
	Information Lower Bounds via Self-reducibility
	1 Introduction
	1.1 Results
	1.2 Discussion and Open Problems

	2 Preliminaries
	2.1 Information Theory
	2.2 Communication Complexity
	2.3 Information + Communication: The Information Cost

	3 Information Complexity of Gap Hamming Distance
	4 Proof of Theorem 1
	4.1 Proof Idea
	4.2 Formal Proof of Lemma 2

	5 Information Complexity of Inner Product
	References

	On the Encoding Invariance of Polynomial TimeComputable Distribution Ensembles
	1 Introduction
	2 Average-Case Complexity
	3 Encoding Invariance and Polynomial Time Invertibly Samplable Ensembles
	References

	Improving on Gutfreund, Shaltiel,and Ta-Shma’s Paper “If NP LanguagesAre Hard on theWorst-Case,Then It Is Easy to Find Their Hard Instances
	1 Introduction
	2 Generating Hard Instances of Search Version of SAT
	3 Generating Hard Instances of the Decision Version of SAT
	References

	Amortized Communication Complexityof an Equality Predicate
	1 Introduction
	2 Classic Communication Protocols for EQ
	2.1 Complexity of EQn for Different Types of CommunicationProtocols
	2.2 Trivial Generalizations for EQN

	3 Pseudorandomness, Codes and String Synchronization
	3.1 Pseudorandom Generator
	3.2 BCH Codes
	3.3 Strings Synchronization Protocols

	4 Proof of the Main Theorem
	4.1 Overview of the Protocol
	4.2 Generation Stage
	4.3 Probabilistic Synchronization Stage (steps i = 1, . . . , log logN
	4.4 Deterministic Synchronization Stage(i = loglogN + 1, . . . , logN)
	4.5 Summary
	4.6 Probability of Error

	References

	Invited Lecture 4
	On Coloring of Sparse Graphs
	1 Introduction
	2 Gallai’s Conjecture
	3 Applications
	3.1 Algorithms
	3.2 Local and Global Graph Properties
	3.3 Coloring Planar Graphs

	4 Improper 2-Colorings
	References

	Session 5: Words and Languages
	On Recognizing WordsThat Are Squares for the Shuffle Product
	1 Introduction
	2 Definitions
	3 Being a Square for the Shuffle Product
	4 Being the Shuffle of a Word with Its Reverse
	5 Conclusion and Open Problems
	References

	Cyclic Shift on Prefix-Free Languages
	1 Introduction
	2 Preliminaries
	2.1 Prefix-Free Languages

	3 Cyclic Shift on Prefix-Free Languages
	3.1 Upper Bound for Cyclic Shift on Prefix-Free Languages
	3.2 Lower Bound in Quaternary Case
	3.3 Small Alphabets

	4 Conclusions
	References

	Weak Abelian Periodicity of Infinite Words
	1 Preliminaries
	2 General Properties of Weak Abelian Periodicity
	3 Weak Abelian Periodicity of Fixed Points of Binary Uniform Morphisms
	4 On WAP of Points in a Shift Orbit Closure
	References

	Universality of Regular Realizability Problems
	1 Reductions Used in Universality Results
	2 Monoreductions
	3 Universality of RR Problems
	4 Universality of Generalized Nondeterministic Models
	References

	Invited Lecture 5
	Potential Functions in Strategic Games
	1 Introduction
	2 Games and Potential Functions
	3 Congestion Games and Selfish Routing
	3.1 Congestion Games
	3.2 Concurrent Congestion Games and Coalitions
	3.3 Social Ignorance in Congestion Games

	4 Potential Functions in Population Dynamics: Generalized Moran Process
	5 Bounding the Chromatic Number of Graphs
	References

	Session 6: Algorithms 2
	The Probabilistic Min Dominating Set Problem
	1 Wireless Sensor Networks and Probabilistic Dominating Set
	2 Probabilistic Dominating Set on Paths, Cycles and Trees
	3 Polynomial Approximation of Probabilistic Min Dominating Set
	3.1 Networks with Identical Sensors
	3.2 Networks with Heterogeneous Sensors

	4 Conclusion
	References

	Dichotomy of the H-Quasi-Cover Problem
	1 Introduction
	2 Preliminaries
	3 Coloring Gadgets
	4 The NP-Hardness Reduction
	5 Conclusion
	References

	QCSP on Partially Reflexive Cycles –The Wavy Line of Tractability
	1 Introduction
	2 Definitions and Preliminaries
	3 SmallCycles
	4 The Reflexive Cycles
	5 Cycles Whose Loops Induce a Path
	6 Cycles in Which the Loops Induce a Disconnected Graph
	7 Classification
	8 Conclusion
	References

	Quantum Alternation
	1 Introduction
	2 Definition of q-Alternation
	3 MainResults
	3.1 A rtΣ2QFA Example
	3.2 1AQFAs Are Turing-Equivalent
	3.3 Strong q-Alternation
	3.4 QFA Counterpart of Polynomial Hierarchy
	3.5 Log-Space q-Alternation Counterpart of Polynomial Hierarchy

	References

	Invited Lecture 6
	Real Numbers, Chaos, and the Principleof a Bounded Density of Information
	1 The Notion of Information in Physics
	2 PhysicswithoutRealNumbers
	3 The Status of the Principle of a Bounded Density of Information
	4 Sensitivity to Initial Conditions
	5 Sensitivity to Perturbations
	6 The Definition of the Notion of a Chaotic Transformation
	References

	Session 7: Complexity 2
	Random Selection in Few Rounds
	1 Introduction
	2 Definitions
	3 Upper Bounds for 2- and 3-Round Protocols
	3.1 2-Round Protocols
	3.2 3-Round Protocols

	4 Protocols with More Than 3 Rounds
	References

	One-Counter Verifiers for Decidable Languages
	1 Introduction
	2 Background
	3 Counter Automata Verifiers for Decidable Languages
	4 Counter Machines as Recognizer
	5 Pebble Automata
	References

	More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics with Binary Encoding
	1 Introduction
	2 Motivation
	3 Definitions
	4 Complexity Results
	5 Discussion
	6 Conclusion
	References

	Invited Lecture 7
	Composition with Algebra at the Background
	1 In Which the Legacy Is Acknowledged
	2 In Which the Problem Is Exposed and Some of Its Intriguing Characteristics Appear
	3 In Which the Composition Theorem Is Introduced
	4 In Which Algebraic Recognizability for Countable Words Is Defined
	5 In Which the Question Is Answered
	References

	Session 8: Logic, Automata
	Model-Checking BoundedMulti-Pushdown Systems
	1 Introduction
	2 Preliminaries
	3 Specification Language Multi-
	4 From Model-Checking to Repeated Reachability
	5 Complexity Analysis with Bounded Runs
	6 Conclusion
	References

	Multi-weighted Automata and MSO Logic
	1 Introduction
	2 Multi-weighted Automata on Finite Words
	3 Multi-weighted MSO Logic on Finite Words
	4 Multi-weighted Automata and MSO Logic on Infinite Words
	5 Conclusion
	References

	Overlapping Tile Automata
	Introduction
	1 Overlapping Tiles and Their Automata
	1.1 Preliminaries
	1.2 Overlapping Tiles
	1.3 Tile Automata

	2 Quasi-Recognizable Languages of Tiles
	2.1 Adequately Ordered Monoids
	2.2 Premorphisms and Adequate Premorphisms
	2.3 Quasi-Recognizable Languages

	3 Tile Automata vs Quasi-Recognizability
	3.1 From Tile Automata to Quasi-Recognizability
	3.2 From Quasi-Recognizability to Tile Automata

	Conclusion
	References

	Author Index

