
Lorenzo Cavallaro
Dieter Gollmann (Eds.)

 123

LN
CS

 7
88

6

7th IFIP WG 11.2 International Workshop, WISTP 2013
Heraklion, Greece, May 2013
Proceedings

Information Security
Theory and Practice
Security of Mobile and Cyber-Physical Systems

Lecture Notes in Computer Science 7886
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Lorenzo Cavallaro Dieter Gollmann (Eds.)

Information Security
Theory and Practice.

Security of Mobile
and Cyber-Physical Systems

7th IFIP WG 11.2 International Workshop, WISTP 2013
Heraklion, Greece, May 28-30, 2013
Proceedings

13

Volume Editors

Lorenzo Cavallaro
Royal Holloway, University of London
Information Security Group
Egham Hill, Egham TW20 0EX, UK
E-mail: lorenzo.cavallaro@rhul.ac.uk

Dieter Gollmann
University of Technology
Institutes of the TU Hamburg-Harburg
Security in Distributed Applications
Harburger Schlossstrasse 20
21079 Hamburg, Germany
E-mail: diego@tuhh.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-38529-2 e-ISBN 978-3-642-38530-8
DOI 10.1007/978-3-642-38530-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013938410

CR Subject Classification (1998): E.3, K.6.5, C.5.3, C.3, C.2.0, K.4.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Current developments in IT are characterized by an increasing use of personal
mobile devices and a growing reliance on IT for supporting industrial applica-
tions in the physical world. A new perspective on socio-technical and cyber-
physical systems is required that sees in IT more than just an infrastructure but
focuses on the ever closer integration between social and technical processes.

Application markets, such as Google Play and Apple App Store, drive a
mobile ecosystem, offering new business models with high turnovers and new
opportunities, but at the same time attracting cybercriminals and raising new
privacy concerns as well.

In the area of cyber-physical systems, research has to go beyond securing the
IT infrastructure to consider attacks launched by combining manipulations in
physical space and cyber space.

This seventh edition of WISTP featured a lower number of submissions than
previous years, with nine out of 19 papers accepted for inclusion in the workshop
and proceedings. Submissions were reviewed by at least three reviewers, in some
cases by four. This long and rigorous process was only possible thanks to the
hard work of the Program Committee members and additional reviewers, listed
on the following pages. In addition, we are pleased that Corrado Leita (Syman-
tec Research Labs) and Lejla Batina (Radboud University Nijmegen) accepted
our invitation to speak on challenges and opportunities in securing critical in-
frastructures and near-field communication privacy threats, respectively.

We wish to thank all the people who invested time and energy to make
WISTP 2013 a success: first and foremost come all the authors who submitted
papers to WISTP and presented them at the workshop. The members of the Pro-
gram Committee together with all the external reviewers worked hard in evaluat-
ing the submissions. The WISTP Steering Committee helped us graciously in all
critical decisions. Thanks also go to the 2013 General Chairs Ioannis Askoxylakis
and Louis Marinos, the local organizer Nikolaos Petroulakis and their respective
teams for handling the local arrangements, to Symantec Research Labs for co-
sponsoring WISTP 2013, to Damien Sauveron for maintaining the conference
website, and to Claudio Agostino Ardagna and Mauro Conti for their efforts as
Publicity Chairs.

May 2013 Lorenzo Cavallaro
Dieter Gollmann

Organization

WISTP 2013 is organized by FORTH-ICS in cooperation with ENISA.

General Chairs

Ioannis G. Askoxylakis FORTH-ICS, Greece
Louis Marinos ENISA, EU

Local Organizer

Nikolaos Petroulakis FORTH-ICS, Greece

Workshop/Panel/Tutorial Chair

Damien Sauveron XLIM, University of Limoges, France

Publicity Chairs

Claudio A. Ardagna Università degli Studi di Milano, Italy
Mauro Conti University of Padua, Italy

Steering Committee

Ioannis G. Askoxylakis FORTH-ICS, Greece
Angelos Bilas FORTH-ICS and University of Crete, Greece
Konstantinos Markantonakis ISG-SCC, Royal Holloway University of

London, UK
Joachim Posegga Institute of IT-Security and Security Law,

Germany
Jean-Jacques Quisquater DICE, Catholic University of Louvain, Belgium
Damien Sauveron XLIM, University of Limoges, France

Program Chairs

Lorenzo Cavallaro Royal Holloway, University of London, UK
Dieter Gollmann Hamburg University of Technology, Germany

VIII Organization

Program Committee

Raja Naeem Akram Edinburgh Napier University, UK
Claudio A. Ardagna Università degli Studi di Milano, Italy
Ioannis G. Askoxylakis FORTH-ICS, Greece
Lejla Batina Radboud University Nijmegen,

The Netherlands
Danilo Bruschi Università degli Studi di Milano, Italy
Mauro Conti University of Padua, Italy
Marco Cova University of Birmingham, UK
Manuel Egele Carnegie Mellon University, USA
Jaap-Henk Hoepman Radboud University Nijmegen,

The Netherlands
Andrea Lanzi Insitut Eurecom, France
Corrado Leita Symantec Research Labs, EU
Federico Maggi Politecnico di Milano, Italy
Evangelos Markatos FORTH-ICS, Greece
Lorenzo Martignoni Google, Switzerland
Sjouke Mauw University of Luxembourg, Luxembourg
Aikaterini Mitrokotsa EPFL, Switzerland
Igor Muttik McAfee Labs, UK
Flemming Nielson Danish Technical University, Denmark
Wolter Pieters TU Delft, The Netherlands
Christina Pöpper ETH Zürich, Switzerland
Joachim Posegga Institute of IT-Security and Security Law,

Germany
Jean-Jacques Quisquater DICE, Catholic University of Louvain, Belgium
William Robertson Northeastern University, USA
Pierangela Samarati Università degli Studi di Milano, Italy
Asia Slowinska Vrije Universiteit Amsterdam, The Netherlands
Stefano Zanero Politecnico di Milano, Italy
Jianying Zhou Institute for Infocomm Research, Singapore

Additional Reviewers

Alessandro Barenghi
Bastian Braun
Baris Ege
Sara Foresti

Istvan Haller
Jin Han
Wafa Ben Jaballah
Roman Kochanek

Maryna Krotofil
Mario Leone
Henrich C. Pöhls

Scientific Support

IFIP WG 11.2 Pervasive Systems Security

Organization IX

Main Sponsors

Since the early stages of inception of the workshop, organizers received positive
feedback from a number of high-profile organizations. With the development of
a strong Program and Organizing Committee, this was further capitalized into
direct financial support. This enabled the workshop organizers to strengthen
significantly their main objective for a high-standard academic workshop. The
support helped significantly to keep the workshop registration costs as low as
possible and at the same time offer a number of best paper awards.

We are wholeheartedly thankful to our Silver Sponsor Symantec Research Labs
for supporting WISTP 2013.

Securing Critical Infrastructures:

Challenges and Opportunities

Corrado Leita

Symantec Research Labs

Abstract. The threat landscape is continuously evolving. Large, wide
spread worm infections are leaving more and more space to more stealthy
attacks targeting highly valuable targets. Industrial control systems (ICS)
are rapidly becoming a new major target of cyber-criminals: industrial
control systems have converged with standard IT technologies and have
brought powerful capabilities into the critical infrastructure environ-
ments, along with new and yet undiscovered threats. This was pointed
out in multiple occasions over these last years and was confirmed by the
discovery of highly sophisticated threats such as Stuxnet, that under-
lined a completely different threat model when compared to traditional
malware witnessed in the wild in previous years. This talk will dive into
the challenges and the opportunities associated to ICS security research,
and on the tools at our disposal to improve our ability to protect such
critical environments.

Near-Field Privacy

Lejla Batina

Radboud University Nijmegen

Abstract. With the expansion of versatile privacy-sensitive RFID ap-
plications a clear need for new identification schemes has been estab-
lished. In particular, new attribute-based authentication schemes as rem-
iniscences of Microsofts U-Prove technology were proposed. We survey
related works and discuss a recent scheme for selective disclosure of at-
tributes providing the designation of verification. A scenario of mobile
payments is also considered and the use of NFC-enabled phones for prov-
ing credentials.

Table of Contents

Cryptography and Cryptanalysis

Multiplicative Homomorphic E-Auction with Formally Provable
Security . 1

Kun Peng and Matt Henricksen

Malleable Signatures for Resource Constrained Platforms 18
Henrich C. Pöhls, Stefan Peters, Kai Samelin,
Joachim Posegga, and Hermann de Meer

Cryptographic Key Exchange in IPv6-Based Low Power, Lossy
Networks . 34

Panagiotis Ilia, George Oikonomou, and Theo Tryfonas

Mobile Security

URANOS: User-Guided Rewriting for Plugin-Enabled ANdroid
ApplicatiOn Security . 50

Daniel Schreckling, Stephan Huber, Focke Höhne, and
Joachim Posegga

Online Banking with NFC-Enabled Bank Card and NFC-Enabled
Smartphone . 66

Max Günther and Bernd Borchert

Smart Cards and Embedded Devices

A Defensive Virtual Machine Layer to Counteract Fault Attacks on
Java Cards . 82

Michael Lackner, Reinhard Berlach, Wolfgang Raschke,
Reinhold Weiss, and Christian Steger

A Forward Privacy Model for RFID Authentication Protocols 98
Daisuke Moriyama, Miyako Ohkubo, and Shin’ichiro Matsuo

On Secure Embedded Token Design: Quasi-looped Yao Circuits and
Bounded Leakage . 112

Simon Hoerder, Kimmo Järvinen, and Daniel Page

Lightweight Authentication Protocol for Low-Cost RFID Tags 129
Pierre Dusart and Sinaly Traoré

Author Index . 145

Multiplicative Homomorphic E-Auction

with Formally Provable Security

Kun Peng and Matt Henricksen

Institute for Infocomm Research, Singapore
dr.kun.peng@gmail.com

Abstract. A new method, homomorphic e-auction based on multi-
plicative homomorphic encryption algorithm like ElGamal encryption is
proposed in this paper. Its advantage is obvious and useful in practice:
efficient distributed private key generation and thus efficient trust shar-
ing. A long existing problem in homomorphic e-auction, inefficiency of
bid validity check, is solved in the new multiplicative homomorphic e-
auction scheme in this paper, which employs efficient bid re-formatting
to enforce bid validity. Another contribution of the new multiplicative
homomorphic e-auction scheme is that it is the first e-auction scheme to
provide formal and comprehensive security analysis to achieve formally
provable security (especially privacy).

1 Introduction

E-auction is a popular e-commerce application to distribute resources. In e-
auction applications, the bids are often sealed for fairness and security. In
many sealed-bid e-auction schemes, it is desired to protect privacy of the losing
bids, which is called bid privacy. An obvious solution to protect bid privacy in
e-auction is secure multiparty computation (called secure evaluation in [30]) as
e-auction can be regarded as computation (evaluation) of some secret inputs (the
bids) to obtain an output (the auction result). Secure-multiparty-computation-
based solution to e-auction includes a few schemes [24,17,16,9,6,20]. As analysed
in [30], these schemes are not efficient as they employ general multiparty com-
putation techniques designed to evaluate any function. In comparison, special
techniques designed to handle e-auction only are usually more efficient. A very
popular such method is homomorphic bid opening. With this mechanism, each
bidder employs a homomorphic encryption algorithm or a homomorphic secret
sharing algorithm to seal their bids, while the auctioneers exploit homomorphism
of the encryption algorithm or secret sharing algorithm to open the bids collec-
tively instead of separately so that no losing bid is revealed. As the power of
secret reconstruction or decryption is shared by multiple auctioneers such that
the number of cooperating auctioneers must be over a threshold to gain the
power, bid privacy is retained if the number of malicious auctioneers is not over
the threshold.

Well known homomorphic e-auction schemes include [18,19,1,26,33,31,30,29].
They usually require that each bidder includes a bidding choice for every bid-
dable price in his bid where every bidding choice must be one of two appointed

L. Cavallaro and D. Gollmann (Eds.): WISTP 2013, LNCS 7886, pp. 1–17, 2013.
c© IFIP International Federation for Information Processing 2013

2 K. Peng and M. Henricksen

integers, representing YES and NO respectively. To test whether there is a bid
at a price, usually homomorphic bid opening schemes sum up all the bidders’
bidding choices at that price. No separate bid choice is revealed and the sum is
enough to show whether there is a bid at that price. Together with binary search
for the wining price among the biddable prices, this summing-up bid opening
mechanism is very efficient in finding the winning bid.

In the beginning, homomorphic e-auction schemes [18,19,33,30] employ
Shamir’s secret sharing [39] to seal the bids and exploit its homomorphism to
implement homomorphic bid opening. As secret sharing and reconstruction have
to be repeated multiple times in secret-sharing-based homomorphic e-auction,
it is not efficient enough, especially when public verifiability is required and
validity of secret sharing needs to be publicly verified. So homomorphic encryp-
tion algorithm becomes more popular and gradually replaces secret sharing in
homomorphic e-auction [1,26,31,29] as a bid sealing tool.

The advantage of homomorphic encryption algorithm is obvious in homo-
morphic e-auction. Secret sharing only needs to be performed once to share
the private key among the auctioneers. However, there is a difficulty in using
homomorphic encryption in e-auction applications: the difficulty in threshold
private key sharing for homomorphic algorithm. Most homomorphic e-auction
schemes employ an additive homomorphic algorithm to seal the bids, where
D(c1) + D(c2) = D(c1c2) for any ciphertexts c1, c2 and D() denotes the de-
cryption function. It is interesting to note that all the known additive homo-
morphic algorithms (e.g. [25,23,27]) employ factorization problem as a trap-
door. Although there exist some distributed key generation mechanisms for RSA
[4,22,11], which is also factorization based, they (especially [4,22]) are inefficient.
The distributed key generation technique in [11] improves efficiency to some
extent by loosening the requirements on the parameters and using additional
security assumptions, but is still inefficient compared to distributed key genera-
tion of DL based encryption algorithms [12,28,14] like ElGamal. So they cannot
provide an efficient solution to distributed key generation for additive homomor-
phic encryption, not to mention their difficulty in public verification and that the
relatively more efficient mechanism among them may not satisfy the parameter
requirements with reasonable security assumptions when applied to e-auction. It
is easy for a central trusted dealer to generate the private key [13,2,10] and then
distribute it among the auctioneers. However, it requires too strong a trust and
compromises the advantage of threshold trust, so is impractical in applications
like e-auction. Although a modified ElGamal encryption in [21,35] is additive
homomorphic and support efficient distributed key generation [12,28,14], it is
not practical in most cases as it does not support efficient decryption.

Peng et al [30] design a special homomorphic e-auction scheme based on
Goldwasser-Micali encryption, which is not additive homomorphic. As encryption
and decryption operations are very efficient with Goldwasser-Micali encryption,
their auction scheme needs few exponentiations with long exponents in computa-
tion. However,Goldwasser-Micali encryption depends on hardness of factorization
problem as well, so suffers from lack of efficient distributed key generation as well.

Multiplicative Homomorphic E-Auction with Formally Provable Security 3

Moreover, as the message space of Goldwasser-Micali encryption is only one bit
long, bid opening must be repeated multiple times at any price in [30], which leads
to two drawbacks in efficiency. Firstly, communicational cost is high. Secondly, a
large number of multiplications are needed in computation.

A common efficiency bottleneck in homomorphic e-auction is bid validity
check. Validity of homomorphic bid opening depends on two assumptions about
validity of the bids. Firstly, each biding choice must represent either YES or
NO. An attack called BBC attack is proposed in [31] to compromise correctness
of auction when this condition is not satisfied. Secondly, each bidder chooses
YES for all the biddable prices no higher than his offer and chooses NO for all
the biddable prices higher than his offer. An attack called challenge attack is
shown to work when this condition is not satisfied in Section 4. So validity of
bids should be publicly proved and verified in secure homomorphic e-auction.
Homomorphic e-auction schemes without bid validity check [18,19,33,30,31] are
vulnerable to various attacks. For example, as explained in [30], colluding bidders
in [18,19,33] can launch BBC attack. In [30,31], a malicious bidder can launch
challenge attack as described in Section 4. Those attacks threatens fairness of
the auction, so must be prevented. Some other homomorphic e-auction schemes
[1,26] employ zero knowledge proof to prove validity of bids, but their proof is
inefficient.

In [32,35], batch zero knowledge proof is employed to improve efficiency of
bid validity check. Another batch proof technique is proposed in [8], which can
be applied to bid validity check. However, their improvement in efficiency is
not great enough to ease the efficiency concern in bid validity check. The most
recent attempt to improve efficiency of bid validity check is [29], which allows the
auctioneers to efficiently verify validity of the bids. However, it is not universally
verifiable and one instance of proof can only convince one verifier. When there
are other verifiers the bidders must provide a different proof to each of them.
Moreover, it is required in [29] to extend the digital signature algorithm in [3]
to distributed signature generation, where the power of signature generation is
shared by the auctioneers. However, there is no known method to distribute
signature generation for the digital signature algorithm in [3] as it is a special
signature scheme to prevent malleability.

In this paper, a new homomorphic e-auction scheme is designed to overcome
the two main drawbacks in the existing homomorphic e-auction schemes: lack of
efficient distributed key generation and inefficiency of bid validity check. Firstly,
a multiplicative homomorphic encryption algorithm, ElGamal encryption, is em-
ployed to seal the bids such that distributed key generation of the encryption
algorithm can be efficiently implemented. Secondly, simpler operations are em-
ployed to replace bid validity proof and verification such that correctness of
auction can be guaranteed even at the presence of malicious bidders. The new
homomorphic e-auction scheme is designed in two steps. In the first step, effi-
cient distributed key generation and multiplicative homomorphic bid opening
are specified in Section 3 such that homomorphic bid opening at any price is
always correct with an overwhelmingly large probability. In the second step,

4 K. Peng and M. Henricksen

the e-auction scheme is optimised in Section 4 to prevent the known attacks. A
special contribution of this paper is that it presents the first formal and compre-
hensive security analysis for e-auction, while security (especially comprehensive
privacy) of the existing e-auction schemes is intuitive only. Especially, privacy
of the whole new e-auction scheme including all the published information is
comprehensively and formally proved using a simulation-based model.

2 Symbols and Security Model

The most important security properties in e-auction are as follows.

– Correctness: the auction result is determined strictly according to the auction
rule, while no bid is ignored or tampered with.

– Robustness: in abnormal situations (e.g. at presence of invalid bid), the auc-
tion can still run properly.

– Privacy: no secret information (e.g. the losing bid) except for the auction-
result is revealed. More precisely, the auction transcript including all the
published information in the auction can be simulated by a party without any
secret knowledge but the auction result such that the simulating transcript
is indistinguishable from the real auction transcript.

– Universal (public) verifiability: any one can publicly verify that no partici-
pant deviates from the auction protocol.

As the bids must be sealed to achieve bid privacy, privacy of e-auction at least
depends on security of the employed sealing function (e.g. encryption algorithm)
and no stronger privacy (e.g. unconditional privacy) is possible. We will formally
illustrates that privacy of our new e-auction scheme only depends on semantic
security of the employed encryption algorithm and a threshold trust in sharing
the private key. The following symbols and parameters are used in this paper.

– There are m auctioneers A1, A2, . . . , Am and n bidders B1, B2, . . . , Bn.
– There are L biddable prices and they are denoted as P1, P2, . . . , PL in de-

scending order.
– p and q are large primes such that p − 1 = 2q. G is the cyclic subgroup in

Z∗
p with order q and g is a generator of G.

– Integer l smaller than m is the trust threshold such that cooperation of at
least l auctioneers is necessary to open any bid.

– L1 and L2 are security parameters smaller than q. They do not need to be
very large on the condition that 2(L−1)L2 < q and 2−L1 , 2−L2 are negligible.

– H() is a one-way and collision-resistent hash function.

The formal proof to illustrate privacy of the new e-auction scheme in this paper
needs to extend the traditional definition of semantic security [15] in Definition 1
to a new property called semantic security regarding multiple encryptions, which
is defined in Definition 2 and illustrated to be a deduction of traditional semantic
security in Theorem 1.

Multiplicative Homomorphic E-Auction with Formally Provable Security 5

Definition 1. (Traditional semantic security) An encryption algorithm with a
random probabilistic encryption function E() is semantically secure in the tra-
ditional definition if no polynomial adversary can win the following game with a
probability non-negligibly larger than 0.5.

1. The adversary chooses two different messages m0 and m1 in the message
space in any way he likes and sends them to a probabilistic encryption oracle.

2. The encryption oracle randomly chooses a bit I and returns c = E(mI).
3. Receiving c, the adversary wins the game if it finds out I.

Definition 2. A random probabilistic encryption function is semantically secure
regarding multiple encryptions if no polynomial adversary can win the following
game with a probability non-negligibly larger than 0.5.

1. Messages m1,m2, . . . ,mN with any possible distribution in the message space
are given where N ≥ 1.

2. Ciphertext c0,1, c0,2, . . . , c0,N and c1,1, c1,2, . . . , c1,N are given such that i is
randomly chosen from {0, 1} and ci,j = E(mj) for j = 1, 2, . . . , N and every
c1−i,j may be encryption of any message in the message space.

3. The adversary wins the game if it finds out i.

Theorem 1. If an encryption algorithm is semantically secure in the traditional
definition, then it is semantically secure regarding multiple encryptions.

Proof: If an encryption algorithm is not semantically secure regarding multiple
encryptions, there is a polynomial algorithm A to win the game in Definition 2
with a probability non-negligibly larger than 0.5. A polynomial adversary can use
A to break traditional semantic security of the encryption algorithm as follows.

1. Choosing m0, m1 and given c the adversary in Definition 1 needs to find I.
2. The adversary randomly chooses m2,m3, . . . ,mN from Zq and generates

two encryptions for each of them: cj = E(mj) and c′j = E′(mj) for j =
2, 3, . . . , N where E′() denotes the same encryption algorithm using the same
key but different probabilistic randomization from E().

3. The adversary generates c′ = E(m0).
4. The adversary submits messages m0,m2,m3, . . . ,mN and ciphertexts

c′, c′2, c
′
3, . . . , c

′
N and c, c2, c3, . . . , cN to A.

5. A returns i and the adversary outputs I = i.

Note that

P [I = i] = P [I = i = 1] + P [I = i = 0]

= P [I = 1]P [i = 1|I = 1] + P [I = 0]P [i = 0|I = 0]

where P [E] denotes the probability that event E happens and P [E1|E2] de-
notes the probability that event E1 happens on the condition that event E2

happens. As A breaks semantic security regarding multiple encryptions, P [i =
1|I = 1] is non-negligibly larger than 0.5 and denoted as ε. When I = 0, both

6 K. Peng and M. Henricksen

c, c2, c3, . . . , cN and c′, c′2, c
′
3, . . . , c

′
N are encryptions of m0,m2,m3, . . . ,mN , so

A outputs 0 or 1 with the same chance and thus P [i = 0|I = 0] = 0.5.
So

P [I = i] = 0.5ε+ 0.5× 0.5,

which is non-negligibly larger than 0.5. So the adversary can break traditional
semantic security of the encryption algorithm in polynomial time by querying A.
Since breaking semantic security regarding multiple encryptions implies break-
ing traditional semantic security, traditional semantic security implies semantic
security regarding multiple encryptions. �

3 The Basic Protocol, Efficient Distributed Key
Generation and Multiplicative Homomorphic Bid
Opening

In this section, we start with a simple question: how to design homomorphic
bid opening in first-bid sealed-bid auction, while the private key of the employed
bid-sealing encryption algorithm must be generated in a distributed way to avoid
too strong trust. Discussions of more complex questions will be given in Section 4
and Section 5. In our design, the auctioneers set up ElGamal encryption with
distributed decryption for bid sealing as follows.

1. Each Aj randomly chooses xj from Zq and calculates yj = gxj mod p and
publishes Hj = H(yj).

2. After H1, H2, . . . , Hm have been published, each Aj publishes yj and any
one can verify Hj = H(yj) for j = 1, 2, . . . ,m.

3. The public key of ElGamal encryption is y =
∏m

j=1 yj mod p and the private

key x =
∑m

j=1 xj mod q needs to be secretly shared among the auctioneers
with the trust threshold l.

4. Each Aj builds a polynomial Fj(X) =
∑l−1

k=0 aj,kX
k where aj,0 = xj .

5. Each Aj calculates sj,J = Fj(J) mod q and secretly sends sj,J to every AJ

for j = 1, 2, . . . ,m and J = 1, 2, , . . . ,m.
6. Each AJ calculates his private key share sJ =

∑m
j=1 sj,J mod q.

Public verification of the key distribution can be easily implemented by publish-
ing αj,k = gaj,k mod p for j = 1, 2, . . . ,m and k = 0, 1, . . . , l − 1 and verifying
each of the secret sharing operations using the existing publicly verifiable secret
sharing techniques (e.g. [5,38]). Encryption and decryption are as follows.

– Encryption of a message M in G is E(M) = (gr mod p, Myr mod p) where
r is randomly chosen from Zq.

– A ciphertext c = (a, b) can be decrypted by the cooperation of at least l auc-
tioneers (denoted as A1, A2, . . . , Al for simplicity of description) as follows.

Multiplicative Homomorphic E-Auction with Formally Provable Security 7

1. Each auctioneers Aj calculates and publishes βj = asj mod p for
j = 1, 2, . . . , l. If public verification is required, Aj publicly proves

loga βj = logg
∏l−1

k=0 θ
jk

k using zero knowledge proof of equality of dis-
crete logarithms [7] where θk =

∏m
j=1 αj,k mod p.

2. The final result is D(c) = b/
∏l

j=1 β
uj

j mod p where uj =∏
1≤v≤l,v �=j v/(v − j) mod q.

Note that unlike the encryption algorithms employed in traditional homomor-
phic e-auction schemes ElGamal encryption is not additive homomorphic. In-
stead, it is multiplicative homomorphic. More precisely, in ElGamal encryp-
tion D(c1)D(c2) = D(c1c2) for any ciphertexts c1, c2. So our homomorphic bid
opening is different from the existing homomorphic bid opening mechanisms.
It exploits multiplicative homomorphism instead of additive homomorphism of
the employed encryption algorithm, so is called multiplicative homomorphic
e-auction. One-choice-per-price strategy is employed in our design. The biddable
prices are limited in a definite set and each bidder must make a choice (indicat-
ing willingness or unwillingness to pay) at every biddable price. If a bidder is
willing to pay a price, he chooses an integer standing for “YES” as his choice at
that price. If a bidder is unwilling to pay a price, he chooses an integer standing
for “NO” as his choice at that price. The bidders seal their bidding vectors (in-
cluding their choices at all the biddable prices) and publish the sealed bidding
vectors. The detailed design of bid sealing is as follows.

1. Each bidder Bi chooses his evaluation Pei from {P1, P2, . . . , PL}.
2. Each Bi builds his bidding vector: bi = (bi,1,bi,2, . . . ,bi,L) where bi,t = 1

for t < ei and bi,t is a random integer larger than 1 in G for t ≥ ei.
3. Each Bi seals his bidding vector in a ciphertext vector

ci = (ci,1, ci,2, . . . , ci,L) = (E(bi,1), E(bi,2), . . . , E(bi,L)).

Note that in our new design the bidders do not need to prove validity of any of his
bidding choices as a bidding choice indicating “YES” can be any integer larger
than 1. Namely, any integer in the messages space of the employed encryption
algorithm is a valid bidding choice (1 for “NO” and otherwise for “YES”). It is
illustrated in the following bid opening procedure that homomorphic bid opening
can still work with such a tolerating bid format. The bid opening procedure
employs binary search, where the biddable prices form a binary tree and the
searching route starts at the tree root (PL/2) and ends at a tree leaf. On each
node of the route it is tested whether there is at least one “YES” choice without
revealing the choices at that price. If there is one “YES” choice at that price,
the search goes into the sub-tree with higher prices. If there is no “YES” choice
at that price, the search goes into the sub-tree with lower prices. At every price
Pρ on the searching route the homomorphic bid opening is as follows.

8 K. Peng and M. Henricksen

1. The auctioneers cooperate to choose random integers Tρ,1, Tρ,2, . . . , Tρ,n in
Z2L1 as follows.
(a) Each Aj randomly chooses Tρ,i,j in Z2L1 and publishes T ′

ρ,i,j = H(Tρ,i,j)
for i = 1, 2, . . . , n.

(b) After all the T ′
ρ,i,js are published, each Aj publishes Tρ,i,j for i =

1, 2, . . . , n.
(c) Tρ,i =

∑m
j=1 Tρ,i,j mod 2L1 for i = 1, 2, . . . , n.

2. The auctioneers calculate

Cρ = (aρ, bρ) =
∏n

i=1 c
Tρ,i

i,ρ = (
∏n

i=1 a
Tρ,i

i,ρ mod p,
∏n

i=1 b
Tρ,i

i,ρ mod p)

where ci,ρ is denoted as (ai,ρ, bi,ρ).
3. An enough number of auctioneers cooperate to decrypt Cρ into dρ = D(Cρ).

The binary search goes on until it stops at a leaf of the binary searching tree,
which is declared as the winning price. Finally, the winner opens his bid (e.g. by
publishing its encryption detail) to claim winning. It is illustrated in Theorem 2
that our homomorphic bid opening mechanism can work although any integer
in G is a valid bidding choice.

Theorem 2. Homomorphic bid opening at any price in the new multiplicative
homomorphic e-auction is correct. More precisely, with an overwhelmingly large
probability the decryption result at a price is larger than one iff there is at least
one bidding choice larger than one at the price.

Before Theorem 2 is proved, a lemma needs to be proved first.

Lemma 1. Suppose b1, b2, . . . , bN are integers in G. If
∏N

i=1 b
Ti

i = 1 mod p with
a probability larger than 2−L1 for random L1-bit integers T1, T2, . . . , TN , then
bi = 1 mod p for i = 1, 2, . . . , N .

Proof: Given any integer k in {1, 2, . . . , N}, there must exist integers
T1, T2, . . . , Tk−1, Tk+1, . . . , TN in {0, 1, . . . , 2L1 −1} and two different integers Tk

and T̂k in {0, 1, . . . , 2L1 − 1} such that the following two equations are correct.

∏N
i=1 b

Ti

i = 1 mod p (1)

(
∏k−1

i=1 bTi

i)bT̂k

k

∏N
i=k+1 b

Ti

i = 1 mod p (2)

Otherwise, for any L1-bit integers T1, T2, . . . , Tk−1, Tk+1, . . . , TN there is at most

one L1-bit integer Tk to satisfy equation
∏N

i=1 b
Ti

i = 1 mod p, which implies that

equation
∏N

i=1 b
Ti

i = 1 mod p is satisfied with a probability no larger than 2−L1

(with at most 2(N−1)L1 combinations among the 2NL1 possible combinations of
T1, T2, . . . , TN) and is a contradiction.

(1) divided by (2) yields

bTk−T̂k

k = 1 mod p.

Note that Tk and T̂k are L1-bit integers, 2
L1 < q and q is prime, so GCD(Sk −

Ŝk, q) = 1. Therefore, bk = 1 mod p. Also note that k can be any integer in
{1, 2, . . . , n} and thus bi = 1 mod p for i = 1, 2, . . . , n. �

Multiplicative Homomorphic E-Auction with Formally Provable Security 9

Proof of Theorem 2: At a price Pρ the result of multiplicative homomorphic bid
opening is

dρ = D(Cρ) = D(
∏n

i=1 c
Tρ,i

i,ρ) =
∏n

i=1 D(ci,ρ)
Tρ,i =

∏n
i=1 b

Tρ,i

i,ρ mod p.

– When all the bidding choices, b1,ρ,b2,ρ, . . . ,bn,ρ are 1, dρ is always 1.
– According to Lemma 1, when any of b1,ρ, b2,ρ, . . . , bn,ρ modulo p is larger

than 1, dρ is larger than 1 with an overwhelmingly large probability. �

As traditional semantic security has been reduced to semantic security regarding
multiple encryptions in Theorem 1, formal privacy of the new e-auction scheme
can be proved in Theorem 3, which reduces distinguishability between the e-
auction transcript and a simulating transcript to breaking semantic security
regarding multiple encryptions as defined in Definition 2.

Theorem 3. The new multiplicative homomorphic e-auction scheme is private
and computationally reveals no bidding information other than the auction result.
More precisely, the information revealed in the e-auction scheme can be simulated
by a party without any knowledge of any bid but the auction result such that the
simulating transcript is indistinguishable from the real transcript of the revealed
information on the condition that ElGamal encryption algorithm is semantically
secure regarding multiple encryptions.

Proof: The revealed information in the new multiplicative homomorphic e-
auction scheme includes:

– ci,t for i = 1, 2, . . . , n and t = 1, 2, . . . , L;
– at each price pρ on the binary searching route Cρ, dρ, Tρ,i,j and T ′

ρ,i,j for
i = 1, 2, . . . , n and j = 1, 2, . . . ,m and Tρ,i for i = 1, 2, . . . , n;

– the integers published in the the multiple instances of underlying zero knowl-
edge proof of equality of discrete logarithms, when complete public verifia-
bility is required to include key generation and distributed decryption.

As ZK proof of equality of discrete logarithms in [7] has been formally proved to
be zero knowledge, we only need to prove that ci,t , Cρ, dρ, Tρ,i, Tρ,i,j , T

′
ρ,i,j for

pρ on the searching route, 1 ≤ i ≤ n, 1 ≤ t ≤ L and 1 ≤ j ≤ m can be simulated
by a party without any secret knowledge but the auction result. A party without
any secret knowledge but the auction result can simulate them as follows.

1. He finds the binary searching route according to the auction result.
2. He randomly chooses Tρ,i,j for pρ on the searching route, i = 1, 2, . . . , n and

j = 1, 2, . . . ,m from Z2L1 and calculates T ′
ρ,i,j = H(Tρ,i,j).

3. He calculates Tρ,i =
∑m

j=1 Tρ,i,j mod 2L1 for pρ on the searching route and
i = 1, 2, . . . , n.

4. He randomly chooses bi,t from G for 1 ≤ i ≤ n and 1 ≤ t ≤ L.

5. He calculates ci,t = (ai,t, bi,t) = (gr
′
i,t mod p, bi,ty

r′i,t mod p) for i =
1, 2, . . . , n and t = 1, 2, . . . , L where r′i,t is randomly chosen from Zq.

10 K. Peng and M. Henricksen

6. He calculates Cρ = (
∏n

i=1 a
Tρ,i

i,ρ mod p,
∏n

i=1 b
Tρ,i

i,ρ mod p) for pρ on the
searching route.

7. He calculates dρ =
∏n

i=1 b
Tρ,i

i,ρ mod p for pρ on the searching route.

In this simulating transcript of the revealed information,

– each Tρ,i,j is uniformly distributed in Z2L−1 ;
– each Tρ,i is uniformly distributed in Z2L−1 ;
– each ci,t is distributed in G2 in a way independent of the secret bids but

depending on how bi,t is chosen in the simulation;
– each dρ is uniformly distributed in G;
– each Cρ is uniformly distributed in G2;
– Tρ,i =

∑m
j=1 Tρ,i,j mod 2L1 for pρ on the searching route and 1 ≤ i ≤ n;

– T ′
ρ,i,j = H(Tρ,i,j) for pρ on the searching route ,1 ≤ j ≤ m and 1 ≤ i ≤ n;

– Cρ = (
∏n

i=1 a
Tρ,i

i,ρ mod p,
∏n

i=1 b
Tρ,i

i,ρ mod p) for pρ on the searching route;

– dρ =
∏n

i=1 b
Tρ,i

i,ρ mod p and dρ = D(Cρ) for pρ on the searching route.

In comparison, in the real transcript of the same information,

– each Tρ,i,j is uniformly distributed in Z2L−1 ;
– each Tρ,i is uniformly distributed in Z2L−1 ;
– each ci,t encrypts Bi’s choice at pt;
– each dρ is uniformly distributed in G;
– each Cρ is uniformly distributed in G2;
– Tρ,i =

∑m
j=1 Tρ,i,j mod 2L1 for pρ on the searching route and 1 ≤ i ≤ n;

– T ′
ρ,i,j = H(Tρ,i,j) for pρ on the searching route ,1 ≤ j ≤ m and 1 ≤ i ≤ n;

– Cρ = (
∏n

i=1 a
Tρ,i

i,ρ mod p,
∏n

i=1 b
Tρ,i

i,ρ mod p) for pρ on the searching route;

– dρ =
∏n

i=1 b
Tρ,i

i,ρ mod p and dρ = D(Cρ) for pρ on the searching route.

The only difference between the two transcripts lies in distribution of ci,t for
i = 1, 2, . . . , n and t = 1, 2, . . . , L. If a polynomial adversary can distinguish the
two transcripts of ci,t for i = 1, 2, . . . , n and t = 1, 2, . . . , L, it can be employed
to break semantic security of ElGamal encryption regarding multiple encryp-
tions as follows. Since the the adversary can distinguish the two transcripts of
ci,t for i = 1, 2, . . . , n and t = 1, 2, . . . , L without any other information, given
additional information bi,t for i = 1, 2, . . . , n and t = 1, 2, . . . , L, it can still
distinguish the two transcripts as the additional information only makes the
distinguishing work easier (or at least does not make it harder). So given mes-
sages bi,t for i = 1, 2, . . . , n and t = 1, 2, . . . , L and two sets of ciphertexts
ci,t for i = 1, 2, . . . , n and t = 1, 2, . . . , L, one of which is encryption of bi,t

for i = 1, 2, . . . , n and t = 1, 2, . . . , L, the adversary can distinguish which set
of ciphertexts are in the real e-auction transcript and thus encryption of bi,t

for i = 1, 2, . . . , n and t = 1, 2, . . . , L. Namely, the adversary breaks semantic
security of ElGamal encryption regarding multiple encryptions. �

According to Theorem 1 and Theorem 3, when the number of colluding malicious
auctioneers is not over l, compromising privacy of the new e-auction scheme
implies breaking semantic security of ElGamal encryption, which is widely known
to be hard assuming hardness of the Decisional Diffie-Hellman problem. So the
new e-auction scheme is private on the condition that the DDH problem is hard.

Multiplicative Homomorphic E-Auction with Formally Provable Security 11

4 The Final Protocol, Optimisation to Achieve
Robustness

Although the multiplicative homomorphic bid opening mechanism in Section 3
can work at any price, achieving correctness in the auction still needs an as-
sumption: each bidder submits a 1 as his bidding choice at any price higher than
his evaluation and an integer larger than 1 as his bidding choice at any price no
higher than his evaluation. More precisely, although it is not needed to assume
validity of every single bidding choice in multiplicative homomorphic e-auction
(as any bidding choice in the message place of the employed encryption algo-
rithm is valid), it is still necessary to assume that in each bid vector 1s are at the
higher prices and larger integers are at the lower prices. If this assumption is not
satisfied, the auction scheme is still vulnerable to some attacks. For example,
a malicious bidder can submit YES at higher prices and submit NO at lower
prices to launch a challenge attack (mentioned in Section 1), which enables him
to dispute the auction result like attacking [30,31] as follows.

1. A malicious bidder includes in his bid vector a larger integer at price Pγ and
1s at lower prices.

2. In the binary search for winning bid, multiplicative homomorphic bid open-
ing is performed at one price lower than Pγ and returns a decryption result
1. So the binary search goes on to lower prices and finally stops at a winning
price lower than Pγ .

3. After the auction result is published, the malicious bidder can choose to
challenge validity of the result by publishing his bidding choice at Pγ if he
likes (e.g. if his colluding co-bidder does not win or he is not satisfied with
the auction result for other reasons). His challenge is effective as he does
submit YES at a price higher than the winning bid.

This attack obviously violates robustness of auction. Can the malicious bidder
be denied of his winning or penalized or kicked out? It is a complex question.
Note that in an open-cry auction, a bidder is usually allowed to keep silent at
a lower price but bid at a higher price later. Then why is the bid invalid in
sealed-bid auction while it is accepted in the bidding phase? If the challenge is
acceptable, the malicious bidder compromises fairness of the auction and takes
advantage of the other bidders. Even if the challenge can be clarified and rejected,
the clarification needs to open the bidding choices separately and compromises
privacy of the auction.

Our countermeasure to this attack is simple: before bid opening the auction-
eers re-format the encrypted bids such that in each bid if there is a bidding
choice larger than 1 all the other bidding choices at lower prices in the same bid
vector are larger than 1 with an overwhelmingly large probability. It is described
in details as follows.

1. The bidders still seal and submit their bids as in Section 3. Namely each
bidder Bi builds his bidding vector: bi = (bi,1,bi,2, . . . ,bi,L) and seals it in
a ciphertext vector ci = (ci,1, ci,2, . . . , ci,L)

12 K. Peng and M. Henricksen

2. The auctioneers cooperate to choose random integers Si,t in Z2L2 for i =
1, 2, . . . , n and t = 1, 2, . . . , L− 1 just like they choose Ti,t in Section 3.

3. The auctioneers calculate

c′i,t = c′Si,t−1

i,t−1 ci,t = (a′Si,t−1

i,t−1 ai,t mod p, b′Si,t−1

i,t−1 bi,t mod p)

for i = 1, 2, . . . , n and t = 2, 3, . . . , L

where c′i,1 = ci,1, ci,t is denoted as (ai,t, bi,t) and c′i,t is denoted as (a′i,t, b
′
i,t).

After the re-formating, the encrypted bidding choices become

c′i,t = ((
∏t−1

K=1 a
∏t−1

J=K Si,J

i,K)ai,t mod p, (
∏t−1

K=1 b
∏t−1

J=K Si,J

i,K)bi,t mod p) (3)

for i = 1, 2, . . . , n and t = 2, 3, . . . , L.

In this new bid format, every c′i,t encrypts an integer larger than 1 with an
overwhelmingly large probability as illustrated in Theorem 4 if any of the bidding
choices at higher prices in the same bid vector is larger than 1.

Theorem 4. If any of D(ci,1), D(ci,2), . . . , D(ci,t−1) is larger than 1 for any t
in {2, 3, . . . , n}, then D(c′i,t) > 1 with a probability no smaller than 1− 2−L2 .

Before Theorem 4 is proved, a lemma is proved first.

Lemma 2. Suppose b1, b2, . . . , bN are integers in G. If bN
∏N−1

i=1 bSi

i = 1 mod p
with a probability larger than 2−L2 where S1, S2, . . . , SN−1 are random integers
at least L2 bits long and smaller than q, then bi = 1 mod p for i = 1, 2, . . . , N−1.

Proof: Given any integer k in {1, 2, . . . , N − 1}, there must exist one instance
of integers S1, S2, . . . , Sk−1, Sk+1, . . . , SN−1 among all their possible choices and
two different instances for the choice of Sk, denoted as Sk and Ŝk, such that the
following two equations are correct.

bN
∏N−1

i=1 bSi

i = 1 mod p (4)

bN(
∏k−1

i=1 bSi

i)bŜk

k

∏N−1
i=k+1 b

Si

i = 1 mod p (5)

Otherwise, for any possible choice of integers S1, S2, . . . , Sk−1, Sk+1, . . . , SN

there is at most one choice for integer Sk among all its possible choices to sat-
isfy equation bN

∏N−1
i=1 bSi

i = 1 mod p, which implies equation bN
∏N−1

i=1 bSi

i =
1 mod p is satisfied with a probability no larger than 2−L2 (as the number of
possible choices for Sk is at least 2L2) and is a contradiction.

(4) divided by (5) yields

bSk−Ŝk

k = 1 mod p.

Note that Sk and Ŝk are smaller than q and q is prime, so GCD(Sk − Ŝk, q) = 1.
Therefore, bk = 1 mod p. Also note that k can be any integer in {1, 2, . . . , N−1}
and thus bi = 1 mod p for i = 1, 2, . . . , N − 1. �

Multiplicative Homomorphic E-Auction with Formally Provable Security 13

Proof of Theorem 4: (3) and multiplicative homomorphism of ElGamal encryp-
tion imply

D(c′i,t) = (
∏t−1

K=1 D(ci,K)
∏t−1

J=K Si,J)D(ci,t) mod p

for i = 1, 2, . . . , n and t = 2, 3, . . . , L.

Note that any
∏t−1

J=K Si,J is smaller than q as 2(L−1)L2 < q. If D(c′i,t) > 1 is

not guaranteed with a probability no smaller than 1 − 2−L2 for any t, then
D(c′i,t) = 1 with a probability larger than 2−L2 . So according to Lemma 2,
all of D(ci,1), D(ci,2), . . . , D(ci,t−1) are 1s, which is contradictory to the fact
that at least one of D(ci,1), D(ci,2), . . . , D(ci,t−1) is larger than 1. Therefore,
D(c′i,t) > 1 must be guaranteed with a probability no smaller than 1− 2−L2. �

As the re-formatted encrypted bids are enforced to contain consistent bidding
choices with an overwhelmingly large probability, multiplicative homomorphic
bid opening and binary search can be performed on them and challenge attack
can be prevented. Moreover, as the bidding choices except those at the top
price in all the bids are already randomized, multiplicative homomorphic bid
opening can actually be simplified and the randomization through raising the
encrypted bidding choices to the power of Ti,t in Section 3 can be removed
unless multiplicative homomorphic bid opening is performed at the top price.
The simplified bid opening operation is as follows.

1. The auctioneers reformat the encrypted bids as detailed earlier in this section
and obtain the re-formatted encrypted bids c′i,t = (a′i,t, b

′
i,t) for i = 1, 2, . . . , n

and t = 1, 2, . . . , L.
2. The auctioneers perform binary search for the winning bid. If the binary

search goes to the top price P1, the multiplicative homomorphic bid opening
at P1 is the same as described in Section 3. Otherwise, the multiplicative
homomorphic bid opening at any price Pρ is as follows.
(a) The auctioneers calculate

Cρ =
∏n

i=1 c
′
i,ρ = (

∏n
i=1 a

′
i,ρ mod p,

∏n
i=1 b

′
i,ρ mod p).

(b) An enough number of them cooperate to decrypt Cρ into dρ = D(Cρ) as
described in Section 3.

(c) If dρ > 1, the search goes into the sub-tree with prices higher than Pρ.
If dρ = 1, the search goes into the sub-tree with prices lower than Pρ.

3. The binary search goes on until it stops at a leaf of the binary searching tree,
which is declared as the winning price. Finally, the winner opens his bid to
claim winning.

In comparison with the original e-auction scheme in Section 3, the optimisa-
tion in this section changes the way the bidding choices are randomized. The
new randomization operation not only enables multiplicative homomorphic bid
opening but also enforces validity of the bids. The optimised e-auction scheme is
correct and private as illustrated in Theorem 2 and Theorem 3 (since the change
in randomization operation does not affect their applicability to the e-auction
scheme) and its robustness is guaranteed by Theorem 4.

14 K. Peng and M. Henricksen

Table 1. Security comparison of homomorphic e-auction schemes

Auction Bid opening Bid validity Universal Vulnerability Correctness
schemes power sharing check verifiability or problem & privacy

[18] nL instances of no yes BBC attack and intuitive
secret sharing challenge attack

[19] nL instances of no yes BBC attack and intuitive
secret sharing challenge attack

[33] nL instances of no yes BBC attack and intuitive
secret sharing challenge attack

[1] sharing 1 key only
but no efficient yes yes no intuitive

distributed
key generation

[26] sharing 1 key only
but no efficient yes yes no intuitive

distributed
key generation

[30] sharing 1 key only
but no efficient no yes challenge attack intuitive

distributed
key generation

[31] nL instances of no yes challenge attack intuitive
secret sharing

[29] sharing 1 key only unknown how to
but no efficient yes no generate Boneh intuitive

distributed signature [3] in a
key generation distributed way

New sharing 1 key only enforcing formally
efficient distributed validity by bid yes no proved

key generation re-formatting

Table 2. Efficiency comparison of secure homomorphic e-auction schemes

Auction Bidder Auctioneer

schemes multiplication example multiplication example

[1,26] ≥ 12291.5L 50346140 ≥ 12292nL + (10752 + 2n) log2 L 50348957633

[29] 1536(2L + 8) 12595200 1536(0.2nL + 20 log2 L + 16n) 1283297280
per verifier per verifier

New 3072L 12582912 3L2n(L − 1) + 4608 log2 L 368605296

5 Comparison and Conclusion

Security and efficiency of the new e-auction scheme is compared with the exist-
ing e-auction schemes with bid privacy in this section. As explained in Section 1,
secure-multiparty-computation-based e-auction schemes [24,17,16,9,6,20] and e-
auction schemes employing downward search [37,40,41,36,34] are less efficient
and so we focus our comparison on homomorphic e-auction. Firstly, comparison
of security properties is given in Table 1. Then, efficiency comparison of se-
cure homomorphic e-auction schemes (with bid validity check and invulnerable
to known attacks) is given in Table 2, where the number of multiplications is
counted and for simplicity an exponentiation with a L-bit exponent is counted
as 1.5L multiplications. A full-length exponent in cryptographic operations in G
or Zp is supposed to be 1024 bits long. Note that like the analysis in the existing
e-auction schemes, cost of preparation work (e.g. distributed key generation) is
not included in Table 2. If it is taken into account, advantage of our new scheme
will be greater as it is the only homomorphic e-auction scheme with efficient
distributed key generation. In the example in Table 2, n = 1000 and L = 4096,
while L2 = 30 such that 2−L2 is smaller than one out of one billion.

Multiplicative Homomorphic E-Auction with Formally Provable Security 15

The comparisons clearly demonstrate that the new e-auction scheme is secure
and efficient. It satisfies all the security properties and is the only e-auction
scheme to achieve formally provable security. It is much more efficient than any
secure homomorphic e-auction scheme, which already employs a relatively more
efficient solution to secure e-auction. Extending our technique to more complex
auction rules is an open question.

References

1. Abe, M., Suzuki, K.: M+1-st price auction using homomorphic encryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 115–124. Springer,
Heidelberg (2002)

2. Baudron, O., Fouque, P., Pointcheval, D., Poupard, G., Stern, J.: Practical multi-
candidate election system. In: ACM PODC 2001, pp. 274–283 (2001)

3. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. In: Kaliski Jr.,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg
(1997)

5. Boudot, F., Traoré, J.: Efficient publicly verifiable secret sharing schemes with
fast or delayed recovery. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS,
vol. 1726, pp. 87–102. Springer, Heidelberg (1999)

6. Cachin, C.: Efficient private bidding and auctions with an oblivious third party.
In: ACM CCS 1999, pp. 120–127 (1999)

7. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

8. Chida, K., Yamamoto, G.: Batch processing for proofs of partial knowledge and
its applications. IEICE Trans. Fundamentals, 150–159 (January 2008)

9. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 280–300. Springer, Heidelberg (2001)

10. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

11. Damg̊ard, I., Koprowski, M.: Practical threshold RSA signatures without a trusted
dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165.
Springer, Heidelberg (2001)

12. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
FOCS 1987, pp. 427–437 (1987)

13. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001)

14. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

15. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer Secu-
rity 28(2), 270–299 (1984)

16 K. Peng and M. Henricksen

16. Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via cipher-
texts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177.
Springer, Heidelberg (2000)

17. Juels, A., Szydlo, M.: A two-server, sealed-bid auction protocol. In: Blaze, M. (ed.)
FC 2002. LNCS, vol. 2357, pp. 72–86. Springer, Heidelberg (2003)

18. Kikuchi, H., Harkavy, M., Tygar, J.: Multi-round anonymous auction. In: IEEE
WDRES 1998, pp. 62–69 (1998)

19. Kikuchi, H., Hotta, S., Abe, K., Nakanishi, S.: Distributed auction servers resolving
winner and winning bid without revealing privacy of bids. In: IEEE Workshop on
Next Generation Internet 2000, pp. 307–312 (2000)

20. Kurosawa, K., Ogata, W.: Bit-slice auction circuit. In: Gollmann, D., Karjoth,
G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502, pp. 24–38. Springer,
Heidelberg (2002)

21. Lee, B., Kim, K.: Receipt-free electronic voting through collaboration of voter and
honest verifier. In: JW-ISC 2000, pp. 101–108 (2000)

22. MacKenzie, P., Frankel, Y., Yung, M.: Robust efficient distributed RSA-key gen-
eration. In: STOC 1998, p. 320 (1998)

23. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In: ACM Computer Science Conference 1998, pp. 160–174 (1998)

24. Naor, M., Pinkas, B., Sumner, R.: Privacy perserving auctions and mechanism
design. In: ACM Conference on Electronic Commerce 1999, pp. 129–139 (1999)

25. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998)

26. Omote, K., Miyaji, A.: A second-price sealed-bid auction with verifiable discrim-
inant of p0-th root. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 57–71.
Springer, Heidelberg (2003)

27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

28. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991)

29. Peng, K., Bao, F.: Efficiency improvement of homomorphic E-auction. In: Katsikas,
S., Lopez, J., Soriano, M. (eds.) TrustBus 2010. LNCS, vol. 6264, pp. 238–249.
Springer, Heidelberg (2010)

30. Peng, K., Boyd, C., Dawson, E.: A multiplicative homomorphic sealed-bid auction
based on Goldwasser-Micali encryption. In: Zhou, J., López, J., Deng, R.H., Bao,
F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 374–388. Springer, Heidelberg (2005)

31. Peng, K., Boyd, C., Dawson, E.: Optimization of electronic first-bid sealed-bid
auction based on homomorphic secret sharing. In: Dawson, E., Vaudenay, S. (eds.)
Mycrypt 2005. LNCS, vol. 3715, pp. 84–98. Springer, Heidelberg (2005)

32. Peng, K., Boyd, C., Dawson, E.: Batch verification of validity of bids in homomor-
phic e-auction. Computer Communications 29, 2798–2805 (2006)

33. Peng, K., Boyd, C., Dawson, E., Viswanathan, K.: Robust, privacy protecting and
publicly verifiable sealed-bid auction. In: Deng, R.H., Qing, S., Bao, F., Zhou, J.
(eds.) ICICS 2002. LNCS, vol. 2513, pp. 147–159. Springer, Heidelberg (2002)

34. Peng, K., Boyd, C., Dawson, E., Viswanathan, K.: Non-interactive auction scheme
with strong privacy. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587,
pp. 407–420. Springer, Heidelberg (2003)

Multiplicative Homomorphic E-Auction with Formally Provable Security 17

35. Peng, K., Dawson, E.: Efficient Bid Validity Check in ElGamal-Based Sealed-Bid
E-Auction. In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp.
209–224. Springer, Heidelberg (2007)

36. Sako, K.: An auction protocol which hides bids of losers. In: Imai, H., Zheng, Y.
(eds.) PKC 2000. LNCS, vol. 1751, pp. 422–432. Springer, Heidelberg (2000)

37. Sakurai, K., Miyazaki, S.: A bulletin-board based digital auction scheme with bid-
ding down strategy. In: IWCTE 1999, pp. 180–187 (1999)

38. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its appli-
cation to electronic voting. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 148–164. Springer, Heidelberg (1999)

39. Shamir, A.: How to share a secret. Communication of the ACM 22(11), 612–613
(1979)

40. Suzuki, K., Kobayashi, K., Morita, H.: Efficient sealed-bid auction using hash chain.
In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 183–191. Springer, Heidelberg
(2001)

41. Watanabe, Y., Imai, H.: Reducing the round complexity of a sealed-bid auction
protocol with an off-line ttp. In: STOC 2000, pp. 80–86 (2000)

Malleable Signatures

for Resource Constrained Platforms

Henrich C. Pöhls1,3,�, Stefan Peters3, Kai Samelin2,3,��,
Joachim Posegga1,3, and Hermann de Meer2,3

1 Chair of IT-Security
2 Chair of Computer Networks and Computer Communication

3 Institute of IT-Security and Security Law (ISL), University of Passau, Germany
{hp,ks,jp}@sec.uni-passau.de, peters stefan@gmx.net,

demeer@fim.uni-passau.de

Abstract. Malleable signatures allow the signer to control alterations to
a signed document. The signer limits alterations to certain parties and to
certain parts defined during signature generation. Admissible alterations
do not invalidate the signature and do not involve the signer. These
properties make them a versatile tool for several application domains,
like e-business and health care. We implemented one secure redactable
and three secure sanitizable signature schemes on secure, but computa-
tionally bounded, smart card. This allows for a secure and practically
usable key management and meets legal standards of EU legislation. To
gain speed we securely divided the computing tasks between the powerful
host and the card; and we devise a new accumulator to yield a useable
redactable scheme. The performance analysis of the four schemes shows
only a small performance hit by the use of an off-the-shelf card.

1 Introduction

Digital signatures are technical measures to protect the integrity and authenticity
of data. Classical digital schemes that can be used as electronic signatures must
detect any change that occurred after the signature’s generation. Digital signa-
tures schemes that fulfill this are unforgeable, such as RSA-PSS. In some cases,
controlled changes of signed data are required, e.g., if medical health records need
to be sanitized before being made available to scientists. These allowed and signer-
controlled modifications must not result in an invalid signature and must not in-
volve the signer. This rules out re-signing changed data or changes applied to the
original data by the signer. Miyazaki et al. called this constellation the “digital
document sanitization problem” [20]. Cryptographic solutions to this problem are

� Is funded by BMBF (FKZ:13N10966) and ANR as part of the ReSCUeIT project.
�� The research leading to these results was supported by “Regionale Wettbe-

werbsfähigkeit undBeschäftigung”, Bayern, 2007-2013 (EFRE) as part of the SECBIT
project (http://www.secbit.de) and the European Community’s Seventh Frame-
work Programme through the EINS Network of Excellence (grant agreement no.
[288021]).

L. Cavallaro and D. Gollmann (Eds.): WISTP 2013, LNCS 7886, pp. 18–33, 2013.
c© IFIP International Federation for Information Processing 2013

Malleable Signatures for Resource Constrained Platforms 19

sanitizable signatures (SSS) [2] or redactable signatures (RSS) [15]. These have
been shown to solve a wide range of situations from secure routing or anonymiza-
tion of medical data [2] to e-business settings [22,23,28]. For a secure and practi-
cally usable key management, we implemented four malleable signature schemes
on an off-the-shelf smart card. Hence, all the algorithms that involve a parties
secret key run on the smart card of that party. Smart cards are assumed secure
storage and computation devices which allow to perform these actions while the
secret never leaves the card’s protected computing environment. However, they
are computationally bounded.

1.1 Contribution

To the best of our knowledge, no work on how to implement these schemes
on resource constraint platforms like smart cards exists. Additional challenges
are sufficient speed and low costs. Foremost, the smart card implementation
must be reasonably fast and manage all the secrets involved on a resource con-
straint device. Secondly, the implementation should run on off-the-shelf smart
cards; cheaper cards only offer fast modular arithmetics (e.g., needed for RSA
signatures). The paper’s three core contribution are the:

(1) analysis and selection of suitable and secure schemes;
(2) implementation of three SSSs and one RSS scheme to measure runtimes;
(3) construction of a provably secure RSS based on our newly devised accu-
mulator with a semi-trusted third party.

Previously only accumulators with fully-trusted setups where usably fast. This
paper shows how to relax this requirement to a semi-trusted setup. Malleable
signatures on smart cards allow fulfilling the legal requirement of keeping keys
in a “secure signature creation device” [12].

1.2 Overview and State of the Art of Malleable Signatures

With a classical signature scheme, Alice generates a signature σ using her pri-
vate key sksig and the SSign algorithm. Bob, as a verifier, uses Alice’s public
key pksig to verify the signature on the given message m. Hence, the authen-
ticity and integrity of m is verified. Assume Alice’s message m is composed of
a uniquely reversible concatenation of � blocks, i.e., m = (m[1],m[2], . . . ,m[�]).
When Alice uses a RSS, it allows that every third party can redact a block
m[i] ∈ {0, 1}∗. To redact m[i] from m means creating a m′ without m[i], i.e.,
m′ = (. . . ,m[i−1],m[i+1], . . .). Redacting further requires that the third-party
is also able to compute a new valid signature σ′ for m′ that verifies under Alice’s
public key pksig. Contrary, in an SSS, Alice decides for each block m[i] whether
sanitization by a designated third party, denoted Sanitizer, is admissible or
not. Sanitization means that Sanitizeri can replace each admissible block m[i]
with an arbitrary string m[i]′ ∈ {0, 1}∗ and hereby creates a modified message
m′ = (. . . ,m[i − 1],m[i]′,m[i + 1], . . .). In comparison to RSSs, sanitization re-
quires a secret, denoted as sksan, to derive a new signature σ′, such that (m′, σ′)
verifies under the given public keys.

20 H.C. Pöhls et al.

A secure RSS or SSS must at least be unforgeable and private. Unforgeabil-
ity is comparable to classic digital signature schemes allowing only controlled
modifications. Hence, a positive verification of m′ by Bob means that all parts
of m′ are authentic, i.e., they have not been altered in a malicious way. Pri-
vacy inhibits a third party from learning anything about the original message,
e.g., from a signed redacted medical record, one cannot retrieve any additional
information besides what is present in the given redacted record.

The concept behind RSSs has been introduced by Steinfeld et al. [27] and by
Johnson et al. [15]. The term SSS has been coined by Ateniese et al. [2].

Brzuska et al. formalized the standard security properties of SSSs [5]. RSSs
were formalized for lists by Samelin et al. [25]. We follow the nomenclatures
of Brzuska et al. [5]. If possible, we combine explanations of RSSs and SSSs to
indicate relations. In line with existing work we assume the signed message m
to be split in blocks m[i], indexed by their position. W.l.o.g., we limit the al-
gorithmic descriptions in this paper to simple structures to increase readability.
Algorithms can be adapted to work on other data-structures. We keep our no-
tation of Sanitizer general, and also cater for multiple sanitizers, denoted as
Sanitizeri [10]. Currently, there are no implementations of malleable signatures
considering multi-sanitizer environments.

A related concept are proxy signatures [18]. However, they only allow gen-
erating signatures, not controlled modifications. We therefore do not discuss
them anymore. For implementation details on resource constrained devices, re-
fer to [21].

1.3 Applications of Malleable Signatures

One reason to use malleable signatures is the unchanged root of trust: the ver-
ifier only needs to trust the signer’s public key. Authorized modifications are
specifically endorsed by the signer in the signature and subsequent signature
verification establishes if none or only authorized changes have occurred. In the
e-business setting, SSS allows to control the change and to establish trust for in-
termediary entities, as explained by Tan and Deng in [28]. They consider three
parties (manufacturer, distributor and dispatcher) that carry out the produc-
tion and the delivery to a forth party, the retailer. The distributor produces
a malleable signature on the document and the manufacturer and dispatcher
become sanitizers.Due to the SSS, the manufacturer can add the product’s se-
rial number and the dispatcher adds shipment costs. The additions can be done
without involvement of the distributor. Later, the retailer is able to verify all
the signed information as authentic needing only to trust the distributor. Legally
binding digital signatures must detect “any subsequent change” [12], a scheme
by Brzuska et al. was devised to especially offer this public accountability [8].

Another reason to use a malleable signature scheme is their ability to sign
a large data set once, and then to only partly release this information while
retaining verifiability. This privacy notion allows their application in healthcare
environments as explained by Ateniese et al. [2]. For protecting trade secrets
and for data protection it is of paramount important to use a private scheme.

Malleable Signatures for Resource Constrained Platforms 21

Applications that require to hide the fact that a sanitization or redaction has
taken place must use schemes that offer transparency, which is stronger than
privacy [5]. However, the scheme described by Tan and Deng is not private
according to the state-of-the-art cryptographic strict definition [5].

1.4 Motivation for Smart Cards

To facilitate RSSs and SSSs in practical applications, they need to achieve the
same level of integrity and authenticity assurance as current standard digital sig-
natures. This requires them to be unforgeable while being linkable to the legal
entity that created the signature on the document. To become fully recognized
by law, i.e., to be legally equivalent to hand-written signatures, the signature
needs to be created by a “secure signature creation device” (SSCD) [12]. Smart
cards serve as such an SSCD [19]. They allow for using a secret key, while provid-
ing a high assurance that the secret key does not leave the confined environment
of the smart card. Hence, smart cards help to close the gap and make malleable
signatures applicable for deployment in real applications. State of the art secure
RSSs and SSSs detect all modifications not endorsed by the signer as forgeries.
Moreover, Brzuska et al. present a construction in [8] and show that their con-
struction fulfills EU’s legal requirements [22].

2 Sanitizable and Redactable Signature Schemes

We assume the verifier trusts and possesses the Signer’s public key pksig and
can reconstruct all other necessary information from the message-signature pair
(m,σ) alone. Existing schemes have the following polynomial time algorithms:

SSS := (KGensig,KGensan, SignSSS, SanitSSS,VerifySSS,ProofSSS, JudgeSSS)
RSS := (KGensig, SignRSS,VerifyRSS,RedactRSS)

Key Generation (SSS, RSS). Generates key pairs. Only SSSs need KGensan.

(pksig, sksig) ← KGensig(1
λ), (pkisan, sk

i
san) ← KGensan(1

λ)

Signing (SSS, RSS). Requires the Signer’s secret key sksig. For SignSSS, it
additionally requires all sanitizers’ public keys {pk1san, . . . , pknsan}. adm describes
the sanitizable or redactable blocks, i.e., adm contains their indices.

(m,σ) ← SignSSS(m, sksig, {pk1san, . . . , pknsan},adm), (m,σ) ← SignRSS(m, sksig)

Sanitization (SSS) and Redaction (RSS). The algorithms modify m ac-
cording to the instruction in mod, i.e., m′ ← mod(m). For RSSs, mod contains
the indices to be redacted, while for SSSs, mod contains index/message pairs
{i,m[i]′} for those blocks i to be sanitized. They output a new signature σ′ for
m′. SSSs require a sanitizer’s private key, while RSSs allow for public alterations.

(m′, σ′)← SanitSSS(m,mod, σ, pksig, sk
i
san), (m

′, σ′)← RedactRSS(m,mod, σ, pksig)

Verification (SSS, RSS). The output bit d ∈ {true, false} indicates the
correctness of the signature with respect to the supplied public keys.

22 H.C. Pöhls et al.

d ← VerifySSS(m,σ, pksig, {pk1san, . . . , pknsan}), d ← VerifyRSS(m,σ, pksig)

Proof (SSS). Uses the signer’s secret key sksig, message/signature pairs and the
sanitizers’ public keys to output a string π ∈ {0, 1}∗ for the JudgeSSS algorithm.

π ← ProofSSS(sksig,m, σ, {(mi, σi) | i ∈ N
+}, {pk1san, . . . , pknsan})

Judge (SSS). Using proof π and public keys it decides d ∈ {Sig, Sani} indicat-
ing who created the message/signature pair (Signer or Sanitizeri).

d ← JudgeSSS(m,σ, pksig, {pk1san, . . . , pknsan}, π)

2.1 Security Properties of RSSs and SSSs

We consider the following security properties as formalized in [5,8] :

Unforgeability (SSS, RSS) assures that third parties cannot produce a sig-
nature for a “fresh” message. “Fresh” means it has been issued neither by the
signer, nor by the sanitizer. This is similar to the unforgeability requirements
of standard signature schemes.

Immutability (SSS, RSS) immutability prevents the sanitizer from modify-
ing non-admissible blocks. Most RSSs do treat all blocks as redactable, but if
they differentiate, immutability exists equally, named “disclosure secure” [25].

Privacy (SSS, RSS) inhibits a third party from reversing alterations without
knowing the original message/signature pair.

Accountability (SSS) allows to settle disputes over the signature’s origin.

Trade secret protection is initially achieved by the above privacy property. Cryp-
tographically stronger privacy notions have also been introduced:

Unlinkability (SSS, RSS) prohibits a third party from linking two messages.

All current notions of unlinkability require the use of group signatures [7].
Schemes for statistical notions of unlinkability only achieve the less common
notion of selective unforgeability [1]. We do not consider unlinkability, if needed
it can be achieved using a group signature instead of a normal signature [9].

Transparency (SSS, RSS) says that it should be impossible for third parties
to decide which party is accountable for a given signature-message pair.

However, stronger privacy has to be balanced against legal requirements. In
particular, transparent schemes do not fulfill the EU’s legal requirements for
digital signatures [22]. To tackle this, Brzuska et al. devised a non-transparent,
yet private, SSS with non-interactive public accountability [8]. Their scheme does
not impact on privacy and fulfills all legal requirements [8,22].

Non-interactive public accountability (SSS, RSS) offers a public judge,
i.e., without additional information from the signer and/or sanitizer any third
party can identify who created the message/signature pair (Sig or Sani).

Malleable Signatures for Resource Constrained Platforms 23

3 Implementation on Smart Cards

First, the selected RSSs and SSSs must be secure following the state-of-the-art
definition of security, i.e, immutable, unforgeable, private and either transparent
or public-accountable. Transparent schemes can be used for applications with
high privacy protection, e.g., patient records. Public accountability is required for
a higher legal value [8]. Second, the schemes underlying cryptographic foundation
must perform well on many off-the-shelf smart cards. Hence, we chose primitives
based on RSA operations computing efficiently due to hardware acceleration.

The following schemes fulfill the selection criterions and have been imple-
mented:

BFF+09: Transparent, private, single-sanitizer SSS by Brzuska et al. [5]:
uses RSA signatures and RSA-based chameleon hash1

BFLS09: Public accountable, private, multi-sanitizer with delegation
SSS by Brzuska et al. [6]: works with several RSA signatures

BPS12: Public accountable, private, multi-sanitizer SSSs by Brzuska
et al. [8]: work with several RSA signatures

PSPdM12: Transparent, private RSS by Pöhls et al. [24]: uses RSA sig-
nature and accumulator based on modular exponentiations

Each participating party has its own smart card, protecting each entities’ secret
key. The algorithms that require knowledge of the private keys sksig or skisan are
performed on card. Hence, at least Sign and Sanit involve the smart card. When
needed, the host obtains the public keys out of band, e.g., via a PKI.

3.1 SSS Scheme BFF+09 [5]

The scheme’s core idea is to generate a digest for each admissible block using a
tag-based chameleon hash [5]. Finally, all digests are signed with a standard sig-
nature scheme. At first, let S := (SKGen, SSign, SVerify) be a regular UNF-CMA
secure signature scheme. Moreover, let CH := (CHKeyGen,CHash,CHAdapt) be
a tag-based chameleon hashing scheme secure under random-tagging attacks.
Finally, let PRF be a pseudo random function and PRG a pseudo random gen-
erator. We modified the algorithms presented in [5] to eliminate the vulnerability
identified by Gong et al. [14]. See [5] for the algorithms and the security model.

Key Generation: KGensig on input of 1λ generates a key pair (sk, pk) ←
SKGen(1λ), chooses a secret κ ← {0, 1}λ and returns (sksig, pksig) ← ((sk, κ),

pk). KGensan generates a key pair (skchsan, pk
ch
san) ← CHKeyGen(1λ).

Signing: Sign on input of m, sksig, pk
ch
san,adm it generates nonce ← {0, 1}λ,

computes x ← PRF(κ,nonce), followed by tag ← PRG(x), and chooses

r[i]
$← {0, 1}λ for each i ∈ adm at random. For each block m[i] ∈ m let

h[i] ←
{
CHash(pkchsan,tag, (m,m[i]), r[i]) if i ∈ adm
m[i] otherwise

1 Modified to eliminate the vulnerability identified by Gong et al. [14].

24 H.C. Pöhls et al.

and computes σ0 ← SSign(sksig, (h, pk
ch
san,adm)), where h = (h[0], . . . , h[l]).

It returns σ = (σ0,tag,nonce, r[0], . . . , r[k]), where k = |adm|.
Sanitizing: Sanit on input of a message m, information mod, a signature σ =

(σ0,tag,nonce,adm, r[0], . . . , r[k]), pksig and skchsan checks that mod is ad-
missible and that σ0 is a valid signature for (h, pksan,adm). On error, return

⊥. It sets m′ ← mod(m), chooses values nonce′ $← {0, 1}λ and tag′ $←
{0, 1}2λ and replaces each r[j] in the signature by r′[j] ← CHAdapt(skchsan,
tag, (m,m[j]), r[j],tag′, (m′,m′[j])). It assembles σ′ = (σ0,tag

′,nonce′,
adm, r′[0], . . . , r′[k]), where k = |adm|, and returns (m′, σ′).

Verification: Verify on input of a message m, a signature σ = (σ0,tag,nonce,
adm, r[0], . . . , r[k]), pksig and pkchsan lets, for each block m[i] ∈ m,

h[i] ←
{
CHash(pkchsan,tag, (m,m[i]), r[i]) if i ∈ adm
m[i] otherwise

and returns SVerify(pksan, (h, pk
ch
san,adm), σ0), where h = (h[0], . . . , h[l]).

Proof: Proof on input of sksig,m, σ, pkchsan and a set of tuples {(mi, σi)}i∈N

from all previously signer generated signatures it tries to lookup a tuple
(pkchsan,tag,m[j], r[j]) such that CHash(pkchsan,tag, (m,m[j]), r[j]) =
CHash(pkchsan,tagi, (mi,mi[j]), ri[j]). Set tagi ← PRG(xi), where xi ←
PRF(κ,noncei). Return π ← (tagi,mi,mi[j], j, pksig, pk

ch
san, r[j]i, xi). If at

any step an error occurs, ⊥ is returned.

Judge: Judge on input of m, a valid σ, pksig, pk
ch
san and π obtained from Proof

checks that pksig = pksigπ and that π describes a non-trivial collision under
CHash(pksan, ·, ·, ·) for the tuple (tag, (j,m[j], pksig), r[j]) in σ. It verifies that
tagπ = PRG(xπ) and on success outputs San, else Sig.

3.2 SSS Scheme BFF+09 [5] on Smart Card

In this scheme, the algorithms Sign, Proof and CHAdapt from Sanit require se-
cret information. The smart card’s involvement is illustrated in Fig. 1. First,
the generation of the tag in the Sign algorithm uses the secret information κ.
During KGensig we generate κ as a 1024 Bit random number using the smart
card’s pseudo random generator and store it on card. To obtain x, illustrated
as invocation of PRF(·, ·), the host passes a nonce to the card, which together
with κ forms the input for the PRF implementation on card. The card returns x
to the host. On the host system, we let tag ← PRG(x). Second, CHAdapt used
in Sanit requires a modular exponentiation using d as exponent. d is part of the
2048 Bit private RSA key obtained by CHKeyGen. The host computes only the
intermediate result i = ((H(tag,m,m[i]) · re) · (H(tag′,m′,m′[i])−1)) mod N
from the hash calculation described in [5] and sends i to the smart card. The final
modular exponentiation is performed by the smart card using the RSA decrypt

Malleable Signatures for Resource Constrained Platforms 25

Host SC

nonce

x PRF(κ,
nonce)

h

σ0

SSign

(sksig, h)

SignSign

Host SC

i

r′
RSADec
(sksig, i)

CHAdaptCHAdapt

Host SC

nonce

x

PRF
(κ,nonce)

ProofProof

Fig. 1. BFF+09: Data flow for algorithms Sign, CHAdapt and Proof

operation, provided by the Java Card API2, to calculate r′ = id mod N and
returns r′. Finally, to execute the Proof algorithm on the Signer’s host requires
the seed x as it serves as the proof that tag has been generated by the signer.
To obtain x, the host proceeds exactly as in the Sign algorithm, calling the PRF
implementation on the card with the nonce as parameter.

3.3 SSS Schemes BFLS09 [6] and BPS12 [8]

The core idea is to create and verify two signatures: first, fixed blocks and the
Sanitizer’s pksan must bear a valid signature under Signer’s pksig. Second,
admissible blocks must carry a valid signature under either pksig or pksan. The
scheme by Brzuska et al. [8] is a modification of the scheme proposed by Brzuska
et al. [6], that is shown to achieve message level public accountability [8] using
an additional algorithm called Detect. Both, BFF+09 and BPS12, solely build
upon standard digital signatures. We implemented both; due to space restrictions
and similarities, we only describe the BPS12 scheme, which achieves blockwise
public accountability. Refer to [6] and [8] for the security model. In this section,
the uniquely reversible concatenation of all non-admissible blocks within m is
denoted FIXm, that of all admissible blocks is denoted as admm.

Key Generation: On input of 1λ KGensig generates a key pair (pksig, sksig) ←
SKGen(1λ). KGensan generates a key pair (pksan, sksan) ← SKGen(1λ).

Signing: Sign on input of m, pksig, sksig, pksan and admm, randomly chooses a
tag and computes σFIX = SSign(sksig, (0,FIXm,admm, pksan,tag)). For

2 RSA implementation must not apply any padding operations to its input. Otherwise,
i is not intact anymore. We use Java Card’s ALG RSA NOPAD to achieve this.

26 H.C. Pöhls et al.

each i ∈ adm. Compute σ[i] ← SSign(sksig, (1, i,m[i], pksan, pksig,tag,⊥))
to form σFULL ← (σ[0], . . . , σ[l]). Return σ ← (σFIX, σFULL,admm,tag,⊥).

Sanitizing: Sanit on input of message m,mod, a signature σ generated by
Sign, pksig, sksan and pksan checks that mod is admissible and that σFIX is
valid under pksig. On error it returns ⊥. Otherwise it generates the modi-
fied message m′ = mod(m), draws a random tag′ and computes σ′[i] ←
SSign(sksan, (1, i,m

′[i], pksan, pksig,tag,tag
′)) for each block i ∈ mod. For

each i ∈ mod it replaces σ[i] ∈ σFULL with σ′[i] to obtain σ′
FULL. It returns

(m′, σ′), where σ′ ← (σFIX, σ
′
FULL,admm,tag,tag′).

Verification: Verify on input of message m, pksig, pksan,admm and a signature
σ = (σFIX, σFULL,admm,tag,tag′) first verifies that σFIX is valid under
pksig. If it is not valid it returns false, else it tries to verify that σFULL is
valid under either pksig or pksan. If σFULL is not valid under any of the public
keys, false is returned and true otherwise.

Proof: Proof always returns ⊥, as it is not required by Judge.

Judge: Judge on input of (m,σ, pksig, pksan) first verifies that the signature σ is
valid using Verify. If not, ⊥ is returned. For each block m[i] ∈ m it computes
d[i] ← Detect(m,σ, pksig, pksan, i,tag,tag

′). If at any point d[i] = San, San
is returned, Sig otherwise.

Detection: Detect on input of (m,σ, pksig, pksan, i,tag,tag
′) returns Sig if

SVerify(pksig, (1,m[i], pksan, pksig,tag,tag
′)) = true and San if SVerify(pksan,

(1,m[i], pksan, pksig,tag,tag
′)) = true. If both SVerify evaluate to false,

⊥ is returned.

3.4 SSS Schemes BFLS09 [6] and BPS12 [8] on Smart Card

We implemented Sign and Sanit with involvement of the smart card. Fig. 2
illustrates the interactions. The algorithms are executed on the host system as
described in the scheme’s description. For the Sign algorithm, cryptographic hash
values over the values for σFIX and all the σ[i] are signed with a RSA signature
scheme using a 2048 Bit RSA key sksig and the signature functions provided by
the card’s API. The resulting signature values are returned to the host. The host
assembles all σ[i] to build the complete signature σ. In the Sanit algorithm the
sanitizer’s host first checks if mod(m) is admissible in admm and, if admissible,
modifies the message to obtain m′. For each block m[i] ∈ mod, σ′[i] is computed
on the card, sending a cryptographic hash value over m[i], pksig,tag and tag′.
The sanitizer’s host produces σ′, combining all the σ′[i] generated on card.

3.5 RSS Scheme PSPdM12 [24]

The scheme’s core idea is to hash each block and accumulate all digests with
a cryptographic accumulator. This accumulator value is signed with a standard
signature scheme. Each time a block is accumulated, a witness that it is part of

Malleable Signatures for Resource Constrained Platforms 27

Host SC

hσFIX = H(0,
mfix,adm, pksan)

σFIX SSign

(sksig, hσFIX)

hσ′[i] = H(1, i, m[i],

pksan, pksig,tag,⊥)
σ[i] SSign(sksig,

hσ′[i])

For each m[i] ∈ m:

SignSign
Host SC

hσ′
FULL

= H(1, i,m′[i],

pksan, pksig,tag, tag
′)

σ′[i]
SSign

(sksan,

hσ′
FULL

)

For each m[i] ∈ mod:

SanitSanit

Fig. 2. BFLS09: Data flow between smart card and host for Sign and Sanit

the accumulated value is generated. Hence, the signed accumulator value is used
to provide assurance that a block was signed given the verifier knows the block
and the witness. A redaction removes the block and its witness. They further
extended the RSS’s algorithms with LinkRSS, MergeRSS. We omit them, as they
need no involvement of the smart card because they require no secrets. Refer
to [24] for details on the security model.

Building Block: Accumulator. For more details than the algorithmic descrip-
tion, refer to [3,4,17,26]. We require the correctness properties to hold [3].

ACC consists of five PPT algorithms ACC := (Setup,Gen,Dig,Proof,Verf):

Setup. Setup on input of the security parameter λ returns the parameters parm,
i.e., parm ← Setup(1λ)

Gen. Gen, on input of the security parameter λ and parm outputs pk
i.e., pk ← Gen(1λ, parm).

Dig. Dig, on input of the set S, the public parameter pk outputs an accumulator
value a and some auxiliary information aux, i.e, (a, aux) ← Dig(pk, S)

Proof. Proof, on input of the public parameter pk, a value y ∈ Ypk and aux
returns a witness p from a witness space Ppk, and ⊥ otherwise, i.e., p ←
Proof(pk, aux, y, S)

Verf. On input of the public parameters parm, public key pk, an accumulator
a ∈ Xpk, a witness p, and a value y ∈ Ypk Verf outputs a bit d ∈ {0, 1}
indicating whether p is a valid proof that y has been accumulated into a,
i.e., d ← Verf(pk, a, y, p). Note, Xpk denotes the output and Ypk the input
domain based on pk; and parm is always correctly recoverable from pk.

28 H.C. Pöhls et al.

Our Trade-Off between Trust and Performance. Pöhls et al. [24] require
ACC to be collision-resistant without trusted setup. Foremost, they require the
ACC’s setup to hide certain values used for the parameter generation from un-
trusted parties, as knowledge allows efficient computation of collisions and thus
forgeries of signatures. All known collision-resistant accumulators based on num-
ber theoretic assumptions either require a trusted third party (TTP), named the
accumulator manager [4,16], or they are very inefficient. As said, the TTP used
for setup of the ACCmust be trusted not to generate collisions to forge signatures.
However, existing schemes without TTP are not efficiently implementable, e.g.,
the scheme introduced by Sander requires a modulus size of � 40, 000Bit [26].

Our trade-off still requires a TTP for the setup, but inhibits the TTP from
forging signatures generated by signers. In brief, we assume that the TTP which
signs a participant’s public key also runs the ACC setup. The TTP already has as
a secret the standard RSA modulus n = pq, p, q ∈ P. If we re-use n as the RSA-
accumulator’s modulus [4], the TTP could add new elements without detection.
However, if we add “blinding primes” during signing, neither the TTP nor the
signer can find collisions, as long as the TTP and the signer do not collude. We
call this semi-trusted setup. Note, as we avoid algorithms for jointly computing
a modulus of unknown factorization, we do not require any protocol runs. Thus,
keys can be generated off-line. The security proof is in the appendix.

On this basis we build a practically usable undeniable RSS, as introduced in [24].
It is based on a standard signature scheme S := (SKGen, SSign, SVerify) and our
accumulator with semi-trusted setup ACC := (Setup,Gen,Dig,Proof,Verf).

Key Generation: The algorithm KeyGen generates (skS, pkS) ← SKGen(1λ). It
lets parm ← Setup(1λ) and pkACC ← Gen(1λ, parm). The algorithm returns
((pkS, parm, pkACC), (skS)).

Signing: Sign on input of skS, pkACC and a set S, it computes (a, aux) ←
Dig(pkACC, (S)). It generates P = {(yi, pi) | pi ← Proof(pkACC, aux, yi, S) |
yi ∈ S}, and the signature σa ← SSign(skS, a). The tuple (S, σs) is returned,
where σs = (pkS, σa, {(yi, pi) | yi ∈ S}).

Verification: Verify on input of a signature σ = (pkS, σa, {(yi, pi) | yi ∈ S}),
parm and a set S first verifies that σa verifies under pkS using SVerify. For
each element yi ∈ S it tries to verify that Verf(pkACC, a, yi, pi) = true. In case
Verf returns false at least once, Verify returns false and true otherwise.

Redaction: Redact on input of a set S, a subset R ⊆ S, an accumulated value
a, pkS and a signature σs generated with Sign first checks that σs is valid
using Verify. If not ⊥ is returned. Else it returns a tuple (S′, σ′

s), where
σ′
s = (pkS, σa, {(yi, pi) | yi ∈ S′}) and S′ = S \R.

3.6 RSS Scheme PSPdM12 [24] on Smart Card

This scheme involves the smart card for the algorithms Setup and Sign, illustrated
in Fig. 3. We use the smart card to obtain the blinding primes of the modulus
described in Sect. 3.5, needed by Setup. To compute these primes on card, we

Malleable Signatures for Resource Constrained Platforms 29

Host SC

a

σa

SSign

(skS, a)

SignSign

Host SC

1λ

n

SKGen
(1λ)

SetupSetup

Fig. 3. PSPdM12: Data flow between smart card and host for Sign and Setup

generate standard RSA parameters (N, e, d) with N being of 2048 Bit length,
but store only N on card and discard the exponents. On the host system this
modulus is multiplied with that obtained from the TTP to form the modulus
used by ACC. Additionally, the smart card performs SSign to generate σa.

4 Performance and Lessons Learned

We implemented in Java Card [11] 2.2.1 on the “SmartC@fé R© Expert 4.x” from
Giesecke and Devrient [13]. The host system was an Intel i3-2350 Dual Core
2.30 GHz with 4 GiB of RAM. For the measurements in Tab. 1, we used mes-
sages with 10, 25 and 50 blocks of equal length, fixed to 1 Byte. The block size
has little impact as inputs are hashed. However, the number of blocks impacts
performance in some schemes. 	 1

2�
 blocks were marked as sanitizable. The Sanit
and Redact operations modify all sanitizable blocks. The BFLS12 scheme allows
multiple sanitizers and was measured with 10 sanitizers. Verify and Judge always
get sanitized or redacted messages. The results for the BFLS12 scheme include
the verification against all possible public keys (worst-case). We measured the
complete execution of the algorithms, including those steps performed on the
host system. We omit the time KeyGen takes for 2048 bit long key pairs, as keys
are usually generated in advance.

We carefully limited the involvement of the smart card, hence we expect the
performance impact to be comparable to the use of cards in regular signature
schemes. For the RSS we have devised and proven a new collision-resistant ac-
cumulator. If one wants to compare, BPS12 states around 0.506s for signing 10

Table 1. Performance of SSS prototypes; median runtime in seconds

Sign Sanit/ Verify Judge Detect/
Redact Proof

�
��
�

10 25 50 10 25 50 10 25 50 10 25 50 10 25 50

[5] 1.225 1.255 1.255 4.255 9.405 17.965 1.09 1.11 1.12 1.78 1.77 1.76 1.535 1.545 1.575

[6] 1.095 1.095 1.085 0.585 0.575 0.575 0.017 0.017 0.017 0.017 0.017 0.017 -4 -4 -4

[8] 3.125 7.165 13.245 2.605 6.655 12.745 0.016 0.039 0.084 0.043 0.051 0.060 0.001 0.001 0.002

[24] 11.165 59.975 221.975 1.42 3.17 6.32 1.32 3.12 6.12 -4 -4 -4 -4 -4 -4

4Algorithm not defined by scheme 5Involves smart card operations

30 H.C. Pöhls et al.

blocks with 4096 bit keys [8]. We only make use of the functions exposed by the
API. Hence, our implementations are portable to other smart cards, given they
provide a cryptographic co-processor that supports RSA algorithms. We would
have liked direct access to the cryptographic co-processor, as raised in [29], in-
stead of using the exposed ALG RSA NOPAD as a workaround.

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Com-
puting on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 1–20. Springer, Heidelberg (2012)

2. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable Signatures. In:
De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

3. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

4. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994)

5. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009)

6. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Sanitizable signatures: How
to partially delegate control for authenticated data. In: Proc. of BIOSIG. LNI,
vol. 155, pp. 117–128. GI (2009)

7. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable
signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 444–461. Springer, Heidelberg (2010)

8. Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for
sanitizable signatures. In: Proc. of EuroPKI 2012. LNCS. Springer (2012)

9. Canard, S., Girault, M.: Implementing group signature schemes with smart cards.
In: Proc. of CARDIS (2002)

10. Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several sign-
ers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012.
LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012)

11. Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Addison-Wesley (2000)

12. EC: Directive 1999/93/EC from 13 December 1999 on a Community framework
for electronic signatures. Official Journal of the EC L 12, 12–20 (2000)

13. Giesecke & Devrient GmbH. SmartC@fé R© Expert 4.0 V.05.2008 (2008)

14. Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In:
Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317.
Springer, Heidelberg (2011)

15. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002)

Malleable Signatures for Resource Constrained Platforms 31

16. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007)

17. Lipmaa, H.: Secure accumulators from euclidean rings without trusted setup. In:
Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240.
Springer, Heidelberg (2012)

18. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing op-
eration. In: Proc. of ACM CCS, CCS 1996, pp. 48–57. ACM (1996)

19. Meister, G., Vogel, M.: Protection profiles and generic security targets for smart
cards as secure signature creation devices - existing solutions for the payment
sector. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 179–
187. Springer, Heidelberg (2001)

20. Miyazaki, K., Susaki, S., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura,
H.: Digital documents sanitizing problem. Technical Report ISEC2003-20, IEICE
(2003)

21. Okamoto, T., Tada, M., Okamoto, E.: Extended proxy signatures for smart cards.
In: Zheng, Y., Mambo, M. (eds.) ISW 1999. LNCS, vol. 1729, pp. 247–258. Springer,
Heidelberg (1999)

22. Pöhls, H.C., Höhne, F.: The role of data integrity in EU digital signature legislation
— achieving statutory trust for sanitizable signature schemes. In: Meadows, C.,
Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170, pp. 175–192. Springer,
Heidelberg (2012)

23. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable Signatures in XML Signature —
Performance, Mixing Properties, and Revisiting the Property of Transparency. In:
Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer,
Heidelberg (2011)

24. Pöhls, H.C., Samelin, K., Posegga, J., de Meer, H.: Transparent mergeable
redactable signatures with signer commitment and applications. Technical Report
MIP-1206, University of Passau (August 2012)

25. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable sig-
natures for independent removal of structure and content. In: Ryan, M.D., Smyth,
B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg
(2012)

26. Sander, T.: Efficient accumulators without trapdoor extended abstract. In: Varad-
harajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 252–262. Springer,
Heidelberg (1999)

27. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

28. Tan, K.W., Deng, R.H.: Applying sanitizable signature to web-service-enabled busi-
ness processes: Going beyond integrity protection. In: Proc. of ICWS 2009, pp.
67–74 (2009)

29. Tews, H., Jacobs, B.: Performance issues of selective disclosure and blinded issuing
protocols on java card. In: Markowitch, O., Bilas, A., Hoepman, J.-H., Mitchell,
C.J., Quisquater, J.-J. (eds.) WISTP 2009. LNCS, vol. 5746, pp. 95–111. Springer,
Heidelberg (2009)

32 H.C. Pöhls et al.

Experiment Semi− Trusted− Collision − ResistancePKACC
A (λ)

parm
$← Setup(1λ)

(pk∗, p∗,m∗, a∗)← AODig(·,·)(1λ, parm)
where oracle ODig, on input of Si, pki returns:

(ai, auxi)← Dig(pki, Si) (answers/queries indexed by i, 1 ≤ i ≤ k)
Pi = {(sj , pi) | pi ← Proof(pki, auxi, sj , Si), sj ∈ Si}
return (ai, Pi)

return 1, if:
Verf(pk∗, a∗,m∗, p∗) = 1 and
∃i, 1 ≤ i ≤ k : ai = a∗ and m∗ /∈ Si

Fig. 4. Collision-Resistance with Semi-Trusted Setup Part I

Experiment Semi− Trusted− Collision − ResistancePARMACC
A (λ)

(parm∗, s∗)← A(1λ)
(pk∗, p∗,m∗, a∗)← AODig(·,·),GetPk()(1λ, s∗)

where oracle ODig, on input of pki, Si:
(ai, auxi)← Dig(pki, Si) (answers/queries indexed by i, 1 ≤ i ≤ k)
Pi = {(sj , pi) | pi ← Proof(pki, auxi, sj , Si), sj ∈ Si}
return (ai, Pi)

where oracle GetPk returns:

pkj ← Gen(1λ, parm∗) (answers/queries indexed by j, 1 ≤ j ≤ k′)
return 1, if:

Verf(pk∗, a∗,m∗, p∗) = 1 and
∃i, 1 ≤ i ≤ k : ai = a∗, m∗ /∈ Si and ∃j, 1 ≤ j ≤ k′ : pk∗ = pkj

Fig. 5. Collision-Resistance with Semi-Trusted Setup Part II

A Collision-Resistant Acc. with Semi-Trusted Setup

Definition 1 (Collision-Resistance with Semi-Trusted Setup (Part I)).
We say that an accumulator ACC with semi-trusted setup is collision-resistant
for the public key generator, iff for every PPT adversary A, the probability that
the game depicted in Fig. 4 returns 1, is negligible (as a function of λ).

The basic idea is to let the adversary generate public key pk. The other part is
generated by the challenger. Afterwards, the adversary has to find a collision.

Definition 2 (Collision-Resistance with Semi-Trusted Setup (Part II)).
We say that an accumulator ACC with semi-trusted setup is collision-resistant
for the parameter generator, iff for every PPT adversary A, the probability that
the game depicted in Fig. A returns 1, is negligible (as a function of λ).

The basic idea is to either let the adversary generate the public parameters parm,
but not any public keys; they are required to be generated honestly. Afterwards,
the adversary has to find a collision.
Setup. The algorithm Setup generates two safe primes p1 and q1 with bit length

λ. It returns n1 = p1q1.

Gen. On input of the parameters parm, containing a modulus n1 = p1q1 of
unknown factorization and a security parameter λ, the algorithm outputs a

Malleable Signatures for Resource Constrained Platforms 33

multi-prime RSA-modulus N = n1n2, where n2 = p2q2, where p2, q2 ∈ P are
random safe primes with bit length λ.

Verf. On input of the parameters parm = n1, containing a modulus N =
p1q1p2q2 = n1n2 of unknown factorization, a security parameter λ, an ele-
ment yi, an accumulator a, and a corresponding proof pi, it checks, whether
pyi

i (mod N) = a and if n1 | N and n2 = N
n1

/∈ P. If either checks fails, it
returns 0, and 1 otherwise

Other Algorithms: The other algorithms work exactly like the standard
collision-free RSA-accumulator, i.e., [3].

Theorem 1 (The Accumulator is Collisions-Resistant with Semi
-Trusted Setup.). If either the parameters parm or the public key pk has been
generated honestly, the sketched construction is collision-resistant with semi-
trusted setup.

Proof. Based on the proofs given in [3], we have to show that an adversary able to
find collisions is able to find the eth root of a modulus of unknown factorization.
Following the definition given in Fig. 4 and Fig. A, we have three cases:

I) Malicious Semi-Trusted Third Party. As parm is public knowledge,
every party can compute n2 = N

n1
. For this proof, we assume that the

strong RSA-assumption [3] holds in (Z/n1Z) and (Z/n2Z). Moreover, we
require that gcd(n1, n2) = 1 holds. As (Z/NZ) ∼= (Z/n1Z) × (Z/n2Z) we
have a group isomorphism ϕ1. Furthermore, as the third party knows the
factorization of n1, we have another group isomorphism ϕ2. It follows:
(Z/NZ) ∼= (Z/p1Z) × (Z/q1Z) × (Z/n2Z). Assuming that A can calcu-
late the eth root in (Z/NZ), it implies that it can calculate the eth root
in (Z/n2Z), as calculating the eth root in (Z/pZ), with p ∈ P is trivial. It
follows that A breaks the strong RSA-assumption in (Z/n2Z). Building a
simulation and an extractor is straight forward.

II) Malicious Signer. Similar to I).
III) Outsider. Outsiders have less knowledge, hence a combination of I) and

II).

Obviously, if the factorization of n1 and n2 is known, one can simply compute
the e-th root in (Z/NZ). However, we assumed that signer and TTP do not
collude. All other parties can collude, as the factorization of n2 remains secret
with overwhelming probability.

Cryptographic Key Exchange

in IPv6-Based Low Power, Lossy Networks

Panagiotis Ilia, George Oikonomou, and Theo Tryfonas

Cryptography Group, Faculty of Engineering, University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK

panagiotis.ilia.2011@my.bristol.ac.uk,
{g.oikonomou,theo.tryfonas}@bristol.ac.uk

Abstract. The IEEE 802.15.4 standard for low-power radio communi-
cations defines techniques for the encryption of layer 2 network frames
but does not discuss methods for the establishment of encryption keys.
The constrained nature of wireless sensor devices poses many challenges
to the process of key establishment. In this paper, we investigate whether
any of the existing key exchange techniques developed for traditional,
application-centric wireless sensor networks (WSN) are applicable and
viable for IPv6 over Low power Wireless Personal Area Networks (6LoW-
PANs). We use Elliptic Curve Cryptography (ECC) to implement and
apply the Elliptic Curve Diffie Hellman (ECDH) key exchange algorithm
and we build a mechanism for generating, storing and managing secret
keys. The mechanism has been implemented for the Contiki open source
embedded operating system. We use the Cooja simulator to investigate
a simple network consisting of two sensor nodes in order to identify the
characteristics of the ECDH technique. We also simulate a larger net-
work to examine the solution’s performance and scalability. Based on
those results, we draw our conclusions, highlight open issues and suggest
further work.

Keywords: 6LoWPAN, Key Exchange, ECC, ECDH.

1 Introduction

Wireless Sensor Networks (WSNs) consist of a large number of autonomous de-
vices that cooperate to collect important data and send them through wireless
communication channels to a base station or a data centre. Every node mainly
consists of a microcontroller, a memory unit, a transceiver, a power source and
one or more sensing elements. Due to their nature, wireless sensors are very con-
strained in terms of available RAM, speed of computation, network bandwidth
and battery lifetime.

In 2003, the IEEE published the first version of IEEE 802.15.4, a specification
for the physical and link layer operation for low-power radio communication. Ini-
tial research efforts suggested that TCP/IP was not viable for WSNs and that
bespoke, application-centric network stacks were more suitable [1, 2]. However,

L. Cavallaro and D. Gollmann (Eds.): WISTP 2013, LNCS 7886, pp. 34–49, 2013.
c© IFIP International Federation for Information Processing 2013

Cryptographic Key Exchange in IPv6-Based Low Power, Lossy Networks 35

the release of uIP demonstrated that standards-compliant TCP/IP stacks for em-
bedded devices are viable [3]. Subsequently, it was shown that a TCP/IP-based
WSN could outperform traditional, application-centric network designs [4]. As
a result, a series of Internet specifications have been suggested for the trans-
mission and routing of datagrams with IPv6 over Low power Wireless Personal
Area Networks (6LoWPANs) [5].

With 6LoWPAN, WSN nodes with IEEE 802.15.4 radio transceivers are di-
rectly accessible from the Internet and are exposed to a host of security threats.
Modern sensor devices are often equipped with an encryption/decryption co-
processor and link layer frames can be transmitted encrypted with the 128-bit
Advanced Encryption Standard (AES) algorithm. However, there are challenges
associated with key management and the process of key exchange in 6LoWPANs
is not trivial. On many occasions, keys are individually pre-loaded to the nodes,
which can be characterized as an important security vulnerability.

In this paper, we investigate whether any of the existing techniques for dy-
namic generation and exchange of cryptographic keys are applicable and can
be adopted for 6LoWPANs. We argue that techniques based on Elliptic Curve
Cryptography (ECC) [6] are very promising and we implement an Elliptic Curve
Diffie Hellman (ECDH) shared key generation and establishment algorithm. This
mechanism is also responsible for the management of existing encryption keys,
searching and returning them to the link layer when requested, or starting the
key exchange process if two neighbouring nodes do not have a shared secret key.
It additionally handles key storage, expiration and replacement.

We implemented the key management mechanism and ECDH algorithm for
the Contiki embedded operating system1 and we evaluated it in terms of ap-
plicability, viability and scalability with network size and density. We evaluate
memory footprint for a single node as well as how the number of stored keys
affects network scalability. In addition, we use the Cooja simulator to conduct
several simulations and assess node energy consumption, network lifetime and
performance.

2 Background

Key management schemes proposed for WSNs are divided mainly into two differ-
ent categories: i) symmetric key schemes where the keys are either pre-installed
or assigned by a trusted party and ii) schemes based on Public Key Cryptography
(PKC).

2.1 Symmetric Key Schemes

Compared to PKC, symmetric key schemes have the advantage that
they are less computationally intensive, requiring fewer micro-controller instruc-
tion cycles to perform the calculations required for encryption and decryption.

1 http://www.contiki-os.org

36 P. Ilia, G. Oikonomou, and T. Tryfonas

Keys are pre-installed during the network’s deployment and initialization phase
and neighbouring nodes discover and establish a shared key during the network
formation phase [7].

Among existing efforts is a key exchange approach which requires the existence
of a trusted party in the WSN, acting as a Key Distribution Centre (KDC), a
role which can be assumed by a Base Station (BS) [8]. In this scheme the KDC
must establish a secure, single-hop communication channel with every node of
the network, in order to deliver the secret keys. The trusted entity-based key
exchange scheme cannot be applied in 6LoWPANs because the assumption that
all nodes are within a single hop of the base station does not always hold true:
The aim of 6LoWPAN and related specifications is to facilitate the formation of
multi-hop networks [9].

A different approach relies on each node having a pre-installed set of keys cho-
sen from a key pool. These schemes can be either deterministic or probabilistic.
Under deterministic schemes, every node is capable of establishing a pair-wise
key with all its neighbors. One method that stands out is the one proposed in
[10], whereby every two nodes in the network share exactly one common key.
According to Bechit et al., deterministic schemes do not scale well with network
size [11] and are thus unsuitable for 6LoWPANs where scalability is a desirable
feature.

Under probabilistic schemes, a common key is present between two neighbors
with some probability. For instance, under the scheme documented in [12], a
small subset of k keys is chosen randomly out of a large key pool S. Every
network node exchanges the identifiers of its keys with its neighbors and, if a
common key exists, it is used as their session secret key. A more contemporary
probabilistic scheme is the one proposed in [11]. Because of the probabilistic
nature of such schemes, many pairs of nodes do not share a common secret key
and thus, they try to find a secure routing path through their neighbors in order
establish it. If the connectivity of the network graph is not high, it is possible
that the network becomes partitioned into sub-networks and thus it may be
impossible to discover paths for key establishment between the two parts. Since
full network connectivity is not guaranteed, such schemes are unsuitable for
6LoWPANs [8]. Additionally, if a single node is compromised a large subset of
the global key pool may be revealed to the attacker [11]. However, because keys
are pre-installed, revocation and replacement is not trivial.

2.2 Public Key Cryptography

Public key schemes are more demanding in terms of computation and energy
consumption than symmetric key schemes. However, Zhang and Varadharajan
argue that public key schemes provide a higher level of security, they scale better
with network size and they have lower storage requirements [7].

The classic Diffie Hellman algorithm uses keys of very large size and does not
provide any authentication mechanism, unless used alongside other protocols. It
is reported that the RSA encryption algorithm is viable in WSNs despite using
a large key [13–15]. The advantage of RSA over Diffie Hellman is that it can

Cryptographic Key Exchange in IPv6-Based Low Power, Lossy Networks 37

provide both key exchange and authentication with a single pair of keys (public-
private). However, the processes of key generation and encryption (for secret key
establishment) are still very slow and energy consuming.

Elliptic Curve Cryptography (ECC) is a very attractive solution for 6LoW-
PANs, since key length is considerably smaller than that used by other traditional
PKC schemes. Consequently, according to NIST recommendations, the strength
of a 160-bit ECC key is equivalent to a 1024-bit RSA key [16].

Reportedly RSA and ECC cryptosystems with 1024-bits and 160-bits key size
respectively have been implemented on MICA motes and PKC is a feasible secu-
rity solution for sensor networks [13]. Additionally, software implementations of
RSA and ECC public-key algorithms exist for Atmel AVR Atmega128 microcon-
trollers [14], which is a hardware platform commonly encountered in 6LoWPAN
deployments. It is observed that the 160-bits ECC is not only much faster than
the equivalent 1024-bits RSA, but it also uses less memory for data and code
hosting. The authors of that work extend their research by implementing RSA
key exchange with mutual authentication as well as ECDH with ECDSA, be-
tween two non-trusted parties [15]. They discuss a simplified and lightweight
Secure Sockets Layer (SSL) protocol in order to allow sensor nodes to perform
a handshake and subsequently to negotiate and establish a secret key. Energy
consumption for a full handshake with ECC is four times lower than with RSA.

Bianchi et al. introduce the asymmetric scheme of Identity Based Cryptogra-
phy (IBC), which is based on bilinear pairings on elliptic curves, as a promising
key exchange scheme for WSNs [17]. The IPC scheme was subsequently adopted
for IP-based WSNs [18]. The fundamental idea of IBC is that every string, like
the identity of each node (ID), can be used as a valid public key and thus the use
of large certificates for authentication is avoided. By using this approach, nodes
are able to establish a common secret key without any communication. However,
the main drawback stems from the fact that private keys are computed only by
the trusted authority (TA) by using the ID of the each node and its secret key.
If a particular key is leaked, the TA must pick a new secret key and start a
re-keying phase.

3 Implementation of the Key Exchange Technique

We implemented the ECDH key exchange technique for the Contiki OS, which
is a portable and lightweight operating system, specifically designed for use by
devices with limited resources. The Contiki OS supports a full TCP/IP network
stack, including support for a host of standard internet protocols, such as IPv6,
UDP, TCP, ICMP and HTTP. It also implements the 6LoWPAN adaptation
layer as defined in IETF’s Request For Comments (RFC) 4944 [5] and the IPv6
Routing Protocol for Low-Power and Lossy Networks (RPL) [9].

3.1 Link Layer Frame and Framer

Our proposed key exchange solution is implemented as a daemon process and un-
derpins the network stack’s secure link layer frame transmission by establishing

38 P. Ilia, G. Oikonomou, and T. Tryfonas

secret keys for symmetric encryption between single-hop neighbor nodes. Con-
tiki’s implementation of IEEE 802.15.4 Medium Access Control (MAC) frame
generation and parsing does not currently support the security header specified
by the IEEE 802.15.4 standard. We have modified the respective code module
to support the generation and parsing of the security header in a standards-
compliant fashion. If the application determines that the MAC frame needs to
be secure (by defining the security bit in the frame control field), the security
header is appended to the address field of the MAC header, prior to the data
payload.

Fig. 1. Flowchart for Secret Key Search, Frame Creation and Transmission

The link layer frame generation module accepts outgoing frames from the
layer 2 driver, adds the MAC header at the beginning of each frame and delivers
them to the radio transceiver’s driver. It also receives incoming frames, parses
and removes the MAC header and delivers the payload to the upper layers. Apart
from the frame structure, we also modified the link layer framer to fill the values
of the Auxiliary Security Header.

The link layer on the transmitting node queries our driver for the existence
of a shared key with the intended recipient, identified by the frame’s destination
MAC address. We search our Access Control List (ACL) for an entry matching
the destination MAC address and, if an entry exists, we return the established
key as shown in Fig. 1. If the association is not in the ACL the frame is dropped
due to the lack of security guarantees and an internal transparent process for
key exchange starts.

Fig. 2 illustrates a state transition diagram for our key exchange daemon
process. A device will spend most of its time in the Listening state. When the
network stack attempts to transmit a frame, the node will transition to the

Cryptographic Key Exchange in IPv6-Based Low Power, Lossy Networks 39

�������	
����
���������������

�����	�	
�

��	����	
��
���������������

�����

�����	
�
����	���

�����	
�
������� ���

!��
�	
�"#����$�
�������	��

�����	
� ���
"#���	
��

��	$�	
�
!������ ���

������������%�

��&���&��&	��
��

 �����	$%��
�����	���	����

�� ���
"��������	$���

 ���	����	$%��
�����	�'(���

 ���"#���	
��
��)������������$�

 ���"#���	
��
������$�

"��������
������$�

��	��*����
���
������%���)����� ��	��*����
��

�������%�������

 ���"#���	
��
�������������$�

�������	
��
�����	������

(�$��	
��
�����	������

 ����#���	
��
��������

 ����#���	
���
������

Fig. 2. State Transition Diagram for the Process of Key Exchange

Searching for the secret key state. Depending on the outcome of the key search,
the daemon will either return a pointer to the shared key and revert to the
Listening state or it will move to the Starting Key Exchange state.

3.2 ECC Implementation

In the current work, we used source code from the ContikiECC project [19] in
order to implement the basic elliptic curve operations. The ContikiECC project
is a Contiki port of the TinyECC library [20]. It implements functions to handle
very large numbers as multiple 8-bit or 16-bit words and provides the basic
numerical operations for 8-bit and 16-bit microprocessors. Moreover, it provides
a number of elliptic curves of sizes 128, 160 and 192 bits by specifying each
curve’s parameters and base point. As discussed above, modern sensor hardware
platforms provide hardware acceleration for 128-bit AES encryption, hence our
decision to use a curve of 128 bits for the construction of secret keys.

From the ContikiECC library, we use the basic large number operations to
implement the ECC operations of point addition, point doubling and multipli-
cation by a scalar multiplier. ECC operations are based on the sliding window
method which provides more optimised characteristics in comparison to other
methods.

40 P. Ilia, G. Oikonomou, and T. Tryfonas

In order to implement the Diffie Hellman algorithm over elliptic curves, each
node creates an ephemeral private key as a random 128-bit number. By multiply-
ing the private key with the elliptic curve’s base point, we compute the node’s
public key. For the establishment of a shared secret key between two parties,
each party multiplies its own private key with the public key received by the
node it is negotiating with. Public keys are transmitted as clear text. A new
private-public key pair is used for each negotiation.

For the generation of random numbers, we use Contiki’s library which provides
a platform-independent Application Programming Interface (API). Each plat-
form supported by Contiki provides a hardware-specific Random Number Gener-
ator (RNG) implementation, which underpins this API. For instance, the cc2430
and cc2530 System-on-Chip (SoC) platforms provide hardware-based RNG im-
plementations, while other platforms rely on software. In most cases, random
bits from the Radio Transceiver’s receive path are used to seed the RNG imple-
mentation.

3.3 Key Storage and Management

We construct a custom data structure (key association) that links the destination
node’s MAC address, the established secret key, key lifetime and the state of the
key exchange procedure. The information remains stored in the structure until
the shared key expires. After the shared secret has been established, the private-
public key pair used to generate it is erased.

Every node in the network has a statically pre-allocated ACL table for stor-
ing key association data structures. Each key association has a lifetime (in sec-
onds), which is set when the key establishment process is over. Every second,
the daemon periodically enters the Purging Expired Associations state (Fig. 2)
and decrements key lifetimes by one. When an entry’s lifetime reaches zero the
shared secret is erased, the MAC address is set to all zeros and the entry’s state
is reset. This releases the association, which can then be allocated for a new key
establishment in the future.

At the beginning of the key exchange process the sensor node allocates a free
ACL entry to store the new association in relation to the destination’s MAC
address. A special situation is the case where an entry is not completed but is
already allocated, which means that another key exchange process is in progress
(with different neighbor). By handling this situation we avoid the re-allocation
of an already allocated association and we can support multiple concurrent key
establishment negotiations.

3.4 The Key Exchange Process

The Diffie Hellman key exchange daemon is a background process, which remains
idle as long as a key exchange is not requested. The process is transparent and
application-independent.

The ECDH daemon is triggered if a secret key is requested by the network
stack but does not exist in the ACL table. In order to start the key exchange

Cryptographic Key Exchange in IPv6-Based Low Power, Lossy Networks 41

process, the daemon first allocates a free ACL entry. It then queries the node’s
Neighbor Discovery (ND) cache to determine the IPv6 address of the destination
node. If both steps are successful, the daemon computes the ECC private-public
key pair and sends a key exchange request to the destination node over UDP.

We build a simple protocol for the key exchange messages, defining the Pro-
tocol Version, Message Type and Payload, which actually is the sender’s public
key. Reception of a key exchange request also triggers the ECDH daemon. Upon
reception of an ECDH message, the receiving node first validates the protocol
version and message type, as illustrated in Fig. 3.

If the message type is Request, it means that the sender node is asking for key
exchange and sends its public key. Thus, the receiver allocates an ACL entry,
creates its own ephemeral ECC keys, sends a Reply message, computes the secret
shared key by performing elliptic curve point multiplication and sets the key
lifetime. In this case, the daemon enters the states of Generating Private/Public
Keys, Sending Public Key, Awaiting Response and Computing Secret Key in that
order, as shown in the state transition diagram in Fig. 2. On the other hand,
if the received message is a key exchange reply, the node searches to find the
related ACL association and computes the secret shared key by using the data
of the specific association entry and the received public key.

To overcome the situation of an ACL association being permanently allocated
because of indefinitely waiting for a key exchange reply message, we set a key-
exchange timeout by setting the association’s lifetime to a low value during the

Fig. 3. Flowchart of the Key Exchange Process

42 P. Ilia, G. Oikonomou, and T. Tryfonas

negotiation. After the temporary lifetime is initialized, it decreases periodically
similarly to the secret key lifetime. If the key-exchange attempt expires, the
allocated ACL entry is released and the daemon transitions from the Awaiting
Response state to Listening.

4 Experimental Setup, Results and Analysis

We evaluate the key exchange technique with the Cooja simulator2, which is
distributed with the Contiki OS. Default parameters used for our experiments are
provided in Table 1. Some experiments use different configuration parameters, in
which case the modifications are clearly discussed in the text. Cooja can emulate
motes at the hardware level, allowing precise inspection of system behavior. The
sky platform is very commonly used and very well supported by Cooja and for
that reason it has been chosen for our experiments.

Table 1. Simulation Configuration

Parameter Value

Motes Tmote Sky
TX Range 50m
MAC Layer IEEE 802.15.4
Radio Access CSMA
Duty Cycling ContikiMAC
Max Neighbors 4
ACL Size 4
ACL Entry Lifetime 1000, 1500, ..., 2500 secs
Key Exchange Lifetime 50 seconds

4.1 Memory Requirements

The memory requirements of the key exchange technique are presented in
Table 4.1. For implementing the ECDH key exchange method we use the 16-
bit mode of ContikiECC’s libraries (line nn in the table). Moreover, we use the
Standards for Efficient Cryptography Group (SECG) standardized elliptic curve
SECP128R1, by defining curve parameters a and b and its base point. The ecdh
line relates to the ECDH daemon, which implements the ACL table, provides
the key management mechanism and handles the process of key exchange.

Results show that we spend about 7.7 Kb of the device’s ROM memory for
source code hosting and about 1.1 Kb of RAM for storing curve parameters and
ACL associations.

2 http://www.contiki-os.org/start.html#start-cooja

Cryptographic Key Exchange in IPv6-Based Low Power, Lossy Networks 43

Table 2. Memory and Code Footprints in Bytes

Code Module ROM
RAM

Overall
data bss

nn 3372 0 0 3372
ecc 2494 0 676 3170
ecdh 1477 10 392 1879
secp128r1 402 0 0 402

Total 7745 10 1068 8823

4.2 Latency, Average Energy Consumption and Network Scalability

The first and simplest experiment consists of only two nodes that communi-
cate for a long time period so that many secret key re-establishments can take
place. This experiment investigates energy consumption and computation times
required for the calculation of public and secret shared keys as well as for a full
key exchange process.

In this example, key exchange always begins with Alice, while Bob is always
the node receiving Alice’s request and has to reply. The communication is per-
formed properly as long as the lifetime of the secret key has not reached the
value of zero. When the secret key expires a new secret key must be established
for further communication.

The time needed for the creation of the public key and the computation of
the secret key, as well as the overall time for the key exchange process is given
in Table 3(a). Table 3(b) presents the energy Alice and Bob consume to create
their public key and the shared secret key. It also presents the overall energy
consumption for the full key exchange process.

To estimate energy consumption, we use Contiki’s energest module. We
measure the time each node spent in each of the following three states: i) Micro-
Controller Unit (MCU) active, ii) RF listening / receiving (RX), iii) RF trans-
mitting (TX). Since we are simulating sky motes, we then converted these time

Table 3. Average Time and Energy Consumption of the ECDH Key Exchange Process

(a) Average Time Consumption (seconds)

Public key Secret key Key Exchange Process

Alice 8.560 8.547 25.586
Bob 8.457 8.416 16.873

(b) Average Energy Consumption (mJ)

Public key Secret Key
Key Exchange Process

MCU MCU + TX + RX

Alice 47.176 47.226 97.021 113.224
Bob 47.165 47.171 94.353 100.758

44 P. Ilia, G. Oikonomou, and T. Tryfonas

values to estimated energy consumption based on typical datasheet power levels
at an operating voltage of 3.0V. Energy spent for the creation of the public and
the secret key is calculated based solely on microcontroller activity. The total for
the key exchange also takes into account consumption attributed to the radio
transceiver.

In terms of network scalability, default values configure ACLs to hold a max-
imum of four concurrent key associations. Each increase to the maximum ACL
size by one increases the table’s memory footprint by 84 bytes, as illustrated in
Fig. 4. With the configuration used for our experiments, we could build working
firmware with a table size of up to 36 entries before we started getting linker
errors.

This does not mean that the network cannot support more than 36 nodes,
but that each sensor can support only up to 36 different secret keys at any time.
Bearing in mind that keys are only generated between single-hop neighbors,
results demonstrate that it is possible to build very dense networks (each node
has 30 or more neighbors) without problems.

1200

1700

2200

2700

3200

3700

4200

4700

5200

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

M
em

or
y

(b
yt

es
)

ACL entries

Fig. 4. Scalability with Network Density

4.3 Energy Consumption and Key Lifetime

In this experiment we build a network of ten nodes, where one of them acts as
a simple UDP sink node (server) and the rest act as clients. Four of the client
nodes are out of the server’s transmission range and thus the communication
between them and the server is conducted through intermediate routers.

We perform multiple simulation runs, starting with a key lifetime value of
1000 seconds and for each consecutive run the value increases by 500 seconds.
Simulations run for a period of two hours so that the keys expire multiple times
and many key negotiations take place.

Cryptographic Key Exchange in IPv6-Based Low Power, Lossy Networks 45

Fig. 5 presents the energy consumption of each network device, for a de-
ployment without key exchange support and for key lifetime values of 1000
and 2500 seconds. The bars in the graph show total energy consumption, with
bar portions illustrating consumption attributed to micro-processor activity, RF
listening/reception and RF transmission.

Both the microcontroller’s and the overall energy consumption of the server
device (node ID: 0) is very high in contrast to the estimated energy consumption
of the other devices. This happens because the server node has more connections
and is required to establish multiple secret keys. Transmission at the server
consumes the smallest amount of energy in contrast to the other nodes and
reception is the highest. This is due to the functionalities the node implements,
as the server transmits only its public key during the key exchange process, while
the other nodes transmit their keys as well as application layer data.

Nodes acting as internal routers (node IDs 6-9) consume a large amount of
energy in relation to the remaining nodes. The energy consumed by its micro-
processor was spent not only to establish a secret key with the server, but also
with the client nodes it serves. Similarly, the energy consumed by transmission is
due to sending its own application layer messages as well as routing application
layer messages towards the server.

0

4

8

12

16

0 1 2 3 4 5 6 7 8 9

En
er

gy
 (J

)

Node ID

Without ECDH
RX TX MCU

0

4

8

12

16

0 1 2 3 4 5 6 7 8 9

En
er

gy
 (J

)

Node ID

Lifetime:1000
RX TX MCU

0

4

8

12

16

0 1 2 3 4 5 6 7 8 9

En
er

gy
 (J

)

Node ID

Lifetime: 2500
RX TX MCU

Fig. 5. Average Energy Consumption without ECHD and with ECDH for Key Lifetime
Values of 1000 and 2500 Seconds

Results presented in Fig. 6 show that energy consumed by node micro-
processors decreases as key lifetime increases. This happens because the keys
are valid for a longer time frame and thus, fewer key negotiations are needed.
The energy consumption of the server’s receiver is fluctuating but remains high,
because while the number of the key exchanges decreases, the number of received
messages increases and thus the receiver remains busy.

The energy spent by router MCU is lower than the server’s MCU energy
consumption and higher than the client’s average MCU consumption, as it is
related to the number of the key exchanges it performs. However, as key lifetime
increases, MCU energy consumption decreases.

It is observed that the average energy consumption of the micro-processor of
the clients decreases as key lifetime increases. The same phenomenon applies

46 P. Ilia, G. Oikonomou, and T. Tryfonas

0

4

8

12

16

20

0 1000 1500 2000 2500

En
er

gy
 (m

J)

Key Lifetime (s)

RX TX MCU

0

4

8

12

16

20

0 1000 1500 2000 2500

En
er

gy
 (m

J)

Key Lifetime (s)

RX TX MCU

0

4

8

12

16

20

0 1000 1500 2000 2500

En
er

gy
 (m

J)

Key Lifetime (s)

RX TX MCU

Fig. 6. Energy Consumption vs Key Lifetime.: Server ID:0 (left), Router ID:6 (mid-
dle); Clients (right).

70%

80%

90%

100%

500 1000 1500 2000 2500

Se
nt

 P
ac

ke
ts

The key lifetime (s)

Packets Lost Packets Received

Fig. 7. Packet Loss vs Key Lifetime

to the energy consumed during transmission. However, consumption due to re-
ception increases at the key lifetime of 1500 seconds, for the specific network
setup.

4.4 Key Lifetime and Packet Loss

Outgoing packets are dropped at layer 2 when a secret key does not exist in
the ACL table and in the case that the key exchange process is in progress.
By dropping the outgoing packets the overall performance of the network is
affected. However, the existence of the secret key is determined by the lifetime
value, which defines whether an entry in the ACL table is valid or not.

To assess how the lifetime affects the network performance we repeat the pre-
vious simulations and measure packet loss, with results for various key lifetime
values illustrated in Fig. 7. When key lifetime is set at 500 seconds the packets

Cryptographic Key Exchange in IPv6-Based Low Power, Lossy Networks 47

lost due to the lack of the key are more than 22 percent of the outgoing packets.
This happens because key lifetime is short and nodes need to re-negotiate keys
relatively frequently. The packet-loss ratio decreases significantly as the key life-
time increases. When the lifetime is set to 1000 and 1500 the packet-loss of the
networks is 13% and 12% respectively. Eventually, when the lifetime is set to
2000 and 2500 seconds the packet-loss gets lower than 10% and 5% respectively.

5 Conclusions and Further Work

We developed a software implementation of the ECDH key exchange algorithm
in order to assess its applicability and viability for 6LoWPANs and to examine
its impact on network performance. Our method performs key exchange between
two parties, but it also handles the ACL table and manages the established secret
keys. Our implementation requires approximately 7.7 KBytes of code memory
when built with the MSP430 GCC toolchain and used with Tmote Sky devices.
This indicates that the implementation is somewhat too large for legacy sensor
devices. However, contemporary devices incorporate considerably larger flash
storage (e.g. 512KB) and 32-bit MCUs, allowing a significantly extended memory
space. This alleviates address space restrictions posed by the original MSP430
and subsequent MSP430X architectures.

Average energy consumption attributed to microcontroller activity for the
computation of the public and the secret key (elliptic curve 128-bit scalar mul-
tiplication) is less than 48 mJ, and about 96 mJ for the entire key exchange
negotiation. Total energy consumption is estimated to be approximately 115 mJ,
with the increase being primarily attributed to the radio transceiver in listening
and frame reception modes.

By simulating a larger network, we investigated the impact of the key lifetime
to the overall energy consumption, network performance and scalability. We
observe that packet loss decreases as key lifetime increases. This is due to two
factors: i) In our current implementation, lack of a key with a neighbor results
in an outgoing packet getting dropped and ii) Key negotiation itself is time-
consuming, occasionally leading to further losses. Packet delivery ratio can be
improved by pro-actively triggering the establishment of a new key between two
neighbors before the existing key times out.

Our scalability investigation reveals that each network node is able to keep
up to 36 distinct keys in its ACL table. The approach scales well even in very
dense networks; this number is sufficiently large if we keep in mind that each
node only needs to establish keys with its single-hop neighbors.

The current solution is unauthenticated and is thus vulnerable to man-in-the-
middle attacks, similar to the original Diffie Hellman key exchange. To address
this, a method to authenticate the two parties before key negotiation would
be required, with the Elliptic Curve DSA (ECDSA) algorithm posing as an
attractive candidate. This is left as future work.

In terms of the time required to negotiate a shared secret, the algorithm can
be further optimised. As part of our future work, we will adjust the ECDH dae-
mon to generate Public-Private key pairs pro-actively, during node idle periods,

48 P. Ilia, G. Oikonomou, and T. Tryfonas

instead of on-demand when a new key request is received. As a result, the only
computationally intensive operation that will need to be conducted during key
negotiation will be the calculation of the shared secret, which can take place in
parallel at the two participating parties. We estimate that this will reduce the
total negotiation time by approximately 60%.

In the future, ECC hardware acceleration can be employed to make the ap-
proach more viable. Hardware acceleration can have a host of positive effects:
i) It can decrease code footprint, since it would mean that the implementation
of elliptic curve calculations would no longer need to be included in firmware,
ii) Key negotiation will be considerably faster, since ECC calculations will not
need to be performed by software, iii) Assuming energy-efficient acceleration
hardware, total energy consumption for the negotiation will be lower.

On contemporary sensor devices, encryption of link-layer frames is conducted
by AES co-processors and is generally considered to be fast and energy-efficient.
However, it is impossible to simulate hardware acceleration within the Cooja
simulator. Providing a software AES implementation would have had an obfus-
cating effect on all metrics under investigation and since this work focused on
key negotiation, we deliberately removed layer two encryption functionality in
its entirety. As part of our future plans, we will evaluate the method in a real
testbed with layer two encryption enabled and performed by hardware. This will
allow us to draw conclusions on the viability of the complete solution.

References

1. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges:
Scalable coordination in sensor networks. In: Proceedings of the ACM/IEEE Inter-
national Conference on Mobile Computing and Networking, Seattle, Washington,
USA, pp. 263–270 (1999)

2. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architec-
ture directions for networked sensors. SIGPLAN Not. 35, 93–104 (2000)

3. Dunkels, A.: Full TCP/IP for 8-bit architectures. In: Proceedings of the 1st Inter-
national Conference on Mobile systems, Applications and Services, New York, pp.
85–98 (2003)

4. Hui, J.W., Culler, D.E.: IP is dead, long live IP for wireless sensor networks. In:
Proc. 6th ACM Conference on Embedded Network Sensor Systems (SenSys 2008),
New York, NY, USA, pp. 15–28 (2008)

5. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 Packets
over IEEE 802.15.4 Networks, RFC 4944 (2007),
http://tools.ietf.org/html/rfc4944

6. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

7. Zhang, J., Varadharajan, V.: Wireless sensor network key management survey and
taxonomy. J. Netw. Comput. Appl. 33, 63–75 (2010)

8. Roman, R., Alcaraz, C., Lopez, J., Sklavos, N.: Key management systems for sen-
sor networks in the context of the Internet of Things. Computers & Electrical
Engineering 37, 147–159 (2011)

http://tools.ietf.org/html/rfc4944

Cryptographic Key Exchange in IPv6-Based Low Power, Lossy Networks 49

9. Winter, T. (ed.), Thubert, P. (ed.), Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister,
K., Struik, R., Vasseur, J.P., Alexander, R.: RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks, RFC 6550 (2010),
http://tools.ietf.org/html/rfc6550

10. Çamtepe, S.A., Yener, B.: Combinatorial design of key distribution mechanisms
for wireless sensor networks. IEEE/ACM Trans. Netw. 15, 346–358 (2007)

11. Bechkit, W., Challal, Y., Bouabdallah, A., Tarokh, V.: A Highly Scalable Key Pre-
Distribution Scheme for Wireless Sensor Networks. IEEE Transactions on Wireless
Communications 12(2), 948–959 (2013)

12. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security, pp. 41–47. ACM, New York (2002)

13. Wang, H., Li, Q.: Efficient Implementation of Public Key Cryptosystems on Mote
Sensors (Short Paper). In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 519–528. Springer, Heidelberg (2006)

14. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing Elliptic Curve
Cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

15. Wander, A.S., Gura, N., Eberle, H., Gupta, V., Shantz, S.C.: Energy analysis of
public-key cryptography for wireless sensor networks. In: Third IEEE International
Conference on Pervasive Computing and Communications - PerCom 2005, pp. 324–
328 (2005)

16. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management part 1: General (revision 3). NIST special publication 800, 57 (2011)

17. Bianchi, G., Capossele, A.T., Mei, A., Petrioli, C.: Flexible key exchange negoti-
ation for wireless sensor networks. In: Proceedings of the 5th ACM International
Workshop on Wireless Network Testbeds, Experimental Evaluation and Charac-
terization, pp. 55–62. ACM, New York (2010)

18. Mzid, R., Boujelben, M., Youssef, H., Abid, M.: Adapting TLS handshake protocol
for heterogenous IP-based WSN using identity based cryptography. In: 2010 Inter-
national Conference on Communication in Wireless Environments and Ubiquitous
Systems: New Challenges (ICWUS), Sousse, pp. 1–8 (2010)

19. Sustainable Computing Research (SCoRe) - ContikiECC,
http://score.ucsc.lk/projects/contikiecc

20. Liu, A., Ning, P.: TinyECC: A Configurable Library for Elliptic Curve Cryptog-
raphy in Wireless Sensor Networks. In: Proceedings of the 7th International Con-
ference on Information Processing in Sensor Networks, IPSN 2008, pp. 245–256
(2008)

http://tools.ietf.org/html/rfc6550
http://score.ucsc.lk/projects/contikiecc

URANOS: User-Guided Rewriting

for Plugin-Enabled ANdroid ApplicatiOn
Security

Daniel Schreckling, Stephan Huber, Focke Höhne, and Joachim Posegga

Institute of IT-Security and Security Law
University of Passau, Innstraße 43, Passau, Germany

{ds,sh,fh,jp}@sec.uni-passau.de

Abstract. URANOS is an Android application which uses syntactical
static analysis to determine in which component of an Android appli-
cation a permission is required. This work describes how the detection
and analysis of widely distributed and security critical ad-ware plug-
ins is achieved. We show, how users can trigger bytecode rewriting to
(de)activate selected or redundant permissions in Android applications
without sacrificing functionality. The paper also discusses performance,
security, and legal implications of the presented approach.

1 Introduction

Many Smartphone operating systems associate shared resources with permis-
sions. API calls accessing such resources require permissions to gain the required
privileges. Once an application obtains these privileges, it can generally access all
the items stored in the respective resource. Additionally, such privileges are often
valid until the deinstallation or an update of the application. These properties
conflict with the emerging privacy needs of users. Increasing sensitivity encour-
ages the protection of data which helps applications, vendors, or providers to
generate individual user profiles. Unfortunately, current coarse grained permis-
sion systems only provide limited control or information about an application.
Hence, informed consents to the use of permissions are far from being available.

In Android, numerous analyses of permissions requested by an applica-
tion [3,11,14,20,21] substantiate this problem. Permissions increase the attack
surface of an application [4,2,12] and the platform executing it. Thus, granting per-
missions in excessive manners induces new exploit techniques. Static analysis and
runtime monitoring frameworks have been developed to detect permission-based
platform and application vulnerabilities. There are also Android core extensions
enabling the deactivation of selected permissions. However, such frameworks ei-
ther interfere with the usability of the application and render it unusable or they
only provide permission analysis on separate hosts.

Thus, there is a strong need for flexible security solutions which do not
aim at generality and precision but couple lightweight analysis and permission
modification mechanisms.

L. Cavallaro and D. Gollmann (Eds.): WISTP 2013, LNCS 7886, pp. 50–65, 2013.
c© IFIP International Federation for Information Processing 2013

URANOS: User-Guided Rewriting 51

We define URANOS, an application rewriting framework for Android which
enables the selective deactivation of permissions for specific application contexts,
e.g. plugins. The contributions of this paper include an on-device static analysis
to detect permissions and their usage, selective on-device rewriting to guarantee
user-specific permission settings, and a prototype implementing detection and
rewriting in common Android applications.

Our contribution is structured as follows: Section 3 provides a knowledge
base for this contribution, Section 2 gives a high-level overview of URANOS.
Its components are explained in Section 4. Section 5 discusses performance,
limitations, and legal implications. Finally, Section 6 lists related work before
Section 7 summarises our conclusions.

2 Approach Overview

URANOS Core
Untrusted App

DEX

Manifest Static
Analysis

UI Modified App

Mod. DEX

Manifest’

Rewriter

App
Manager

Fig. 1. High-level overview of URANOS

We strive for an efficient on-device framework (see Figure 1) for Android which
allows users to selectively disable permissions assigned to an application. To
preserve functionality a static analysis infers the permissions required during
execution from the bytecode. For efficiency we exploit existing knowledge about
the permission requirements of Android API calls, resource access, intent broad-
casting etc. Detected permissions are compared with the permissions requested
in the application manifest to detect excessive permissions etc. Additionally, we
scan the bytecode for plugins using a pre-generated database of API methods
and classes used in popular ad-ware. They define context for each bytecode in-
struction. This allows us to infer the permissions exclusively required for plugins
or for the application hosting the plugins. We communicate this information to
the user. Depending on his needs, the user can enable or disable permissions for
specific application contexts.

Disabled and excessive permissions can be completely removed from the man-
ifest. However, removing an effectively required permission will trigger a security
exception during runtime. If these exceptions are unhandled the application will
terminate. Therefore, URANOS additionally adapts the application bytecode
and replaces the API calls in the respective call context by feasible wrappers.

This combination of analysis and rewriting allows a user to generate opera-
tional applications compliant with his security needs. Unfortunately, compliant
but rewritten Android applications are neither directly installed nor are they

52 D. Schreckling et al.

updated by Android. Therefore, URANOS also delivers an application manager
service, replacing applications with their rewritten counterparts and ensuring
their updates.

3 Background

This section gives a short overview of the structure of Android applications, their
execution environment, and the permission system in Android.

3.1 Android Applications

Applications (Apps) are delivered in zipped packages (apk files). They contain
multimedia content for the user interface, configuration files such as the manifest,
and the bytecode which is stored in a Dalvik executable (dex file). Based on the
underlying Linux, Android allots user and group IDs to each application.

Four basic types of components can be used to build an App: activities, ser-
vices, content providers, and broadcast receivers. Activities constitute the user
interface of an application. Multiple activities can be defined but only one ac-
tivity can be active at a time. Services are used to perform time-consuming or
background tasks. Specific API functions trigger remote procedure calls and can
be used to interact with services. Application can define content providers to
share their structured data with other Apps. To retrieve this data, so called
ContentResolvers must be used. They use URIs to access a provider and query
it for specific data. Finally, broadcast receivers enable applications to exchange
intents. Intents express an intent to perform an action within or on a component.
Actions include the display of a picture or the opening of a specific web page.

Developers usually use these components defined in the Android API and the
SDK to build, compile, and pack Apps. Their apks are signed with the private
developer key, distributed via the official Android market, other markets, or it
is delivered directly to a Smartphone.

3.2 Dalvik Virtual Machine

Bytecode is stored in Dalvik executables (dex files) and is executed in a register
based virtual machine (VM) called Dalvik. Each VM runs in its own applica-
tion process. The system process Zygote starts at boot time and manages the
spawning of new VMs. It also preloads and preinitialises the core library classes.

Dex files are optimised for size and data sharing among classes. In contrast to
standard Java archives, the dex does not store several class files. All classes are
compiled into one single dex file. This reduces load time and supports efficient
code management. Type-specific mappings are defined over all classes and map
constant properties of the code to static identifiers, such as constant values, class,
field, and method names. The bytecode can also contain developer code not
available on the platform, e.g. third-party code, such as plugins (see Figure 2).

Bytecode instructions use numbered register sets for their computations. For
method calls, registers passed as arguments are simply copied into new registers
only valid during method execution.

URANOS: User-Guided Rewriting 53

Application Process
Untrusted Application

Dalvik Executable
App

Plugin A

Plugin B

API
Libs

System
Libs

Android Kernel

System Services & Resources

Permission Monitor

Service A; LA

Service B; LB

Service Z; LZ

Resource 1; L1

Resource 2; L2

Resource n; Ln

LE L5

Fig. 2. Plugins and Permissions in Android Applications

3.3 Android Permissions

Android permissions control application access to resources. Depending on their
potential impact Android distinguishes three levels: normal, dangerous, signa-
ture and signatureORsystem. Unlike normal permission which do not directly
cause financial harm to users, dangerous and system permission control access
to critical resources and may enable access to private data. Granted signature
or signaturesORsystem permission grant access to essential system services and
data. During installation permissions are assigned as requested in the manifest.
The user only approves dangerous permissions. Normal permissions are granted
without notification and signature or signatureORsystem permissions verify that
the application requesting the permissions has been signed with the key of the
device manufacturer.

Resource access can be obtained through API calls, the processing of intents,
and through access to content providers and other system resources such as an
SD card. Thus, permission enforcement varies with the type of resource accessed.
In general, permission assignment and enforcement can be described using a
label model as depicted in Figure 2. Each system resource or system service is
labeled with the set of permissions it requires to be accessed. An application
uses the public API to trigger resource access. This request is forwarded to the
system. The system libraries, the binder, and the implementation of the libraries
finally execute the resource access. We abstract from the details of the binder-
library pair and call this entity a central permission monitor. It checks whether
an application trying to access a resource with label Lx has been assigned this
label. If not, access is forbidden and an appropriate security exception is thrown.

Android also places permission checks in the API and RPC calls [9]. Thus,
security exceptions may already occur although the access requests have not
reached the permission monitor, yet. As such checks may be circumvented by
reflection the actual enforcement happens in the system.

4 The URANOS Framework

This section explains our system in more detail. To ease the understanding we
complement our description with Figure 3.

54 D. Schreckling et al.

URANOS Core

Untrusted App

DEX
App

Plugin A

Plugin B

Manifest

Static Analysis
Permission
Detection

Context
Detection

User Interface
Permission
Switches

Modified App

Mod. DEX
App’

Plugin A’

Plugin B’

Manifest’

Security
Wrapper

Rewriter
Bytecode
Rewriter

Manifest
Rewriter

App
Managment

App Manager

Updater Recovery Packer

1 2

5

4

7

3

8

6

Security
Wrapper

9

Fig. 3. System Overview

4.1 Application Processing

To process manifest and bytecode of the application, URANOS must obtain
access to the apks. Depending on how the developer decides how to publish
an APK, it is stored in different file system locations: the regular application
storage, the application storage on an SD card, or storage which prevents the
forwarding (forward-lock) of the application. The PackageManager API offered
by Android can be used to retrieve the path and filename of the apks.

Regular applications are able to obtain reading access to other apks. Thus,
as a regular application, URANOS can copy apks to a local folder and process
them. With root permissions, it can also process forward-locked applications.

Apks are extracted to obtain access to the manifest and the dex file. We
enhanced the dex-tools from the Android source tree. It directly operates on the
bytecode and can extract information required for our analysis. Thus, we avoid
intermediate representations. Handles to manifest and bytecode are forwarded
(1) to the static analysis and rewriting components of our framework.

4.2 Permission Detection

Next, we parse the manifest and retrieve the set Papk of permissions requested
by the App. Afterwards, we scan the bytecode to find all invoke instructions and
determine the correct signature of the methods invoked. Invoke instructions use
identifiers pointing to entries of a management table which contains complete
method signatures. From this table we derive the set I of methods potentially
invoked during execution. As this is a syntactical process set I may contain
methods which are never called.

We then use function π to compute PM =
⋃

∀m∈I π(m), i.e. π maps method
m to a set of permissions required to invoke m at runtime. Thus, PM reflects the
permissions required by the application to execute all methods in I. Function π
is based on the results of Felt et al. [9] which associate actions in an Android
App with its required permissions, e.g. method calls.

The use of content providers or intents may also require permissions. However,
specific targets of both can be specified using ordinary strings. To keep our

URANOS: User-Guided Rewriting 55

analysis process simple we search the dex for strings which map the pattern of a
content provider URI or of a activity class name which is defined in the Android
API. If a pattern is matched, we add the respective permission to the set PP of
provider permissions or to the set PI of intent permissions, respectively.

At the end of this process we intersect the permissions specified in the mani-
fest with the permissions extracted from the bytecode, i.e. Pval = Papk ∩ (PM ∪
PP ∪PI) to obtain the validated permissions likely to be required for the execu-
tion of the application. Our heuristics induce an over-approximation in this set.
Section 5 explains why it does not influence the security of our approach.

4.3 Context Detection

Based on Pval we now determine the App components in which the methods
requiring these permissions are called. For this purpose we define the execution
context for an instruction. It is the signature of the method and its class in
which the instruction is executed. This definition is generic and can be applied to
various detection problems. We focus on widely distributed plugins for Android.

To give users a better understanding on the possible impact of the plugins
hosted by the analysed Apps we manually assign each plugin to the following
four categories: passive, active, audio advertising, and feature extensions.

Passive advertising plugins display advertisements as soon as an activity of
the hosting application is active. They are usually integrated into the user
interface with banners as placeholders.

Active advertising plugins are similar to pop-up windows and do not require
a hosting applications. They use stand alone activities or services, intercept
intents, or customise events to become active.

Audio advertising is a rather new plugin category which intercepts control se-
quences and interferes with the user by playing audio commercials or similar
audio content, e.g. while hearing the call signal on the phone.

Feature extensions include features in an application a user or developer may
utilise. Among many others, they include in-app billing or developer plugins
easing the debugging process.

To detect plugins in an application, we perform the same steps required for
archiving the signatures. We scan the application manifest and bytecode for the
names listed above and investigate which libraries have to be loaded at runtime.
From this information we build a signature and try to match it against our plugin
database. This process also uses fuzzy patterns to match the strings inferred from
the application. We assume that plugins follow common naming conventions. So,
full class names should start with the top Internet domain name, continue with
the appropriate company name, and end with the class names. If we do not
find matches on full class names, we search for longest common prefixes. If they
contain at least two subdomains, we continue searching for the other names to
refine the plugin match. In this way we can account for smaller or intentional
changes in class or package naming and prevent a considerable decline of the
detection rate.

56 D. Schreckling et al.

The ability to detect classes of plugins allows us to determine execution con-
texts. During the bytecode scanning, we track the context C. As soon as our
analysis enters the namespace of a plugin class, we change C. It is defined by
the name of the plugin NPlugin or by the name Napk of the application if no
plugin matches. We generate a map for each method call to its calling context.
Together with the function π, this implicitly defines a map γ from permissions
to calling contexts. We can now distinguish four types of permissions:

Dispensable permissions p ∈ Papk \ Pval are not required by the application,
Application only permissions p ∈ Papk are exclusively required for the hosting

application to run, i.e. γ(p) = {Napk},
Plugin only permissions p ∈ Papk are exclusively required for the execution of

a plugin, i.e. γ(p) ∩ {Napk} = ∅, and
Hybrid permissions p ∈ Papk which are required by both, the hosting applica-

tion and the plugin, i.e. γ(p) does not match the conditions for the other
three permission types.

This result is communicated to the user in step (2). He gets an overview of the
types of permissions and the context in which they are required. The user can
enable or disable them in the entire application, only in the plugin, or only in
the hosting application. The next section shows how to support this feature with
the help of bytecode rewriting and without modifying Android.

4.4 Rewriter

In general, dispensable permissions are not required for the execution and don’t
need to be assigned to the application. They can removed from the manifest. The
same holds for permissions which should be disabled for the entire application.
Thus, the first rewriting step is performed on the application manifest. It revokes
the permissions either not required or not desired.

However, withdrawing permissions from an application may render it unus-
able. Calls to methods which require permissions will throw exceptions. If they
are not handled correctly, the runtime environment could finally interrupt ex-
ecution. To avoid this problem, enable the deactivation of permissions in only
specific application components, and to retain an unmodified Android core, the
activation or deactivation of permissions triggers a rewriting process (3). It is
guided by the results of the syntactical analysis (4). The rewriter, described in
this section, adapts the bytecode in such a way that the App can be executed
safely even without the permissions it originally requested.

API Methods. For each method whose execution requires a permission, we
provide two types of wrappers (5) to replace the original call. Regular API
method calls which require a permission, can be wrapped by simple try and
catch blocks as depicted by WRAPPER1 in Listing 1.1. If the permission required
to execute the API call has been withdrawn, we catch the exception and return
a feasible default value. In case the permission is still valid, the original method

URANOS: User-Guided Rewriting 57

is called. In contrast, the second wrapper WRAPPER2 (Listing 1.2) completely
replaces the original API call and only executes a default action.

Listing 1.1. Wrapper pattern one
public static WRAPPER1 {

try {
API_CALL_ACTION;

} catch (SecurityException se) {
DEFAULT_ACTION;

}
}

Listing 1.2. Wrapper pattern two
public static WRAPPER2 {

DEFAULT_ACTION;
}

Evidently, rewriting could be reduced to only WRAPPER2. But, WRAPPER1 re-
duces the number of events at which an application has to be rewritten and
reinstalled. Assume that a user deactivates a permission for the entire applica-
tion. The permission is removed from the manifest and all methods requiring it
are wrapped. Depending on the wrapper and the next change in the permission
settings a rewriting may be avoided because the old wrapper already handles
the new settings, e.g. the reactivation of the permission.

Wrappers are static methods and apart from one additional instance argument
for non-static methods, they inherit the number and type of arguments from the
methods they wrap. This makes it easy to automatically derive them from the
API. Additionally, it simplifies the rewriting process as follows.

URANOS delivers a dex file which contains the bytecode of all wrappers. This
file is merged with the original application dex using the dx compiler libraries.
The new dex now contains the wrappers but does not make use of them, yet.
In the next step we obtain the list of method calls which need to be replaced
from the static analysis component (4). The corresponding invoke instructions
are relocated in the new dex and the old method identifiers are exchanged with
the identifiers of the corresponding wrapper methods.

Here, the rewriting process is finished even if the wrapped method is non-
static. At bytecode level, the replacement of a non-static method with a static
one simply induces a new interpretation of the registers involved in the call.
The register originally storing the object instance is now interpreted as the first
method argument. Thus, we pass the instance register to the wrapper in the
first argument and can leave all other registers in the bytecode untouched. We
illustrate this case in Listing 1.3. It shows bytecode mnemonics for the invocation
of the API method getDeviceId as obtained by a disassemblers.

Listing 1.3. Regular API call
invoke-virtual {v0},

Landroid /telephony/
TelephonyManager;

.getDeviceId:()
Ljava/lang/String;

Listing 1.4. Rewritten API call
invoke-static {v0},

Lde/wrapper /Wrapper ;
._getDeviceId:(Landroid /telephony/

TelephonyManager;)
Ljava/lang/String;

The instruction invoke-virtual calls the method getDeviceId on an in-
stance of class TelephonyManager. It is rewritten to a static call in Listing 1.4
and passes the instance as an argument to the static wrapper method.

Reflection. Android supports reflective method calls. They use strings to re-
trieve or generate instances of classes and to call methods on such instances.

58 D. Schreckling et al.

These operations can be constructed at runtime. Hence, the targets of reflective
calls are not decidable during analysis and calls to API methods may remain
undetected. Therefore, we wrap the methods which can trigger reflective calls,
i.e. invoke and newInstance. During runtime, these wrappers check the Method
instance passed to invoke or the class instance on which newInstance is called.
Depending on its location in the bytecode the reflection wrapper is constructed
in such a way that it passes the invocation to the appropriate wrapper meth-
ods (see above) or executes the function in the original bytecode. This does not
require dynamic monitoring but can be integrated in the bytecode statically.
Reflection calls show low performance and are used very infrequently. Thus, this
rewriting will not induce high additional overhead.

Content Providers. Similar to reflective calls, we handle content providers.
Providers must be accessed via content resolvers (see Section 3) which forward
the operations to be performed on a content provider: query, insert, update,
and delete. They throw security exceptions if required read or write permissions
are not assigned to an application. As these methods specify the URI of the
content provider we replace all operations by a static wrapper which passes their
call to a monitor. It checks whether the operation is allowed before executing it.

Intents. In general, intents are not problematic as they are handled in the cen-
tral monitor of Android, i.e. the enforcement does not happen in the application.
If an application sends an intent to a component which requires permissions an
exception in the error log is generated if the application does not have this per-
mission. The corresponding action is not executed but the application does not
crash. Thus, our rewriting must cover situations in which only some instruc-
tions in specific execution contexts must not send or receive intents. The control
over sending can be realised by wrappers handling the available API methods
such as startActivity, broadcastIntent, startService, and bindService.
The wrappers implement monitors which first analyse the intent to be sent.
Depending on the target, the sending is aborted. By rewriting the manifest, we
can control which intents a component can receive. This excludes explicit intents
which directly address a application component. Here, we assume that the direct
access of a system component to an application can be considered legitimate.

4.5 Application Management

We realise permission revocation by repackaging applications. First, our App
manager obtains the manifest and dex (6) from the rewriter. For recovery, we
first backup the old dex file and its corresponding manifest. All other resources,
such as libraries, images, audio or video files, etc. are not backed up as they
remain untouched. They are extracted from the original apk (7), signed with
the URANOS key together with the new bytecode and manifest. The signed
application is then directly integrated into a new apk. This process is slow due
to the zip compression of the archive. In the end, the application manager assists
the user to deinstall the old and install the new application (8,9).

URANOS: User-Guided Rewriting 59

In the background we also deploy a dedicated update service. It mimics the
update functionality of Android but also operates on the applications resigned
by URANOS. We regularly query the application market for updates, inform
the user about them, and assists the update process by deinstalling the old App,
rewriting the new App, and installing it. Similarly, the App manager provides
support for deinstallation and recovery.

5 Discussion

5.1 Performance

To assess the performance of our approach we downloaded over 180 popular ap-
plications from the Google Play Store. The URANOS App was adjusted in such
a way that it automatically starts analysing and rewriting newly installed appli-
cations. Our benchmark measured the analysis time, i.e. the preprocessing of the
dex (pre) and the execution context detection (det), and the rewriting time, i.e.
the merging of wrappers (wrap), the rewriting of the resulting dex (rew), and
the total time require to generate the final apk (tot). The analysis and rewriting
phase were repeated 11 times for each App. The first measurement was ignored
as memory management and garbage collection often greatly influence the first
measurements and hard to reproduce as they heavily depend on the phone state.
For the rewriting process, we always selected three random permissions to be
disabled. If there were less permissions we disabled all. All measurements were
conducted on a Motorola RAZR XT910, running Android 4.0.4 on a 3.0.8 kernel.
Due to space restrictions this contribution only discusses a selection of applica-
tions and their performance figures. An overview of the complete results, a report
on the impact of our rewriting on the App functionality, and the App itself are
available at http://web.sec.uni-passau.de/research/uranos/.

Apart from the time measurements mentioned above Table 1 enumerates the
number of plugins the application contains (#pl), the number of permissions
requested (#pm), the number classes (#cl) in the dex and the size of the apk.
In particular the apk size has a tremendous impact on the generation of the
rewritten application due to APK compression. This provides potential for opti-
misation in particular if we look at the rather small time required to merge the
wrapper file of 81 kB into the complex dex structure and redirecting the method
calls. This complexity is also reflected in the time for pre-processing the dex to
extract information required to work on the bytecode.

We can also see that the number of classes and permissions included in an
application influence the analysis time. Classes increase the number of adminis-
trative overhead in a dex. Thus their number also increases the effort to search
for the appropriate code locations. Here, Shazam and Instagram are two extreme
examples. In turn, the number of permissions increase the number of methods
which have to considered during analysis and rewriting.

In our measurements, we do not include execution overhead. The time re-
quired for the additional instructions in the bytecode are negligible and within
measuring tolerance. Thus, although the generation of the final apk is slow, our

http://web.sec.uni-passau.de/research/uranos/

60 D. Schreckling et al.

Table 1. Selection of analysed and rewritten applications

App #pl #pm #cl apk[MB] pre[ms] det[ms] wrap[ms] rew[ms] tot[ms]

100 Doors 4 3 757 14.4 1421 356 1690 4277 9073
Angry Birds 10 6 873 24.4 1863 640 2308 5767 50408
Bugvillage 13 8 1127 3.1 1819 1214 3425 6832 18092
Coin Dozer 11 6 855 14.7 2028 788 2605 6457 56749
Fruit Ninja 8 8 1472 19.2 2520 1197 3657 7955 144374
Instagram 7 7 2914 12.9 5168 1906 8114 17031 39908
Logo Quiz 3 2 232 9.7 553 96 701 1939 7729
Shazam 8 13 2822 4.4 4098 3214 7837 15182 27263
Skyjumper 3 4 292 0.9 772 257 1222 2991 4106

measurements certify that the analysis and rewriting on Android bytecode can
be implemented efficiently on a Smartphone. While other solutions run off-device
and focus on precision, such as the web interface provided by Woodpecker [9],
URANOS can deliver timely feedback to the user. With this information he can
decide about further countermeasures also provided by our system.

5.2 Limitations

As we have already stated above, our analysis uses approximations. In fact,
PM is an over-approximation of the permissions required by method calls, e.g.
there may be methods in the bytecode which are never executed. Thus, the mere
existence of API calls does not justify a permission assignment to an application.
On the other hand PP ∪PI is an under-approximation as we only consider strings
as a means to communicate via intents or to access resources. There are numerous
other ways for such operations, our heuristic does not cover.

Attackers or regular programmers can achieve under-approximations by hid-
ing intent or provider access with various implementation techniques. In this case
URANOS will alert the user that a specific permission may not be needed. The
user will deactivate the respective permission and no direct damage is caused.
Over-approximation can be achieved by simply placing API calls in the byte-
code which are never executed. In this case, our analysis does not report the
permission mapping to those dead API calls to be dispensable. Thus, the over-
approximation performed in this round may give the user a wrong sense of secu-
rity concerning the application. Therefore, URANOS also allows the deactivation
of permissions in the hosting application and not only in the plugin.

Attackers may also hide plugin code by obfuscating it, e.g. by renaming all
plugin APIs. In this case, URANOS will not detect the plugin. This will prevent
the user from disabling permissions for this plugin. In this case, it is still possible
to remove permissions for the whole application. Plugin providers which have an
interest in the use of their plugins will not aim for obfuscated APIs.

URANOS: User-Guided Rewriting 61

5.3 Legal Restrictions

If software suffices the copyright law’s fundamental requirement of originality
it is protected by international and national law, such as the Universal Copy-
right Convention, the WIPO Copyright Treaty grant protection, Article 10 of
the international TRIPS agreement of the WTO agreement, and the European
Directive 2009/24/EC. In general, these directives prohibit the manipulation,
reproduction, or distribution of source code if the changes are not authorised by
its rights holder. No consent for modification is required if the software is devel-
oped using an open source software licensing model or if minor modifications are
required for repair or maintenance. To achieve interoperability of an application
even reverse engineering may be allowed. However, any changes must not in-
fringe with the regular exploitation of the affected application and the legitimate
interest of the rights holder.

URANOS cannot satisfy any of the conditions mentioned above. First of all, all
actions are performed automatically. Thus, it is not possible to query the rights
owner for his permission to alter the software. One may argue that URANOS
rewrites the application in order to ensure correct data management. Unfortu-
nately, the changes described above directly infringe with the interest of the
rights holder of the application.

On the other hand one argue that a developer must inform the user how the
application processes and uses his personal data as highlighted in the “Joint
Statement of Principles” of February 22nd 2012 and signed by global players like
Amazon, Apple, Google, Hewlett-Packard, Microsoft and Research In Motion.
However, current systems only allow an informed consent of insufficient quality.
In particular when using plugins, a developer would need to explain how user
data is processed. But developers only use APIs to libraries without knowing
internal details. To provide adequate information about the use of data a devel-
oper would have to understand and/or reverse engineer the plugin mechanisms
he uses. So, for most plugins or libraries, the phrasing of a correct terms of use
is impossible. Yet, this fact does not justify application rewriting. The user can
still refuse the installation. If, despite deficient information, he decides to install
the software he must stick to the legal restrictions and use it as is.

In short: URANOS and most security systems which are based on applica-
tion rewriting conflict with international and most national copyright protection
legislation. This situation is paradoxical as such systems try to protect private
data from being misused by erroneous or malicious application logic. Thus, they
try to enforce data protection legislation but are at the same time limited by
copyright protection laws.

6 Related Work

This section focuses on recent work addressing permission problems in Android.
We distinguish two types of approaches: Analysis and monitoring mechanisms.

62 D. Schreckling et al.

6.1 Permission Analysis

One of the first publications analysing the Android permission system is Kirin [8].
It analyses the application manifest and compares it with simple and pre-defined
rules. In contrast to URANOS, rules can only describe security critical combi-
nations of permissions and simply prevent an application from being installed.

The off-device analysis in [4] is more sophisticated. It defines attack vectors
which are based on design flaws and allow for the misuse of permissions. Chin
et al. describe secure coding guidelines and permissions as a means to mitigate
these problems. Their tool, ComDroid, can support developers to detect such
flaws but it does not help App users in detecting and mitigating such problems.

This lack of user support also holds Stowaway [9]. This tool is focused on per-
missions which are dispensable for the execution of an application. Comparable
to URANOS, Stowaway runs a static analysis on the bytecode. However, this
analysis is designed for a server environment. While it provides better precision
through a flow analysis, it can not correct the detected problems and the analysis
times exceed those of URANOS by several magnitudes.

Similar to Stowaway, AndroidLeaks [11] uses an off-device analysis which de-
tects privacy leaks. Data which is generated by operations which are subject to
permission checks are tracked through the application to data sinks using static
information flow analysis. AndroidLeaks supports the human analyst. The actual
end user can not directly benefit from this system.

DroidChecker [3] and Woodpecker [12] use inter-procedural control flow anal-
yses to look for permission vulnerabilities, such as the confused deputy (CD)
vulnerability. However, DroidChecker additionally uses taint tracking to detect
privilege escalation vulnerabilities in single applications while Woodpecker tar-
gets system images. Techniques applied in Woodpecker were also used to inves-
tigate the functionality of in-app advertisement [13]. URANOS is based on an
extended collection of advertisement libraries used in this work. Similar analyt-
ical work with a less comprehensive body has been conducted in [20].

6.2 Enhanced Permission Monitoring

An early approach which modifies the central security monitor in Android to in-
troduce an enriched permission system of finer granularity is Saint [17]. However,
Saint mainly focuses on inter-application communication. CRePE [5] goes one
step further and extends Android permissions with contextual constraints such
as time, location, etc. However, CRePE does not consider the execution context
in which permissions are required. Similar holds for Apex [16]. It manipulates
the Android core implementation to modify the permissions framework and also
introduces additional constraints on the usage of permissions.

Approaches such as QUIRE [7] or IPC inspection of Felt et al. [10] focus on
the runtime prevention of CD attacks. QUIRE defines a lightweight provenance
system for permissions. Enforcement in this framework boils down to the dis-
covery of chains which misuse the communication to other apps. IPC inspection
solves this problem by reinstantiating apps with the privileges of their callers.

URANOS: User-Guided Rewriting 63

Both approaches require an OS manipulation and consider an application to be
monolithic. This prevents them from recognising execution contexts for permis-
sions. The same deficiencies hold for XManDroid [2] which extends the goal of
QUIRE and IPC inspection by also considering colluding applications.

Similar to IPC inspection and partially based on QUIRE is AdSplit [19]. It
targets advertisement plugins and also uses multi-instantiation. It separates the
advertisement and its hosting application and executes it in independent pro-
cesses. Although mentioned in their contribution Shekhar does not aim at deac-
tivating permissions in one part of the application or at completely suppressing
communication between the separated application components.

Leontiadis et al. also do not promote a complete deactivation of permissions
and separate applications and advertising libraries to avoid over-privileged exe-
cution [15]. A trade-off between user privacy and advertisement revenue is pro-
posed. A separated permission and monitoring system controls the responsible
processing of user data and allows to interfere with IPC if sufficient revenue has
been produced. URANOS could be coupled with such a system by only allowing
the deactivation of permissions if sufficient revenue has been produced. However,
real-time monitoring would destroy the lightweight character of URANOS.

Although developed independently, AdDroid [18] realises a lot of the ideas
proposed by Leontiadis et al. AdDroid proposes specific permissions for adver-
tisement plugins. Of course, this requires modifications to the overall Android
permission system. Further, to obtain a privilege separation, AdDroid also pro-
poses a process separation of advertisement functionalities from the hosting ap-
plication. Additionally, the Android API is proposed to be modified according
to the advertisement needs. It remains unclear how such a model should be
enforced. The generality of URANOS could contribute to such an enforcement.

Two approaches which are very similar to URANOS are I-Arm Droid [6] and
AppGuard [1]. Both systems rewrite Android bytecode to enforce user defined
policies. I-Arm Droid does not run on the Android device and is designed to
enforce developer defined security policies enforced by inlined reference moni-
tors at runtime. The flexibility of the inlining process is limited as all method
calls are replaced by monitors. Selective deactivation of permissions is not pos-
sible. The same holds for AppGuard. While it can be run directly on the device
the rewriting process replaces all critical method calls. AppGuard compares to
URANOS as it uses a similar resource and user friendly deployment mechanism
which do not require root access on the device.

7 Conclusions

The permission system and application structure in today’s Smartphones do not
provide a good foundation for an informed consent of users. URANOS takes a
first step into this direction by providing enhanced feedback. The user is able to
select which application component should run with which set of permissions.
Thus, although our approach can not provide detailed information about its
functionality the user benefits from a finer granularity of permission assignment.

64 D. Schreckling et al.

If in doubt, he is not confronted with a all or nothing approach but can selectively
disable critical application components. The execution contexts we define in our
work are general and can describe many different types of application compo-
nents. Further, we neither require users to manipulate or root their Smartphones.
Instead we maintain the regular install, update, and recovery procedures.

Our approach is still slow when integrating the executable code into a fully
functional application. However, this overhead is not directly induced by our
efficient analysis or rewriting mechanisms. In fact, we highlighted the practical
and security impact of a trade-off between a precise and complete flow analysis
and a lightweight but fast and resource saving syntactical analysis which can
run on user device without altering its overall functionality.

Acknowledgements. The research leading to these results has received funding
from the European Union’s FP7 project COMPOSE, under grant agreement
317862.

References

1. Backes, M., Gerling, S., Hammer, C., Maffei, M., von Styp-Rekowsky, P.: App-
Guard - Real-time policy enforcement for third-party applications. Tech. Rep.
A/02/2012, Saarland University (2012)

2. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R.: XManDroid: A
New Android Evolution to Mitigate Privilege Escalation Attacks. Technical Report
TR-2011-04, Technische Universität Darmstadt (April 2011)

3. Chan, P.P., Hui, L.C., Yiu, S.M.: Droidchecker: analyzing android applications
for capability leak. In: Proceedings of the Fifth ACM Conference on Security and
Privacy in Wireless and Mobile Networks, WISEC 2012, pp. 125–136. ACM, New
York (2012)

4. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys 2011, pp. 239–252. ACM,
New York (2011)

5. Conti, M., Nguyen, V.T.N., Crispo, B.: CRePE: context-related policy enforcement
for android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 331–345. Springer, Heidelberg (2011)

6. Davis, B., Sanders, B., Khodaverdian, A., Chen, H.: I-arm-droid: A rewriting frame-
work for in-app reference monitors for android applications. In: IEEE Mobile Se-
curity Technologies (MoST), San Francisco, CA

7. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: QUIRE: Lightweight
Provenance for Smart Phone Operating Systems. CoRR abs/1102.2445 (2011)

8. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: CCS 2009: Proceedings of the 16th ACM Conference on Computer
and Communications Security, pp. 235–245. ACM, New York (2009)

9. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions de-
mystified. In: ACM Conference on Computer and Communications Security, pp.
627–638 (2011)

10. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: attacks and defenses. In: Proceedings of the 20th USENIX Conference
on Security, SEC 2011, p. 22. USENIX Association, Berkeley (2011)

URANOS: User-Guided Rewriting 65

11. Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: automatically de-
tecting potential privacy leaks in android applications on a large scale. In: Katzen-
beisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X. (eds.)
TRUST 2012. LNCS, vol. 7344, pp. 291–307. Springer, Heidelberg (2012)

12. Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic Detection of Capability
Leaks in Stock Android Smartphones. In: Proceedings of the 19th Network and
Distributed System Security Symposium, NDSS (February 2012)

13. Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.R.: Unsafe exposure analysis of
mobile in-app advertisements. In: Proceedings of the Fifth ACM Conference on
Security and Privacy in Wireless and Mobile Networks, WISEC 2012, pp. 101–112.
ACM, New York (2012)

14. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids
you’re looking for: retrofitting android to protect data from imperious applications.
In: Proceedings of the 18th ACM Conference on Computer and Communications
Security, CCS 2011, pp. 639–652. ACM, New York (2011)

15. Leontiadis, I., Efstratiou, C., Picone, M., Mascolo, C.: Don’t kill my ads!: bal-
ancing privacy in an ad-supported mobile application market. In: Proceedings of
the Twelfth Workshop on Mobile Computing Systems & Applications, HotMobile
2012, pp. 2:1–2:6. ACM, New York (2012)

16. Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model and
enforcement with user-defined runtime constraints. In: Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security, ASIACCS
2010, pp. 328–332. ACM, New York (2010)

17. Ongtang, M., McLaughlin, S.E., Enck, W., McDaniel, P.D.: Semantically Rich
Application-Centric Security in Android. In: ACSAC, pp. 340–349. IEEE Computer
Society (2009)

18. Pearce, P., Felt, A.P., Nunez, G., Wagner, D.: AdDroid: Privilege separation for
applications and advertisers in Android. In: Proceedings of AsiaCCS (May 2012)

19. Shekhar, S., Dietz, M., Wallach, D.S.: AdSplit: separating smartphone advertising
from applications. In: Proceedings of the 21st USENIX Conference on Security
Symposium, Security 2012, p. 28. USENIX Association, Berkeley (2012)

20. Stevens, R., Gibler, C., Crussell, J., Erickson, J., Chen, H.: Investigating user
privacy in android ad libraries. In: IEEE Mobile Security Technologies (MoST),
San Francisco, CA

21. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.
In: IEEE Symposium on Security and Privacy, pp. 95–109 (2012)

Online Banking with NFC-Enabled Bank Card

and NFC-Enabled Smartphone

Max Günther and Bernd Borchert

Department of Computer Science, University of Tübingen, Germany

Abstract. Banks want to use their genuine strong credential for online
banking transaction authorization - the debit card. Customers nowadays
are usually equipped with a Smartphone and prefer to not carry a card
reader in addition. Methods where developed that use the Smartphone to
authorize online banking transactions. These methods are vulnerable to
Smartphone malware. We present NFC-TAN as a Smartphone method
that combines the two requirements: Strong credential debit card and no
additional device. We discuss to what extend this solution decreases vul-
nerability. Moreover, we consider usability, cost, and integration aspects
of NFC-TAN.

Keywords: Online Banking, NFC, Smartphone, Smartcard, Signing.

1 Introduction

Modern online banking methods are secured against content-manipulation at-
tacks with transaction-signing solutions: a separate device computes a signature
depending on the details of a transaction. The necessary characteristics of a se-
cure signature creation device have been worked out and explained [21,32] and
corresponding online banking systems have been implemented (see Sect. 2.2)
which can be considered secure against content-manipulation attacks.

However, academic approval of security is not the only success factor for on-
line banking methods [25,32]. Other important factors are usability, system inte-
gration complexity, trust, bank-internal policies or business strategies, external
regulations, and - maybe most importantly - costs and benefits. That is why

Fig. 1. Basic steps of the NFC-TAN method

L. Cavallaro and D. Gollmann (Eds.): WISTP 2013, LNCS 7886, pp. 66–81, 2013.
c© IFIP International Federation for Information Processing 2013

NFC-TAN Online Banking 67

there are many systems with different security, usability, and cost trade-offs in
use today.

In this paper, we present NFC-TAN as a method that uses the genuine bank-
owned credential debit card (also known as bank card) to authorize PC-based
online banking transactions in conjunction with a Smartphone - and nothing else.
NFC-TAN works the following way [5]: the Smartphone reads the transaction via
2D code from the PC, shows the transaction data for confirmation on its display,
contacts the debit card via NFC and receives a confirmation code from the card;
the customer finally transfers this code to the PC (see Fig. 1 and Fig. 2).

We think this approach is well-founded given two assumptions: Banks want to
have control over the client side credential and customers do not want to carry
any additional devices for authorization purposes. Debit cards offer an array of
advantages: They are convenient, well known, copy proof, and already integrated
into a banks credential management system.

The enabling technology for this approach is NFC (Near Field Communica-
tion): NFC-Smartphones are available and debit cards will be soon NFC-enabled.
The NFC-TAN method offers a trade-off between security, usability and cost
that was not possible before. This paper contributes an analysis of the security
situation and a discussion of the other success factors usability and costs.

2 State of the Art and Related Work

Apart from credential stealing attacks, the customers’ insecure Internet clients
have been identified as the main vulnerability of online banking systems. Sophis-
ticated attacks such as man-in-the-browser attacks [12,30,32] were developed and
already anticipated for example in [18]. These content-manipulation attacks can
be only defeated if an online banking transaction is authorized by a signature
depending on the transaction data and computed by a separate device that also
displays the transaction data. If a nonce is used as additional input, also replay
and pre-play attacks can be ruled out [4,28]. A signature in the online bank-
ing context may be symmetric or asymmetric and is termed TAN (transaction-
authorization-number) or, to underline their dynamic and transaction dependent
nature, dynamic-TAN or TAC (transaction-authorization-code [32]). In this pa-
per, we assume traditional username/password authentication at login time as
this is used in most online banking systems at least in central Europe - in fact,
strong login authentication seems rather unnecessary given transaction-signing
solutions.

2.1 Basic Steps of Transaction Signing Solutions

Most modern online banking solutions use two devices in tandem: the PC-
browser for convenient input of transaction details and a separated device which
displays those details and computes a signature for it. This approach requires
two communication paths: the transaction details must be somehow transferred
to the signature creation device and the computed signature must be somehow
transferred to the PC (or server). The basic steps in most systems therefore are:

68 M. Günther and B. Borchert

1. Enter transaction on the PC-browser (and send it to the server).
2. Transfer transaction details to the separated device.
3. Check (and confirm) the transaction on the display of the separated device,

which computes a signature for the transaction.
4. Transfer the signature to the server (possibly via PC-browser).

2.2 Secure Signature Creation Device Solutions

In order to be considered immune against content-manipulation attacks, a signa-
ture creation device must fulfill some basic requirements. Various secure
devices and corresponding online banking solutions have been proposed and
implemented. From our understanding the basic properties of such devices are:

• A display that is guaranteed to show the transaction that will be signed.
• A crypto-module that is guaranteed to sign the displayed transaction.
• A signature can leave the device only if the user decides so.
• Secure storage of the credential (tamper-proof and challenge-response).

One approach to enforce the first three properties is to allow only very limited
IO-capabilities (number pad + LCD display) that render malware infection vir-
tually impossible. Especially to allow for more sophisticated interaction with
the customers PC, the operating system of the signature creation device must
be built securely from ground up and a button to trigger the signature compu-
tation may be necessary (if the device also has an out-channel for the signature
other than the display). Laurie and Singer define a larger set of requirements
to ensure the abovementioned basic properties and to add additional value (e.g.
non-repudiation, updateable) [21]. The requirement to securely store a customers
credential is mostly considered to be sufficiently satisfied by dedicated hardware
like smartcards - laboratory-demonstrated attacks on such hardware are too ex-
pensive and therefore considered to be irrelevant for online banking systems [32].
Likewise, we consider vulnerabilities arising from implementation deficits like
those reported in [3,13] to be out of the scope of this paper.

We briefly describe six characteristic external-device solutions in use today
which all fulfill the abovementioned requirements for a secure signature cre-
ation device, further discussions of such and other solutions can be found in
[32,19,26]. In all solutions, the transaction details are entered on the PC-browser
and double-checked on a separate device that also computes a signature but they
greatly vary in terms of usability resp. required customer interaction. We dis-
tinguish the solutions in terms of communication/user interaction and the used
crypto-module:

ChipTAN [10] An offline smartcard reader (aka TAN-Generator) with photo-
diodes and display. This solution is of special interest for this paper, because
our implementation is based on the same specifications, see Section 3.3.
The so called TAN-Generator has a rudimentary optical channel consisting
of five photodiodes that serially read the transaction data from a flicker-
ing code shown on the PC-display. Once the transaction is transmitted, the

NFC-TAN Online Banking 69

TAN-Generator sends it to the plugged in debit card which in turn computes
and returns a TAN as a function of the transaction and a secret. The TAN
is then shown on the TAN-Generators display.

Manual Smartcard Reader [10] Manual variant of chipTAN without pho-
todiodes. Communication with browser: number pad / display. Credential:
secret stored on debit card.

Camera Token [8] An offline token with camera and display. Communication
with browser: 2D code and camera / display. Credential: stored on device.

Offline Token [31] An offline token with a number pad and a display. Com-
munication with browser: number pad and display. Credential: secret stored
on the device.

ZTIC [32] A smartcard reader with USB connection and display. Communica-
tion with server via special protocol. Credential secret stored on smartcard.

USB-Token [24] Token with USB connection and display. Communication
with server via special protocol. Credential stored on device.

2.3 Smartphone-Only Solutions

Solutions were proposed and implemented that use Smartphones instead of se-
cure signature creation devices. For a customer the main advantage of those
solutions is convenience: He does not have to carry an additional device but can
instead use his Smartphone as a second display in order to check the transaction
details before confirming them. The Smartphone solutions also provide commu-
nication channels for the transfer of transaction data to the Smartphone and for
the transfer of the signature to the PC or server.

Photo-TAN. This class of solutions uses 2D codes to conveniently transfer
the transaction data to the Smartphone via camera. A Smartphone app then
displays the transaction data and computes a signature using a key stored on
the Smartphone. The signature is then either sent to the server via mobile In-
ternet or entered manually on the PC browser by the user. Photo-TAN was
suggested by several researchers [6,11,17,27] and was recently implemented at
some banks [1,7,9]. Some of these implementations work in a reversed fashion:
The server encrypts the transaction and a TAN and the Smartphone decrypts
the message and displays both components. Given the rise of mobile malware,
Photo-TAN has severe vulnerabilities because none of the basic requirements
for secure signature creation devices introduced above is fulfilled. Smartphone
malware is possibly able to steal the customers signature key and send it to
any recipient. Moreover it may be able to manipulate the display and the com-
munication with the crypto-module and send signatures to any recipient, see
Sect. 4.1.

mobileTAN. Another well-known solution is mTAN. The customer enters the
transaction details in the PC browser and sends them to the server. The server
sends the transaction and a TAN to the customers mobile phone via text/SMS. In
order to confirm the transaction, the customer enters the TAN in the PC browser

70 M. Günther and B. Borchert

(or cancels the operation if the transaction details have been manipulated). Var-
ious attack vectors against mTAN have been exploited [29], see Sect. 4.1.

2.4 Trusted-Smartphone Plus Smartcard

Smartphone based solutions that assume the existence of a special execution
mode sufficiently shielded against mobile malware can of course meet the above-
mentioned requirements for a secure signature creation device.

Alpár et al. [2] present one such solution using an NFC smartcard as an
external crypto module and envision a user triggered trusted mode that enables
the user to verify the transaction details on a then-trustworthy Smartphone
display; Ortiz-Yepes [22] proposed a similar approach with a NFC smartcard as
external crypto module. In addition, both works suggested a protocol based on
the industry standard EMV-CAP (Chip Authentication Program) that avoids
some of the flaws (e.g. not including the transaction data as signature challenge)
found by Drimer et al. in other implementations [13]. The results are similar to
the HHD protocol which was developed without those flaws from the outset by
the German banking industry and that is used by our solution, see Sect. 3.3.

The main difference to our work is the assumption about having a Smartphone
with a trusted mode. This distinction greatly influences the threat model and
consequently mobile malware attacks are not covered in [2] while these are a
major part of our security analysis. Another difference is that we focus on two-
channel PC-based online banking, while Alpár et al. discuss the natural scenario
given a trusted Smartphone: single-channel mobile banking. Although trusted
execution technologies for Smartphones are being developed, to our knowledge
currently no commercially available device supports the full functionality.

3 NFC-TAN Method

3.1 Motivation

The NFC-TAN method presented below allows for online banking transaction
authorization with the customers debit card as credential and his Smartphone
as communication device [5,16,23]. We belief this approach is justified given two
assumptions:

• Banks prefer the debit card over other client side credentials. The credential
debit card is already integrated into a banks credential management system:
reliable processes for development, deployment and revocation are in use in
any bank. A further benefit is the already implemented industry standard
EMV that can be used for transaction authorization, see Sect. 3.3.

• Customers do not want an additional device. An additional device is always
a burden - one thing more that costs money and can get stolen, lost, or
broke. In contrast, customers have their Smartphone and debit card with
them anyway. Apart from these physical aspects, the credential debit card is
well-known and convenient because the bank is responsible for initialization,
deployment and replacement.

NFC-TAN Online Banking 71

3.2 Description

The steps in the NFC-TAN method are quite simple and familiar to a customer
because they resemble the four steps of the basic procedure described in Sect. 2.1:

1. Log in on the PC browser, enter transaction and submit it unconfirmed to
the bank server.

2. Scan the 2D code shown on the PC screen with the Smartphone.
3. Double-check the transaction on the Smartphone display and confirm with

the debit card.
4. Transfer the TAN to the PC browser and submit it to the bank server.

Fig. 2. NFC-TAN procedure from a customer’s perspective

Background Interaction. Under the hood, the following interaction and com-
putation is done:

• After receiving the transaction, the bank server generates a 2D code con-
taining the transaction details and a nonce. This 2D code is included in the
server response.

72 M. Günther and B. Borchert

• The Smartphone app builds a challenge from the transaction details and the
nonce and sends it to the debit card. The debit card calculates the response as
a function of the challenge and a secret key and returns it to the Smartphone
app. The Smartphone app selects the TAN from this response.

• The server can compute the correct TAN since it knows the transaction
details, nonce, and secret key and therefore is able to check the TAN received.

Process Requirement. We require that the server has only one open session
and only one open transaction at a time for one account. Our security discussion
explains why this rather easy-to-implement requirement is important.

Familiarity. For many customers the NFC-TAN method may be familiar be-
cause it is similar to the abovementioned chipTAN method, the differences are:
a 2D code is shown instead of a flickering code, the device is a Smartphone not
a special purpose device, and debit card and device communicate contactless.
NFC-TAN can be seen an extension of Photo-TAN for which the credential is
stored and used on the debit card instead of the Smartphone.

Performance. Modern Smartphones are able to scan 2D-code within a second
and smartcards are able to compute the response within less than a second.

3.3 Debit Card, EMV and HHD

Debit cards, or more general bank cards, are bank issued smartcards that host
an array of different applications. NFC-TAN utilizes the debit cards ability to
compute a signature as a function of a given challenge and a secret stored on
the card. The inter-operation of terminal and card for this functionality is speci-
fied by EMV [14], a generic industry standard based on ISO7816 (contact) resp.
ISO14443 (contactless). On the basis of EMV, card issuers developed standards
for applications like ATM, POS, and online banking - with MasterCards CAP
being a prominent example. The German banking industry committee Central
Credit Committee, developed the standard HHD (hand held device) [33] which
is used for online banking transactions. As the EMV protocol has no notion of
transaction details like beneficiary’s account number and amount, HHD specifies
how reader devices aggregate those details into a challenge for the smartcard.
The abovementioned chipTAN solution is one implementation of HHD, where
the transaction is transmitted to the TAN-Generator, which aggregates the
transaction and hands it over to the plugged in debit card.

We based our implementation of NFC-TAN also on the HHD specification.
Consequently, the Smartphone app of NFC-TAN contains a software implemen-
tation of the TAN-Generator. NFC-TAN is therefore currently compatible with
the chipTAN solution but is adaptable to many solutions using EMV based or
other specifications since the only strong requirement towards the smartcard is
the ability to compute a response for a challenge using a stored secret.

NFC-TAN Online Banking 73

4 Security

Attacks against online banking services can be classified into three main cate-
gories: software attacks, physical attacks, and social attacks [32]. Software at-
tacks are the most common and the most threatening attack vectors, because
they can be launched against a large number of customers with comparatively
small effort and are harder to trace back than social or physical attacks [32].

4.1 Software Attacks

Credential-Stealing and Credential-Abusing Attacks. The credentials of
the NFC-TAN method are: password for login authentication and the signature
key for transaction authorization. The password could be stolen by key loggers,
phishers or social engineers. In addition, mobile malware can steal the password
on the Smartphone from balance-checking bank apps which are usually protected
by the same password. With NFC-TAN, the signature key is stored on the debit
card and therefore out of reach of both malware and tampering.

However, malware on the Smartphone may not have to steal the signature
key at all: it may be enough to be able to send a challenge to the debit card
and obtain a signature. We describe how this attack is prevented in the NFC-
TAN method by two countermeasures the server can implement, assuming state
of the art server side session handling: (i) Only one open login-session for one
customer is allowed at a given time, (ii) the server-challenge includes a nonce.
Because the customer only brings the card to the Smartphone in order to confirm
a transaction (and therefore has an open session) an attacker cannot initiate a
transaction on its own (he would need to have an open session). The nonce
prevents pre-play attacks, because a challenge obtained earlier is invalidated
when the associated session is closed (at the latest), and the customer cannot
open a session if the attackers is still open.

In a variant of this attack - with a collaborating malware on the PC that
hijacked the customers session - Smartphone malware could try to forward an
additional, malicious challenge to the debit card while the user is holding his
card close to the Smartphone. This attack is prevented by allowing only one
transaction at a given time and introducing a pause of some seconds between
transactions.

We can conclude that the use of the debit card as a credential protects the
NFC-TAN method against credential-stealing attacks. Credential-abusing at-
tacks by Smartphone malware alone are much harder to conduct because the
debit card is not permanently connected to the Smartphone. We assume a re-
sponsible and attentive customer and the server side countermeasures described
above, namely (1) allowing only one session per user, and (2) one open trans-
action per session at a given time, (3) using a nonce, and (4) enforcing a delay
of a few seconds between the completion of one transaction and the start of
another one.

74 M. Günther and B. Borchert

Credential-Stealing and Credential-Abusing Attacks Are More Dan-
gerous without Debit Card. Photo-TAN is an example of a method in which
both credentials password and signature key can be stolen by malware, actually
by malware on the Smartphone alone. The signature key is stored on the Smart-
phone and any attempt to secure it (e.g. key encryption via a pin or another
key) is ultimately vain with respect to powerful malware, because malware could
just imitate the steps executed preceding the signing algorithm, and finally will
find the key. Even a pin will not prevent this because the pin is first tapped and
then used in the imitating process. Malware doing this has to be sophisticated
and it is not clear what the success expectation of such an attack is in practice.
Nevertheless, if such an attack is successful the consequences are fatal: Malware
could send the credentials to a remote attacker who can execute any banking
transaction at any time! One way to store a key copy-proof on the Smartphone
is a Secure Element that never exposes the key but only has a challenge-response
interface. For example, Photo-TAN could be extended with such a Secure Ele-
ment provided by the bank and integrated physically into the Smartphone [27].
Malware then cannot steal the signature key but abuse it by communicating
with the Secure Element and conduct an attack in the following way: First the
password is tapped when the customer enters it on the Smartphone to check his
account balance. Afterwards malware can open an online banking session at any
time and can abuse the Secure Element to compute a signature for an arbitrary
transaction without knowing the key. Restricting access to the SE for all but
some signed apps may hinder this attack considerably.

This example demonstrates that using a Secure Element with permanent con-
tact to the Smartphone can lead to vulnerabilities not present in the proposed
NFC-TAN solution. It also shows that the variant of the NFC-TAN method with
an NFC chip stuck on or plugged into the Smartphone is a severe degradation in
terms of security though its usability is desirable. Another security issue is the
distribution of the credential to the users Smartphone. A practical disadvantage
for a bank is the administration effort of yet another credential.

The mobileTAN solution uses the phone number as credential. Regarding
Smartphone malware that approach suffers from the fact that text/SMS mes-
sages are not considered deserving special protection on Smartphones and are
generally accessible by apps, once the user granted a permission to do so – quite
a common permission to ask for by all sorts of apps offered. One attack that
exploits this situation is described in [29]. Another possible attack is executed
by Smartphone malware alone: after stealing the account password mobile mal-
ware logs into the customers bank account and initiates a malicious transaction,
intercepts the text message on the mobile phone, picks the tan and confirms
the transaction. This attack can be conducted anytime the mobile is online and
completely without notice to the user as no user interaction is required.

Content-Manipulation Attacks. A man-in-the-browser can manipulate the
communication between bank server and PC-browser showing the transaction
the customer entered, but communicating a forged one - a second display suffi-
ciently separated from the PC defeats this attack. If a Smartphone with Internet

NFC-TAN Online Banking 75

access is used as second display, a content-manipulation attack can only be con-
ducted by collaborating malware on PC and Smartphone, because both displays
have to be manipulated:

PC malware cannot manipulate the transaction because the Smartphone will
display it again.

Mobile malware cannot manipulate the transaction because the correct trans-
action was displayed on the PC and is already known to the server.

Only collaborating malware on PC and Smartphone can perform a dis-
tributed men-in-the-middle attack by manipulating both displays. This re-
mains a vulnerability of the NFC-TAN solution and is another example of
the fact that two insecure systems do not result in a secure system.

Both malware instances need to know the original transaction (to be able to
display it) and the forged transaction (in order to send it to the server resp.
the debit card). They may communicate the transactions via 2D code, Wi-Fi,
or an Internet server. The attack preparation includes finding and infiltrating
both devices of one customer with malware. The actual independence of PC and
Smartphone therefore is an important measure for the estimation about how
complicated and how probable such attacks are. For example, sharing a Wi-Fi
network or establishing a cable connection to synchronize calendars may increase
the likelihood of a double infection.

Double infection is only a necessary prerequisite for an attack on NFC-TAN
the attack itself still has to be conducted as a real-time manipulation attack. The
difficulty of the attack step against the Smartphone app is probably comparable
to the key theft from a Photo-TAN Smartphone app. The coordination of two
distributed malware instances on PC and Smartphone alone is neither a real
obstacle to attackers. Nevertheless, the attack has to involve the customers debit
card and therefore the customer’s interaction. Firstly, this greatly reduces the
opportunities of an attack from ’nearly always’ to about ’once every few days’.
Secondly, the attack has to be executed in the moment the user wants to confirm
a transaction, that is, within a few seconds. Therefore this attack is more difficult
than the double infection attack on mobileTAN reported in [29].

4.2 Physical Attacks

Physical attacks are often considered to be less important in the online banking
context because they cannot be launched against a large number of customers.
In general we agree with that estimation, therefore we only discuss one aspect
particularly interesting for NFC-TAN:

Wireless Attack. Enabling access to the TAN computation functionality of
the debit card via NFC introduces new vulnerabilities and customers’ con-
cern because an attacker could contact the debit card unnoticed by the owner.

76 M. Günther and B. Borchert

However, the attacker still would have to know the account number and account
password to complete his attack. Depending on the implementation neither the
account number nor the card number can be read via NFC. Even if an attacker
can associate a card with an account number and has stolen the password, a
real-time attack is necessary because the server-challenge includes a nonce that
prevents replay and pre-play attacks: the attacker would have to have simulta-
neously: an open bank session, a valid challenge and a NFC-connection within
a range of 25cm [20]. Summarizing, the wireless attack is a negligible threat to
NFC-TAN.

4.3 Social Attacks

For NFC-TAN customers, one reasonable briefing is important: ”Only introduce
your debit card to the Smartphone if you want to confirm an online banking
transaction you initiated!” Then the abovementioned credential-abusing attack
can be defeated because the customers open online banking session on the PC
prevents Smartphone malware from opening a parallel covert one. The NFC-
TAN user has a chance to prevent such an attack without an in-depth notion of
the underlying security.

The user could still be tricked into signing a bogus transaction (e.g. for ”service
test reasons”) with the NFC-TAN solution like with almost all other solutions
including secure signature creation devices. This kind of attacks is easily pre-
vented by reasonable instructions and customers attentiveness but very hard to
prevent without.

4.4 Protocol / Cryptography

Since our implementation does not introduce a new protocol but reuses the spec-
ification for transaction authorization with debit cards HHD, we did not perform
a security analysis of the protocol or the involved algorithms. The Smartphone
does neither store a credential nor perform critical computation exactly like the
TAN-generator in the HHD implementation. Since the secret on the debit card
is symmetric our implementation of NFC-TAN is also symmetric. A public key
implementation of NFC-TAN would be possible with suitable debit cards.

5 Usability

One obvious usability disadvantage as compared to other Smartphone solutions
is the additional step of holding the debit card close to the Smartphone. This is
balanced by the following advantages.

No Additional Device. This is especially important in a mobile scenario (e.g.
in an Internet cafe) because the user does not want to carry an additional device
he can lose or forget.

NFC-TAN Online Banking 77

Convenient Communication and Display. The transaction is transferred
from the PC to the Smartphone via a 2D code resp. a 2D code scanner on the
Smartphone. This is usually completed in less than a second and familiar to
users, as 2D codes are quite widespread. The user checks the transaction on
the Smartphone display where it is possible to show a transaction completely
and comfortably. In fact, the customer may check the transaction only on the
Smartphone, because a manipulation by malware on the PC alone would not be
a threat.

Offline Availability. The NFC-TAN method does not require an active mobile
Inter-net connection on the Smartphone and therefore can be used abroad or in
areas with bad network connection. This is a usability advantage compared to
other solutions like mobileTAN.

Exchangeable Smartphone. As the Smartphone is a mere communication
device, it is exchangeable, for example by a newly bought one or a friends one.
Likewise, the credential can easily be delegated since it is stored on the debit card
- this may be of benefit in a company account scenario. However, customers may
prefer if Smartphone and debit card are paired, e.g. because they may consider
this as an additional prevention of the abovementioned wireless relay attack.

Increasing Penetration of NFC-enabled Smartphones. In 2012 over 26%
of all Smartphones sold in Europe were NFC-enabled [15], global numbers should
be similar. It is to be expected that a significant part of the customers will have
NFC-Smartphones in the near future.

6 Complexity: Implementation, Integration and
Administration

Minimal Credential Administration Changes on the Server. Banks al-
ready maintain debit cards as credentials. The NFC-TAN solution can be inte-
grated into this system without changes to server-side credential management
and distribution. Especially, no further credential is introduced and has to be ad-
ministrated in parallel on the server side. If a bank already uses chipTAN/HHD
for online banking, our NFC-TAN implementation can be integrated with mini-
mal server-side efforts: only the flicker-code has to be replaced by a 2D code. This
is only a user interface change, whereas business logic on the background servers
remains unchanged. Consequently, both methods can be offered simultaneously
to the customer.

Smartphone Application Development. In order to support NFC-TAN,
a bank’s Smartphone app needs to be extended by the following functional-
ity: 2D code scanner, software implementation of the smartcard reader (TAN-
Generator), and NFC communication. Although this is not trivial, there is no
implementation risk because the technologies are well-known.

78 M. Günther and B. Borchert

NFC-enabled Debit Cards. NFC-TAN needs only minimal software changes
on the EMV/HHD debit card - probably only the activation of NFC is necessary
(Dual Interface). In Germany, debit cards may be NFC-enabled in the medium
term for this functionality - currently an electronic purse application on the debit
card of some banks can be accessed via NFC.

7 Costs

As online banking providers are profit-oriented companies, their primary atten-
tion clearly lays on cost. Other factors are important mainly because they affect
costs and revenue. This means that investments for better security measures
including implementation, integration and administration have to pay off at the
end of the day.

Non-recurring Expenses. The implementation of the NFC-TAN method re-
quires development and integration costs for server and Smartphone software,
see Section 6. The distribution of the NFC-enabled cards will most likely oc-
cur within the regular exchange of bank cards. Moreover, no additional software
needs to be developed and installed on the debit card, see Section 6. In other
words, the requirement of NFC-enabled debit cards adds no expense - neither
for banks nor customers.

Recurring Expenses. The NFC-TAN method adds no direct recurring costs
for a bank like device costs or per-transaction costs. Nevertheless, there will be
special indirect costs like customer support and Smartphone app maintenance
and indirect costs like server administration and credential management. These
costs are comparable to those of other methods.

Expenses for the Customer. The customer - if he wants to use NFC-TAN -
has to buy an NFC-Smartphone. This may be interpreted in the way that banks
move parts of their costs to their customer.

8 Variants and Extensions

8.1 NFC-TAN Mobile Banking (Single-Channel)

Customers may demand the following single-channel mobile banking variant of
NFC-TAN: the user logs into his bank account on the Smartphone with an app
or on the mobile browser and enters a transaction, and confirms it by holding the
NFC debit card close to the Smartphone. This raises security issues comparable
to those already discussed in Sect. 4.1. The main problem is that mobile malware
alone can conduct a transaction manipulation attack. NFC-TAN mobile banking
should therefore be protected by further server-side mechanisms like beneficiary
white-lists, transaction limits, etc., or a trusted mode like suggested in [2].

NFC-TAN Online Banking 79

8.2 OCR Instead of 2D Code

In the NFC-TAN method the transaction is transferred from the PC to the
Smartphone via a 2D code. Instead, the Smartphone app could take a snapshot
of the filled transaction form and recognize the transaction via OCR. This What-
You-See-Is-What-You-Sign variant increases usability because the customer does
not have to check the transaction on the Smartphone. Moreover, this increases
security against a man-in-the-PC-browser which may speculate that user does
not double-check the transaction on the Smartphone and therefore manipulate
the transaction. This OCR extension of NFC-TAN may also allow a convenient
and secure way to allow for collective transfers - no double-checking on the
Smartphone is necessary.

8.3 Online NFC-TAN

In the NFC-TAN method, the TAN is manually transferred to the PC and
then sent to the server. As a variant, the Smartphone could also send the
TAN to the server via mobile Internet. This increases usability because the cus-
tomer does not have to type the TAN. However, the Smartphone would have to
have mobile Internet connection. Another disadvantage is increased implemen-
tation complexity on the server-side because the TAN receiving script has to be
integrated.

8.4 Secure Displays

The main vulnerability of the NFC-TAN is a result from the fact that common
Smartphones do not have a secure display. However, NFC-TAN could be com-
bined with some secure display approaches. One solution would be a smartcard
having a display [27] and additional NFC-functionality. Another solution could
be a Smartphone with a secure display (ARM TrustZone R© / G&D MobiCore R©)
and still use the debit card as a bank owned external credential in case there
are reasons for not storing the credential on the Smartphone, like complexity,
integration and administration overhead for a new credential.

9 Conclusion

We present NFC-TAN as a solution for online banking transaction authorization
that uses the customers debit card as credential and his Smartphone for commu-
nication. The NFC-TAN solution is more secure than pure Smartphone solutions
without sacrificing much usability. It is less secure than the secure signature cre-
ation device solutions but more convenient. Integration complexity and costs on
the bank side are comparatively low since no additional credential needs to be
managed. Summarizing, NFC-TAN is an online banking method with a trade-off
between security, usability, and costs which was not possible until the recently
beginning ubiquity of NFC-enabled devices.

80 M. Günther and B. Borchert

Acknowledgement. We would like to thank Klaus Reinhardt and Matthias
Sattler for many interesting discussions and the reviewers for their valuable hints
and remarks.

References

1. 1822direkt GmbH: Modernes Online-Banking mit QR-TAN (2012),
https://www.1822direkt.com/service/zugangsmoeglichkeiten/

2. Alpár, G., Batina, L., Verdult, R.: Using NFC phones for proving credentials. In:
Schmitt, J.B. (ed.) MMB & DFT 2012. LNCS, vol. 7201, pp. 317–330. Springer,
Heidelberg (2012)

3. Blom, A., de Koning Gans, G., Poll, E., de Ruiter, J., Verdult, R.: Designed to
Fail: A USB-Connected Reader for Online Banking. In: Jøsang, A., Carlsson, B.
(eds.) NordSec 2012. LNCS, vol. 7617, pp. 1–16. Springer, Heidelberg (2012)

4. Bond, M., Choudary, O., Murdoch, S.J., Skorobogatov, S., Anderson, R.: Chip and
Skim: cloning EMV cards with the pre-play attack (2012)

5. Borchert, B.: Sichere Verschlüsselung für Online Accounts durch ein Gerät mit
Kamera, Display und Nahfunk als Mittler zwischen Rechner und Geheimnis. Ger-
man patent DE102009040009B4 (2009)

6. Borchert, B., Reinhardt, K.: Vorrichtung und Verfahren zur abhör- und
manipulationssicheren Verschlüsselung für Online-Accounts. German patent
DE2007052734B4 (2007)

7. Commerzbank AG: photoTAN, http://www.commerzbanking.de/
8. Cronto Limited: CrontoSign Device (2012), http://www.cronto.com/

crontosign-transaction-authentication-device.htm

9. Cronto Limited: CrontoSign Mobile App (2012),
http://www.cronto.com/crontosign-transaction-authentication-mobile.htm

10. Die Deutsche Kreditwirtschaft: chipTAN, http://www.die-deutsche-
kreditwirtschaft.de/dk/zahlungsverkehr/electronic-banking/chiptan.html

11. Dodson, B., Sengupta, D., Boneh, D., Lam, M.S.: Secure, consumer-friendly web
authentication and payments with a phone. In: Gris, M., Yang, G. (eds.) Mobi-
CASE 2010. LNICST, vol. 76, pp. 17–38. Springer, Heidelberg (2012)

12. Dossogne, J., Markowitch, O.: Online banking and man in the browser attacks,
survey of the belgian situation. In: Goseling, J., Weber, J.H. (eds.) Proceedings
of the 31st Symposium on Information Theory in the Benelux, WICSITB 2010,
pp. 19–26 (2010)

13. Drimer, S., Murdoch, S.J., Anderson, R.: Optimised to Fail: Card Readers for
Online Banking. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628,
pp. 184–200. Springer, Heidelberg (2009)

14. EMVCo LLC: EMV Integrated Circuit Card Specifications for Payment Systems,
Book 1-4 (2008), http://emvco.com/

15. GfK SE: Smartphones Bring Fresh Boost (2013),
http://www.gfk.com/news-and-events/press-room/press-releases/Pages/

Smartphones-bring-fresh-boost.aspx

16. Günther, M.: Sicheres Online Banking via Smartphone mit Nahfunk (NFC). Mas-
ter’s thesis, Universität Tübingen (2011)

17. Handelsblatt: Online-Banking wird sicherer (2008),
http://www.handelsblatt.com/technologie/it-tk/it-internet/

internet-online-banking-wird-sicherer/3064982.html

https://www.1822direkt.com/service/zugangsmoeglichkeiten/
http://www.commerzbanking.de/
http://www.cronto.com/crontosign-transaction-authentication-device.htm
http://www.cronto.com/crontosign-transaction-authentication-device.htm
http://www.cronto.com/crontosign-transaction-authentication-mobile.htm
http://www.die-deutsche-kreditwirtschaft.de/dk/zahlungsverkehr/electronic-banking/chiptan.html
http://www.die-deutsche-kreditwirtschaft.de/dk/zahlungsverkehr/electronic-banking/chiptan.html
http://emvco.com/
http://www.gfk.com/news-and-events/press-room/press-releases/Pages/Smartphones-bring-fresh-boost.aspx
http://www.gfk.com/news-and-events/press-room/press-releases/Pages/Smartphones-bring-fresh-boost.aspx
http://www.handelsblatt.com/technologie/it-tk/it-internet/internet-online-banking-wird-sicherer/3064982.html
http://www.handelsblatt.com/technologie/it-tk/it-internet/internet-online-banking-wird-sicherer/3064982.html

NFC-TAN Online Banking 81

18. Hiltgen, A., Kramp, T., Weigold, T.: Secure Internet banking authentication. IEEE
Security Privacy 4(2), 21–29 (2006)

19. Hisamatsu, A., Pishva, D., Nishantha, G.G.D.: Online banking and modern ap-
proaches toward its enhanced security. In: The 12th International Conference on
Advanced Communication Technology (ICACT), vol. 2, pp. 1459–1463 (2010)

20. Kirschenbaum, I., Wool, A.: How to Build a Low-Cost, Extended-Range RFID
Skimmer. In: 15th USENIX Security Symposium, pp. 43–57 (2006)

21. Laurie, B., Singer, A.: Choose the red pill and the blue pill: a position paper. In:
Proceedings of the 2008 Workshop on New Security Paradigms, pp. 127–133. ACM,
New York (2008)

22. Ortiz-Yepes, D.A.: Enhancing Authentication in eBanking with NFC-Enabled Mo-
bile Phones. In: ERCIM News. No. 76, European Research Consortium for Infor-
matics and Mathematics (2009)

23. Sattler, M.: Einbinden der neuen NFC-Debitkarte in das Fotohandy. Master’s the-
sis, Universität Tübingen (2012)

24. Seal One AG: Seal One USB (2011),
http://www.seal-one.com/products-list.en-UK.html

25. Shah, M.H., Braganza, A., Morabito, V.: A survey of critical success factors in
e-Banking: an organisational perspective. European Journal of Information Sys-
tems 16(4), 511–524 (2007)

26. Singh Brar, T.P., Sharma, D., Singh Khurmi, S.: Vulnerabilities in e-banking: A
study of various security aspects in e-banking. International Journal of Computing
& Business Research (2012)

27. Starnberger, G., Froihofer, L., Goeschka, K.M.: QR-TAN: Secure Mobile Transac-
tion Authentication. In: International Conference on Availability, Reliability and
Security, ARES 2009, pp. 578–583 (2009)

28. Syverson, P.: A Taxonomy of Replay Attacks. In: Proceedings of the Computer
Security Foundations Workshop VII, CSFW 7, pp. 187–191 (1994)

29. The H Security: Millions stolen with mTAN fraud (2012),
http://www.h-online.com/security/news/item/

Millions-stolen-with-mTAN-fraud-1763923.html

30. Utakrit, N.: Review of Browser Extensions, a Man-in-the-Browser Phishing Tech-
niques Targeting Bank Customers. In: Australian Information Security Manage-
ment Conference (2009)

31. Vasco Inc.: DIGIPASS 260 (2013), http://www.vasco.com/products
32. Weigold, T., Hiltgen, A.: Secure confirmation of sensitive transaction data in mod-

ern Internet banking services. In: World Congress on Internet Security (WorldCIS),
pp. 125–132 (2011)

33. Zentraler Kreditausschuss: Schnittstellenspezifikation für die ZKA-Chipkarte -
HandHeldDevice, HHD (2010)

http://www.seal-one.com/products-list.en-UK.html
http://www.h-online.com/security/news/item/Millions-stolen-with-mTAN-fraud-1763923.html
http://www.h-online.com/security/news/item/Millions-stolen-with-mTAN-fraud-1763923.html
http://www.vasco.com/products

A Defensive Virtual Machine Layer

to Counteract Fault Attacks on Java Cards

Michael Lackner, Reinhard Berlach, Wolfgang Raschke,
Reinhold Weiss, and Christian Steger

Institute for Technical Informatics,
Graz University of Technology, Graz, Austria

{michael.lackner,reinhard.berlach,wolfgang.raschke,

rweiss,steger}@tugraz.at

Abstract. The objective of Java Cards is to protect security-critical
code and data against a hostile environment. Adversaries perform fault
attacks on these cards to change the control and data flow of the Java
Card Virtual Machine. These attacks confuse the Java type system, jump
to forbidden code or remove run-time security checks. This work intro-
duces a novel security layer for a defensive Java Card Virtual Machine
to counteract fault attacks. The advantages of this layer from the secu-
rity and design perspectives of the virtual machine are demonstrated.
In a case study, we demonstrate three implementations of the abstrac-
tion layer running on a Java Card prototype. Two implementations use
software checks that are optimized for either memory consumption or
execution speed. The third implementation accelerates the run-time ver-
ification process by using the dedicated hardware protection units of the
Java Card.

Keywords: Java Card, Defensive Virtual Machine, Countermeasure,
Fault Attack.

1 Introduction

A Java Card enables Java applets to run on a smart card. The primary purpose of
using a Java Card is the write-once, run-everywhere approach and the ability of
post-issuance installation of applets [21]. These cards are used in a wide range of
applications (e.g., digital wallets and transport tickets) to store security-critical
code, data and cryptographic keys. Currently, these cards are still very resource-
constrained devices that include an 8- or 16-bit processor, 4kB of volatile memory
and 128kB of non-volatile memory. To make a Java Card Virtual Machine run
on such a constrained device, a subset of Java is used [19]. Furthermore, special
Java Card security concepts, such as the Java Card firewall [18] and a verification
process for every applet [15], were added. The Java Card firewall is a run-time
security feature that protects an applet against illegal access from other applets.
For every access to a field or method of an object, this check is performed.
Unfortunately, the firewall security mechanism can be circumvented by applets

L. Cavallaro and D. Gollmann (Eds.): WISTP 2013, LNCS 7886, pp. 82–97, 2013.
c© IFIP International Federation for Information Processing 2013

A Defensive Virtual Machine Layer 83

that do not comply with the Java Card specification. Such applets are called
malicious applets.

To counteract malicious applets, a bytecode verification process is performed.
This verification is performed either on-card or off-card for every applet [15].
Note that this bytecode verification is a static process and not performed during
applet execution. The reasons for this static approach are the high resource needs
of the verification process and the hardware constraints of the Java Card. This
behavior is now abused by adversaries. They upload a valid applet onto the card
and perform a fault attack (FA) during applet execution. Adversaries are now
able to create a malicious applet out of a valid one [5].

A favorite time for performing a FA is during the fetching process. At this
time, the virtual machine (VM) reads the next Java bytecode values from the
memory. An adversary that performs an FA at this time can change the readout
values. The VM then decodes the malicious bytecodes and executes them, which
leads to a change in the control and data flow of the applet. A valid applet is
mutated by such an FA to a malicious applet [5,17,11] and gains unauthorized
access to secret code and data [16,2].

To counteract an FA, a VM must perform run-time security checks to de-
termine if the bytecode behaves correctly. In the literature, different counter-
measures, such as control-flow checks [23], double checks [4], integrity checks [8]
and method encryption [20], have been proposed. Barbu [3] proposed a dynamic
attack countermeasure in which the VM executes either standard bytecodes or
bytecodes with additional security checks.

All these works do not concentrate on the question of how these security mech-
anisms can be smoothly integrated into a Java Card VM. For this integration,
we propose adding an additional security layer into the VM. This layer abstracts
the access to internal VM resources and performs run-time security checks to
counteract FAs. The primary contributions of this paper are the following:

– Introduction of a novel defensive VM (D-VM) layer to counteract FAs during
run-time. Access to security-critical resources of the VM, such as the operand
stack (OS), local variables (LV) and bytecode area (BA), is handled using
this layer.

– Usage of the D-VM layer as a dynamic countermeasure. Based on the actual
security level of the card, different implementations of the D-VM layer are
used. For a low-security level, the D-VM implementation uses fewer checks
than for a high-security level. The security level depends on the credibility of
the currently executed applet and run-time information received by hardware
or software modules.

– A case study of a defensive VM using three different D-VM layer implemen-
tations. The API of the D-VM layer is used by the Java Card VM to perform
run-time checks on the currently executing bytecode.

– The defensive VMs are executed on a smart card prototype with specific HW
security features to speed up the run-time verification process. The resulting
run-time and main memory consumption of all implemented D-VM layers
are presented.

84 M. Lackner et al.

Section 2 provides an overview of attacks on Java Cards and the current coun-
termeasures against them. Section 3 describes the novel D-VM layer presented
in this work and its integration into the Java Card design. Furthermore, the
method by which the D-VM layer enables the concept of dynamic countermea-
sures is presented. Section 4 presents implementation details regarding how the
three D-VM implementations are inserted into the smart card prototype. Sec-
tion 5 analyzes the additional costs for the D-VM implementations based on the
execution and main memory overhead. Finally, the conclusions and future work
are discussed in Section 6.

2 Related Work

In this section, the basics of the Java Card VM and work related to FA on Java
Cards are presented. Then, an analysis of work regarding methods of counteract-
ing FAs and securing the VM are presented. Finally, an FA example is presented
to demonstrate the danger posed by such run-time attacks for the security of
Java Cards.

2.1 Java Card Virtual Machine

A Java Card VM is software that is executed on a microprocessor. The VM
itself can be considered a virtual computer that executes Java applets stored
in the data area of the physical microprocessor. To be able to execute Java
applets, the VM uses internal data structures, such as the OS or the LV, to store
interim results of logical and combinatorial operations. All of these internal data
structures are general objects for adversaries that attack the Java Card [4,20,24].

For every method invocation performed by the VM, a new Java frame [19]
is created. This frame is pushed to the Java stack and removed from it when
the method returns. In most VM implementations, this frame internally consists
of three primary parts. These parts have static sizes during the execution of
a method. The first frame part is the OS on which most Java operations are
performed. The OS is the source and destination for most of the Java bytecodes.
The second part is the LV memory region. The LV are used in the same manner
as the registers on a standard CPU. The third part is the frame data, which
holds all additional information needed by the VM and Java Card Runtime
Environment (JCRE) [18]. This additional information includes, for example,
return addresses and pointers to internal VM-related data structures.

2.2 Attacks on Java Cards

Loading an applet that does not conform to the specification defined in [19]
onto a Java Card is a well-known problem called a logical attack (LA). After
an LA, different applets on the card are no longer protected by the so-called Java

A Defensive Virtual Machine Layer 85

sandbox model. Through this sandbox, an applet is protected from illegal write
and read operations of other applets. To perform an LA, an adversary must
know the secret key to install applets. This key is known for development cards,
but it is highly protected for industrial cards and only known by authorized
companies and authorities. In conclusion, LAs are no longer security threats for
current Java Cards.

Side-channel analyses are used to gather information about the currently ex-
ecuting method or instructions by measuring how the card changes environment
parameters (e.g., power consumption and electromagnetic emission) during run-
time. Integrated circuits influence the environment around them but can also
be influenced by the environment. This influence is abused by an FA to change
the normal control and data flow of the integrated circuit. Such FAs include
glitch attacks on the power supply and laser attacks on the cards [2,24]. By
performing side-channel analyses and FAs in combination, it is possible to break
cryptographic algorithms to receive secret data or keys [16].

In 2010, a new group of attacks called combined attacks (CA) was introduced.
These CAs combine LAs and FAs to enable the execution of ill-formed code
during run-time [5]. An example of a CA is the removal of the checkcast bytecode
to cause type confusion during run-time. Then, an adversary is able to break
the Java sandbox model and obtain access to secret data and code stored on
the card [5,17]. In this work work, we concentrate on countering FAs during the
execution of an applet using our D-VM layer.

2.3 Countermeasures against Java Card Attacks

Since approximately 2010, an increasing number of researchers have started con-
centrating on the question of what tasks must be performed to make a VM more
robust against FAs and CAs. Several authors [22,8] suggest adding an additional
security component to the Java Card applet. In this component, they store check-
sums calculated over basic blocks of bytecodes. These checksums are calculated
off-card in a static process and added to a new component of the applet. During
run-time, the checksum of executed bytecodes is calculated using software and
compared with the stored checksums. If these checksums are not the same, a
security exception is thrown.

Another FA countermeasure is the use of control-flow graph information [23].
To enable this approach, a control-flow graph over basic blocks is calculated off-
card and stored in an additional applet component. During run-time, the current
control-flow graph is calculated and compared with the stored control graph.

In [20], the authors propose storing a countermeasure flag in a new applet
component to indicate whether the method is encrypted. They perform this
encryption using a secret key and the Java program counter for the bytecode
of every method. Through this encryption, they are able to counteract attacks
that change the control-flow of an applet to execute illegal code or data.

86 M. Lackner et al.

Another countermeasure against FAs that target the data stored on the OS
is presented in [4]. In this work, integrity checks are performed when data are
pushed or popped onto the OS. Through this approach, the OS is protected
against FAs that corrupt the OS data.

Another run-time check against FAs is proposed in [10,14], in which they
create separate OSes for each of the two data types, integralValue and reference.
With this approach of splitting the OS, it is possible to counteract type-confusion
attacks. A drawback is that in both works, the applet must be preprocessed.

In [3], the authors propose a dynamic countermeasure to counteract FAs.
Bytecodes are implemented in different versions inside the VM, a standard ver-
sion and an advanced version that performs additional security checks. The VM
is now able to switch during run-time from the standard to the advanced version.
By using unused Java bytecodes, an applet programmer can explicitly call the
advanced bytecode versions.

The drawbacks of current FA countermeasures are that most of them add an
additional security component to the applet or rely on preprocessing of the ap-
plet. This has different drawbacks, such as increased applet size or compatibility
problems for VMs that do not support these new applet components. In this
work, we propose a D-VM layer that performs checks on the currently executing
bytecode. These checks are performed based on a run-time policy and do not
require an off-card preprocessing step or an additional applet component.

2.4 EMAN4 Attack: Jump Outside the Bytecode Area

In 2011, the run-time attack EMAN4 was found [6]. In this work a laser was
used to manipulate the read out values from the EEPROM to 0x00. By this
laser attack an adversary is able to change the Java bytecode of post-issuance
installed applets during their execution.

The target time of the attack is when the VM fetches the operands of the
goto w bytecode from the EEPROM. Generally the goto w bytecode is used to
perform a jump operation inside a method. The goto w bytecode consists of the
operand byte 0xa8 and two offset bytes for the branch destination [19]. This
branch offset is added to the actual Java program counter to determine the next
executing bytecode. An adversary which changes this offset is able to manipulate
the control flow of the applet.

With the help of the EMAN4 attack it is possible to jump with the Java
program counter outside the applet bytecode area (BA), as illustrated in Fig-
ure 1. This is done by changing the offset parameters of the goto w bytecode
from 0xFF20 to 0x0020 during the fetch process of the VM. The jump destina-
tion address of the EMAN4 attack is a data array outside the bytecode area.
This data array was previously filled with adversary defined data. After the laser
attack the VM executes the values of the data array. This execution of adver-
sary definable data leads to considerably more critical security problems, such as
memory dumps [7]. In this work we counteract the EMAN4 attack by our con-
trol flow policy. This policy only allows to fetch bytecodes which are inside the
bytecode area.

A Defensive Virtual Machine Layer 87

Applet
Data

Applet
Data

Bytecode Area

...goto_w 0xFF20

Jump Outside the Bytecode Area!

Applet A – Static Data Applet A - Objects

Undefined
Data

...

Byte Array

[0] [1] [2]

Execute Malicious Datagoto_w 0x0020

Fig. 1. The EMAN4 run-time attack changes the jump address 0xFF20 to 0x0020,
which leads to the security threat of executing bytecode outside the defined BA of the
current applet [6]

3 Defensive VM Layer

In this work, we propose adding a novel security layer to the Java Card. Through
this layer, access to internal structures (e.g., OS, LV and BA) of the VM is
handled. In reference to its defensive nature and its primary use for enabling a
defensive VM, we name this layer the defensive VM (D-VM) layer. An overview
of the D-VM layer and the D-VM API, which is used by the VM, is depicted in
Figure 2 and is explained in detail below.

Functionalities offered by the D-VM API include, for example, pushing and
popping data onto the OS, writing and reading from the LV and fetching Java
bytecodes. It is possible for the VM to implement all Java bytecodes by using
these API functions. The pseudo-code example in Listing 1.1 shows the process
of fetching a bytecode and the implementation of the sadd bytecode using our
D-VM API approach. The sadd bytecode pops two values of integral data type
from the OS and pops the sum as an integral data type back onto the OS.

Listing 1.1. Pseudo-code of the VM using the API functions of the newly introduced
D-VM layer.

//use the D−VM API to f e t c h the next by tecode from the BA
switch (dvm fetch bytecode ())
{

. . .
case sadd : // implementat ion o f the sadd by tecode .
{

//use the D−VM API to ob ta in the two va l u e s from the OS
r e s u l t = dvm pop integralData () + dvm pop integralData () ;
//use the D−VM API to wr i t e the sum back onto the OS

dvm push integralData (r e s u l t) ;
}
. . .

}

88 M. Lackner et al.

Operating System Layer

Applet A Applet B Applet C

Java Card Level

Defensive VM (D-VM) API

Smart Card Hardware

Java Card VM

D-VM Layer

Operating System API

Applet Level

Operating System Level

Instruction Set Level

Hardware Level

Defensive VM Level

Fig. 2. The VM executes Java Card applets and uses the newly introduced D-VM layer
to secure the Java Card against FAs

The security mechanisms within the security layer intended to protect the VM
from FAs are hidden from the VM programmer. A security architect, specialized
for VM security, is able to implement and choose the appropriate countermeasures
within theD-VMlayer.These countermeasures arebasedonstate-of-the-art knowl-
edge and the hardware constraints of the smart card architecture. Programmers
implementing the VM do not need to know these security techniques in detail but
rather just use the D-VM API functions.

If HW features are used, the D-VM layer communicates with these units
and configures them through specific instructions. Through this approach, it is
also very easy to alter the SW implementations by changing the D-VM layer
implementation without changing specific Java bytecode implementations. It is
possible to fulfill the same security policy on different smart card platforms where
specific HW features are available.

On a code size-constrained smart card platform, an implementation that has
a small code size but requires more main memory or execution time is used. The
appropriate implementations of security features within the D-VM API are used
without the need to change the entire VM.

A Defensive Virtual Machine Layer 89

Dynamic Countermeasures: The D-VM layer is also a further step to enable
dynamic fault attack countermeasures such as that proposed by Barbu in [3].
In this work, he proposes a VM that uses different bytecode implementations
depending on the actual security level of the smart card. If an attack or malicious
behavior is detected, the security level is decreased. This decreased security leads
to an exchange of the implemented bytecodes with more secure versions. In these
more secure bytecodes, different additional checks, such as double reads, are
implemented, which leads to decreased run-time performance.

Our D-VM layer further advances this dynamic countermeasure concept. De-
pending on the actual security level, an appropriate D-VM layer implementation
is used. Therefore, the entire bytecode implementation remains unchanged, but
it is possible to dynamically add and change security checks during run-time.
An overview of this dynamic approach is outlined in Figure 3.

D-VM Layer

ApplesJava
Applets

Java Card VM executes

choose D-VM layer implementation

High Security

ac
tu
al
se
cu
rit
y
le
ve
l

security checks

Middle Security

Low Security

D-VM Layer
D-VM Layer

Fig. 3. Based on the current security level of the VM, an appropriate D-VM layer
implementation is chosen

The actual security level of the card is determined by HW sensors (e.g., bright-
ness and supply voltage) and the behavior of the executing applet. For example,
at a high security level, the D-VM layer can perform a read operation after
pushing a value into the OS memory to detect an FA. At a lower security level,
the D-VM layer performs additional bound, type and control-flow checks.

Security Context of an Applet: Another use case for the D-VM layer is the
post-issuance installation of applets on the card. We focus on the user-centric
ownership model (UCOM) [1] in which Java Card users are able to load their own

90 M. Lackner et al.

applets onto the card. For the UCOM approach, each newly installed applet is
assigned a defined security level at installation time. The security level depends
on how trustworthy the applet is. For example, the security level for an applet
signed with a valid key from the service provider is quite high, which results in a
high execution speed. Such an applet should be contrasted with an applet that
has no valid signature and is loaded onto the card by the Java Card owner. This
applet will run at a low security level with many run-time checks but a slower
execution speed. Furthermore, access to internal resources and applets installed
on the card could be restricted by the low security level.

3.1 Security Policy

This chapter introduces the three security policies used in this work. With the
help of these policies, it is possible to counteract the most dangerous threats
that jeopardize security-critical data on the card. The type and bound policies
are taken from [14] and are augmented with a control-flow policy. The fulfillment
of the three policies on every bytecode is checked by three different D-VM layer
implementations using our D-VM API.

Control-Flow Policy: The VM is only allowed to fetch bytecodes that are
within the borders of the currently active method’s BA. Fetching of bytecodes
that are outside of this area is not allowed. The actual valid method BA changes
when a new method is invoked or a return statement is executed. Because of this
policy, it is no longer possible for control-flow changing bytecodes (e.g., goto w
and if scmp w) to jump outside of the reserved bytecode memory area. This
policy counters the EMAN4 attack [6] on the Java Card and all other attacks
that rely on the execution of a data array or code of an-other applet that is not
inside the current BA.

Type Policy: Java bytecodes are strongly typed in the VM specification [19].
This typing means that for every Java bytecode, the type of operand that the
bytecode expects and the type of the result stored in the OS or LV are clearly
defined. An example is the sastore bytecode, which stores a short value in an
element of a short array object. The sastore bytecode uses the top three elements
from the OS as operands. The first element is the address of the array object,
which is of type reference. The second element is the index operand of the array,
which must be of type short. The third element is the value, which is stored
within the array element and is of type short.

Type confusion between values of integral data (boolean, byte or short) and
object references (byte[], short[] or class A, for example) is a serious problem for
Java Cards [24,17,13,25,6,11]. To counter these attacks, we divide all data types
into the two main types, integralData and reference. Note that this policy does
not prevent type confusion inside the main type reference between array and
class types.

A Defensive Virtual Machine Layer 91

Bound Policy: Most Java Card bytecodes push and pop data onto the OS or
read and write data into the LV, which can be considered similar to registers. The
OS is the main component for most Java bytecode operations. Similar to buffer
overflow attacks in C programs [9], it is possible to overflow the reserved memory
space for the OS and LV. An adversary is then able to set the return address of
a method to any value. Such an attack was first found in 2011 by Bouffard [6,7].
An overflow of the OS happens by pushing or popping too many values onto
the OS. An LV overflow happens when an incorrect LV index is accessed. This
index parameter is decoded as an operand for several LV-related bytecodes (e.g.,
sstore, sload and sinc). This operand is therefore stored permanently in the non-
volatile memory. Thus, changing this operand through an FA gives an attacker
access to memory regions outside the reserved LV memory region. These memory
regions are created for every method invoked and are not changed during the
method execution. Therefore in this work, we permit Java bytecodes to operate
only within the reserved OS and LV memory regions.

4 Java Card Prototype Implementation

In this work three implementations of the D-VM layer are proposed to perform
run-time security checks on the currently executing bytecode. Two implementa-
tions perform all checks in SW to ensure our security policies. One implementa-
tion uses dedicated HW protection units to accelerate the run-time verification
process. The implementations of the D-VM layer were added into a Java Card
VM and executed on a smart card prototype. This prototype is a cycle-accurate
SystemC [12] model of an 8051 instruction set-compatible processor. All software
components, such as the D-VM layer and the VM, are written in C and 8051
assembly language.

4.1 D-VM Layer Implementations

This section presents the implementation details for the three implemented
D-VM layers used to create a defensive VM. All three implemented D-VM layers
fulfill our security policy presented in Chapter 3 but differ from each other in
the detailed manner in which the policies are satisfied. The key characteristic of
the two SW D-VM implementations is that they use a different implementation
of the type-storing approach to counteract type confusion. The run-time type
information (integralData or reference) used to perform run-time checks can be
stored either in a type bit-map (memory optimization) or in the actual word size
of the microprocessor (speed optimization). The HW Accelerated D-VM uses a
third approach and stores the type information in an additional bit of the main
memory. Through this approach, the HW can easily store and check the type
information for every OS and LV entry. An overview of how the type-storing
policy is ensured by our D-VM implementations and a memory layout overview
are shown in Figure 4 and explained in detail in the next sections.

92 M. Lackner et al.

LV

Frame
Data

OS

LV

Frame
Data

OS

type
entry

entry typetype
bitmap entry

Word Storing D-VMBit Storing D-VM HW Accelerated D-VM

LV

Frame
Data

OS

Fig. 4. The Bit Storing D-VM stores the type information for every OS and LV entry
in a type bitmap. The Word Storing D-VM stores the type information below the
value in the reserved OS and LV spaces. The HW Accelerated D-VM holds the type
information as an additional type bit, which increases the memory size of a word from
8 bits to 9 bits.

Bit Storing D-VM: This D-VM layer implementation stores the type informa-
tion for every element on the OS and LV in a type bitmap. The type information
for every entry of the OS and LV is now represented by a one-bit entry. A problem
with this approach is that the run-time overhead is quite high because different
shift and modulo operations must be performed to store and read the type infor-
mation from the type bitmap. These operations (shift and modulo) are, for the
8051 architecture, computationally expensive operations and thus lead to longer
execution times. An advantage of the bit-storing approach is the low memory
overhead required to hold the type information in the type bitmap.

Word Storing D-VM: The run-time performance of the type storing and
reading process is increased by storing the type information using the natural
word size of the processor and data bus on which the memory for the OS and
LV is located. Every element in the OS and LV is extended with a type element
of a word size such that it can be processed very quickly by the architecture. By
choosing this implementation, the memory consumption of the type-storing pro-
cess increases compared with the previously introduced SW Bit Storing D-VM.
Pseudo-codes for writing to the top of the stack of the OS for the bit- and
word-storing approach are shown in Listings 1.2 and 1.3.

Listing 1.2. Operations needed to push an
element on the OS by the Bit Storing D-VM

dvm push integralData (value)
{

//push va lue onto OS and
// increase OS s i z e

OS[s i z e++] = value ;
// s t o r e type informat ion
// i n to type bitmap ,
//INT−>i n t e g ra lDa ta type

bitmap [s i z e /8] = INT<<(s i z e %8);
}

Listing 1.3. Operations needed to
push an element on the OS by theWord
Storing D-VM

dvm push integralData (value)
{

//push va lue onto OS
// increase OS s i z e

OS[s i z e++] = value ;
// s t o r e type informat ion
// i n to next memory word ,
//INT−>i n t e g ra lDa ta type

OS[s i z e++] = INT ;
}

A Defensive Virtual Machine Layer 93

HW Accelerated D-VM: Performing type and bound checks in SW to ful-
fill our security policy consumes a lot of computational power. Types must be
loaded, checked and stored for almost every bytecode. The bounds of the OS
and LV must be checked such that no bytecode performs an overflow. The HW
Accelerated D-VM layer uses specific HW protection units of the smart card
to accelerate these security checks. New protection units (bound protection and
type protection) are able to check if the current memory move (MOV) operation
is operating in the correct memory bounds. The type information for the OS and
LV entries is stored as an additional type bit for every main memory word. The
information is decoded into new assembly instructions to specify which memory
region (OS, LV or BA) and with which data type (integralData or reference) the
MOV operation should write or read data. An overview of the HW Accelerated
D-VM is shown in Figure 5. Depending on the assembly instruction, the HW
protection units perform four security operations:

– Check if the Java opcode is fetched from the current active BA.
– Check if the destination address of the operation is within the memory area

of the OS or LV. If the operation is not within these two bounded areas, a
HW security exception is thrown.

– For every write operation write the type decoded in the CPU instruction
into the accessed memory word.

– For every read operation, check if the stored type is equal to the type decoded
in the CPU instruction. If they are not equal, throw a hardware security
exception.

Bound
Protection

uses

Bound
Policy

Type
Policy

fulfill run-time policy

Type
Protection

co
nt
ro
la
cc
es
s

MOV_OS_reference

Typed Assembly Instructions

MOV_LV_reference

MOV_LV_integralData

MOV_OS_untyped

MOV_OS_integralData

Local Variables
(LV)

Operand Stack
(OS)

HW Protection Units

Control-Flow
Policy

MOV_BA

Bytecode Area
(BA)

CPU

Defensive VM API

Java Card VM

Memory

Fig. 5. Overview of the HW Accelerated D-VM implementation using new typed as-
sembly instructions to access VM resources (OS, LV and BA). Malicious Java bytecodes
violating our run-time policy will be detected by new introduced HW protection units.

94 M. Lackner et al.

5 Prototype Results

In this section, we present the overall computational overhead of the three im-
plemented D-VM layers and their main memory consumption. All of them are
compared with a VM implementation without the D-VM layer. The speed com-
parison is performed for different groups of bytecodes by self written micro-
benchmarks where all bytecodes under test are measured. These test programs
first perform an initialization phase where the needed operands for the bytecode
under test are written into the OS or LV. After the execution of the bytecode
under test the effects on the OS or LV are removed. Note that our smart card
platform has no data or instruction cache. Therefore, no caching effects must be
taken into account for all test programs.

5.1 Computational Overhead

Speed comparisons for specific bytecodes are shown in Figure 6. For example, the
Java bytecode sload requires 148% more execution time for the Word Storing
D-VM. For the Bit Storing D-VM, the execution overhead is 212%. The in-
creased overhead is because of the expensive calculations used to store the type
information in a bitmap. For the HW Accelerated D-VM, the execution speed
decreases by only 4% because all type and bound checks are performed using
HW. Additional run-time statistics for groups of bytecodes are listed in Table 1.
As expected, the Bit Storing D-VM consumes the most overall run-time, with
an increase of 208%. The Word Storing D-VM needs 142% more run-time. The
HW Accelerated D-VM has only 6% more overhead.

HW Accelerated D-VM
Word Storing D-VM
Bit Storing D-VM

0%
50%

100%
150%
200%
250%

400%

300%
350%

sload sadd saload bspush ifeq overall

Fig. 6. Speed comparison of individual bytecodes for the different D-VM layer imple-
mentations proposed in this work. The results are compared with a VM without the
D-VM layer.

5.2 Main Memory Consumption

The HW Accelerated D-VM requires one type bit per 8 bits of data to store
the type information during run-time. This results in an overall main memory
increase of 12.5%. The Word Storing D-VM requires in the worst case 33% more
memoy because one type byte holds the type information for two data bytes.

A Defensive Virtual Machine Layer 95

Table 1. Speed comparison for different groups of bytecodes compared with a VM
without the D-VM layer

Bytecode Groups HW Accelerated D-VM Word Storing D-VM Bit Storing D-VM

Arithmetic/Logic +7% +146% +240%
LV Access +5% +185% +243%
OS Manipulation +5% +151% +231%
Control Transfer +7% +113% +173%
Array Access +5% +130% +166%

Overall +6% +142% +208%

The Bit Storing D-VM requires approximately 6.25% more memory in the case
in which the entire memory is filled with OS and LV data. This is because the
Bit Storing D-VM requires one type bit per 16 bits of data.

6 Conclusions and Future Work

This work presents a novel security layer for the virtual machine (VM) on Java
Cards. Because it is intended to defend against fault attacks (FAs), it is called
the defensive VM (D-VM) layer. This layer provides access to security-critical
resources of the VM, such as the operand stack, local variables and the bytecode
area. Inside this layer, security checks, such as type checking, bound checking
and control-flow checks, are performed to protect the card against FAs. These
FAs are executed during run-time to change the control and data flow of the
currently executing bytecode.

By storing different implementations of the D-VM layer on the card, it is
possible to choose the appropriate security implementation based on the ac-
tual security level of the card. Through this approach, the number of security
checks can be increased during run-time by switching among different D-VM
implementations. Furthermore, it is possible to assign a trustworthy applet a
low security level, which results in high execution performance, and vice versa.
One D-VM layer implementation can be, for example, low security with high
execution speed or high security with low execution speed. Another advantage
is the concentration of the security checks inside the layer.

To demonstrate this novel security concept, we implemented three D-VM
layers on a smart card prototype. All three layers fulfill the same security policy
(control-flow, type and bound) for bytecodes but differ in their implementation
details. Two D-VM layer implementations are fully implemented in software but
differ in the manner in which the type information is stored. The Bit Storing
D-VM has the highest run-time overhead, 208%, but the lowest memory increase,
6.25%. The Word Storing D-VM decreases the run-time overhead to 142% but
consumes approximately 33% more memory. The HW Accelerated D-VM uses
dedicated Java Card HW to accelerate the run-time verification process and has
an execution overhead of only 6% and a memory increase of 12.5%.

96 M. Lackner et al.

In future work, we will focus on the question of which sensor data should be
used to increase the internal security of the Java Card. Another question is how
many security states are required and how much they differ in their security
needs.

Acknowledgments. The authors would like to thank the Austrian Federal
Ministry for Transport, Innovation, and Technology, which funded the CoCoon
project under the FIT-IT contract FFG 830601. We would also like to thank our
project partner NXP Semiconductors Austria GmbH.

References

1. Akram, R., Markantonakis, K., Mayes, K.: A Paradigm Shift in Smart Card Own-
ership Model. In: 2010 International Conference on Computational Science and Its
Applications (ICCSA), pp. 191–200 (March 2010)

2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. Proceedings of the IEEE 94(2), 370–382 (2006)

3. Barbu, G., Andouard, P., Giraud, C.: Dynamic Fault Injection Countermeasure. In:
Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 16–30. Springer, Heidelberg
(2013)

4. Barbu, G., Duc, G., Hoogvorst, P.: Java Card Operand Stack: Fault Attacks, Com-
bined Attacks and Countermeasures. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 297–313. Springer, Heidelberg (2011)

5. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining Fault
and Logical Attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.)
CARDIS 2010. LNCS, vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

6. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.-L.: Combined Software and Hardware
Attacks on the Java Card Control Flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 283–296. Springer, Heidelberg (2011)

7. Bouffard, G., Lanet, J.-L.: The Next Smart Card Nightmare. In: Naccache, D.
(ed.) Cryphtography and Security: From Theory to Applications. LNCS, vol. 6805,
pp. 405–424. Springer, Heidelberg (2012)

8. Bouffard, G., Lanet, J.-L., Machemie, J.-B., Poichotte, J.-Y., Wary, J.-P.: Evalu-
ation of the Ability to Transform SIM Applications into Hostile Applications. In:
Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 1–17. Springer, Heidelberg
(2011)

9. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: attacks
and defenses for the vulnerability of the decade. In: Foundations of Intrusion Tol-
erant Systems, 2003 [Organically Assured and Survivable Information Systems],
pp. 227–237 (2003)

10. Dubreuil, J., Bouffard, G., Lanet, J.-L., Cartigny, J.: Type Classification against
Fault Enabled Mutant in Java Based Smart Card. In: 2012 Seventh International
Conference on Availability, Reliability and Security (ARES), pp. 551–556 (August
2012)

11. Hamadouche, S., Bouffard, G., Lanet, J.-L., Dorsemaine, B., Nouhant, B., Ma-
gloire, A., Reygnaud, A.: Subverting Byte Code Linker service to characterize Java
Card API. In: Proceedings of the 7th Conference on Network and Information Sys-
tems Security (SAR-SSI), pp. 122–128 (2012)

A Defensive Virtual Machine Layer 97

12. IEEE: Open SystemC Language Reference Manual IEEE Std 1666-2005, IEEE
13. Iguchi-Cartigny, J., Lanet, J.-L.: Developing a Trojan applets in a smart card.

Journal in Computer Virology 6, 343–351 (2010)
14. Lackner, M., Berlach, R., Loinig, J., Weiss, R., Steger, C.: Towards the Hardware

Accelerated Defensive Virtual Machine – Type and Bound Protection. In: Mangard,
S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 1–15. Springer, Heidelberg (2013)

15. Leroy, X.: Bytecode verification on Java smart cards. Software: Practice and Ex-
perience 32(4), 319–340 (2002)

16. Markantonakis, K., Mayes, K., Tunstall, M., Sauveron, D., Piper, F.: Smart card
security. In: Nedjah, N., Abraham, A., de Macedo Mourelle, L. (eds.) Computa-
tional Intelligence in Information Assurance and Security. SCI, vol. 57, pp. 201–233.
Springer, Heidelberg (2007), http://dx.doi.org/10.1007/978-3-540-71078-3_8

17. Mostowski, W., Poll, E.: Malicious Code on Java Card Smartcards: Attacks and
Countermeasures. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS,
vol. 5189, pp. 1–16. Springer, Heidelberg (2008)

18. Oracle: Runtime Environment Specification. Java Card Platform, Version 3.0.4,
Classic Edition (2011)

19. Oracle: Virtual Machine Specification. Java Card Platform, Version 3.0.4, Classic
Edition (2011)

20. Razafindralambo, T., Bouffard, G., Thampi, B.N., Lanet, J.-L.: A Dynamic Syntax
Interpretation for Java Based Smart Card to Mitigate Logical Attacks. In: Thampi,
S.M., Zomaya, A.Y., Strufe, T., Alcaraz Calero, J.M., Thomas, T. (eds.) SNDS
2012. CCIS, vol. 335, pp. 185–194. Springer, Heidelberg (2012)

21. Sauveron, D.: Multiapplication smart card: Towards an open smart card? Informa-
tion Security Technical Report 14(2), 70–78 (2009); Smart Card Applications and
Security

22. Séré, A.A.K., Iguchi-Cartigny, J., Lanet, J.-L.: Checking the Paths to Identify Mu-
tant Application on Embedded Systems. In: Kim, T.-H., Lee, Y.-H., Kang, B.-H.,
Śl ↪ezak, D. (eds.) FGIT 2010. LNCS, vol. 6485, pp. 459–468. Springer, Heidelberg
(2010)

23. Séré, A.A.K., Iguchi-Cartigny, J., Lanet, J.-L.: Evaluation of Countermeasures
Against Fault Attacks on Smart Cards. International Journal of Security and Its
Applications 5(2), 49–61 (2011)

24. Vertanen, O.: Java Type Confusion and Fault Attacks. In: Breveglieri, L., Koren,
I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 237–251.
Springer, Heidelberg (2006)

25. Vetillard, E., Ferrari, A.: Combined Attacks and Countermeasures. In: Goll-
mann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035,
pp. 133–147. Springer, Heidelberg (2010)

http://dx.doi.org/10.1007/978-3-540-71078-3_8

A Forward Privacy Model for RFID

Authentication Protocols

Daisuke Moriyama, Miyako Ohkubo, and Shin’ichiro Matsuo

NICT, 4-2-1, National Institute of Information and Communication s Technology,
2-2-1 Nukui-Kitamachi, Koganei-shi, Tokyo 184-8795 Japan

{dmoriyam,m.ohkubo,smatsuo}@nict.go.jp

Abstract. In this paper, we propose a new variant of indistinguishability-
based security model for the RFID authentication protocol, which allows
an adversary to obtain an authentication result and secret key of a target
tag. Ng et al. showed that symmetric-key based RFID authentication pro-
tocols cannot be resilient to the above information leakage simultaneously
in the Paise-Vaudenay security model. We review the existing result and
extend the Juels-Weis security model to satisfy these properties by using a
suitable restriction. Moreover, we give two example protocols that satisfy
the modified security model.

Keywords: RFID, authentication, security model, forward-privacy.

1 Introduction

The RFID authentication protocol is an authentication protocol in which an
RFID reader communicates with RFID tags and authenticates them. This pro-
tocol is considered to be one of the most important techniques for construct
the world of “Internet of Things”, in which all objects automatically interact
with each other with wireless communication [19]. However, many people worry
about their privacy with RFID attached objects (e.g., CASPIAN). Therefore, the
RFID authentication protocol requires that the identity of RFID tags should be
kept secret (anonymity) and any transaction should not be linked (unlinkability),
except from legitimate RFID readers.

Since 2003, many RFID authentication protocols have been investigated and
several protocols have been shown to be insecure (see [5]). The security of these
protocols is evaluated by using a cryptographic security model and one of the
goals of the RFID authentication protocol is to satisfy this model. The Paise-
Vaudenay security model [17] divides the privacy level into eight categories and
these are roughly divided into four groups: whether a malicious adversary can
obtain an authentication result or not (wide/narrow), and whether the internal
secret key of the target tag is finally revealed or not (forward/weak). However,
Ng et al. classified symmetric-key based RFID authentication protocols into four
types and showed that these protocols only satisfy either narrow-forward privacy
or wide-weak privacy [8]. In particular, their result showed that authentication
protocols which have a key update mechanism and resynchronization property,

L. Cavallaro and D. Gollmann (Eds.): WISTP 2013, LNCS 7886, pp. 98–111, 2013.
c© IFIP International Federation for Information Processing 2013

A Forward Privacy Model for RFID Authentication Protocols 99

satisfy only wide-weak privacy, which can be achieved by protocols in which the
secret key is always fixed. Coisel and Martin suspected that the provable security
level of the SK-based protocol [9] (which does not require any secret key update)
and O-FRAP (key update mechanism is clearly shown) are equivalent [5].

In this paper, we propose a variant of the Juels-Weis security model [11]
to investigate a suitable security model for RFID authentication protocol. Our
model allows an adversary to obtain an authentication result and the secret key
of a target tag. Note that we cannot simply send the secret key to the adversary
since the resulting model is not achievable. Instead, we add the rule that the
reader and the target tags must properly execute a session before the adversary
obtains the secret key of the target tag. If the current secret key is appropriately
updated in an honest execution, the adversary cannot distinguish which tag
communicated with the reader in the past executions. We show that O-FRAP
[7] and a variant of the OSK protocol [15] satisfy the modified security model.
Furthermore, we show another separation based on the classification in [8] in
which the RFID tag can interact with the reader concurrently.

2 Preliminaries

2.1 Notations

We denote a set of k-bit string as {0, 1}k. 1k is a k-bit string of 1. x
U← X

means that variable x is randomly chosen from set X . If f is a probabilistic

algorithm, b
R← f(a) denotes that the output from f on input a is assigned to b.

Pr[f(a) → b] evaluates the probability that the algorithm f outputs b on input
a. We say that a probability P (k) is negligible in k if for any polynomials f it
holds that P (k) ≤ 1/f(k) for sufficient large k.

2.2 Pseudo-random Generator

Let k be a security parameter. The pseudo-random generator is a deterministic
algorithm g that takes as input 1k and truly random secret x ∈ {0, 1}k and
outputs g(x) which is computationally indistinguishable from random string y
(|g(x)| > |x|). In this paper, we treat the expansion factor as k and consider
pseudo-random generator g : {0, 1}k → {0, 1}2k. The advantage of a probabilistic
polynomial time (PPT) adversary A for pseudo-random generator g is defined

by AdvPRGA,g (k) := |Pr[A(1k, g(x)) → 1 | x U← {0, 1}k] − Pr[A(1k, y) → 1 | y U←
{0, 1}2k]|.

Definition 1. A deterministic algorithm g : {0, 1}k → {0, 1}2k is pseudo-random
generator if for any PPT adversary A, AdvPRGA,g (k) is negligible in k.

We split the above pseudo-random generator g and consider two functions (g1, g2)
such that the output of these functions are k-bit where y1 = g1(x), y2 = g2(x)
and y1‖y2 := g(x). Let xi := gi2(x0) be i-round iterated function with input
x0. When we consider yi := g1(xi), Berbain et al. proved that the function G :

100 D. Moriyama, M. Ohkubo, and S. Matsuo

{0, 1}k → {0, 1}2kn+k s.t. ({(xi, yi)}0≤i≤n, xn+1) := G(x0) is also the pseudo-
random generator [2]. In particular, they showed that for any PPT adversary A,
there exists a PPT time algorithm B such that AdvPRGA,G(k) ≤ n2 · AdvPRGB,g (k).

2.3 Pseudo-random Function

The pseudo-random function is a function that takes as input a truly random
secret (seed) x ∈ {0, 1}k and k-bit string, which output is computationally in-
distinguishable from truly random function RF. The advantage of an adversary
A against the pseudo-random function f : {0, 1}k → {0, 1}k → {0, 1}k is defined

as AdvPRFA,f (k) := |Pr[Af(x,·)(1k) → 1 | x U← {0, 1}k]− Pr[ARF(1k) → 1]|.

Definition 2. We say that f : {0, 1}k → {0, 1}k is pseudo-random function if
for any PPT adversary A, AdvPRFA,f (k) is negligible in k.

3 Security Model for RFID Authentication

The RFID authentication protocol is an authentication protocol between the
RFID reader R and RFID tag t ∈ T . The RFID reader runs a setup algorithm

Setup and generates a public parameter and secret key (pk, sk)
R← Setup(1k).

The reader and each tag share a secret key in the symmetric-key based protocol.
After the initialization, the reader and each tag communicate with each other in
a wireless setting during the authentication phase. Finally, they output “accept”
or “reject” as a result. Following the previous security models [11,17], we assume
that the tag only performs the sequential session with the reader, though the
reader can interact with a lot of tags concurrently. We consider an active ad-
versary as one who can modify any communication message between the reader
and tags.

The RFID authentication protocol requires correctness, security and privacy
andmany securitymodels are provided to formalize them [1,2,4,6,7,10,11,14,17,18].
In this paper, we omit detailed definitions for correctness and security since almost
all security models commonly define them. Correctness means that the reader ac-
cepts the RFID tag when the session is completed and the communicationmessage
is not modified. Security requires that the reader reject the session when the com-
munication is modified by the adversary. In the following, we concentrate on the
definition of privacy in the security model, which we call the “privacy model”.

3.1 Juels-Weis Privacy Model

Juels and Weis introduced an indistinguishability based privacy definition for
the RFID authentication protocol in 2007 [10,11].

Consider the following experimentExpIND-b
Π,A (k) betweenadversaryA := (A1,A2)

and a challenger in an RFID authentication protocolΠ .

A Forward Privacy Model for RFID Authentication Protocols 101

ExpIND-b
Π,A (k)

(pk, sk)
R← Setup(1k);

(t∗0, t∗1, st1)
R← AReaderInit,Send,Corrupt,Result

1 (pk,R, T);
T ′ := T \ {t∗0, t∗1};
b′ R← AReaderInit,Send,Corrupt,Result

2 (R, T ′, I(t∗b), st1);
Output b′

The adversary A can interact with the reader and many tags in T by using
the oracle query {ReaderInit, Send,Corrupt,Result}. ReaderInit(1k) activates the
session by the reader and A sends an arbitrary message m by using Send(ti,m)
(ti ∈ T). In addition, the secret key of the tag can be obtained by Corrupt(ti)
and Result(sid) outputs the authentication result (namely, accept or reject) of
the session sid. When A outputs two tags (t∗0, t

∗
1) in T , the challenger flips a coin

b
U← {0, 1} and A interacts with t∗b anonymously (I(t∗b) means the anonymous

access to the tag). A cannot issue Corrupt query to (t∗0, t
∗
1) in this model. The

advantage of A in this experiment is defined by AdvIND
Π,A(k) = |Pr[ExpIND-0

Π,A (k) →
1]− Pr[ExpIND-1

Π,A (k) → 1]|.
Definition 3. An RFID authentication protocol Π satisfies Juels-Weis privacy
model if for any PPT adversary A, AdvIND

Π,A(k) is negligible in k.

3.2 Paise-Vaudenay Privacy Model

Paise and Vaudenay defined a simulation based privacy model for the
RFID authentication protocol. In this model, the adversary can issue a
{CreateTag,DrawTag,Free} query in addition to {ReaderInit, Send,Corrupt,
Result} in the Juels-Weis privacy model. The CreateTag query registers a new free
tag but this tag still cannot communicate with the reader. Instead, the DrawTag
query converts the free tag into a virtual tag, which can interact with the reader
(the adversary can input arbitrary tags and a distribution to transform the tag)
and the Free query converts the virtual tag into the original free tag. This model
considers a 4 × 2 matrix for the adversary’s capabilities in order to classify the
privacy level as follows.

1. For the Result query:
(a) Wide — The adversary can issue the result query.
(b) Narrow — The adversary cannot issue the result query.

2. For the Corrupt query:
(a) Strong — The adversary can issue the corrupt query at any time.
(b) Destructive — Corrupted tags execute no session.
(c) Forward — The adversary cannot issue any other queries after the cor-

rupt query is sent to a tag.
(d) Weak — The adversary cannot issue the corrupt query.

When we considerO1 := {CreateTag,DrawTag,Free,Corrupt} andO2 := {Launch,
Send,Result}, wide-strong privacy is described by the following experiment against
an RFID authentication protocol Π .

102 D. Moriyama, M. Ohkubo, and S. Matsuo

ExpSIM-0Π,A (k)

(pk, sk)
R← Setup(1k);

b
R← AO1,O2(pk,R):

Output b

ExpSIM-1Π,A,S(k)

(pk, sk)
R← Setup(1k);

b
R← AO1,S(pk)(pk):

Output b

The adversary A can access the reader and tags with O2 directly in the ex-
periment on the left-side, but the right-side experiment requires a simulator S
to simulate its interaction. Note that S can obtain arbitrary information corre-
sponding to the O1 query issued by A. The advantage of the adversary is defined
by AdvSIMΠ,A,S(k) = |Pr[ExpSIM-0Π,A (k) → 1]− Pr[ExpSIM-1Π,A,S(k) → 1]|.

Definition 4. An RFID authentication protocol Π satisfies the Paise-Vaudenay
privacy model if for any PPT adversary A, there exists an algorithm S such that
AdvSIMΠ,A,S(k) is negligible in k.

Note that we can define the other privacy levels in a similar way. In particular,
we focus mainly on wide-forward privacy and narrow-weak privacy in the Paise-
Vaudenay privacy model.

Recently, Moriyama et al. showed several relationships between Juels-Wies
and Paise-Vaudenay privacy model [13]. But the strongest privacy level requires
public key cryptography [16] and the weakest privacy model does not include
any tag’s corruption. The motivation of the paper is to investigate a suitable
privacy model which a symmetric-key based protocol can satisfy the provably
security.

4 Desynchronization Problem in RFID Authentication

In 2009, Ng et al. revisited the Paise-Vaudenay privacy model from the per-
spective of key synchronization [8]D They classified the symmetric key based
RFID authentication protocols on the basis of the key update and showed the
limitation of archiving the privacy level in the Paise-Vaudenay privacy model.

Type 0. Any secret key of the protocol is not updated.
Type 1. The tag always updates the secret key whenever the session is exe-

cuted. The tag does not authenticate the reader in these types of protocols.
Type 2a. After the reader authenticates the tag, the secret key of the tag is

updated when the tag authenticates the reader.
Type 2b. Before the reader authenticates the tag, the secret key of the tag

is updated. Different from Type 1, the tag authenticates the reader in this
type of protocol. If the tag downgrades its secret key when the reader au-
thentication fails (e.g., the tag keeps the early state of the secret key for this
property), we call it the “type 2b′ protocol”.

Type 0: Type 0 protocols do not support narrow-forward privacy since there is
no key update mechanism. Consider the following steps to break narrow-forward
privacy: Register two tags (t0, t1) with the CreateTag query and generate one
virtual tag with the DrawTag query with input (t0, t1) and uniformly random

A Forward Privacy Model for RFID Authentication Protocols 103

distribution. Observe a session between the virtual tag and the reader, convert
the virtual tag to the free tag with the Free query and obtain the secret keys with
the Corrupt query . Then, the adversary easily checks which tag is communicated
to the reader, which no simulator can do without a probability higher than 1/2.

Type 1: Type 1 protocols do not support wide-weak privacy since the tag al-
ways updates its secret key. From its property, this kind of protocol generally
defines qmax which is the upper bound for resynchronizing the secret key between
the reader and tag. Therefore, Ng et al. described the following steps:

1. Generate two tags (t0, t1) with the CreateTag query.
2. Convert t0 to vtag with the DrawTag query.
3. Issue the SendTag query to vtag to execute qmax + 1 sessions, but interfere

with the message being sent to the reader after the tag updates its secret
key.

4. Convert vtag back to t0 with the Free query.
5. Generate one virtual tag with the DrawTag query with input (t0, t1) and a

uniformly random distribution.
6. Execute a session between the virtual tag and the reader normally (the

adversary only eavesdrops on the communication).
7. Obtain the authentication result of the above session with the Result query.

When t0 is chosen by the second DrawTag query, the reader cannot resynchro-
nize with the tag, so it outputs “reject”. However, the reader accepts the virtual
tag when t1 is chosen by the query. Since the adversary can learn which tag is
chosen, type 1 protocols cannot satisfy wide-weak privacy.

Type 2a: A key update algorithm for the tag is executed only if the tag au-
thenticates the reader in the type 2a protocols. When the adversary modifies
the communication messages from the reader and forces the tag to reject all
sessions, the tag cannot update its secret key, so it executes all sessions with a
fixed secret key. The adversary can learn which tag executes the session when the
adversary issues the Corrupt query in the final step of the experiment. Therefore
these protocols do not satisfy narrow-forward privacy.

Type 2b and 2b′: In these types, the tag runs the key update algorithm be-
fore the reader. Type 2b protocols cannot satisfy wide-weak privacy since the
secret key transition for these protocols is equivalent to that for the type 1 proto-
cols, regardless of the reader authentication. When the authentication protocol
is classified in type 2b′, the adversary can fix the secret key of the tag when
the communication message from the reader is erased and the adversary sends
a random message. Eventually, the privacy level of the type 2b′ protocols is the
same as that of the type 2a protocols (narrow-forward privacy failure).

This result shows that any symmetric key based RFID authentication protocol
cannot satisfy both wide-weak privacy and narrow-forward privacy in the Paise-
Vaudenay privacy model. However, we consider that the privacy level of the type
2a and 2b′ protocols are not equivalent to type 0 protocols. The type 2a and 2b′

104 D. Moriyama, M. Ohkubo, and S. Matsuo

protocols clearly specify the key update/downgrade procedure to resynchronize
the secret key and provide the notion of “forward-privacy”.

5 The Modified Forward Privacy Model

In this section, we illustrate a variant of the Juels-Weis privacy model that al-
lows the adversary to issue the Corrupt query to the challenge tags. Note that
the Paise-Vaudenay privacy model does not explicitly define which and when a
tag is considered to be the target. In contrast, the Juels-Weis privacy model is
easy to modify since the interaction between the challenge tag and adversary is
clear. The classification described in Section 4 is generally applied to the RFID
authentication protocol. If we purposely add the Corrupt query during the anony-
mous access phase of this model, no symmetric key based RFID authentication
protocol satisfies the modified model because the Result query is given to the
adversary.

Instead, if the RFID tag can normally interact with the reader (this means
the adversary only eavesdrops on the communication) and resynchronization is
completed, the adversary cannot trace which tag interacts with the reader even
when the current secret key of the tag is revealed (of course, we assume that the
updated key is hard to invert).

Consider the following game between the challenger and adversary A :=

(A1,A2,A3) based on the Juels-Weis privacy model. Let π
R← Execute(R, t)

be one normal execution of the session between the reader and tag t, and π
denotes the communication message.

ExpIND∗-b
Π,A (k)

(pk, sk)
R← Setup(1k);

(t∗0, t
∗
1, st1)

R← AReaderInit,Send,Corrupt,Result
1 (pk,R, T);

T ′ := T \ {t∗0, t∗1};
st2

R← AReaderInit,Send,Result
2 (R, T ′, I(t∗b), st1);

π∗
b

R← Execute(R, t∗b), π
∗
1−b

R← Execute(R, t∗1−b);

b′ R← AReaderInit,Send,Corrupt,Result
3 (R, T , π∗

b , π
∗
1−b, st2):

Output b′

The advantage of the adversary in the modified model is defined by AdvIND∗
Π,A (k) =

|Pr[ExpIND∗-0
Π,A (k) → 1]− Pr[ExpIND∗-1

Π,A (k) → 1]|.
We add the honest execution which the reader and tag communicate without

the adversary’s interruption. Instead, the adversary can issue the Corrupt query
to target tags t∗0 and t∗1 after the honest execution from the original Juels-Weis
privacy model. If the normal execution securely updates the secret key of the
reader and tag, this results in the privacy of the challenge tags for the type 2a
and 2b′ protocols. The adversary A3 can obtain the secret key of the target tag
and easily break the privacy for type 0 protocols (e.g., SK-based protocol [9,5]).

A Forward Privacy Model for RFID Authentication Protocols 105

Definition 5. An RFID authentication protocol Π satisfies the modified Juels-
Weis privacy model if for any PPT adversary A, AdvIND∗

Π,A (k) is negligible in
k.

In this paper, we only concentrate on the modification of the Juels-Weis privacy
model because the simulation-based privacy model does not explicitly define
which is the actual target from the malicious adversary. So it is difficult to
insert the honest execution to the Paise-Vaudenay privacy model Note that if
we omit the honest execution in the modified model, we can easily describe an
attack scenario for any symmetric key based RFID authentication protocols as in
Section 4. Also note that the honest communication between the reader and tag
must be executed after the anonymous communication phase is finished. Billet,
Etrog and Gilbert formalized the forward privacy model such that the honest
execution occurs before the anonymous communication [3]. However, their model
is not achievable since such a honest execution is useless and does not prevent
any of the attacks described in Section 4 (Specifically, their proposed protocol
PEPS falls into a type 2a protocol and does not satisfy their privacy model).

6 Suitable RFID Authentication Protocols

6.1 O-FRAP

O-FRAP is an RFID authentication protocol proposed by Li, Burmester and
de Medeiros in 2007 [7]. This protocol falls into type 2a and does not hold
narrow-forward privacy [17]. In this paper, we show that O-FRAP satisfies the
modified privacy model. Remark that O-FRAP satisfies universally composable
(UC) security, but [7] does not provide any relationship between their model and
other security models. So the adequateness of the UC definition and its protocol
described in [7] is not investigated. Our result shows that a UC-secure protocol
also holds provable security in the indistinguishability-based privacy model.

Let k be a security parameter, f : {0, 1}k × {0, 1}2k → {0, 1}4k be pseudo-
randomfunctionand �be the total number of tags in theprotocol.Each tag contains
its secret key ski and nonce r2. The reader keeps its database {ski, ski.old}1≤i≤�

which contains the current and previous secret keys of each tag. The reader and a
tag ti execute the following authentication.

1. The reader chooses r1
U← {0, 1}k and sends it to the tag.

2. When the tag ti obtains r1, it computes (rtemp, s2, s3, sk
′
i) := f(ski, r1‖r2)

and sends (r2, s2) to the reader. Then the nonce r2 is updated as r2 := rtemp.
3. Upon receiving (r2, s2), the reader performs the following:

– Compute (·, s′′2 , s′′3 , sk′′i) := f(ski, r1‖r2) for 1 ≤ i ≤ � and check if s′′2 =
s2. If so, set ski.old := ski, ski := sk′′i , s

′
3 := s′′3 and accept the tag.

– If s′′2 = s2 where (·, s′′2 , s′′3 , sk′′i) := f(ski.old, r1‖r2) for some 1 ≤ i ≤ �,
the tag sets ski := sk′′i , s

′
3 := s′′3 and accepts the tag.

– Otherwise, select s′3
U← {0, 1}k and reject all tags.

106 D. Moriyama, M. Ohkubo, and S. Matsuo

Finally, the reader sends s′3 to the tag1.

4. When the tag receives s′3, it checks whether s
′
3 = s3. If the equation holds,

then the tag updates the secret key as ski := sk′i and accepts the reader.
Otherwise, the tag outputs “reject”.

The main building block of this protocol is the challenge-response authentication
with the pseudo-random function f . In addition, the reader keeps the previous
secret key of each tag to resynchronize the secret key to the tag when the desyn-
chronization occurs.

Theorem 1. Assume that f is a pseudo-random function. Then, O-FRAP sat-
isfies the modified Juels-Weis privacy model.

Proof. Let q be a upper bound by which the RFID tag performs the key update
procedure. Note that q is bounded by the adversarial oracle query and it is at
most polynomial in k. Si is the event that the adversary outputs 1 in Game i.

Game 0. This is the original game between the challenger and adversary in
the modified Juels-Weis privacy model.
Game 1-(i, j). We gradually change the output of all the sessions executed in
this game:

1. For any session executed between the reader and tag ti′ (t
′ < i), the output

of the pseudo-random function is changed with a uniformly random string
over {0, 1}4k.

2. For i-th tag ti,

2-1. When the number of key update is less than j (j′ < j), the output of
the pseudo-random function is changed with a uniformly random string

(rtemp, s2, s3, sk
′
j′)

U← {0, 1}4k.
2-2. If the number of key update j′ holds j′ ≥ j, the output of the session

is computed by the pseudo-random function f .

3. For any session executed between the reader and tag ti′ (i
′ > i), all output

and update keys are computed by the pseudo-random function.

Lemma 1. Pr[S0] = Pr[S1-(1,0)].

This transformation is purely conceptual and there is no difference between these
games.

Lemma 2. For all 1 ≤ i ≤ � and 0 ≤ j ≤ q, there exists an algorithm B for
pseudo-random function f such that |Pr[S1-(i,j)]− Pr[S1-(i,j+1)]| ≤ AdvPRFB,f (1

k).

1 We slightly modify O-FRAP so that the reader does not abort the session and output
a random variable even when the search procedure is failed. Otherwise, the Result
query becomes meaningless since the adversary can trivially know the authentication
result.

A Forward Privacy Model for RFID Authentication Protocols 107

Proof. If the adversary can distinguish the difference between Game 1-(i, j) and
Game 1-(i, j+1) with non-negligible probability, then there exists an algorithm
B that breaks the security of the pseudo-random function. The only difference
between these games is that the outputs come from the pseudo-random function
or truly random string when the tag ti executes the sessions with j-th updated
key.

The oracle queries which algorithm B can issue is either the pseudo-random
function f(ski, ·) or truly random function RF. B generates secret key of the tag
except ti in the set up and simulates the session between the reader and tags. If
the number of key update on ti is less than j, we set uniformly random string over
{0, 1}4k as the output of the session. Similarly, if the key update on ti is executed
more than j, we computes the output with the pseudo-random function. If the
number of key update on ti is j, B computes the output as follows. When A
issues ReaderInit, B generates r1

U← {0, 1}k and sends r1 to A. Upon receiving

SendTag(ti, r
′
1) from the adversary,B chooses r2

U← {0, 1}k and issues r′1‖r2 to the
oracle query. The output of the tag in this session consists of the response from
the oracle (rtemp, s2, s3, sk

′
j′) ∈ {0, 1}4k. When the adversary sends (r1, r

′
2, s

′
2) to

the reader, B issues r1‖r′2 to the oracle and verifies the message as the protocol
specification. If the verification is accepted, B set s3 as the output of the reader.

Otherwise, the output of the reader is set as s3
U← {0, 1}k. Finally, when A

outputs a bit b, B outputs the same bit.
If the pseudo-random function is given to B, the above game is equivalent to

Game 1-(i, j) from the view point of the adversaryA. Otherwise, the distribution
of the message is the same as Game 1-(i, j+1). Therefore we have |Pr[S1-(i,j)]−
Pr[S1-(i,j+1)]| ≤ AdvPRFB,f (1

k).

Lemma 3. For any 1 ≤ i ≤ �, we have Pr[S1-(i,q+1)] = Pr[S1-(i+1,0)].

It is clear that 3 hold since the game transformation between them is purely
conceptual (the distribution is equivalent).

From these lemmas, we can transform Game 0 to Game 1-(� + 1, 0). This
time, all the output of the session in the last game is independently chosen and
truly random. That is, the probability that A can guess which tag is selected
in the anonymous communication phase is 1/2. Thanks to Execute, the secret
key of the tag is completely updated and its secret key is uniformly chosen and
independent from the previous sessions. Therefore the adversary can obtain no
information about the past session of the tag.

Finally, we obtain AdvIND∗
Π,A (k) ≤ �(q + 1) · AdvPRFB (1k).

6.2 The Modified OSK Protocol

The OSK Protocol is an RFID authentication protocol provided by Ohkubo et
al. in 2003 and this is one of the type 1 protocols [15]. In this paper, we add the
reader authentication and the roll back property for the secret key to the OSK
protocol. We show that the modified protocol satisfies IND∗-privacy.

108 D. Moriyama, M. Ohkubo, and S. Matsuo

Consider that k is a security parameter, g : {0, 1}k → {0, 1}k × {0, 1}k is
a pseudo-random generator and f : {0, 1}k × {0, 1}k → {0, 1}2k is a pseudo-
random function. The reader keeps {ski}i and each tag contains its secret key
sk′i where (·, sk′i) = g(ski).

1. The reader chooses r1
U← {0, 1}k and sends it to the tag.

2. When the tag ti obtains r1, it performs the following:
(a) Compute (u′

1, u
′
2) := g(sk′i).

(b) Select r2
U← {0, 1}k and compute s2 := f(u′

1, r1‖r2).
(c) Set ski.temp := ski and ski := u′

2.
(d) Send (r2, s2) to the reader.

3. Upon receiving (r2, s2), the reader computes (u1, u2) := g(ski) for 1 ≤ i ≤ �
and performs the following:
– Compute (u′′

1 , u
′′
2) := g(u2) and check s2 = f(u′′

1 , r1‖r2). If so, compute
s′3 := f(u′′

1 , r2‖r1), set ski := u2 and accept the tag.
– If s2 = f(u1, r1‖r2) compute s′3 := f(u1, r2‖r1) and accept the tag.

– Otherwise, select s′3
U← {0, 1}k and reject all tags.

Finally, the reader sends s′3 to the tag.
4. When the tag receives s′3, it checks whether s′3 = f(ski.temp, r2‖r1) or

s′3 = f(ski, r2‖r1). If either equation holds, then the tag accepts the reader.
Otherwise, the tag sets ski := ski.temp and output “reject”.

Similar to the original OSK protocol, the updated secret key is deterministically
defined by the current secret key. Thus the reader can precompute this value if
the reader has enough resources. Therefore the reader can find the tag’s identity
from its database.

Theorem 2. If g is a pseudo-random generator and f is a pseudo-random func-
tion, the above protocol satisfies the modified Juels-Weis privacy model.

Proof. Let q be an upper bound by which the RFID tag performs the key up-
date procedure. Note that q is bounded by the adversarial oracle query and it
is at most polynomial in k. Si is the event that the adversary outputs 1 in Game i.

Game 0. This is the original attack game in the modified Juels-Weis privacy
model.
Game 1-i. We gradually change the output of the pseudo-random generator g
as follows:

1. For any session executed between the reader and tag ti′ (t
′ < i), the output

of the pseudo-random generator g is changed with a uniformly random string
over {0, 1}2k.

2. For any session executed between the reader and tag ti′ (t
′ ≥ i), all output

and update keys are computed by the pseudo-random generator.

Game 2-(i, j). We modify the output of the pseudo-random function f in the
same fashion as O-FRAP.

A Forward Privacy Model for RFID Authentication Protocols 109

Lemma 4. We have Pr[S0] = Pr[S1-0].

This change is purely conceptual and it is clear that Pr[S0] = Pr[S1-0].

Lemma 5. For any 0 ≤ i ≤ �− 1, there exists an algorithm B such that |S1-i −
S1-(i+1)| ≤ AdvPRGB,G(k).

Proof. If the adversary can distinguish between Game 1-i and Game 1-(i + 1),
we construct an algorithm B that breaks the security of the pseudo-random
generator G (see Section 2.3).

B obtains δ := ({xi, yi}0≤i≤q, xq+1), where δ := G(x1) or δ
U← {0, 1}nk+k. B

computes all the secret keys of the tag except ti+1 and simulates the session as
Game 1-i. The initial secret key of the tag ti is set as x1 and the reader’s secret
key corresponding to the tag is x0. B sets (u1, u2) as (u1, u2) := (yj+1, xj+2)
when ti updated the secret key j times. When A outputs a bit b′, B outputs the
same bit.

If B is given pseudo-random variables, then the above game is equivalent to
Game 1-i from the view point of the adversary. Otherwise, the distribution of the
above game is the same as Game 1-(i+1). Therefore we have |S1-i−S1-(i+1)| ≤
AdvPRGB,G(k).

Lemma 6. We have Pr[S1-�] = Pr[S2-(1,0)].

Lemma 7. For any 1 ≤ i ≤ �, there exists an algorithm B such that |Pr[S1-(i,j)]−
Pr[S1-(i,j+1)]| ≤ AdvPRFB,f (1

k) (0 ≤ j ≤ q).

Lemma 8. For any 1 ≤ i ≤ �, we have Pr[S1-(i,q+1)] = Pr[S1-(i+1,0)].

It is clear that Lemma 4 and 6 hold since these game transformations are purely
conceptual. We can easily prove Lemma 7 and 8 on the basis of the proof for
Lemma 2 and Lemma 3 in a similar fashion.

Finally, we obtain

AdvIND∗
A,Π (k) ≤ � · AdvPRGB,G(k) + �(q + 1) · AdvPRFB,f (k).

7 Further Separation in Concurrent Execution

The above privacy definition and other previous privacy models [11,17,18] assume
that the RFID tag runs only one session at a time (e.g., sequential execution).
However, an adversary can issue many oracle queries and interrupt the com-
munication, so the tag may receive the message to start a new session during
the execution of another session. Thus we consider the case that the RFID tag
can perform the concurrent execution in this section. Of course, this situation
may not practical since the resource of cheap tags is limited. Nonetheless, this
situation is useful to show the gap between the type 2a and 2b′ protocols.

While these two types of protocols contain the key update mechanism and
the secret key of the tag is synchronized to the reader, the secret key input to

110 D. Moriyama, M. Ohkubo, and S. Matsuo

the computation of the output message on the tag is different in the concurrent
setting. Consider that (m0,m1) is the output from the tag in the concurrent ex-
ecution. In the type 2a protocols, both messages are computed with fixed secret
key since the tag does not update the secret key before the reader authentica-
tion. Even when the adversary obtains an updated secret key, it is difficult to
distinguish the challenge tag from these messages. On the other hand, the secret
key is always updated and m1 is computed by the updated secret key in type
2b′ protocols. If the adversary responds with a random message to the tag in
the concurrent session, the secret key of the tag is roll backed and the adversary
obtains the secret key which is used to compute m1. Therefore the adversary
can distinguish which tag is selected in the anonymous communication phase in
the type 2b′ protocols if we consider the concurrent setting.

8 Concluding Remarks

In this paper, we proposed a new variant of Juels-Wies privacy model that allows
an adversary to issue the result and corrupt queries on the basis of the Juels-Weis
privacy model. The RFID tag is quite cheap device and it is hard to implement
secure module (e.g., Trusted Platform Module). Thus the secret key leakage is
critical issue for RFID authentication protocol. Independently, we can observe
the authentication result in many situations (automatic ticket gate, entrance of
the private sector, etc). Though Ng et al. showed the separation result described
in Section 4, there is a achievable security model that the adversary can obtain
these information. We showed two examples and provide concrete security proof
for these protocols.

References

1. Akgün, M., Çaǧlayan, M.U.: Extending an RFID security and privacy model
by considering forward untraceability. In: Cuellar, J., Lopez, J., Barthe, G.,
Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 239–254. Springer, Hei-
delberg (2011)

2. Berbain, C., Billet, O., Etrog, J., Gilbert, H.: An efficient forward private RFID
protocol. In: ACMCCS 2009, pp. 43–53. ACM (2009)

3. Billet, O., Etrog, J., Gilbert, H.: Lightweight privacy preserving authentication
for RFID using a stream cipher. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS,
vol. 6147, pp. 55–74. Springer, Heidelberg (2010)

4. Burmester, M., Le, T.V., Medeiros, B.D., Tsudik, G.: Universally composable
RFID identification and authentication protocols. ACM TISSEC 12(4(21)) (2009)

5. Coisel, I., Martin, T.: Untangling RFID privacy models. ePrint Archive, 2011/636
(2011)

6. Hermans, J., Pashalidis, A., Vercauteren,F., Preneel, B.: A newRFIDprivacymodel.
In:Atluri,V.,Diaz,C. (eds.) ESORICS2011. LNCS, vol. 6879, pp. 568–587. Springer,
Heidelberg (2011)

7. Le, T.V., Burmester, M., Medeiros, B.D.: Universally composable and forward-
secure RFID authentication and authenticated key exchange. In: ASIACCS 2007,
pp. 242–252. ACM (2007)

A Forward Privacy Model for RFID Authentication Protocols 111

8. Ng, C.Y., Susilo, W., Mu, Y., Safavi-Naini, R.: New privacy results on synchronized
RFID authentication protocols against tag tracing. In: Backes, M., Ning, P. (eds.)
ESORICS 2009. LNCS, vol. 5789, pp. 321–336. Springer, Heidelberg (2009)

9. International organization for standardization. ISO/IEC 9798: Information tech-
nology – Security techniques – Entity authentication, 1991-2010

10. Juels, A., Weis, S.A.: Defining strong privacy for RFID. In: PerCom 2007,
pp. 342–347. IEEE (2007)

11. Juels, A., Weis, S.A.: Defining strong privacy for RFID. ACM TISSEC 12(1(7))
(2009)

12. Lim, C.H., Kwon, T.: Strong and robust RFID authentication enabling perfect own-
ership transfer. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307,
pp. 1–20. Springer, Heidelberg (2006)

13. Moriyama, D., Matsuo, S., Ohkubo, M.: Relations among notions of privacy for
RFID authentication protocols. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 661–678. Springer, Heidelberg (2012)

14. Ouafi, K., Phan, R.C.-W.: Traceable privacy of recent provably-secure RFID pro-
tocols. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS
2008. LNCS, vol. 5037, pp. 479–489. Springer, Heidelberg (2008)

15. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic approach to privacy-friendly
tags. In: RFID Privacy Workshop (2003)

16. Ouafi, K., Vaudenay, S.: Strong privacy for RFID systems from plaintext-aware
encryption. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS,
vol. 7712, pp. 247–262. Springer, Heidelberg (2012)

17. Paise, R., Vaudenay, S.: Mutual authentication in RFID: security and privacy.
In: ASIACCS 2008, pp. 292–299. ACM (2008)

18. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

19. Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., Balazinska,
M., Borriello, G.: Building the internet of things using RFID: The RFID ecosystem
experience. IEEE Internet Computing (2009)

On Secure Embedded Token Design

Quasi-looped Yao Circuits and Bounded Leakage

Simon Hoerder1, Kimmo Järvinen2, and Daniel Page1

1 University of Bristol, Department of Computer Science,
Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK

{hoerder,page}@cs.bris.ac.uk
2 Aalto University, Department of Information and Computer Science,

P.O. Box 15400, FI–00076 Aalto, Finland
kimmo.jarvinen@aalto.fi

Abstract. Within a broader context of mobile and embedded comput-
ing, the design of practical, secure tokens that can store and/or process
security-critical information remains an ongoing challenge. One aspect of
this challenge is the threat of information leakage through side-channel
attacks, which is exacerbated by any resource constraints. Along these
lines, this paper extends previous work on use of Yao circuits via two
contributions. First, we show how careful analysis can fix the maximum
number of leakage occurrences observed during a DPA attack, effectively
bounding leakage from a Yao-based token. To achieve this we use modu-
larised Yao circuits, which also support our second contribution: the first
Yao-based implementation of a secure authentication payload, namely
HMAC based on SHA-256.

1 Introduction

A vast range of challenges and opportunities has emerged as a result of the (on-
going) proliferation of mobile and embedded computing. We now routinely and
fundamentally depend on a broad range of complex, highly integrated mobile
devices and applications and supporting technologies and techniques need to
keep pace with such developments. We consider a motivating example within
this context, namely the establishment of a secure communication channel be-
tween some token and another party. Although we limit our remit to tokens that
are more capable than a (basic) smart-card (e.g., a mobile telephone or USB to-
ken, with concrete examplars including the IBM ZTIC1), the secure, efficient
implementation of such a device is clearly of central importance.

Although well studied cryptographic techniques can satisfy varied require-
ments at a high level, real-world security guarantees are still difficult to achieve:
the field of physical security in particular, including passive side-channel attacks,
represents a central concern. In general, a typical side-channel adversary acquires
execution profiles by observing a device and, in an ensuing analysis phase, has

1 http://www.zurich.ibm.com/ztic/

L. Cavallaro and D. Gollmann (Eds.): WISTP 2013, LNCS 7886, pp. 112–128, 2013.
c© IFIP International Federation for Information Processing 2013

http://www.zurich.ibm.com/ztic/

On Secure Embedded Token Design 113

to recover a security-critical target value (e.g., key material) from the profiles.
Although practical bounds on the number of profiles collected or processed may
exist, attacker capability in this respect scales over time (e.g., with Moore’s law);
ideally this should be catered for by any countermeasure.

Our focus is the threat of Simple (SPA) and Differential Power Analysis
(DPA) [10], including variations thereof such as electro-magnetic emission anal-
ysis. We cater for timing side-channels, but explicitly deem (semi-)invasive or
active attacks as outside the scope of this paper. In our scenario, profiles ac-
quired take the form of traces that describe power consumption by the token.
One broad class of countermeasures aims to produce an implementation of some
primitive, and secure it by applying attack-specific countermeasures at an al-
gorithmic, software and hardware level. Selected examples include schemes for
hiding [16, Chapter 7] and masking [16, Chapter 10] input and/or intermediate
values. An alternative class aims to formulate then implement a primitive which
is secure-by-design. Following a philosophy that says security should be treated
as a first-class goal [9,23], this is an attractive direction in that robust guarantees
can be provided. However, as the emerging field of leakage-resilient primitives
(see [25] for example) illustrates, difficulties remain. Most importantly, leakage-
resilient cryptography has focused on assuring security provided leakage entropy
remains below a certain bound; unfortunately, no practical means of (provably)
verifying such a bound for a given device is currently available.

We extend work on Yao circuits [28,29,15,1,5,6,14], especially their implemen-
tation on tokens [8,7] as a means of performing leakage-resilient computation
within the motivating scenario above. Our focus is practicality: we aim to keep
the entire architecture as simple as possible in order to reduce manufacturing
and verification cost. Careful analysis of said architecture places a bound τ on
the number of useful leakage occurrences an attacker can observe. For a given
signal-to-noise ratio, this forces an attacker to develop more effective attacks
rather than simply using more traces; when combined with conventional coun-
termeasures, it can effectively prevent such attacks. One can view this process
as playing a similar role to key refresh [18,17], but without the need for synchro-
nization. In addition, we add the first secure authentication payload, HMAC [20],
to the list of applications implemented as Yao circuits. The overall result are
leakage-bounded implementations of both AES128 and HMAC.

2 Background

An important aspect of formalising the ability of a side-channel attack(er) is
the selection of a model that describes the form of leakage from a token (and
thus exploitable by the attacker). The model proposed by Standaert et al. [24]
can be directly applied to our scenario with just one minor modification. In said
model, adversarial success depends, among other factors, on the number of oracle
queries allowed per primitive independent of updates to secret values (e.g., use
of key refresh schemes). We therefore replace the number of oracle queries with
the number of observable leakage occurrences per secret value.

114 S. Hoerder, K. Järvinen, and D. Page

G E

Select mG Select mE

Generate Y f
[mG ,mE]

Evaluate r = Y f
[mG ,mE](·)

Agree f

mE

Y f
[mG ,mE]

Fig. 1. A high-level, generic description of Yao circuit generation and evaluation. Note
that all inputs and outputs are implicitly defined wrt. f , and that depending on the
scenario a) one or more of f , mG and mE could alternatively be provided as input to
the protocol, and b) subsequent use of r could be included.

2.1 Yao Circuits at a High Level

An implementation of a functionality f as a standard Boolean circuit, say Bf ,
can be evaluated using an input x to give an output r = Bf (x). We use Bf

x to de-
note an implementation with an embedded fixed input and retain a similar form
for evaluation r = Bf

x(·). At a high level, Yao circuits simply represent a non-
standard implementation of f , say Y f , which allows the associated evaluation
to be secure.

Use of a given Yao circuit can be described formally as a secure two-party
computation protocol. The parties involved are a circuit generator G who (given
f and x) produces Y f

x , and a circuit evaluator E who (given Y f
x) computes

r = Y f
x (·); both are illustrated in Figure 1. Thus the side-channel attack surface

is shifted away from individual primitives f onto the task of generating a Yao
circuit Y f

[mG,mE] where we can give strong bounds on leakage. In contrast to the

original usage as a two-party computation protocol, the token is trusted and we
do not need oblivious transfer to communicate the circuit inputs mE ,mG . Note
that in theory G could evaluate Y f

[mG,mE] as well as generating it, but we deem

it more economic in most cases to let E do the evaluation.
Imagine gk refers to some k-th truth table wlog. describing a 2-input, 1-output

Boolean function or gate instance within Bf . Both the inputs to and outputs
from said gate are provided on wires indexed using a unique wire identifier (or
wire ID): we write mi for the value carried by the wire with wire ID i. Note
that the output wire ID can act to identify a given gate instance (i.e., acts as a
gate ID). Figure 2a is a trivial starting point outlining how such a gate can be
evaluated.

Yao circuits are constructed by forming a “garbled” Yao gate instance in Y f

for each Boolean gate instance in Bf . Both inputs to and outputs from the Yao
gate are altered to mask their underlying value: this means each mi is replaced
by ci, an encryption of the former. Given Encx(y) denotes the encryption of y
under the key x using some symmetric cipher (with a κ-bit key and β-bit block
size), Figure 2b illustrates a Yao gate corresponding to the above. Note that

On Secure Embedded Token Design 115

mi mj

0 0 mk = gk(mi,mj)
0 1 mk = gk(mi,mj)
1 0 mk = gk(mi,mj)
1 1 mk = gk(mi,mj)

mi

mj

mk

(a) An example Boolean gate.

ci = mi ⊕ πi cj = mj ⊕ πj

0 0 Enc[0,0,k](ck = gk(mi, mj)⊕ πk)
0 1 Enc[0,1,k](ck = gk(mi, mj)⊕ πk)
1 0 Enc[1,0,k](ck = gk(mi, mj)⊕ πk)
1 1 Enc[1,1,k](ck = gk(mi, mj)⊕ πk)

ci

cj

ck

(b) An illustrative example of the corresponding Yao gate.

ci = mi ⊕ πi cj = mj ⊕ πj

0 1 Enc[w0
i ,w

1
j ,k]

(w
g(mi,mj)⊕πk

k)

1 0 Enc[w1
i ,w

0
j ,k]

(w
g(mi,mj)⊕πk

k)

1 1 Enc[w1
i ,w

1
j ,k]

(w
g(mi,mj)⊕πk

k)

wi

wj

wk

(c) The corresponding Yao gate with wire labelling and Garbled Row Reduction (GRR) [19]
applied (noting that each ci forms part of the associated wi per Equation 1).

Fig. 2. A step-by-step comparison of a 2-input, 1-output Boolean gate (whose func-
tion is described by gk), and the associated Yao gate construction before and after
optimisation

– the public ci and cj inputs (whose secret underlying values are mi and mj)
are provided on wires with public indices i and j,

– the public ck output (whose secret underlying value is mk) is provided on a
wire with public index k,

– the standard gate functionality is gk, and
– πi, πj and πk act as secret permutation bits on the rows of the truth table.

During evaluation of the gate, E gets ci and cj meaning it cannot recover the
underlying values of mi and mj since it does not know πi and πj . However,
ci and cj index one entry of the truth table and allow only this entry to be
decrypted (since they determine the associated cipher key) and yield ck. The
central idea is that a Yao gate reveals nothing about a) the gate functionality
nor b) underlying values, iff. it is evaluated at most once.

2.2 Abstract Realisation of Yao Circuits

Wire Labels. The illustrative example above has a major shortcoming: the
effective cipher key size is just two bits (since all wire IDs are public), meaning
the key is inherently susceptible to exhaustive search. To combat this, given a
security parameter λ one replaces the Boolean value communicated on each wire
with a randomised λ-bit wire label. Let

wci
i = ρi ‖ (mi ⊕ πi) = ρi ‖ ci (1)

denote the i-th such wire label in the general case where mi ⊕ πi = ci for

ci ∈ {0, 1}, ρi
$← Z

λ−1
2 and πi

$← Z2. Note that the combination of ρi and πi

116 S. Hoerder, K. Järvinen, and D. Page

could be viewed as a λ-bit ephemeral key, implying κ = 2λ + ε where ε is the
number of bits used to encode wire IDs, and that Equation 1 caters for two
optimisations outlined below.

The Garbled Row Reduction (GRR) optimisation was introduced by Naor et
al. [19]. In short, by carefully selecting

wck
k = w

g(mi,mj)⊕πk

k = Enc[w0
i ,w

0
j ,k]

(γ) (2)

for ci = cj = 0 and a suitable public constant γ, the first truth table entry can
be eliminated (as illustrated by Figure 2c). This is attractive since it permits
up to a 25% reduction in communication of the Yao circuit from G to E , plus
reduces the amount of storage required.

The “free XOR” optimisation introduced by Kolesnikov and Schneider [11]
realises XOR gates (almost) for free. Given a global (i.e., one for each instance
of Y f), secret constant Δ ∈ Z

λ−1
2 they select w1

i as in Equation 1, then define

w0
i = w1

i ⊕ (Δ ‖ 1) = (ρi ⊕Δ) ‖ (πi ⊕ (mi ⊕ 1)) (3)

to allow computation of XOR gates via the relationships

w0
i ⊕ w1

i = w1
i ⊕ (Δ ‖ 1)⊕ w1

j = w1
i ⊕ w0

j = w1
k

w0
i ⊕ w0

i = w1
i ⊕ (Δ ‖ 1)⊕ w1

j ⊕ (Δ ‖ 1) = w1
i ⊕ w1

j = w0
k = w1

k ⊕ (Δ ‖ 1)

2.3 Previous Token Implementations of Yao Circuits

As far as cryptographic primitives are concerned, previous work (with the excep-
tion of [12]) focus on use of AES128 as the functionality f . Other functionalities
considered relate instead to higher level applications, e.g., database search [5,14]
or bioinformatics [6]. Pinkas et al. [21] provide the first feasibility results (using
software) of Yao-based constructions; since they relate more directly to the cho-
sen scenario, we detail work by Järvinen et al. [8,7] below which both implement
Yao circuits on tokens but do not use modularisation.

Secure computation via One-Time Programs (OTPs): In [8], Järvinen et al.
consider a scenario wherein E is a hardware token, and G is a trusted party
during a setup stage. The idea is that G as token issuer stores One-Time Mem-
ories (OTMs) for a fixed number x of OTPs represented by Y f on the token.
At run-time, the token owner uses one set of OTMs to form the input labels
corresponding to his data, and the token evaluates the Yao circuit before finally
releasing the result.

The advantage of this scenario is that very little protection against side-
channel attacks is required. However, the major disadvantage is the limited num-
ber of Yao circuits: in most real-life scenarios this is unacceptable. In addition,
a generic framework without this disadvantage is given at the cost of loosing the
leakage-resilient circuit generation. Our work can be seen as a leakage-resilient,
more flexible version of the framework.

Secure computation via out-sourcing: In [7], Järvinen et al. consider a scenario
wherein E is a cloud computing provider; the role of G is split between a secure

On Secure Embedded Token Design 117

Y ft , the t-th template instance

Y ft+1 , the (t+ 1)-th template instance

update gates

use of Δt

use of Δt+1

Fig. 3. An example of updating Δ be-
tween two template instances, with the
heavy dashed line denoting the boundary
between use of Δt and Δt+1

General-purpose
memory

Secure
memory

General-purpose
micro-controller

Control
logic

I/O
core

SHA-256
coreE

Fig. 4. Ablock diagram of our proposed to-
ken architecture. Only the Yao core (within
the dashed box) has requirements for con-
ventional side channel countermeasures

hardware token GS and some other party GU (e.g., a desktop workstation). The
idea is for GU to generate Bf , which is passed to GS and translated (securely)
into Y f . The Y f can then be evaluated by E , with the overall effect of securely
out-sourcing computation from GU to E (and the token GS).

This scenario is advantageous in the sense it allows a flexible choice of f (wrt.
the token) and is very speed- and memory-efficient. However, it has a relatively
high hardware requirement: in addition to the SHA-256 core it requires at least
one AES128 core, [7] uses two, which all have to be free from leakage.

3 Supporting Alterations to Traditional Yao Circuits

To support our design in Section 4, we first outline two supporting concepts:
detail relating to their realisation and utility is deferred until later. While nei-
ther represents a significant change to underlying theory, we posit that both
significantly ease the practical task of constructing and using Yao circuits.

3.1 Circuit Modularisation

Existing Limitations. Consider a typical iterative block cipher design, with
s rounds in total (e.g, AES128 with s = 10). The functionality for round i is
described by fi, which implemented as a Boolean circuit is Bfi . The s different
round functionalities can be the same or different as required, with the overall
cipher thus described by the functionality

f = fs−1 ◦ · · · ◦ f1 ◦ f0.

One can implement this either combinatorially, whereby instances of each Bfi

are “unrolled” to form the resulting monolithic circuit, or iteratively, whereby
instances of each unique Bfi are “looped over” with a need for only one circuit
instance and some control logic. Traditional Yao circuits must adopt the former

118 S. Hoerder, K. Järvinen, and D. Page

approach: no sequential elements (e.g., latches, clock signals) are allowed because
each gate can be evaluated at most once (to ensure security). One cannot reuse
the resulting Yao circuit unless rerandomisable constructions [4] are considered;
typically these incur a prohibitive overhead.

One impact of this restriction is that previous work almost exclusively fo-
cuses on AES128 (as far as cryptographic primitives are concerned) which a)
has a fixed s and can hence be unrolled, and b) has a fairly compact hardware
implementation. We know of only one implementation of another cryptographic
primitive [12], wherein an (insecure) implementation of 256-bit RSA is described.
Even with such small operands, the resulting Yao circuit is ≈ 8500 times larger
than their AES128 circuit, in part as a result of the requirement to unroll the
loop representing a binary, modular exponentiation.

Modularised Yao Circuits. To address this issue, we make use of modular Yao
circuits. Similar concepts have been used recently2 in [6,14] to achieve efficiency
gains for large circuits, but only [14] mentions the possibility of using run-time
parameters to control circuit assembly.

Traditionally (right) each monolithic Boolean circuit Bf = Bfs−1◦···◦f1◦f0 is
stored and must be translated into the corresponding Yao circuit by G each time
the latter needs to be evaluated. In our alternative (left), G holds only the static
description of each template Bfi (and associated meta-data), instantiating them
to form Y f without holding the entirety of the (potentially large) Bf . This tech-
nique permits a quasi-loop: given s, e.g. the number of blocks to be hashed, at
run-time (rather than being fixed), the token unrolls one circuit template Bfi ,
to form the resulting Yao circuit. The resulting reduction in resource require-
ment and increased flexibility allows us to implement HMAC. Generation of the
corresponding Y f can be streamed in that G communicates one part at a time
to E .

3.2 Updating Δ between Template Instances

In previous works [21,8,7] using the free XOR trick [11], the authors argue that
for correctness Δ must remain constant within a given Yao circuit. Indeed, if an
XOR gate is evaluated using constants Δ1 �= Δ2, the result is incorrect as

w0
i ⊕ w1

j = (w1
i ⊕ (Δ1 ‖ 1))⊕ w1

j �= w1
i ⊕ (w1

j ⊕ (Δ2 ‖ 1)) = w1
i ⊕ w0

j

w0
i ⊕ w0

j = (w1
i ⊕ (Δ1 ‖ 1))⊕ (w1

j ⊕ (Δ2 ‖ 1)) �= w1
i ⊕ w1

j

shows. Despite this, a crucial observation is that Δ can be changed if said change
is applied consistently. Although doing so has no functional benefit, we use it to
directly formulate a leakage bound within Section 5.

In some modularised Yao circuit, imagine the t-th template instance uses Δt.
The next, (t+ 1)-th instance can then use Δt+1 (as illustrated by Figure 3) iff.

2 A year earlier, [5] proposed a different kind of modularity, namely mixing Yao circuits
and homomorphic operations. The cost associated with additional hardware required
to support homomorphic operations means we do not adopt this approach.

On Secure Embedded Token Design 119

each connecting wire is updated appropriately. The simplest approach is to con-
sider a dedicated 1-input, 1-output update gate with the identity functionality,
i.e., gk(x) = x. Given

wck
k = wmi⊕πk

k = Enc[w0
i ,w

0
i ,k]

(γ)

by definition, and that mi = mk since the gate updates Δ rather than change
the underlying input value, Equation 2 means the associated wire labels are

w0
i = w1

i ⊕ (Δt ‖ 1)
w0

k = w1
k ⊕ (Δt+1 ‖ 1)

However, this suggests that any non-XOR gate can be used to perform the update
without cost: the existing GRR-optimised Yao gate truth table only needs to

have Δt+1 folded into the label w
gk(mi,mj)⊕πk

k instead of Δt where appropriate.

4 Token Design

We consider a scenario wherein G is a hardware token that needs to be secured
against SPA and DPA attacks, and E is some other party to which computation
is outsourced. The idea is to put a bound on the number of times secret values
are used for any computation and leakage can be observed before the value
– akin to key refresh – is updated. The known, residual leakage can then be
accommodated by careful use of conventional countermeasures.

4.1 Cipher Construction

To instantiate the symmetric cipher required to encrypt wire labels, we follow
existing work [21,7,8] by using a one-time pad like construction

Enc
[w

ci
i ,w

cj
j ,k]

(wck
k) = SHA-256(wci

i ‖ w
cj
j ‖ k)⊕ wck

k

where the SHA-256 output is implicitly truncated to λ bits to match the wire
label size. We reuse SHA-256 as a secure Pseudo-Random Number Generator
(PRNG), splitting the SHA-256 into two 128-bit values

[x, y] ← SHA-256(seedt−1)
seedt ← seedt−1 ⊕ y
rand ← x

so x = rand is used as a wire label for example, while y is used exclusively to
update the seed. Note SHA-256 is therefore the only significant cryptographic
core required by the token. This construction is certainly secure if the PRNG
is modelled as a random oracle which is a weaker model than the one we have
for our Yao circuits. Intuitively however, some form of correlation robustness
should be sufficient. Research on the correlation robustness of hash functions is

120 S. Hoerder, K. Järvinen, and D. Page

Step G E

0a)

0b) Select mG Select mE

while true

1a)

1b) Generate Y fi
[mG ,mE]

1c) Evaluate Y fi
[mG ,mE](·)

1d)
Check all data

processed

1e)
Check all gates

processed

end while

2) Request wire labels

3) Send wire labels

4)
Check all wire
labels valid

5)
Optional:

Reveal result

Agree f

mEl·i , . . . ,mEl·(i+1)−1

Y fi
[mG ,mE]

o0, o1, . . .

wo0 , wo1 , . . .

r

Fig. 5. The two-party computation protocol reflecting circuit modularisation. Note
that E does not communicate mE in one block, but rather in multiple l-bit blocks.
Output wires of the Yao circuit (i.e. the wires carrying results from the functionality)
have wire IDs o0, o1,

still developing, see [11,3] for example, and therefore we defer the exact security
requirements to future work.

Previous work has used domain-specific languages (e.g. SFDL [15,1]) to imple-
ment the payloads. While this may ease implementation, it reduces control over
the actual circuit layout. Standard Hardware Description Languages (HDLs) are,
in fact, well suited to payload description: they simply lack the protocol aspect
of Yao circuits. Therefore we aim to reap benefits of familiarity, design and code
portability by using a VHDL dialect and associated compiler, both of our own
design, to describe structural and behavioural circuit templates.

4.2 Operational Protocol and Token Architecture

The communication between the token G and the evaluator E is shown in
Figure 5. E can, for example, be a local untrusted work station or an untrusted
but more powerful chip within a mobile phone; in most cases it will not be
the authentication partner. We assume a physical connection between the par-
ties, and hence focus on optimising their workload rather than the number of
communication rounds.

Initially, in step 0, E requests a functionality f (e.g., HMAC or AES128)
and both parties need to have (or generate) corresponding inputs mG and mE .

On Secure Embedded Token Design 121

Step 1, from a theoretic perspective, is the same as the monolithic communication
in Figure 1 despite now supporting the modularised approach. Specifically, G
generates the Yao circuit Y f based on the circuit templates Bfi and sends it
step-by-step to be evaluated. Note that modularisation forces three important
checks:

1. step 1d checks if all input values (from both mG and mE) have been used,
2. step 1e checks if all gates have evaluated, and
3. step 4 checks if all output values are valid, i.e., if woj ∈ {w0

oj , w
1
oj} ∀ oj .

When a check condition can not be satisfied the token aborts immediately, mean-
ing in particular that it does not reach step 5 where the result r = f(mG ,mE) =
Y f
[mG,mE] is revealed, and that seed values of the PRNG are not accidentally

reused.
To support the protocol outlined above, Figure 4 outlines a proposed token

architecture. The main components and their roles are as follows:

– A general-purpose micro-controller manages the communication protocol in
Figure 5, controlling assembly of Y f from the Bfi circuit templates and
performing other tasks (such as message padding for HMAC).

– A general-purpose memory holds the Bfi , micro-controller program and
other public run-time variables values which only require correctness.

– Storage of and computation using secret values is limited to the Yao core,
which consists of:

• A SHA-256 core, used to encrypt wire labels and also as a PRNG.
• Control logic used for auxiliary operations such as wire label generation.
• A secure memory, split into two parts: a non-volatile part holds mG and
seed, while a volatile part holds Δt, Δt+1 and, for each wire i, the tuple
{w0

i , w
1
i }. Note that Δt+1 = 0 unless the token is processing update

gates, and that a crucial role of the secure memory as a whole is to
prevent read-out or other leaks of values such as mG and seed.

5 Analysis and Results

5.1 Security Analysis

This section attempts to explore security aspects of the proposal outlined in Sec-
tion 4.After a statement of general assumptions, we deal specificallywith potential
attack vectors exploited during an SPA orDPA attack, or by amalicious adversary
within the operational protocol.

Security Assumptions. To be successful, the adversary has to recover the
input xG held by the token for which he can either attempt to recover xG di-
rectly (e.g., via a DPA attack), or try to “ungarble” the Yao circuit YxG ,xf

E
(or

part thereof). In showing neither strategy is viable, we make some important
assumptions:

122 S. Hoerder, K. Järvinen, and D. Page

A-1 An authentication protocol that prevents man-in-the-middle attacks against
mE in step 1d of the Yao protocol must be selected (if this threat is relevant).

A-2 The control-flow of the token, managed by the micro-controller, is tamper-
proof which implies integrity of the general-purpose memory. Although this
is a strong requirement, it is common for embedded systems.

A-3 The hash function used for encryption of wire labels (in our case SHA-256)
must be circular-2-correlation robust (see Choi et al. [3]).

A-4 The token cannot be reset, and no randomness reused: this prevents an
adversary forcing the token to regenerate the same Yao circuit with the
same randomness, then reevaluating it with different inputs.

Power Analysis Adversaries. SPA attacks attempt to recover the target
value using one (or at least very few) traces and attack capabilities do not scale
over time; examination of data-dependent control-flow is one example. There are
two possible attack vectors:

SPA-1 For each i-th input wire, the token must send either w0
i or w1

i to the
evaluator depending on the underlying value ofmi. To succeed, the adversary
must be able to determine whether mi is 0 or 1 (for all mi ∈ xG).

SPA-2 Gates such as AND and OR are biased towards 0 or 1 in their output:
if the adversary determines during computation of

Enc
[w

ci
i ,w

cj
j ,k]

(
w

g(mi,mj)⊕πk

k

)
which truth table row contains the minority output, they can reverse the
permutations (i.e., πi and πj) and recover the underlying values of almost
all output wire labels from non-XOR gates.

For hardware implementations, both SPA attack vectors will be implemented
using multiplexers whose data dependency of the power consumption is usually
already hidden well enough without countermeasures (e.g., [16, Appendix A.3]).
Even if this is not the case, traditional countermeasures (e.g., random masking
of the select signal with corresponding permutation of the inputs) are efficient.

In contrast, DPA attacks attempt to recover the security-critical target value
by applying statistical distinguishers to a large set of traces; issues of signal-
to-noise ratio, as well as explicit countermeasures, determine the exact number.
More formally, let k be the target value, v be a variable value and r the result of
some generic operation �. A DPA adversary collects traces relating to execution
of ri ← k � vi for many different v1, v2, . . . , vσ. The potency of a DPA attack is
then judged by σ, the number of traces required to be reliably recover k. Our
approach is to have a design-time constant bound τ � σ instead of allowing the
adversary to control it. Put another way, we bound the leakage such an adversary
can utilise in a DPA attack: if the application of conventional countermeasures
can prevent attacks with said leakage level, the token is secure.

DPA-1 The token must compute w0
i ← w1

i ⊕ (Δt ‖ 1) for every wire. As such
we have

τDPA-1 = max(δ1, δ2, . . .)

On Secure Embedded Token Design 123

where δt denotes the number of wires usingΔt. If the technique in Section 3.2
is used correctly, τDPA-1 is a constant determined by the token designer.

DPA-2 For each gate, the four values of w
{0,1}
{i,j} are each used twice as input to

SHA-256(w
{0,1}
i ‖ w

{0,1}
j ‖ k). Focusing on one label, wlog. wi say, and

one external value, wlog. 0 say, the attacker gets two traces for each gate
where w0

i is used as input. Therefore, we have

τDPA-2 = 2 ·max
∀k

(Gk)

where Gk represents the fan-out of the k-th gate (and input wires are also
considered as being driven by imaginary gates). Note that a similar attack
vector exists when the token processes an XOR gate. Such a gate must
compute w0

k and w1
k, and one possible approach is to compute

w0
k ← w0

i ⊕ w0
j

w1
k ← w0

i ⊕ w1
j

(4)

in which case τDPA-2 conveniently covers this attack vector as well.

Concrete, non-optimised examples for these bounds are given in Section 5.2.
If our design is used to protect against DPA attacks, functionalities that were
inherently secure against SPA clearly inherit any SPA vulnerabilities of the un-
derlying Yao circuit approach. We suggest that preventing SPA attacks on our
design using conventional countermeasures is, broadly speaking, easier than pre-
venting DPA attacks on the functionality in question: the cost of preventing the
former is easily justified by the improvement offered wrt. the latter.

Catering for Timing Analysis Adversaries. The execution time associated
with generating of a Yao circuit is inherently independent of the inputs to that
Yao circuit: it depends only on the circuit size. As far as the architecture is
concerned, we do not use a cache for the micro-processor in order to avoid
cache-based timing attacks. Working without a cache is a common decision for
cryptographic tokens and therefore not an exceptional burden of our design.

Catering for Malicious Adversaries. One advantage of Yao circuits is the
availability of related security proofs. For semi-honest adversaries, Figure 5 pre-
serves proofs already given by [11,21,7,8,3]. This is a direct result of steps 1a to
1e being equivalent to the single generate-evaluate step from previous protocols.

However, we also need to consider malicious adversaries. Lindell et al. [13]
show how a two-party computation protocol using Yao circuits can cover the
case of malicious G using a cut-and-choose approach. Our scenario is far less
complex, since Y f is generated by the token which is implicitly trusted: we
disallow a malicious G. Therefore we only have to consider a malicious E , and
show it cannot learn anything about xG not implied by the result r = f(xG , xE)
by deviating from the protocol. E has two options (which we expand on below):
it can either a) provide faulty input or b) perform variants on early termination.

124 S. Hoerder, K. Järvinen, and D. Page

Faulty data. The only steps where E can provide faulty data are 1a and 3. As
mE in step 1a is the input of the functionality, sending a faulty mE has no
impact on the security of the Yao protocol: it can only influence the output
of the functionality f . In contrast, sending faulty woj in step 3 is potentially
a problem if the adversary sends labels from intermediate wires instead of the
output labels. However, this is prevented by the check in step 4 which ensures
that for each output wire oj , exactly one wire label w

coj
oj ∈ {w0

oj , w
1
oj} has been

sent before the result is revealed.

Early termination. Since E can not learn anything from one of the partial cir-
cuits (i.e., a given Y fi

[mG ,mE]) until the protocol is finished (i.e., until G reveals the

result), E cannot profit from straight early termination. However, if the func-
tionality f requires s iterations of a loop to form f = fs−1 ◦ · · · ◦ f1 ◦ f0, per the
description of AES128 in Section 3.1 for instance, the adversary could potentially
gain information from terminating the loop early, i.e., to get f ′ = fs′−1◦· · ·◦f1◦f0
for 0 < s′ < s: this would be analogous to a reduced-round attack. To prevent
this, we require the token to check (in steps 1d and 1c) whether the Yao circuit

for f has been completely generated or whether some Y fi
[mG ,mE] is missing.

5.2 Experimental Results and Analysis

Our goal is to study gross, indicative metrics and trade-offs rather than focus
on absolute figures that could be improved via incremental optimisation. For
the evaluation of our proposed design, we implemented a VHDL compiler (per
Section 4.1), a token simulator G, an evaluator E as well as two payload func-
tionalities, namely AES128 and HMACSHA-256. For each payload, we considered
variants that differ in their frequency of Δ update: for AES128 three variants are
used, for HMACSHA-256 two variants. The variants are as follows:

AES Baseline AES128 implementation without updating of Δ.
AES U1 AES128 with a Δ update after the fifth iteration of the round function.
AES U9 AES128 with a Δ update after every iteration of the round function.
HMAC Baseline HMAC implementation without updating of Δ.
HMAC U HMAC with Δ updates after every iteration of the compression function.

Table 1. Efficiency metrics and leakage bounds for our token design and a range of
payload implementations. The block size for AES128 is 128 bits, for HMAC it is 512 bits
(including the padding in the last block).

#blocks #Δ #XOR #non-XOR #SHA-256 RAM |Bfi | |mG,sec| |mG,pub| τDPA-1 τDPA-2

AES 1 1 19088 5760 24578 245.9kB 12318B 176B – 7296 11

AES U1 1 2 19088 5888 25091 263.4kB 13628B 176B – 3776 11

AES U9 1 10 19088 6912 29195 262.3kB 12845B 176B – 960 11

HMAC

1 1 148080 129680 556866 1883.6kB 121942B 64B 32B 167824 19
2 1 222120 194520 835170 2489.8kB 121942B 64B 32B 251608 19
3 1 296160 260384 1113474 3069.0kB 121942B 64B 32B 335392 19
4 1 370200 324200 1391778 3671.4kB 121942B 64B 32B 419176 19

HMAC U

1 3 148080 130192 558916 1911.0kB 122981B 64B 32B 84040 19
2 4 222120 195288 835170 2500.8kB 122981B 64B 32B 84040 19
3 5 296160 260384 1117574 3113.4kB 122981B 64B 32B 84040 19
4 6 370200 325480 1396903 3724.6kB 122981B 64B 32B 84040 19

On Secure Embedded Token Design 125

Table 1 details efficiency metrics for implementation of these variants on the
platform described and shows the two associated bounds τDPA-1 and τDPA-2.
The first three columns specify the payload, the number of input blocks from E
and the number of Δ values being used at run-time.

Efficiency. The columns #XOR and #non-XOR in Table 1 give the number
of gates in the resultant Yao circuit. Compared to [21,8] we have considerably
smaller AES128 circuits, which is mainly due to omission of key scheduling and,
to a less extent, use of more optimised S-box formulas of Boyar et al. [2]. The
omission of key scheduling implies a small penalty of having to store all round
keys mG,sec in secure ROM.

The column #SHA-256 shows the number of distinct uses of the SHA-256
core, each a one-block hash. Ignoring the absolute simulation time, we feel this
metric best represents the execution time of a concrete token since the SHA-256
core will most likely be the throughput bottleneck. [7] use a SHA-256 core which
requires 67 cycles per 512 bit block at 66 MHz. Based on these numbers, a crude
time estimation (based only on calls to the SHA-256 core) is 24ms for AES and
1418ms for HMAC U with 4 message blocks.

A significant issue is the amount of RAM required at run-time. To assess this,
we measured the simulator heap and stack usage using the Valgrind massif

tool [27]. We note that the tool itself is not perfect, and that the result includes
overhead of up to 20% relating to performance and security counters. Even
so, the indicative RAM requirement is large: it remains within the capability of
devices in our remit, but clearly beyond smart-cards or RFID tokens for example.
The requirement stems in the most part from storing all wire labels {w0

i , w
1
i }

in RAM. One possible trade-off would be to store only w0
i and recompute w1

i

when needed, reducing the RAM usage by a factor of two, but increasing the
number of traces available by a factor similar to the maximum fan-out. [7] chose
a keyed PRNG which allows recomputation of w0

i when needed, thus reducing
the RAM requirements drastically. However, any keyed PRNG is vulnerable to
DPA attacks with unlimited τ which negates our aim of bounding the leakage.

An interesting observation can be made about the RAM usage of AES U1 and
AES U9. Intuitively, one would expect the RAM usage to always grow in line
with the number of Δt used. In this case, the opposite happens because AES U1

applies the Δ updating within the top-level entity (which also accounts for the
larger |Bfi |), requiring more wires for which RAM is allocated during the entire
run-time. AES U9 performs the updating at the end of the round function entity
instead, and the RAM for additional wires can be deallocated as soon as each
round function instance of has been completed.

The size of the templates, |Bfi | (stored in unsecured ROM), profits directly
from modularisation. As predicted, the size of |Bfi | for HMAC does not depend
on the message size as it would have for the traditional approach.

Security. Having explained τDPA-1 and τDPA-2 in Section 5.1, we note that our
Δ updating technique limits τDPA-1 as predicted; note esp. the HMAC U payload,
where updating Δ fixes previously unlimited leakage to a constant chosen by the
token designer.

126 S. Hoerder, K. Järvinen, and D. Page

The result for τDPA-2 is an absolute upper bound, i.e., for all output wires
we counted how often it gets used while processing the follow-up gates. As ex-
plained in Section 5.1, if a wire is used as input to a non-XOR gate each label
gets used twice; for XOR gates Equation 4 gives the numbers relevant to our
implementation. For an attacker it will be very difficult to combine traces from
two different operations like this but we prefer to err on the side of security by
overestimating the attacker. With numbers this low, DPA-2 is almost irrelevant
as an attack vector. But having a low τDPA-2 was an explicit aim of our work:
τDPA-2 is the only possible attack vector on the SHA-256 core, and therefore
τDPA-2 is crucial to determine the level of conventional countermeasures needed
to protect the SHA-256 core. Compared to the SHA-256 core, protecting the
XOR from DPA-1 to match a much higher τDPA-1 is inexpensive.

As a reference one may look at the Power-Trust micro-processor of Tillich
et al. [26], which has parts of the ALU implemented within a secure zone. For
evaluation purposes they implemented the secure zone in three different logic
styles (namely CMOS, iMDPL [22] and DWDDL [30]) and performed a DPA
attack against an AES128 software implementation using the secure zone. While
it is difficult to directly extrapolate from a design as different from ours, this
at least gives an estimate: there is no reason why secure logic styles such as
iMDPL and DWDDL should fare worse for our token. For the DPA attack on
the secure zone to be successful, Tillich et al. required 130, 000 traces against
the (unprotected) CMOS implementation, 260, 000 traces against the iMDPL
implementation and 675, 000 traces against the DWDDL implementation. With
τDPA-1 = 7296 in the worst case for AES128 and τDPA-1 = 84040 for HMAC U

we surmise that both iMDPL and DWDDL would have successfully thwarted
the DPA attack from Tillich et al. against an implementation of our token.
It is important to note, that for both bounds we did not yet try to find the
absolute minimum. For example it is possible to add additional gates to achieve
fan-out = 2 and thus τDPA-2 ≤ 4 while τDPA-1 can be easily reduced by updating
Δ more often within the round resp. compression functions, not just at their end.

6 Conclusions

In essence, this paper has demonstrated that an embedded token can be designed
which gives strong bounds on the number of useful traces a power analysis ad-
versary can collect. Our design methodology

1. is generic in that it works for all payloads and use-cases (cf. PIN block),
2. does not impose limits on the token lifetime,
3. does not require synchronization (cf. key update schemes),
4. is easily verifiable, and
5. successfully limits attack capabilities for side-channel adversaries.

In relation to the former point, we have already extended previous work through
support for a Yao circuit for HMAC. Exploration of further primitives based on
modularisation (including methods and trade-offs to further reduce the leakage
bound), plus incremental optimisation of both the token design and operational

On Secure Embedded Token Design 127

protocol (especially the RAM requirement) are interesting avenues for further
work. In relation to the latter point, the clear next step is to produce experimen-
tal results from a concrete implementation of the token. This would, for example,
allow investigation of the concrete leakage and whether implementation specific
high order moments occur which increase τ for higher order attacks.

Acknowledgements. The work described in this paper has been supported
in part by EPSRC grant EP/H001689/1 and by Academy of Finland, project
#138358. We would like to thank Elisabeth Oswald for her valuable comments.

References

1. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP - A Secure Multi-Party Compu-
tation System. In: CCS, pp. 257–266 (2008)

2. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049,
pp. 178–189. Springer, Heidelberg (2010)

3. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the Security of the “Free-
XOR” Technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53.
Springer, Heidelberg (2012)

4. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop Homomorphic Encryption and
Rerandomizable Yao Circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 155–172. Springer, Heidelberg (2010)

5. Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: Tool
for Automating Secure Two-partY computations. In: CCS, pp. 451–462 (2010)

6. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster Secure Two-Party Computation
Using Garbled Circuits. In: USENIX Security Symposium (2011)

7. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Embedded SFE:
Offloading Server and Network Using Hardware Tokens. In: Sion, R. (ed.) FC
2010. LNCS, vol. 6052, pp. 207–221. Springer, Heidelberg (2010)

8. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Garbled Circuits for
Leakage-Resilience: Hardware Implementation and Evaluation of One-Time Pro-
grams. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 383–397. Springer, Heidelberg (2010)

9. Kocher, P., Lee, R., McGraw, G., Raghunathan, A., Ravi, S.: Security as a New
Dimension in Embedded System Design. In: DAC, pp. 753–760 (2004)

10. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

11. Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates and
Applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

12. Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security Symposium (2012)

13. Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation
in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

14. Malka, L., Katz, J.: VMCrypt – Modular Software Architecture for Scalable Secure
Computation. In: CCS, pp. 715–724 (2011)

128 S. Hoerder, K. Järvinen, and D. Page

15. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - A Secure Two-Party Com-
putation System. In: USENIX Security Symposium, pp. 287–302 (2004)

16. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer (2007)

17. Medwed, M., Petit, C., Regazzoni, F., Renauld, M., Standaert, F.-X.: Fresh re-
keying II: Securing multiple parties against side-channel and fault attacks. In:
Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 115–132. Springer, Heidelberg
(2011)

18. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying:
Security against side-channel and fault attacks for low-cost devices. In: Bern-
stein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296.
Springer, Heidelberg (2010)

19. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Electronic Commerce, pp. 129–139 (1999)

20. National Institute of Standards and Technology (NIST). The Keyed-Hash Message
Authentication Code (HMAC). Federal Information Processing Standards Publi-
cation 198-1 (July 2008)

21. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Com-
putation is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 250–267. Springer, Heidelberg (2009)

22. Popp, T., Kirschbaum, M., Zefferer, T., Mangard, S.: Evaluation of the Masked
Logic Style MDPL on a Prototype Chip. In: Paillier, P., Verbauwhede, I. (eds.)
CHES 2007. LNCS, vol. 4727, pp. 81–94. Springer, Heidelberg (2007)

23. Ravi, S., Raghunathan, A., Kocher, P.C., Hattangady, S.: Security in Embedded
Systems: Design Challenges. TECS 3(3), 461–491 (2004)

24. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

25. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.:
Leakage Resilient Cryptography in Practice. In: Towards Hardware-Intrinsic Secu-
rity, pp. 99–134 (2010)

26. Tillich, S., Kirschbaum, M., Szekely, A.: Implementation and Evaluation of an
SCA-Resistant Embedded Processor. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 151–165. Springer, Heidelberg (2011)

27. Valgrind Project. Massif User Manual,
http://valgrind.org/docs/manual/ms-manual.html

28. Yao, A.C.: Protocols for secure computations. In: Foundations of Computer Sci-
ence, pp. 160–164 (1982)

29. Yao, A.C.: How to generate and exchange secrets. In: Foundations of Computer
Science, pp. 162–167 (1986)

30. Yu, P., Schaumont, P.: Secure FPGA circuits using controlled placement and
routing. In: CODES+ISSS, pp. 45–50 (2007)

http://valgrind.org/docs/manual/ms-manual.html

Lightweight Authentication Protocol

for Low-Cost RFID Tags

Pierre Dusart1 and Sinaly Traoré2

1 XLIM - UMR CNRS n◦7252, Faculté des Sciences et Techniques,
123 Avenue Albert THOMAS, 87060 LIMOGES CEDEX, France

pierre.dusart@xlim.fr
2 Faculté des Sciences et Techniques, USTTB, BP E 32 06 BAMAKO, MALI

sinaic2002@yahoo.fr

Abstract. Providing security in low-cost RFID (Radio Frequency Iden-
tification) tag systems is a challenging task because low-cost tags can-
not support strong cryptography which needs costly resources. Special
lightweight algorithms and protocols need to be designed to take into
account the tag constraints. In this paper, we propose a function and a
protocol to ensure pre-shared key authentication.

Keywords: RFID, Authentication.

1 Introduction

In the future, optical bar codes based systems will be replaced by Radio Fre-
quency Identification systems. These systems are composed of two parts:

– a RFID tag which replaces the bar code;
– a RFID reader which handles information send from the tag.

The tag consists of a microchip which communicates with a reader through a
small integrated antenna. Various external form factors can be used: the tag can
look like a sheet of paper, like a plastic card or can be integrated below bar code
for backward device’s compatibility.

RFID tags offer many advantages over optical bar codes [1]:

– the use of microchip enables a range of functionalities like computing ca-
pability or readable/writable storage. The stored data, depending on the
capacity of the tag, can be static identification number up to rewritable user
data.

– the use of RF antenna enables communication between the reader and the
tag without line of sight from a distance of several decimeters [2]. A reader
can communicate sequentially with up to hundred tags per second.

To provide further functionalities than bar codes, the tag may require data stor-
age. For example, the price of a product can be stored into the tag [3]. To know
the price of a product, the customer can ask directly the tag instead of asking

L. Cavallaro and D. Gollmann (Eds.): WISTP 2013, LNCS 7886, pp. 129–144, 2013.
c© IFIP International Federation for Information Processing 2013

130 P. Dusart and S. Traoré

the database server connected with the cash register. With these new features,
the adoption of RFID technology is growing: inventory without unpacking [4],
prevention of counterfeiting [5], quality chain with environmental sensing [6]
are deployed applications. The tag systems can be easily adapted for universal
deployment by various industries with low prices.

But a new technology must also take into account problems inherited from
legacy systems. For example in a shop, security problems to deal with are:

– an item is changed to another (it means for RFID to substitute a tag for a
fake one);

– a price is changed without authorization by a malicious user (it means for
RFID, to write a tag), . . .

In addition, the privacy problem must be considered in some context i.e. an user
must not reveal unintentionally information about himself. It means for RFID,
the ability of a tag to reveal its identity only to authenticated partners.

To cope with security and privacy problems, the first idea is to use asymmetric
cryptography (e.g. RSA [7]) like in public key infrastructures. Unfortunately tags
with strong cryptography [8] and tamper resistant hardware [9] are too expensive
for a wide deployment.

Hence a constraint class of cryptography [10], named Lightweight Cryptogra-
phy, appears.

The aim of this paper is to propose a protocol and its related computational
function. Section 2 introduces the system model and the underlying assumptions
for our protocol. Then related work is presented in section 3. The protocol en-
vironment is described in section 4. Section 5 presents the protocol details and
the computational functions. Section 6 provides an analysis of some security
constraints and shows that the protocol satisfies the lightweight class. Section 7
illustrates how our protocol behaves against cryptographic attacks.

2 System Model and Assumptions

We consider a system with one RFID tag reading system and several low cost
RFID tags. We assume that each tag shares a secret K with the reader, which
is shared in a secure manner before the beginning of the communication (e.g.
in manufacturing stage). The aim of the communication is to authenticate the
tag i.e. find its identity and prove that it belongs to the system (by knowing the
same secret).

The tag is passively powered by the reader, thus:

– the communication needs to be short (speed and simplicity of an algorithm
are usually qualifying factors);

– the communication can be interrupted at any time if the reader does not
supply enough energy to the tag.

For cost reasons, the standard cryptographic primitives (hash function, digital
signature, encryption) are not implemented (no enough computation power is

Lightweight Authentication Protocol for Low-Cost RFID Tags 131

available or too much memory is required). Hence, we need a protocol using
primitives with a low complexity. This property which is named “Lightweight
property” [10] consists to use basic boolean operations like XOR, AND, ...

The security of protocols needs also a good random number generator [11].
This part can be assumed by the reader environment where the features can be
higher and costly (e.g. a computer connected with a tag reading system).

3 Related Work

The RFID technology needs security mechanisms to ensure the tag identity.
Hence a tag spoofing, where an attacker replaces the genuine tag by its own
creation, is defeated if good authentication mechanisms are used. But classical
authentication solutions use cryptographic primitives like AES [12] or hash func-
tions (SHA1 [13] or MD5 [14]) which are not adapted to low cost RFID tags. It is
thus necessary to look for new suitable primitives for this specific constraint re-
sources environment. In [15–18], authors suggest some protocol families based on
elementary arithmetic (e.g. binary bit addition or modular addition by a power
of 2). However in [19], B. Defend et al. put in defect XOR and SUBSET protocols
given in [15] by learning key sequence. They proved that with few resources, an
attacker can recover the session keys of these two protocols. The LMAP, M2AP
and EMAP protocols proposed respectively in [16–18] allow a mutual authen-
tication between the reader and the tag but are also completely broken [20] by
key recovery attacks. In [21], the authors proposed a family of protocols, called
S-protocols, based on a family of generic random number generators that they
introduced in the same paper. They presented a formal proof which guarantees
the resistance of the S-protocol against the attacks of desynchronization [22, 23]
and impersonation [24]. With a small modification, they proposed the family of
S∗-protocols, which not only has the properties of S-protocols but also allows
a mutual authentication between the reader and the tag. However authors do
not show that their generic functions are compatible with lightweight RFID tags.
In [25], Yeh proposes a protocol corrected by Habibi [26], but attacks [27] appear
using O(217) off-line evaluations of the main function. Recently, some protocols
are also defined in ISO/IEC WD 26167-6. Since they use AES engine [28], they
are out of the scope of this paper.

4 Protocol Requirements and Specifications

We want to use a very simple dedicated protocol which uses a non-invertible
function h. We provide a protocol in which the tag identity is sent in a secure
manner and the tag is authenticated according to a challenge given by the reader.
Then the reader shows that it knows a secret key by calculating an answer to
the tag challenge.

We present the authentication protocol: the reader needs to verify the identity
of the tag. For the verification of the tag identity iD, the RFID reader R sends

132 P. Dusart and S. Traoré

to the tag T a challenge C. Next, the tag proves its identity iD by comput-
ing a response using the common secret K, shared with the reader. We avoid
taking K = 0 for a maximum security. Denoting by Auth this response, the
authentication phase is presented in the following scheme:

– R −→ T : C = (C0, C1, . . . , C15) where Ci are bytes randomly chosen.
– T −→ R : Auth = [iD ⊕ hK(C), hiD(C)]

To verify, the reader computes hK(C) using its challenge C and the key K and
then it can retrieve the identity of the tag. Next the authentication of the tag
can be verified by computing hiD(C) using the result of previous computation
and the first challenge. The protocol allows card authentication by the reader.
It can be adapted to allow mutual authentication with a slightly modification: a
challenge C’ (which can be a counter) is sent with the tag response Auth. Next
the reader should respond with the computation of hK⊕C′(C ⊕ iD).

5 Proposal Description

Our protocol uses a function h that is composed of two sub-functions S and
f taking respectively one and two bytes as input. The function h used in the
protocol must be lightweight (for low-cost devices) and satisfy some properties:

– must be a like a one-way function (from output, input cannot be retrieved);
– its output must seem to be random;
– its output length must be sufficient to have enough intrinsically security (to

avoid replay and exhaustive authentication search).

We define an input size and an output size of 16 bytes for h and the same size
for the secret key K. Output size is chosen to be presented in the 16-byte form
to iterate an algorithm defined on byte. Function f which processes byte data
blocks and a substitution function S are described in the following subsections.

5.1 Function Design

f Function. Here we define the function f which needs two input bytes to
produce an output result of one byte.

f : F256 × F256 −→ F256

(x, y) �−→ z

with

z :=
[
[x⊕ ((255− y) � 1)]+16·[((255− x)⊕ (y � 1)) mod 16]

]
mod 256, (1)

where ⊕ is the bitwise exclusive or, + represents the classical integer addition,
n � 1 divides n by 2, n � 1 multiplies n by 2 and keeps the result modulo
256 by not taking into account a possible overflow and “16·” is the classical
multiplication by 16. In the subsection 6.2, we explain how to keep lightweight
these various operations by using 8-bit registers.

Lightweight Authentication Protocol for Low-Cost RFID Tags 133

We have the following properties:

– f is non-symmetric, i.e., for all (x, y) pair in F256×F256, the function verifies
f(x, y) �= f(y, x);

– f has a uniform distribution of values, i.e., for all z in F256, the function
verifies

�{(x, y) ∈ F256 × F256 : f(x, y) = z} = 256.

These properties can be easily verified. Hence we consider that the f function is
one-way: one cannot retrieve the good (x, y)-entry with the z value. The function
h inherits of this property.

Let i ∈ {0, · · · , 15} a vector index and j ∈ {1, 2, 3, 4} a round index. Let
M = (M0, · · · ,M15) a vector of 16 bytes. The function f does not use the same
entries depending on a vector index i and a round index j. We define:

F j
i (M) = f(Mi,M(i+2j−1) mod 16).

and
F j(M) = (F j

0 (M), F j
1 (M), · · · , F j

15(M)).

A working example of these indexes can be found in the table 2.

S Function. Our S function is not a new one. We choose the AES [12, 29]
SubBytes function for the quality of its properties.

The SubBytes transformation is a non-linear byte substitution. For example,
the eight-bits data “00000000” is transformed into B = “01100011”.

To avoid attacks based on simple algebraic properties, the definition of Sub-
Bytes Transformation is the composition of the following two transformations in
the finite field F28 with a chosen structure representation F28 ≈ F2(X)/(X8 +
X4 +X3 +X + 1).

The first transformation is the multiplicative inverse in Galois Field GF (28),
known to have good non-linearity properties. Then the multiplicative inverse
of each element is taken (the 8bit-element “00000000”, or {00} in hexadecimal
format, is mapped to itself). Next, the previous result is combined with an
invertible affine transformation:

x �→ Ax ⊕B,

where A is a 8× 8 fixed matrix over GF (2) and B is the number defined above
and ⊕ operates “Exclusive Or” on the individual bits in a byte.

The SubBytes Transformation is also chosen to avoid any fixed point (S(a) �=
a), any opposite fixed point (S(a) �= ā) and also any self invertible point (S(a) �=
S−1(a)).

Because it is based on many mathematical objects, the SubBytes function
could seem difficult to implement but the transformation could be reduce in an
8-bit substitution box. Hence for any element the result can be found by looking
up in a table (see the Figure 7 of [12]: substitution values for the byte {xy} (in
hexadecimal format)).

134 P. Dusart and S. Traoré

We define by S the following transformation: letM = (M0, · · · ,M15) a 16-byte
vector. Let S the function which associates M with the vector

S(M) = (SubBytes(M0), · · · , SubBytes(M15)).

5.2 Description of the Authentication Function h : (C,K) −→ H

Formally, we will follow the tag computation. First, we add the challenge to key
by Xor operation, i.e. we calculate D = C ⊕ K = (C0 ⊕ K0, . . . , C15 ⊕ K15).
Then we apply the substitution S to D. The first state M0 is initialized by
M0 = S(D). Then, we calculate the following values:

M1 = S(F 1(M0))⊕K,
M2 = S(F 2(M1)))⊕K,
M3 = S(F 3(M2)))⊕K,
M4 = S(F 4(M3)))⊕K.

Finally, the function returns H = M4 = (M4
0 , . . . ,M

4
15). We denote the result

H by hK(C).
The figure 1 summarizes this description and a more classical definition can

be found through the algorithm 1.

Input :C,K
Output :H

M0 = S(C ⊕K)
for j = 1 to 4 do

M j = S(F j(M j−1))⊕K
end for

H = M4

return H

Fig. 1. Authentication Function

6 Analysis

6.1 Protocol Security

The identity of the tag is not revealed directly: the tag’s identity iD is masked
by hK(C), output of h function which appears random. But the reader can still
determine the iD identity using the shared secret key K. The reader verifies
that this identity has been used to compute the second part of authentication.
At this state, the reader is sure that the tag with iD identity knows the secret
key K.

But as aforementioned section 4, a mutual authentication can be set by adding
the following steps. The reader shows that it knows K and iD by computing
hK⊕C′(C⊕iD) where C′ is the challenge given by the tag. The tag authenticates
the reader by computing in the same way and comparing the proposed result
with the computed one. If they are equal, the mutual authentication is achieved.

Lightweight Authentication Protocol for Low-Cost RFID Tags 135

Algorithm 1. Tag computations

Input: C = (C0, . . . , C15), K = (K0, . . . ,K15)
Output: H = (H0, . . . ,H15)
{Comment: Computation of M0 = S(C ⊕K)}
for i = 0 to 15 do

Mi ← S(Ci ⊕Ki)
end for
{Comment: Computation of S(F j(M j−1)}
for j = 1 to 4 do

for i = 0 to 15 do
k←Mi ⊕ ((Mi+2j−1 mod 16)	 1)
l← (255−Mi)⊕ (Mi+2j−1 mod 16
 1) mod 16
t← (k + 16 l) mod 256
Tempi ← S(t)

end for
{Comment: Computation of M j+1 = M j ⊕K}
for i = 0 to 15 do

Mi ← Tempi ⊕Ki

end for
end for
for i = 0 to 15 do

Hi ←Mi

end for
return H

Now we consider two cases:

– Fake Tag: the tag receives the challenge C. It can choose arbitrarily a number
iD to enter into the system. But it does not know K to compute the first
part of authentication response.

– Fake reader: the reader chooses and sends C. Next it receives a proper tag
authentication. It cannot find iD thanks to hiD(C) (because h is a one-way
function) nor K.

6.2 Lightweight

We have to establish that function could be programmed using usual assembler
instructions. We refer to ASM51 Assembler [30]. First we use 8-bit registers. To
represent an entry of 128 bits, eight registers or space blocks must be reserved.

Next we can implement the f function defined by (1) using very simple in-
structions using a register named A and a carry C:

– The computation of A � 1 can be translated by CLR C (Clear Carry) fol-
lowed by RLC A (Rotate Left through Carry). The computation of A � 1
can be translated by RRC A (Rotate Right through Carry).

– The computation of 255−A can be translated by CPL A, the complemented
value.

136 P. Dusart and S. Traoré

– The bitwise-xor is classically translated by XRL.

– The modular reduction by 16 can by translated by AND 0x0F.

– The multiplication by 16 can be translated by four left shift or by AND 0x0F

followed by SWAP which swaps nibbles.

– The modular addition (mod 256) can be translated simply by ADD without
taking care of possible carries of an 8-bit register.

The SubBytes function can be implemented by looking up in a table as explain
in the Figure 7 of [12]. This part of AES algorithm can be computed with a
few gates compared to the whole AES (The most penalizing part being the key
expansion according to the table 3 of [31]).

Now we claim that properties of h function presented in section 5 are satisfied:

– the overflows of f are intended and contribute to the non-reversibility of the
h function,

– the output seems random (subsection 6.4),

– the avalanche criterion (subsection 6.3) shows that the outputs distribution
of f is well reported to h outputs.

6.3 Strict Avalanche Criterion

The strict avalanche criterion was originally presented in [32], as a generaliza-
tion of the avalanche effect [33]. It was introduced for measuring the amount of
nonlinearity in substitution boxes (S-boxes), like in the Advanced Encryption
Standard (AES).

The avalanche effect tries to reflect the intuitive idea of high-nonlinearity: a
very small difference in the input producing a high change in the output, thus
an avalanche of changes.

Denote by HW the Hamming weight and DH(x, y) = HW (x⊕ y) the Ham-
ming distance.

Mathematically, the avalanche effect can be formalized by

∀x, y|DH(x, y) = 1, average(DH(F (x), F (y))) =
n

2
,

where F is candidate to have the avalanche effect.
So the output of a n-bit random input number and one generated by randomly

flipping one of its bits should be, on average, n/2. That is, a minimum input
change (one single bit) is amplified and produces a maximum output change
(half of the bits) on average.

First we show that if an input bit is changed then the modification will change
an average of one half of the following byte. The input byte x will be changed
to x′ with a difference Δx of one bit. After the first SubBytes transformation,
the difference will be

S(x⊕ k)⊕ S(x′ ⊕ k) = S(y)⊕ S(y +Δx),

Lightweight Authentication Protocol for Low-Cost RFID Tags 137

with y = x⊕ k. We have in average

1

256 · 8
∑
y

∑
Δx,HW (Δx)=1

HW (S(y)⊕ S(y +Δx)) ≈ 4,

where HW is the Hamming weight. Hence an average of four bits will change if
the difference is of one bit. Furthermore, for any difference Δx,

1

256 · 256
∑
y

∑
Δx

HW (S(y)⊕ S(y +Δx)) = 4.

Our function satisfies the avalanche effect as

1

2562

∑
x

∑
y

HW (x⊕ S(f(x, y))) ≈ 4.

Next we show that if an input bit is changed then the modification will be
spread over all the bytes of the output. Suppose that a bit of the kth byte M0

k

is changed (1 ≤ k ≤ 16). Then M1 is also changed as the SubBytes substitution
is not a constant function. At the first round, the bytes k and k + 1 will be
modified. At the second round, the bytes k, k + 2, k + 1 and k + 3 will be
modified. Furthermore, eight bytes will be modified and at the end, the whole
16 bytes will be modified.

For example, if the first input byte is changed (M0
0 is changed). Then M0

0 is
used for compute M1

0 and M1
15, hence a difference appears in M1

0 and M1
15, and

so on. We trace the difference diffusion in the following table:

Table 1. Diffusion table

M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

First Xor x

j = 1 x x

j = 2 x x x x

j = 3 x x x x x x x x

j = 4 x x x x x x x x x x x x x x x x

Last Xor x x x x x x x x x x x x x x x x

If another byte is changed, the same remark works by looking in the depen-
dence table 2.

Hence for any input difference, the modification will change an average of one
half of the output.

Table 2. Dependency table

138 P. Dusart and S. Traoré

6.4 Security Quality

To evaluate the security quality, we take Y = 1 et X = 0. We consider the
iterated outputs of the authentication function. Hence we test the series hY (X),
hY (hY (X)), ... like a random bitstream with the NIST test suite [34]. The bit-
stream satisfies all the tests (parameters of NIST software: 106 input bits, 100
bitstreams).

Table 3. NIST Statistical Test Results

Test Name Percentage of passing sequences
with Significance level α = 0.01

1. Frequency Test (Monobit) 99/100
2. Frequency Test (Block) 100/100
3. Runs Test 100/100
4. Longest Run of Ones 99/100
5. Binary Matrix Rank Test 98/100
6. Discrete Fourier Transform Test 98/100
7. Non-Overlapping Template 98/100
8. Overlapping Template 98/100
9. Maurers Universal Statistical 100/100
10 Linear Complexity Test 100/100
11. Serial Test 99/100
12. Approximate Entropy Test 100/100
13. Cumulative Sums (Cusum) Test 98/100
14. Random Excursions Test 90/93
15. Random Excursion Variant Test 91/93

6.5 Hardware Complexity: Implementation and Computational Cost

We choose a 8bit-CPU Tag for cost reasons. We implement the authentication
function on a MULTOS Card [35] without difficulties. This card is not a low-cost
card but we only test the implementation with basic instructions. The code size
of the authentication function (with S-box table) without manual optimization
is 798 bytes.

We can optimize the memory usage:

– the S-box table can be placed in Read-Only memory area: 256 bytes needed
for AES SubBytes Table.

– the variables placed in the Random Access Memory Memory can be opti-
mized. For internal state computation, one have to represent M with 16
bytes and we need two supplementary temporary bytes: at each round, a
state byte value Mi is used twice to compute the next state. In fact M j

i is

used for compute M j+1
i and M j+1

i+2j−1 mod 16. After computation of these two

variables, the space allocation for the variable M j
i can be reused. Next we

compute the value M j+1
i+2j−1 mod 16 depending on M j

i+2j−1 mod 16 and another

Lightweight Authentication Protocol for Low-Cost RFID Tags 139

byte. Now we can delete the memory space for M j
i+2j−1 mod 16 and compute

another byte of Mj+1, step by step. Hence we use only two additional bytes
to compute the next state of M .

We evaluate the computational time with a PC computer (Intel CoreDuo T9600
2.8Ghz): 30 s for 107 authentications for a program in a C language, i.e. 3μs per
authentication.

6.6 Privacy

Even if RFID technology is used for identify something in tracing system, in
many cases this technology would merely cause infringements of private rights.
We do not prevent the tracing system from recording informations but we need
to protect the tag iD from external recording. Hence if an attacker records
all transactions between tag and a reader, he cannot retrieve if the same tag
has been read one or many times. Contrarily, a fake reader can determine if it
has previously ask a tag by sending always the same challenge and recording
responses, but it cannot know the real iD of the tag.

7 Attacks

The attacker’s aim is to validate its tag identity. He can do this by producing
a response to a challenge. If he can exploit the attack in a feasible way, then
we say that the protocol is broken. Such a success of the attacker might be
achieved with or without recovering the secret key shared by the reader and the
tag. Hence a large key size is not enough to prove that the protocol cannot be
broken with brute force attack. We might also take into account other attacks
where the attacker can record, measure and study the tag responses. The nec-
essary data could be obtained in a passive or in an active manner. In case of
a passive attack, the attacker collects messages from one or more runs without
interfering with the communication between the parties. In case of an active at-
tack, the attacker impersonates the reader and/or the tag, and typically replays
purposefully modified messages observed in previous runs of the protocol.

7.1 Recording Attacks

Replay Attack by Recording: An attacker tries to extract the secret of a tag.
He uses a reader and knows the commands to perform exchanges with the tag.
He asks the tag many times. By listening to different requests, one can record
n complete answers. A complete record is composed of a challenge C and the
associated response Auth. Next if a recording challenge C is used or reused, then
the attacker knows the correct response Auth. This attack works but

– The attacker must have time to record all the possibilities;
– To create a fake tag, the tag must have 2128 · (2 · 2128) bits (e.g. 1060 To) of

memory to store the previous records and have the good answer. If this type
of tag exists, it is not a commercial one.

140 P. Dusart and S. Traoré

– The challenge C, generated by the reader environment, is supposed to be
random. So for a fixed C, the probability to have the good answer is very
low.

Relay Attack [36]: the attacker makes a link between the reader and tag;
it’s a kind of Man-in-the-Middle attack. He creates independent connections
with reader and tag and relays messages between them. Hence a tag can be
identified without being in the reader area. The problem can be treated by
security environment protections. A partial solution to protect tag against this
attack [37] is to limit its communication distance, but this countermeasure limits
the potential of RFID tags. A better way is to activate a distance-bounding
protocol [38].

Man-In-The-Middle Attack: A man-in-the-middle attack is not possible be-
cause our proposal is based on a mutual authentication, in which two random
numbers (C,C′), refreshed at each iteration of the protocol, are used. One cannot
forge new responses using challenge differences because hiD(C+Δ) �= hiD(C)+Δ
and hK(C+Δ) �= hK(C)+Δ. In the same way, hK⊕C′⊕Δ(C⊕iD) �= hK⊕C′(C⊕
iD)⊕Δ.

7.2 Side Channels Attacks

Timing Attack: a timing attack [39] is a side channel attack in which the
attacker attempts to compromise a cryptosystem by analyzing the time taken
to execute cryptographic algorithm. The attack exploits the fact that every op-
eration in a computer takes a dedicated time to execute. If the time cost of
operation depends on key value or input values, on can retrieve these secret val-
ues by timing attack. Hence, during the implementation, we must be aware of
the timing attack. For the computation of tag authentication, the time cost of
the operations is the same whatever the value of the key. Next for the reader
authentication, the tag must compare the reader response with its own com-
putation. With poor security implementation but unfortunately “classical”, if a
difference between two bytes is found, the algorithm stops and return the in-
formation “Authentication failed”. This kind of program is sensible to timing
attack. The execution time is different according if the value is rapidly found or
not found. To be immune from this attack, we make always a fixed number of
steps; the response is send when all the response is verified. One can also add
dummy cycles to equilibrate the parts of an implementation. Hence our function
is resistant to Timing attack.

Power Consumption Attack: an attacker studies the power consumption [40]
of the tag. He can do it by monitoring the delivery power from the reader to
the tag. As the consumption of the chip depends on the executed instructions,
the attacker can observe (SPA) the different parts of an algorithm. Here the
algorithm does not need to be secret and the operations do not depend on the
key values. One can also use random dummy cycles to disrupt the observation
of the same part of program execution. Hence our function is SPA-resistant.

Lightweight Authentication Protocol for Low-Cost RFID Tags 141

7.3 Mathematical Attacks

Lucky Authentication: A attacker tries to have a good authentication with
a fake tag. He sends (C1, C2) as Auth. The first part C1 = iD ⊕ hK(C) of the
response can be decoded as a existing iD if there is enough tags. But the second
part C2 = hiD(C) is fixed by the decoding iD and the challenge C. The size of
C2 is 16 bytes. Hence

P (Authentication OK/False Tag) ≤ 1

2128
.

Nowadays, this probability is sufficient for a good security.

Active Attack: Suppose that an attacker queries the tag T by sending C = 0
as challenge. Then, to determine the secret K, it must solve the equation

S(F 4(S(F 3(S(F 2(S(F 1(S(K)))⊕K))⊕K))⊕K))⊕K = H, (2)

where H is the response of T and the unknowns are the bytes of K. Since
each round of the algorithm operations are performed modulo 16 or modulo 256
and the results from these transactions are processed by substitution tables, the
equation 2 is very difficult to analyze algebraically.

Linear [41] or Differential [42] Attacks: These attacks depend especially
on properties of the substitution function. First remember that for a function g
from F2m to F2m , a differential pair (α, β) is linked with the equation g(x⊕α)⊕
g(x) = β. The differential attack is based on finding pairs where the probability

P (�{x ∈ F2m : g(x⊕ α)⊕ g(x) = β})

is high. If such pair exists then the attack is feasible. Our function is well resistant
to this attack. Indeed the substitution function S is constructed by composing
a power function with an affine map, which avoid from differential attacks. Our
h function inherits from these properties: considering the output z of f(x, y)
describes in the paragraph 5.1, it is easy to verify (like in the paragraph 6.3)
that

for all α, β ∈ F256, �{z ∈ F256 : S(z ⊕ α)⊕ S(z) = β} ≤ 4.

It allows to avoid the existence of differential pair such that the probability

P (�{x ∈ F256 : S(x⊕ α) ⊕ S(x) = β})

be high.
To achieve a linear attack, it aims at awarding credibilities to the equations

of the type
〈α, x〉 ⊕ 〈β, S(x)〉 = 0, with α, β ∈ F256.

We know that for all α and β not identically equal to zero, the equation has a
number of solutions close to 128 which makes expensive the linear attack.

142 P. Dusart and S. Traoré

7.4 Desynchronizing Attack

In a desynchronization attack, the adversary aims to disrupt the key update
leaving the tag and reader in a desynchronized state in which future authentica-
tion would be impossible. Compared to some other protocols, the key does not
change in our authentication protocol. It is not a lack of security, the key may
change during stocktaking or subscription renewal, by changing tag by another
with the new key.

8 Conclusion

We have presented a lightweight authentication protocol for low-cost RFID
tags. The internal functions are well adapted for 8-bit CPU with few mem-
ory and without cryptoprocessor, even if it is true that a precise evaluation of
the building cost and performance of a tag supporting our protocol (i.e. very few
CPU functions and less than 1Kbytes of memory) should be evaluated with a
manufacturer.

We use the security qualities of the AES S-Boxes to build a function, specifi-
cally dedicated to the authentication, which keeps them. The notions of privacy
and the classic attacks are addressed. The proposed version is light in terms of
implementation and in a reduced cost what makes it usable on RFID systems.
Even if these systems are intended for simple applications as secure counter of
photocopies or stock management in a small shop, the security level reached here
allows to envisage more ambitious applications.

Acknowledgements. The authors want to thank the anonymous reviewers
for their constructive comments which were helpful to improve this paper and
Damien Sauveron for proofreading of preliminary versions.

References

1. Agarwal, A., Mitra, M.: RFID: Promises and Problems (April 2006)
2. Weis, S.A.: Rfid (radio frequency identification): Principles and applications
3. Nath, B., Reynolds, F., Want, R.: Rfid technology and applications. IEEE Pervasive

Computing 5(1), 22–24 (2006)
4. Östman, H.: Rfid - 5 most common applications on the shop floor (2012),

http://www.rfidarena.com/2012/12/13/rfid-%E2%80%93-5-most-common-

applications-on-the-shop-floor.aspx

5. James, J.: Fda, companies test rfid tracking to prevent drug counterfeiting. AIDS
Treat News (417), 5–8 (2005)

6. Miles, S., Sarma, S., Williams, J.: RFID Technology and Applications. Cambridge
University Press (2011)

7. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

8. Feldhofer, M., Wolkerstorfer, J.: Strong crypto for rfid tags - a comparison of low-
power hardware implementations. In: ISCAS, pp. 1839–1842. IEEE (2007)

http://www.rfidarena.com/2012/12/13/rfid-%E2%80%93-5-most-common-applications-on-the-shop-floor.aspx
http://www.rfidarena.com/2012/12/13/rfid-%E2%80%93-5-most-common-applications-on-the-shop-floor.aspx

Lightweight Authentication Protocol for Low-Cost RFID Tags 143

9. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard
processors. In: Proceedings of the USENIX Workshop on Smartcard Technology,
p. 2. USENIX Association (1999)

10. Poschmann, A.: Lightweight cryptography - cryptographic engineering for a per-
vasive world. IACR Cryptology ePrint Archive 2009, 516 (2009)

11. Hellekalek, P.: Good random number generators are (not so) easy to find. Math.
Comput. Simul. 46(5-6), 485–505 (1998)

12. NIST: Advanced encryption standard (aes), fips 197 (November 2001),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

13. Eastlake, D.E., Jones, P.E.: US Secure Hash Algorithm 1 (SHA1),
http://www.ietf.org/rfc/rfc3174.txt?number=3174

14. Rivest, R.L.: The MD5 Message-Digest Algorithm (RFC 1321),
http://www.ietf.org/rfc/rfc1321.txt?number=1321

15. Vajda, I., Buttyán, L.: Lightweight authentication protocols for low-cost rfid tags.
In: 2nd Workshop on Security in Ubiquitous Computing, in conjunction with Ubi-
comp 2003 (October 2003)

16. Peris-Lopez, P., Hern, J.C., Tapiador, J.M.E., Ribagorda, A.: Lmap: A real
lightweight mutual authentication protocol for low-cost rfid tags. In: Proc. of 2nd
Workshop on RFID Security, Ecrypt, p. 06 (2006)

17. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.:
M2AP: A minimalist mutual-authentication protocol for low-cost RFID tags. In:
Ma, J., Jin, H., Yang, L.T., Tsai, J.J.-P. (eds.) UIC 2006. LNCS, vol. 4159, pp.
912–923. Springer, Heidelberg (2006)

18. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.:
EMAP: An efficient mutual-authentication protocol for low-cost RFID tags. In:
Meersman, R., Tari, Z., Herrero, P. (eds.) OTM Workshops 2006, Part I. LNCS,
vol. 4277, pp. 352–361. Springer, Heidelberg (2006)

19. Defend, B., Fu, K., Juels, A.: Cryptanalysis of two lightweight rfid authentication
schemes. In: PerCom Workshops, pp. 211–216. IEEE Computer Society (2007)

20. Li, T., Wang, G.: Security analysis of two ultra-lightweight RFID authentication
protocols. In: Venter, H., Eloff, M., Labuschagne, L., Eloff, J., von Solms, R. (eds.)
New Approaches for Security, Privacy and Trust in Complex Environments. IFIP,
vol. 232, pp. 109–120. Springer, Boston (2007)

21. Lee, J., Yeom, Y.: Efficient rfid authentication protocols based on pseudorandom
sequence generators. IACR Cryptology ePrint Archive 2008, 343 (2008)

22. Lo, N.W., Yeh, K.H.: De-synchronization attack on rfid authentication protocols.
In: International Symposium on Information Theory and its Applications (ISITA),
pp. 566–570 (October 2010)

23. van Deursen, T., Radomirovic, S.: Security of rfid protocols - a case study. Electr.
Notes Theor. Comput. Sci. 244, 41–52 (2009)

24. Sixth International Conference on Availability, Reliability and Security, ARES
2011, Vienna, Austria, August 22-26. IEEE (2011)

25. Yeh, T.C., Wang, Y.J., Kuo, T.C., Wang, S.S.: Securing rfid systems conforming
to epc class 1 generation 2 standard. Expert Syst. Appl. 37(12), 7678–7683 (2010)

26. Habibi, M.H., Alagheband, M.R., Aref, M.R.: Attacks on a lightweight mutual
authentication protocol under EPC C-1 G-2 standard. In: Ardagna, C.A., Zhou,
J. (eds.) WISTP 2011. LNCS, vol. 6633, pp. 254–263. Springer, Heidelberg (2011)

27. Hernandez-Castro, J.C., Peris-Lopez, P., Safkhani, M., Bagheri, N., Naderi, M.:
Another fallen hash-based RFID authentication protocol. In: Askoxylakis, I., Pöhls,
H.C., Posegga, J. (eds.) WISTP 2012. LNCS, vol. 7322, pp. 29–37. Springer,
Heidelberg (2012)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.ietf.org/rfc/rfc3174.txt?number=3174
http://www.ietf.org/rfc/rfc1321.txt?number=1321

144 P. Dusart and S. Traoré

28. Song, B., Hwang, J.Y., Shim, K.A.: Security improvement of an rfid security proto-
col of iso/iec wd 29167-6. IEEE Communications Letters 15(12), 1375–1377 (2011)

29. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

30. Intel: Mcs-51 instruction set summary (1979)
31. Hamalainen, P., Alho, T., Hannikainen, M., Hamalainen, T.D.: Design and imple-

mentation of low-area and low-power aes encryption hardware core. In: Proceed-
ings of the 9th EUROMICRO Conference on Digital System Design, DSD 2006,
pp. 577–583. IEEE Computer Society, Washington, DC (2006)

32. Forré, R.: The strict avalanche criterion: Spectral properties of boolean func-
tions and an extended definition. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 450–468. Springer, Heidelberg (1990)

33. Webster, A.F., Tavares, S.E.: On the design of S-boxes. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)

34. NIST: A statistical test suite for the validation of random number generators and
pseudo random number generators for cryptographic applications. NIST Special
Publication 800-22rev1a (April 2010)

35. Multos: Multos developer’s guide (2012)
36. Kasper, T., Carluccio, D., Paar, C.: An embedded system for practical security

analysis of contactless smartcards. In: Sauveron, D., Markantonakis, K., Bilas, A.,
Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 150–160. Springer,
Heidelberg (2007)

37. Schneier, B.: Rfid cards and man-in-the-middle attacks. Schneier Security Blog
(2006)

38. Hancke, G.P., Kuhn, M.G.: An rfid distance bounding protocol. In: SecureComm,
pp. 67–73. IEEE (2005)

39. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

40. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

41. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

42. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

Author Index

Berlach, Reinhard 82
Borchert, Bernd 66

de Meer, Hermann 18
Dusart, Pierre 129

Günther, Max 66

Henricksen, Matt 1
Hoerder, Simon 112
Höhne, Focke 50
Huber, Stephan 50

Ilia, Panagiotis 34

Järvinen, Kimmo 112

Lackner, Michael 82

Matsuo, Shin’ichiro 98
Moriyama, Daisuke 98

Ohkubo, Miyako 98
Oikonomou, George 34

Page, Daniel 112
Peng, Kun 1
Peters, Stefan 18
Pöhls, Henrich C. 18
Posegga, Joachim 18, 50

Raschke, Wolfgang 82

Samelin, Kai 18
Schreckling, Daniel 50
Steger, Christian 82

Traoré, Sinaly 129
Tryfonas, Theo 34

Weiss, Reinhold 82

	Preface
	Organization
	Table of Contents
	Cryptography and Cryptanalysis
	Multiplicative Homomorphic E-Auction with Formally Provable Security
	1 Introduction
	2 Symbols and Security Model
	3 The Basic Protocol, Efficient Distributed Key Generation and Multiplicative Homomorphic Bid Opening
	4 The Final Protocol, Optimisation to Achieve Robustness
	5 Comparison and Conclusion
	References

	Malleable Signatures for Resource Constrained Platforms
	1 Introduction
	1.1 Contribution
	1.2 Overview and State of the Art of Malleable Signatures
	1.3 Applications of Malleable Signatures
	1.4 Motivation for Smart Cards

	2 Sanitizable and Redactable Signature Schemes
	2.1 Security Properties of

	3 Implementation on Smart Cards
	3.1 SSS Scheme BFF+09 [5]
	3.2 SSS Scheme BFF+09 [5] on Smart Card
	3.3 SSS Schemes BFLS09 [6] and BPS12 [8]
	3.4 SSS Schemes BFLS09 [6] and BPS12 [8] on Smart Card
	3.5 RSS Scheme PSPdM12 [24
	3.6 RSS Scheme PSPdM12 [24] on Smart Card

	4 Performance and Lessons Learned
	References

	Cryptographic Key Exchange in IPv6-Based Low Power, Lossy Networks
	1 Introduction
	2 Background
	2.1 Symmetric Key Schemes
	2.2 Public Key Cryptography

	3 Implementation of the Key Exchange Technique
	3.1 Link Layer Frame and Framer
	3.2 ECC Implementation
	3.3 Key Storage and Management
	3.4 The Key Exchange Process

	4 Experimental Setup, Results and Analysis
	4.1 Memory Requirements
	4.2 Latency, Average Energy Consumption and Network Scalability
	4.3 Energy Consumption and Key Lifetime
	4.4 Key Lifetime and Packet Loss

	5 Conclusions and Further Work
	References

	Mobile Security
	URANOS: User-Guided Rewriting for Plugin-Enabled ANdroid ApplicatiOn Security
	1 Introduction
	2 Approach Overview
	3 Background
	3.1 Android Applications
	3.2 Dalvik Virtual Machine
	3.3 Android Permissions

	4 TheURANOSFramework
	4.1 Application Processing
	4.2 Permission Detection
	4.3 Context Detection
	4.4 Rewriter
	4.5 Application Management

	5 Discussion
	5.1 Performance
	5.2 Limitations
	5.3 Legal Restrictions

	6 Related Work
	6.1 Permission Analysis
	6.2 Enhanced Permission Monitoring

	7 Conclusions
	References

	Online Banking with NFC-Enabled Bank Card and NFC-Enabled Smartphone
	1 Introduction
	2 State of the Art and Related Work
	2.1 Basic Steps of Transaction Signing Solutions
	2.2 Secure Signature Creation Device Solutions
	2.3 Smartphone-Only Solutions
	2.4 Trusted-Smartphone Plus Smartcard

	3 NFC-TANMethod
	3.1 Motivation
	3.2 Description
	3.3 Debit Card, EMV and HHD

	4 Security
	4.1 Software Attacks
	4.2 Physical Attacks
	4.3 Social Attacks
	4.4 Protocol / Cryptography

	5 Usability
	6 Complexity: Implementation, Integration and Administration
	7 Costs
	8 Variants and Extensions
	8.1 NFC-TAN Mobile Banking (Single-Channel)
	8.2 OCR Instead of 2D Code
	8.3 Online NFC-TAN
	8.4 Secure Displays

	9 Conclusion
	References

	Smart Cards and Embedded Devices
	A Defensive Virtual Machine Layer to Counteract Fault Attacks on Java Cards
	1 Introduction
	2 Related Work
	2.1 Java Card Virtual Machine
	2.2 Attacks on Java Cards
	2.3 Countermeasures against Java Card Attacks
	2.4 EMAN4 Attack: Jump Outside the Bytecode Area

	3 Defensive VM Layer
	4 Java Card Prototype Implementation
	4.1 D-VM Layer Implementations

	5 PrototypeResults
	5.1 Computational Overhead
	5.2 Main Memory Consumption

	6 Conclusions and Future Work
	References

	A Forward Privacy Model for RFID Authentication Protocols
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Pseudo-random Generator
	2.3 Pseudo-random Function

	3 Security Model for RFID Authentication
	3.1 Juels-Weis Privacy Model
	3.2 Paise-Vaudenay Privacy Model

	4 Desynchronization Problem in RFID Authentication
	5 The Modified Forward Privacy Model
	6 Suitable RFID Authentication Protocols
	6.1 O-FRAP
	6.2 The Modified OSK Protocol

	7 Further Separation in Concurrent Execution
	8 Concluding Remarks
	References

	On Secure Embedded Token Design Quasi-looped Yao Circuits and Bounded Leakage
	1 Introduction
	2 Background
	2.1 Yao Circuits at a High Level
	2.2 Abstract Realisation of Yao Circuits
	2.3 Previous Token Implementations of Yao Circuits

	3 Supporting Alterations to Traditional Yao Circuits
	3.1 Circuit Modularisation
	3.2 Updating Δ between Template Instances

	4 Token Design
	4.1 Cipher Construction
	4.2 Operational Protocol and Token Architecture

	5 Analysis and Results
	5.1 Security Analysis
	5.2 Experimental Results and Analysis

	6 Conclusions
	References

	Lightweight Authentication Protocol for Low-Cost RFID Tags
	1 Introduction
	2 System Model and Assumptions
	3 Related Work
	4 Protocol Requirements and Specifications
	5 ProposalDescription
	5.1 Function Design
	5.2 Description of the Authentication Function

	6 Analysis
	6.1 Protocol Security
	6.2 Lightweight
	6.3 Strict Avalanche Criterion
	6.4 Security Quality
	6.5 Hardware Complexity: Implementation and Computational Cost
	6.6 Privacy

	7 Attacks
	7.1 Recording Attacks
	7.2 Side Channels Attacks
	7.3 Mathematical Attacks
	7.4 Desynchronizing Attack

	8 Conclusion
	References

	Author Index

