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Abstract. We present a new quantum-inspired evolutionary algorithm,
the attractor population QEA (apQEA). Our benchmark problem is a
classical and difficult problem from Combinatorics, namely finding low-
discrepancy colorings in the hypergraph of arithmetic progressions on the
first n integers, which is a massive hypergraph (e. g., with approx. 3.88�
1011 hyperedges for n � 250 000). Its optimal low-discrepancy coloring
bound Θ� 4

√
n� is known and it has been a long-standing open problem to

give practically and/or theoretically efficient algorithms. We show that
apQEA outperforms known QEA approaches and the classical combina-
torial algorithm (Sárközy 1974) by a large margin. Regarding practica-
bility, it is also far superior to the SDP-based polynomial-time algorithm
of Bansal (2010), the latter being a breakthrough work from a theoreti-
cal point of view. Thus we give the first practical algorithm to construct
optimal colorings in this hypergraph, up to a constant factor. We hope
that our work will spur further applications of Algorithm Engineering to
Combinatorics.

Keywords: estimation of distribution algorithm, quantum-inspired evo-
lutionary algorithm, hypergraph coloring, arithmetic progressions, algo-
rithm engineering, combinatorics.

1 Introduction

Experimentation is emerging as a tool in Combinatorics. For example, experi-
mentation is used in a Polymath project on one of the most challenging open
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problems of Paul Erdős on homogeneous arithmetic progressions. In this paper
we contribute to both, experimental algorithms for difficult discrepancy prob-
lems and highly-parallel evolutionary computation within the class of estimation
of distribution algorithms (EDA).

Quantum-inspired evolutionary algorithms (QEA) belong to the class of EDAs,
more precisely to the class of univariate EDAs. An EDA maintains a prob-
ability distribution, also called model, μ on the set of possible solutions, say
{0, 1}k. Sampling μ yields concrete solutions, which can be used to tune μ with
the intent to sample better solutions next time. In a univariate EDA, mod-
els of a simple kind are considered, namely which treat all of the k coordi-
nates as independent random variables. Thus μ can be represented as a vector
Q � �Q1, . . . , Qk� � �0, 1�

k with Qi stating the probability of sampling 1 in coor-
dinate i. Univariate EDAs have been studied since the 90ies; in 2002 [5], the term
“quantum-inspired” was coined, based on the observation that the Q1, . . . , Qk be-
have similar to k qubits in a quantum computer: each is in a state between 0 and
1, and only upon observation takes on states 0 or 1 with certain probabilities.
Hence what we call “sampling” is also called “observing” in the literature. We
call the QEA from [5] the standard QEA (sQEA). It uses an attractor, which
is the best solution found so far. The model is tuned towards the attractor in
each generation. We stick to the term “quantum-inspired” since our version of
univariate EDA also uses the idea of an attractor. A burden that comes with
QEAs is the possibility of premature convergence, meaning: each Qi moves close
to one of the extremes (0 or 1), so the model Q essentially locks onto one par-
ticular solution, before a sufficiently good solution is found – and the algorithm
does not provide a way to escape this dead end. We will show how our new QEA
successfully deals with this problem.

We briefly introduce the hypergraph of arithmetic progressions and the dis-
crepancy problem. Given a, d, � � N0 � {0, 1, 2, 3, . . .}, the set Aa,d,�

:� {a� id; 0 � i 	 �} is the arithmetic progression (AP) with starting point
a, difference d, and length �. It contains exactly � numbers, namely a, a� d, a�
2d, . . . , a���
1� d. For n � N we call An :�{Aa,d,� � {0, . . . , n
 1} ; a, d, � � N0}
the set system or hypergraph of arithmetic progressions in the first n inte-
gers. Elements of An are called hyperedges and elements of the ground set
V :� {0, . . . , n
 1} are called vertices. The cardinality of An is approximately
n2 log�n��2; we will give a proof in the full version. Often, the ground set is
{1, . . . , n} in the literature, but for our purposes starting at 0 is notationally
more convenient. A coloring is a mapping χ : V � {
1,�1}. Given a coloring
χ and an AP E � V we have its discrepancy discχ�E� :�

∣
∣
∑

v�E χ�v�
∣
∣. The

discrepancy of An with respect to χ is discχ�An� :� maxE�An χ�E�.

Previous and Related Work. Univariate EDAs have been studied since the 90ies,
see, e. g.,, [2,13,7,5,15]. For a recent survey on general EDAs see [8] and the
references therein. Particularly influential for our work have been [5] and [15],
where sQEA and vQEA are presented, respectively. vQEA extends the attractor
concept in a way to allow for better exploration. But for the discrepancy problem,
vQEA is not well suited for reasons explained later. In recent years, variants of
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QEAs have been successfully used on benchmark as well as on difficult practice
problems, see, e. g.,, [1,10,11,14,6].

For An, in 1964, it was shown by Roth [16] that there is no coloring with dis-
crepancy below Ω� 4

√
n�. More than 20 years later, it was shown by Matoušek and

Spencer [12] that there exists a coloring with discrepancy O� 4
√
n�, so together

with the earlier result we have Θ� 4
√
n�. The proof is non-constructive, and the

problem of efficiently computing such colorings remained open. For many years,
Sárközy’s approximation algorithm (see [4]) was the best known, provably at-
taining discrepancy O� 3

√

n log�n��; experiments suggest that (asymptotically) it
does not perform better than this guarantee. Recently, in a pioneering work, the
problem was solved by Bansal [3], using semi-definite programs (SDP). However,
Bansal’s algorithm requires solving a series of SDPs that grow in the number
of hyperedges, making it practically problematic for An. In our experiments,
even for n 	 100, it requires several hours to complete, whereas our apQEA
(in a parallel implementation) only requires a couple of minutes up to n �
100 000. Computing optimal low-discrepancy colorings for general hypergraphs is
NP-hard [9].

Our Contribution. We use the problem of computing low-discrepancy colorings
in An in order to show limitations of sQEA and how a new form of QEA can
successfully overcome these limitations. Our new QEA uses an attractor popula-
tion where the actual attractor is repeatedly selected from. We call it attractor
population QEA (apQEA). The drawback of sQEA appears to be premature
convergence, or in other words, a lack of exploration of the search space. We
show that even by reducing the learning rate drastically in sQEA and by using
local and global migration, it does not attain the speed and solution quality of
apQEA. In addition to the exploration capabilities of apQEA, we show that –
with an appropriate tuning of parameters – it scales well in the number of par-
allel processors: when doubling the number of processor cores from 96 to 192,
running times reduces to roughly between 40% and 60%.

We also look at the combinatorial structure of An. Based on an idea by
Sárközy (see [4]) we devise a modulo coloring scheme, resulting in a search space
reduction and faster fitness function evaluation. This, together with apQEA,
allows us to compute low-discrepancy colorings that are optimal up to a constant
factor, in the range up to n � 250 000 vertices. For this n, the cardinality of
An is approx. 3.88 � 1011, which means a massive hypergraph. Precisely, we
compute colorings with discrepancy not more than 3 4

√
n; we call �3 4

√
n� the target

discrepancy. We have chosen factor 3, because this appeared as an attainable goal
in reasonable time in preliminary experiments. Better approximations may be
possible with other parameters and more processors and/or more time. Colorings
found by our algorithm can be downloaded1 and easily verified.

Our problem sizes are a magnitude beyond that of the Polymath project. Of
course, our problem is different, but related and in future work we plan to access
the Erdős problem with our approach.

1 http://www.informatik.uni-kiel.de/~lki/discap-results.tar.xz

http://www.informatik.uni-kiel.de/~lki/discap-results.tar.xz
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Algorithm 1. sQEA
1 in parallel for each model Q � �Q1, . . . , Qk� �M do
2 initialize model Q :� �1�2, . . . , 1�2�;
3 initialize attractor a :� random solution;
4 repeat
5 a :� best attractor over all models;
6 sample Q yielding x � {0, 1}k;
7 if f�x� � f�a� then
8 for i � 1, . . . , k do if xi � ai then

Qi :�

{

max {0, Qi 
Δ�Qi�} if ai � 0

min {1, Qi �Δ�Qi�} if ai � 1

9 else a :� x;
10 until satisfied or hopeless or out of time;

2 Description of Algorithms

Fitness Function and Shortcutting. As fitness function (FF), we use the negative
of the discrepancy, so higher fitness is better. The sample space is of the form
{
1,�1}k, but we will often write {0, 1}k, where 0 means 
1. The concrete
choice of k will be explained in Sec. 3. In a QEA, given two solutions x and x�

with known fitness f�x��, it is often enough to decide whether f�x� � f�x��
and only in this case it will be required to compute f�x� exactly. If we can
determine that f�x� � f�x��, then we do not need the exact value of f�x�. Since
discrepancy involves a maximum, it provides an opportunity for shortcutting: as
soon as a hyperedge is found in which discrepancy w.r.t. x is at least as high as
disc�x��, evaluation can be aborted and f�x� � f�x�� can be reported. This is
a big time-saver, e. g., for n � 100 000 vertices, on average we require about 2
milliseconds for a shortcut FF evaluation and about 790 milliseconds for a full
one – and for apQEA there are usually many more shortcut ones than full ones.

Standard QEA (sQEA). A basic version of sQEA [5] is given as Alg. 1. The set
M typically comprises 1 to 100 models; they are distributed among the available
processors. For each model, an attractor a is maintained. Each iteration of the re-
peat loop is called a generation. In each generation, each of the models is sam-
pled, and if the sample x cannot beat the attractor,2 learning takes place: the
model is shifted slightly towards a, where x and a differ. Linear learning means
using a fixed amount, e. g.,, Δ�Qi� � Δ � 1

100 . In [5,15] rotation learning is used:
the point �

√
1
Qi,

√
Qi� in the plane is rotated either clockwise (if ai � 0) or

counter-clockwise (if ai � 1), and the new value of Qi becomes the square root of
2 The original description suggests using f�x� � f�a� as the test, so the sample is not

required to beat the attractor but to be at least as good as the attractor. We will
comment on this later.
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the new ordinate. This is inspired by quantum computing; an actual benefit could
be that towards the extremes (0 and 1) shifts become smaller. We will test sQEA
and vQEA with linear as well as rotation learning and stick to linear learning for
apQEA. The learning resolution gives the number of possible values that each Qi

can assume inside �0, 1�. For linear learning, this is 1
Δ . For rotation learning, this

is determined by the angle by which we rotate; it is typically between 0.01π and
0.001π. Since the interval is �0, π�2�, this means a learning resolution between 50
and 500. As an extension, multiple samples can be taken in line 6 and the model is
only shifted if none of them beats the attractor (an arbitrary one of them is chosen
for the test xi � ai). If one of the samples beats the attractor, the best one is used
to update the attractor in line 9. We always use 10 samples.

What happens in line 5 is called synchronization or migration. Another exten-
sion, intended to prevent premature convergence, is the use of local and global
migration. Models are bundled into groups, and the attractor of a model Q is set
to the best attractor over all models in Q’s group (local migration). Only every
Tg generations, the best attractor over all models is used (global migration). We
call Tg the global migration period.

The repeat loop stops when we are “satisfied or hopeless or out of time”.
We are satisfied in the discrepancy problem when the discrepancy is lesser or
equal to 3 4

√
n. A possible criterion for hopelessness is when all the models have

only very little entropy left. Entropy is a measure of randomness, defined as
∑k

i�1
 log�Qi�, which is at its maximum k when Qi �
1
2 for all i, and at its

minimum 0 if Qi � {0, 1} for all i. In all our experiments with sQEA, we will
impose a simple time limit guided by the times needed by apQEA.

Versatile QEA (vQEA). vQEA [15] works similar to sQEA with the exception that
the attractor update in line 9 is carried out unconditionally. The description given
in [15] states that the attractor of each model in generation t�1 is the best sample
from generation t, over all models. This means that parallel processes have to syn-
chronize after each generation. and also that at least one sample per generation
must be fully evaluated, so only limited use of shortcutting is possible.

Attractor Population QEA (apQEA). Our new QEA, the apQEA, is given as
Alg. 2. It strikes a balance between the approaches of sQEA and vQEA. In
sQEA, the attractor essentially follows the best solution and only changes when
better solutions are found, while in vQEA the attractor changes frequently and
is also allowed to assume inferior solutions. In apQEA, the attractor population
P is a set of solutions. From it, attractors are selected, e. g., using tournament
selection. When a sample cannot improve the population (f�x� � f0) the model
is adjusted. Otherwise the solution is injected into the population. The number
of generations that a particular attractor stays in function is called the attractor
persistence; we fix it to 10 in all our experiments. Note that apQEA will benefit
from shortcutting since f�x� has only to be computed when f�x� � f0. Note
also that it is appropriate to treat the models asynchronously in apQEA, hence
preventing idle time: the attractor population is there, any process may inject
into it or select from it at any time (given an appropriate implementation).
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Algorithm 2. apQEA

1 randomly initialize attractor population P � {0, 1}k of cardinality S;
2 in parallel for each model Q � �Q1, . . . , Qk� �M do
3 initialize model Q :� �1�2, . . . , 1�2�;
4 repeat
5 a :� select from P;
6 do 10 times
7 f0 :� worst fitness in P;
8 sample Q yielding x � {0, 1}k;
9 if f�x� � f0 then

10 for i � 1, . . . , k do if xi � ai then

Qi :�

{

max {0, Qi 
Δ�Qi�} if ai � 0

min {1, Qi �Δ�Qi�} if ai � 1

11 else
12 inject x into P ;
13 trim P to the size of S, removing worst solutions;

14 until satisfied or hopeless or out of time;

A very important parameter is the size S of the population. We will see in
experiments that larger S means better exploration abilities. For the discrepancy
problem, we will have to increase S (moderately) when n increases.

Since the attractor changes often in apQEA, entropy oftentimes never reaches
near zero but instead oscillates around values like 20 or 30. A more stable
measure is the mean Hamming distance in the attractor population, i. e., 1

(S2)
�

∑

{x,x�}�(P2) |{i; xi � x�i}|. However, it also can get stuck well above zero. To
determine a hopeless situation, we instead developed the concept of a flatline.
A flatline is a period of time in which neither the mean Hamming distance
reaches a new minimum nor a better solution is found. When we encounter a
flatline stretching over 25% of the total running time so far, we declare the sit-
uation hopeless. To avoid erroneously aborting in early stages, we additionally
demand that the relative mean Hamming distance, which is the mean Ham-
ming distance divided by k, falls below 1�10. Those thresholds were found to be
appropriate (for the discrepancy problem) in preliminary experiments.

3 Modulo Coloring

Let p � n be an integer. Given a partial coloringχ� : {0, . . . , p
 1} � {
1,�1},
i. e., a coloring of the first p vertices, we can construct a coloring χ by repeating
χ�, i. e., χ : V � {
1,�1} , v �� χ��v mod p�. We call χ� a generating coloring.
This way of coloring, with an appropriate p, brings many benefits. Denote Ep :�
A0,1,p � {0, . . . , p
 1}, this is an AP and also the whole set on which χ� lives.
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Assume that χ� is balanced, i. e., discχ��Ep� � 1. Let Aa,d,� be any AP and � �
qp� r with integers q, r and r 	 p. Then we have the decomposition:

Aa,d,� �
q�1

⊍
i�0

Aa�ipd,d,p
︸ ︷︷ ︸

Bi:�

��Aa�qpd,d,r
︸ ︷︷ ︸

Bq :�

. (1)

Assuming p is prime, we have Bi mod p :� {v mod p; v � Bi} � Ep for each
i � 0, . . . , q 
 1, so discχ�Bi� � discχ��Ep� � 1. It follows discχ�Aa,d,�� �
q discχ��Ep� � discχ�Bq� � q � discχ�Bq�. This is one of the essential ideas how
Sárközy’s O� 3

√

n log�n�� bound is proved and it gives us a hint (which was con-
firmed in experiments) that modulo colorings, constructed from balanced ones,
might tend to have low discrepancy. It is tempting to choose p very small, but
the best discrepancy we can hope for when coloring modulo p is �n�p�. Since we
aim for 3 4

√
n, we choose p as a prime number so that �n�p� is some way below

3 4
√
n, precisely we choose p prime with n�p � 5�2 � 4

√
n, i. e., p � 2�5 � n3�4.

Constructing balanced colorings is straightforward. Define h :� p�1
2 (so h �

Θ�n3�4�) and let x � {
1,�1}h. Then �x1, . . . , xh�1,
xh�1, . . . ,
x1, xh� defines
a balanced coloring of Ep. We could have chosen different ways of ordering the
entries of x and their negatives, but this mirroring construction has shown to
work best so far. We additionally alternate the last entry xh, so we use the
following generating coloring of length 2p:

�x1, . . . , xh�1,
xh�1, . . . ,
x1, xh, x1, . . . , xh�1,
xh�1, . . . ,
x1,
xh� . (2)

Modulo coloring has further benefits. It reduces the search space from {
1,�1}n
to {
1,�1}h, where h � Θ�n3�4�. Moreover, it allows a much faster FF evalu-
ation: we can restrict to those Aa,d,� with a � 2p 
 1. We also make use of a
decomposition similar to (1), but which is more complicated since we exploit the
structure of (2); details will be given in the full version. We omit APs which are
too short to bring discrepancy above the target, giving additional speedup.

4 Experiments and Results

Implementation and Setup. To fully benefit from the features of apQEA, we
needed an implementation which allows asynchronous communication between
processes. Our MPI-based implementations (version 1.2.4) exhibited unaccept-
able idle times when used for asynchronous communication, so we wrote our own
client-server-based parallel framework. It consists of a server process that man-
ages the attractor population. Clients can connect to it at any time via TCP/IP
and do selection and injection; the server takes care of trimming the population
after injection. Great care was put into making the implementation free of race
conditions. Most parts of the software is written in Bigloo3, an implementation
of the Scheme programming language. The FF and a few other parts are writ-
ten in C, for performance reasons and to have OpenMP available. OpenMP is
used to distribute FF evaluation across multiple processor cores. So we have a

3 http://www-sop.inria.fr/indes/fp/Bigloo/, version 3.9b-alpha29Nov12

http://www-sop.inria.fr/indes/fp/Bigloo/


74 L. Kliemann et al.

two-level parallelization: on the higher level, we have multiple processes treating
multiple models and communicating via the attractor population server. On the
lower level, we have thread parallelization for the FF. The framework provides
also means to run sQEA and vQEA. We always use 8 threads (on 8 processor
cores) for the FF. If not stated otherwise, a total of 96 processor cores is used.
This allows us to have 12 models fully in parallel; if we use more models then
the set of models is partitioned and the models from each partition are treated
sequentially. Experiments are carried out on the NECTM Linux Cluster of the
Rechenzentrum at Kiel University, with SandyBridge-EPTM processors.

Results for sQEA. Recall the important parameters of sQEA: number of mod-
els M , learning resolution R, global migration period Tg, and number of groups.
For R, we use 50, 100 and 500, which are common settings, and also try 1000,
2000, and 3000. In [6], it is proposed to choose Tg in linear dependence on R,
which in our notation and neglecting the small additive constant reads Tg � 2Rλ
with 1.15 � λ � 1.34. We use λ � 1.25 and λ � 1.5, so Tg � 2.5R and Tg � 3R.
In [6], the number of groups is fixed to 5 and the number of models ranges up to
100. We use 6 groups and up to 96 models. We use rotation learning, but made
similar observations with linear learning.

We fix n � 100 000 and do 3 runs for each set of parameters. Computation is
aborted after 15 minutes, which is roughly double the time apQEA needs to reach
the target discrepancy of 53. For sQEA as given in Alg. 1 best discrepancy we
reach is 57. We get better results when using f�x� 	 f�a� as the test in line 7,
i. e., we also accept a sample that is as good as the attractor and not require that
it is strictly better.4 The following table gives mean discrepancies for this variant.
The left number is for smaller Tg and the right for higher Tg, e. g., for M � 12 and
R � 50 we have 60 for Tg � 2.5 � 50 � 125 and 61 for Tg � 3 � 50 � 150.

R M � 12 M � 24 M � 48 M � 96

50 60 61 59 59 58 57 58 58
100 59 59 57 59 59 56 56 56
500 57 56 57 57 55 56 56 57

1000 57 57 56 55 57 56 58 59
2000 57 57 57 58 59 60 63 62
3000 56 57 59 58 61 61 64 65

Target discrepancy 53 is never reached. For two runs we reach 54, namely for
�M,R, Tg� � �24, 1000, 3000� and �96, 500, 1250�. But for each of the 2 settings,
only 1 of the 3 runs reached 54. There is no clear indication whether smaller or
larger Tg is better. Entropy left in the end generally increases with M and R.

We pick the setting �M,R, Tg� � �24, 1000, 3000�, which attained 54 in 1 run
and also has lowest mean value of 55, for a 5 hour run. In the 15 minutes runs
with this setting, entropy in the end was 48 on average. What happens if we
let the algorithm use up more of its entropy? As it turns out while entropy is
brought down to 16 during the 5 hours, only discrepancy 56 is attained.

The main problem with sQEA here is that there is no clear indication which
parameter to tune in order to get higher quality solutions – at least not within
4 Using f�x� � f0 in apQEA however has shown to be not beneficial.
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reasonable time (compared to what apQEA can do). In preliminary experiments,
we reached target discrepancy 53 on some occasions, but with long running times.
We found no way to reliably reach discrepancy 55 or better with sQEA.

Finally, for �M,R, Tg� � �24, 1000, 3000�, we do experiments for up to n �
200 000, with 3 runs for each n. The time limit is twice what apQEA requires on
average, rounded to the next multiple of 5. The following table for each n gives
the best result obtained over the 3 runs and the target for comparison.

n � 100 000 125 000 150 000 175 000 200 000

time limit in minutes 15 25 40 80 150
best sQEA result 54 60 63 68 69

target 53 56 59 61 63

Although we do multiple runs and allocate twice the time apQEA would need to
attain the target, the best result for sQEA stays clearly away from the target.

Results for vQEA. Recall that vQEA in generation t�1 unconditionally replaces
the attractor for each model with the best sample found during generation t.
vQEA does not use a groups and global migration period, instead all models form
a single group “to ensure convergence” [15]. Indeed, our experiments confirm that
vQEA has no problem with running out of entropy. We conducted 5 runs with
R � 50 and rotation learning for n � 100 000. In all of the runs, the target of 53
was hit with about 100 of entropy left. However, the time required was almost 2
hours.5 We also conducted 5 runs with linear learning, yielding the same solution
quality at a 12% higher running time. We also did a run for n � 125 000; there
vQEA attained the target discrepancy after 3.5 hours.

The high running times were to be expected since vQEA can only make lim-
ited use of shortcutting. Since we take multiple samples in each generation (10
for each model), FF evaluation from the second sample on can make use of
shortcutting. However, necessarily each generation takes at least the time of one
full FF evaluation. We conclude that while vQEA has impressive exploration
capabilities and delivers high solution quality “out of the box”, i. e., without any
particular parameter tuning, it is not well suited for the discrepancy problem.

Results for apQEA. Recall that the most important parameter for apQEA is the
attractor population size S. We fix R � 100 with linear learning and M � 12
and vary S in steps of 10. Computation is aborted when the target of 3� 4

√
n� is

hit (a success) or a long flatline is observed (a failure), as explained in Sec. 2. For
selecting attractors, we use tournament selection: draw two solutions randomly
from P and use the better one with 60% probability and the inferior one with 40%
probability (higher selection pressures appear to not help, this will be discussed
in the full version). For each n and appropriate choices of S, we do 30 runs and
record the following: whether it is a success or a failure, final discrepancy (equals
target discrepancy for successes), running time (in minutes), mean final entropy.
5 Even more, these 2 hours is only the time spent in FF evaluation. Total time was

about 4 hours, but we suspect this to be partly due to our implementation being
not particularly suited for vQEA resulting in communication overhead.
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For failures, we also record the time at which the last discrepancy improvement
took place (for successes, this value is equal to the running time). The following
table gives results grouped into successes and failures, all numbers are mean
values over the 30 runs.

successes failures
n

1000 S # disc time entropy # disc time entropy last imp.

100 20 28 53σ�00 05σ�01 38σ�09 02 54σ�00 08σ�01 22σ�01 06σ�01

100 30 30 53σ�00 07σ�01 63σ�12 00 na na na na
125 20 17 56σ�00 09σ�02 31σ�08 13 57σ�00 12σ�01 19σ�09 08σ�01

125 30 30 56σ�00 11σ�01 48σ�11 00 na na na na
150 30 26 59σ�00 16σ�02 46σ�11 04 60σ�00 23σ�02 32σ�09 16σ�02

150 40 30 59σ�00 20σ�02 62σ�10 00 na na na na
175 30 16 61σ�00 24σ�04 31σ�08 14 62σ�00 38σ�05 21σ�08 24σ�03

175 40 27 61σ�00 32σ�05 42σ�09 03 62σ�00 47σ�02 26σ�05 30σ�01

175 50 30 61σ�00 39σ�05 57σ�11 00 na na na na
200 30 02 63σ�00 38σ�02 22σ�06 28 65σ�01 47σ�08 24σ�17 30σ�05

200 50 28 63σ�00 53σ�08 44σ�08 02 64σ�00 76σ�06 28σ�02 53σ�03

200 60 30 63σ�00 74σ�15 53σ�12 00 na na na na

We observe that by increasing S, we can guarantee the target to be hit.
Dependence of S on n for freeness of failure appears to be approx. linear or
slightly super-linear; ratios of S to n�1000 for no failures are 0.30, 0.24, 0.27,
0.29, and 0.30. But even if S is one step below the required size, discrepancy is
only 1 away from the target (with an exception for n � 125 000 and S � 20,
where we recorded discrepancy 58 in 1 of the 30 runs). Running times for failures
tend to be longer than for successes, even if the failure is for a smaller S. This
is because it takes some time to detect a failure by the flatline criterion. Larger
S effects larger entropy; failures tend to have lowest entropy, indicating that the
problem is the models having locked onto an inferior solution. The table also
shows what happens if we do lazy S tuning, i. e., fixing S to the first successful
value S � 30 and then increasing n: failure rate increases and solution quality for
failures deteriorates moderately. The largest difference to the target is observed
for n � 200 000 and S � 30, namely we got discrepancy 67 in 1 of the 30 runs;
target is 63. For comparison, the best discrepancy we found via sQEA in 3 runs
for such n was 69 and the worst was 71. We conclude that a mistuned S does
not necessarily have catastrophic implications, and apQEA can still beat sQEA.

Convergence. We plot (Fig. 1) discrepancy over time for 2 runs: the first hour
of the 5-hour sQEA run with �M,R, Tg� � �24, 1000, 3000�; and 1 for apQEA
with S � 30, which is kept running after the target was hit (until the flatline
criterion leads to termination). sQEA is shown with a dashed line and apQEA
with a solid line. In the first minutes, sQEA brings discrepancy down faster, but
is soon overtaken by apQEA (which reaches 51 in 10 minutes, target is 53).

Effect of Parallelization. We double number of cores from 96 to 192 and increase
number of models to M � 24, so that they can be treated in parallel with 8 cores
each. The following table shows results for 5 runs for each set of parameters. First
considern � 175 000 and 200 000.The best failure-free settings forS are 30 and 50.
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Fig. 1. Discrepancy plotted over time for sQEA and apQEA

In comparison with the best failure-free settings for 96 cores, time is reduced to
17�39 � 44% and 42�74 � 57%, respectively. 50% or less would mean a perfect
scaling. When we do not adjustS, i. e., we use 50 and 60, time is reduced to 26�39 �
67% and 53�74 � 72%, respectively. We also compute for n � 250 000.

successes failures
n

1000 S # disc time entropy # disc time entropy last imp.

175 20 02 61σ�00 14σ�02 22σ�02 03 62σ�00 20σ�02 31σ�12 13σ�00

175 30 05 61σ�00 17σ�04 43σ�07 00 na na na na
175 50 05 61σ�00 26σ�03 72σ�12 00 na na na na
200 40 04 63σ�00 30σ�03 42σ�12 01 64σ�00 42σ�00 32σ�02 28σ�00

200 50 05 63σ�00 42σ�10 52σ�05 00 na na na na
200 60 05 63σ�00 53σ�08 60σ�11 00 na na na na
250 50 04 67σ�00 58σ�07 42σ�08 01 68σ�00 110σ�00 29σ�02 70σ�00

250 60 05 67σ�00 83σ�16 61σ�14 00 na na na na

5 Conclusion and Current Work

We have seen apQEA outperforming sQEA in terms of speed and solution qual-
ity by a large margin on the discrepancy problem. For this problem, apQEA is
easy to tune, since a single parameter, the size S of the attractor population, has
a clear and foreseeable effect: it improves solution quality (if possible) at the price
of an acceptable increase in running time. vQEA has shown that it is possible to
achieve the same solution quality as apQEAwithout parameter tuning, at the price
of an enormous running time and inter-process communication overhead. It may
be possible to have the best of both worlds in one algorithm, i. e., to get rid of the S
parameter in apQEA. Moreover we believe that it should be attempted to mathe-
matically analyze why vQEA and apQEA succeed where sQEA fails. We also plan
new applications of apQEA in the vast area of coloring of (hyper)graphs and other
combinatorial problems. Concerning arithmetic progressions, we will investigate
further ways to speed up the FF by exploiting combinatorial structures.
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