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Abstract. A wide variety of algorithms can answer exact shortest-path
queries in real time on continental road networks, but they typically
require significant preprocessing effort. Recently, the customizable route
planning (CRP) approach has reduced the time to process a new cost
function to a fraction of a minute. We reduce customization time even
further, by an order of magnitude. This makes it worthwhile even when
a single query is to be run, enabling a host of new applications.

1 Introduction

Computing driving directions in road networks is a fundamental problem of
practical importance. Although it can be solved in almost-linear time by Dijk-
stra’s shortest-path algorithm [14], this is not fast enough for interactive queries
on continental road networks. This has motivated a wide variety of recent al-
gorithms [2,5,7,8,18,21,22] that rely on a (relatively slow) preprocessing stage
to enable much faster queries. Different algorithms offer distinct tradeoffs be-
tween preprocessing time, space requirements, and query times. Directly or in-
directly, they exploit the fact that road networks have a strong hierarchy when
minimizing driving times in free-flow traffic [3]. When other cost functions are
optimized, however, their performance can be much worse. Moreover, these ap-
proaches should only be used when there are enough queries to amortize the
preprocessing cost. This is not true in many practical situations, such as when
the cost function changes very frequently (to consider traffic, for example), or
when users can choose from several (possibly uncommon) cost functions.

In contrast, the recently proposed customizable route planning (CRP) algo-
rithm [11] is lightweight and robust to changes in the cost function (metric).
It works in three stages. The first, metric-independent preprocessing, uses graph
partitioning to define the topology of a multilevel overlay graph [23], which is the
same regardless of the cost function. The second stage, customization, uses the
metric to compute the actual costs of the overlay arcs. Finally, the query stage
uses the output of the first two stages to compute shortest paths in real time
(milliseconds). The first stage may take a few minutes (or even hours), but only
needs to be run (or updated) when new road segments are built. Metric changes
(which are much more frequent) require running only customization, which takes
less than a minute. Since it does not rely on strong hierarchies, CRP is robust to
metric changes. Unlike most other methods, it can also handle turn costs (and
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restrictions) quite naturally, with little effect on performance and space usage. It
is thus ideal for a real-world routing engine, and is indeed in use by Bing Maps.

This paper shows how to make customization even faster, enabling a wide
range of new applications. To compute overlay arc costs, we propose replacing
Dijkstra’s algorithm by other approaches, such as contraction and Bellman-Ford.
Although they may even increase the number of operations (such as arc scans)
performed, careful application of algorithm engineering techniques leads to bet-
ter locality and enables parallelism at instruction and core levels. Remarkably,
our new customization routine takes less time (sequentially) than running Dijk-
stra’s algorithm once. Unlike in any other method, a single query is enough to
amortize the customization cost, making it ideal for highly dynamic applications.

2 Preliminaries

Basics. A road network is usually modeled as a directed graph G = (V,A) with
n = |V | vertices and m = |A| arcs. Each vertex v ∈ V represents an intersection,
and each arc (v, w) ∈ A a road segment. A metric (or cost function) � : A→ N
maps each arc to a positive length (or cost). In the point-to-point shortest path
problem, our goal is to compute the minimum-length path in the graph between
a source s and a target t. It can be solved by Dijkstra’s algorithm [14], which
processes vertices in increasing order of distance from s and stops when t is
processed. It runs in essentially linear time in theory and in practice [20].

In this paper, we focus on a more realistic model for road networks, which
takes turn costs (and restrictions) into account. We think of each vertex v as
having one entry point for each of its incoming arcs, and one exit point for each
outgoing arc. We extend the concept of metric by also associating a turn table Tv

to each vertex v; Tv[i, j] specifies the cost of turning from the i-th incoming arc
to the j-th outgoing arc. (The order around each vertex is arbitrary but fixed.)

We can run Dijkstra’s algorithm on this turn-aware graph by associating dis-
tance labels to entry points instead of vertices [11,19]. An alternative approach
(often used in practice) is to operate on an expanded graph G′, where each vertex
corresponds to an entry point in G, and each arc represents the concatenation
of a turn and an arc in G. This allows standard (non-turn-aware) algorithms to
be used, but roughly triples the graph size. In contrast, the turn-aware repre-
sentation is almost as compact as the simplified one (with no turns at all), since
common turn tables can be shared among vertices.

Customizable Route Planning. The customizable route planning (CRP) [11] al-
gorithm is a speedup technique that computes shortest paths in three stages:
(metric-independent) preprocessing, customization, and queries.

The preprocessing stage defines a multilevel overlay [23] of the graph and
builds auxiliary data structures. A partition of V is a family C = {C0, . . . , Ck}
of sets Ci ⊆ V such that each v ∈ V is in exactly one cell Ci. A multilevel
partition of V of L levels is a family of partitions {C1, . . . , CL}, where l denotes
the level of a partition Cl. Let U l be the size of the biggest cell on level l.
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We deal only with nested multilevel partitions: for each l ≤ L and each cell
Cl

i ∈ Cl, there exists a cell Cl+1
j ∈ Cl+1 with Cl

i ⊆ Cl+1
j ; we say Cl

i is a subcell

of Cl+1
j . (We assume C0 consists of singletons and CL+1 = {V }.) A boundary

arc on level l is an arc with endpoints in different level-l cells; its endpoints are
boundary vertices. A boundary arc on level l is also a boundary arc on all levels
below.

The preprocessing phase of CRP uses PUNCH [12], a graph-partitioning
heuristic tailored to road networks, to create a multilevel partition. Given an
unweighted graph and a bound U , PUNCH splits the graph into cells with at
most U vertices while minimizing the number of arcs between cells. To find
a multilevel partition, one calls PUNCH repeatedly in top-down fashion: after
partitioning the full graph, one partitions each subcell independently.

Fig. 1. Overlays of five cells

Besides partitioning, the CRP preprocessing
phase sets up the topology of the overlay graph.
Consider a cell C on any level, as in Fig. 1. Every
incoming boundary arc (u, v) (i.e, with u �∈ C and
v ∈ C) defines an entry point for C, and every
outgoing arc (v, w) (with v ∈ C and w �∈ C) de-
fines an exit point for C. The overlay for cell C is
simply a complete bipartite graph with directed
shortcuts (gray lines in the figure) between each
entry point (filled circle) and each exit point (hol-
low circle) of C. The overlay of a level l consists
of the union of all cell overlays, together with all
boundary arcs (black arrows) on this level.

During the customization stage, CRP computes the lengths of the shortcuts
on the overlay. A shortcut (p, q) within a cell C represents the shortest path
(restricted to C) between p and q. Lengths are computed bottom-up, starting
at level one. To process a cell, CRP runs Dijkstra’s algorithm from each entry
point p to find the lengths of all shortcuts starting at p. Processing level-one cells
requires running Dijkstra on the original graph, taking turn costs into account.
Higher-level cells can use the overlay graph for the level below, which is much
smaller and has no explicit turns (turn costs are incorporated into shortcuts).

An s–t CRP query runs bidirectional Dijkstra on the overlay graph, but only
entering cells containing either s or t. To retrieve the arcs corresponding to each
shortcut in the resulting path, one runs bidirectional Dijkstra within the appro-
priate cell. We accelerate unpacking using an LRU cache to store the unpacking
information of a level-i shortcut as a sequence of level-(i− 1) shortcuts.

3 Our Approach

Separating preprocessing from metric customization allows CRP to incorporate
a new cost function on a continental road network in less than 30 seconds [11]
(sequentially) on a modern server. This is enough for real-time traffic, but too
slow to enable on-line personalized cost functions. Accelerating customization
even further requires speeding up its basic operation: computing the lengths of
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the shortcuts within each cell. To do so, we propose different strategies to replace
Dijkstra’s algorithm.

One strategy is contraction, the basic building block of the contraction hi-
erarchies (CH) algorithm [18] and an element of many other speedup tech-
niques [2,5,7,8,21]. Instead of computing shortest paths explicitly, we eliminate
internal vertices from a cell one by one, adding new arcs as needed to preserve dis-
tances; the arcs that eventually remain are the desired shortcuts. For efficiency,
not only do we precompute the order in which vertices are contracted, but also
abstract away the graph itself. During customization, we simply simulate the ac-
tual contraction by following a (precomputed) series of instructions describing
the basic operations (memory reads and writes) the contraction routine would
perform.

Contraction works well on the first overlay level, since it operates directly on
the underlying graph, which is sparse. Density quickly increases during contrac-
tion, however, making it expensive as cell sizes increase. On higher levels, we
compute shortest paths explicitly (as before), but make each computation more
efficient. We replace Dijkstra with lightweight algorithms that work better on
small graphs, and apply techniques to reduce the size of the search graph.

The next two sections describe each strategy in more detail, including how
they can be engineered for better performance in practice.

4 Contraction

The contraction approach is based on the shortcut operation [18]. To shortcut a
vertex v, one removes it from the graph and adds new arcs as needed to preserve
shortest paths. For each incoming arc (u, v) and outgoing arc (v, w), one creates
a shortcut arc (u,w) with �(u,w) = �(u, v)+ �(v, w). A shortcut is only added if
it represents the only shortest path between its endpoints in the remaining graph
(without v), which can be tested by running a witness search (local Dijkstra)
between its endpoints. CH [18] uses contraction as follows. During preprocessing,
it heuristically sorts all vertices in increasing order of importance and shortcuts
them in this order; the order and the shortcuts are then used to speed up queries.

We propose using contraction during customization. To process a cell, we can
simply contract its internal vertices while preserving its boundary vertices. The
arcs (shortcuts) in the final graph are exactly the ones we want. To deal with
turn costs appropriately, we run contraction on the expanded graph.

The performance of contraction strongly depends on the cost function. With
travel times in free-flow traffic (the most common case), it works very well. Even
for continental instances, sparsity is preserved during the contraction process,
and the number of arcs less than doubles [18]. Unfortunately, other metrics
often need more shortcuts, which leads to denser graphs and makes finding the
contraction order much more expensive. Even if a good order is given, simply
performing the contraction can still be quite costly [18].

Within the CRP framework, we can deal with these issues by exploiting the
separation between metric-independent preprocessing and customization. Dur-
ing preprocessing, we compute a unique contraction order to be used by all
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metrics. Unlike previous approaches [18], to ensure this order works well even in
the worst case, we simply assume that every potential shortcut will be added.
Accordingly, we do not perform witness searches during customization. For max-
imum efficiency, we precompute a sequence of microinstructions to describe the
entire contraction process in terms of basic operations. We detail each of these
improvements next.

Contraction Order. Computing a contraction order that minimizes the number
of shortcuts added is NP-hard [6]. In practice, one uses on-line heuristics that
pick the next vertex to contract based on a priority function that depends on
local properties of the graph [18]. A typical criterion is the difference between
the number of arcs added and removed if a vertex v were contracted. We tested
similar greedy priority functions to evaluate each vertex v, taking into account
parameters such as the number ia(v) of incoming arcs, the number oa(v) of
outgoing arcs, and the number sc(v) of shortcuts created or updated if v is
contracted (this may be less than ia(v) ·oa(v), since self-loops are never needed).
We found that picking vertices v that minimize h(v) = 100sc(v)− ia(v)− oa(v)
works well. This essentially minimizes the number of shortcuts added, using the
current degree as a tiebreaker (the precise coefficients are not important).

This approach gives reasonable orders, but one can do even better by tak-
ing the graph topology into account. There exist natural orders that lead to
a provably small number of shortcuts for graphs with small separators [10,25]
or treewidth [10]. It suffices to find a small separator for the entire graph, re-
cursively contract the two resulting components, then contract the separating
vertices themselves. For graphs with O(

√
n)-separators (such as planar graphs),

such nested dissection leads to O(n logn) shortcuts. Although real-world road
networks are far from planar, they have even smaller separators [12].

This suggests using partitions to guide the contraction order. We create ad-
ditional guidance levels during the preprocessing step, extending our standard
CRP multilevel partition downward (to even smaller cells). We subdivide each
level-1 cell (of maximum size U) into nested subcells of maximum size U/σi, for
i = 1, 2, . . . (until cells become too small). Here σ > 1 is the guidance step. For
each internal vertex v in a level-1 cell, let g(v) be the smallest i such that v is
a boundary vertex on the guidance level with cell size U/σi. We use the same
contraction order as before, but delay vertices according to g(·). If g(v) > g(w),
v is contracted before w; within each guidance level, we use h(v).

Microinstructions. While the contraction order is determined during the metric-
independent phase of CRP, we can only execute the contraction (follow the order)
during customization, once we know the arc lengths. Even with the order given,
this execution is expensive [18]. To contract v, we must retrieve the costs (and
endpoints) of its incident arcs, then process each potential shortcut (u,w) by
either inserting it or updating its current value. This requires data structures
supporting arc insertions and deletions, and even checking if a shortcut already
exists gets costlier as degrees increase. Each fundamental operation, however, is
rather simple: we read the costs of two arcs, add them up, compare the result with
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the cost of a third arc, and update it if needed. The entire contraction routine
can therefore be fully specified by a sequence of triples (a, b, c). Each element
in the triple is a memory position holding an arc (or shortcut) length. We must
read the values in a and b and write the sum to c if there is an improvement.

Since the sequence of operations is the same for any cost function, we use the
metric-independent preprocessing stage to set up, for each cell, an instruction
array describing the contraction as a list of triples. Each element of a triple
represents an offset in a separate memory array, which stores the costs of all
arcs (temporary or otherwise) touched during the contraction. The preprocessing
stage outputs the entire instruction array as well as the size of the memory array.

During customization, entries in the memory array representing input arcs (or
shortcuts) are initialized with their costs; the remaining entries (new shortcuts)
are set to ∞. We then execute the instructions one by one, and eventually copy
the output values (lengths of shortcuts from entry to exit points in the cell) to
the overlay graph. With this approach, the graph itself is abstracted away during
customization. We do not keep track of arc endpoints, and there is no notion of
vertices at all. The code just manipulates numbers (which happen to represent
arc lengths). This is cheaper (and simpler) than operating on an actual graph.

Although the space required by the instruction array is metric-independent
(shared by all cost functions), it can be quite large. We can keep it manageable
by representing each triple with as few bits as necessary to address the memory
array. In addition, we use a single macroinstruction to represent the contrac-
tion of a vertex v whenever the resulting number of writes exceeds an unrolling
threshold τ . This instruction explicitly lists the addresses of v’s cin incoming
and cout outgoing arcs, followed by the corresponding cin · cout write positions.
The customization phase must explicitly loop over all incoming and outgoing
positions, which is slightly slower than reading tuples but saves space.

5 Graph Searches

Fig. 2. Pruned overlay

Although contraction could be used to process
the entire hierarchy, it is not as effective at higher
levels as it is at level-one cells, since the graphs
within each higher-level cell are much denser. In
such cases, it is cheaper to actually run graph
searches. This section therefore proposes search-
based techniques to accelerate higher levels of the
hierarchy. Each leads to improvements on its own,
and they can be combined in the final algorithm.

Pruning the Search Graph. To process a cell C,
we must compute the distances between its entry
and exit points. As shown in Fig. 1, the graph
GC on which we operate within C is the union of subcell overlays (complete
bipartite graphs) with some boundary arcs between them. Instead of searching
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GC directly, we first contract its internal exit points (see Fig. 2). Since each such
vertex has out-degree one (its outgoing arc is a boundary arc within C), this
reduces the number of vertices and edges in the search graph. Note that C’s own
exit points must be preserved (they are the targets of our searches), but they do
not need to be scanned (they have no outgoing arcs).

Improving Locality. Conceptually, to process a cell C we could operate on the
full overlay graph, but restricting the searches to vertices inside C. For efficiency,
we actually copy the relevant subgraph to a separate memory location, run our
searches on it, then copy the results back. This simplifies the searches (there are
no special cases), allows us to use sequential local IDs, and improves locality.

Alternative Algorithms. We can further accelerate customization by replacing
Dijkstra’s algorithm with Bellman-Ford [9,16]. It starts by setting the distance
label of the source to 0, and all others to ∞. Each round then scans each vertex
once, updating the distance label of its neighbors appropriately. For better per-
formance, we only active vertices (i.e., those whose distance improved since the
previous round) and stop when there is no active vertex left. While Bellman-Ford
cannot scan fewer vertices than Dijkstra, its simplicity and better locality make
it competitive. The number of rounds is bounded by the maximum number of
arcs on any shortest path, which is small for reasonable metrics but linear in
the worst case. One could therefore switch to Dijkstra’s algorithm whenever the
number of Bellman-Ford rounds reaches a given (constant) threshold.

For completeness, we also tested the Floyd-Warshall algorithm [15]. It com-
putes shortest paths among all vertices in the graph, and we just extract the
relevant distances. Its running time is cubic, but with its tight inner loop and
good locality, it could be competitive with Bellman-Ford on denser graphs.

Multiple-source Executions. Multiple runs of Dijkstra’s algorithm (from different
sources) can be accelerated if combined into a single execution [22,26]. We apply
this idea to Bellman-Ford. Let k be the number of simultaneous executions, from
sources s1, . . . , sk. For each vertex v, we keep k distance labels: d1(v), . . . , dk(v).
All di(si) values are initialized to zero (each si is the source of its own search),
and all remaining di(·) values to ∞. All k sources si are initially marked as
active. When Bellman-Ford scans an arc (v, w), we try to update all k distance
labels of w at once: for each i, we set di(w)← min{di(w), di(v)+ �(v, w)}. If any
such distance label actually improves, we mark w as active. This simultaneous
execution needs as many rounds as the worst of the k sources, but, by storing the
k distances associated with a vertex contiguously in memory, locality is much
better. In addition, it enables instruction-level parallelism [26], as discussed next.

Parallelism. Modern CPUs have extended instruction sets with SIMD (single
instruction, multiple data) operations, which work on several pieces of data at
once. In particular, the SSE instructions available in x86 CPUs can manipu-
late special 128-bit registers, allowing basic operations (such as additions and
comparisons) on four 32-bit words in parallel.
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Consider the simultaneous execution of Bellman-Ford from k = 4 sources,
as above. When scanning v, we first store v’s four distance labels in one SSE
register. To process an arc (v, w), we store four copies of �(v, w) into another
register and use a single SSE instruction to add both registers. With an SSE
comparison, we check if these tentative distances are smaller than the current
distance labels for w (themselves loaded into an SSE register). If so, we take the
minimum of both registers (in a single instruction) and mark w as active.

In addition to using SIMD instructions, we can use core-level parallelism by
assigning cells to distinct cores. (We also do this for level-1 cells with microin-
structions.) In addition, we parallelize the highest overlay levels (where there are
few cells per core) by further splitting the sources in each cell into sets of similar
size, and allocating them to separate cores (each accessing the entire cell).

6 Experiments

We implemented our algorithm in C++ (using OpenMP for parallelization) and
compiled it using Microsoft Visual Studio 2010. Our test machine runs Windows
Server 2008R2 and has 96GiB of DDR3-1333 RAM and two 6-core Intel Xeon
X5680 3.33GHz CPUs, each with 6×64 KB of L1, 6×256 KB of L2, and 12 MB
of shared L3 cache. Unless otherwise mentioned, we run our experiments on a
benchmark instance representing the road network of (Western) Europe, made
available by PTV AG for the 9th DIMACS Implementation Challenge [13]. The
original instance has n = 18 · 106 vertices, m = 42 · 106 arcs, and travel times
as the cost function. Following Delling et al. [11], we augment it by setting turn
costs to 100 s for U-turns (and zero otherwise).

cell size

tim
e 

[s
]

24 26 28 210 212 214 216 218 220

0
5

10
15

0
5

10
15

+
x
●

step 32
step 16
step 8
step 4
step 2
step 1.8

+ + + + +
+

+

+

+

x x x x x x x x x x x x x x
x

x
x

x

● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

Fig. 3. Customization time up to given cell
sizes for various guidance steps

We first evaluate the effectiveness
of microinstructions. Each point in
Fig. 3 represents the total (sequential)
customization time up to a certain
cell size, using only microinstructions.
Each curve reflects a different guid-
ance step in the contraction order;
smaller steps mean heavier use of par-
tition information. Microinstructions
use 32-bit addresses, and the unrolling
threshold τ is 10.

It takes less than 2 s to run the mi-
croinstructions on the entire graph if
the maximum cell size is 16, and less
than 3 s for cells of size 256. Significantly larger cells are much more costly.
As expected, smaller guidance steps lead to better contraction orders (smaller
instruction arrays), but the effect is not overwhelming: step 4 is about as fast
as step 1.8, which is roughly equivalent to nested dissection. Given these re-
sults, for the remainder of this paper we only use microinstructions to customize
cells of size up to 256 (using 128, 64, 32, 16 and 8 as guidance levels), with 16
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Table 1. Time (in milliseconds) spent on each overlay level for different algorithms. The
total time includes 1.99 s to process the lowest overlay level (28) with microinstructions.

method 211 214 217 220 total

Dijkstra 1071 710 587 423 4783
4-Dijkstra 1245 850 717 541 5372
4-Dijkstra(SSE) 1036 627 439 327 4425
16-Dijkstra 1184 822 676 486 5161
16-Dijkstra(SSE) 1117 669 464 366 4608

Bellman-Ford 1164 840 753 589 5343
4-Bellman-Ford 930 723 710 603 4962
4-Bellman-Ford(SSE) 693 473 399 295 3852
16-Bellman-Ford 994 797 766 646 5197
16-Bellman-Ford(SSE) 512 335 291 230 3360

Floyd-Warshall 7802 7025 7414 6162 30403

(instead of 32) bits for addresses and τ = 50. To compute all shortcut lengths up
to this level, customization takes about 1.99 s to follow the 833 million (write)
instructions (which use about 3.1GB of RAM). In contrast, running Dijkstra-
based customization would take 15.23 seconds (even using a so-called phantom
level [11]), an order of magnitude slower.

We now consider higher levels. Our second experiment uses 5 levels, with
maximum cell sizes 28, 211, 214, 217, and 220. Table 1 reports the total time (on
a single core) to compute the shortcut lengths on each of the top 4 levels, as well
as the total customization time (including the 1.99 seconds for the lowest level).
It shows that individual executions of Dijkstra’s algorithm are slightly faster than
Bellman-Ford, and Floyd-Warshall is not competitive. Computing distances from
4 boundary vertices at once (prefix “4-” in the table) helps Bellman-Ford, but
hurts Dijkstra (which needs more scans). SSE instructions help both algorithms.
Due to better locality, the fastest approach is Bellman-Ford with 16 simultaneous
searches, which takes 1289ms to process the top 4 levels, less than half the time
taken by plain Dijkstra (2764ms). We therefore pick 16-Bellman-Ford with SSE
as our default approach for the top 4 levels (211, 214, 217, and 220).

Table 2 compares this default version of CRP with the original implementation
of CRP [11] and with CH [18], which has the fastest preprocessing time among
state-of-the-art two-phase algorithms. We include two versions of CH: a standard
implementation operates on the expanded graph, and a compact version uses
explicit turn tables. The latter, due to Geisberger and Vetter [19], was run on
a machine comparable to ours, a 2.6GHz dual 8-core Intel Xeon E5-2670 with
64GiB of DDR3-1600 RAM. We test our default instance as well as a version
with cheaper U-turns (1 s instead of 100 s). For CH, the customization time we
report corresponds to the entire preprocessing; when a metric changes, CH finds
a new order and a different set of shortcuts. The CH space includes shortcuts
only, and not original arcs. In every case, (random) query times (and scans) are
for finding the distance only. Queries are sequential and customization uses all
available cores (12 or 16).
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Table 2. Comparison between CRP and two different CH variants on Europe

U-turn: 1 s U-turn: 100 s
customizing queries customizing queries
time space nmb. time time space nmb. time

algorithm [s] [MiB] scans [ms] [s] [MiB] scans [ms]

CH compact [19] 410.90 219.42 624 0.27 1753.84 641.95 1998 2.27
CH expanded 1090.52 1442.88 386 0.17 1392.41 1519.48 404 0.19
CRP original [11] 2.10 61.72 3556 1.92 2.44 61.72 3805 1.96
CRP 0.35 70.49 2702 1.60 0.35 70.49 3009 1.64

CH has faster queries (and is more robust to metric changes) on the expanded
than on the compact graph, since it can use a more fine-grained contraction
order. CRP queries are slower, but still fast enough for interactive applications.
More importantly, our CRP customization takes only 0.35 seconds (on 12 cores)
and is at least three orders of magnitude faster than CH, with much lower metric-
dependent space requirements. It is also up to seven times faster than the original
CRP customization.

Fig. 3 suggests that a precomputed metric-independent order could lead to
faster CH customization times. Indeed, running our microinstruction-based cus-
tomization up to cells of size n/2 (about 9 million) with guidance step 2 takes
about 10.7 seconds (sequentially). Using the same same order for CH would lead
to comparable customization times. The number of shortcuts generated (231M)
is only twice the number of original arcs in the expanded graph (116M), but still
significant considering that CH (without witness searches) must keep all of them
for every metric. CH queries should be comparable to CRP, which performs only
1272 scans and takes 0.89ms on average in the resulting 21-level setup.

Our last experiment considers other benchmark instances. From the 9th DI-
MACS Challenge [13], we take PTV Europe and TIGER USA, each with two
cost functions: driving times (with 100 s U-turn costs) and distances. We also
consider OpenStreetMap (OSM) data (v. 121812) representing major landmasses
and with realistic turn restrictions. Finally, we test the instances used by Bing
Maps, which build on Navteq data and include actual turn costs and restrictions;
the proprietary “default” metric correlates well with driving times.

For each instance, Table 3 shows the average number of scans and running
time (over 100 random queries) of turn-aware Dijkstra, followed by the metric-
independent CRP preprocessing time and the amount of metric-independent
data generated. It then reports the customization time and the amount of metric-
dependent data produced, followed by average statistics about queries (over
100 000 runs): number of scans, time to get the length of the shortest path, and
time to get a full description of the path (length and underlying arcs). Queries
are sequential and use a (prewarmed) LRU cache for 218 shortcuts; preprocessing
and customization run on 12 cores. We use the default CRP settings in every
case, with a sixth overlay level (cell size 223) for the two largest instances.

The table shows that CRP is indeed robust, enabling consistently fast cus-
tomization and queries. It is slowest for OSM instances, which are very large
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Table 3. Performance of CRP on various benchmark instances

Dijkstra CRP
queries prepro custom queries

n cost scans time time space time space nmb. dist path
source input [×106] func [×106] [ms] [s] [MiB] [ms] [MiB] scans [ms] [ms]

PTV Europe 18.0 dist 9.1 3069 796 4151 351 70.5 2916 1.86 2.43
Europe 18.0 time 15.2 6093 796 4151 347 70.5 3009 1.64 1.81

TIGER US 23.9 dist 12.1 4790 617 6649 677 111.1 3088 1.84 2.78
US 23.9 time 13.2 6124 617 6649 664 111.1 2964 1.60 1.89

OSM Australia 4.9 time 3.4 919 79 531 44 4.6 1108 0.27 0.40
S.America 11.4 time 9.2 2549 222 2520 256 20.4 1238 0.32 0.61
N.America 162.7 time 115.8 70542 2752 18675 1202 199.1 2994 1.60 3.63
Old World 189.4 time 127.0 77121 3650 21538 1234 195.4 2588 1.49 4.20

Bing N.America 30.3 dflt 28.3 11684 936 8125 762 136.6 3395 1.60 1.91
Europe 47.9 dflt 37.0 17750 1445 7872 602 120.7 3679 2.10 2.52

because (unlike other inputs) they use vertices to represent both intersections
and geometry. Even so, customization takes about a second, and queries take
under 2 milliseconds. Preprocessing time is dominated by partitioning. While
the amount of metric-dependent data is relatively small, instruction arrays can
be quite large. Metric-independent space usage could be reduced using smaller τ
or limiting microinstructions to smaller cells (than 256). Curiously, finding the
length of a path takes similar time on most instances, but describing the path
takes longer on OSM data. For every instance, customization is at least one order
of magnitude faster than a single Dijkstra search, and would still be faster even
if run sequentially. The main reason is the poor locality of Dijkstra’s algorithm,
whose working set is spread throughout the graph.

7 Final Remarks

We have significantly reduced the time needed to process a cost function to
enable interactive queries on road networks. Our customization is an order of
magnitude faster than the best previous method [11], and takes less time than
a single Dijkstra search. The ability to incorporate a new metric in fractions of
a second enables a host of new applications. For example, it allows personalized
cost functions: we could store a compact description of the preferences of each
user, and run customization on the fly whenever the user accesses the system.
Cost functions can even be tuned interactively (in less than a second). Our
approach can also be helpful in applications [4,17,24] that repeatedly compute
shortest paths on the same underlying graph with a changing cost function. Most
importantly, very fast customization has the potential to enable applications that
have not even been considered so far.
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