
Design of Practical Succinct Data Structures
for Large Data Collections

Roberto Grossi and Giuseppe Ottaviano

Dipartimento di Informatica
Università di Pisa

{grossi,ottaviano}@di.unipi.it

Abstract. We describe a set of basic succinct data structures which
have been implemented as part of the Succinct library, and applications
on top of the library: an index to speed-up the access to collections of
semi-structured data, a compressed string dictionary, and a compressed
dictionary for scored strings which supports top-k prefix matching.

1 Introduction

Succinct data structures (SDS) encode data in small space and support efficient
operations on them. Encoding is a well studied problem in information theory
and there is a simple lower bound on the required space in bits: if data are
entries from a domain D, encoding each entry with less than �log |D|� bits cannot
uniquely identify all the entries in D (here logs are to the base 2). Thus any
correct encoding requires at least �log |D|� bits in the worst case, which is known
as the information-theoretic lower bound. Variants of this concept use some form
of entropy of D or other adaptive measures for the space occupancy, in place of
the �log |D|� term, but the idea is essentially the same.

Going one step beyond encoding data, SDS can also retrieve data in response
to queries. When data are any given subset of elements, an example of query is
asking if an input element belongs to that subset. Without any restriction on the
execution time of the queries, answering them becomes a trivial task to perform:
simply decode the whole encoded data and scan to answer the queries. The
challenge in SDS is to quickly perform its query operations, possibly in constant
time per query. To attain this goal, SDS can use extra r bits of redundancy in
addition to those indicated by the information-theoretic lower bound.

SDS have been mainly conceived in a theoretical setting. The first results
date back to Elias’ papers of 1974 and 1975 on information retrieval [9,10] with
a reference to the Minsky-Papert problem on searching with bounded Hamming
distance. The power of SDS has been extensively discussed in Jacobson’s PhD
thesis [17], where he shows how to store data such as binary sequences, trees,
and graphs in small space. The design of SDS is also linked to the bit probe
complexity of data structures, see the literature cited in [22,6], and the time-
space tradeoffs of data structures, e.g. [27]. As of now, there are SDS for sets
of integers, sequences, strings, trees, graphs, relations, functions, permutations,
geometric data, special formats (XML, JSON), and so on [19].

V. Bonifaci et al. (Eds.): SEA 2013, LNCS 7933, pp. 5–17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

6 R. Grossi and G. Ottaviano

What is interesting for the algorithm engineering community is that, after
some software prototype attempts, efficient libraries for SDS are emerging, such
as the C++ libraries libcds [21], rsdic [29], SDSL [31], and the Java/C++ library
Sux [33]. They combine the advantage of data compression with the performance
of efficient data structures, so that they can operate directly on compressed data
by accessing just a small portion of data that needs to be decompressed. The
field of applications is vast and the benefit is significant for large data sets that
can be kept in main memory when encoded in succinct format.

The preprocessing stage of SDS builds an index that occupies r bits (of re-
dundancy). Systematic SDS have a clear separation of the index from the com-
pressed data, with several advantages [3]. When this separation is not obtained,
the resulting SDS are called non-systematic because many bits contribute simul-
taneously both to the index and the compressed data.1

Given data chosen from a domain D, the designer of SDS aims at using
r + �log |D|� bits to store data+index, with the main goal of asymptotically
minimizing both the space redundancy r and the query time, or at least finding
a good trade-off for these two quantities. Optimality is achieved when r and
query bounds match the corresponding lower bounds. The problem is not only
challenging from a theoretical point of view, where sophisticated upper and lower
bounds have been proposed, e.g. [26,35]. Its practical aspects are quite relevant,
e.g. in compressed text indexing [12,15], where asymptotically small redundancy
and query time quite often do not translate into practical and fast algorithms.

We focus on succinct indexes for semi-structured data and strings but we
believe that many SDS should be part of the modern algorithmist’s toolbox for
all the several data types mentioned so far. We survey a set of fundamental
SDS and primitives to represent and index ordered subsets, sequences of bits,
sequences of integers, and trees, that can be used as building blocks to build
more sophisticated data structures. These SDS have proven to be practical and
mature enough to be used as black boxes, without having to understand the inner
details. The SDS that we describe are all implemented as part of the Succinct
C++ library [32]; we give three examples of its applications in the last section.

2 Basic Toolkit for the Designer

In this section we define the most common primitives used when designing SDS,
which are also sufficient for the applications of Sect. 4. The details on the algo-
rithm and data structures used to implement them, along with their time and
space complexities, are deferred to Sect. 3.

2.1 Subsets and Bitvectors

Bitvectors are the basic building block of SDS. In fact, most constructions consist
of a collection of bitvectors and other sequences, that are aligned under some
1 In a certain sense, implicit data structures as the binary heap can be seen as a form

of non-systematic SDS where r = O(log n) bits for n elements.

Design of Practical Succinct Data Structures for Large Data Collections 7

logic that allows to efficiently translate a position in one sequence to a position
in another sequence; this pattern will be used extensively in Sect. 4.

Formally, a bitvector is a finite sequence of values from the alphabet {0, 1},
i.e. bits. For a bitvector s we use |s| to denote its length, and si to denote its
i-th element, where i is 0-based. Bitvectors can be interpreted as subsets of an
ordered universe U : the ordering induces a numbering from 0 to |U | − 1, so a
subset X can be encoded as a bitvector s of length |U |, where si is 1 if the
i-th element of U belongs to X , and 0 otherwise. Here the information-theoretic
lower bound is �log

(|U|
m

)
� where m is the number of 1s [28].

Rank and Select. The Rank and Select primitives form the cornerstone of most
SDS, since they are most prominently used to align different sequences under the
pattern described above. These operations can be defined on sequences drawn
from arbitrary alphabets, but for simplicity we will focus on bitvectors.

– Rank1(i) returns the number of occurrences of 1 in s[0, i).
– Select1(i) returns the position of the i-th occurrence of 1.

An operation tightly related to Rank/Select is Predecessor1(i), which returns
the position of the rightmost occurrence of 1 preceding or equal to i. Note that
Rank1(Select1(i)) = i and Select1(Rank1(i)) = Predecessor1(i) (Symmetrically,
Rank0, Select0, and Predecessor0 can be defined on occurrences of 0s.)

If the bitvector is interpreted as a subset under the correspondence defined
above, Rank1 returns the number of elements in the subset that are strictly
smaller than a given element of the universe, while Select1 returns the elements
of the subset in sorted order. Predecessor1 returns the largest element that is
smaller or equal to a given element of the universe.

A basic example of how to use Rank1 to align different sequences is the sparse
array. Let A be an array of n elements of k bits each; then, to store it explicitly,
kn bits are needed. However, if a significant number of elements is 0 (or any
fixed constant), we can use a bitvector z of n bits to encode which elements are
zero and which ones are not, and store only the non-zeros in an another array B.
To retrieve A[i], we return 0 if zi = 0; otherwise, the value is B[Rank1(i)]. This
allows to reduce the space from kn bits to n+ k|B| bits, plus the space taken by
the data structure used to efficiently support Rank1.

2.2 Balanced Parentheses and Trees

Another class of sequences of particular interest is given by sequences of balanced
parentheses (BP), which can be used to represent arbitrary trees in spaces close
to the information-theoretic optimum.

BP sequences are inductively defined as follows: an empty sequence is BP; if α
and β are sequences of BP, then also (α)β is a sequence of BP, where (and) are
called mates. For example, s = (()(()())) is a sequence of BP. These sequences
are usually represented as bitvectors, where 1 represents (and 0 represents).

Several operations operations can be defined on such sequences; as we will see
shortly, the following ones are sufficient for basic tree navigation.

8 R. Grossi and G. Ottaviano

– FindClose(i), for a value i such that si = (, returns the position j > i such
that sj =) is its mate. (FindOpen(i) is defined analogously.)

– Enclose(i), for a value i such that si = (, returns the position j < i such
that sj = (and the pair of j and its mate enclose the pair of i and its mate.

– Rank((i) returns the pre-order index of the node corresponding to the paren-
thesis at position i and its mate; this is just the number of open parentheses
preceding i.

– Excess(i) returns the difference between the number of open parentheses and
that of close parentheses in the first i + 1 positions of s. The sequence of
parentheses is balanced if and only if this value is always non-negative, and
it is easy to show that it equals 2 ·Rank((i)− i.

Balanced Parentheses Tree Encoding (BP). The BP representation of
trees was introduced by Munro and Raman [23]. A sequence of BP implicitly
represents an ordinal tree, where each node corresponds to a pair of mates. By
identifying each node with the position p of its corresponding open parenthesis,
several traversal operations can be reduced to the operations defined above.

Depth-First Unary Degree Sequence (DFUDS). Another tree representa-
tion based on balanced parentheses was introduced by Benoit et al. [5]. Called
depth-first unary degree sequence (DFUDS), it is constructed by concatenating
in depth-first order the node degrees encoded in unary, i.e. a degree d is encoded
as (d). It can be shown that by prepending an initial (, the obtained sequence
of parentheses is balanced.

By identifying each node of the tree with the position p of beginning of its de-
gree encoding, traversal operations can be mapped to sequence operations. Com-
pared to the BP representation we loose the Depth operation, but we gain the
operation Child which returns the i-th child by performing a single FindClose.

Figure 1 shows an example of a tree represented with BP and DFUDS encodings.
Note that both encodings require just 2 bits per node, plus the data structures
needed to support the operations. It can be shown that the information-theoretic
lower bound to represent an arbitrary tree of n nodes is 2n − o(n) bits, so both
encodings are asymptotically close to the lower bound.

2.3 Range Minimum Queries

Given a sequence A of elements drawn from a totally ordered universe, a Range
Minimum Query for the range [i, j], denoted as RMQ(i, j), returns the position
of the minimum element in A[i, j] (returning the leftmost in case of ties).

This operation finds application, for example, in suffix arrays, to find the
LCP (Longest Common Prefix) of a range of suffixes by using the vector of
LCPs of consecutive suffixes: the LCP of the range is just the minimum among
the consecutive LCPs. Another application is top-k retrieval (see Sect. 4).

Design of Practical Succinct Data Structures for Large Data Collections 9

0

1

2

3 4 5

6

7

8

9

10

11

12 13

14 15

16

BP (((() () ()) ()) (()) ((()) () (() ()) ()))
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

DFUDS (((() (() ((())))) ()) (((() ())) (())))
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 1. BP and DFUDS encodings of an ordinal tree

3 Toolkit Implementation

For the operations described in Sect. 2 there exist SDS that can support them in
constant time while taking only r = o(n) bits of redundancy, meaning that as the
input size n grows to infinity the relative overhead per element of the sequence
goes to zero. This fact is the raison d’être for the whole field of SDS: it means that,
in a reasonably realistic model of computation, using SDS instead of classical
pointer-based ones involves no runtime overhead, and the space overhead needed
to support the primitives is negligible.

In practice, however, the constants hidden in the o(·) and O(·) notations are
large enough that these data structures become competitive with the classical
ones only at unrealistic data sizes. Furthermore, CPU cache and instruction-level
parallelism play an important role in the performance of these algorithms, but it
is impossible to appreciate their influence in an abstract model of computation.

In recent years, a large effort has been devoted to the algorithm engineering of
SDS, producing practical data structures that are fast and space-efficient even for
small inputs. When compared to their theoretical counterparts, the time bounds
often grow from O(1) to O(log n), and the space bounds from o(n) to O(n), but
for all realistic data sizes they are more efficient in both time and space.

To give a sense of how these data structures work, we give a detailed explana-
tion of how Rank can be implemented. The other data structures are only briefly
summarized and we refer to the relevant papers for a complete description.

All the SDS described here are static, meaning that their contents cannot be
changed after the construction. While there has been a significant amount of work
in dynamic SDS, most results are theoretical, and the practice has not caught up
yet. The engineering of dynamic SDS is certainly an interesting research topic,
which we believe will receive significant attention in the next few years.

10 R. Grossi and G. Ottaviano

3.1 The Succinct Library

The SDS structures described in this section, which to date are among the most
efficient, are implemented as part of the Succinct library [32]. The library is
available with a permissive license, in the hope that it will be useful both in
research and applications. While similar in functionality to other existing C++
libraries such as libcds [21], SDSL [31], and Sux [33], we made some radically
different architectural choices, which we describe below.
Memory Mapping. As in most static data structures libraries, all the data
structures in Succinct can be serialized to disk. However, as opposed to libcds,
SDSL, and Sux, deserialization is performed by memory mapping the data struc-
ture, rather than loading it into memory.

While being slightly less flexible, memory mapping has several advantages
over loading. For example, for short-running processes it is often not necessary
to load the full data structure in memory; instead the kernel will load only the
relevant pages. If such pages were accessed recently, they are likely to be still in
the kernel’s page cache, thus making the startup even faster. If several processes
access the same structure, the memory pages that hold it are shared among all
the processes; with loading, instead, each process keeps its own private copy of
the data. Lastly, if the system runs out of memory, it can just un-map unused
pages; with loading, it has to swap them to disk, thus increasing the I/O pressure.

For convenience we implemented a mini-framework for serialization/memory
mapping which uses template metaprogramming to describe recursively a data
structure through a single function that lists the members of a class. The mini-
framework then automatically implements serialization and mapping functions.
Templates Over Polymorphism. We chose to avoid dynamic polymorphism
and make extensive use of C++ templates instead. This allowed us to write
idiomatic and modular C++ code without the overhead of virtual functions.
Multi-platform 64-Bit Support. The library is tested under Linux, Mac OS X,
and Microsoft Windows, compiled with gcc, clang and MSVC. Like Sux and parts
of SDSL, Succinct is designed to take advantage of 64-bit architectures, which
allow us to use efficient broadword algorithms [20] to speed up several operations
on memory words. Another advantage is that the data structures are not limited
to 232 elements or less like 32-bit based implementations, a crucial requirement
for large datasets, which are the ones that benefit the most from SDS. We also
make use of CPU instructions that are not exposed to C++ but are widely avail-
able, such as those to retrieve the MSB and LSB of a word, or to reverse its bytes.
While all these operations can all be implemented with broadword algorithms,
the specialized instructions are faster.

3.2 Rank/Select

Like many SDS, Jacobson’s implementation [17] of Rank relies on Four Russians
trick by splitting the data into pieces that are small enough that all the answers
to the queries for the small pieces can be tabulated in small space, and answers to

Design of Practical Succinct Data Structures for Large Data Collections 11

queries on the whole input can be assembled from queries on the small pieces and
on a sparse global data structure. Specifically, the input is divided into super-blocks
of size log2 n, and the answer to the Rank at the beginning of each super-block is
stored in an array. This takes O(#blocks · logn) = O(n logn/ log2 n) = o(n).

The super-blocks are then divided into blocks of size 1
2 log n, and the answers

to the Rank queries at the beginning of each block are stored relative to their
super-block : since the superblock is only log2 n bits long, the relative ranks cost
O(log logn) bits each, so overall the block ranks take O(n log logn/ logn) = o(n).

The blocks are now small enough that we can tabulate all the possible Rank(i)

queries: the number of different blocks is at most 2
logn

2 = O(
√
n), the positions

in the block are at most O(log n), and each answer requires O(log logn) bits, so
overall the space needed by the table is O(

√
n logn log log n) = o(n).

To answer Rank(i) on the whole bitvector it is sufficient to sum the rank of
its super-block, the relative rank of its block, and the rank inside the block. All
three operations take O(1) time, so overall the operation takes constant time.

This data structure can be implemented almost as described, but it is conve-
nient to have fixed-size blocks and super-blocks. This yields an O(n)-space data
structure, but the time is still O(1). Furthermore, if the blocks are sized as the
machine word, the in-block Rank can be efficiently computed with broadword
operations, as suggested by Vigna [34], hence avoiding to store the table.

The constant-time data structure for Select is significantly more involved: its
practical alternative is to perform a binary search on the super-block ranks,
followed by a linear search in the block partial ranks and then inside the blocks.
The binary search can be made more efficient by storing the answer to Select1
for every k-th 1, so that the binary search can be restricted to a range that
contains at most k ones. This algorithm, which is known as hinted binary search,
can take O(log n) time but is extremely efficient in practice.

In Succinct, Rank and Select are implemented in the rs_bit_vector class,
which uses the rank9 data structure [34].

3.3 Elias-Fano Representation of Monotone Sequences

The Elias-Fano representation of monotone sequences [9,11] is an encoding
scheme to represent a non-decreasing sequence of m integers 〈x1, · · · , xm〉 from
the universe [0..n) occupying 2m + m

⌈
log n

m

⌉
+ o(m) bits, while supporting

constant-time access to the i-th integer. It can be effectively used to represent
sparse bitvectors (i.e. where the number m of ones is small with respect to the
size n of the bitvector), by encoding the sequence of the positions of the ones.
Using this representation the retrieval of the the i-th integer can be interpreted
as Select1(i), and similarly it is possible to support Rank1.

The scheme is very simple and elegant. Let � = �log(n/m)�. Each integer
xi is first encoded in binary into �logn� bits, and the binary encoding is then
split into the first �logn�− � higher bits and the last � lower bits. The sequence
of the higher bits is represented as a bitvector H of �m+ n/2�� bits, where for
each i, if hi is the value of the higher bits of xi, then the position hi+i of H is set

12 R. Grossi and G. Ottaviano

to 1; H is 0 elsewhere. The lower bits of each xi are just concatenated into a
bitvector L of m� bits. To retrieve the i-th integer we need to retrieve its higher
and lower bits and concatenate them. The lower bits are easily retrieved from L.
To retrieve the upper bits it is sufficient to note that hi = SelectH(1, i)− i. The
implementation is straightforward, provided that Select is supported on H .

In Succinct, we implement it using the darray data structure [24], which
supports Select in O(1) time without requiring a data structure to support Rank.
The class elias_fano implements a sparse bitvector encoded with Elias-Fano.

3.4 Balanced Parentheses

To implement operations on balanced parentheses, variants of a data structure
called Range-Min-Max tree [30] have proven the most effective in practice [2],
despite their O(log n) time and O(n) space. The data structure divides the se-
quence into a hierarchy of blocks, and stores the minimum and maximum Excess
value for each block. This yields a tree of height O(log n) height, that can be
traversed to find mate and enclosing parentheses.

In Succinct the class bp_vector implements the basic operations on balanced
parentheses. It uses a variant of the Range-Min-Max tree called Range-Min tree
[14], which only stores the minimum excess, thus halving the space occupancy
with respect to the Range-Min-Max tree. This weakens the range of operations
that the data structure can support, but all the important tree navigation oper-
ations can be implemented.

3.5 Range Minimum Queries

The RMQ problem is intimately related to the Least Common Ancestor (LCA)
problem on trees. In fact, the LCA problem can be solved by reducing it to an
RMQ on a sequence of integers derived from the tree, while RMQ can be solved
by reducing it to an LCA in a tree derived from the sequence, called the Cartesian
Tree [4]. As shown by Fischer and Heun [13], RMQ on an array A can be reduced
to an RMQ on the excess sequence of the DFUDS representation of the 2d-Min-
Heap, which, as noted by Davoodi et al. [7], is an alternative representation of
the Cartesian tree. The RMQ operation on an excess sequence can be easily
implemented by using the Range-Min tree, so since the DFUDS representation
is already equipped with a Range-Min tree to support navigational operations,
no extra space is needed.

In Succinct, RMQ is implemented in the class cartesian_tree. The algorithm
is a minor variation, described in [16], of the scheme by Fischer and Heun [13].

4 Applications

We describe some applications of the Succinct library that involve handling large
collections of semi-structured or textual data. Interestingly, SDS are gaining pop-
ularity in other communities such as bioinformatics, Web information retrieval,
and networking.

Design of Practical Succinct Data Structures for Large Data Collections 13

4.1 Semi-indexing Semi-structured Data

With the advent of large-scale distributed processing systems such as MapReduce
[8] and Hadoop [1] it has become increasingly common to store large amounts
of data in textual semi-structured formats such as JSON and XML, as opposed
to the structured databases of classical data warehousing. The flexibility of such
formats allows to evolve the data schema without having to migrate the existing
data to the new schema; this is particularly important in logging applications,
where the set of attributes to be stored usually evolves quickly.

The disadvantage of such formats is that each record, represented by a semi-
structured document, must be parsed completely to extract its attributes; in
typical applications, the records contain several attributes but each query re-
quires a different small subset of such attributes, thus reading the full document
can be highly inefficient. Alternative representations for semi-structured data
have been proposed in the literature, many using SDS, that are both compact
and support efficient querying of attributes, but they rely on changing the data
format, which may be unacceptable in some scenarios where compatibility or
interoperability with existing tools is required.

In [25] it was introduced the concept of semi-index, which is a systematic SDS
that can be used to speed-up the access to an existing semi-structured document
without changing its format: the semi-index is stored on a separate file and it
takes only a small fraction of the size of the original data.

The semi-index consists of two components: a positional index, that is an index
of the positions in the document that are starting points of its elements, and a
succinct encoding of the parse tree of the document. The positional index can
be represented with a bitvector and encoded with Elias-Fano, while the parse
tree can be represented with a BP sequence.

For JSON documents [18], the positional index has a 1 in correspondence of
the positions where either of the characters {}[],: occur. For each one of these,
a pair of parentheses is appended to the BP sequence, specifically ((for { and
[,)) for } and], and)(for , and :. An example is shown in Fig. 2. It can
be shown that the BP sequence is indeed balanced, and that it is possible to
navigate the parse tree of the document by accessing the two index sequences and
a minimal part of the original document. An experimental analysis on large-scale
document collections has shown speed-ups between 2.5 and 10 times compared
to parsing each document, while the space overhead given by the semi-index is
at most ∼ 10%.

{"a": 1, "b": {"l": [1, null], "v": true}}
100010010000101000101010000011000010000011

(()()()((()((()()))()())))

Fig. 2. Semi-index of a JSON document

14 R. Grossi and G. Ottaviano

4.2 Compressed String Dictionaries

A string dictionary is a data structure that maps bijectively a set of n strings to
the integer range [0, n). String dictionaries are among the most fundamental data
structures, and find application in basically every algorithm that handles strings.

In many scenarios where the string sets are large, the strings are highly re-
dundant ; a compressed string dictionary exploits this redundancy to reduce the
space usage of the data structure. Traditionally, string dictionaries are imple-
mented by using tries, which are not only fast, but they also offer some degree
of compression by collapsing the common prefixes. Tries represented with SDS
offer even higher space savings, but the performance suffers a large slow-down
because tries can be highly unbalanced, and navigational operations in succinct
trees can be costly. Furthermore, prefix compression is not effective for strings
that might share other substrings besides the prefix.

In [14] it was introduced a succinct representation for tries that makes use
of path decompositions, a transformation that can turn a unbalanced tree into
a balanced one. The representation also enables compression of the trie labels,
thus exploiting the redundancy of frequent substrings.

A path decomposition of a trie T is a tree T c whose nodes correspond to node-
to-leaf paths in T . The tree is built by first choosing a root-to-leaf path π in T
and associating it with the root node uπ of T c; the children of uπ are defined
recursively as the path decompositions of the subtries hanging off the path π,
and their edges are labeled with the labels of the edges from the path π to the
subtries. An example is shown in Fig. 3. The resulting tree is then encoded using
a DFUDS representation, and the sequence of labels is compressed with a simple
dictionary compression scheme.

α1

α2

v4

b4

α3

v2

b2

α4

v1

b1

α5

c4

c3

v3

b3

c2

c1

v5

b5

v6

b6

r

v1

b1

v2

b2

v3

b3

v4

b4

v5

b5

v6

b6

Lr α12 c1α21 c2α32 c3α41 c4α5

BPr (((((()
Br b6b5 b4 b3b2 b1

Fig. 3. Path decomposition of a trie. The αi denote the labels of the trie nodes, ci and
bi the branching characters (depending on whether they are on the path or not).

Depending on the strategy used to choose the decomposition path π, different
properties can be obtained. If we start from the root and recursively choose the
child with most descendents, the resulting path is called a centroid path, and the

Design of Practical Succinct Data Structures for Large Data Collections 15

resulting centroid path decomposition has height O(log n), regardless of whether
the trie is balanced or not. Alternatively, we can choose recursively the leftmost
child; the resulting decomposition is called lexicographic path decomposition be-
cause the numbers associated to the strings of the set respect the lexicographic
ordering, but for this decomposition no height guarantees can be given.

In the experiments, large-scale collections of URLs, queries, and web page
titles can be compressed down to 32% to 13% of their original size, while main-
taining access and lookup times of few microseconds.

4.3 Top-k Completion in Scored String Sets

Virtually every modern application, either desktop, web, or mobile, features
some kind of auto-completion of text-entry fields. Specifically, as the user enters
a string one character at a time, the system presents k suggestions to speed up
text entry, correct spelling mistakes, and help users formulate their intent.

This can be thought of as having a scored string set, meaning that each string
is assigned a score, and given a prefix p we want to find the k strings prefixed
by p that have highest score. We call this problem top-k completion. Since the
sets of suggestion strings are usually large, space-efficiency is crucial.

A simple solution is to combine the lexicographic trie of Sect. 4.2 with an RMQ
data structure. The strings in the string set are stored in the trie, and their scores
are stored in lexicographic order in an array R. The set of the indexes of strings
that start with a given prefix p is a contiguous range [a, b].

We can then compute r = RMQ(a, b) to find the index r of the highest-scored
string prefixed by p. The second string is either the highest-scored one in [a, r−1]
or in [r + 1, b], and so on. By using a priority queue it is possible to retrieve the
top-k completions one at a time.

It is however possible to do better: we can use again the tries of Sect. 4.2,
but with a different path decomposition, where the chosen decomposition path
π is the path from the root to the highest-scored leaf. It can be shown that
in the resulting max-score path decomposition it is possible to find the top-k
completions of a given node by visiting just k nodes; since, as noted before,
navigational operations are costly in succinct representations, performance is
significantly better than the RMQ-based solution.

On large sets of queries and URLs, experiments have shown compression ratios
close or better than those of gzip, with average times per completion of about
one microsecond [16].

References

1. Apache Hadoop, http://hadoop.apache.org/
2. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.

In: ALENEX, pp. 84–97 (2010)
3. Barbay, J., He, M., Munro, J.I., Satti, S.R.: Succinct indexes for strings, binary

relations and multilabeled trees. ACM Transactions on Algorithms 7(4), 52 (2011)

http://hadoop.apache.org/

16 R. Grossi and G. Ottaviano

4. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

5. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

6. Buhrman, H., Miltersen, P.B., Radhakrishnan, J., Venkatesh, S.: Are bitvectors
optimal? SIAM Journal on Computing 31(6), 1723–1744 (2002)

7. Davoodi, P., Raman, R., Satti, S.R.: Succinct representations of binary trees
for range minimum queries. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.)
COCOON 2012. LNCS, vol. 7434, pp. 396–407. Springer, Heidelberg (2012)

8. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: OSDI, pp. 137–150 (2004)

9. Elias, P.: Efficient storage and retrieval by content and address of static files. Jour-
nal of the ACM (JACM) 21(2), 246–260 (1974)

10. Elias, P., Flower, R.A.: The complexity of some simple retrieval problems. Journal
of the ACM 22(3), 367–379 (1975)

11. Fano, R.: On the number of bits required to implement an associative memory.
Memorandum 61. Computer Structures Group, Project MAC. MIT (1971)

12. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
13. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum

queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)
14. Grossi, R., Ottaviano, G.: Fast compressed tries through path decompositions. In:

ALENEX, pp. 65–74 (2012)
15. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications

to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2005)
16. Hsu, B.J.P., Ottaviano, G.: Space-efficient data structures for top-k completion. In:

Proceedings of the 22st World Wide Web Conference (WWW) (2013)
17. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS, pp. 549–554 (1989)
18. JSON specification, http://json.org/
19. Kao, M.Y. (ed.): Encyclopedia of Algorithms. Springer (2008)
20. Knuth, D.E.: The Art of Computer Programming. Fascicle 1: Bitwise Tricks &

Techniques; Binary Decision Diagrams, vol. 4. Addison-Wesley (2009)
21. libcds - Compact Data Structures Library, http://libcds.recoded.cl/
22. Miltersen, P.B.: The bit probe complexity measure revisited. In: Enjalbert, P., Wag-

ner, K.W., Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 662–671. Springer,
Heidelberg (1993)

23. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing 31(3), 762–776 (2001)

24. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: ALENEX (2007)

25. Ottaviano, G., Grossi, R.: Semi-indexing semi-structured data in tiny space. In:
CIKM, pp. 1485–1494 (2011)

26. Pǎtraşcu, M.: Succincter. In: FOCS 2008, pp. 305–313 (2008)
27. Pǎtraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: STOC,

pp. 232–240 (2006)
28. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-

tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Alg. 3(4)
(2007)

29. rsdic - Compressed Rank Select Dictionary, http://code.google.com/p/rsdic/
30. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: SODA 2010, pp.

134–149 (2010)

http://json.org/
http://libcds.recoded.cl/
http://code.google.com/p/rsdic/

Design of Practical Succinct Data Structures for Large Data Collections 17

31. SDSL - Succinct Data Structure Library,
http://www.uni-ulm.de/in/theo/research/sdsl.html

32. Succinct library, http://github.com/ot/succinct
33. Sux - Implementing Succinct Data Structures, http://sux.dsi.unimi.it/
34. Vigna, S.: Broadword implementation of rank/select queries. In: McGeoch, C.C.

(ed.) WEA 2008. LNCS, vol. 5038, pp. 154–168. Springer, Heidelberg (2008)
35. Viola, E.: Bit-probe lower bounds for succinct data structures. SIAM J. Com-

put. 41(6), 1593–1604 (2012)

http://www.uni-ulm.de/in/theo/research/sdsl.html
http://github.com/ot/succinct
http://sux.dsi.unimi.it/

	Design of Practical Succinct Data Structures for Large Data Collections
	Introduction
	Basic Toolkit for the Designer
	Subsets and Bitvectors
	Balanced Parentheses and Trees
	Range Minimum Queries

	Toolkit Implementation
	The Succinct Library
	Rank/Select
	Elias-Fano Representation of Monotone Sequences
	Balanced Parentheses
	Range Minimum Queries

	Applications
	Semi-indexing Semi-structured Data
	Compressed String Dictionaries
	Top-k Completion in Scored String Sets

	References

