
Separable Non-convex Underestimators

for Binary Quadratic Programming

Christoph Buchheim and Emiliano Traversi

Fakultät für Mathematik, Technische Universität Dortmund
Vogelpothsweg 87, 44227 Dortmund, Germany

{christoph.buchheim,emiliano.traversi}@tu-dortmund.de

Abstract. We present a new approach to constrained quadratic binary
programming. Dual bounds are computed by choosing appropriate global
underestimators of the objective function that are separable but not nec-
essarily convex. Using the binary constraint on the variables, the min-
imization of this separable underestimator can be reduced to a linear
minimization problem over the same set of feasible vectors. For most
combinatorial optimization problems, the linear version is considerably
easier than the quadratic version. We explain how to embed this approach
into a branch-and-bound algorithm and present experimental results.

1 Introduction

Many combinatorial optimization problems admit natural formulations as binary
quadratic optimization problems. Such problems take the form

min f(x) := x�Qx+ L�x
s.t. x ∈ X ,

(1)

where Q ∈ R
n×n is a symmetric matrix, L ∈ R

n is a vector and X ⊆ {0, 1}n is
the set of feasible binary vectors. In this paper, we consider problems where the
linear counterpart of Problem (1),

min c�x
s.t. x ∈ X ,

(2)

can be solved efficiently for any vector c ∈ R
n. We do not make any assumptions

on how Problem (2) is solved. In particular, any combinatorial algorithm can
be used, a compact linear description (or polynomial-time separation algorithm)
for conv (X) is not required.

Even under this assumption, the quadratic problem (1) is usually NP-hard.
This is true, e.g., for the unconstrained case X = {0, 1}n, where Problem (1)
is equivalent to unconstrained quadratic binary optimization and hence to the
max-cut problem. To give another example, the quadratic spanning tree problem
is NP-hard [1], while the linear counterpart can be solved very quickly, e.g., by
Kruskal’s algorithm.

V. Bonifaci et al. (Eds.): SEA 2013, LNCS 7933, pp. 236–247, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Separable Non-convex Underestimators for Binary Quadratic Programming 237

The standard approach for solving problems of type (1) is based on lineariza-
tion. In a first step, a new variable yij representing the product xixj is introduced
for each pair i, j. Then the convex hull of feasible solutions in the extended space
is usually approximated either by a polyhedral relaxation or by semidefinite pro-
gramming (SDP) models, or by a combination of both. The main focus lies on
enforcing the connection between x- and y-variables. For the unconstrained case,
we point the reader to [5] and the reference therein. In the constrained case, most
approaches presented in the literature are highly problem-specific.

A different approach to binary optimization is the QCR technique [2]. Instead
of linearizing the problem, it is reformulated as an equivalent binary optimization
problem with a convex quadratic objective function. This allows to apply more
powerful software tailored for convex problems. In particular, it is now possible
to solve the continuous relaxation of the problem efficiently. The QCR approach
is designed such that this relaxation yields as tight lower bounds as possible.

In this paper, we propose a different approach. It is based on computing under-
estimators g of the quadratic objective function f . A lower bound on Problem (1)
can then be computed by minimizing g(x) over x ∈ X . Unlike most other ap-
proaches based on underestimators, we however do not use convex functions in
general, but separable non-convex functions. The main idea of our approach is
to determine a good separable underestimator g of f in the first step; in the
second step we can reduce the separable quadratic function to a linear function
exploiting the binarity of all variables. The minimization of g(x) over x ∈ X can
thus be performed by solving Problem (2). Convexity is not required for this
approach. The resulting lower bounds are embedded into a branch-and-bound
scheme for solving Problem (1) to optimality.

Compared with linearization, the advantage of our approach lies in the fact
that we do not need to add any additional variables. Moreover, we do not require
any polyhedral knowledge about conv (X) and do not use any LP solver at
all. At the same time, any algorithmic knowledge about the linear problem (2)
is exploited directly. Compared with the convexification approach, we have a
chance to obtain better lower bounds, since we do not require convexity of the
underestimator.

An important question in our approach is how to compute the separable
underestimator g. We first fix a point z ∈ R

n where f(z) = g(z), i.e., where
the underestimator touches the original objective function. Reasonable choices
discussed in this paper are the stationary point x̄ of f , the origin, and the
center of the box 1

21. Under this restriction, we compute a separable quadratic
function g that is a global underestimator for f and that maximizes the minimum
of g(x) over X , i.e., that yields a best possible lower bound. We show that this
task can be accomplished efficiently either by solving a semidefinite program or
by applying a subgradient method, depending on z and X .

This paper is organized as follows. In the next section, we formalize the main
ideas of our approach. In Section 3, we present strategies to determine separa-
ble underestimators yielding best possible lower bounds. In Section 4, we discuss
how lower bounds can be improved by taking valid linear equations into account.

238 C. Buchheim and E. Traversi

Details of our branch-and-bound algorithm are given in Section 5. In Section 6,
we evaluate our approach computationally, applying it to unconstrained prob-
lems and to instances of the quadratic spanning tree problem. It turns out that
the new algorithm, though being very general, can solve problems of medium
size in reasonable running time.

2 Notation and Basic Idea

We consider Problem (1) and assume that its linear counterpart, Problem (2),
can be solved efficiently for any vector c ∈ R

n. We will use Problem (2) as a black
box in the following. Our main idea is to derive a lower bound for Problem (1) by
globally underestimating f by a separable but not necessarily convex function g
and then using Problem (2) to compute the bound.

For an arbitrary point z ∈ R
n, we can rewrite f(x) as

f(x) = (x− z)�Q(x− z) + (L+ 2Qz)�x− z�Qz . (3)

Now define

g(t)z (x) := (x− z)�Diag(t)(x − z) + (L+ 2Qz)�x− z�Qz

=
n∑

i=1

tix
2
i +

n∑

i=1

(−2ziti + li + 2q�i z)xi +
n∑

i=1

z2i ti − z�Qz

for t ∈ R
n, where qi denotes the i-th row of Q. Then g

(t)
z (z) = f(z), i.e., the

function g
(t)
z touches f in the point z. By (3), it is easy to see that the function g

(t)
z

is a global underestimator of f if and only if Q � Diag(t). In this case, the desired
lower bound can be obtained as

min g(t)z (x) s.t. x ∈ X . (4)

As X ⊆ {0, 1}n, we can replace Problem (4) by the equivalent problem

min l(t)z (x) s.t. x ∈ X (5)

where the function

l(t)z (x) :=

n∑

i=1

tixi +

n∑

i=1

(−2ziti + li + 2q�i z)xi +

n∑

i=1

z2i ti − z�Qz

= ((1− 2z) · t+ L+ 2Qz)�x+ z2 · t− z�Qz

is bilinear in x, t ∈ R
n. Here we use · to denote entrywise multiplication and

define z2 := z · z. Note that Problem (5) is of type (2) and can thus be solved
efficiently by our assumption.

This approach is feasible for each touching point z ∈ R
n. Throughout this

paper, we concentrate on three different choices of z: the origin, the point 1
21,

Separable Non-convex Underestimators for Binary Quadratic Programming 239

and the stationary point x̄ := − 1
2Q

−1L of f (if Q is a regular matrix). In the

respective special cases, the function l
(t)
z can be simplified as follows:

l(t)z (x) =

⎧
⎪⎨

⎪⎩

x�t+ L�x if z = 0
1
41

�t+ (L+Q1)�x− 1
41

�Q1 if z = 1
21

((1− 2x̄) · x+ x̄2)�t− x̄�Qx̄ if z = x̄ .

3 Optimal Separable Underestimators

The choice of t is crucial for the strength of the lower bound resulting from (5).
As discussed above, this lower bound is valid for each t ∈ R

n with Q � Diag(t).
Our objective is to maximize the lower bound induced by t. In other words, our
aim is to solve the problem

max minx∈X l
(t)
z (x)

s.t. Q � Diag(t) .
(6)

In the easiest case X = {0, 1}n, we have

min
x∈{0,1}n

l(t)z (x) = min
x∈{0,1}n

((1− 2z) · t+ L+ 2Qz)�x+ z2 · t− z�Qz

= z2 · t− z�Qz +
n∑

i=1

min{0, (1− 2zi)ti + li + 2q�i z}

so that Problem (6) reduces to solving the semidefinite program

max
∑n

i=1 z
2
i ti + yi

s.t. yi ≤ 0
yi ≤ (1− 2zi)ti + li + 2q�i z
Q � Diag(t) .

For general X , Problem (6) can be solved by a subgradient approach; this is
discussed in Section 3.1. However, if the chosen touching point is z = 1

21, the
problem can again be reduced to solving a single semidefinite program, as ex-
plained in Section 3.2.

3.1 Subgradient Method

For general X ⊆ {0, 1}n, Problem (6) can be solved by a subgradient method.
For this, we can model the constraint Q � Diag(t) by a penalty function, and
obtain the following problem:

max minx∈X l
(t)
z (x) + μmin{0, λmin(Q−Diag(t))}

s.t. t ∈ R
n ,

(7)

240 C. Buchheim and E. Traversi

where μ is a suitably large non-negative number. The objective function of (7)
is concave, so that a subgradient approach can be used to solve the problem
efficiently. The supergradient of

min
x∈X

l(t)z (x)

at a given point tk can be computed by using the black box (2), as l
(tk)
z (x) is a

linear function in x. Given the optimal solution x̂k, the desired supergradient is

the gradient of l
(t)
z (x̂k), which is easily computed since l

(t)
z (x̂k) is a linear function

also in t. If λmin(Q − Diag(tk)) < 0, the supergradient of the penalty term can
be obtained as −μv2, where v is a normalized eigenvector corresponding to the
eigenvalue λmin(Q− Diag(tk)).

The resulting subgradient approach is sketched in Algorithm 1. Note that
Algorithm 1 can be stopped at any time. Let tk be the best solution to Prob-
lem (7) obtained so far. If Q − Diag(tk) � 0, then tk is also feasible for (6).
If λmin(Q −Diag(t∗)) < 0, then a new solution t̄ can be obtained by

t̄ := tk + λmin(Q−Diag(tk))1

and t̄ is a feasible solution for (6) by construction.

Algorithm 1. computation of optimal underestimator

input : function f , set X, touching point z, penalty parameter μ,
procedure for solving Problem (2)

output: a (near-)optimal solution to Problem (6)

t0 ← λmin(Q)1;
k ← 0, STOP← false;

while STOP= false do

solve minx∈X l
(tk)
z (x), let x̂k be the optimal inner solution;

// using black box to solve the inner problem

Δtk ← (∇t l
(t)
z (x̂k)

)
(tk); λ← λmin(Q−Diag(tk));

if λ < 0 then

choose normalized eigenvector v of Q−Diag(tk) to eigenvalue λ;
Δtk ← Δtk − μv2;

end
// computing a supergradient

if Δtk ≈ 0 then

STOP←true; // tk is (near-)optimal
end
else

tk+1 ← tk +Δtk; k ← k + 1;
end

end

Separable Non-convex Underestimators for Binary Quadratic Programming 241

3.2 Box Center as Touching Point

If the touching point z is chosen as 1
21, the optimization problem (6) can be

solved more efficiently. In this case, the function

l(t)z (x) =
1

4
1�t+ (L+Q1)�x− 1

4
1�Q1

does not contain any product between x and t. Problem (6) can thus be decom-
posed as follows:

max 1
41

�t + min (L+Q1)�x − 1
41

�Q1
s.t. Q � Diag(t) s.t. x ∈ X

The first problem is an SDP, while the second problem can be solved by calling
the oracle (2) once. In particular, the optimal underestimator only depends on Q
in this case, but not on L. This fact can be exploited in our branch-and-bound
algorithm, as explained in Section 5.1.

4 Taking Valid Equations into Account

So far, we assumed that we can access the set X of feasible solutions only via the
linear optimization oracle (2). This oracle is used in the second step of the lower
bound computation, the minimization of the underestimator. In particular, this
step implicitly exploits full knowledge about X .

On the other hand, the computation of an underestimator does not exploit

any properties of X , we require that g
(t)
z globally underestimates f . If it is known

that the set X satisfies certain linear equations Ax = b, this information can be
used to improve the lower bounds significantly: it is enough to require that the

function g
(t)
z is an underestimator of f on the affine subspace given by Ax = b.

This leads to a weaker condition on t, which can still be handled efficiently.
More precisely, let H = {x ∈ R

n | Ax = b} be nonempty and choose w ∈ H .
Let v1, . . . , vk be an orthonormal basis of the kernel of A and set V = (v1| . . . |vk),
so thatH = {w+V y | y ∈ R

k}. We first assume that the touching point z belongs
to H , e.g., by defining it as the orthogonal projection of 1

21 to H :

z := w + V V �(121− w)

Now g
(t)
z |H is an underestimator of f |H if and only if

(x − z)�Q(x− z) ≥ (x− z)�Diag(t)(x − z) ∀x ∈ H

⇔ y�V �QV y ≥ y�V �Diag(t)V y ∀y ∈ R
k

⇔ V �QV � V �Diag(t)V .

The latter constraint can be used to replace the stronger constraint Q � Diag(t)
both in the subgradient approach and in the SDP based computation of t, po-
tentially yielding tighter lower bounds in both approaches. In the former ap-
proach, the penalty term can be replaced by min{0, λmin(V

�(Q−Diag(t))V)} .

242 C. Buchheim and E. Traversi

The corresponding supergradient is −(V v)2, where v is a normalized eigenvector
of V �(Q −Diag(t))V corresponding to its smallest eigenvalue.

In the latter approach, the constraint Q − Diag(t) � 0 can be replaced
by V �(Q − Diag(t))V � 0 and the resulting problem remains a semidefinite
program. Note that the dimension of this SDP decreases by n − k = rk(A). In
other words, a bigger rank of A implies a smaller number of variables in the
semidefinite program.

5 Branch-and-bound Algorithm

In order to solve Problem (1) exactly, we embed the lower bounds derived in Sec-
tion 3 into a branch-and-bound framework. We thus need to compute the lower
bounds as quickly as possible and for many related problems. In the following,
we describe how the ideas presented in the previous sections can be adapted to
this situation.

5.1 Branching Strategy

In order to compute lower bounds as quickly as possible, we restrict ourselves in
two different ways:

1. We determine an order of variables at the beginning and fix variables always
in this order. More precisely, if x1, . . . , xn is the chosen order, the next vari-
able to be fixed is the free variable with smallest index. The same idea has
been used in [3] and [4].

2. We do not call the subgradient method to compute an optimal t in every
node, but try to find one fixed t for each level of the enumeration tree that
yields strong lower bounds on average. This reduces the number of oracle
calls to one per node.

The reason for accepting Restriction 1 is as follows: by this branching strategy,
the reduced matrices Q in the nodes of the enumeration tree only depend on the
depth of the node but not on the specific subproblem. Consequently, only n such
matrices can appear in the enumeration tree, instead of 2n when applying other
branching strategies. All time-consuming computations concerning this matrix
can now be performed in a preprocessing phase. In particular, in combination
with Restriction 2, we can now determine one feasible t for all nodes on a given
depth in the preprocessing.

More precisely, consider a subproblem on depth d of the enumeration tree.
This means that variables x1, . . . , xd have been fixed to some values α ∈ {0, 1}d
and the resulting objective function in the given node becomes

fα : R
n−d → R, fα(x) = x�Qαx+ L�

αx+ cα ,

where Qα is obtained from Q by deleting the first d rows and columns and

(Lα)j := Ld+j + 2
d∑

i=1

αiQd+j,i, cα :=
d∑

i,j=1

αiαjQi,j +
d∑

i=1

αiLi .

Separable Non-convex Underestimators for Binary Quadratic Programming 243

As Qα only depends on the depth d but not on α, we may denote it by Qd. The
coefficients of Lα and cα can be computed incrementally in O(n − d) time per
node using the recursive formulae

(Lα)j = (L(α1,...,αd−1))j+1 + 2αdQd+j,d

cα = c(α1,...,αd−1) + α2
dQd,d + αdLd .

In Section 3 we showed that for the special touching point 1
21 the optimal lower

bound can be computed as

max 1
41

�t + min (L+Q1)�x − 1
41

�Q1 .
s.t. Q � Diag(t) s.t. x ∈ X

The first problem is a semidefinite program that does not depend on Lα or cα.
In other words, the optimal t for all nodes on depth d is the same and can be
computed in the preprocessing.

In order to accelerate the computation of lower bounds, we can apply this
approach for any choice of a touching point z. Any solution of the SDP

max 1�t
s.t. Q � Diag(t)

(8)

yields feasible lower bounds. In general, the resulting lower bounds are weaker
than the bounds obtained from the subgradient method presented in Section 3,
but in terms of total running time this approach outperforms the subgradient
approach, as only one oracle call per node is necessary.

5.2 Incremental Update for Valid Equations

The fixed order of variables can also be exploited to accelerate the computation
of data necessary to handle valid equations. It implies that the induced constraint
matrix in a given node again only depends on its depth d in the enumeration
tree, it results from deleting the first d columns from A; denote the resulting
matrix by Ad. Consequently, the kernel vectors Vd of Ad can be computed in a
preprocessing phase again, and the same is true for the matrices V �

d QdVd needed
in the computation of lower bounds.

On contrary, the induced right hand side of the set of valid equations depends
on the fixings applied so far, it turns out to be

bα := b−
d∑

i=1

αiA•,i ∈ R
m .

This implies that the projection zα of some touching point zd ∈ R
n−d to the

subspace given by Adx = bα depends on the specific node and cannot be com-
puted in the preprocessing. However, it can be calculated incrementally, thus
avoiding to solve a linear system of equations in every node of the enumeration

244 C. Buchheim and E. Traversi

tree: in the preprocessing phase we determine vectors w0 ∈ R
n and yd ∈ R

n−d

for d = 1, . . . , n satisfying

Aw0 = b and A•,d+1...nyd = A•,d for all d = 1, . . . , n .

When enumerating the branch-and-bound nodes, we incrementally compute a
vector wα satisfying Adx = bα as follows: for d = 0, we can use wα = w0.
For d ≥ 1, we set

wα := (w(α1,...,αd−1))2...n−d+1 + ((w(α1,...,αd−1))1 − αd)yd ∈ R
n−d .

Then

Adwα = Ad(w(α1,...,αd−1))2...n−d+1 + ((w(α1,...,αd−1))1 − αd)Adyd

= Ad−1w(α1,...,αd−1) − αdA•,d

so that by recursion we obtain

Adwα = A0w0 −
d∑

i=1

αiA•,i = bα

as desired. The projected touching point can now be computed using the formula

zα := wα + VdV
�
d (zd − wα)

given in Section 4, where VdV
�
d can again be computed in the preprocessing.

The total running time for computing zα in a node on depth d using this ap-
proach is O((n − d)2). The time spent in the preprocessing is dominated by
the time needed to solve the n + 1 systems of linear equations determining w0

and y1, . . . , yn.

5.3 Application of the Subgradient Method

Inside a branch-and-bound framework, the running time of the subgradient
method for computing a vector t, as presented in Section 3, can be cut in several
ways. As with any subgradient method, a careful tuning of parameters, such as
step length, is important for obtaining a decent rate of convergence. Moreover,
in a given node on depth d ≥ 1, we use the best solution t∗(α1,...,αd−1)

of the

parent node for warmstarting. More precisely, we use the last n − d entries of
this solution as initial solution for t0α and choose an initial step length that is
decreasing with increasing depth d in the enumeration tree.

Furthermore, as every feasible iterate in the subgradient method yields a valid
lower bound for our primal problem, we can stop Algorithm 1 as soon as the
current lower bound given by (5) exceeds the primal bound, i.e., the objective
value of the best known solution of Problem (1).

From a practical point of view, a good strategy is to perform a few re-
optimization iterations of Algorithm 1 in every node. An even more restricted
approach is to determine the best possible t in the root node and then keep
the corresponding underestimator throughout the entire branch-and-bound al-
gorithm, with the necessary adaptions. We will compare these choices in the
numerical experiments in Section 6.

Separable Non-convex Underestimators for Binary Quadratic Programming 245

6 Experiments

The aim of this section is to determine which variant of our approach yields the
most effective underestimator t. As benchmark we use two sets of instances:

– Unconstrained BQP.
We generated a set of random binary instances with n = 20, 30. Ten possible
levels of convexity of Q are tested: from 10% to 100% of negative eigenvalues.
For a given concavity, we randomly generate three different instances for a
total of 60 instances.

– Quadratic Spanning Tree Problem.
We generated a set of random graphs G = (V,E) and associated linear and
quadratic costs L and Q with uniformly distributed random integer entries,
with absolute value in the interval [1, 100]. A given instance is characterized
by (1) the number of nodes |V | = 15, 20, (2) the density d = 25%, 50%, 75%
of G, and (3) the percentage of positive coefficients p = 25%, 50%, 75%; the
matrix Q is dense in all instances. For each combination of parameters we
randomly generate three different instances for a total of 54 instances.

For all tests, we use an Intel Xeon E5-2670 processor, running at 2.60 GHz with
64 GB of RAM. Running times are stated in CPU seconds.

As first step, we test different touching points z as explained in Section 2.
For each candidate, we solve Problem (8) in the preprocessing phase. As test
bed we use the Unconstrained BQP. In Figure 1 we present the average number
of branch-and-bound nodes for a given percentage of negative eigenvalues. In
addition to the results obtained by using the optimal t of Problem (8) (SDP),
we also report those obtained by using the trivial underestimator t = −λmin(Q)1
(Triv). For each policy for t we report the results obtained by fixing the touching
point to the origin (0), 1

21 (0.5) or x̄ (stat). It is obvious from these results that
the best choice is z = 1

21 (yellow and green columns): the total number of
explored nodes is 10 times and 100 times less than the number of nodes needed
with touching point z = 0 (blue and red columns) and z = x̄ (brown and light
blue columns) respectively.

As second step we want to test how t is improved by taking valid inequalities
into account; see Section 4. The set Quadratic Spanning Tree Problem is used
and the (only) valid equation is

∑
e∈E xe = |V | − 1. In Table 1 we show how

even one single equation is improving the behaviour of the corresponding t. Every
line is reporting the number of nodes and computing time (corresponing to an
average of three instances). The dimension n of the instances is stated in the
second column. With Eq we indicate that t is obtained considering equations and
with NoEq the opposite, moreover we report the ratio r between these values.
Also in this case the answer is clear: considering equations decreases significantly
the number of nodes. E.g., for the larger instances this decreases the number of
nodes by a factor of 50 and the solution time by a factor of 20. We finally remark
that Table 1 only reports results for smaller instances, because only 15 out of 21
large instances were solved within our time limit of four hours by NoEq. Also in

246 C. Buchheim and E. Traversi

� �

�� �� �� �� �� �� 	�
� �� ���
�������

�������

�������

�������

�������

�������

�������

������	

������

�������

������

�����

��������

�������

���������

��������

Fig. 1. Touching points comparison

Table 1. Effect of taking equations into account

Nodes Time
instances n NoEq Eq ratio NoEq Eq ratio

qstp 15 25 25 26 2,714.3 2,685.0 1.0 0.4 1.1 0.4

qstp 15 25 50 26 7,514.3 6,747.0 1.1 0.4 1.1 0.4

qstp 15 25 75 26 5,545.7 5,141.7 1.1 0.4 1.0 0.4

qstp 15 50 25 52 456,420.3 138,324.3 3.3 24.0 66.4 0.4

qstp 15 50 50 52 29,846,421.7 1,203,823.0 24.8 163.0 70.3 2.3

qstp 15 50 75 52 983,578,822.3 18,793,411.7 52.3 4452.3 207.0 21.5

this case, using Eq improved the performance, allowing to solve 5 out of the 6
instances unsolved by NoEq.

Finally, we test whether updating t during the exploration of the branch-
and-bound tree applying Algorithm 1 is better than solving a series of SDPs
in the preprocessing. Using the warmstart described in Section 5.3, the values
of t in the non-root nodes of the tree are computed by k rounds of Algorithm 1.
We tried different settings k = 1, 2, 5, 10, 100, but none of them succeeded in
improving the overall computation time. In Figure 2, we show how the increase
in k affects the total number of nodes and the running time for the set of instances
qstp 15 50 50. The red line represents the values obtained by computing t in
the preprocessing and the blue line represents the subgradient evolution. As we
can see, almost 100 iterations of Algorithm 1 per node are needed in order to
improve at least the number of nodes.

The results presented clearly indicate that the best setting is using 1
21 as

touching point, fixing the best underestimators t levelwise from the beginning
and taking into account valid equations. Obtaining a good solution to Prob-
lem (6) is a crucial aspect, additional tests showed also that increasing the
tolerance in the SDP solver (and hence allowing worse solutions) provides signifi-
cantly worse underestimators. This consideration, together with the other results

Separable Non-convex Underestimators for Binary Quadratic Programming 247

� �

� �� ���
��������

��������

�������	

����

�	

(a) nodes

� �

� �� ���
�

���

����

����

����

����

����

����

����

����

����

���	

�
�

(b) time

Fig. 2. Results of the subgradient method for qstp 15 50 50

provided in this section, gives an idea about the strong sensitivity of the overall
algorithm to the chosen vector t. The importance of valid inequalities makes
problems such as the quadratic assignment problem or the quadratic shortest
path problem particularly appealing for future applications of our approach.

Acknowledgments. The authors would like to thank Antonio Frangioni for
fruitful discussions and suggestions that improved the present paper significantly.

References

1. Assad, A., Xu, W.: The quadratic minimum spanning tree problem. Naval Research
Logistics 39(3), 399–417 (1992)

2. Billionnet, A., Elloumi, S., Plateau, M.-C.: Improving the performance of stan-
dard solvers for quadratic 0–1 programs by a tight convex reformulation: The QCR
method. Discrete Applied Mathematics 157(6), 1185–1197 (2009)

3. Buchheim, C., Caprara, A., Lodi, A.: An effective branch-and-bound algorithm
for convex quadratic integer programming. Mathematical Programming (Series
A) 135(1-2), 369–395 (2012)

4. Buchheim, C., De Santis, M., Palagi, L., Piacentini, M.: An exact algorithm for
quadratic integer minimization using nonconvex relaxations. Technical report, Op-
timization Online (2012)

5. Palagi, L., Piccialli, V., Rendl, F., Rinaldi, G., Wiegele, A.: Computational ap-
proaches to Max-Cut. In: Handbook on Semidefinite, Conic and Polynomial Opti-
mization, pp. 821–849. Springer (2012)

	Separable Non-convex Underestimators for Binary Quadratic Programming
	Introduction
	Notation and Basic Idea
	Optimal Separable Underestimators
	Subgradient Method
	Box Center as Touching Point

	Taking Valid Equations into Account
	Branch-and-bound Algorithm
	Branching Strategy
	Incremental Update for Valid Equations
	Application of the Subgradient Method

	Experiments
	References

