
Telling Stories Fast

Via Linear-Time Delay Pitch Enumeration

Michele Borassi1,2, Pierluigi Crescenzi3, Vincent Lacroix4,
Andrea Marino3, Marie-France Sagot4, and Paulo Vieira Milreu4

1 Scuola Normale Superiore, 56126 Pisa, Italy
2 Università di Pisa, Dipartimento di Matematica, 56127 Pisa, Italy

3 Università di Firenze, Dipartimento di Sistemi e Informatica, 50134 Firenze, Italy
4 Inria Rhône-Alpes & Université de Lyon, F-69000 Lyon; Université Lyon 1; CNRS,

UMR5558, Laboratoire de Biométrie et Biologie Évolutive,
69622 Villeurbanne, France

Abstract. This paper presents a linear-time delay algorithm for enu-
merating all directed acyclic subgraphs of a directed graph G(V,E) that
have their sources and targets included in two subsets S and T of V ,
respectively. From these subgraphs, called pitches, the maximal ones,
called stories, may be extracted in a dramatically more efficient way in
relation to a previous story telling algorithm. The improvement may even
increase if a pruning technique is further applied that avoids generating
many pitches which have no chance to lead to a story. We experimentally
demonstrate these statements by making use of a quite large dataset of
real metabolic pathways and networks.

1 Introduction

Directed graphs are a widely used model in computational biology, notably to
represent metabolism, which is the set of chemical transformations that sustain
life. If an organism is exposed to a given condition (for instance, some kind of
stress), the vertices of the directed graph may be colored depending on whether
the quantity of the chemical the vertex represents changed (one color, say black)
or remained the same (another color, say white) in relation to what may be
defined as the organism’s “normal state”. Data such as these may be obtained
through a technique called metabolomics [9] whose need for analytical methods
is giving rise to new research topics. One question of interest then is to under-
stand which subparts of the graph are affected by the condition change. One
biologically pertinent definition for such subparts is as follows [7]: a maximal
directed acyclic subgraph whose sets of sources and targets are blacks (note
that black vertices may also be internal, that is neither sources nor targets, but
white vertices can only be internal). In [1], these subgraphs have been called
metabolic stories, or stories for short. Stories are a novel object for the analysis
of metabolomics data, but we believe that they may also be useful in other do-
mains. In this paper, we are interested in efficiently enumerating all the stories
included in a directed graph.

V. Bonifaci et al. (Eds.): SEA 2013, LNCS 7933, pp. 200–211, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Telling Stories Fast 201

Enumerating maximal directed acyclic subgraphs of a given directed graph G,
without any constraint on their sources and targets, is equivalent to enumerating
all feedback arc sets of G, which is itself a classical problem in computer sci-
ence. An elegant polynomial-time delay algorithm for solving this problem was
proposed by Schwikowski and Speckenmeyer [2]. In [1], however, it was shown
that the constraint on the sets of sources and targets is enough to drastically
change the nature of the problem. Although the complexity of enumerating sto-
ries remains open, in [1] the authors proposed an algorithm that is able to go
to completion for small enough graphs, and that can be used in a randomized
fashion in the case of larger graphs, in order to produce a large sample of stories
(as far as we know, this is the only known algorithm for enumerating stories).
This algorithm is based on the notion of pitch, which is defined as a story with-
out the maximality constraint, and on the following fact: any permutation π of
the vertices of G can be transformed in polynomial time to a pitch Pπ so that,
for any story S, there exists a permutation π of the vertices in G such that Pπ

can be “completed” in polynomial time in order to obtain S. The algorithm for
enumerating stories then proceeds by enumerating all permutations, transform-
ing each of them into the corresponding pitch, and completing this pitch into a
story. Unfortunately, this algorithm, called Gobbolino, is not polynomial-time
delay, that is, the time between the generation of two distinct stories can be ex-
ponential in the number of vertices of G (for definitions concerning enumeration
algorithms and complexity we refer the reader to the seminal paper [3]). For
this reason, in [1] a randomized implementation of the algorithm has been sug-
gested, which simply generates permutations uniformly at random: a biological
application of Gobbolino and of its randomized version is described in [6].

The main contribution of this paper is twofold. From a theoretical point of
view, we show that pitches can be enumerated in linear-time delay. In particular,
we show how pitches can be sorted in a rooted tree T and how a depth-first
search of T can be performed while ensuring the linear-time delay constraint,
by applying the so-called reverse search technique [4]. From a practical point of
view, we propose a new algorithm for enumerating stories, called Touche, which
is based on the linear-time delay pitch enumeration and on the pitch completion
mechanism introduced in [1]. In particular, we first show how the depth-first
search of T can be made more efficient by using a pruning technique which
allows us to avoid visiting parts of the tree that certainly do not contain any
story, and we then experimentally compare the Gobbolino algorithm with the
Touche algorithm, on a large dataset of metabolic networks. Our experiments
show that Touche always significantly outperforms Gobbolino, and that it is
able to enumerate all stories in the case of bigger networks for whichGobbolino
is not even able to produce a significant fraction of them.

1.1 Preliminaries

Let G(V,E, S, T) be a directed graph, where V is the set of all vertices of G, E
the set of arcs, and S and T two subsets of V . A vertex u is said to be a source
if its out-degree is greater than 0 and its in-degree is 0, and it is said to be a

202 M. Borassi et al.

s1 t1

p q
s1 t1

t2

p

q
s1 t1

s2
q

s1 t1

s2 t2
q

Fig. 1. The visualization of a pitch and a child obtained by adding the dashed path q.
The path p is outlined when it is not empty.

target if its in-degree is greater than 0 and its out-degree is 0. A pitch P of G is
a set of arcs E′ ⊆ E, such that the subgraph G′ = (V ′, E′) of G, where V ′ ⊆ V
is the set of vertices of G having at least one out-going or in-coming arc in E′,
is acyclic and for each vertex w ∈ V ′ − S, w is not a source in G′, and for each
vertex w ∈ V ′−T , w is not a target in G′. We say that a pitch P is a story if it is
maximal. A vertex w is said to belong to P if it belongs to V ′. A path p is simple
by definition and is denoted by p0, . . . , p|p|. We refer to a path p by its natural
sequence of vertices or set of edges. We will assume without loss of generality
that, for each vertex v, there is a path from a source to v and from v to a target
(otherwise we may remove v from the graph). The vertices in S and T are said
to be black, while the vertices in (V − S) − T are said to be white. It is worth
observing that, besides the fact that a pitch may contain a subset of the black
vertices instead of all of them, we work in this paper with a generalization of the
definition of pitch introduced in [1] in the sense that here, instead of considering
one set of black vertices, we distinguish between black source vertices (they form
the set S) and black target vertices (they form the set T). The problem treated
in [1] corresponds to the case in which all black vertices are both in S and in T .
Finally, we refer to |V |+ |E| as the size of the graph |G|.

2 Enumerating Pitches

In order to enumerate all the pitches contained in a graph G = (V,E, S, T), we
first sort them in a rooted tree T , and then we perform a depth-first search of T .
In order to construct T , we introduce an appropriately defined child relationship,
such that, for every pitch Q, there exists one and only one pitch P such that Q
is a child of P : P is said to be the father of Q, and it can be computed starting
from Q via a linear-time computable function father. A child of a pitch P is
always obtained by attaching to P a path q “outside P”, that is, such that each
internal vertex of q is outside P and each arc of q is not in P (see Fig. 1). We
will also impose that in P there is a (possibly empty) path p such that each path
in P ∪ q from a source to a target is in P or starts by pq. In the following, we
will associate to the i-th child of a pitch P the two corresponding paths pi and
qi (which are uniquely determined).

In order to visit the search tree T in a depth-first fashion without storing its
nodes in a stack (and thus saving space), we also define a linear-time computable
function next, that allows us to jump from a child Qi of a pitch P , corresponding
to the paths (pi, qi), to the next child Qi+1: in particular, next(P, pi, qi) =

Telling Stories Fast 203

(pi+1, qi+1). If Qi is the last child of P , then the function returns the empty
pair. Moreover, if the function next is invoked with arguments P and the two
paths p and q that make P the child of its father, then it returns the pairs (p1, q1)
corresponding to the first child of P (if it exists). By using the father and the
next functions, we can then implement a depth-first search of the pitch tree T
as shown in Fig. 2, where the dotted arcs denote a child relation. The rest of
this section is devoted to the definition of the two functions father and next

and to the proof of their time and space complexity.

1

2

3

4 5 6

7 8 9

. . .

ne
xt

ne
xt

ne
xt

next next

next next next

next

father

f
a
t
h
e
r

Fig. 2. The depth-first visit of the
pitch tree

2s

5s

1s

0s

4

6t

7t

3t

Fig. 3. An example of a pitch (in bold):
the subscript indicates if a vertex is a
source or a target

2.1 The father Function

The idea behind the definition of the child relationship (and thus of the pitch
tree T) is to build all pitches (starting from the empty one, which is the root of
T) by repeatedly adding paths from a source in S to a target in T (in short, st-
paths). Since we want T to be a tree, we have to specify in which order st-paths
are added, so that each pitch has a unique father. To this aim, we fix an arbitrary
ordering of V , we lexicographically sort st-paths (which are ordered sequences
of vertices), and impose that each new (explicitly or implicitly) added st-path
is bigger than all st-paths included in the current pitch. In order to make this
approach work, we need to overcome some problems, as shown in the following
example.

Example 1. Let us consider the bold pitch shown in Fig. 3, which is formed by
the st-paths (0, 4, 6), (1, 4, 6), (2, 0, 4, 6), and (2, 1, 4, 6) (listed in lexicographic
order). If we allow any st-path bigger than (2, 1, 4, 6) to be added to the pitch,
then some problems might arise.

1. If we add (2, 1, 4, 7), we are implicitly adding (0, 4, 7), which is smaller than
(2, 1, 4, 6), contradicting the uniqueness of the father relationship, since the
same pitch will also be reached through the explicit addition of (0, 4, 7).

2. Sometimes it is necessary to implicitly add an st-path “much bigger” than
the ones already present in the current pitch: adding (2, 5, 0, 4, 6), we also
add (5, 0, 4, 6), thus eliminating the possibility of subsequently adding (2, 6).
Conversely, if we add first (2, 6), then (2, 5, 0, 4, 6) cannot be added. Therefore
a pitch containing both (2, 6) and (2, 5, 0, 4, 6) will be missed.

204 M. Borassi et al.

In order to deal with the second problem, we need to specify that the st-paths
that can be added to a pitch satisfy the following definition.

Definition 1. A path (p0, . . . , pk) of a pitch P is a component of P if it satisfies
the following conditions: (1) p0 ∈ S is a source and pk ∈ T is a target, and (2)
p0 is not reachable in P from a smaller source in P (i.e., there is no s ∈ P ∩ S
such that p0 is reachable in P from s).

Note that every arc in a pitch belongs to a component. Hence, a pitch can be
specified by listing the set of its components: in particular, our pitch enumeration
algorithm will proceed in lexicographic order with respect this time to the set
of components.

Definition 2. Given a pitch P , a child of P is a pitch Q = P ∪ c where c
satisfies the following conditions: (1) c is the smallest component in Q which is
not in P ; and (2) c is bigger than any component in P .

Example 2. Let us consider again the bold pitch P shown in Fig. 3. According
to the above definition, the subtree of T rooted at P starts as shown in Fig. 4,
where the labels of the edges denote the added component c. Observe that adding
a component can cause the implicit addition of other components: for example,
adding (5, 2, 0, 4, 6) results also in adding (5, 2, 1, 4, 6), which is however greater
than (5, 2, 0, 4, 6). Note also that (2, 1, 4, 7) cannot be added to P , since it would
not be the smallest new component not in P .

The following lemma shows that the child relationship defined above sorts all
pitches in a tree with root the empty pitch.

Lemma 1. Every pitch Q, apart from the empty one, has a unique father P .

Proof. We start with the uniqueness: let us suppose Q = P ∪ c where P and
c satisfy the conditions of Def. 2. We now show how c can be split into three
paths, c = pqp′, where p is contained in P , q is “outside” of P (in the sense
that it has no arc and no internal vertex in P), and p′ is the remaining part of
c (we denote by v and w respectively the start and the end of q). By the first
condition of Def. 2, p′ must be the smallest path in P from w to a target vertex
in T ∩ P : hence, P = Q − q (see Fig. 1). This means that each internal vertex

P
(2, 5, 0, 4, 6)

��������
������

������
������

�

(2, 6)�����
���

���
���

�

(5, 0, 4, 6) ����
���

���
���

��
(5, 2, 0, 4, 6)

�������
������

������
������

��

Q1

(2, 6)
��

Q2

(5, 0, 4, 6)
��

(5, 2, 0, 4, 6)

����
���

���
���

�� Q3

(5, 2, 0, 4, 6)
��

Q4

R1 · · · R2 R3

Fig. 4. A fragment of a pitch tree

Telling Stories Fast 205

in q has in-degree and out-degree equal to 1 in Q. Moreover, p is the only path
from a source in S ∩ P to v: indeed, a smaller one would contradict the first
condition of Def. 2, while a bigger one would contradict the second condition.
This means that pq is an initial segment of the smallest component of Q which
is not in P and that no vertex x in pq before w verifies any of the following
conditions: (1) x has at least two incoming edges in Q; (2) x is a source smaller
than the first vertex of p; and (3) x has no outgoing edge in Q. Since Q− q is a
pitch, w has to satisfy one of the conditions above and this characterizes w. We
now need to characterize v. Since no internal vertex in q is in P , v must be the
first vertex before w verifying one of the following conditions: (a) v has at least
two outgoing edges in Q; (b) v is a target; and (c) v has no incoming edge in
Q. Since both v and w are uniquely determined, we have that also q is uniquely
determined: hence, the uniqueness is proved. In order to prove the existence, it
is enough to show that P ∪ c is a child of P , where c = pqp′ and p, q and p′ are
the paths determined by the previous conditions. We have that c is bigger than
every component in P because pq is a prefix of the last component of Q and
q is outside P . Moreover, c satisfies the first condition of Def. 2 because each
component of Q not in P contains an arc in q. This means that it contains the
whole pq because of the conditions on v and w. ��

From the proof of the previous lemma, the next result immediately follows.

Corollary 1. It is possible to find in linear time the father of a pitch.

Instead, the next consequence of the above lemma will yield a more “algorithmic”
definition of the child relationship (see Fig. 1).

Corollary 2. Let P and Q be two pitches. Q is a child of P if and only if
Q = P ∪ pq where:

– pq is bigger than the last path in P ;
– p ⊆ P ;
– q is “outside” P ∪ T , i.e. q is disjoint from P and q1, . . . , q|q|−1 are not in

P ∪ T ;
– no vertex in p satisfies Conditions 1-3 in the proof of Lemma 1.

Moreover, p and q are uniquely determined.

Proof. If Q is a child of P , the proof of Lemma 1 implies all the conditions
required and that p and q are uniquely determined. For the other direction, let
p′ be the first path in P from the end of q to a target. The path pqp′ satisfies all
conditions required in the child definition. ��

2.2 The next Function

As we already said before, the next function should allow us to compute the
first child Q1 of P (if it exists) and the next child Qk+1 from the child Qk (if it
exists). In order to define this function well, we first prove the following result.

206 M. Borassi et al.

Lemma 2. For any pitch P , the function

ΦP : {children of P} → {paths in G satisfying Corollary 2}
P ∪ q 	→ (p, q)

(1)

is an order-preserving bijection (pitches are sorted lexicographically as sets of
components).

Proof. The function is well defined because of Corollary 2 and it is a bijection
because the inverse function is ΨP (p, q) := P ∪ q. It preserves the order because
pq is a prefix of the first component Q not in P and a path satisfying Corollary 2
is never a prefix of another component (by the 3rd condition in Corollary 2). ��
The function next is then defined as follows. Given a graph G = (V,E, S, T), a
pitch P , and a path r of G starting from a source which is a prefix of the last
path in P or is bigger than every component of P , the function next returns the
smallest path pq such that P and pq satisfy all conditions in Corollary 2, and pq
is strictly bigger than r.

Theorem 1. The next function is computable in time O(|G|).

2.3 Complexity Analysis

The pitch enumeration algorithm is based on a depth-first search of the pitch
tree T , which uses the two functions father and next. Because of Corollary 1
and Theorem 1, every node can be visited in linear time. By the well-known
alternative output technique [5, Theorem 1], it is possible to output a solution
every time two nodes are visited, to obtain linear delay. To do so, all solutions
with even depth in T must be output as soon as they are found, while solutions
with odd depth must be output before computing their father. Since the depth
changes by 1 every time a node is visited, the previous condition is accomplished.
It is also easy to show that only a linear amount of space to store G, P and
r = (p, q) is required.

3 Enumerating Stories

In order to enumerate all the stories contained in a graph G = (V,E, S, T),
the approach described in [1] was based on generating all permutations of the
vertices, and on cleaning and completing the corresponding DAG in order to
turn it into a story. By using the results in the previous section instead, all the
stories can be enumerated by enumerating all the pitches and outputting only
the maximal ones. However, even if, in many real cases, this approach already
outperforms the method proposed in [1], the method itself fails in enumerating,
within a reasonable amount of time, all the stories in the case of large graphs.
Indeed, usually an exponential number of pitches that are not stories can be
generated. In order to avoid the computation of many useless pitches, we will
now show how very often it is possible to verify a priori whether a pitch can lead
to a story, thus performing a pruning of the pitch tree T . In order to explain
the pruning process, we introduce the following definitions.

Telling Stories Fast 207

Definition 3. A pitch is a successor of P ∪ r if it is a descendant of P bigger
than P ∪ r (pitches are sorted lexicographically as sets of components).

Definition 4. Given a pitch P and a path r, a vertex v ∈ V is (P, r)-open if it
belongs to a successor of P ∪ r. A vertex is (P, r)-closed if it is not (P, r)-open.

For example, the vertex 3 of Fig. 3 is (P, (2, 5, 0, 4, 6))-closed.

Lemma 3. Let G be strongly connected and let P be a non-empty pitch. If (S ∪
T)− P
= ∅, then P is not a story.

Proof. Assume there exists s ∈ S − P and let p be a shortest path from s to
any vertex in P (this path exists since G is strongly connected). Then P ∪ p is
a pitch strictly containing P : this proves that P is not a story. Analogously, we
can prove that if there exists t ∈ T − P , then P is not a story. ��

Corollary 3. Given a pitch P and a path r, if a source or a target is (P, r)-
closed, no successor of P ∪ r is a story.

For example, in the case of the fragment of a pitch tree shown in Fig. 4, we have
that the subtrees rooted at Q2, Q3, and Q4 do not contain any story (since the
vertex 3 of Fig. 3 is (P, (2, 5, 0, 4, 6))-closed). Actually, vertex 3 is closed with
respect to the empty pitch (which is the root of T), and the path (0, 4, 6), hence
P will not even be reached since the pruning will be effective on the very first
branch from ∅ to P . We may now state the main theorem used to prune the tree
of all pitches.

Theorem 2. Given a pitch P and a path r such that there exists a story which
is a successor of P ∪ r, there is no path p that verifies the following conditions:
(1) P ∪ p is a pitch; (2) the last vertex of p is not in r; and (3) p is “outside”
any successor of P ∪ r, that is, no arc of p is in a successor of P ∪ r and all
internal vertices of p are (P, r)-closed.

Proof. Let Q be a successor of P ∪ r which is a story (Q exists by hypothesis).
By the third condition on p, it follows that p is outside Q. Moreover, Q ∪ p is
not a pitch (since Q is maximal): hence, there must be a path q in Q from the
last vertex of p to the first one. By the first condition on p, it follows that q is
not in P (since P ∪ p is acyclic). Consider now a path in P from a source to
the last vertex of p (this path exists because of the second condition on p) and
link this path to q: this can be extended to a component of Q. By the second
condition on p, this component is smaller than r: this is a contradiction because
this component is not in P (since it contains q which is not in P). ��

The above theorem gives us a powerful tool to prune the tree of all pitches.
Indeed, given a pitch P and a path r, if we can find a path p satisfying the three
conditions of the theorem, we can then conclude that there is no story which is
a successor of P ∪r. However, in order to apply this pruning criterion, we should
be able to compute the set of vertices which are (P, r)-closed (or, equivalently,

208 M. Borassi et al.

2
0

5

10

3 4 5 6 7 8 9 10

Networks (ordered by number of vertices)

lo
g
(ρ

1
)

Fig. 5. Ratio between time consumed by Gobbolino and Touche to compute all
stories in input graphs with 2 to 10 vertices (logarithmic scale)

the set of vertices which are (P, r)-open). So far, we have not been able to solve
this latter problem (indeed, we conjecture it is NP-hard), but we can efficiently
“approximate from above” the set of (P, r)-open vertices, that is, we can compute
in linear time a superset of this set, which in practice is not too much bigger.
Thanks to this result and to Theorem 2, we obtain an algorithm that decides
if it is possible to prune the pitch tree in time O(|V ||G|). The efficiency of this
pruning process will be experimentally validated in the next section.

4 Experimental Results

In order to evaluate the efficiency of the new algorithm for the enumeration of
stories, called Touche, we performed three experiments, two of them compar-
ing with the previous algorithm proposed in [1], called Gobbolino, and the
third one to evaluate the effect of the pruning approach (the entire dataset,
the Java code, and the detailed experimental results are available starting from
amici.dsi.unifi.it/lasagne/).

Enumerating All Stories
Our first experiment consisted in the enumeration of the whole set of stories
using both Gobbolino and Touche (with the pruning approach implemented)
and the comparison of their running time. Gobbolino is guaranteed to find all
stories only if all permutation orderings of the vertices of the input graph are
inspected, which limits its application to small input graphs. In [6], Gobbolino
was applied in order to automatically recover the so-called metabolic pathways in
a dataset consisting of 69 such pathways, among which 62 represented an input
graph with no more than 10 vertices. For this subset, we obtained the results
summarized in Figure 5. Let tG(G) (resp., tT(G)) denote the time consumed by
Gobbolino (resp., Touche) to compute all stories in the graph G, and let
ρ1(G) = tG(G)/tT(G). In the figure we show the logarithm of ρ1 for all the 62
graphs, ordered in increasing order with respect to their number of vertices.
As it can be seen from the figure, Touche performs better than Gobbolino

Telling Stories Fast 209

0

5

10

10 20 30 40 50 70 100 120 140 160

Networks (ordered by number of vertices)

lo
g
(ρ

2
)

Fig. 6. Ratio between number of stories produced by Gobbolino and Touche after
1 minute of computation (logarithmic scale)

for the whole dataset (even if the size of the instances is very small). Clearly,
Gobbolino consumes more time as the size of the input increases, since it
has to check all orderings of the vertices. For inputs with up to 7 vertices,
both algorithms finish the enumeration process in less than 1 second. For the
three inputs of size 8, Gobbolino consumes between 3.8 and 4.7 seconds, while
Touche never uses more than 0.05 seconds of computation. The result is even
more impressive when we look at the inputs of size 9 and 10. Gobbolino takes
around 1 minute for the three inputs of size 9 and more than 15 minutes for
the input with 10 vertices, while Touche finishes processing them in no more
than 0.14 seconds. Indeed, the figure suggests that the ratio ρ1 increases as an
exponential with respect to the number of vertices, in the case of networks with
at least 6 vertices (in the case of smaller networks, file management overhead
has to be taken into account).

Sampling Stories
One approach used in [6] in order to apply Gobbolino for bigger inputs was
to use random permutations of the orderings of the vertices to sample the space
of pitches and, therefore, the space of solutions (i.e., stories). Our second ex-
periment consisted in comparing this randomized approach of Gobbolino to
Touche (with the pruning approach implemented), giving a fixed amount of
time for both algorithms (1 minute, in our experiment) and checking how many
stories each method produced. For this experiment, we selected 118 metabolic
networks of various sizes. The dataset may be divided as follows: 8 networks
(with size greater than or equal to 10) come from the same metabolic pathways
considered in the first experiment; 4 networks are inputs for some experiments
also performed in the context of [6] and for which the set of black vertices came
from biological experiments; the remaining 106 were metabolic networks down-
loaded from the public database MetExplore ([8]) and with a random set of black
vertices (5% of the vertices of the graph were considered to be black). For this
dataset, we obtained the results summarized in Figure 6. Let sG(G) (resp., sT(G))
denote the number of stories produced by Gobbolino (resp., Touche) with in-
put the graph G after 1 minute of computation, and let ρ2(G) = sT(G)/sG(G).

210 M. Borassi et al.

2
0

2

4

6

8

3 4 5 6 7 9 10

Networks (ordered by number of vertices)

lo
g
(ρ

3
)

Fig. 7. Ratio between time consumed by Touche to compute all stories without and
with pruning

In the figure we show the logarithm of ρ2 for all the 118 graphs, ordered in
increasing order with respect to their number of vertices. The first outcome
of this experiment is that Touche always computed a number of stories bigger
than or equal to the number of stories computed by Gobbolino. For 19 of them
(mostly small size ones), the number is the same, but the time spent by Touche
is smaller than the limit of 1 minute, which indicates that the number of stories
computed is in fact the total number of stories: this highlights another advantage
of Touche over the randomized version of Gobbolino, that continues exploring
permutations of pitches even if it has already computed the whole set of stories.
Moreover, note that Touche produces the entire set of stories in the case of 10
other networks. In the case of bigger instances, the number of stories found by
Touche could be up to 950 times the number of stories found by Gobbolino.
Indeed, the figure suggests that the ratio ρ2 increases as an exponential with
respect to the number of vertices. The extreme case is the YERYP364 network for
which Gobbolino found 4 stories while Touche found 3815 stories: this result
strongly suggests that the correspondence between permutation of the vertices
and stories is highly biased and that there might be stories corresponding to
very few permutations and hence unlikely to be produced by Gobbolino.

Evaluating the Pruning Methods
Our third experiment was designed in order to evaluate how effective is the
pruning approach described in the previous section. By referring to the dataset
used in the first experiment, for each network we collected the running time of
Touche with and without the pruning. The results are summarized in Figure
7. Let tT,n(G) (resp., tT,y(G)) denote the time consumed by Touche without
(resp., with) pruning to compute all stories in the graph G, and let ρ3(G) =
tT,n(G)/tT,y(G). In the figure we show the logarithm of ρ3 for all the networks,
ordered in increasing order with respect to their number of vertices. As it can be
seen from the figure,Touche with pruning always performs better thanTouche
without pruning (even if the size of the instances is very small). The improvement
seems to remain constant, even though in the case of two networks (that is,
PRPP-PWY and THREOCAT2-PWY) it is quite impressive: the pruning improves the
computational time by a factor of 275 in the first case and 43 in the second case.

Telling Stories Fast 211

Finally, we repeat this experiment in the case of two further networks analyzed
in [6]: the first contains 10 vertices (8 black) and 222 stories and Touche with
pruning computed them about 5 times faster, the second contains 35 vertices
(21 black) and Touche with pruning computed its 3,934,160 stories in about
three hours while Touche without pruning did not finish after one day.

5 Conclusion

We presented a linear-time delay enumeration algorithm for pitches, that allowed
us to enumerate all stories more efficiently than the previous known method [1].
The main question left open by our paper is to determine the complexity of the
story enumeration problem.

Acknowledgements. The research leading to these results was funded by: the
European Research Council under the European Community’s Seventh Frame-
work Programme (FP7 / 2007-2013) / ERC grant agreement n [247073]10;
the French project ANR MIRI BLAN08-1335497; and the ANR funded LabEx
ECOFECT.

References

1. Acuña, V., Birmelé, E., Cottret, L., Crescenzi, P., Jourdan, F., Lacroix, V.,
Marchetti-Spaccamela, A., Marino, A., Milreu, P.V., Sagot, M.F., Stougie, L.:
Telling stories: Enumerating maximal directed acyclic graphs with a constrained
set of sources and targets. Theor. Comput. Sci. 457, 1–9 (2012)

2. Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feed-
back problems. Discrete Applied Mathematics 117(1-3), 253–265 (2002)

3. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On Generating All Maximal
Independent Sets. Inf. Process. Lett. 27(3), 119–123 (1988)

4. Avis, D., Fukuda, K.: Reverse Search for Enumeration. Discrete Applied Mathemat-
ics 65, 21–46 (1993)

5. Uno, T.: Two general methods to reduce delay and change of enumeration algo-
rithms. NII Technical Report (2003)

6. Milreu, P.V.: Enumerating Functional Substructures of Genome-Scale Metabolic
Networks: Stories, Precursors and Organisations. PhD thesis, Université Claude
Bernard, Lyon 1, France (2012)

7. Milreu, P.V., Acuña, V., Birmelé, E., Borassi, M., Cottret, L., Junot, C., Klein,
C., Marchetti-Spaccamela, A., Marino, A., Stougie, L., Jourdan, F., Lacroix, V.,
Crescenzi, P., Sagot, M.-F.: Metabolic stories: exploring all possible scenarios for
metabolomics data analysi (in preparation, 2013)

8. Cottret, L., Wildridge, D., Vinson, F., Barrett, M.P., Charles, H., Sagot, M.F.,
Jourdan, F.: Metexplore: a web server to link metabolomic experiments and genome-
scale metabolic networks. Nucleic Acids Research 38(Web-Server-Issue), 132–137
(2010)

9. Johnson, C.H., Gonzalez, F.J.: Challenges and opportunities of metabolomics. Jour-
nal of Cellular Physiology 227(8), 2975–2981 (2012)

	Telling Stories Fast
	Introduction
	Preliminaries

	Enumerating Pitches
	The father Function
	The next Function
	Complexity Analysis

	Enumerating Stories
	Experimental Results
	Conclusion
	References

