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Preface

This volume contains the papers presented at the 12th International Symposium
on Experimental Algorithms (SEA 2013) held during June 5–7, 2013, in Rome.
The conference was organized under the auspices of the European Association
for Theoretical Computer Science (EATCS).

SEA, previously known as WEA (Workshop on Experimental Algorithms), is
an international forum for researchers in the area of design, analysis, and exper-
imental evaluation and engineering of algorithms, as well as in various aspects of
computational optimization and its applications. The preceding symposia were
held in Riga, Monte Verita, Rio de Janeiro, Santorini, Menorca, Rome, Cape
Cod, Dortmund, Ischia, Crete, and Bordeaux.

The symposium received 73 submissions. Each submission was reviewed by at
least three Program Committee members, and carefully evaluated on originality,
quality, and relevance to the conference. Based on extensive electronic discus-
sions, the committee decided to accept 32 papers. In addition to the accepted
contributions, the program also included three distinguished plenary lectures by
Martin Skutella (Technische Universität Berlin), Andrew V. Goldberg (Microsoft
Research Silicon Valley), and Roberto Grossi (Università di Pisa).

We would like to thank all the authors who responded to the call for pa-
pers, the invited speakers, the members of the Program Committee, the exter-
nal referees, and the members of the Organizing Committee. We also gratefully
acknowledge the developers and maintainers of the EasyChair conference man-
agement system, who provided invaluable support, and Springer for publishing
the proceedings of SEA 2013 in their LNCS series and for their support.

April 2013 Vincenzo Bonifaci
Camil Demetrescu

Alberto Marchetti-Spaccamela
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Sharon Bruckner, Falk Hüffner, Christian Komusiewicz, and
Rolf Niedermeier

Finding Modules in Networks with Non-modular Regions . . . . . . . . . . . . . 188
Sharon Bruckner, Bastian Kayser, and Tim O.F. Conrad

Telling Stories Fast: Via Linear-Time Delay Pitch Enumeration . . . . . . . . 200
Michele Borassi, Pierluigi Crescenzi, Vincent Lacroix,
Andrea Marino, Marie-France Sagot, and Paulo Vieira Milreu

Mathematical Programming

Undercover Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Timo Berthold and Ambros M. Gleixner

Quadratic Outer Approximation for Convex Integer Programming with
Box Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Christoph Buchheim and Long Trieu

Separable Non-convex Underestimators for Binary Quadratic
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Christoph Buchheim and Emiliano Traversi

Hybrid SDP Bounding Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Fabio Furini and Emiliano Traversi



Table of Contents XI

Transportation Networks and Graph Algorithms II

Computing Multimodal Journeys in Practice . . . . . . . . . . . . . . . . . . . . . . . . 260
Daniel Delling, Julian Dibbelt, Thomas Pajor,
Dorothea Wagner, and Renato F. Werneck

Efficient Computation of Jogging Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Andreas Gemsa, Thomas Pajor, Dorothea Wagner, and
Tobias Zündorf

Dominator Certification and Independent Spanning Trees:
An Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Loukas Georgiadis, Luigi Laura, Nikos Parotsidis, and
Robert E. Tarjan

Novel Techniques for Automorphism Group Computation . . . . . . . . . . . . . 296
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Algorithms and Linear Programming

Relaxations for Scheduling Unrelated
Parallel Machines�

Martin Skutella

Fakultät II – Mathematik und Naturwissenschaften,
Institut für Mathematik, Sekr. MA 5-2

Technische Universität Berlin, Straße des 17. Juni 136,
10623 Berlin, Germany

martin.skutella@tu-berlin.de

Since the early days of combinatorial optimization, algorithms and techniques
from the closely related area of mathematical programming have played a pivotal
role in solving combinatorial optimization problems. This holds both for ‘easy’
problems that can be solved efficiently in polynomial time, such as, e. g., the
weighted matching problem [3], as well as for NP-hard problems whose solu-
tion might take exponential time in the worst case, such as, e. g., the traveling
salesperson problem [1].

The by far most commonly used and also most successful method for solving
NP-hard problems to optimality relies on (mixed) integer linear programming
formulations whose linear programming relaxations then yield lower bounds on
the value of optimal solutions; see, e. g., [21]. This general approach has also
turned out to be extremely useful in the design of approximation algorithms,
which compute provably good solutions to NP-hard optimization problems in
polynomial time; see, e. g., [19]. Regardless whether one wants to compute a
solution that is guaranteed to be optimal or one is satisfied with an approximate
solution whose value is provably close to the optimum, in both situations the
quality of the linear programming relaxation is critical.

In this talk, we mainly focus on the use of linear programming relaxations in
the design of approximation algorithms. The classical problem of scheduling jobs
on unrelated parallel machines subject to release dates and with total weighted
completion time objective (commonly denoted R | rij |

∑
wjCj ; see [5]) and spe-

cial cases of this problem serve as an example for which we discuss the strengths
and weaknesses of different types of linear and convex programming relaxations.
These formulations and relaxations can mainly be characterized by the different
choices of decision variables.

In the following, we only mention some examples and pointer to the liter-
ature. We refer to the cited papers and references therein for a more detailed
account of work in this area. The work of Hall et al. [6] mainly builds upon
linear programming relaxations in which each decision variable corresponds to

� Supported by the DFG Research Center Matheon “Mathematics for key technolo-
gies” in Berlin and by the DFG Focus Program 1307 within the project “Algorithm
Engineering for Real-time Scheduling and Routing”.

V. Bonifaci et al. (Eds.): SEA 2013, LNCS 7933, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 M. Skutella

the completion time of a job. This kind of formulation dates back to Wolsey [20]
and Queyranne [10]. For the single-machine sequencing problem Potts [9] gave
a formulation in linear-ordering variables. Dyer and Wolsey [2] presented time-
indexed relaxations which later turned out to be extremely useful for the de-
sign of approximation algorithms; see, e. g., [4,12]. Time-indexed formulations
were also extended to unrelated parallel machines [13,14]. In [15], a quadratic
programming formulation in assignment variables and a convex quadratic re-
laxation are presented. Recently, Sviridenko and Wiese [18] study a very strong
linear programming relaxation, the configuration LP, whose variables correspond
to entire machine configurations.

We finally mention that approximation algorithms based on different types
of linear programming relaxations have also been developed for various stochas-
tic machine scheduling problems where processing times of jobs are randomly
chosen according to a given distribution; see, e. g., [8,17,7]. Here, mainly linear
programming relaxations in completion time variables are used; see, e. g., [11].
Only recently, it has been shown how time-indexed formulations can be put to
work in stochastic scheduling [16].
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The Hub Labeling Algorithm

Andrew V. Goldberg

Microsoft Research Silicon Valley
http://research.microsoft.com/en-us/people/goldberg/

Abstract. Given a weighted graph, a distance oracle takes as an input
a pair of vertices and returns the distance between them. The labeling
approach to distance oracle design is to precompute a label for every
vertex so that the distances can be computed from the corresponding
labels, without looking at the graph. In the hub labeling algorithm (HL),
a vertex label consists of a set of other vertices (hubs) with distances to
the hubs. We survey theoretical and experimental results on HL.

Although computing optimal hub labels is hard, in polynomial time
one can approximate them up to a factor of O(log n). This can be done
for the total label size (i.e., memory required to store the labels), the
maximum label size (which determines the worst-case query time), and
in general for an Lp norm of the vector induced by the vertex label sizes.
One can also simultaneously approximate Lp and Lq norms.

Hierarchical labels are a special class of HL for which the relationship
”v is a hub of w” is a partial order. For networks with a small high-
way dimension, one can compute provably small hierarchical labels in
polynomial time.

While some graphs admit small labels, there are graphs for which
the labels are large. Furthermore, one can prove that for some graphs
hierarchical labels are significantly larger than the general ones.

A heuristic for computing hierarchical labels leads to the fastest known
implementation of a distance oracle for road networks. One can use label
compression to trade off time for space, making the algorithm practical
for a wider range of applications. We give experimental results showing
that the heuristic hierarchical labels are efficient on road networks as
well as on some other graph classes, but not on all graphs.

We also discuss efficient implementations of the provably good approx-
imation algorithms. Although not as fast as the hierarchical heuristic, the
algorithms can solve moderate-size problems. For some graph classes, the
theoretically justified algorithms compute significantly smaller labels, al-
though for many graphs the label size difference is very small.

V. Bonifaci et al. (Eds.): SEA 2013, LNCS 7933, p. 4, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Design of Practical Succinct Data Structures
for Large Data Collections

Roberto Grossi and Giuseppe Ottaviano

Dipartimento di Informatica
Università di Pisa

{grossi,ottaviano}@di.unipi.it

Abstract. We describe a set of basic succinct data structures which
have been implemented as part of the Succinct library, and applications
on top of the library: an index to speed-up the access to collections of
semi-structured data, a compressed string dictionary, and a compressed
dictionary for scored strings which supports top-k prefix matching.

1 Introduction

Succinct data structures (SDS) encode data in small space and support efficient
operations on them. Encoding is a well studied problem in information theory
and there is a simple lower bound on the required space in bits: if data are
entries from a domain D, encoding each entry with less than �log |D|� bits cannot
uniquely identify all the entries in D (here logs are to the base 2). Thus any
correct encoding requires at least �log |D|� bits in the worst case, which is known
as the information-theoretic lower bound. Variants of this concept use some form
of entropy of D or other adaptive measures for the space occupancy, in place of
the �log |D|� term, but the idea is essentially the same.

Going one step beyond encoding data, SDS can also retrieve data in response
to queries. When data are any given subset of elements, an example of query is
asking if an input element belongs to that subset. Without any restriction on the
execution time of the queries, answering them becomes a trivial task to perform:
simply decode the whole encoded data and scan to answer the queries. The
challenge in SDS is to quickly perform its query operations, possibly in constant
time per query. To attain this goal, SDS can use extra r bits of redundancy in
addition to those indicated by the information-theoretic lower bound.

SDS have been mainly conceived in a theoretical setting. The first results
date back to Elias’ papers of 1974 and 1975 on information retrieval [9,10] with
a reference to the Minsky-Papert problem on searching with bounded Hamming
distance. The power of SDS has been extensively discussed in Jacobson’s PhD
thesis [17], where he shows how to store data such as binary sequences, trees,
and graphs in small space. The design of SDS is also linked to the bit probe
complexity of data structures, see the literature cited in [22,6], and the time-
space tradeoffs of data structures, e.g. [27]. As of now, there are SDS for sets
of integers, sequences, strings, trees, graphs, relations, functions, permutations,
geometric data, special formats (XML, JSON), and so on [19].

V. Bonifaci et al. (Eds.): SEA 2013, LNCS 7933, pp. 5–17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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What is interesting for the algorithm engineering community is that, after
some software prototype attempts, efficient libraries for SDS are emerging, such
as the C++ libraries libcds [21], rsdic [29], SDSL [31], and the Java/C++ library
Sux [33]. They combine the advantage of data compression with the performance
of efficient data structures, so that they can operate directly on compressed data
by accessing just a small portion of data that needs to be decompressed. The
field of applications is vast and the benefit is significant for large data sets that
can be kept in main memory when encoded in succinct format.

The preprocessing stage of SDS builds an index that occupies r bits (of re-
dundancy). Systematic SDS have a clear separation of the index from the com-
pressed data, with several advantages [3]. When this separation is not obtained,
the resulting SDS are called non-systematic because many bits contribute simul-
taneously both to the index and the compressed data.1

Given data chosen from a domain D, the designer of SDS aims at using
r + �log |D|� bits to store data+index, with the main goal of asymptotically
minimizing both the space redundancy r and the query time, or at least finding
a good trade-off for these two quantities. Optimality is achieved when r and
query bounds match the corresponding lower bounds. The problem is not only
challenging from a theoretical point of view, where sophisticated upper and lower
bounds have been proposed, e.g. [26,35]. Its practical aspects are quite relevant,
e.g. in compressed text indexing [12,15], where asymptotically small redundancy
and query time quite often do not translate into practical and fast algorithms.

We focus on succinct indexes for semi-structured data and strings but we
believe that many SDS should be part of the modern algorithmist’s toolbox for
all the several data types mentioned so far. We survey a set of fundamental
SDS and primitives to represent and index ordered subsets, sequences of bits,
sequences of integers, and trees, that can be used as building blocks to build
more sophisticated data structures. These SDS have proven to be practical and
mature enough to be used as black boxes, without having to understand the inner
details. The SDS that we describe are all implemented as part of the Succinct
C++ library [32]; we give three examples of its applications in the last section.

2 Basic Toolkit for the Designer

In this section we define the most common primitives used when designing SDS,
which are also sufficient for the applications of Sect. 4. The details on the algo-
rithm and data structures used to implement them, along with their time and
space complexities, are deferred to Sect. 3.

2.1 Subsets and Bitvectors

Bitvectors are the basic building block of SDS. In fact, most constructions consist
of a collection of bitvectors and other sequences, that are aligned under some
1 In a certain sense, implicit data structures as the binary heap can be seen as a form

of non-systematic SDS where r = O(log n) bits for n elements.
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logic that allows to efficiently translate a position in one sequence to a position
in another sequence; this pattern will be used extensively in Sect. 4.

Formally, a bitvector is a finite sequence of values from the alphabet {0, 1},
i.e. bits. For a bitvector s we use |s| to denote its length, and si to denote its
i-th element, where i is 0-based. Bitvectors can be interpreted as subsets of an
ordered universe U : the ordering induces a numbering from 0 to |U | − 1, so a
subset X can be encoded as a bitvector s of length |U |, where si is 1 if the
i-th element of U belongs to X , and 0 otherwise. Here the information-theoretic
lower bound is �log

(|U|
m

)
� where m is the number of 1s [28].

Rank and Select. The Rank and Select primitives form the cornerstone of most
SDS, since they are most prominently used to align different sequences under the
pattern described above. These operations can be defined on sequences drawn
from arbitrary alphabets, but for simplicity we will focus on bitvectors.

– Rank1(i) returns the number of occurrences of 1 in s[0, i).
– Select1(i) returns the position of the i-th occurrence of 1.

An operation tightly related to Rank/Select is Predecessor1(i), which returns
the position of the rightmost occurrence of 1 preceding or equal to i. Note that
Rank1(Select1(i)) = i and Select1(Rank1(i)) = Predecessor1(i) (Symmetrically,
Rank0, Select0, and Predecessor0 can be defined on occurrences of 0s.)

If the bitvector is interpreted as a subset under the correspondence defined
above, Rank1 returns the number of elements in the subset that are strictly
smaller than a given element of the universe, while Select1 returns the elements
of the subset in sorted order. Predecessor1 returns the largest element that is
smaller or equal to a given element of the universe.

A basic example of how to use Rank1 to align different sequences is the sparse
array. Let A be an array of n elements of k bits each; then, to store it explicitly,
kn bits are needed. However, if a significant number of elements is 0 (or any
fixed constant), we can use a bitvector z of n bits to encode which elements are
zero and which ones are not, and store only the non-zeros in an another array B.
To retrieve A[i], we return 0 if zi = 0; otherwise, the value is B[Rank1(i)]. This
allows to reduce the space from kn bits to n+ k|B| bits, plus the space taken by
the data structure used to efficiently support Rank1.

2.2 Balanced Parentheses and Trees

Another class of sequences of particular interest is given by sequences of balanced
parentheses (BP), which can be used to represent arbitrary trees in spaces close
to the information-theoretic optimum.

BP sequences are inductively defined as follows: an empty sequence is BP; if α
and β are sequences of BP, then also (α)β is a sequence of BP, where ( and ) are
called mates. For example, s = (()(()())) is a sequence of BP. These sequences
are usually represented as bitvectors, where 1 represents ( and 0 represents ).

Several operations operations can be defined on such sequences; as we will see
shortly, the following ones are sufficient for basic tree navigation.
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– FindClose(i), for a value i such that si = (, returns the position j > i such
that sj = ) is its mate. (FindOpen(i) is defined analogously.)

– Enclose(i), for a value i such that si = (, returns the position j < i such
that sj = ( and the pair of j and its mate enclose the pair of i and its mate.

– Rank((i) returns the pre-order index of the node corresponding to the paren-
thesis at position i and its mate; this is just the number of open parentheses
preceding i.

– Excess(i) returns the difference between the number of open parentheses and
that of close parentheses in the first i + 1 positions of s. The sequence of
parentheses is balanced if and only if this value is always non-negative, and
it is easy to show that it equals 2 ·Rank((i)− i.

Balanced Parentheses Tree Encoding (BP). The BP representation of
trees was introduced by Munro and Raman [23]. A sequence of BP implicitly
represents an ordinal tree, where each node corresponds to a pair of mates. By
identifying each node with the position p of its corresponding open parenthesis,
several traversal operations can be reduced to the operations defined above.

Depth-First Unary Degree Sequence (DFUDS). Another tree representa-
tion based on balanced parentheses was introduced by Benoit et al. [5]. Called
depth-first unary degree sequence (DFUDS), it is constructed by concatenating
in depth-first order the node degrees encoded in unary, i.e. a degree d is encoded
as (d). It can be shown that by prepending an initial (, the obtained sequence
of parentheses is balanced.

By identifying each node of the tree with the position p of beginning of its de-
gree encoding, traversal operations can be mapped to sequence operations. Com-
pared to the BP representation we loose the Depth operation, but we gain the
operation Child which returns the i-th child by performing a single FindClose.

Figure 1 shows an example of a tree represented with BP and DFUDS encodings.
Note that both encodings require just 2 bits per node, plus the data structures
needed to support the operations. It can be shown that the information-theoretic
lower bound to represent an arbitrary tree of n nodes is 2n − o(n) bits, so both
encodings are asymptotically close to the lower bound.

2.3 Range Minimum Queries

Given a sequence A of elements drawn from a totally ordered universe, a Range
Minimum Query for the range [i, j], denoted as RMQ(i, j), returns the position
of the minimum element in A[i, j] (returning the leftmost in case of ties).

This operation finds application, for example, in suffix arrays, to find the
LCP (Longest Common Prefix) of a range of suffixes by using the vector of
LCPs of consecutive suffixes: the LCP of the range is just the minimum among
the consecutive LCPs. Another application is top-k retrieval (see Sect. 4).
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Fig. 1. BP and DFUDS encodings of an ordinal tree

3 Toolkit Implementation

For the operations described in Sect. 2 there exist SDS that can support them in
constant time while taking only r = o(n) bits of redundancy, meaning that as the
input size n grows to infinity the relative overhead per element of the sequence
goes to zero. This fact is the raison d’être for the whole field of SDS: it means that,
in a reasonably realistic model of computation, using SDS instead of classical
pointer-based ones involves no runtime overhead, and the space overhead needed
to support the primitives is negligible.

In practice, however, the constants hidden in the o(·) and O(·) notations are
large enough that these data structures become competitive with the classical
ones only at unrealistic data sizes. Furthermore, CPU cache and instruction-level
parallelism play an important role in the performance of these algorithms, but it
is impossible to appreciate their influence in an abstract model of computation.

In recent years, a large effort has been devoted to the algorithm engineering of
SDS, producing practical data structures that are fast and space-efficient even for
small inputs. When compared to their theoretical counterparts, the time bounds
often grow from O(1) to O(log n), and the space bounds from o(n) to O(n), but
for all realistic data sizes they are more efficient in both time and space.

To give a sense of how these data structures work, we give a detailed explana-
tion of how Rank can be implemented. The other data structures are only briefly
summarized and we refer to the relevant papers for a complete description.

All the SDS described here are static, meaning that their contents cannot be
changed after the construction. While there has been a significant amount of work
in dynamic SDS, most results are theoretical, and the practice has not caught up
yet. The engineering of dynamic SDS is certainly an interesting research topic,
which we believe will receive significant attention in the next few years.
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3.1 The Succinct Library

The SDS structures described in this section, which to date are among the most
efficient, are implemented as part of the Succinct library [32]. The library is
available with a permissive license, in the hope that it will be useful both in
research and applications. While similar in functionality to other existing C++
libraries such as libcds [21], SDSL [31], and Sux [33], we made some radically
different architectural choices, which we describe below.
Memory Mapping. As in most static data structures libraries, all the data
structures in Succinct can be serialized to disk. However, as opposed to libcds,
SDSL, and Sux, deserialization is performed by memory mapping the data struc-
ture, rather than loading it into memory.

While being slightly less flexible, memory mapping has several advantages
over loading. For example, for short-running processes it is often not necessary
to load the full data structure in memory; instead the kernel will load only the
relevant pages. If such pages were accessed recently, they are likely to be still in
the kernel’s page cache, thus making the startup even faster. If several processes
access the same structure, the memory pages that hold it are shared among all
the processes; with loading, instead, each process keeps its own private copy of
the data. Lastly, if the system runs out of memory, it can just un-map unused
pages; with loading, it has to swap them to disk, thus increasing the I/O pressure.

For convenience we implemented a mini-framework for serialization/memory
mapping which uses template metaprogramming to describe recursively a data
structure through a single function that lists the members of a class. The mini-
framework then automatically implements serialization and mapping functions.
Templates Over Polymorphism. We chose to avoid dynamic polymorphism
and make extensive use of C++ templates instead. This allowed us to write
idiomatic and modular C++ code without the overhead of virtual functions.
Multi-platform 64-Bit Support. The library is tested under Linux, Mac OS X,
and Microsoft Windows, compiled with gcc, clang and MSVC. Like Sux and parts
of SDSL, Succinct is designed to take advantage of 64-bit architectures, which
allow us to use efficient broadword algorithms [20] to speed up several operations
on memory words. Another advantage is that the data structures are not limited
to 232 elements or less like 32-bit based implementations, a crucial requirement
for large datasets, which are the ones that benefit the most from SDS. We also
make use of CPU instructions that are not exposed to C++ but are widely avail-
able, such as those to retrieve the MSB and LSB of a word, or to reverse its bytes.
While all these operations can all be implemented with broadword algorithms,
the specialized instructions are faster.

3.2 Rank/Select

Like many SDS, Jacobson’s implementation [17] of Rank relies on Four Russians
trick by splitting the data into pieces that are small enough that all the answers
to the queries for the small pieces can be tabulated in small space, and answers to
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queries on the whole input can be assembled from queries on the small pieces and
on a sparse global data structure. Specifically, the input is divided into super-blocks
of size log2 n, and the answer to the Rank at the beginning of each super-block is
stored in an array. This takes O(#blocks · logn) = O(n logn/ log2 n) = o(n).

The super-blocks are then divided into blocks of size 1
2 log n, and the answers

to the Rank queries at the beginning of each block are stored relative to their
super-block : since the superblock is only log2 n bits long, the relative ranks cost
O(log logn) bits each, so overall the block ranks take O(n log logn/ logn) = o(n).

The blocks are now small enough that we can tabulate all the possible Rank(i)

queries: the number of different blocks is at most 2
logn

2 = O(
√
n), the positions

in the block are at most O(log n), and each answer requires O(log logn) bits, so
overall the space needed by the table is O(

√
n logn log log n) = o(n).

To answer Rank(i) on the whole bitvector it is sufficient to sum the rank of
its super-block, the relative rank of its block, and the rank inside the block. All
three operations take O(1) time, so overall the operation takes constant time.

This data structure can be implemented almost as described, but it is conve-
nient to have fixed-size blocks and super-blocks. This yields an O(n)-space data
structure, but the time is still O(1). Furthermore, if the blocks are sized as the
machine word, the in-block Rank can be efficiently computed with broadword
operations, as suggested by Vigna [34], hence avoiding to store the table.

The constant-time data structure for Select is significantly more involved: its
practical alternative is to perform a binary search on the super-block ranks,
followed by a linear search in the block partial ranks and then inside the blocks.
The binary search can be made more efficient by storing the answer to Select1
for every k-th 1, so that the binary search can be restricted to a range that
contains at most k ones. This algorithm, which is known as hinted binary search,
can take O(log n) time but is extremely efficient in practice.

In Succinct, Rank and Select are implemented in the rs_bit_vector class,
which uses the rank9 data structure [34].

3.3 Elias-Fano Representation of Monotone Sequences

The Elias-Fano representation of monotone sequences [9,11] is an encoding
scheme to represent a non-decreasing sequence of m integers 〈x1, · · · , xm〉 from
the universe [0..n) occupying 2m + m

⌈
log n

m

⌉
+ o(m) bits, while supporting

constant-time access to the i-th integer. It can be effectively used to represent
sparse bitvectors (i.e. where the number m of ones is small with respect to the
size n of the bitvector), by encoding the sequence of the positions of the ones.
Using this representation the retrieval of the the i-th integer can be interpreted
as Select1(i), and similarly it is possible to support Rank1.

The scheme is very simple and elegant. Let � = �log(n/m)�. Each integer
xi is first encoded in binary into �logn� bits, and the binary encoding is then
split into the first �logn�− � higher bits and the last � lower bits. The sequence
of the higher bits is represented as a bitvector H of �m+ n/2�� bits, where for
each i, if hi is the value of the higher bits of xi, then the position hi+i of H is set
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to 1; H is 0 elsewhere. The lower bits of each xi are just concatenated into a
bitvector L of m� bits. To retrieve the i-th integer we need to retrieve its higher
and lower bits and concatenate them. The lower bits are easily retrieved from L.
To retrieve the upper bits it is sufficient to note that hi = SelectH(1, i)− i. The
implementation is straightforward, provided that Select is supported on H .

In Succinct, we implement it using the darray data structure [24], which
supports Select in O(1) time without requiring a data structure to support Rank.
The class elias_fano implements a sparse bitvector encoded with Elias-Fano.

3.4 Balanced Parentheses

To implement operations on balanced parentheses, variants of a data structure
called Range-Min-Max tree [30] have proven the most effective in practice [2],
despite their O(log n) time and O(n) space. The data structure divides the se-
quence into a hierarchy of blocks, and stores the minimum and maximum Excess
value for each block. This yields a tree of height O(log n) height, that can be
traversed to find mate and enclosing parentheses.

In Succinct the class bp_vector implements the basic operations on balanced
parentheses. It uses a variant of the Range-Min-Max tree called Range-Min tree
[14], which only stores the minimum excess, thus halving the space occupancy
with respect to the Range-Min-Max tree. This weakens the range of operations
that the data structure can support, but all the important tree navigation oper-
ations can be implemented.

3.5 Range Minimum Queries

The RMQ problem is intimately related to the Least Common Ancestor (LCA)
problem on trees. In fact, the LCA problem can be solved by reducing it to an
RMQ on a sequence of integers derived from the tree, while RMQ can be solved
by reducing it to an LCA in a tree derived from the sequence, called the Cartesian
Tree [4]. As shown by Fischer and Heun [13], RMQ on an array A can be reduced
to an RMQ on the excess sequence of the DFUDS representation of the 2d-Min-
Heap, which, as noted by Davoodi et al. [7], is an alternative representation of
the Cartesian tree. The RMQ operation on an excess sequence can be easily
implemented by using the Range-Min tree, so since the DFUDS representation
is already equipped with a Range-Min tree to support navigational operations,
no extra space is needed.

In Succinct, RMQ is implemented in the class cartesian_tree. The algorithm
is a minor variation, described in [16], of the scheme by Fischer and Heun [13].

4 Applications

We describe some applications of the Succinct library that involve handling large
collections of semi-structured or textual data. Interestingly, SDS are gaining pop-
ularity in other communities such as bioinformatics, Web information retrieval,
and networking.
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4.1 Semi-indexing Semi-structured Data

With the advent of large-scale distributed processing systems such as MapReduce
[8] and Hadoop [1] it has become increasingly common to store large amounts
of data in textual semi-structured formats such as JSON and XML, as opposed
to the structured databases of classical data warehousing. The flexibility of such
formats allows to evolve the data schema without having to migrate the existing
data to the new schema; this is particularly important in logging applications,
where the set of attributes to be stored usually evolves quickly.

The disadvantage of such formats is that each record, represented by a semi-
structured document, must be parsed completely to extract its attributes; in
typical applications, the records contain several attributes but each query re-
quires a different small subset of such attributes, thus reading the full document
can be highly inefficient. Alternative representations for semi-structured data
have been proposed in the literature, many using SDS, that are both compact
and support efficient querying of attributes, but they rely on changing the data
format, which may be unacceptable in some scenarios where compatibility or
interoperability with existing tools is required.

In [25] it was introduced the concept of semi-index, which is a systematic SDS
that can be used to speed-up the access to an existing semi-structured document
without changing its format: the semi-index is stored on a separate file and it
takes only a small fraction of the size of the original data.

The semi-index consists of two components: a positional index, that is an index
of the positions in the document that are starting points of its elements, and a
succinct encoding of the parse tree of the document. The positional index can
be represented with a bitvector and encoded with Elias-Fano, while the parse
tree can be represented with a BP sequence.

For JSON documents [18], the positional index has a 1 in correspondence of
the positions where either of the characters {}[],: occur. For each one of these,
a pair of parentheses is appended to the BP sequence, specifically (( for { and
[, )) for } and ], and )( for , and :. An example is shown in Fig. 2. It can
be shown that the BP sequence is indeed balanced, and that it is possible to
navigate the parse tree of the document by accessing the two index sequences and
a minimal part of the original document. An experimental analysis on large-scale
document collections has shown speed-ups between 2.5 and 10 times compared
to parsing each document, while the space overhead given by the semi-index is
at most ∼ 10%.

{"a": 1, "b": {"l": [1, null], "v": true}}
100010010000101000101010000011000010000011

(( )( )( )( (( )( (( )( )) )( )( )) ))

Fig. 2. Semi-index of a JSON document
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4.2 Compressed String Dictionaries

A string dictionary is a data structure that maps bijectively a set of n strings to
the integer range [0, n). String dictionaries are among the most fundamental data
structures, and find application in basically every algorithm that handles strings.

In many scenarios where the string sets are large, the strings are highly re-
dundant ; a compressed string dictionary exploits this redundancy to reduce the
space usage of the data structure. Traditionally, string dictionaries are imple-
mented by using tries, which are not only fast, but they also offer some degree
of compression by collapsing the common prefixes. Tries represented with SDS
offer even higher space savings, but the performance suffers a large slow-down
because tries can be highly unbalanced, and navigational operations in succinct
trees can be costly. Furthermore, prefix compression is not effective for strings
that might share other substrings besides the prefix.

In [14] it was introduced a succinct representation for tries that makes use
of path decompositions, a transformation that can turn a unbalanced tree into
a balanced one. The representation also enables compression of the trie labels,
thus exploiting the redundancy of frequent substrings.

A path decomposition of a trie T is a tree T c whose nodes correspond to node-
to-leaf paths in T . The tree is built by first choosing a root-to-leaf path π in T
and associating it with the root node uπ of T c; the children of uπ are defined
recursively as the path decompositions of the subtries hanging off the path π,
and their edges are labeled with the labels of the edges from the path π to the
subtries. An example is shown in Fig. 3. The resulting tree is then encoded using
a DFUDS representation, and the sequence of labels is compressed with a simple
dictionary compression scheme.
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Fig. 3. Path decomposition of a trie. The αi denote the labels of the trie nodes, ci and
bi the branching characters (depending on whether they are on the path or not).

Depending on the strategy used to choose the decomposition path π, different
properties can be obtained. If we start from the root and recursively choose the
child with most descendents, the resulting path is called a centroid path, and the
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resulting centroid path decomposition has height O(log n), regardless of whether
the trie is balanced or not. Alternatively, we can choose recursively the leftmost
child; the resulting decomposition is called lexicographic path decomposition be-
cause the numbers associated to the strings of the set respect the lexicographic
ordering, but for this decomposition no height guarantees can be given.

In the experiments, large-scale collections of URLs, queries, and web page
titles can be compressed down to 32% to 13% of their original size, while main-
taining access and lookup times of few microseconds.

4.3 Top-k Completion in Scored String Sets

Virtually every modern application, either desktop, web, or mobile, features
some kind of auto-completion of text-entry fields. Specifically, as the user enters
a string one character at a time, the system presents k suggestions to speed up
text entry, correct spelling mistakes, and help users formulate their intent.

This can be thought of as having a scored string set, meaning that each string
is assigned a score, and given a prefix p we want to find the k strings prefixed
by p that have highest score. We call this problem top-k completion. Since the
sets of suggestion strings are usually large, space-efficiency is crucial.

A simple solution is to combine the lexicographic trie of Sect. 4.2 with an RMQ
data structure. The strings in the string set are stored in the trie, and their scores
are stored in lexicographic order in an array R. The set of the indexes of strings
that start with a given prefix p is a contiguous range [a, b].

We can then compute r = RMQ(a, b) to find the index r of the highest-scored
string prefixed by p. The second string is either the highest-scored one in [a, r−1]
or in [r + 1, b], and so on. By using a priority queue it is possible to retrieve the
top-k completions one at a time.

It is however possible to do better: we can use again the tries of Sect. 4.2,
but with a different path decomposition, where the chosen decomposition path
π is the path from the root to the highest-scored leaf. It can be shown that
in the resulting max-score path decomposition it is possible to find the top-k
completions of a given node by visiting just k nodes; since, as noted before,
navigational operations are costly in succinct representations, performance is
significantly better than the RMQ-based solution.

On large sets of queries and URLs, experiments have shown compression ratios
close or better than those of gzip, with average times per completion of about
one microsecond [16].
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Abstract. The hub labels (HL) algorithm is the fastest known technique
for computing driving times on road networks, but its practical appli-
cability can be limited by high space requirements relative to the best
competing methods. We develop compression techniques that substan-
tially reduce HL space requirements with a small performance penalty.

1 Introduction

Computing the driving time between two points in a road network is the fun-
damental building block for location services, which are increasingly important
in practice. Dijkstra’s algorithm [14] can solve this problem in essentially linear
time, but this is too slow for continental road networks. This motivates two-stage
algorithms, which use a preprocessing phase to precompute some auxiliary data
that is then used to accelerate queries. Several efficient algorithms have recently
been developed following this approach, each offering a different tradeoff between
preprocessing effort and query times [3–8, 11, 16–19].

This paper focuses on hub labels (HL), a labeling algorithm [9, 15] developed
by Abraham et al. [3, 4] to work specifically with road networks. For each vertex
v in the network, its preprocessing step computes a label consisting of a set of
hubs (other vertices), together with the distances between v and these hubs. The
construction is such that, for any two vertices s and t, there must be at least one
hub on the shortest s–t path that belongs to the labels of both s and t. Queries
can then be answered by simply intersecting the two relevant labels.

The HL algorithm has several attractive properties. First, it is the fastest
point-to-point shortest-path algorithm for road networks, for both long-range
and (more common) local queries. Second, its query algorithm is by far the
simplest: it does not even need a graph data structure, allowing practitioners with
no algorithm engineering expertise to implement fast queries. Finally, the concept
of labels (and hubs) is intuitive and extremely powerful, naturally lending itself
to the implementation of much more sophisticated queries, such as finding nearby
points of interest, optimizing ride sharing schemes, or building distance tables [2].

One aspect of HL, however, severely limits its applicability: space usage. Al-
though preprocessing time is in line with most other methods (a few minutes on
a modern server [4]), in many settings it produces a prohibitive amount of data.
Computing and storing all labels requires up to two orders of magnitude more
space than storing the graph itself. For a standard benchmark instance represent-
ing Western Europe, labels require roughly 20GiB of RAM, while a graph-based
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algorithm such as contraction hierarchies (CH) [16] requires less than 0.5GiB.
For more realistic representations (with turn costs), space requirements are even
higher, rendering HL impractical on most commodity machines.

One could use another algorithm instead, but this would mean sacrificing
query speed, ease of use, or flexibility. Storing the labels in external memory is
feasible [2], but makes queries orders of magnitude slower. Finally, Abraham et
al. [3] propose a (RAM-based) compact label representation that reduces space
usage by a factor of roughly 3, but the compression routine itself requires a large
amount of time and space (including in-memory access to all labels).

We propose hub label compression (HLC), a technique that achieves high
compression ratios and works in on-line fashion. Compressing labels as they are
generated drastically reduces the amount of RAM used during preprocessing,
which is only slightly slower than for plain HL. On continental road networks,
HLC uses an order of magnitude less space than standard HL (1.8GiB on West-
ern Europe). Queries are somewhat slower, but still faster than almost all other
known algorithms. Crucially, they are still easy to implement (requiring no graph
or priority queue), and preserve the full generality of the HL framework.

The remainder of this paper is organized as follows. After a brief overview of
the HL algorithm (in Section 2), Section 3 explains the basics of HLC: the data
structure, query implementation, and justification for our design decisions. Sec-
tion 4 proposes optimizations that enable faster queries and better compression.
Section 5 explains how the compact data structure can be generated. Section 6
has an experimental analysis of our approach. We conclude in Section 7.

2 Hub Labels

We represent a road network as a directed graph G = (V,A). A vertex v ∈ V
is an intersection, and an arc (v, w) ∈ A is a road segment with a nonnegative
length �(v, w), typically reflecting driving times. Let n = |V |. In the point-to-
point shortest path problem, we are given a source vertex s and a target vertex
t, and our goal is to find dist(s, t), the total length of the shortest s–t path in G.

The hub labels (HL) algorithm [3, 4] solves this problem in two stages. During
preprocessing, HL creates a forward label Lf(v) and a backward label Lb(v)
for each vertex v ∈ V . The forward label Lf (v) consists of a sequence of pairs
(w, dist(v, w)), in which w ∈ V is a hub and dist(v, w) is the distance (in G) from
v to w. The backward label is similar, with pairs (u, dist(u, v)). By construction,
labels obey the cover property : for any two vertices s and t, the set Lf(s) ∩
Lb(t) must contain at least one hub v that is on the shortest s–t path. Queries
are straightforward: to find dist(s, t), simply find the hub v ∈ Lf (s) ∩ Lb(t)
that minimizes dist(s, v) + dist(v, t). By storing the entries in each label sorted
by hub ID, this can be done with sequential sweeps over both labels (as in
merge sort), which is very simple and cache-friendly. To compute labels for road
networks efficiently, Abraham et al. [3, 4] propose a two-step algorithm. First, as
in CH [16], one computes the “importance” of each vertex, roughly measuring
how many shortest paths it hits. The label for each vertex v is then built in a
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greedy fashion: the label starts with only the most important vertex as a hub,
with more vertices added as needed to ensure every shortest path originated
at v is hit. The resulting labels are surprisingly small, with around 100 hubs on
average on continental road networks. The resulting queries are fast, but memory
requirements are high.

3 Compressed Labels

We now present our basic compression strategy. We describe it in terms of for-
ward labels only, which we denote by L(·) to simplify notation; backward labels
can be compressed independently using the same method. As Abraham et al. [4]
observe, the forward label L(u) of u can be represented as a tree Tu rooted at u
and having the hubs in L(u) as vertices. Given two vertices v, w ∈ L(u), there is
an arc (v, w) in Tu (with length dist(v, w)) if the shortest v–w path in G contains
no other vertex of L(u).

Our compression scheme exploits the fact that trees representing labels of
nearby vertices in the graph often have many subtrees in common. We assign
a unique ID to each distinct subtree and store it only once. Furthermore, each
tree is stored using a space-saving recursive representation. More precisely, for
any v ∈ L(u), let Su(v) be the maximal subtree of Tu rooted at v. This subtree
can be described by its root (v itself) together with a list of the IDs of its child
subtrees, each paired with an offset representing the distance from v to the
subtree’s root. We call this structure (the root ID together with a list of pairs)
a token. Common tokens can then be shared by different labels.

The remainder of this section details the actual data structure we use, as well
as queries. Section 5 discusses how to actually build the data structure.

Data Structure. Our representation makes standard assumptions [8] for real-
world road networks: (1) vertices have integral IDs from 0 to n− 1 and (2) finite
distances in the graph can be represented as unsigned 32-bit integers.

A token is fully defined by the following: (1) the ID r of the root vertex of
the corresponding subtree; (2) the number k of child tokens (representing child
subtrees of r); and (3) a list of k pairs (i, δi), where i is a token ID and δi is the
distance from r to the root of the corresponding subtree. We thus represent a
token as an array of 2k+2 unsigned 32-bit integers. We represent the collection
of all subtrees by concatenating all tokens into a single token array of unsigned
32-bit integers. In addition, we store an index, an array of size n that maps each
vertex in V to the ID of its anchor token, which represents its full label.

We still have to define how token IDs are chosen. We say that a token is
trivial if it represents a subtree consisting of a single vertex v, with no child
tokens. The ID of such a trivial token is v itself, which is in the range [0, n).
Nontrivial tokens (those with at least one child token) are assigned unique IDs
in the range [n, 232). Such IDs are not necessarily consecutive, however. Instead,
they are chosen so as to allow quick access to the corresponding entry in the
token array. More precisely, a token that starts at position p in the array has
ID n + p/2. (This is an integer, since all tokens have an even number of 32-bit
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integers.) Conversely, the token whose ID is i starts at position 2(i − n) in the
array. Trivial tokens are not represented in the token array, since the token ID
fully defines the root vertex (the ID itself) and the number of children (zero).

Since all IDs must fit in 32 bits, the token array can only represent labelings
whose (compressed) size is at most 8(232 − n) bytes. For n� 232, as is the case
in practice, this is slightly less than 32GiB, and enough to handle all instances
we test; bigger inputs could be handled by varying the sizes of each field.

Queries. Since a standard (uncompressed) HL label is stored as an array of
hubs (and the corresponding offsets) sorted by ID, a query requires a simple
linear scan. With the compact representation, queries require two steps: we first
retrieve the two labels, then intersect them. We discuss each in turn.

Retrieving a label L(v) means transforming its token-based representation Tv

into an array of pairs, each containing the ID of a hub h and its distance dist(v, h)
from v. We can do this by traversing the tree Tv top-down, while keeping track
of the appropriate offsets. For efficiency, we avoid recursion and perform a BFS
traversal of the tree using the output array itself for temporary storage. More
precisely, we do as follows. First, we use the index array to get tv, the ID of
v’s anchor token, and initialize the output array with a single element, (tv, 0).
We then process each element of this array in order. Let (t, d) be the element
in position p (processed in the p-th step). If t < n (i.e., it is a trivial token),
there is nothing to do. Otherwise (if t ≥ n), we read token t from the token
array, starting at position 2(t− i). Let w be t’s root vertex. We replace (t, d) by
(w, d) in the p-th position of the output array and, for each pair (i, δi) in the
token, append the pair (i, d+ δi) to the output array. The algorithm stops when
it reaches a position that has not been written to. At this point, each pair in the
output array corresponds to a hub together with its distance from v.

The second query step is to intersect the two arrays (for source and target)
produced by the first step. Since the arrays are not sorted by ID, it is not enough
to do a linear sweep, as in the standard HL query. We could explicitly sort the
labels by ID before sweeping, but this is slow. Instead, we propose using indexing
to find common hubs without sorting. We first traverse one of the labels to build
an index of its hubs (with associated distances), then traverse the second label
checking if each hub is already in the index (and adding up the distances). The
simplest such index is an array indexed by ID, but this takes Θ(n) space and
may lead to many cache misses. A better alternative is to use a small hash table
with a simple hash function (we use ID modulo 1024) and linear probing [10].

Discussion. Our data structure balances space usage, query performance, and
simplicity. If compression ratios were our only concern, we could easily reduce
space usage with various techniques. We could use fewer bits for some of the fields
(notably the number of children). We could use relative (rather than absolute)
references and variable-length encoding for the IDs [21]. We could avoid storing
the length of each arc (v, w) multiple times in the token array (as offsets in tokens
rooted at v) by representing labels as subtrees of the full CH graph [16], possibly
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using techniques from succinct data structures [20]. Such measures would reduce
space usage, but query times could suffer (due to worse locality) and simplicity,
arguably the main attraction of HL, would be severely compromised.

4 Variants and Optimizations

We now consider optimizations to our basic compression scheme. They modify
the preprocessing stage only, and require no change to the query algorithm.

The Token DAG. Conceptually, our compressed representation can be seen
as a token graph. Each vertex of the graph corresponds to a nontrivial token x,
and there is an arc (x, y) if and only if y is a child of x in some label. The length
of the arc is the offset of y within x. The token graph has some useful properties.
By definition, a token x that appears in multiple labels has the same children
(in the corresponding trees) in all of them. This means x has the same set of
descendants in all labels it belongs to, and by construction these are exactly the
vertices in the subgraph reachable from x in the token graph. This implies that
this subgraph is a tree, and that the token graph is a DAG. It also implies that
the subgraph reachable from x by following only reverse arcs is a tree as well:
if there were two distinct paths to some ancestor y of x, the direct subgraph
reachable from y would not be a tree. We have thus proven the following.

Lemma 1. The token graph is a DAG in which any two vertices are connected
by at most one path.

Note that all DAG vertices with in-degree zero are anchor tokens, and DAG
vertices with out-degree zero (which we call leaf tokens) are nontrivial tokens
that only have trivial tokens (which are not in the token DAG) as children.

Pruning the DAG. Retrieving a compressed label may require a nonsequential
memory access for each internal node in the corresponding tree. To improve
locality (and even space usage), we propose two operations. We can eliminate a
non-anchor token t (rooted at a vertex v) with a single parent t′ in the token DAG
as follows. We replace each arc (t, t′′) in the DAG by an arc (t′, t′′) with length
equal to the sum of (t′, t) and (t, t′′). Moreover, in t′, we replace the reference to t
by a reference to trivial token v. This 1-parent elimination operation potentially
improves query time and space. Similarly, 1-child elimination applies to a non-
anchor token t that has exactly two parents in the DAG, a single nontrivial child
t′, and no nontrivial children. We can discard t and create direct arcs from each
parent of t to t′, saving nonsequential accesses with no increase in space.

Flattening. A more aggressive approach to speed up queries is to flatten sub-
trees that occur in many labels. Instead of describing the subtree recursively,
we create a single token explicitly listing all descendants of its root vertex, with
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appropriate offsets. We propose a greedy algorithm that in each step flattens
the subtree (token) that reduces the expected query time the most, assuming all
labels are equally likely to be accessed. Intuitively, our goal is to minimize the
average number nonsequential accesses when reading the labels.

Let λ(x) be the number of labels containing a nontrivial token x, and let α(x)
be the number of proper descendants of x in the token DAG (α(x) is 0 if x is
a leaf). The total access cost of the DAG is the total number of nonsequential
accesses required to access all n labels. (This is n times the expected cost of
reading a random label.) If H is the set of all anchor tokens, the total access
cost is

∑
x∈H(1+α(x)). The share of the access cost attributable to any token x

is λ(x) · (1+α(x)). Flattening the corresponding subtree would reduce the total
access cost by v(x) = λ(x)α(x), as a single access would suffice to retrieve x.

Our algorithm starts by traversing the token graph twice in topological order:
a direct traversal initializes λ(·) and a reverse one initializes α(·). It then keeps
the v(x) = λ(x)α(x) values in a priority queue. Each step takes the token x with
maximum v(x) value, flattens x, then updates all v(·) values that are affected.
For every ancestor z of x, we set α(z)← α(z)− α(x); for every descendant y of
x, we set λ(y)← λ(y)−λ(x). If λ(y) becomes zero, we simply discard y. Finally,
we remove the outgoing arcs from x (making x a leaf) and set α(x) ← 0. We
stop when the total size of the token array increases beyond a given threshold.
Using Lemma 1, one can show that this algorithm runs in O(τμ) time, where τ
is the initial number of tokens in the DAG and μ is the maximum label size.

Discussion. We implemented flattening as described above, but the concept is
more general: one could flatten arbitrary subtrees (not just maximal ones), as
long as unflattened portions are represented elsewhere with appropriate offsets.
The 1-parent and 1-child elimination routines are special cases of this, as is
Abraham et al.’s compression technique [3], which splits each label into a subtree
containing its root and a (shared) token representing the remaining forest.

With no stopping criterion, the greedy flattening algorithm eventually leads
to exactly n (flattened) tokens, each corresponding to a label in its entirety, as
in the standard (uncompressed) HL representation. Conversely, we could have a
“merge” operation that combines tokens rooted at the same vertex into a single
token (not necessarily flattened) representing the union of the corresponding
trees. This saves space, but tokens no longer represent minimal labels. Our BFS-
based label retrieval technique is still correct (it access all relevant hubs), but it
may visit each hub more than once, since Lemma 1 no longer holds. We could
fix this by visiting tokens in increasing order of distance (with a heap), as in CH
queries [16]. This similarity is not accidental: repeated application of the “merge”
operation eventually leads to a single token rooted at each vertex (representing
all subtrees rooted at it), with the token graph exactly matching the upward CH
graph [16]. In this sense, HLC generalizes both CH and HL.

Reordering. If the tokens corresponding to the endpoints of a DAG arc are
not stored consecutively in memory, traversing this arc usually results in a cache
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miss. Tokens must be stored in increasing order of ID, but these IDs can be chosen
to our advantage. By reordering tokens appropriately during preprocessing, we
can potentially decrease the number of cache misses during queries.

We propose the following. First, we mark a subset M of the DAG arcs such
that each token t in the DAG has at most one incoming arc and at most one
outgoing arc in M . This creates a collection of vertex-disjoint paths. We then
assign consecutive IDs to the vertices along each path (the order among paths is
arbitrary). For random queries, this assignment avoids (compared to a random
order) approximately λ(t)/n cache misses for each marked arc (t, t′). We define
the gain associated with a set M as the sum of λ(t) over all marked arcs (t, t′).
One can show that the set M∗ with maximum gain can be found using minimum-
cost flows. For efficiency, however, we use a greedy heuristic instead. We start
with all arcs unmarked, then process the tokens in nonincreasing order of λ(·).
To process a token t, we mark, among all outgoing arcs (t, t′) such that t′ has
no marked incoming arc, the one maximizing λ(t′). If no such arc exists, we just
skip t. Eventually, this leads to a maximal set M of marked arcs.

5 Label Generation

We now explain how the data structures described in Section 3 can actually
be built. To create a compressed representation of an existing set of labels, we
start with an empty token array and tokenize the labels (i.e., create their token-
based representation) one at a time, in any order. To tokenize a label L(v), we
traverse the corresponding tree Tv bottom-up. To process a vertex w ∈ Tv, we
first build the token tw that represents it. This can be done because at this point
we already know the IDs of the tokens representing the subtrees rooted at w’s
children. We then pick an ID i to assign to tw. First, we use hashing to check if tw
already occurs in the token array. If it does, we take its existing ID. Otherwise,
we append tw to the token array and use its position p to compute the ID i, as
described in Section 3 (i = n+ p/2). When the bottom-up traversal of Tv ends,
we store the ID of tv (the anchor token of v) in the index array.

Note that label compression can be implemented in on-line fashion, as la-
bels are generated. Asymptotically, it does not affect the running time: we can
compress all labels in linear time. In practice, however, generating a label often
requires access to other existing labels [3, 4]. If we are not careful, the extra cost
of retrieving existing compressed labels may become the bottleneck.

With that in mind, we modify Abraham et al.’s recursive label generation [4]
to compress labels as they are created. Building on the preprocessing algorithm
for contraction hierarchies (CH) [16], they first find a heuristic order among
all vertices, then shortcut them in this order. To process a vertex v, one (tem-
porarily) deletes v and adds arcs as necessary to preserve distances among the
remaining vertices. More precisely, for every pair of incoming and outgoing arcs
(u, v) and (v, w) such that (u, v) ·(v, w) is the only u–w shortest path, one adds a
new shortcut arc (u,w) with �(u,w) = �(u, v) + �(v, w). This procedure outputs
the order itself (given by a rank function r(·)) and a graph G+ = (V,A ∪ A+),
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where A+ is the set of shortcuts. The number of shortcuts depends on the order;
intuitively, it is best to first shortcut vertices that belong to few shortest paths.

Labels are then generated one by one, in reverse contraction (or top-down)
order, starting from the last contracted vertex. The first step to process a vertex
v is to build an initial label L(v) by combining the labels of v’s upward neighbors
Uv = {u1, u2, . . . , uk} (u is an upward neighbor of v if r(u) > r(v) and (u, v) ∈
A∪A+.) For each ui ∈ Uv, let Tui be the (already computed) tree representing its
label. We initialize Tv (the tree representing L(v)) by taking the first tree (Tu1)
in full, and making its root a child of v itself (with an arc of length �(v, u1)). We
then process the other trees Tui (i ≥ 2) in top-down fashion. Consider a vertex
w ∈ Tui with parent pw in Tui . If w �∈ Tv, we add it—pw must already be there,
since we process vertices top-down. If w ∈ Tv and its distance label dv(w) is
higher than �(v, ui) + dui(w), we update dv(w) and set w’s parent in Tv to pw.

Once the merged tree Tv is built, we eliminate any vertex w ∈ Tv such that
dv(w) > dist(v, w). The actual distance dist(v, w) can be found by bootstrapping,
i.e., running a v–w HL query using L(v) itself (unpruned, obtained from Tv) and
the label L(w) (which must already exist, since labels are generated top-down).

Our algorithm differs from Abraham et al.’s [4] in that it stores labels in
compressed form. To compute L(v), we must retrieve (using the token array)
the labels of its upward neighbors, taking care to preserve the parent pointer
information that is implicit in the token-based representation. Similarly, boot-
strapping requires retrieving the labels of all candidate hubs.

To reduce the cost of retrieving compressed labels during preprocessing, we
keep an LRU cache of uncompressed labels. Whenever a label is needed, we first
look it up in the cache, and only retrieve its compressed version if needed (and
add it to the cache). Since labels used for bootstrapping do not need parent
pointers and labels used for merging do, we keep an independent cache for each
representation. To minimize cache misses, we do not generate labels in strict top-
down order; instead, we process vertices in increasing order of ID, deviating from
this order as necessary. If we try to process v and realize it has an unprocessed
upward neighbor w, we process w first, then come back to v. (We use a stack
to keep track of delayed vertices.) The cache hit ratio improves because nearby
vertices (with similar labels) tend to have similar IDs in our test instances.

For additional acceleration, we also avoid unnecessary bootstrapping queries.
If a vertex v has a single upward neighbor u, there is no need to bootstrap Tv

(and u’s token can be reused). If v has multiple upward neighbors, we bootstrap
Tv in bottom-up order. If we determine that the distance label for a vertex
w ∈ Tv is correct, its ancestors in Tv must be as well, and need not be tested.

6 Experiments

We implemented our HLC algorithm in C++ and compiled it (using full opti-
mization) with Microsoft Visual C++ 2010. We tested it on a machine running
Windows Server 2008R2 with 96GiB of DDR3-1333 RAM and two 6-core Intel
Xeon X5680 CPUs at 3.33GHz (each CPU has 6×64 KB of L1, 6×256 KB L2,
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Table 1. HLC and HL performance, aggregated over forward and backward labels

preprocessing queries

time space tokens reads hash linear merge
algorithm [h:m] [MiB] /vertex /label [ns] [ns] [ns]

basic HLC 00:47 2016.3 4.925 39.46 3338 3832 7035
+1-parents 00:48 1759.0 3.053 36.27 3313 3830 7007
+1-children 00:49 1759.0 2.912 35.78 3304 3809 6996
+5% flat 00:50 1840.1 2.912 12.96 2554 2999 6205

plain HL 00:38 21776.1 2.000 1.00 1208 1315 617

and 12 MB of shared L3 cache). For ease of comparison, all runs were sequen-
tial. Our default benchmark instance (made available by PTV AG for the 9th
DIMACS Implementation Challenge [13]) represents (Western) Europe; it has
n = 18 · 106 vertices, m = 42 · 106 arcs, and travel times as the cost function.

Our first experiment examines the effectiveness of all variants of HLC we
considered. For reference, we also report the performance of a plain implemen-
tation of HL algorithm, where each label is an array of 32-bit integers (hubs and
distances), sorted by hub ID. The complicated optimizations proposed by Abra-
ham et al. [3] (such as ID reassignment, 8/24 compression, distance oracles, and
index-free queries) will be considered later. We use the default contraction order
proposed by Abraham et al. [4] (HL-15), with 78.24 hubs per label on average.

For each method, Table 1 shows the total preprocessing time (including find-
ing the contraction order), the amount of data generated, the average number
of (both trivial and nontrivial) tokens per vertex, and the average number of
nontrivial tokens read to retrieve a label (“reads/label”). All values are aggre-
gated over both forward and backward labels. We also show average times (over
107 random s–t pairs) for three query strategies: hashed index, linear index (an
n-sized array), and merging (including a call to the STL sort function for HLC).

The basic version of HLC (described in Section 3) uses an order of magnitude
less space than HL, with similar preprocessing time. This makes the label-based
approach much more practical: while few current servers have 20GiB of RAM
available, most can easily handle 2GiB data structures. (For comparison, labels
compressed with gzip would take 7.7GiB and would not support fast queries.)
Space usage can be reduced by around 10% if 1-parent tokens are eliminated,
with little effect on query times; 1-child elimination has a small but positive
effect. Greedily flattening tokens until the token array increases by 5% reduces
the number of tokens needed to represent each label by more than 70%, but
queries are only about 25% faster (“popular” tokens end up in cache anyway,
even without flattening). Flattening twice as much (10%) would further reduce
query times by only 3%.

Regarding queries, hashing is slightly faster than linear indexing for HLC, and
significantly faster than merging (which requires sorting). For HL, whose labels
are already sorted by ID, merging is by far the best strategy, due to its favorable
access pattern and simplicity. In the end, hashing and worse locality make HLC
queries about four times slower than plain HL queries.
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Table 2. Random queries on Europe

prepro space query
method [h:m] [GB] [ns]

CH [16] 0:14 0.4 79373
TNR [5] 0:21 2.5 1711
TNR+AF [8] 2:00 5.7 992
HL prefix [3] ≈2:00 5.7 527
HL-15 local [4] 0:37 18.8 556
HL-∞ global [4] ≈60:00 17.7 254

HLC-0 0:30 1.8 2989
HLC-15 0:50 1.8 2554

Table 2 compares the two versions of
HLC (with all optimizations) with other
fast algorithms. It includes CH [16] and
three variants of HL [3, 4]: HL-∞ global
is optimized for long-range queries, HL-
15 local for short-range queries, and
HL prefix minimizes space usage. HLC-
0 and HLC-15 use the same vertex or-
ders as HL-0 and HL-15, respectively [4].
We also include Transit Node Routing
(TNR) [5, 6], which uses table lookups
for long range queries, CH for local queries, and (optionally) hashing for
midrange queries. TNR+AF [8] uses arc flags [19] to guide TNR towards the
target. We report preprocessing time, space usage, and average time for random
queries, considering the best available implementation of each method. All times
are sequential and scaled to match our machine [3].

While standard HL uses much more space than other methods, compression
makes the hub labels approach less of an outlier. HLC uses only about 4 times
as much space as CH (the most compact method), but random queries are 30
times faster. HLC is comparable to TNR in all three criteria. As we have argued
before, however, HLC has advantages that can make it more practical: simplicity
(no graphs or priority queues) and flexibility (natural extensions based on hubs).
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Fig. 1. Local queries

Moreover, HLC is faster for local
queries, which in practice are more
common than long-range (or ran-
dom) ones. Fig. 1 plots the median
query times of several algorithms as
a function of the Dijkstra rank [16].
(Vertex v has Dijkstra rank i with
respect to s if v is the i-th ver-
tex scanned by Dijkstra’s algorithm
from s.) Each point corresponds to
10 000 queries with a given rank.
The numbers were taken from [3, 5, 8, 16] and scaled appropriately.

Query times increase with Dijkstra rank for CH (since its search space is
bigger), but decreases for TNR (since it can only do fast table lookups for more
global queries). Standard HL can reorder vertices to allow long-range queries
to skip some unimportant hubs [3]. In contrast, HLC must always visit nearby
hubs before getting to more important ones, and its query times are largely
independent of the Dijkstra rank. For local queries, HLC is only about three
times slower than HL, and much faster than other methods.

Finally, Table 3 reports the performance of HLC on a variety of road networks.
We start with Western Europe from PTV, taking both travel times (as before)
and travel distances as cost functions. We also test an expanded version of this
instance with turn costs, which we model by creating a vertex to represent each
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Table 3. Results for HLC on various instances: number n of vertices (in millions),
average (out-)degree, preprocessing time, space usage, compression ratio (relative to
plain HL), average number of hubs per label, and (hash-based) query times

n time space comp hubs query
source input metric turns [106] deg [h:m] [MiB] ratio /label [ns]

PTV W.Europe time × 18.0 2.36 0:50 1840.1 11.83 78.24 2554
W.Europe time � 42.6 2.72 4:10 6363.4 11.02 107.03 3512
W.Europe dist × 18.0 2.36 3:15 2973.9 15.91 171.25 5734

Tiger US time × 23.9 2.41 0:53 2979.6 8.62 69.33 2486
US dist × 23.9 2.41 2:32 4126.2 14.08 157.99 5294

OSM Australia time × 4.9 1.97 0:13 408.8 9.48 51.30 1689
S.America time × 11.3 2.18 0:29 1167.2 8.33 55.25 1865
N.America time × 162.5 2.04 5:52 14560.6 18.25 106.18 3520
Old World time × 188.7 2.02 6:14 17164.4 16.07 94.78 3232

Bing Europe default × 47.9 2.23 1:53 4791.8 15.20 98.53 3264
Europe default � 107.0 2.26 8:01 13046.6 14.38 113.92 3854
N.America default × 30.3 2.41 1:33 3461.2 14.52 107.74 3437
N.America default � 72.5 2.61 14:34 13403.8 11.04 132.87 4429

original arc [11]; we follow Delling et al. [11] and set U-turn costs to 100 seconds
and all other turn costs to zero. In addition, we test TIGER data [13] represent-
ing the USA, as well as four OpenStreetMap (OSM) instances (v. 121812) with
realistic travel times (but no turn costs or restrictions), representing Australia,
South America, North (and Central) America, and Old World (Africa, Asia,
and Europe). Finally, we test the actual data used by Bing Maps (building on
Navteq data) in production; the cost function is proprietary, but correlates well
with travel times, as one would expect. We consider versions with turn costs (as
used in production) and without. All instances are strongly connected.

Although the average number of hubs per label varies significantly, HLC al-
ways needs one order of magnitude less storage than plain HL. Without compres-
sion, some instances would require more than 200GiB of RAM, which is hardly
practical. This is an issue especially for OSM data, whose vertices represent both
topology (intersections) and geometry, leading to sparse but large graphs. With
compression, space usage is kept below 20GiB in every case, which is much more
manageable. Queries always remain below 6μs.

7 Final Remarks

We presented compression techniques that substantially reduce the memory re-
quirements for HL. Not only do they keep queries fast and simple, but they also
preserve the flexibility and generality of labels. This makes the label-based ap-
proach practical in a wider range of applications. An open problem is to speed
up its preprocessing to handle dynamic scenarios (such as real-time traffic) effi-
ciently. Although techniques such as CRP [11, 12] can quickly adapt to changes
in the length function, they have more complicated (and much slower) queries.

Acknowledgements. We thank D. Luxen for routable OSM instances [1].
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Abstract. A wide variety of algorithms can answer exact shortest-path
queries in real time on continental road networks, but they typically
require significant preprocessing effort. Recently, the customizable route
planning (CRP) approach has reduced the time to process a new cost
function to a fraction of a minute. We reduce customization time even
further, by an order of magnitude. This makes it worthwhile even when
a single query is to be run, enabling a host of new applications.

1 Introduction

Computing driving directions in road networks is a fundamental problem of
practical importance. Although it can be solved in almost-linear time by Dijk-
stra’s shortest-path algorithm [14], this is not fast enough for interactive queries
on continental road networks. This has motivated a wide variety of recent al-
gorithms [2,5,7,8,18,21,22] that rely on a (relatively slow) preprocessing stage
to enable much faster queries. Different algorithms offer distinct tradeoffs be-
tween preprocessing time, space requirements, and query times. Directly or in-
directly, they exploit the fact that road networks have a strong hierarchy when
minimizing driving times in free-flow traffic [3]. When other cost functions are
optimized, however, their performance can be much worse. Moreover, these ap-
proaches should only be used when there are enough queries to amortize the
preprocessing cost. This is not true in many practical situations, such as when
the cost function changes very frequently (to consider traffic, for example), or
when users can choose from several (possibly uncommon) cost functions.

In contrast, the recently proposed customizable route planning (CRP) algo-
rithm [11] is lightweight and robust to changes in the cost function (metric).
It works in three stages. The first, metric-independent preprocessing, uses graph
partitioning to define the topology of a multilevel overlay graph [23], which is the
same regardless of the cost function. The second stage, customization, uses the
metric to compute the actual costs of the overlay arcs. Finally, the query stage
uses the output of the first two stages to compute shortest paths in real time
(milliseconds). The first stage may take a few minutes (or even hours), but only
needs to be run (or updated) when new road segments are built. Metric changes
(which are much more frequent) require running only customization, which takes
less than a minute. Since it does not rely on strong hierarchies, CRP is robust to
metric changes. Unlike most other methods, it can also handle turn costs (and

V. Bonifaci et al. (Eds.): SEA 2013, LNCS 7933, pp. 30–42, 2013.
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restrictions) quite naturally, with little effect on performance and space usage. It
is thus ideal for a real-world routing engine, and is indeed in use by Bing Maps.

This paper shows how to make customization even faster, enabling a wide
range of new applications. To compute overlay arc costs, we propose replacing
Dijkstra’s algorithm by other approaches, such as contraction and Bellman-Ford.
Although they may even increase the number of operations (such as arc scans)
performed, careful application of algorithm engineering techniques leads to bet-
ter locality and enables parallelism at instruction and core levels. Remarkably,
our new customization routine takes less time (sequentially) than running Dijk-
stra’s algorithm once. Unlike in any other method, a single query is enough to
amortize the customization cost, making it ideal for highly dynamic applications.

2 Preliminaries

Basics. A road network is usually modeled as a directed graph G = (V,A) with
n = |V | vertices and m = |A| arcs. Each vertex v ∈ V represents an intersection,
and each arc (v, w) ∈ A a road segment. A metric (or cost function) � : A→ N
maps each arc to a positive length (or cost). In the point-to-point shortest path
problem, our goal is to compute the minimum-length path in the graph between
a source s and a target t. It can be solved by Dijkstra’s algorithm [14], which
processes vertices in increasing order of distance from s and stops when t is
processed. It runs in essentially linear time in theory and in practice [20].

In this paper, we focus on a more realistic model for road networks, which
takes turn costs (and restrictions) into account. We think of each vertex v as
having one entry point for each of its incoming arcs, and one exit point for each
outgoing arc. We extend the concept of metric by also associating a turn table Tv

to each vertex v; Tv[i, j] specifies the cost of turning from the i-th incoming arc
to the j-th outgoing arc. (The order around each vertex is arbitrary but fixed.)

We can run Dijkstra’s algorithm on this turn-aware graph by associating dis-
tance labels to entry points instead of vertices [11,19]. An alternative approach
(often used in practice) is to operate on an expanded graph G′, where each vertex
corresponds to an entry point in G, and each arc represents the concatenation
of a turn and an arc in G. This allows standard (non-turn-aware) algorithms to
be used, but roughly triples the graph size. In contrast, the turn-aware repre-
sentation is almost as compact as the simplified one (with no turns at all), since
common turn tables can be shared among vertices.

Customizable Route Planning. The customizable route planning (CRP) [11] al-
gorithm is a speedup technique that computes shortest paths in three stages:
(metric-independent) preprocessing, customization, and queries.

The preprocessing stage defines a multilevel overlay [23] of the graph and
builds auxiliary data structures. A partition of V is a family C = {C0, . . . , Ck}
of sets Ci ⊆ V such that each v ∈ V is in exactly one cell Ci. A multilevel
partition of V of L levels is a family of partitions {C1, . . . , CL}, where l denotes
the level of a partition Cl. Let U l be the size of the biggest cell on level l.
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We deal only with nested multilevel partitions: for each l ≤ L and each cell
Cl

i ∈ Cl, there exists a cell Cl+1
j ∈ Cl+1 with Cl

i ⊆ Cl+1
j ; we say Cl

i is a subcell

of Cl+1
j . (We assume C0 consists of singletons and CL+1 = {V }.) A boundary

arc on level l is an arc with endpoints in different level-l cells; its endpoints are
boundary vertices. A boundary arc on level l is also a boundary arc on all levels
below.

The preprocessing phase of CRP uses PUNCH [12], a graph-partitioning
heuristic tailored to road networks, to create a multilevel partition. Given an
unweighted graph and a bound U , PUNCH splits the graph into cells with at
most U vertices while minimizing the number of arcs between cells. To find
a multilevel partition, one calls PUNCH repeatedly in top-down fashion: after
partitioning the full graph, one partitions each subcell independently.

Fig. 1. Overlays of five cells

Besides partitioning, the CRP preprocessing
phase sets up the topology of the overlay graph.
Consider a cell C on any level, as in Fig. 1. Every
incoming boundary arc (u, v) (i.e, with u �∈ C and
v ∈ C) defines an entry point for C, and every
outgoing arc (v, w) (with v ∈ C and w �∈ C) de-
fines an exit point for C. The overlay for cell C is
simply a complete bipartite graph with directed
shortcuts (gray lines in the figure) between each
entry point (filled circle) and each exit point (hol-
low circle) of C. The overlay of a level l consists
of the union of all cell overlays, together with all
boundary arcs (black arrows) on this level.

During the customization stage, CRP computes the lengths of the shortcuts
on the overlay. A shortcut (p, q) within a cell C represents the shortest path
(restricted to C) between p and q. Lengths are computed bottom-up, starting
at level one. To process a cell, CRP runs Dijkstra’s algorithm from each entry
point p to find the lengths of all shortcuts starting at p. Processing level-one cells
requires running Dijkstra on the original graph, taking turn costs into account.
Higher-level cells can use the overlay graph for the level below, which is much
smaller and has no explicit turns (turn costs are incorporated into shortcuts).

An s–t CRP query runs bidirectional Dijkstra on the overlay graph, but only
entering cells containing either s or t. To retrieve the arcs corresponding to each
shortcut in the resulting path, one runs bidirectional Dijkstra within the appro-
priate cell. We accelerate unpacking using an LRU cache to store the unpacking
information of a level-i shortcut as a sequence of level-(i− 1) shortcuts.

3 Our Approach

Separating preprocessing from metric customization allows CRP to incorporate
a new cost function on a continental road network in less than 30 seconds [11]
(sequentially) on a modern server. This is enough for real-time traffic, but too
slow to enable on-line personalized cost functions. Accelerating customization
even further requires speeding up its basic operation: computing the lengths of



Faster Customization of Road Networks 33

the shortcuts within each cell. To do so, we propose different strategies to replace
Dijkstra’s algorithm.

One strategy is contraction, the basic building block of the contraction hi-
erarchies (CH) algorithm [18] and an element of many other speedup tech-
niques [2,5,7,8,21]. Instead of computing shortest paths explicitly, we eliminate
internal vertices from a cell one by one, adding new arcs as needed to preserve dis-
tances; the arcs that eventually remain are the desired shortcuts. For efficiency,
not only do we precompute the order in which vertices are contracted, but also
abstract away the graph itself. During customization, we simply simulate the ac-
tual contraction by following a (precomputed) series of instructions describing
the basic operations (memory reads and writes) the contraction routine would
perform.

Contraction works well on the first overlay level, since it operates directly on
the underlying graph, which is sparse. Density quickly increases during contrac-
tion, however, making it expensive as cell sizes increase. On higher levels, we
compute shortest paths explicitly (as before), but make each computation more
efficient. We replace Dijkstra with lightweight algorithms that work better on
small graphs, and apply techniques to reduce the size of the search graph.

The next two sections describe each strategy in more detail, including how
they can be engineered for better performance in practice.

4 Contraction

The contraction approach is based on the shortcut operation [18]. To shortcut a
vertex v, one removes it from the graph and adds new arcs as needed to preserve
shortest paths. For each incoming arc (u, v) and outgoing arc (v, w), one creates
a shortcut arc (u,w) with �(u,w) = �(u, v)+ �(v, w). A shortcut is only added if
it represents the only shortest path between its endpoints in the remaining graph
(without v), which can be tested by running a witness search (local Dijkstra)
between its endpoints. CH [18] uses contraction as follows. During preprocessing,
it heuristically sorts all vertices in increasing order of importance and shortcuts
them in this order; the order and the shortcuts are then used to speed up queries.

We propose using contraction during customization. To process a cell, we can
simply contract its internal vertices while preserving its boundary vertices. The
arcs (shortcuts) in the final graph are exactly the ones we want. To deal with
turn costs appropriately, we run contraction on the expanded graph.

The performance of contraction strongly depends on the cost function. With
travel times in free-flow traffic (the most common case), it works very well. Even
for continental instances, sparsity is preserved during the contraction process,
and the number of arcs less than doubles [18]. Unfortunately, other metrics
often need more shortcuts, which leads to denser graphs and makes finding the
contraction order much more expensive. Even if a good order is given, simply
performing the contraction can still be quite costly [18].

Within the CRP framework, we can deal with these issues by exploiting the
separation between metric-independent preprocessing and customization. Dur-
ing preprocessing, we compute a unique contraction order to be used by all



34 D. Delling and R.F. Werneck

metrics. Unlike previous approaches [18], to ensure this order works well even in
the worst case, we simply assume that every potential shortcut will be added.
Accordingly, we do not perform witness searches during customization. For max-
imum efficiency, we precompute a sequence of microinstructions to describe the
entire contraction process in terms of basic operations. We detail each of these
improvements next.

Contraction Order. Computing a contraction order that minimizes the number
of shortcuts added is NP-hard [6]. In practice, one uses on-line heuristics that
pick the next vertex to contract based on a priority function that depends on
local properties of the graph [18]. A typical criterion is the difference between
the number of arcs added and removed if a vertex v were contracted. We tested
similar greedy priority functions to evaluate each vertex v, taking into account
parameters such as the number ia(v) of incoming arcs, the number oa(v) of
outgoing arcs, and the number sc(v) of shortcuts created or updated if v is
contracted (this may be less than ia(v) ·oa(v), since self-loops are never needed).
We found that picking vertices v that minimize h(v) = 100sc(v)− ia(v)− oa(v)
works well. This essentially minimizes the number of shortcuts added, using the
current degree as a tiebreaker (the precise coefficients are not important).

This approach gives reasonable orders, but one can do even better by tak-
ing the graph topology into account. There exist natural orders that lead to
a provably small number of shortcuts for graphs with small separators [10,25]
or treewidth [10]. It suffices to find a small separator for the entire graph, re-
cursively contract the two resulting components, then contract the separating
vertices themselves. For graphs with O(

√
n)-separators (such as planar graphs),

such nested dissection leads to O(n logn) shortcuts. Although real-world road
networks are far from planar, they have even smaller separators [12].

This suggests using partitions to guide the contraction order. We create ad-
ditional guidance levels during the preprocessing step, extending our standard
CRP multilevel partition downward (to even smaller cells). We subdivide each
level-1 cell (of maximum size U) into nested subcells of maximum size U/σi, for
i = 1, 2, . . . (until cells become too small). Here σ > 1 is the guidance step. For
each internal vertex v in a level-1 cell, let g(v) be the smallest i such that v is
a boundary vertex on the guidance level with cell size U/σi. We use the same
contraction order as before, but delay vertices according to g(·). If g(v) > g(w),
v is contracted before w; within each guidance level, we use h(v).

Microinstructions. While the contraction order is determined during the metric-
independent phase of CRP, we can only execute the contraction (follow the order)
during customization, once we know the arc lengths. Even with the order given,
this execution is expensive [18]. To contract v, we must retrieve the costs (and
endpoints) of its incident arcs, then process each potential shortcut (u,w) by
either inserting it or updating its current value. This requires data structures
supporting arc insertions and deletions, and even checking if a shortcut already
exists gets costlier as degrees increase. Each fundamental operation, however, is
rather simple: we read the costs of two arcs, add them up, compare the result with
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the cost of a third arc, and update it if needed. The entire contraction routine
can therefore be fully specified by a sequence of triples (a, b, c). Each element
in the triple is a memory position holding an arc (or shortcut) length. We must
read the values in a and b and write the sum to c if there is an improvement.

Since the sequence of operations is the same for any cost function, we use the
metric-independent preprocessing stage to set up, for each cell, an instruction
array describing the contraction as a list of triples. Each element of a triple
represents an offset in a separate memory array, which stores the costs of all
arcs (temporary or otherwise) touched during the contraction. The preprocessing
stage outputs the entire instruction array as well as the size of the memory array.

During customization, entries in the memory array representing input arcs (or
shortcuts) are initialized with their costs; the remaining entries (new shortcuts)
are set to ∞. We then execute the instructions one by one, and eventually copy
the output values (lengths of shortcuts from entry to exit points in the cell) to
the overlay graph. With this approach, the graph itself is abstracted away during
customization. We do not keep track of arc endpoints, and there is no notion of
vertices at all. The code just manipulates numbers (which happen to represent
arc lengths). This is cheaper (and simpler) than operating on an actual graph.

Although the space required by the instruction array is metric-independent
(shared by all cost functions), it can be quite large. We can keep it manageable
by representing each triple with as few bits as necessary to address the memory
array. In addition, we use a single macroinstruction to represent the contrac-
tion of a vertex v whenever the resulting number of writes exceeds an unrolling
threshold τ . This instruction explicitly lists the addresses of v’s cin incoming
and cout outgoing arcs, followed by the corresponding cin · cout write positions.
The customization phase must explicitly loop over all incoming and outgoing
positions, which is slightly slower than reading tuples but saves space.

5 Graph Searches

Fig. 2. Pruned overlay

Although contraction could be used to process
the entire hierarchy, it is not as effective at higher
levels as it is at level-one cells, since the graphs
within each higher-level cell are much denser. In
such cases, it is cheaper to actually run graph
searches. This section therefore proposes search-
based techniques to accelerate higher levels of the
hierarchy. Each leads to improvements on its own,
and they can be combined in the final algorithm.

Pruning the Search Graph. To process a cell C,
we must compute the distances between its entry
and exit points. As shown in Fig. 1, the graph
GC on which we operate within C is the union of subcell overlays (complete
bipartite graphs) with some boundary arcs between them. Instead of searching
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GC directly, we first contract its internal exit points (see Fig. 2). Since each such
vertex has out-degree one (its outgoing arc is a boundary arc within C), this
reduces the number of vertices and edges in the search graph. Note that C’s own
exit points must be preserved (they are the targets of our searches), but they do
not need to be scanned (they have no outgoing arcs).

Improving Locality. Conceptually, to process a cell C we could operate on the
full overlay graph, but restricting the searches to vertices inside C. For efficiency,
we actually copy the relevant subgraph to a separate memory location, run our
searches on it, then copy the results back. This simplifies the searches (there are
no special cases), allows us to use sequential local IDs, and improves locality.

Alternative Algorithms. We can further accelerate customization by replacing
Dijkstra’s algorithm with Bellman-Ford [9,16]. It starts by setting the distance
label of the source to 0, and all others to ∞. Each round then scans each vertex
once, updating the distance label of its neighbors appropriately. For better per-
formance, we only active vertices (i.e., those whose distance improved since the
previous round) and stop when there is no active vertex left. While Bellman-Ford
cannot scan fewer vertices than Dijkstra, its simplicity and better locality make
it competitive. The number of rounds is bounded by the maximum number of
arcs on any shortest path, which is small for reasonable metrics but linear in
the worst case. One could therefore switch to Dijkstra’s algorithm whenever the
number of Bellman-Ford rounds reaches a given (constant) threshold.

For completeness, we also tested the Floyd-Warshall algorithm [15]. It com-
putes shortest paths among all vertices in the graph, and we just extract the
relevant distances. Its running time is cubic, but with its tight inner loop and
good locality, it could be competitive with Bellman-Ford on denser graphs.

Multiple-source Executions. Multiple runs of Dijkstra’s algorithm (from different
sources) can be accelerated if combined into a single execution [22,26]. We apply
this idea to Bellman-Ford. Let k be the number of simultaneous executions, from
sources s1, . . . , sk. For each vertex v, we keep k distance labels: d1(v), . . . , dk(v).
All di(si) values are initialized to zero (each si is the source of its own search),
and all remaining di(·) values to ∞. All k sources si are initially marked as
active. When Bellman-Ford scans an arc (v, w), we try to update all k distance
labels of w at once: for each i, we set di(w)← min{di(w), di(v)+ �(v, w)}. If any
such distance label actually improves, we mark w as active. This simultaneous
execution needs as many rounds as the worst of the k sources, but, by storing the
k distances associated with a vertex contiguously in memory, locality is much
better. In addition, it enables instruction-level parallelism [26], as discussed next.

Parallelism. Modern CPUs have extended instruction sets with SIMD (single
instruction, multiple data) operations, which work on several pieces of data at
once. In particular, the SSE instructions available in x86 CPUs can manipu-
late special 128-bit registers, allowing basic operations (such as additions and
comparisons) on four 32-bit words in parallel.
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Consider the simultaneous execution of Bellman-Ford from k = 4 sources,
as above. When scanning v, we first store v’s four distance labels in one SSE
register. To process an arc (v, w), we store four copies of �(v, w) into another
register and use a single SSE instruction to add both registers. With an SSE
comparison, we check if these tentative distances are smaller than the current
distance labels for w (themselves loaded into an SSE register). If so, we take the
minimum of both registers (in a single instruction) and mark w as active.

In addition to using SIMD instructions, we can use core-level parallelism by
assigning cells to distinct cores. (We also do this for level-1 cells with microin-
structions.) In addition, we parallelize the highest overlay levels (where there are
few cells per core) by further splitting the sources in each cell into sets of similar
size, and allocating them to separate cores (each accessing the entire cell).

6 Experiments

We implemented our algorithm in C++ (using OpenMP for parallelization) and
compiled it using Microsoft Visual Studio 2010. Our test machine runs Windows
Server 2008R2 and has 96GiB of DDR3-1333 RAM and two 6-core Intel Xeon
X5680 3.33GHz CPUs, each with 6×64 KB of L1, 6×256 KB of L2, and 12 MB
of shared L3 cache. Unless otherwise mentioned, we run our experiments on a
benchmark instance representing the road network of (Western) Europe, made
available by PTV AG for the 9th DIMACS Implementation Challenge [13]. The
original instance has n = 18 · 106 vertices, m = 42 · 106 arcs, and travel times
as the cost function. Following Delling et al. [11], we augment it by setting turn
costs to 100 s for U-turns (and zero otherwise).
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Fig. 3. Customization time up to given cell
sizes for various guidance steps

We first evaluate the effectiveness
of microinstructions. Each point in
Fig. 3 represents the total (sequential)
customization time up to a certain
cell size, using only microinstructions.
Each curve reflects a different guid-
ance step in the contraction order;
smaller steps mean heavier use of par-
tition information. Microinstructions
use 32-bit addresses, and the unrolling
threshold τ is 10.

It takes less than 2 s to run the mi-
croinstructions on the entire graph if
the maximum cell size is 16, and less
than 3 s for cells of size 256. Significantly larger cells are much more costly.
As expected, smaller guidance steps lead to better contraction orders (smaller
instruction arrays), but the effect is not overwhelming: step 4 is about as fast
as step 1.8, which is roughly equivalent to nested dissection. Given these re-
sults, for the remainder of this paper we only use microinstructions to customize
cells of size up to 256 (using 128, 64, 32, 16 and 8 as guidance levels), with 16
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Table 1. Time (in milliseconds) spent on each overlay level for different algorithms. The
total time includes 1.99 s to process the lowest overlay level (28) with microinstructions.

method 211 214 217 220 total

Dijkstra 1071 710 587 423 4783
4-Dijkstra 1245 850 717 541 5372
4-Dijkstra(SSE) 1036 627 439 327 4425
16-Dijkstra 1184 822 676 486 5161
16-Dijkstra(SSE) 1117 669 464 366 4608

Bellman-Ford 1164 840 753 589 5343
4-Bellman-Ford 930 723 710 603 4962
4-Bellman-Ford(SSE) 693 473 399 295 3852
16-Bellman-Ford 994 797 766 646 5197
16-Bellman-Ford(SSE) 512 335 291 230 3360

Floyd-Warshall 7802 7025 7414 6162 30403

(instead of 32) bits for addresses and τ = 50. To compute all shortcut lengths up
to this level, customization takes about 1.99 s to follow the 833 million (write)
instructions (which use about 3.1GB of RAM). In contrast, running Dijkstra-
based customization would take 15.23 seconds (even using a so-called phantom
level [11]), an order of magnitude slower.

We now consider higher levels. Our second experiment uses 5 levels, with
maximum cell sizes 28, 211, 214, 217, and 220. Table 1 reports the total time (on
a single core) to compute the shortcut lengths on each of the top 4 levels, as well
as the total customization time (including the 1.99 seconds for the lowest level).
It shows that individual executions of Dijkstra’s algorithm are slightly faster than
Bellman-Ford, and Floyd-Warshall is not competitive. Computing distances from
4 boundary vertices at once (prefix “4-” in the table) helps Bellman-Ford, but
hurts Dijkstra (which needs more scans). SSE instructions help both algorithms.
Due to better locality, the fastest approach is Bellman-Ford with 16 simultaneous
searches, which takes 1289ms to process the top 4 levels, less than half the time
taken by plain Dijkstra (2764ms). We therefore pick 16-Bellman-Ford with SSE
as our default approach for the top 4 levels (211, 214, 217, and 220).

Table 2 compares this default version of CRP with the original implementation
of CRP [11] and with CH [18], which has the fastest preprocessing time among
state-of-the-art two-phase algorithms. We include two versions of CH: a standard
implementation operates on the expanded graph, and a compact version uses
explicit turn tables. The latter, due to Geisberger and Vetter [19], was run on
a machine comparable to ours, a 2.6GHz dual 8-core Intel Xeon E5-2670 with
64GiB of DDR3-1600 RAM. We test our default instance as well as a version
with cheaper U-turns (1 s instead of 100 s). For CH, the customization time we
report corresponds to the entire preprocessing; when a metric changes, CH finds
a new order and a different set of shortcuts. The CH space includes shortcuts
only, and not original arcs. In every case, (random) query times (and scans) are
for finding the distance only. Queries are sequential and customization uses all
available cores (12 or 16).
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Table 2. Comparison between CRP and two different CH variants on Europe

U-turn: 1 s U-turn: 100 s

customizing queries customizing queries

time space nmb. time time space nmb. time
algorithm [s] [MiB] scans [ms] [s] [MiB] scans [ms]

CH compact [19] 410.90 219.42 624 0.27 1753.84 641.95 1998 2.27
CH expanded 1090.52 1442.88 386 0.17 1392.41 1519.48 404 0.19
CRP original [11] 2.10 61.72 3556 1.92 2.44 61.72 3805 1.96
CRP 0.35 70.49 2702 1.60 0.35 70.49 3009 1.64

CH has faster queries (and is more robust to metric changes) on the expanded
than on the compact graph, since it can use a more fine-grained contraction
order. CRP queries are slower, but still fast enough for interactive applications.
More importantly, our CRP customization takes only 0.35 seconds (on 12 cores)
and is at least three orders of magnitude faster than CH, with much lower metric-
dependent space requirements. It is also up to seven times faster than the original
CRP customization.

Fig. 3 suggests that a precomputed metric-independent order could lead to
faster CH customization times. Indeed, running our microinstruction-based cus-
tomization up to cells of size n/2 (about 9 million) with guidance step 2 takes
about 10.7 seconds (sequentially). Using the same same order for CH would lead
to comparable customization times. The number of shortcuts generated (231M)
is only twice the number of original arcs in the expanded graph (116M), but still
significant considering that CH (without witness searches) must keep all of them
for every metric. CH queries should be comparable to CRP, which performs only
1272 scans and takes 0.89ms on average in the resulting 21-level setup.

Our last experiment considers other benchmark instances. From the 9th DI-
MACS Challenge [13], we take PTV Europe and TIGER USA, each with two
cost functions: driving times (with 100 s U-turn costs) and distances. We also
consider OpenStreetMap (OSM) data (v. 121812) representing major landmasses
and with realistic turn restrictions. Finally, we test the instances used by Bing
Maps, which build on Navteq data and include actual turn costs and restrictions;
the proprietary “default” metric correlates well with driving times.

For each instance, Table 3 shows the average number of scans and running
time (over 100 random queries) of turn-aware Dijkstra, followed by the metric-
independent CRP preprocessing time and the amount of metric-independent
data generated. It then reports the customization time and the amount of metric-
dependent data produced, followed by average statistics about queries (over
100 000 runs): number of scans, time to get the length of the shortest path, and
time to get a full description of the path (length and underlying arcs). Queries
are sequential and use a (prewarmed) LRU cache for 218 shortcuts; preprocessing
and customization run on 12 cores. We use the default CRP settings in every
case, with a sixth overlay level (cell size 223) for the two largest instances.

The table shows that CRP is indeed robust, enabling consistently fast cus-
tomization and queries. It is slowest for OSM instances, which are very large
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Table 3. Performance of CRP on various benchmark instances

Dijkstra CRP

queries prepro custom queries

n cost scans time time space time space nmb. dist path
source input [×106] func [×106] [ms] [s] [MiB] [ms] [MiB] scans [ms] [ms]

PTV Europe 18.0 dist 9.1 3069 796 4151 351 70.5 2916 1.86 2.43
Europe 18.0 time 15.2 6093 796 4151 347 70.5 3009 1.64 1.81

TIGER US 23.9 dist 12.1 4790 617 6649 677 111.1 3088 1.84 2.78
US 23.9 time 13.2 6124 617 6649 664 111.1 2964 1.60 1.89

OSM Australia 4.9 time 3.4 919 79 531 44 4.6 1108 0.27 0.40
S.America 11.4 time 9.2 2549 222 2520 256 20.4 1238 0.32 0.61
N.America 162.7 time 115.8 70542 2752 18675 1202 199.1 2994 1.60 3.63
Old World 189.4 time 127.0 77121 3650 21538 1234 195.4 2588 1.49 4.20

Bing N.America 30.3 dflt 28.3 11684 936 8125 762 136.6 3395 1.60 1.91
Europe 47.9 dflt 37.0 17750 1445 7872 602 120.7 3679 2.10 2.52

because (unlike other inputs) they use vertices to represent both intersections
and geometry. Even so, customization takes about a second, and queries take
under 2 milliseconds. Preprocessing time is dominated by partitioning. While
the amount of metric-dependent data is relatively small, instruction arrays can
be quite large. Metric-independent space usage could be reduced using smaller τ
or limiting microinstructions to smaller cells (than 256). Curiously, finding the
length of a path takes similar time on most instances, but describing the path
takes longer on OSM data. For every instance, customization is at least one order
of magnitude faster than a single Dijkstra search, and would still be faster even
if run sequentially. The main reason is the poor locality of Dijkstra’s algorithm,
whose working set is spread throughout the graph.

7 Final Remarks

We have significantly reduced the time needed to process a cost function to
enable interactive queries on road networks. Our customization is an order of
magnitude faster than the best previous method [11], and takes less time than
a single Dijkstra search. The ability to incorporate a new metric in fractions of
a second enables a host of new applications. For example, it allows personalized
cost functions: we could store a compact description of the preferences of each
user, and run customization on the fly whenever the user accesses the system.
Cost functions can even be tuned interactively (in less than a second). Our
approach can also be helpful in applications [4,17,24] that repeatedly compute
shortest paths on the same underlying graph with a changing cost function. Most
importantly, very fast customization has the potential to enable applications that
have not even been considered so far.

Acknowledgements. We thank D. Luxen for routable OSM instances [1],
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Abstract. This paper studies the problem of computing optimal jour-
neys in dynamic public transit networks. We introduce a novel algorith-
mic framework, called Connection Scan Algorithm (CSA), to compute
journeys. It organizes data as a single array of connections, which it scans
once per query. Despite its simplicity, our algorithm is very versatile. We
use it to solve earliest arrival and multi-criteria profile queries. More-
over, we extend it to handle the minimum expected arrival time (MEAT)
problem, which incorporates stochastic delays on the vehicles and asks
for a set of (alternative) journeys that in its entirety minimizes the
user’s expected arrival time at the destination. Our experiments on the
dense metropolitan network of London show that CSA computes MEAT
queries, our most complex scenario, in 272ms on average.

1 Introduction

Commercial public transit route planning systems are confronted with millions
of queries per hour [12], making fast algorithms a necessity. Preprocessing-based
techniques for computing point-to-point shortest paths have been very successful
on road networks [8,16], but their adaption to public transit networks [2,10] is
harder than expected [1,3,4]. The problem of computing “best” journeys comes
in several variants [14]: The simplest, called earliest arrival, takes a departure
time as input, and determines a journey that arrives at the destination as early
as possible. If further criteria, such as the number of transfers, are important,
one may consider multi-criteria optimization [7,9]. Finally, a profile query [6,7]
computes a set of optimal journeys that depart during a period of time (such
as a day). Traditionally, these problems have been solved by (variants of) Di-
jkstra’s algorithm on an appropriate graph model. Well-known examples are
the time-expanded and time-dependent models [6,10,14,15]. Recently, Delling et
al. [7] introduced RAPTOR. It solves the multi-criteria problem (arrival time and
number of transfers) by using dynamic programming directly on the timetable,
hence, no longer requires a graph or a priority queue.

In this work, we present the Connection Scan Algorithm (CSA). In its ba-
sic variant, it solves the earliest arrival problem, and is, like RAPTOR, not
graph-based. However, it is not centered around routes (as RAPTOR), but el-
ementary connections, which are the most basic building block of a timetable.

� Partial support by DFG grant WA654/16-1 and EU grant 288094 (eCOMPASS).
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c© Springer-Verlag Berlin Heidelberg 2013
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CSA organizes them as one single array, which it then scans once (linearly)
to compute journeys to all stops of the network. The algorithm turns out
to be intriguingly simple with excellent spatial data locality. We also extend
CSA to handle multi-criteria profile queries: For a full time period, it com-
putes Pareto sets of journeys optimizing arrival time and number of transfers.

Fig. 1. Delay-robust itinerary from Karls-
ruhe to Aachen, Germany. A user should
try to take the leftmost path. If transfers
fail, alternatives are available.

Finally, we introduce the minimum ex-
pected arrival time problem (MEAT).
It incorporates uncertainty [5,9,11] by
considering stochastic delays on the ve-
hicles. Its goal is to compute a set of
journeys that minimizes the user’s ex-
pected arrival time (at the destination).
The output can be viewed as a decision
graph that provides all relevant alter-
native journeys at stops where trans-
fers might fail (see Fig. 1). We extend
CSA to handle these queries very effi-
ciently. Moreover, we do not make use
of heavy preprocessing, thus, enabling
dynamic scenarios including train cancellations, route changes, real-time delays,
etc. Our experiments on the dense metropolitan network of London validate our
approach. With CSA, we compute earliest arrival queries in under 2ms, and
multi-criteria profile queries for a full period in 221ms—faster than previous
algorithms. Moreover, we solve the most complex of our problems, MEAT, with
CSA in 272ms, fast enough for interactive applications.

This paper is organized as follows. Section 2 sets necessary notion, and Sec-
tion 3 presents our new algorithm. Section 4 extends it to multi-criteria profile
queries, while Section 5 considers MEAT. The experimental evaluation is avail-
able in Section 6, while Section 7 contains concluding remarks.

2 Preliminaries

Our public transit networks are defined in terms of their aperiodic timetable,
consisting of a set of stops, a set of connections, and a set of footpaths. A stop p
corresponds to a location in the network where a passenger can enter or exit a
vehicle (such as a bus stop or train station). Stops may have associated minimum
change times, denoted τch(p), which represent the minimum time required to
change vehicles at p. A connection c models a vehicle departing at a stop pdep(c)
at time τdep(c) and arriving at stop parr(c) at time τarr(c) without intermediate
halt. Connections that are subsequently operated by the same vehicle are grouped
into trips. We identify them by t(c). We denote by cnext the next connection (af-
ter c) of the same trip, if available. Trips can be further grouped into routes. A
route is a set of trips serving the exact same sequence of stops. For correctness, we
require trips of the same route to not overtake each other. Footpaths enable
walking transfers between nearby stops. Each footpath consists of two stops with
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an associated walking duration. Note that our footpaths are transitively closed. A
journey is a sequence of connections and footpaths. If two subsequent connections
are not part of the same trip, their arrival-departure time-difference must be at
least the minimum change time of the stop. Because our footpaths are transitively
closed, a journey never contains two subsequent footpaths.

In this paper we consider several well-known problems. In the earliest arrival
problem we are given a source stop ps, a target stop pt, and a departure time τ .
It asks for a journey that departs from ps no earlier than τ and arrives at pt
as early as possible. The profile problem asks for the set of all earliest arrival
journeys (from ps to pt) for every departure at ps. Besides arrival time, we
also consider the number of transfers as criterion: In multi-criteria scenarios
one is interested in computing a Pareto set of nondominated journeys. Here, a
journey J1 dominates a journey J2 if it is better with respect to every criterion.
Nondominated journeys are also called to be Pareto-optimal. Finally, the multi-
criteria profile problem requests a set of Pareto-optimal journeys (from ps to pt)
for all departures (at ps).

Usually, these problems have been solved by (variants of) Dijkstra’s algorithm
on an appropriate graph (representing the timetable). Most relevant to our work
is the realistic time-expanded model [15]. It expands time in the sense that it
creates a vertex for each event in the timetable (such as a vehicle departing or
arriving at a stop). Then, for every connection it inserts an arc between its re-
spective departure/arrival events, and also arcs that link subsequent connections.
Arcs are always weighted by the time difference of their linked events. Special
vertices may be added to respect minimum change times at stops. See [14,15]
for details.

3 Basic Connection Scan Algorithm

We now introduce the Connection Scan Algorithm (CSA), our approach to pub-
lic transit route planning. We describe it for the earliest arrival problem and
extend it to more complex scenarios in Sections 4 and 5. Our algorithm builds
on the following property of public transit networks: We call a connection c
reachable iff either the user is already traveling on a preceding connection of
the same trip t(c), or, he is standing at the connection’s departure stop pdep(c)
on time, i. e., before τdep(c). In fact, the time-expanded approach encodes this
property into a graph G, and then uses Dijkstra’s algorithm to obtain optimal
sequences of reachable connections [15]. Unfortunately, Dijkstra’s performance is
affected by many priority queue operations and suboptimal memory access pat-
terns. However, since our timetables are aperiodic, we observe that G is acyclic.
Thus, its arcs may be sorted topologically, e. g., by departure time. Dijkstra’s
algorithm on G, actually, scans (a subsequence of) them in this order.

Instead of building a graph, our algorithm assembles the timetable’s connec-
tions into a single array C, sorted by departure time. Given source stop ps and
departure time τ as input, it maintains for each stop p a label τ(p) representing
the earliest arrival time at p. Labels τ(·) are initialized to all-infinity, except τ(ps),
which is set to τ . The algorithm scans all connections c ∈ C (in order), testing
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if c can be reached. If this is the case and if τarr(c) improves τ(parr(c)), CSA
relaxes c by updating τ(parr(c)). After scanning the full array, the labels τ(·)
provably hold earliest arrival times for all stops.

Reachability, Minimum Change Times and Footpaths. To account for minimum
change times in our data, we check a connection c for reachability by testing
if τ(pdep(c)) + τch(pdep(c)) ≤ τdep(c) holds. Additionally, we track whether a
preceding connection of the same trip t(c) has been used. We, therefore, maintain
for each connection a flag, initially set to 0. Whenever the algorithm identifies a
connection c as reachable, it sets the flag of c’s subsequent connection cnext to 1.
Note that for networks with τch(·) = 0, trip tracking can be disabled and testing
reachability simplifies to τ(pdep(c)) ≤ τdep(c). To handle footpaths, each time
the algorithm relaxes a connection c, it scans all outgoing footpaths of parr(c).

Improvements. Clearly, connections departing before time τ can never be reached
and need not be scanned. We do a binary search on C to identify the first rele-
vant connection and start scanning from there (start criterion). If we are only
interested in one-to-one queries, the algorithm may stop as soon as it scans a
connection whose departure time exceeds the target stop’s earliest arrival time.
Also, as soon as one connection of a trip is reachable, so are all subsequent
connections of the same trip (and preceding connections of the trip have al-
ready been scanned). We may, therefore, keep a flag (indicating reachability)
per trip (instead of per connection). The algorithm then operates on these trip
flags instead. Note that we store all data sequentially in memory, making the
scan extremely cache-efficient. Only accesses to stop labels and trip flags are
potentially costly, but the number of stops and trips is small in comparison. To
further improve spatial locality, we subtract from each connection c ∈ C the
minimum change time of pdep(c) from τdep(c), but keep the original ordering
of C. Hence, CSA requires random access only on small parts of its data, which
mostly fits in low-level cache.

4 Extensions

CSA can be extended to profile queries. Given the timetable and a source stop ps,
a profile query computes for every stop p the set of all earliest arrival journeys
to p for every departure from ps, discarding dominated journeys. Such queries are
useful for preprocessing techniques, but also for users with flexible departure (or
arrival) time. We refer to the solution as a Pareto set of (τdep(ps), τarr(pt)) pairs.

In the following, we describe the reverse p–pt-profile query, which is needed
in Section 5. The forward search works analogously. Our algorithm, pCSA (p
for profile), scans once over the array of connections sorted by decreasing depar-
ture time. For every stop it keeps a partial (tentative) profile. It maintains the
property that the partial profiles are correct wrt. the subset of already scanned
connections. Every stop is initialized with an empty profile, except pt, which is
set to a constant identity-profile. When scanning a connection c, pCSA evalu-
ates the partial profile at the arrival stop parr(c): It asks for the earliest arrival
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time τ∗ at pt over all journeys departing at parr(c) at τarr(c) or later. It then
updates the profile at pdep(c) by potentially adding the pair (τdep(c), τ

∗) to it,
discarding newly dominated pairs, if necessary.

Maintaining Profiles. We describe two variants of maintaining profiles. The first,
pCSA-P (P for Pareto), stores them as arrays of Pareto-optimal (τdep, τarr) pairs
ordered by decreasing arrival (departure) time. Since new candidate entries are
generated in order of decreasing departure time, profile updates are a constant-
time operation: A candidate entry is either dominated by the last entry or is
appended to the array. Profile evaluation is implemented as a linear scan over
the array. This is quick in practice, since, compared to the timetable’s period,
connections usually have a short duration. The identity profile of pt is handled
as a special case. By slightly modifying the data structure, we obtain pCSA-
C (C for constant), for which evaluation is also possible in constant time: When
updating a profile, pCSA may append a candidate entry, even if it is domi-
nated. To ensure correctness, we set the candidate’s arrival time τ∗ to that of
the dominating entry. We then observe that, independent of the input’s source
or target stop, profile entries are always generated in the same order. Moreover,
each connection is associated with only two such entries, one at its departure
stop, relevant for updating, and, one at its arrival stop, relevant for evaluation.
For each connection, we precompute profile indices pointing to these two en-
tries, keeping them with the connection. Furthermore, its associated departure
time and stop may be dropped. Note that the space consumption for keeping
all (even suboptimal) profile entries is bounded by the number of connections.
Following [6], we also collect—in a quick preprocessing step—at each stop all
arrival times (in decreasing order). Then, instead of storing arrival times in the
profile entries, we keep arrival time indices. For our scenarios, these can be en-
coded using 16 (or fewer) bits. We call this technique time indexing, and the
corresponding algorithm pCSA-CT.

Minimum Change Times and Footpaths. We incorporate minimum change times
by evaluating the profile at a stop p for time τ at τ + τch(p). The trip bit is re-
placed by a trip arrival time, which represents the earliest arrival time at pt
when continuing with the trip. When scanning a connection c, we take the mini-
mum of the trip arrival time and the evaluated profile at parr(c). We update the
trip arrival time and the profile at pdep(c), accordingly. Footpaths are handled
as follows. Whenever a connection c is relaxed, we scan all incoming footpaths
at pdep(c). However, this no longer guarantees that profile entries are generated
by decreasing departure time, making profile updates a non-constant operation
for pCSA-P. Also, we can no longer precompute profile indices for pCSA-C.
Therefore, we expand footpaths into pseudoconnections in our data, as follows.
If pa and pb are connected by a footpath, we look at all reachable (via the
footpath) pairs of incoming connections cin at pa and outgoing connections cout
at pb. We create a new pseudoconnection (from pa to pb, departure time τarr(cin),
and arrival time τdep(cout)) iff there is no other pseudoconnection with a later or
equal departure time and an earlier or equal arrival time. Pseudoconnections can
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be identified by a simultaneous sweep over the incoming/outgoing connections
of pa and pb. During query, we handle footpaths toward pt as a special case of
the evaluation procedure. Footpaths at ps are handled by merging the profiles
of stops that are reachable by foot from ps.

One-to-One Queries. So far we described all-to-one profile queries, i. e., from all
stops to the target stop pt. If only the one-to-one profile between stops ps and pt
is of interest, a well-known pruning rule [6,14] can be applied to pCSA-P: Before
inserting a new profile entry at any stop, we check whether it is dominated by
the last entry in the profile at ps. If so, the current connection cannot possibly be
extended to a Pareto-optimal solution at the source, and, hence, can be pruned.
However, we still have to continue scanning the full connection array.

Multi-Criteria. CSA can be extended to compute multi-criteria profiles, opti-
mizing triples (τdep(ps), τarr(pt),# t) of departure time, arrival time and number
of taken trips. We call this variant mcpCSA-CT. We organize these triples hi-
erarchically by mapping arrival time τarr(pt) onto bags of (τdep(ps),# t) pairs.
Thus, we follow the general approach of pCSA-CT, but now maintain profiles
as (τarr(pt), bag) pairs. Evaluating a profile, thus, returns a bag. Where pCSA-CT
computes the minimum of two departure times, mcpCSA-CT merges two
bags, i. e., it computes their union and removes dominated entries. When it
scans a connection c, # t is increased by one for each entry of the evaluated bag,
unless c is a pseudoconncetion. It then merges the result with the bag of trip t(c),
and updates the profile at pdep(c), accordingly. Exploiting that, in practice, # t
only takes small integral values, we store bags as fixed-length vectors using # t
as index and departure times as values. Merging bags then corresponds to a
component-wise minimum, and increasing # t to shifting the vector’s values. A
variant, mcpCSA-CT-SSE, uses SIMD-instructions for these operations.

5 Minimum Expected Arrival Time

In this section we aim to provide delay-robust journeys that offer sensible backup
alternatives at every stop for the case that transfers fail. A tempting approach
might be to optimize reliability, introduced in [9], possibly together with other
criteria. While this produces journeys that have low failure probabilities on their
transfers, they are not necessarily robust in our sense: The set of reliable journeys
may already diverge at the source stop, and in general, no fall-back alternatives
are guaranteed at intermediate stops. On the other hand, on high-frequency
urban routes (such as subways) an unreliable transfer might not be a problem, if
the next feasible trip is just a few minutes away. To ensure that the user is never
left without guidance, we compute a subset of connections (rather than journeys)
such that at any point along the way, the user is provided with a good (in terms
of arrival time) option for continuing his journey toward the destination. We
propose to minimize the expected arrival time to achieve these goals.

We assume the following simple delay model: A connection c arrives at a ran-
dom time τRarr(c) but departs on time at τdep(c). All random arrival times are
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independent. No connection arrives earlier than its scheduled arrival time τarr(c).
To make computations meaningful, we assume an upper bound on all τRarr(c). We
further assume that walking is exact. Note that more complex stochastic mod-
els have been considered in [5,11], containing dependent random variables to
model delays. In this case, however, such models also propagate data errors (be-
sides delays), therefore, requiring precise delay data [5], which is hard to obtain
in practice. Also, even basic operations in [11] have super-quadratic running
time (in the number of connections), making the approach impractical, already
for medium-sized timetables.

For a given target stop pt, we define for every subset S of connections of the
timetable and for every connection c the expected arrival time τ̂ (S, c) at pt, re-
cursively. Let c1 . . . cn ⊆ S be the connections that the user can transfer to at c’s
arrival stop parr(c), ordered by departure time τdep(ci) (adjusted for footpaths
and minimum change times). We define

τ̂ (S, c) = min
{
τ̂ (S, cnext),

n+1∑
i=1

P
[
τdep(ci−1) ≤ τRarr(c) < τdep(ci)

]
· τ̂(S, ci)

}
where τdep(c0) = τarr(c), τdep(cn+1) = ∞, τ̂ (S, cn+1) = ∞, and τ̂ (S, cnext) = ∞
if c is the last connection of trip t(c). The base of the recursion is defined by the
connections c arriving at pt, for which we define τ̂ (S, c) = E[τRarr(c)]. If the pos-
sibility of the user not reaching the target is non-zero, the expected arrival time
is trivially ∞. Since a connection is assumed to never arrive early, τ̂ (S, c) only
depends on connections departing later than c, which guarantees termination.
(This is where we require aperiodicity; in periodic networks infinite recursions
may occur.) In short, we compute the average over the expected arrival times
of each outgoing connection from the stop parr(c), weighted by the probability
of the user catching it. We define the minimum expected arrival time τ̂∗(c) of
a connection c as the minimum τ̂(S, c) over all subsets S. A subset S∗ mini-
mizes τ̂∗(c), if for every stop p the set of pair (τdep(c), τ̂ (S

∗, c)) induced by those
c ∈ S∗ that depart at p, does not include dominated connections. (A pair is
dominated, if, wrt. another pair, it departs earlier with higher expected arrival
time.) Note that removing a dominated pair’s connection improves τ̂ (·). Also, all
subsets with this property have the same τ̂ (·) and therefore S∗ is globally opti-
mal. At least one subset S∗ exists that is optimal for every c, because removing
dominated connections is independent of c.

To solve the minimum expected arrival time problem (MEAT), we compute
a set S∗, and output the reachable connections for the desired source stop and
departure time. Our algorithm is based directly on pCSA-P, with a different
meaning for its stop labels: Instead of mapping a departure time τdep to the
corresponding earliest arrival time τarr at pt, the algorithm now maps τdep to the
corresponding minimum expected arrival time τ̂∗ at pt. It does so by maintaining
an array of nondominated (τdep, τ̂∗) pairs. For a connection c, the label at
stop parr(c) is evaluated by a linear scan over that array: Following from the
recursive definition above, the minimum expected arrival time τ̂∗(c) is computed
by a weighted summation of each of the expected arrival times τ̂∗ collected during
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Table 1. Size figures for our timetables including figures of the time-dependent (TD),
colored time-dependent (TD-col), and time-expanded (TE) graph models [6,14,15]

Figures London Germany Europe

Stops 20 843 6 822 30 517
Trips 125 537 94 858 463 887
Connections 4 850 431 976 678 4 654 812
Routes 2 135 9 055 42 547
Footpaths 45 652 0 0
Expanded Footpaths 8 436 763 0 0

TD Vertices (Arcs) 97 k (272 k) 114 k (314 k) 527 k (1 448 k)
TD-col Vertices (Arcs) 21 k (71 k) 20 k (86 k) 79 k (339 k)
TE Vertices (Arcs) 9 338 k (34 990 k) 1 809 k (3 652 k) 8 778 k (17 557 k)

this scan multiplied with the success probability of the corresponding transfer
at parr(c). An optimization, called earliest arrival pruning, first runs an earliest
arrival query from the source stop and then only processes connections marked
reachable during that query. Note that, since during evaluation we scan over
several outgoing connections, pCSA-C is not applicable.

6 Experiments

We ran experiments pinned to one core of a dual 8-core Intel Xeon E5-2670
clocked at 2.6GHz, with 64GiB of DDR3-1600 RAM, 20MiB of L3 and 256KiB
of L2 cache. We compiled our C++ code using g++ 4.7.1 with flags -O3 -mavx.

We consider three realistic inputs whose sizes are reported in Table 1. They
are also used in [6,10,7], but we additionally filter them for (obvious) errors,
such as duplicated trips and connections with non-positive travel time. Our
main instance, London, is available at [13]. It includes tube (subway), bus, tram,
Dockland Light Rail (DLR) and is our only instance that also includes footpaths.
However, it has no minimum change times. The German and European networks
were kindly provided by HaCon [12]. Both have minimum change times. The
German network contains long-distance, regional, and commuter trains operated
by Deutsche Bahn during the winter schedule of 2001/02. The European network
contains long-distance trains, and is based on the winter schedule of 1996/97. To
account for overnight trains and long journeys, our (aperiodic) timetables cover
one (London), two (Germany), and three (Europe) consecutive days.

We ran for every experiment 10 000 queries with source and target stops cho-
sen uniformly at random. Departure times are chosen at random between 0:00
and 24:00 (of the first day). We report the running time and the number of label
comparisons, counting an SSE operation as a single comparison. Note that we
disregard comparisons in the priority queue implementation.

Earliest Arrival. In Table 2, we report performance figures for several algo-
rithms on the London instance. Besides CSA, we ran realistic time-expanded
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Table 2. Figures for the earliest arrival problem on our London instance. Indicators are:
• enabled, ◦ disabled, – not applicable. “Sta.” refers to the start criterion. “Trp.” indi-
cates the method of trip tracking: connection flag (◦), trip flag (•), none (×). “One.” in-
dicates one-to-one queries by either using the stop criterion or pruning.

#Scanned #Reachable #Relaxed #Scanned #L.Cmp. Time
Alg. St

a.
T
rp
.

O
ne
.

Arcs/Con. Arcs/Con. Arcs/Con. Footpaths p. Stop [ms]

TE – – ◦ 20 370 117 — 5739 046 — 977.3 876.2
TD – – ◦ 262 080 — 115 588 — 11.9 18.9
TD-col – – ◦ 68 183 — 21 294 — 3.2 7.3
CSA ◦ ◦ ◦ 4 850 431 2 576 355 11 090 11 500 356.9 16.8
CSA • ◦ ◦ 2 908 731 2 576 355 11 090 11 500 279.7 12.4
CSA • • ◦ 2 908 731 2 576 355 11 090 11 500 279.7 9.7

TE – – • 1 391 761 — 385 641 — 66.8 64.4
TD – – • 158 840 — 68 038 — 7.2 10.9
TD-col – – • 43 238 — 11 602 — 2.1 4.1
CSA • • • 420 263 126 983 5 574 7 005 26.6 2.0
CSA • × • 420 263 126 983 5 574 7 005 26.6 1.8

Dijkstra (TE) with two vertices per connection [15] and footpaths [14], realistic
time-dependent Dijkstra (TD), and time-dependent Dijkstra using the optimized
coloring model [6] (TD-col). For CSA, we distinguish between scanned, reachable
and relaxed connections. Algorithms in Table 2 are grouped into blocks.

The first considers one-to-all queries, and we see that basic CSA scans all
connections (4.8M), only half of which are reachable. On the other hand, TE
scans about half of the graph’s arcs (20M). Still, this is a factor of four more
entities due to the modeling overhead of the time-expanded graph. Regarding
query time, CSA greatly benefits from its simple data structures and lack of
priority queue: It is a factor of 52 faster than TE. Enabling the start criterion
reduces the number of scanned connections by 40%, which also helps query time.
Using trip bits increases spatial locality and further reduces query time to 9.7ms.
We observe that just a small fraction of scanned arcs/connections actually im-
prove stop labels. Only then CSA must consider footpaths. The second block
considers one-to-one queries. Here, the number of connections scanned by CSA
is significantly smaller; journeys in London rarely have long travel times. Since
our London instance does not have minimum change times, we may remove trip
tracking from the algorithm entirely. This yields the best query time of 1.8ms on
average. Although CSA compares significantly more labels, it outperforms Dijk-
stra in almost all cases (also see Table 4 for other inputs). Only for one-to-all
queries on London TD-col is slightly faster than CSA.

Profile and Multi-Criteria Queries. In Table 3 we report experiments for (multi-
criteria) profile queries on London. Other instances are available in Table 4.
We compare CSA to SPCS-col [6] (an extension of TD-col to profile queries)
and rRAPTOR [7] (an extension of RAPTOR to multi-criteria profile queries).



52 J. Dibbelt et al.

Table 3. Figures for the (multi-criteria) profile problem on London. “#Tr.” is the max.
number of trips considered. “Arr.” indicates minimizing arrival time, “Tran.” transfers.
“Prof.” indicates profile queries. “#Jn.” is the number of Pareto-optimal journeys.

#L.Cmp. Time
Algorithm #

T
r.

A
rr
.

T
ra
n.

P
ro
f.

O
ne
.

# Jn. p. Stop [ms]

SPCS-col – • ◦ • ◦ 98.2 477.7 1 262
SPCS-col – • ◦ • • 98.2 372.5 843
pCSA-P – • ◦ • ◦ 98.2 567.6 177
pCSA-P – • ◦ • • 98.2 436.9 161
pCSA-C – • ◦ • – 98.2 1 912.5 134
pCSA-CT – • ◦ • – 98.2 1 912.5 104

rRAPTOR 8 • • • ◦ 203.4 1 812.5 1 179
rRAPTOR 8 • • • • 203.4 1 579.6 878
rRAPTOR 16 • • • • 206.4 1 634.0 922
mcpCSA-CT 8 • • • – 203.4 15 299.8 255
mcpCSA-CT-SSE 8 • • • – 203.4 1 912.5 221
mcpCSA-CT-SSE 16 • • • – 206.4 3 824.9 466

Note that in [7] rRAPTOR is evaluated on two-hours range queries, whereas we
compute full profile queries. A first observation is that, regarding query time,
one-to-all SPCS is outperformed by all other algorithms, even those which ad-
ditionally minimize the number of transfers. Similarly to our previous experi-
ment, CSA generally does more work than the competing algorithms, but is,
again, faster due to its cache-friendlier memory access patterns. We also observe
that one-to-all pCSA-C is slightly faster than pCSA-P, even with target pruning
enabled, although it scans 2.7 times as many connections because of expanded
footpaths. Note, however, that the figure for pCSA-C does not include the post-
processing that removes dominated journeys. Time indexing further accelerates
pCSA-C, indicating that the algorithm is, indeed, memory-bound. Regarding
multi-criteria profile queries, doubling the number of considered trips also dou-
bles both CSA’s label comparisons and its running time. For rRAPTOR the dif-
ference is less (only 12%)—most work is spent in the first eight rounds. Indeed,
journeys with more than eight trips are very rare. This justifies mcpCSA-CT-
SSE with eight trips, which is our fastest algorithm (221ms on average). Note
that using an AVX2 processor (announced for June 2013), one will be able to
process 256bit-vectors in a single instruction. We, therefore, expect mcpCSA-
CT-SSE to perform better for greater numbers of trips in the future.

Minimum Expected Arrival Time. In Table 5 we present figures for the MEAT
problem on all instances. Besides running time, we also report output complex-
ity in terms of number of stops and arcs of the decision graph (see Fig. 1 for
an example). Real world delay data was not available to us. Hence, we fol-
low Disser et al. [9] and assume that the probability of a train being delayed
by t minutes (or less) is 0.99− 0.4 · exp(−t/8). After 30min (10min on London)
we set this value to 1. Moreover, we also evaluate performance when discretizing



Intriguingly Simple and Fast Transit Routing 53

Table 4. Evaluating other instances. Start criterion and trip flags are always used.

Germany Europe
#L.Cmp. Time #L.Cmp. Time

Algorithm #
T
r.

A
rr
.

T
ra
n.

P
ro
f.

O
ne
.

# Jn. p. Stop [ms] # Jn. p. Stop [ms]

TE – • ◦ ◦ ◦ 1.0 317.0 117.1 0.9 288.6 624.1
TD-col – • ◦ ◦ ◦ 1.0 11.9 3.5 0.9 10.0 21.6
CSA – • ◦ ◦ ◦ 1.0 228.7 3.4 0.9 209.5 19.5
TE – • ◦ ◦ • 1.0 29.8 11.7 0.9 56.3 129.9
TD-col – • ◦ ◦ • 1.0 6.8 2.0 0.9 5.3 11.5
CSA – • ◦ ◦ • 1.0 40.8 0.8 0.9 74.2 8.3

pCSA-CT – • ◦ • – 20.2 429.5 4.9 11.4 457.6 46.2

rRAPTOR 8 • • • ◦ 29.4 752.1 161.3 17.2 377.5 421.8
rRAPTOR 8 • • • • 29.4 640.1 123.0 17.2 340.8 344.9
mcpCSA-CT-SSE 8 • • • – 29.4 429.5 17.9 17.2 457.6 98.2

Table 5. Evaluating pCSA-P for the MEAT problem on all instances

Max. Delay Decision Graph All-To-One One-To-One One-To-One
Network [min] #Stops #Arcs Time [ms] Time [ms] Dis. Time [ms]

Germany 30 8 19 68.1 31.0 24.6
Europe 30 20 46 205.0 169.0 112.0
London 10 2 724 30 243 668.0 491.0 272.0

the probability function at 60 equidistant points [9]. We run pCSA-P on 10 000
random queries and evaluate both the all-to-one and one-to-one (with earliest
arrival pruning enabled) setting. Regarding output complexity, on the German
and European networks the resulting decision graphs are sufficiently small to be
presented to the user. They consist of 8 stops and 19 arcs on average (Germany),
roughly doubling on Europe. However, for London these figures are impracti-
cally large, increasing to 2 724 (stops) and 30 243 (arcs). Note that in a dense
metropolitan network (such as London), trips operate much more frequently,
therefore, many more alternate (and fall-back) journeys exist. These must all be
captured by the output. Regarding query time, pCSA-P computes solutions in
under 205ms on Germany and Europe for all scenarios. On London, all-to-one
queries take 668ms, whereas one-to-one queries can be computed in 272ms time.
Note that all values are still practical for interactive scenarios.

7 Final Remarks

In this work, we introduced the Connection Scan framework of algorithms (CSA)
for several public transit route planning problems. One of its strengths is the
conceptual simplicity, allowing easy implementations. Yet, it is sufficiently flexi-
ble to handle complex scenarios, such as multi-criteria profile queries. Moreover,
we introduced the MEAT problem which considers stochastic delays and asks for
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a robust set of journeys minimizing (in its entirety) the user’s expected arrival
time. We extended CSA to MEAT queries in a sound manner. Our experiments
on the metropolitan network of London revealed that CSA is faster than exist-
ing approaches, and computes solutions to the MEAT problem surprisingly fast
in 272ms time. All scenarios considered are fast enough for interactive applica-
tions. For future work, we are interested in investigating network decomposition
techniques to make CSA more scalable, as well as more realistic delay models.
Also, since CSA does not use a priority queue, parallel extensions seem promis-
ing. Regarding multimodal scenarios, we like to combine CSA with existing tech-
niques developed for road networks.
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Abstract. Transit Node Routing (TNR) is a fast and exact distance
oracle for road networks. We show several new results for TNR. First,
we give a surprisingly simple implementation fully based on contraction
hierarchies that speeds up preprocessing by an order of magnitude ap-
proaching the time for just finding a contraction hierarchy (which alone
has two orders of magnitude larger query time). We also develop a very
effective purely graph theoretical locality filter without any compromise
in query times. Finally, we show that a specialization to the online many-
to-one (or one-to-many) shortest path problem.

1 Introduction and Related Work

Route planning in road networks has seen a lot of results from the algorithm
engineering community in recent years. With Dijkstra’s seminal algorithm being
the baseline, a number of techniques preprocess the static input graph to achieve
drastic speedups. Contraction Hierarchies (CH) [1,2] is a speedup-technique that
has a convenient trade-off between preprocessing effort and query efficiency. Road
networks with millions of nodes and edges can be preprocessed in mere min-
utes while queries run in about a hundred microseconds. Transit Node Routing
(TNR) [3] is one of the fastest speed-up techniques for shortest path distance
queries in road networks. By preprocessing the input road network even further,
it yields almost constant-time queries, in the sense that nearly all queries can
be answered by a small number of table lookups. For a given node the long dis-
tance connections almost always enter an arterial network connecting a set of
important nodes – the access nodes. The set of these entrances for a particular
node is small on average. The union of all access node set is call the transit
node set. Once the this set is identified, a mapping from each node to its access
nodes and pair-wise distances between all transit nodes is stored. Preprocessing
needs to compute a table of distances between the transit nodes, the distances
to the access nodes, and information for a so-called locality filter. The filter in-
dicates whether the shortest path might not cross any transit nodes, requiring
an additional local path search.

Many TNR variants have a common drawback that preprocessing time for
TNR is significantly longer than for the underlying speed-up technique. Another
weakness is that the locality filter requires geometric information on the position
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of the nodes [4,5,6]. The presence of a geometric component in an otherwise
purely graph theoretical method can be viewed as awkward. There are several
examples of geometric ingredients in routing techniques being superseded by
more elegant and effective graph theoretical ones [7,8] with the locality filter of
TNR being the only survivor that is still competitive. Geisberger [6] uses CHs to
define transit node sets and for local searches, but still uses a geometric locality
filter and relies on Highway Hierarchies [9] for preprocessing. In lecture slides [10],
Bast describes a simple variant of CH-based preprocessing exploring a larger
search space than ours which also computes a super-set of the access nodes as it
omits post-search-stalling. No experiments are reported. The geometric locality
filter is not touched. In Section 4 we remove all these qualifications and present a
simple fully CH-based variant of TNR. It yields surprisingly good preprocessing
times and allows for a very effective fully graph-theoretical locality filter. A
related technique is Hub Labeling (HL) [11] which stores sorted CH search spaces,
intersecting them to obtain a distance. A sophisticated implementation can be
made significantly faster than TNR since it incurs less cache faults.

In Section 5 we further accelerate TNR queries for the special case that
there are many queries with fixed target (or source). This method can be even
faster than HL without incurring its space overhead. This can be compared with
RPHAST [12] which is also very fast but only works in a batched fashion, i.e.,
RPHAST needs to know all involved nodes in advance whereas our method can
decide about the source nodes for every individual s–t query without having to
update any precomputed information.

2 Preliminaries

We model the road network as a directed graph G = (V,E), with |E| = m edges
and |V | = n nodes. Nodes correspond to locations, e.g. a junction, and edges
to the connections between them. Each edge e ∈ E has an associated cost c(e),
where c : E → R+. It is called the weight. A path P = 〈s, v1, v2, . . . , t〉 in G is
a sequence of nodes such that there exists an edge between each node and the
next one in P . The length of a path c(P ) is the sum its edge weights. A path
with minimum cost between s, t ∈ V is called a shortest path and denoted by
d(s, t) with cost μ(s, t). Note that a shortest path need not be unique. A path
P = 〈v0, v1, . . . , vp〉 is called covered by a node v ∈ V if and only if v ∈ P .

2.1 Contraction Hierarchies

Contraction Hierarchies heuristically order the nodes by some measure of im-
portance and contract them one by one in this order. Contracting means that a
node is removed (temporarily) and as few shortcut edges as possible are inserted
to preserve shortest path distances. The CH search graph is the union of the
set of original edges and the set of shortcuts with edges only leading to more
important nodes. This graph is a directed acyclic graph (DAG). An important
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structural property of CHs is that for any two nodes s and t, if there is an s–
t-path at all, then there is also a shortest up-down path s–m–t where s–m uses
only upward edges and m–t uses only downward edges in the CH. The meeting
node m is the highest node on this path in the CH. This up-down-path can be
found by a variant of bidirectional Dijkstra where only edges to more important
nodes are relaxed. The search can be pruned at nodes that are more far away
from s or t than the best up-down-path seen so far.

Although the search spaces explored in CH queries are rather small, there is a
simple technique called stall-on-demand [7] that further prunes search spaces.We
use a simplified version of that technique, which leads to queries as fast as those
reported in [13]. For every node v that is the end point of a relaxed edge (u, v) it
is checked if there exists a downward edge (w, v). The edge is not relaxed if the
tentative distance of w plus the edge weight of (w, v) is less than the tentative
distance of u plus edge (u, v). If such a node w exists, edge (u, v) can’t be part of
a shortest path and thus v is not added into the queue. This is done by scanning
the edges incident to v. Computing a table of all pair-wise shortest path distances
for a set of nodes can be done by running a quadratic number of queries. While
this is already significantly faster with CH than with a naive implementation
of Dijkstra’s algorithm, tables can be computed much more efficiently with the
two-phase algorithm of Knopp et al. [14]. Given a set of sources S and targets
T , computing large distance tables is a matter of seconds since only O(|S|+ |T |)
half searches have to be conducted. The quadratic overhead to initialize and
update table entries is close to none for S ∪ T = O(

√
n). We refer the interested

reader to [2,14] for further details of the method.

3 Transit Node Routing

TNR in itself is not a complete algorithm, but a framework. A concrete instanti-
ation has to find solutions to the following degrees of freedom: It has to identify
a set of transit nodes. It has to find access node for all nodes. And it has to deal
with the fact that some queries between nearby nodes cannot be answered via
the transit nodes set. We now define and introduce the generic TNR framework,
conceive a concrete instantiation and then discuss an efficient implementation.

Definition 1. Formally, the generic TNR framework consists of

1. A set T ⊆ V of transit nodes.
2. A distance table DT : T × T → R+

0 of shortest path distances between the
transit nodes.

3. A forward (backward) access node mapping A↑ : V → 2T (A↓ : V → 2T ).
For any shortest s–t-path P containing transit nodes, A↑(s) (A↓(t)) must
contain the first (last) transit node on P .

4. A locality filter L : V × V → {true, false}. L(s, t) must be true when no
shortest path between s and t is covered by a transit node. False positives
are allowed, i.e., L(s, t) may sometimes be true even when a shortest path
contains a transit node.
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Note that we use a simplified version of the generic TNR framework. A more
detailed description is in Schultes’ Ph.D. dissertation [7]. During preprocessing,
T ,DT , A

↑, A↓, and some information sufficient to evaluate L is precomputed. An
s–t-query first checks the locality filter. If L is true, then some fallback algorithm
is used to handle the local query. Otherwise,

μ(s, t) = μmin(s, t) := min
as∈A↑(s)
at∈A↓(t)

{dA↑(s, as) +DT (as, at) + dA↓(at, t)}. (1)

4 CH Based TNR

Our TNR variant (CH-TNR) is based on CH and does not require any geometric
information. We start by selecting a set of transit nodes. Note that local queries
are only implicitly defined and we find a locality filter to classify them. For
simplicity, we assume that the graph is strongly connected.

Selection of Transit Nodes. CHs order the nodes in such a way that nodes
occurring in many shortest paths are moved to the upper part of the hierarchy.
Hence, CHs are a natural choice to identify a small node set which covers many
shortest paths in the road network. We chose a number of transit nodes |T | = k
and select the highest k nodes from the CH data structure [2]. This choice of T
also allows us to exploit valuable structural properties of CHs. A distance table
of pair-wise distances is built on this set with a CH-based implementation of the
many-to-many algorithm of Knopp et al. [14].

Finding Access Nodes. We only explain how to find forward access nodes
from a node s. The computation of backward access nodes works analogously.
We will show that the following simple and fast procedure works: Run a forward
CH query from s. Do not relax edges leaving transit nodes. When the search
runs out of nodes to settle, report the settled transit nodes.

Lemma 1. The transit nodes settled by the above procedure find a superset of
the access nodes of s together with their shortest path distance.

Proof. Consider a shortest s–t-path P := 〈s, . . . , t〉 that is covered by a node
u ∈ T . Assume that u is the highest transit node on P . A fundamental property
of CH is that we can assume P to consist of upward edges leading up to u
followed by downward edges to t. Moreover, the forward search of a CH query
finds a shortest path to u. Thus, a CH query also finds a shortest path to the
first transit node v on P . It remains to show that the pruned forward search of
CH-TNR preprocessing does not prune the search before settling v. This is the
case since pruning only happens when settling transit nodes and we have defined
v to be the first transit node on P .

This superset of access nodes is then reduced using post-search-stalling [7]:
∀t1, t2 ∈ A↑(v): if dA↑(v, t1) +DT (t1, t2) ≤ dA↑(v, t2), discard access node t2.
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Lemma 2. Post-search-stalling yields a set of access nodes that is minimal in
the sense that it only reports nodes that are the first transit node on some shortest
path starting on s.

Proof. Consider a transit node t that is found by our search which is not an
access node for s, i.e., there is an access node u on every shortest path from s
to t. By Lemma 1, our pruned search found the shortest path to u but did not
relax edges out of u. Hence, the only way t can be reported is that it is reported
with a distance larger than the shortest path length. Hence, t will be removed by
post-search-stalling.

Query. Equation (1) is used to compute an upper bound on the shortest path
distance. When the locality filter returns true, an additional local CH query is
performed that is pruned at transit nodes.

Search Space Based Locality Filter. Consider a shortest path query from
s to t. Let S̄↑(s) denote the sub-transit-node search space considered by a CH
query from s, i.e., those nodes v settled by the forward search from s which are
not transit nodes. Analogously, let S̄↓(t) denote the sub-transit-node CH search
space backwards from t. If these two node sets are disjoint, all shortest up-down-
paths from s to t must meet in the transit node set and hence, we can safely
set L(s, t) = false. Conversely, if the intersection is non-empty, there might be
a meeting node below the transit nodes corresponding to a shortest path not
covered by a transit node. A very simple locality filter can be implemented by
storing the sub-transit-node search spaces which are computed for finding the
access nodes anyway.

Lemma 3. The locality filter described above fulfils Definition (1).

Proof. We assume for s, t ∈ V \T , the distance μ(s, t) �= μmin(s, t) and thus
μ(s, t) < μmin(s, t). Then the meeting node m of a CH query is not a transit
node, and it has to be in the forward search space for s, S̄↑(s) and in the backward
search space for t, S̄↓(t). Hence, S̄↑(s) ∩ S̄↓(t) �= ∅.

The opposite is not true: There can be false positives, when the intersection
of two search spaces S↑(s) and S↓(t) includes a non-transit-node ū, but the
actual meeting node is a transit node. Then, μ(s, t) = μmin(s, t). Preliminary
experiments indicate that the average size of these search spaces are much smaller
than the full search spaces, e.g. 32 in instead of 112 in the main test instance
from Section 6. For the locality filter, only node IDs need to be stored. Compared
to hub labelling which has to store full search spaces and also distances to nodes
this is already a big space saving.

If we are careful to number the nodes in such a way that nearby nodes usually
have nearby IDs, the node IDs appearing in a search space will often come from a
small range. We compute and store these values in order to facilitate the following
interval check : When [min(S̄↑(s)),max(S̄↑(s))] ∩ [min(S̄↓(t)),max(S̄↓(t))] = ∅,
we immediately know that the search spaces are disjoint. As the sole locality
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filter this would incur too many false positives but it works sufficiently often to
drastically reduce the average overhead for the locality filter. We now discuss a
much more accurate lossy compression of the search spaces.

Graph Voronoi Label Compression. Note that the locality filter remains
correct when we add nodes to the search spaces. We do this by partitioning
the graph into regions and define the extended search space as the union of all
regions that contain a search space node. This helps compression since we can
represent a region using a single id, e.g., the number of a node representing
the region. This also speeds up the locality filter since instead of intersecting
the search spaces explicitly, it now suffices to intersect the (hopefully smaller)
sets of block ids. Hence, we want partitions that are large enough to lead to
significant compression, yet small and compact enough to keep the false positive
rate small. Our solution if a purely graph theoretical adaptation of a geometric
concept. Our blocks are graph Voronoi regions of the transit nodes. Formally,

Vor(v) := {u ∈ V : ∀w ∈ T \ {v} : μ(u, v) ≤ μ(u,w)}

for v ∈ T with ties broken arbitrarily. The intuition behind this is that a positive
result of the locality filter means that the search spaces of start and destination
come at least close to each other. Computing the Voronoi regions is easy, using a
single Dijkstra run with multiple sources on the reversed input graph, as shown
by Mehlhorn [15]. We call this filter the graph Voronoi filter.

5 TNR Based Many-to-One Computations

Consider a scenario where we have to find many s–t-shortest path distances for
a fixed t. The case for fixed s works analogously. For example, this might be
interesting for generalizations of A* search to multiple criteria where we can
use exact single-criteria searches for pruning the search space. Although we can
use Dijkstra’s algorithm here (one backward search from t) for precomputing
all single-criteria distances, this is expensive when the A* search touches only a
small fraction of the nodes.

The idea is to precompute v–t-distances for all transit nodes v ∈ T and to
store them in a separate array T . This can be done using |A↓(v)| · |T | table
lookups accessing only |A↓(t)| rows of the distance table. Note that T is likely
to fit into cache. For a fast locality filter specialized for a particular target node,
one can employ highly localized backward search from t, explicitly precomputing
the nodes requiring a local query. A non-local query with distance can compute
the distance as

μ(s, t) = min
a∈A↑(s)

dA↑(s, a) + T [a].

Note that this takes time linear rather than quadratic in the number of access
nodes and only incurs cache faults for scanning A↑(s). Preliminary experiments
indicate that this method can yield an order of magnitude in query time im-
provement compared to TNR (to around 100ns for the European instance).



Transit Node Routing Reconsidered 61

Table 1. Scalability experiment with 10 000 transit nodes

Cores CH Dist. Table Exploration Total

[s] Spdp Eff. [s] Spdp Eff. [s] Spdp Eff. [s] Spdp. Eff.

1 513 1 1 9.0 1 1 500 1 1 1046 1 1
2 281 1.83 0.91 5.1 1.74 0.88 287 1.74 0.87 596 1.75 0.88
3 203 2.53 0.84 3.9 2.23 0.76 202 2.48 0.83 432 2.42 0.81
4 160 3.20 0.80 2.9 3.16 0.79 145 3.43 0.86 334 3.13 0.78

4 (HT) 137 3.75 0.47 2.2 4.01 0.50 101 4.93 0.62 265 3.95 0.49

6 Experimental Evaluation

We implement our algorithms and data structures in C++ and test the perfor-
mance on a real-world data set. The source code is compiled with GCC 4.6.1
setting optimization flags -O3 and mtune=native. Our test machine is an Intel
Core i7-920, clocked at 2.67 GHz with four cores and 12 GiB of RAM. It runs
Linux kernel version 2.6.34

Our CH variant implements the shared-memory parallel preprocessing algo-
rithm of Vetter [16] with a hop limit of 5 and 1 000 settled nodes for witness
searches and 7 hops or 2 000 settled nodes during the actual contraction of nodes.
The priority function is

2 · edgeQuotient + 4 · originalEdgeQuotient+ nodeDepth.

We experiment on the road network of Western Europe provided for the 9th
DIMACS challenge on shortest paths [17] by PTV AG. The graph consists of
about 18 015 449 nodes and 22 413 128 edges with 32 bit integer edge weights
representing travel time. The resulting hierarchy has 39 256 327 edges. The fol-
lowing experiments are conducted with a transit node set of size 10 000, if not
mentioned otherwise, because key results from previous work were based on the
same number of transit nodes, e.g. [5].

The following design choices are used throughout the experiments. Forward
and backward search spaces are merged into one set for the locality filter. For-
ward and backward access node sets are also merged into one set. But note that
these two sets are distinct in our implementation.

As the ID of a node does not contain any particular information, node IDs
can be changed to gain algorithmic advantages. This renumbering is done by
applying a bijective permutation on the IDs, in order to ensure that each ID
stays unique. We alter the labels of the nodes in V so that T = {0, . . . , k − 1}.
By proceeding this way, we can easily determine if a node v is a transit node
or not (during further preprocessing and during the query): v ∈ T if and only
if v < k. T is renumbered with the so-called input-level strategy, while V \T is
ordered by the (greedy) DFS Increasing strategy. This makes the interval check
a very effective “pre-filter” for the locality filter.
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We test the scalability of parallel preprocessing for a varying number of cores
in Table 1. The raw results of parallelizable parts (preprocessing, distance table
generation and exploration) have a quite high variance of about 10%. Hence, we
measured the preprocessing five times and averaged over all runs. The values
reported in column Total are the sum of the respective averages. Column Cores
gives the numbers of cores used. Columns CH, Dist. Table, Exploration measure
time, speedup and efficiency of the respective parts. The bottom line reports on
four CPUs with activated hyper-threading (HT).

We see that the total preprocessing time is only about a factor of two larger
than plain CH preprocessing. Most additional work is due to search space ex-
ploration from each node. We see that the different parts of the algorithm scale
well with an increasing number of cores. The total efficiency is slightly lower
than the efficiency of the individual parts, as it includes about 23.6 seconds of
non-parallelized work due to the Voronoi computation. It does not reflect the
performance of real cores, but HT comes virtually for free with modern commod-
ity processors. We choose 1 000 000 million source/target pair at random. The
rate of local queries is only 0.58 %. On average a non-local query takes 1.22 μs,
while a local query takes 28.6 μs on average. This results in an overall average
query time of 1.38 μs and the space overhead amounts to 147 Bytes per node.
The high value for local queries is expected behavior.

We compare to previous approaches for our test instance. Some of these im-
plementations were tested on an older AMD machine [7] that was still available
for running the queries1. Table 2 shows Reported values as given in the respective
publications denoted by From, while columns Compared give preprocessing and
running times either done on or normalized to the aforementioned AMD machine
using one core. Therefore, similar to the methodology in [18], a scaling factor of
1.915 is determined by measuring preprocessing and query times on both ma-
chines using a smaller graph (of Germany). Scaled numbers are indicated by a
star symbol: �. Values for CH were measured with our implementation. The sim-
plest TNR implementation is GRID-TNR that splits the input graph into grid
cells and computes a distance table between the cells border nodes. Note that the
numbers for GRID-TNR were computed on a graph of the USA, but the char-
acteristics should be similar to our test instance. Preprocessing is prohibitively
expensive while the query is about 20 times slower than ours. The low space
consumption is due to the fact that it is trivial to construct a locality filter for
grid cells. For HH-TNR [7] and TNR+AF [18], preprocessing is single-threaded.
The corresponding scaling factor for preprocessing is 3.551 and the fastest HH
based TNR variant is still slower by about a factor of two for preprocessing and
queries. Note that the HH-based methods all implement a highly tuned TNR
variant with multiple levels that is much more complex than our method. While
TNR+AF has faster queries by about 25%, the (scaled) preprocessing is about
an order of magnitude slower and the space overhead is twice as much. Also,
TNR+AF requires a sophisticated implementation with a partitioning step and
the computation of arc flags.

1 Note that a current off-the-shelf commodity machine is about 2–3 times faster.
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Table 2. Comparison Between Various Distance Oracles

Preprocessing Query

Reported Compared Overhead Reported Compared
Method From [hh:mm] [hh:mm] [byte] [μs] [μs]

CH - 00:03 00:05 24 103 246

Grid-TNR [5] ≈20:00 ≈20:00 21 63 63
HH-TNR-eco [7] 00:25 00:25 120 11 11
HH-TNR-gen [7] 01:15 01:15 247 4.30 4.30
TNR+AF [18] 03:49 03:49 321 1.90 1.90
HL-0 local [19] 00:03 00:35 1341 0.7 1.34 �
HL-∞ global [19] 06:12 ≈120:00 1055 0.254 0.49 �
HLC [20] 00:30 00:59 100 2.989 5.74 �

CH-TNR - 00:05 00:34 147 1.38 3.27

Hub labeling (HL) allows much faster queries than CH-TNR because accessing
just two label sets is very cache efficient. However, HL has much higher space
consumption. Using sophisticated label compression methods, HLC [20] remedies
the space consumption problem however at the cost of becoming slower than
CH-TNR since decompression incurs a significant number of cache faults. Note
that CH-TNR is not highly tuned for space consumption yet. Even the simple
methods outlined in Section 7 are likely to equalize the space difference to HLC.

The preprocessing times reported in Table 2 should be interpreted with care
since they are executed on different machines and sometimes with parallel pre-
processing. In particular, the somewhat faster preprocessing of HL-0 compared
to CH-TNR uses three times more cores, 20% faster clock speed and 50% larger
L3 cache. Indeed, CH-TNR has somewhat faster sequential preprocessing time
(17.4 minutes) than HL-O (17.9 minutes) despite using a slower machine.

The quality of our locality filter is compared to other TNR implementations
in Table 3. These variants differ in the number of transit nodes and in the graph

Table 3. Comparison of locality filter quality

Method From |T | Local False
[%] [%]

Grid-TNR [5] 7 426 2.6 -
Grid-TNR [5] 24 899 0.8 -
LB-TNR [21] 27 843 - -
HH-TNR-eco [7] 8 964 0.54 81.2
HH-TNR-gen [7] 11 293 0.26 80.7

CH-TNR - 10 000 0.58 73.6
CH-TNR - 24 000 0.17 72.1
CH-TNR - 28 000 0.14 72.1
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used to determine them. Nevertheless, the graphs are road networks and exhibit
similar characteristics. The number of transit nodes for CH-TNR is chosen to
resemble data from literature. The fraction of local queries of our variant is lower
than or on par with numbers from literature. Also, the rate of false positives is
much lower than previous work. Most noteworthy, the recent method of LB-TNR
applies sophisticated optimization techniques, but does not produce a transit
node set with superior locality as the rate of local queries is virtually the same.

7 Conclusions and Future Work

We have shown that a very simple implementation of CH-TNR yields a speedup
technique for route planning with an excellent trade-off between query time,
preprocessing time, and space consumption. In particular, at the price of twice
the (quite fast) preprocessing time of contraction hierarchies, we get two or-
ders of magnitude faster query time. Our purely graph theoretical locality filter
outperforms previously used geometric filters. To the best of our knowledge,
this eliminates the last remnant of geometric techniques in competitive speedup
techniques for route planning. This filter is based on intersections of CH search
spaces and thus exhibits an interesting relation to the hub labelling technique.

When comparing speedup techniques, one can view this as a multi-objective
optimization problem along the dimensions of query and preprocessing time,
space consumption, and simplicity. Any Pareto-optimal, i.e. non-dominated,
method is worthwhile considering. Good methods should have a significant ad-
vantage with respect to at least one measure without undue disadvantages for
any other dimension. In this respect, CH-TNR fares very well. Only hub labelling
achieves significantly better query times but at the price of much higher space
consumption, in particular when comparable preprocessing times are desired.
The simple variants of hub labeling have even worse space consumption and less
clear advantages in query time. When looking for clearly simpler techniques than
CH-TNR, plain CHs come into mind but at the price of two orders of magnitude
larger query time and a surprisingly small gain in preprocessing time.

CH-TNR also has significant potential for further performance improvements.
Our variant of CH-TNR focuses on maximal simplicity except for the Voronoi
filter which is needed for space efficiency. But there are many further improve-
ments that will not drastically change the position of CH-TNR in the landscape
of speedup techniques. But they could yield noticeable improvements with re-
spect to query time, preprocessing time, or space at the price of more complicated
implementation. We now outline some of these possibilities:

Query Time: In Section 5 we have seen that for the special case of many-to-one
queries can be accelerated by another order of magnitude being the fastest known
technique for this use case. But also the general case can be further accelerated.
As in [18] we expect about twice faster queries by combining CH-TNR with arc
flags for an additional sense of goal direction. The additional preprocessing time
could be much smaller than in [18] by using PHAST [22] for fast parallel one-
to-all shortest paths. Local queries can be accelerated by introducing additional
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layers as in HH-TNR. Alternatively, we could use hub labelling for local queries.
This is still much more space efficient than full hub labelling and very simple
since we need to compute local (sub-transit-node) search spaces anyway. This
variant of CH-TNR can be viewed as a generalization of hub labelling that saves
space and preprocessing time at the price of larger query times.

Preprocessing Time: Besides CH construction the most time consuming part
or CH-TNR preprocessing is the exploration of the sub transit node CH search
spaces for finding access nodes and partition representatives. This can probably
be accelerated by a top-down computation as in [19]. Note that using post-search-
stalling we still get optimal sets of access nodes. Finding Voronoi regions might
be parallelizable to some extent since it explores a very low diameter graph.

Space: There are a number of relatively simple low level tuning opportuni-
ties here. For example, we can more aggressively exploit overlaps between for-
ward/backward access nodes and search space representatives. These “dual use”
nodes need to be stored only in the access nodes set together with a flag indicat-
ing that they are also a region representatives. We could also encode backward
distances to access nodes as differences to forward distances. As in HH-TNR we
could also encode access nodes of most nodes as the union of the access nodes
of their neighbors. Further details are given in the technical report [23].

Acknowledgements. We would like to thank Daniel Delling and Renato Wer-
neck for providing additional numbers for the HL methods.
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Abstract. We present a new quantum-inspired evolutionary algorithm,
the attractor population QEA (apQEA). Our benchmark problem is a
classical and difficult problem from Combinatorics, namely finding low-
discrepancy colorings in the hypergraph of arithmetic progressions on the
first n integers, which is a massive hypergraph (e. g., with approx. 3.88�
1011 hyperedges for n � 250 000). Its optimal low-discrepancy coloring
bound Θ� 4

√
n� is known and it has been a long-standing open problem to

give practically and/or theoretically efficient algorithms. We show that
apQEA outperforms known QEA approaches and the classical combina-
torial algorithm (Sárközy 1974) by a large margin. Regarding practica-
bility, it is also far superior to the SDP-based polynomial-time algorithm
of Bansal (2010), the latter being a breakthrough work from a theoreti-
cal point of view. Thus we give the first practical algorithm to construct
optimal colorings in this hypergraph, up to a constant factor. We hope
that our work will spur further applications of Algorithm Engineering to
Combinatorics.

Keywords: estimation of distribution algorithm, quantum-inspired evo-
lutionary algorithm, hypergraph coloring, arithmetic progressions, algo-
rithm engineering, combinatorics.

1 Introduction

Experimentation is emerging as a tool in Combinatorics. For example, experi-
mentation is used in a Polymath project on one of the most challenging open
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problems of Paul Erdős on homogeneous arithmetic progressions. In this paper
we contribute to both, experimental algorithms for difficult discrepancy prob-
lems and highly-parallel evolutionary computation within the class of estimation
of distribution algorithms (EDA).

Quantum-inspired evolutionary algorithms (QEA) belong to the class of EDAs,
more precisely to the class of univariate EDAs. An EDA maintains a prob-
ability distribution, also called model, μ on the set of possible solutions, say
{0, 1}k. Sampling μ yields concrete solutions, which can be used to tune μ with
the intent to sample better solutions next time. In a univariate EDA, mod-
els of a simple kind are considered, namely which treat all of the k coordi-
nates as independent random variables. Thus μ can be represented as a vector
Q � �Q1, . . . , Qk� � �0, 1�

k with Qi stating the probability of sampling 1 in coor-
dinate i. Univariate EDAs have been studied since the 90ies; in 2002 [5], the term
“quantum-inspired” was coined, based on the observation that the Q1, . . . , Qk be-
have similar to k qubits in a quantum computer: each is in a state between 0 and
1, and only upon observation takes on states 0 or 1 with certain probabilities.
Hence what we call “sampling” is also called “observing” in the literature. We
call the QEA from [5] the standard QEA (sQEA). It uses an attractor, which
is the best solution found so far. The model is tuned towards the attractor in
each generation. We stick to the term “quantum-inspired” since our version of
univariate EDA also uses the idea of an attractor. A burden that comes with
QEAs is the possibility of premature convergence, meaning: each Qi moves close
to one of the extremes (0 or 1), so the model Q essentially locks onto one par-
ticular solution, before a sufficiently good solution is found – and the algorithm
does not provide a way to escape this dead end. We will show how our new QEA
successfully deals with this problem.

We briefly introduce the hypergraph of arithmetic progressions and the dis-
crepancy problem. Given a, d, � � N0 � {0, 1, 2, 3, . . .}, the set Aa,d,�

:� {a� id; 0 � i 	 �} is the arithmetic progression (AP) with starting point
a, difference d, and length �. It contains exactly � numbers, namely a, a� d, a�
2d, . . . , a���
1� d. For n � N we callAn :�{Aa,d,� � {0, . . . , n
 1} ; a, d, � � N0}
the set system or hypergraph of arithmetic progressions in the first n inte-
gers. Elements of An are called hyperedges and elements of the ground set
V :� {0, . . . , n
 1} are called vertices. The cardinality of An is approximately
n2 log�n��2; we will give a proof in the full version. Often, the ground set is
{1, . . . , n} in the literature, but for our purposes starting at 0 is notationally
more convenient. A coloring is a mapping χ : V � {
1,�1}. Given a coloring
χ and an AP E � V we have its discrepancy discχ�E� :�

∣∣∑
v�E χ�v�

∣∣. The
discrepancy of An with respect to χ is discχ�An� :� maxE�An χ�E�.

Previous and Related Work. Univariate EDAs have been studied since the 90ies,
see, e. g.,, [2,13,7,5,15]. For a recent survey on general EDAs see [8] and the
references therein. Particularly influential for our work have been [5] and [15],
where sQEA and vQEA are presented, respectively. vQEA extends the attractor
concept in a way to allow for better exploration. But for the discrepancy problem,
vQEA is not well suited for reasons explained later. In recent years, variants of
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QEAs have been successfully used on benchmark as well as on difficult practice
problems, see, e. g.,, [1,10,11,14,6].

For An, in 1964, it was shown by Roth [16] that there is no coloring with dis-
crepancy below Ω� 4

√
n�. More than 20 years later, it was shown by Matoušek and

Spencer [12] that there exists a coloring with discrepancy O� 4
√
n�, so together

with the earlier result we have Θ� 4
√
n�. The proof is non-constructive, and the

problem of efficiently computing such colorings remained open. For many years,
Sárközy’s approximation algorithm (see [4]) was the best known, provably at-
taining discrepancy O� 3

√
n log�n��; experiments suggest that (asymptotically) it

does not perform better than this guarantee. Recently, in a pioneering work, the
problem was solved by Bansal [3], using semi-definite programs (SDP). However,
Bansal’s algorithm requires solving a series of SDPs that grow in the number
of hyperedges, making it practically problematic for An. In our experiments,
even for n 	 100, it requires several hours to complete, whereas our apQEA
(in a parallel implementation) only requires a couple of minutes up to n �
100 000. Computing optimal low-discrepancy colorings for general hypergraphs is
NP-hard [9].

Our Contribution. We use the problem of computing low-discrepancy colorings
in An in order to show limitations of sQEA and how a new form of QEA can
successfully overcome these limitations. Our new QEA uses an attractor popula-
tion where the actual attractor is repeatedly selected from. We call it attractor
population QEA (apQEA). The drawback of sQEA appears to be premature
convergence, or in other words, a lack of exploration of the search space. We
show that even by reducing the learning rate drastically in sQEA and by using
local and global migration, it does not attain the speed and solution quality of
apQEA. In addition to the exploration capabilities of apQEA, we show that –
with an appropriate tuning of parameters – it scales well in the number of par-
allel processors: when doubling the number of processor cores from 96 to 192,
running times reduces to roughly between 40% and 60%.

We also look at the combinatorial structure of An. Based on an idea by
Sárközy (see [4]) we devise a modulo coloring scheme, resulting in a search space
reduction and faster fitness function evaluation. This, together with apQEA,
allows us to compute low-discrepancy colorings that are optimal up to a constant
factor, in the range up to n � 250 000 vertices. For this n, the cardinality of
An is approx. 3.88 � 1011, which means a massive hypergraph. Precisely, we
compute colorings with discrepancy not more than 3 4

√
n; we call �3 4

√
n� the target

discrepancy. We have chosen factor 3, because this appeared as an attainable goal
in reasonable time in preliminary experiments. Better approximations may be
possible with other parameters and more processors and/or more time. Colorings
found by our algorithm can be downloaded1 and easily verified.

Our problem sizes are a magnitude beyond that of the Polymath project. Of
course, our problem is different, but related and in future work we plan to access
the Erdős problem with our approach.

1 http://www.informatik.uni-kiel.de/~lki/discap-results.tar.xz

http://www.informatik.uni-kiel.de/~lki/discap-results.tar.xz
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Algorithm 1. sQEA
1 in parallel for each model Q � �Q1, . . . , Qk� �M do
2 initialize model Q :� �1�2, . . . , 1�2�;
3 initialize attractor a :� random solution;
4 repeat
5 a :� best attractor over all models;
6 sample Q yielding x � {0, 1}k;
7 if f�x� � f�a� then
8 for i � 1, . . . , k do if xi � ai then

Qi :�

{
max {0, Qi 
Δ�Qi�} if ai � 0

min {1, Qi �Δ�Qi�} if ai � 1

9 else a :� x;
10 until satisfied or hopeless or out of time;

2 Description of Algorithms

Fitness Function and Shortcutting. As fitness function (FF), we use the negative
of the discrepancy, so higher fitness is better. The sample space is of the form
{
1,�1}k, but we will often write {0, 1}k, where 0 means 
1. The concrete
choice of k will be explained in Sec. 3. In a QEA, given two solutions x and x�

with known fitness f�x��, it is often enough to decide whether f�x� � f�x��
and only in this case it will be required to compute f�x� exactly. If we can
determine that f�x� � f�x��, then we do not need the exact value of f�x�. Since
discrepancy involves a maximum, it provides an opportunity for shortcutting: as
soon as a hyperedge is found in which discrepancy w.r.t. x is at least as high as
disc�x��, evaluation can be aborted and f�x� � f�x�� can be reported. This is
a big time-saver, e. g., for n � 100 000 vertices, on average we require about 2
milliseconds for a shortcut FF evaluation and about 790 milliseconds for a full
one – and for apQEA there are usually many more shortcut ones than full ones.

Standard QEA (sQEA). A basic version of sQEA [5] is given as Alg. 1. The set
M typically comprises 1 to 100 models; they are distributed among the available
processors. For each model, an attractor a is maintained. Each iteration of the re-
peat loop is called a generation. In each generation, each of the models is sam-
pled, and if the sample x cannot beat the attractor,2 learning takes place: the
model is shifted slightly towards a, where x and a differ. Linear learning means
using a fixed amount, e. g.,, Δ�Qi� � Δ � 1

100 . In [5,15] rotation learning is used:
the point �

√
1
Qi,

√
Qi� in the plane is rotated either clockwise (if ai � 0) or

counter-clockwise (if ai � 1), and the new value of Qi becomes the square root of
2 The original description suggests using f�x� � f�a� as the test, so the sample is not

required to beat the attractor but to be at least as good as the attractor. We will
comment on this later.
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the new ordinate. This is inspired by quantum computing; an actual benefit could
be that towards the extremes (0 and 1) shifts become smaller. We will test sQEA
and vQEA with linear as well as rotation learning and stick to linear learning for
apQEA. The learning resolution gives the number of possible values that each Qi

can assume inside �0, 1�. For linear learning, this is 1
Δ . For rotation learning, this

is determined by the angle by which we rotate; it is typically between 0.01π and
0.001π. Since the interval is �0, π�2�, this means a learning resolution between 50
and 500. As an extension, multiple samples can be taken in line 6 and the model is
only shifted if none of them beats the attractor (an arbitrary one of them is chosen
for the test xi � ai). If one of the samples beats the attractor, the best one is used
to update the attractor in line 9. We always use 10 samples.

What happens in line 5 is called synchronization or migration. Another exten-
sion, intended to prevent premature convergence, is the use of local and global
migration. Models are bundled into groups, and the attractor of a model Q is set
to the best attractor over all models in Q’s group (local migration). Only every
Tg generations, the best attractor over all models is used (global migration). We
call Tg the global migration period.

The repeat loop stops when we are “satisfied or hopeless or out of time”.
We are satisfied in the discrepancy problem when the discrepancy is lesser or
equal to 3 4

√
n. A possible criterion for hopelessness is when all the models have

only very little entropy left. Entropy is a measure of randomness, defined as∑k
i�1
 log�Qi�, which is at its maximum k when Qi �

1
2 for all i, and at its

minimum 0 if Qi � {0, 1} for all i. In all our experiments with sQEA, we will
impose a simple time limit guided by the times needed by apQEA.

Versatile QEA (vQEA). vQEA [15] works similar to sQEA with the exception that
the attractor update in line 9 is carried out unconditionally. The description given
in [15] states that the attractor of each model in generation t�1 is the best sample
from generation t, over all models. This means that parallel processes have to syn-
chronize after each generation. and also that at least one sample per generation
must be fully evaluated, so only limited use of shortcutting is possible.

Attractor Population QEA (apQEA). Our new QEA, the apQEA, is given as
Alg. 2. It strikes a balance between the approaches of sQEA and vQEA. In
sQEA, the attractor essentially follows the best solution and only changes when
better solutions are found, while in vQEA the attractor changes frequently and
is also allowed to assume inferior solutions. In apQEA, the attractor population
P is a set of solutions. From it, attractors are selected, e. g., using tournament
selection. When a sample cannot improve the population (f�x� � f0) the model
is adjusted. Otherwise the solution is injected into the population. The number
of generations that a particular attractor stays in function is called the attractor
persistence; we fix it to 10 in all our experiments. Note that apQEA will benefit
from shortcutting since f�x� has only to be computed when f�x� � f0. Note
also that it is appropriate to treat the models asynchronously in apQEA, hence
preventing idle time: the attractor population is there, any process may inject
into it or select from it at any time (given an appropriate implementation).
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Algorithm 2. apQEA

1 randomly initialize attractor population P � {0, 1}k of cardinality S;
2 in parallel for each model Q � �Q1, . . . , Qk� �M do
3 initialize model Q :� �1�2, . . . , 1�2�;
4 repeat
5 a :� select from P;
6 do 10 times
7 f0 :� worst fitness in P;
8 sample Q yielding x � {0, 1}k;
9 if f�x� � f0 then

10 for i � 1, . . . , k do if xi � ai then

Qi :�

{
max {0, Qi 
Δ�Qi�} if ai � 0

min {1, Qi �Δ�Qi�} if ai � 1

11 else
12 inject x into P ;
13 trim P to the size of S, removing worst solutions;

14 until satisfied or hopeless or out of time;

A very important parameter is the size S of the population. We will see in
experiments that larger S means better exploration abilities. For the discrepancy
problem, we will have to increase S (moderately) when n increases.

Since the attractor changes often in apQEA, entropy oftentimes never reaches
near zero but instead oscillates around values like 20 or 30. A more stable
measure is the mean Hamming distance in the attractor population, i. e., 1

(S2)
�∑

{x,x�}�(P2) |{i; xi � x�i}|. However, it also can get stuck well above zero. To
determine a hopeless situation, we instead developed the concept of a flatline.
A flatline is a period of time in which neither the mean Hamming distance
reaches a new minimum nor a better solution is found. When we encounter a
flatline stretching over 25% of the total running time so far, we declare the sit-
uation hopeless. To avoid erroneously aborting in early stages, we additionally
demand that the relative mean Hamming distance, which is the mean Ham-
ming distance divided by k, falls below 1�10. Those thresholds were found to be
appropriate (for the discrepancy problem) in preliminary experiments.

3 Modulo Coloring

Let p � n be an integer. Given a partial coloringχ� : {0, . . . , p
 1} � {
1,�1},
i. e., a coloring of the first p vertices, we can construct a coloring χ by repeating
χ�, i. e., χ : V � {
1,�1} , v �� χ��v mod p�. We call χ� a generating coloring.
This way of coloring, with an appropriate p, brings many benefits. Denote Ep :�
A0,1,p � {0, . . . , p
 1}, this is an AP and also the whole set on which χ� lives.
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Assume that χ� is balanced, i. e., discχ��Ep� � 1. Let Aa,d,� be any AP and � �
qp� r with integers q, r and r 	 p. Then we have the decomposition:

Aa,d,� �
q�1

⊍
i�0

Aa�ipd,d,p︸ ︷︷ ︸
Bi:�

��Aa�qpd,d,r︸ ︷︷ ︸
Bq :�

. (1)

Assuming p is prime, we have Bi mod p :� {v mod p; v � Bi} � Ep for each
i � 0, . . . , q 
 1, so discχ�Bi� � discχ��Ep� � 1. It follows discχ�Aa,d,�� �
q discχ��Ep� � discχ�Bq� � q � discχ�Bq�. This is one of the essential ideas how
Sárközy’s O� 3

√
n log�n�� bound is proved and it gives us a hint (which was con-

firmed in experiments) that modulo colorings, constructed from balanced ones,
might tend to have low discrepancy. It is tempting to choose p very small, but
the best discrepancy we can hope for when coloring modulo p is �n�p�. Since we
aim for 3 4

√
n, we choose p as a prime number so that �n�p� is some way below

3 4
√
n, precisely we choose p prime with n�p � 5�2 � 4

√
n, i. e., p � 2�5 � n3�4.

Constructing balanced colorings is straightforward. Define h :� p�1
2 (so h �

Θ�n3�4�) and let x � {
1,�1}h. Then �x1, . . . , xh�1,
xh�1, . . . ,
x1, xh� defines
a balanced coloring of Ep. We could have chosen different ways of ordering the
entries of x and their negatives, but this mirroring construction has shown to
work best so far. We additionally alternate the last entry xh, so we use the
following generating coloring of length 2p:

�x1, . . . , xh�1,
xh�1, . . . ,
x1, xh, x1, . . . , xh�1,
xh�1, . . . ,
x1,
xh� . (2)

Modulo coloring has further benefits. It reduces the search space from {
1,�1}n

to {
1,�1}h, where h � Θ�n3�4�. Moreover, it allows a much faster FF evalu-
ation: we can restrict to those Aa,d,� with a � 2p 
 1. We also make use of a
decomposition similar to (1), but which is more complicated since we exploit the
structure of (2); details will be given in the full version. We omit APs which are
too short to bring discrepancy above the target, giving additional speedup.

4 Experiments and Results

Implementation and Setup. To fully benefit from the features of apQEA, we
needed an implementation which allows asynchronous communication between
processes. Our MPI-based implementations (version 1.2.4) exhibited unaccept-
able idle times when used for asynchronous communication, so we wrote our own
client-server-based parallel framework. It consists of a server process that man-
ages the attractor population. Clients can connect to it at any time via TCP/IP
and do selection and injection; the server takes care of trimming the population
after injection. Great care was put into making the implementation free of race
conditions. Most parts of the software is written in Bigloo3, an implementation
of the Scheme programming language. The FF and a few other parts are writ-
ten in C, for performance reasons and to have OpenMP available. OpenMP is
used to distribute FF evaluation across multiple processor cores. So we have a

3 http://www-sop.inria.fr/indes/fp/Bigloo/, version 3.9b-alpha29Nov12

http://www-sop.inria.fr/indes/fp/Bigloo/
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two-level parallelization: on the higher level, we have multiple processes treating
multiple models and communicating via the attractor population server. On the
lower level, we have thread parallelization for the FF. The framework provides
also means to run sQEA and vQEA. We always use 8 threads (on 8 processor
cores) for the FF. If not stated otherwise, a total of 96 processor cores is used.
This allows us to have 12 models fully in parallel; if we use more models then
the set of models is partitioned and the models from each partition are treated
sequentially. Experiments are carried out on the NECTM Linux Cluster of the
Rechenzentrum at Kiel University, with SandyBridge-EPTM processors.

Results for sQEA. Recall the important parameters of sQEA: number of mod-
els M , learning resolution R, global migration period Tg, and number of groups.
For R, we use 50, 100 and 500, which are common settings, and also try 1000,
2000, and 3000. In [6], it is proposed to choose Tg in linear dependence on R,
which in our notation and neglecting the small additive constant reads Tg � 2Rλ
with 1.15 � λ � 1.34. We use λ � 1.25 and λ � 1.5, so Tg � 2.5R and Tg � 3R.
In [6], the number of groups is fixed to 5 and the number of models ranges up to
100. We use 6 groups and up to 96 models. We use rotation learning, but made
similar observations with linear learning.

We fix n � 100 000 and do 3 runs for each set of parameters. Computation is
aborted after 15 minutes, which is roughly double the time apQEA needs to reach
the target discrepancy of 53. For sQEA as given in Alg. 1 best discrepancy we
reach is 57. We get better results when using f�x� 	 f�a� as the test in line 7,
i. e., we also accept a sample that is as good as the attractor and not require that
it is strictly better.4 The following table gives mean discrepancies for this variant.
The left number is for smaller Tg and the right for higher Tg, e. g., for M � 12 and
R � 50 we have 60 for Tg � 2.5 � 50 � 125 and 61 for Tg � 3 � 50 � 150.

R M � 12 M � 24 M � 48 M � 96

50 60 61 59 59 58 57 58 58
100 59 59 57 59 59 56 56 56
500 57 56 57 57 55 56 56 57

1000 57 57 56 55 57 56 58 59
2000 57 57 57 58 59 60 63 62
3000 56 57 59 58 61 61 64 65

Target discrepancy 53 is never reached. For two runs we reach 54, namely for
�M,R, Tg� � �24, 1000, 3000� and �96, 500, 1250�. But for each of the 2 settings,
only 1 of the 3 runs reached 54. There is no clear indication whether smaller or
larger Tg is better. Entropy left in the end generally increases with M and R.

We pick the setting �M,R, Tg� � �24, 1000, 3000�, which attained 54 in 1 run
and also has lowest mean value of 55, for a 5 hour run. In the 15 minutes runs
with this setting, entropy in the end was 48 on average. What happens if we
let the algorithm use up more of its entropy? As it turns out while entropy is
brought down to 16 during the 5 hours, only discrepancy 56 is attained.

The main problem with sQEA here is that there is no clear indication which
parameter to tune in order to get higher quality solutions – at least not within
4 Using f�x� � f0 in apQEA however has shown to be not beneficial.
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reasonable time (compared to what apQEA can do). In preliminary experiments,
we reached target discrepancy 53 on some occasions, but with long running times.
We found no way to reliably reach discrepancy 55 or better with sQEA.

Finally, for �M,R, Tg� � �24, 1000, 3000�, we do experiments for up to n �
200 000, with 3 runs for each n. The time limit is twice what apQEA requires on
average, rounded to the next multiple of 5. The following table for each n gives
the best result obtained over the 3 runs and the target for comparison.

n � 100 000 125 000 150 000 175 000 200 000

time limit in minutes 15 25 40 80 150
best sQEA result 54 60 63 68 69

target 53 56 59 61 63

Although we do multiple runs and allocate twice the time apQEA would need to
attain the target, the best result for sQEA stays clearly away from the target.

Results for vQEA. Recall that vQEA in generation t�1 unconditionally replaces
the attractor for each model with the best sample found during generation t.
vQEA does not use a groups and global migration period, instead all models form
a single group “to ensure convergence” [15]. Indeed, our experiments confirm that
vQEA has no problem with running out of entropy. We conducted 5 runs with
R � 50 and rotation learning for n � 100 000. In all of the runs, the target of 53
was hit with about 100 of entropy left. However, the time required was almost 2
hours.5 We also conducted 5 runs with linear learning, yielding the same solution
quality at a 12% higher running time. We also did a run for n � 125 000; there
vQEA attained the target discrepancy after 3.5 hours.

The high running times were to be expected since vQEA can only make lim-
ited use of shortcutting. Since we take multiple samples in each generation (10
for each model), FF evaluation from the second sample on can make use of
shortcutting. However, necessarily each generation takes at least the time of one
full FF evaluation. We conclude that while vQEA has impressive exploration
capabilities and delivers high solution quality “out of the box”, i. e., without any
particular parameter tuning, it is not well suited for the discrepancy problem.

Results for apQEA. Recall that the most important parameter for apQEA is the
attractor population size S. We fix R � 100 with linear learning and M � 12
and vary S in steps of 10. Computation is aborted when the target of 3� 4

√
n� is

hit (a success) or a long flatline is observed (a failure), as explained in Sec. 2. For
selecting attractors, we use tournament selection: draw two solutions randomly
from P and use the better one with 60% probability and the inferior one with 40%
probability (higher selection pressures appear to not help, this will be discussed
in the full version). For each n and appropriate choices of S, we do 30 runs and
record the following: whether it is a success or a failure, final discrepancy (equals
target discrepancy for successes), running time (in minutes), mean final entropy.
5 Even more, these 2 hours is only the time spent in FF evaluation. Total time was

about 4 hours, but we suspect this to be partly due to our implementation being
not particularly suited for vQEA resulting in communication overhead.
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For failures, we also record the time at which the last discrepancy improvement
took place (for successes, this value is equal to the running time). The following
table gives results grouped into successes and failures, all numbers are mean
values over the 30 runs.

successes failures
n

1000 S # disc time entropy # disc time entropy last imp.

100 20 28 53σ�00 05σ�01 38σ�09 02 54σ�00 08σ�01 22σ�01 06σ�01

100 30 30 53σ�00 07σ�01 63σ�12 00 na na na na
125 20 17 56σ�00 09σ�02 31σ�08 13 57σ�00 12σ�01 19σ�09 08σ�01

125 30 30 56σ�00 11σ�01 48σ�11 00 na na na na
150 30 26 59σ�00 16σ�02 46σ�11 04 60σ�00 23σ�02 32σ�09 16σ�02

150 40 30 59σ�00 20σ�02 62σ�10 00 na na na na
175 30 16 61σ�00 24σ�04 31σ�08 14 62σ�00 38σ�05 21σ�08 24σ�03

175 40 27 61σ�00 32σ�05 42σ�09 03 62σ�00 47σ�02 26σ�05 30σ�01

175 50 30 61σ�00 39σ�05 57σ�11 00 na na na na
200 30 02 63σ�00 38σ�02 22σ�06 28 65σ�01 47σ�08 24σ�17 30σ�05

200 50 28 63σ�00 53σ�08 44σ�08 02 64σ�00 76σ�06 28σ�02 53σ�03

200 60 30 63σ�00 74σ�15 53σ�12 00 na na na na

We observe that by increasing S, we can guarantee the target to be hit.
Dependence of S on n for freeness of failure appears to be approx. linear or
slightly super-linear; ratios of S to n�1000 for no failures are 0.30, 0.24, 0.27,
0.29, and 0.30. But even if S is one step below the required size, discrepancy is
only 1 away from the target (with an exception for n � 125 000 and S � 20,
where we recorded discrepancy 58 in 1 of the 30 runs). Running times for failures
tend to be longer than for successes, even if the failure is for a smaller S. This
is because it takes some time to detect a failure by the flatline criterion. Larger
S effects larger entropy; failures tend to have lowest entropy, indicating that the
problem is the models having locked onto an inferior solution. The table also
shows what happens if we do lazy S tuning, i. e., fixing S to the first successful
value S � 30 and then increasing n: failure rate increases and solution quality for
failures deteriorates moderately. The largest difference to the target is observed
for n � 200 000 and S � 30, namely we got discrepancy 67 in 1 of the 30 runs;
target is 63. For comparison, the best discrepancy we found via sQEA in 3 runs
for such n was 69 and the worst was 71. We conclude that a mistuned S does
not necessarily have catastrophic implications, and apQEA can still beat sQEA.

Convergence. We plot (Fig. 1) discrepancy over time for 2 runs: the first hour
of the 5-hour sQEA run with �M,R, Tg� � �24, 1000, 3000�; and 1 for apQEA
with S � 30, which is kept running after the target was hit (until the flatline
criterion leads to termination). sQEA is shown with a dashed line and apQEA
with a solid line. In the first minutes, sQEA brings discrepancy down faster, but
is soon overtaken by apQEA (which reaches 51 in 10 minutes, target is 53).

Effect of Parallelization. We double number of cores from 96 to 192 and increase
number of models to M � 24, so that they can be treated in parallel with 8 cores
each. The following table shows results for 5 runs for each set of parameters. First
considern � 175 000 and 200 000.The best failure-free settings forS are 30 and 50.
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Fig. 1. Discrepancy plotted over time for sQEA and apQEA

In comparison with the best failure-free settings for 96 cores, time is reduced to
17�39 � 44% and 42�74 � 57%, respectively. 50% or less would mean a perfect
scaling. When we do not adjustS, i. e., we use 50 and 60, time is reduced to 26�39 �
67% and 53�74 � 72%, respectively. We also compute for n � 250 000.

successes failures
n

1000 S # disc time entropy # disc time entropy last imp.

175 20 02 61σ�00 14σ�02 22σ�02 03 62σ�00 20σ�02 31σ�12 13σ�00

175 30 05 61σ�00 17σ�04 43σ�07 00 na na na na
175 50 05 61σ�00 26σ�03 72σ�12 00 na na na na
200 40 04 63σ�00 30σ�03 42σ�12 01 64σ�00 42σ�00 32σ�02 28σ�00

200 50 05 63σ�00 42σ�10 52σ�05 00 na na na na
200 60 05 63σ�00 53σ�08 60σ�11 00 na na na na
250 50 04 67σ�00 58σ�07 42σ�08 01 68σ�00 110σ�00 29σ�02 70σ�00

250 60 05 67σ�00 83σ�16 61σ�14 00 na na na na

5 Conclusion and Current Work

We have seen apQEA outperforming sQEA in terms of speed and solution qual-
ity by a large margin on the discrepancy problem. For this problem, apQEA is
easy to tune, since a single parameter, the size S of the attractor population, has
a clear and foreseeable effect: it improves solution quality (if possible) at the price
of an acceptable increase in running time. vQEA has shown that it is possible to
achieve the same solution quality as apQEAwithout parameter tuning, at the price
of an enormous running time and inter-process communication overhead. It may
be possible to have the best of both worlds in one algorithm, i. e., to get rid of the S
parameter in apQEA. Moreover we believe that it should be attempted to mathe-
matically analyze why vQEA and apQEA succeed where sQEA fails. We also plan
new applications of apQEA in the vast area of coloring of (hyper)graphs and other
combinatorial problems. Concerning arithmetic progressions, we will investigate
further ways to speed up the FF by exploiting combinatorial structures.
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Abstract. We propose a novel algorithm for computing the number of
ordered integer partitions with upper bounds. This problem’s task is to
compute the number of distributions of z balls into n urns with con-
strained capacities i1, . . . , in (see [10]). Besides the fact that this elemen-
tary urn problem has no known combinatoric solution, it is interesting
because of its applications in the theory of database preferences as de-
scribed in [3] and [9]. The running time of our algorithm depends only
on the number of urns and not on their capacities as in other previously
known algorithms.

1 Introduction

There is a lot of work about (not ordered) partition with all kinds of constraints
and some elementary results about ordered partitions without constraints (see
e.g. [1], [2], [5] and [8]), but unfortunately, nobody has yet deeply investigated
the problem of computing the number of ordered integer partition with upper
bounds. Although this problem is a nearby generalisation of the concept of the
composition of a natural number (see e.g. [8]) the problem with the additional
constraint of upper bounds seems not to be treated on a broader way till now. A
special case of the problem is treated in [10], but not from an algorithmic point
of view.

Our attention to this problem was attracted by the work in [3] and [9]. There
and in subsequent ongoing work it appears in the context of Preference SQL,
an extension of SQL allowing soft-conditions for filtering a selection in order
to avoid empty results. Therefore, the select-statement in Preference SQL is
enhanced by classic hard conditions in a post- and prefiltering phase, while
providing preference evaluation as an interim stage. Preferences are distinguished
as base preferences evaluating on a single attribute, and complex preferences
that are a composition of multiple preferences. Complex preferences conjugate
by ranking, prioritisation or Skyline-composition. For the latter one, there are a
lot of propositions how Skyline-computation can be done in an efficient manner.
Preference SQL embraces the modelling of Pareto-Skylines by using a so called
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© Springer-Verlag Berlin Heidelberg 2013
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better-than-graph, the Hasse diagram of an order on a (temporary) database
relation induced by the Pareto-preference. Having solved our tackled problem,
it is easy for us to determine the width of this graph. Beside this application, it
is an interesting expansion of the well-known urn problem and thus a solution
of everyday’s life problems.

The paper is organised as follows: Section 2 introduces the problem and fixes
some writing conventions. In Section 3 the basic idea of our algorithm is sketched
and illustrated by an example to which we will refer also in the following sec-
tions. A formal proof of the correctness is given in Section 4, whereas Section 5
is dedicated to the implementation and analysis of its running time. The predic-
tions of the theoretical analysis are reviewed in Section 6 which is dedicated to
our experimental results. Finally, we summarise our results and give an outlook
to future work in Section 7.

2 Basic Definitions

Definition 2.1. Given a sequence I = (i1, i2, . . . , in) of n positive integers and
an integer number z we call a sequence J = (j1, j2, . . . , jn) of n nonnegative
integers an ordered partition of z wrt. I if the following two requirements are
fulfilled:

1. ∀l ∈ {1 . . . n} : jl ≤ il

2.
n∑

k=1

jk = z

We call I the upper bounds and z the target value.

Our goal is to compute the number of distinct ordered partitions of z wrt. I. We
denote this number by #(I, z).

Since we consider in this paper only ordered partitions we will from now on
use the term partition instead of ordered partition. With upper case letters I and
J we refer to sequences of nonnegative (or positive, depending on the context)
integers. By |I| we denote the length of such a sequence.

Clearly, for all sequences I we have #(I, z) = 0 if z < 0 and #(I, 0) = 1.

Moreover, for a sequence I = (i1, i2, . . . , in) the equalities #(I,
n∑

k=1

ik) = 1 and

#(I, z) = 0 for arbitrary z >
n∑

k=1

ik hold trivially. In the case I = (i1) we obtain

#((i1), z) = 1 if 0 ≤ z ≤ i1 and #((i1), z) = 0 otherwise.

3 The Idea of the Algorithm

[9] and [3] give the following recursion formula for the number of partitions:

Lemma 3.1. The equality #((i1, i2, . . . , in), z) =
z∑

k=0

#((i1, i2, . . . , in−m), k) ·

#((in−m+1, in−m+2, . . . , in), z − k) holds for arbitrary m with 1 ≤ m ≤ n− 1.
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Using this formula one can reduce in a divide-and-conquer manner the com-
putation to smaller problems of the form #(I, z) with |I| ∈ {1, 2} (for these
cases there are shortcuts running in constant time). Although easy to prove (see
again [3] and [9]) and intuitively clear, this formula is unsatisfying from a com-
putational point of view. Its running time obviously depends on the i′ks and the
value of z, even if there are heuristics how to split up the sequence I advanta-
geously. In contrast, we will develop an algorithm with a running time depending
only on the length of the sequence of upper bounds under the assumption that
elementary arithmetic operation can be executed in constant time.

By setting m = n− 1 in Lemma 3.1 we obtain the following formula:

#((i1, i2, . . . , in), z) =

z∑
k=0

#((i1, i2, . . . , in−1), k) ·#((in), z − k) (1)

Since (in) is a single valued sequence the factor #(in, z− k) becomes either zero
or one. Our aim is to show that #(I, z) for a fixed sequence I can be written as
piecewise defined polynomials in z of degree at most |I| − 1.

z #((30), z)

−∞ < z ≤ −1 0

0 ≤ z ≤ 30 1

31 ≤ z < ∞ 0

z #((30, 50), z)

−∞ < z ≤ −1 0

0 ≤ z ≤ 30 z + 1

31 ≤ z ≤ 49 31

50 ≤ z ≤ 80 81− z

81 ≤ z ≤ ∞ 0

z #((30, 50, 10), z)

−∞ < z ≤ −1 0

0 ≤ z ≤ 9 z2

2
+ 3z

2
+ 1

10 ≤ z ≤ 30 11z − 44

31 ≤ z ≤ 40 − z2

2
+ 81z

2
− 479

41 ≤ z ≤ 49 341

50 ≤ z ≤ 59 − z2

2
+ 99z

2
− 884

60 ≤ z ≤ 80 −11z + 946

81 ≤ z ≤ 90 z2

2
− 183z

2
+ 4186

91 ≤ z < ∞ 0

Fig. 1. The Stages of the Algorithm

Before proving this formally we will illustrate our approach on an exam-
ple. Consider the sequence Ie = (30, 50, 10). We begin the recursion from For-
mula 1 with the sequence I1e = (30). Clearly we have #((30), z) = 0 for z < 0,
#((30), z) = 1 for 0 ≤ z ≤ 30 and #((30), z) = 0 for z ≥ 31. This is illus-
trated in the upper left table of Figure 1. To evaluate the next recurrence step,
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namely #((30, 50), z) =
z∑

k=0

#((30), k) · #((50), z − k), we investigate the rela-

tive behaviour of both the terms #((30), k) and #((50), z − k) occurring in the
sum. For z < 0 the sum is empty and therefore evaluates to zero, so we have
#((30, 50), z) = 0 for z < 0. The next stage is the case z ∈ [0, 30]. Then the term

#((50), z − k) evaluates to one, and we have #((30, 50), z) =
z∑

k=0

#((30), z) =

z+1. For z ∈ [31, 49] the term #((30), k) becomes zero for k ∈ [31, 49], whereas
#((50), z − k) equals always one. So we have #((30, 50), z) = 31. Next we con-
sider z ∈ [50, 80]. Then #((30), k) equals one for k ∈ [0, 30] and #((50), z − k)
equals one for k ∈ [0, z − 50], so both factors become simultaneously one iff
k ∈ [z − 50, 30], so here we have #((30, 50), z) = 81 − z. For z > 81 there are
no values for k where both the first and the second factor evaluate to a value
different from zero, so we have #((30, 50), z) = 0 for z > 81. Note that we did
compute the values of #((30, 50), z) via piecewise defined affine linear functions
which determine the value of #((30, 50), z). The situation is depicted in the
upper right table of Figure 1.

Till now we have piecewise defined polynomials in z of degree 1 for the value of

#((30, 50), z). For the next step we have to evaluate the term
z∑

k=0

#((30, 50), k) ·

#((10), z − k). Since #((10), z − k) equals 1 iff 0 ≤ z − k ≤ 10 and equals 0

otherwise the previous sum can be written as
z∑

k=z−10

#((30, 50), k). This means,

we have to sum up eleven consecutive values of #((30, 50), k), which can be

done using Gauß’s summation formula for the first n natural numbers, i.e.
n∑

i=0

=

n(n+1)
2 . To execute this purpose we have to examine the relative positions of the

interval [z− 10, z] and the validity intervals of the polynomials of #((30, 50), z),
i.e. the intervals ]−∞,−1], [0, 30], [31, 49], [50, 80] and [81,∞[. We will illustrate
this on a few examples; the rest is left to the reader.

First, for z < 0 we clearly have #((30, 50, 10), z) = 0.
The next case (z − 10 ∈ ]−∞,−1] ∧ z ∈ [0, 30]) is the range z ∈ [0, 9]. Here

we have
z∑

k=z−10

#((30, 50), k) =
z∑

k=0

#((30, 50), k) =
z∑

k=0

(k + 1) = z2

2 + 3z
2 + 1.

Now we consider the interval [10, 30], where [z − 10, z] ⊆ [0, 30]. Here we get
z∑

k=z−10

#((30, 50), k) =
z∑

k=z−10

(k+1), and simple arithmetic and Gauß’ formula

lead to the result 11z − 44.
Next we consider the case z − 10 ∈ [0, 30] ∧ z ∈ [31, 49]. This happens if

z ∈ [31, 40] and gives the formula
z∑

k=z−10

#((30, 50), k) =
30∑

k=z−10

(k+1)+
z∑

k=31

31,

which evaluates to − z2

2 + 81z
2 − 479.

The next cases are omitted here, but the reader can find the final result in
the lower table of Figure 1 and may compare it with his own results.
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4 Formal Proof

We will now formalise the ideas from the previous section. At the beginning we
need some definitions.

Definition 4.1. An interval partition of the integers is a finite sequence I =
(I0, I1, . . ., In) of nonempty intervals of the integers such that max(Ik) =

min(Ik+1)− 1 for all k ∈ {0, . . . , n− 1} holds and
n⋃

i=0

In = ZZ .

Obviously, for an interval partition (I0, I1, . . ., In) we have I0 =]−∞, z1] and
In = [z2,∞[ for some integers z1 and z2. An interval partition (I0, I1, . . ., In) is
called normalised if max(I0) = −1 holds. The number of intervals of an interval
partition I is also called its length and denoted by l(I).

During the example execution in Section 3 we got the interval partition Ie
= (] − ∞,−1], [0, 30], [31, 50], [51, 80], [81,∞[) with l(I) = 5, which is even
normalised.

Next we will formalise the splitting of an interval partition:

Definition 4.2. Given an interval partition I = (I0, I1, . . ., In) and a positive
integer z we define a relation ∼z⊆ ZZ × ZZ by x ∼z y =df ∃ i, j : x − z ∈
Ii ∧ y − z ∈ Ii ∧ x ∈ Ij ∧ y ∈ Ij .

Clearly, ∼z is an equivalence relation. Because x ∼z y implies x ∼z y′ for all
y′ with x ≤ y′ ≤ y (which is easy to verify) the equivalence classes of ∼z are
intervals of ZZ . Moreover, I0 and [min(In) + z,∞[ are equivalence classes of ∼z,
so ordering the equivalence classes of ∼z according to their minima or maxima
yields again an interval partition, called the interval partition induced by I and z
and denoted it by P(I, z). It is straightforward to see that the interval partition
induced by a normalised interval partition and an arbitrary positive integer is
also a normalised interval partition. For an interval partition I = (I0, I1, . . .,
In), a z ∈ IN+ and an interval J of P(I, z) we call the unique pair (Ii, Ij), given
by ∀x ∈ J : x − z ∈ Ii ∧ x ∈ Ij , the witness intervals of J and denote it by
ι(J ) Note that ι is an injective mapping due to the definition of ∼z.

In our example the interval partition induced by Ie and 10 is the sequence
(] − ∞,−1], [0, 10], [11, 30], [31, 40], [41, 50], [51, 60], [61, 80], [81, 90], [91,∞[).
The first five members of this sequence were also considered in Section 3. We
have e.g. ι([0, 10]) = (]−∞,−1], [0, 30]), ι([11, 30]) = ([0, 30], [0, 30])

There is an upper bound for the length of an induced interval partition:

Lemma 4.3. For an interval partition I = (I0, I1, . . ., In) and a positive in-
teger z we have the inequality l(P(I, z)) ≤ 2l(I)− 1.

Proof. We introduce a linear order on the set of witness intervals by (Ii1 , Ij1) <ι

(Ii2 , Ij2 ) ⇔ i1 < i2 ∨ (i1 = i2 ∧ j1 < j2). Clearly, (I0, I0) is the least element
wrt. this order, and (In, In) is its greatest element (note that both (I0, I0)
and (In, In) are indeed interval witnesses). Now we order the set of all interval
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witnesses according to <ι and obtain a chain (Ii0 , Ij0) <ι (Ii1 , Ij1) <ι . . . <ι

(Iim , Ijm) with i0 = j0 = 0 and im = jm = n. For two consecutive pairs (Iik , Ijk)
and (Iik+1

, Ijk+1
) of this sequence we have (ik+1 + jk+1)− (ik + jk) ∈ {1, 2} due

to the underlying definition of ∼z. Since i0 + j0 = 0 and im+ jm = 2n the claim
follows. �

After these definitions and lemmas concerning the partition of ZZ into intervals
we will now turn our attention back to integer partitions.

Lemma 4.4. Let I = (i1, i2, . . . , in) with n ≥ 2 be a sequence of n positive

integers and z ∈ ZZ . Then #(I, z) =
z∑

k=z−in

#((i1, i2, . . . , in−1), k) holds.

Proof. Let J = (j1, j2, . . . , jn) be a partition of z wrt. I. Then clearly
n−1∑
k=1

jk =

z − jn holds. So for a fixed jn there are exactly #((i1, i2, . . . , in−1), z − jn) par-
titions. Since jn has to be drawn from the interval [0, in] we have the equality

#(I, z) =
in∑
k=0

#((i1, i2, . . . , in−1), z − k), which leads to the claim after an ele-

mentary index shift. �

A basic fact we rely on is the so called Faulhaber’s formula (see e.g. [2] or [6]).

It states the equality
n∑

i=1

ip =
p∑

j=0

(
p
j

)Bp−j

j+1 nj+1 for p ∈ IN. Here Bl denotes the

l-th Bernoulli number (see also [2] or [6]).
An easy consequence of this formula is the following lemma:

Lemma 4.5. Consider two arbitrary natural numbers n and γ. Then the func-

tion σγ(z) : [γ,∞[→ ZZ , defined by σγ(z) =
z−γ∑
k=0

kn, is a polynomial in z of

degree n+ 1.

Proof. We show not only the claim but also how to compute the coefficients. First

there are coefficients a0, a1, . . ., an+1 with
z−γ∑
k=0

kn =
n+1∑
l=0

al · (z−γ)l according to

Faulhaber’s formula, as described in [6]. Due to the binomial theorem this sum

equals the sum
n+1∑
l=0

(al ·
l∑

m=0

(
l
m

)
· zm · (−γ)l−m). We define βlm =

(
l
m

)
(−γ)l−m

and obtain the term
n+1∑
l=0

(al ·
l∑

m=0
βlm · zm). After defining δm =

n+1∑
l=m

al · βlm this

leads to the desired result
n+1∑
m=0

δm · zm. �

The following corollary follows from the previous lemma by simple arithmetic
operations:
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Corollary 4.6. Let p(x) =
n∑

i=0

ai · xi be a polynomial of degree n and fix an

arbitrary natural number y. Then the function σ≥y : [y,∞[→ IR, defined by

σ≥y(z) =
z∑

i=y

p(i), is a polynomial of degree at most n + 1. An analogous claim

holds for the function σ≤y : [0, y] → IR, defined by σ≤y(z) =
y∑

i=z

p(i). Moreover,

the function σ−k : [k,∞[→ IR, defined by σ−k(z) =
z∑

i=z−k

p(i), is polynomial of

degree at most n.

Note that the coefficients of σ≥y, σ≤y and σ−k can be easily determined using
the coefficients from the proof of Lemma 4.5.

Now we are ready to prove the main result of this section:

Theorem 4.7. Let I = (i1, i2, . . . , in) be a sequence of n positive integers and
z a natural number. Then there are a normalised interval partition I0, I1, . . .,
Ir and polynomials p0(x), p1(x), . . ., pr(x) of degree at most n − 1 such that
#(I, z) = px(z) where Ix is the (unique) interval containing z. For r the in-
equality r ≤ 2n + 1 holds.

Proof. The proof is done via induction over |I|.
Induction Base: In the case |I| = 1 we chose the intervals I0 =] − ∞,−1],
I1 = [0, z] and I2 = [z + 1,∞[. For the polynomials we choose p0(x) = 0,
p1(x) = 1 and p2(x) = 0, and we are done.

Induction Step: Consider a sequence In+1 = (i1, i2, . . . , in+1) of n+1 positive
integers. Let In = (In0 , In1 , . . ., Inr ) and pn0 (x), p

n
1 (x), . . ., p

n
r (x) be a normalised

interval partition and polynomials with the properties from Theorem 4.7 wrt.
to the sequence (i1, i2, . . . , in). Denote by P(In, in+1) = (In+1

0 , In+1
1 , . . ., In+1

s )
the partition induced by In and in+1.

The inequality s ≤ 2n + 1 follows immediately from the induction hypothesis
and Lemma 4.3.

For the rest of the claim we consider an arbitrary interval In+1
m = [z1m, z2m]

from P(In, z), and denote its witness intervals by ι(In+1
m ) = (Inl , Inu ) = ([z1l , z

2
l ],

[z1u, z
2
u]). Fix now an arbitrary z ∈ In+1

m . According to Lemma 4.4 we have

the equality #(In+1, z) =
z∑

k=z−in

#((i1, i2, . . . , in), k). Moreover, by definition

we have z − in ∈ Inl . Assume first that Inl �= Inu holds. Then the sum can

be rewritten as
z2
l∑

k=z−in

#((i1, i2, . . . , in), k) +
∑

k∈In
j ,l<j<u

#((i1, i2, . . . , in), k) +

z∑
k=z1

u

#((i1, i2, . . . , in), k). The second sum is a constant, and the first and third

sum can be written as polynomials in z of degree at most n according to the
induction hypothesis and Corollary 4.6. In the case Inl = Inu we have according

to the induction hypothesis
z∑

k=z−in

#((i1, i2, . . . , in), k) =
z∑

k=z−in

p(k) for some
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polynomial p with degree at most n− 1. But this sum is even a polynomial in z
of degree at most n− 1 due to Corollary 4.6. �

5 Implementation and Running Time

Now we show how the proof of Theorem 4.7 leads to an algorithm for determin-
ing #(I, z). For the running time analysis we assume that the basic arithmetic
operations addition, subtraction, multiplication and division can be carried out
in constant time.

The considerations of the previous section can be used to develop a data
structure which computes efficiently the value of #(I, z) for a fixed sequence
I = (i1, i2, . . . , in) and arbitrary z ∈ ZZ . The idea is to proceed iteratively
along the lines of the proof of Theorem 4.7. So in the k + 1-th iteration we
compute the normalised interval partition P(Ik, ik+1) = (Ik+1

0 , Ik+1
1 , . . ., Ik+1

s )
and the associated polynomials as described in the proof of Theorem 4.7 using
the interval partition and polynomials after the k-th step. After the n-th step we
know the validity intervals and the associated polynomials for the sequence I.
So facing an integer z we will search the interval which contains z and evaluate
the associated polynomial at z to obtain #(I, z).

We will now describe this in more detail.
In a precomputation step we compute the coefficients of Faulhaber’s formula

for all exponents between 1 and n− 1. Moreover, we compute all binomial coef-
ficients

(
m
l

)
with 0 ≤ l ≤ m ≤ n+1 (they can be stored during the computation

of the Faulhaber coefficients). This can be done in polynomial time in n, which
will not influence the asymptotic running time as we will see later.

Since the interval partitions during the execution are always normalised we
can identify such a normalised interval partition I = ] − ∞,−1], [0, z1], [z1 +
1, z2], . . ., [zj−1 + 1, zj], [zj + 1,∞[ after the k-th iteration with the sequence
(z1, z2, . . . , zj). In the k + 1-th step we have to compute the interval partition
induced by I and ik+1 which can be done in O(j) time. To see this we first
observe that the new sequence arises from ordering the set {zl | 1 ≤ l ≤ j} ∪
{ik+1 − 1} ∪ {zl + ik+1 | 1 ≤ l ≤ j}. So we compute the (ordered!) sequence
(ik+1 − 1, z1 + ik+1, z2 + ik+1, . . . , zj + ik+1) and merge it with the ordered
sequence (z1, z2, . . . , zj) into the new (ordered) sequence (y1, y2, . . . , yl) while
removing duplicates.

During this merging process we can for each interval Ik+1
m of P(Ik, ik+1) deter-

mine its witness intervals (Ikml
, Ikmr

) = [(lml
, rml

), (lmr , rmr )] in constant time
by simple case distinction.

The most demanding part is the computation of the coefficients for each in-
terval Ik+1

m of P(Ik, ik+1). If (Ikml
�= Ikmr

) we have analogously to the proof of

Theorem 4.7 to determine the coefficients of the term
rml∑

k=z−in

#((i1, i2, . . . , in), k)

+
∑

k∈Ij ,ml<j<mr

#((i1, i2, . . . , in), k) +
z∑

k=lmr

#((i1, i2, . . . , in), k). The computa-

tion of the coefficients of the first and last sum can be carried out along the
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lines of the proof of Lemma 4.5 and Corollary 4.6 in O(k3) time (for a mono-
mial of the form cjz

j the coefficients can be computed in O(j2) time, and we
do so for monomials c0z

0, c1z
1, . . ., ckz

k). The middle sum need not to be
computed newly in every step but can be handled using stepping technique.
Therefore we process the intervals given by (y1, y2, . . . , yl) in the order defined
as in the proof of Lemma 4.3. Then the value of this sum between two con-
secutive steps either remains zero, is incremented or decremented by the value∑

k∈Ik
j
#((i1, i2, . . . , in), k) for an interval Ikj of Ik, or is incremented and decre-

mented by such a term. The value of this terms can be computed analogously as
sketched above in O(k3) time. In the case Ikml

= Ikmr
we can compute the coef-

ficients analogously to above also in O(k3) time. So the overall running time for
the k-th iteration is in O(2kk3) (remember that we have at most 2k − 1 validity

intervals). Since we have n iterations the total running time is in O(
n∑

k=1

2kk3) =

O(2nn3).
Assume now that we have executed this construction. Then for a given z the

search for the validity interval containing z can be done by means of binary
search in O(log(2n + 1)) = O(n) time (remember that at the end we have at
most 2n+1 validity intervals). The evaluation of a polynomial of degree at most
n−1 can be done in time O(n−1) using the Horner scheme, so the computation
of #(I, z) can now be carried out in time O(n). This considerations lead to the
following theorem:

Theorem 5.1. Given a fixed sequence I = (i1, i2, . . . , in) of n positive integer
numbers there is a data structure which can be constructed in O(2nn3) time and
determines the value #(I, z) for every z ∈ ZZ in O(n) time.

6 Experimental Results

We compared our Faulhaber based algorithm with a näıve algorithm based on
Lemma 3.1. This algorithm splits in every step a sequence of upper bounds
(i1, i2, . . . , in) into the two sequences (i1, i2, . . . , i
n

2 �) and (i
n
2 �+1, i
n

2 �+2, . . . , in)
which are processed recursively. It terminates if it reaches a sequence of length
one or two and uses shortcuts for these cases which run in constant time (as
described in [3]). The running time of this algorithm is hard to specify since it
depends both on the upper bounds, the target value and hence of the final result.

The implementations were written in C++11 using the GNU Compiler Col-
lection without any optimisation (-O0 -ggdb). For the arithmetic operations we
used the GMP library (see http://gmplib.org). For further improvement we
stored the coefficients of already considered polynomials in order to avoid mul-
tiple computations. The calculation run kvm-virtualised on linux (Arch Linux
gcc version 4.7.1 20120721 (prerelease)) with one core of Intel(R) Xeon(R) CPU
E5540 clocked at 2.53GHz. Under these circumstances we obtained the results
from Figure 2. The running times of the Faulhaber based algorithm include also
the precomputation stage. We stopped a test run after one hour.
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Nr. I, z Faulhaber based näıve
algorithm algorithm

1 (3, 4, 5), 1 50 ms 4 ms

2 (3, 4, 5), 15 49 ms 4 ms

3 (3000, 4000, 5000), 1 49 ms 4 ms

4 (3000, 4000, 5000), 6000 48 ms 149 ms

5 (104, 104, 104, 104, 104), 1 54 ms 4 ms

6 (104, 104, 104, 104, 104), 300 53 ms 302 ms

7 (104, 104, 104, 104, 104), 2.5 · 104 57 ms 11 min(!)

8 (10000, 10005, 10010, 10015, 10020), 64 ms 11 min(!)
25015

9 (10993, 10520, 10856, 10346, 10039), 70 ms 4 ms
1

10 (10993, 10520, 10856, 10346, 10039), 68 ms 13 min(!)
26377

11 (33, 29, 42, 34, 59, 76, 54, 33), 180 345 ms 78 ms

(10000, 10005, 10010, 10015,
12 10021, 10027, 10039, 10063), 458 ms > 1 h

40090

(10000, 10000, 10000, 10000, 10000,
13 10000, 10000, 10000, 10000, 10000), 74 ms > 1 h

5000

(10993, 10520, 10856, 10346, 10039,
14 10644, 10005, 10941, 10718, 10305), 4,5 s(!) > 1 h

52683

(12184, 12324, 14685, 11098, 13357, 13863,
15 10796, 10914, 10989, 11115, 10937), 17 s(!) > 1 h

66131

(12184, 12324, 14685, 11098, 13357, 13863,
16 10796, 10914, 10989, 11115, 10937, 13634), 88 s(!) 4 ms

1

(12184, 12324, 14685, 11098, 13357, 13863,
17 10796, 10914, 10989, 11115, 10937, 13634), 86 s(!) > 1 h

72948

18 (3696, 3894, 4137, 7588, 7816), 2856 57 ms 61 s(!)

19 (5641, 9314, 969, 8643, 6291,
6241, 8747, 7041), 26433 371 ms > 1 h

Fig. 2. Experimental Results

At a first glance one may wonder about the high running times even for small
instances as Nr.1 and Nr. 2. This is due to the use of data types of the GMP
library. The use of elementary data types decreases the running time to values
under one microsecond for both algorithms. However, for big input instances
the result exceeds the range of int and float so the use of the GMP library is
justified. Moreover, it helps to avoid rounding errors. We applied it also to small
instances to obtain consistent comparison results.
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In order to test and demonstrate some properties we constructed the examples
Nr.1-17 by hand and used randomly generated instances to test the average
behaviour (Nr. 18 and Nr. 19). The experimental data shows some expected and
some interesting results:

– For small instances the näıve algorithm achieves the better running times
because it has no expensive precomputation part like the Faulhaber based
algorithm (cf. Nr. 1, 2 and 3).

– The näıve algorithm runs fast on instances with a small target value, even if
the upper bounds are great (cf. Nr. 5, 9, 11 and 16; Nr. 6 is an intermediate
result). In this case the sum from Lemma 3.1 has only a small number of
summands and can be evaluated almost immediately.

– The running time of the Faulhaber based algorithm depends on the number
of the upper bounds (cf. Nr. 1-4, 5-10 and Nr. 11/12; in the last pair we have
also a growth due to larger numbers).

– The Faulhaber based algorithm has a running time depending also on the
number of validity intervals in the constructed data structure. For a sequence
(i1, i2, . . . , in) with i1 = i2 = . . . = in there are exactly 2n + 1 validity
intervals in the final result. The sequences from Nr. 9-12 are constructed
such that they have the maximal number of validity intervals in the final
data structure. This explains the difference between Nr. 6 and Nr. 10. A
drastic example for this phenomenon is given by Nr. 13 and Nr. 14.

– The examples Nr. 4, 10, 12, 14, 15 and 17 (which have the maximal number
of validity intervals in the final data structure) show the hyperexponential
growth of the runtime (recall the precomputation time in O(2nn3)) of the
Faulhaber based algorithm However, it performs for big input instances and
great target values better than the näıve algorithm.

– Seemingly surprisingly, the Faulhaber based algorithm performs for a fixed
sequence better for values of z near to

∑n
j=1

ij/2 than for values near 1 (see
Nr. 1/2, 3/4, 5/6, 9/10 and 16/17). There are two reasons for this behaviour:
first, the binary search starts in the middle. Second, around

∑n
j=1

ij/2, the
polynomials often have a simpler structure than near 1 (cf. the final result
from Figure 1) and can hence be evaluated faster.

– The test examples Nr. 18 and Nr. 19 are randomly generated examples with
five and eight upper bounds, resp. In these cases the Faulhaber based algo-
rithm performs much better. The running times for similar randomly gener-
ated instances behaved in a comparable way.

In future practical applications based on [3] and [9], especially parallel algorithms
for the evaluation of Preference SQL expressions, the number of upper bounds
will likely exceeding five, and their size can be arbitrarily up to around 104 (big
data). In this domain, the Faulhaber based algorithm offers for the very first
time the possibility for practical computation.

7 Conclusion and Outlook

Our novel algorithm performed well on big instances (which are also of practical
interest) whereas for simple small instances the näıve algorithm is preferable.



90 R. Glück, D. Köppl, and G. Wirsching

The main drawback of our algorithm is the possibly exponential number of
validity intervals. This can not be avoided by permutation of the upper bounds
(this will lead to roughly the same validity intervals; the value of #(I, z) remains
the same if the upper bounds of I are permuted), so a substantial improvement
of an approach based on validity intervals is hard to expect.

One idea of improvement is to exploit the property #((i1, i2, . . . , in), z) =
#((i1, i2, . . . , in),

∑n
j=1 ij−z) which means that #((i1, i2, . . . , in), z) is symmet-

ric with respect to z0 =
∑n

j=1
ij
2 (see again [3] and [9]). However, this should

lead to a speed up of at most a factor two, so the asymptotic running time
remains the same. Also there could be improvements for the computing of the
coefficients as already mentioned in Section 5.

A totally different approach consists in exploiting results for discrete convolu-
tions, as the equation from Lemma 3.1 is a discrete convolution of the functions
#((i1, i2, . . . , in−m), k) and #((in−m+1, in−m+2, . . . , in), z − k). So it seems to
be reasonable to use known algorithms for fast discrete convolution (see e.g. [4]
and [7]). Here further research is needed to investigate this approach.

Acknowledgements. We are grateful to Markus Endres and the anonymous
referees for valuable discussions and remarks.
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Abstract. We study a hypergraph transversal computation: given a
hypergraph, the problem is to generate all minimal transversals. This
problem is related to many applications in computer science and vari-
ous algorithms have been proposed. We present a new efficient algorithm
using the compressed data structures BDDs and ZDDs, and we analyze
the time complexity for it. By conducting computational experiments, we
show that our algorithm is highly competitive with existing algorithms.

Keywords: hitting set, BDD, ZDD, transversal hypergraph, Boolean
function, data mining, logic, artificial intelligence, monotone dualization.

1 Introduction

A hypergraph is a pair H = (V, E) of a set V and a family E of subsets of V ,
where the sets in E are called hyperedges. A hitting set (or transversal) for E
is a set T ⊆ V such that T “hits” every hyperedge in E , that is, T ∩ U �= ∅
for all U ∈ E . A hitting set is minimal if no proper subsets are hitting sets.
The transversal hypergraph of H is a hypergraph whose ground set is V and
whose hyperedges are all minimal hitting sets for E . The hypergraph transversal
computation is, given a hypergraph, to compute the transversal hypergraph by
generating all minimal hitting sets.

The hypergraph transversal computation has attracted the attention of many
researchers in computer science, since it is related to a fundamental aspect of
set families and hence there are many important applications in a wide variety
of areas in computer science, especially in data mining, logic, and artificial in-
telligence. On detailed description of applications and known results, the reader
is referred to the survey papers [1, 2], as well as to the references therein.

Many efforts have been made to clarify the exact complexity. The break-
through result of Fredman and Khachiyan [3] shows that the problem of decid-
ing, given two hypergraphs G and H, if G is the transversal hypergraph of H
can be solved in quasi-polynomial time No(logN), where N is the combined size
of the input G and H. Furthermore, it is known ( [4, 5]) that the hypergraph
transversal computation can be solved in quasi-polynomial total time, i.e. quasi-
polynomial time in the combined size of input and output hypergraphs, which is

V. Bonifaci et al. (Eds.): SEA 2013, LNCS 7933, pp. 91–102, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the theoretically best known result so far. Note that the complexity is measured
by quasi-polynomial total time, since the size of an output hypergraph can be
exponentially larger than the size of an input hypergraph. It remains still open
whether there is a polynomial total time algorithm.

On the other hand, because of the wide applicability, research activities with
an emphasis on practical efficiency have been pursued and many algorithms have
been proposed. Only recently Murakami and Uno [6] have developed two algo-
rithms based on reverse search (RS ) and depth-first search (DFS ), and experi-
ments showed that their algorithms outperform the existing algorithms [7–10] in
almost all datasets they used. Yet another algorithm was given by Knuth as an
exercise of his famous book [11, pp.669–670]. This algorithm is based on different
paradigm from the algorithms ever proposed.

In this paper we present a new algorithm for the hypergraph transversal com-
putation. Our algorithm makes use of the two special data structures for Boolean
functions and set families: BDDs and ZDDs, respectively. They are known as
efficient compression techniques: Boolean functions and set families can be re-
spectively compressed into BDDs and ZDDs; various operations can be efficiently
performed on these data structures without decompression. Our algorithm can
be considered as a variant of Knuth algorithm, since Knuth algorithm uses only
ZDDs, while our algorithm in addition uses BDDs. As far as we know, the ZDD-
based approach was initially invented by Knuth. Unfortunately this approach
seems to be not well-known (indeed, it is buried in a large number of exercises)
and there is almost no knowledge of performance. For this, we give an explana-
tion not only of our algorithm but also of necessary notions and results of BDDs
and ZDDs. We furthermore conduct experiments with many datasets, including
comparisons with Knuth, RS and DFS algorithms.

This paper is organized as follows. In Section 2 we introduce the two data
structures BDDs and ZDDs. In Section 3 we present our algorithm based on
BDDs and ZDDs together with theoretical analysis. Section 4 provides experi-
mental results. We conclude in the final section.

2 Data Structures for Set Families

2.1 Introduction to BDDs

A binary decision diagram (BDD) is a graph representation of Boolean func-
tions, which was introduced by Bryant [12] for an application to VLSI logic
design and verification (see also [11, pp.257–258]). The advantages of BDDs are:
commonly encountered functions are represented as BDDs of reasonable sizes
and various Boolean operations can be efficiently performed. BDDs can also be
viewed as a data structure for set families, since a Boolean function f(x1, . . . , xn)
corresponds to the set of solutions {v ∈ {0, 1}n : f(v) = 1} and each solution
(v1, . . . , vn) corresponds to the set of variable indices {i : vi = 1}.

Figure 1 shows an example of BDD. The node at the top is called the root.
Each internal node has the three fields V, LO, and HI. The V holds the index of a
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variable. The fields LO and HI point to other nodes, which are called LO and HI
children, respectively. The arc to a LO child is called a LO arc and illustrated by
a dashed arrow. Similarly, the arc to a HI child is called a HI arc and illustrated
by a solid arrow. There are only two terminal nodes, denoted by � and ⊥. In
order to distinguish between the terminal nodes of a BDD and those of a ZDD,
we denote the former ones by ⊥BDD, �BDD and the latter ones by ⊥ZDD, �ZDD.
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Fig. 1. The BDD
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Fig. 2. Reduction rules on BDDs

BDDs satisfy the following two conditions. They must be ordered : If an in-
ternal node u points to an internal node v, then V (u) < V (v). They must be
reduced : the following two reduction operations can not be applied.

1. For each internal node u whose two arcs point to the same node v, redirect
all the incoming arcs of u to v, and then eliminate u (see Fig. 2(a)).

2. For any nodes u and v, if the subgraphs rooted by u and v are equivalent,
then share the two subgraphs (see Fig. 2(b)).

We can understand BDDs as follows. Each path from the root to a terminal node
represents a (0, 1)-assignment for arguments and the value of a Boolean function.
For example, in Fig. 1 the path 1© → 2© ��� 3© ��� � means f(1, 0, 0) = 1 and
1©→ 2©→ ⊥ means f(1, 1, 0) = f(1, 1, 1) = 0. Note that a 3© node is eliminated
from the latter path thus the value of x3 does not influence the value of f . When
the BDD is considered as a representation of a set family on {1, 2, 3}, the paths
1© → 2© ��� 3© ��� � and 1© → 2© → ⊥ mean that the BDD has {1} but
neither {1, 2} nor {1, 2, 3}.

It is known (see for example [11, 12]) that every Boolean function has one
and only one representation as a BDD and that if the number of variables is
fixed, then every BDD represents a unique Boolean function. BDD nodes are
uniquely represented by using a hash table, called uniquetable. The function
BDD UNIQUE manipulates the uniquetable as follows. Given the triple of an
index k and nodes l, h, the function BDD UNIQUE returns a node associated
with the key (k, l, h) if exists; otherwise, create a new node p such that V (p) = k,
LO (p) = l, and HI (p) = h; register p to the uniquetable and return p. The uni-
quetable guarantees that two nodes are different if and only if the subgraphs
rooted by them represent different Boolean functions. Thus, for example, equiv-
alence checking of BDDs can be done in constant time. For any node in a BDD,
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Fig. 4. The ZDD for the set
family {∅, {1}, {2}, {3}}

the subgraph rooted by the node is also a BDD. Since BDDs can be identified
with their root nodes, we call nodes in a BDD subBDDs.

The BDD for a Boolean function f is denoted by B(f). The size of B(f) is the
number of nodes in B(f), including terminal nodes, and denoted by |B(f)|. The
operation AND (B(f), B(g)) := B(f ∧ g) can be computed in time proportional
to |B(f)| · |B(g)| (see [13]).

2.2 Introduction to ZDDs

When a family of sparse sets1 is represented as a BDD, it is likely that there are
many nodes whose HI arcs point to ⊥. Minato [14] introduced a variety of BDDs
specialized for such set families, called zero-suppressed binary decision diagrams
(ZDDs). Specifically, ZDDs are ordered BDDs with the following reduction rules.

1. For each internal node u whose HI arc points to ⊥, redirect all the incoming
arcs of u to the LO child, and then eliminate u (see Fig. 3).

2. For any nodes u and v, if the subgraphs rooted by u and v are equivalent,
then share the two subgraphs (see Fig. 2(b)).

Note that ZDDs need not satisfy the node elimination rule of the original BDDs.
Each path in a ZDD exactly corresponds to a single set. The ZDD in Fig. 4

represents the same set family to the BDD in Fig. 1. The paths 1© → � and
1© ��� 2© ��� 3© ��� � correspond to {1} and ∅, respectively. Note that the two
arcs of the 3© node both point to �, but it must not be eliminated.

As in BDDs, similar results are known (see for example [11,14]). Given a set V ,
every hypergraph on V has a unique form as a ZDD if the order of the vertices
is fixed. The ZDD for a set family E is denoted by Z(E). The two terminal
nodes ⊥ZDD and �ZDD correspond to ∅ and {∅}, respectively. Note that ⊥BDD

and �BDD correspond to ∅ and 2V . As in BDDs, ZDD nodes are maintained by
their uniquetable, and the function ZDD UNIQUE (k, l, h) returns a unique node
associated with the key (k, l, h) in constant time. For any node v in a ZDD, the
subgraph rooted by v is also a ZDD; thus we identify v with the subgraph rooted
by v if no danger of confusion. We call nodes in a ZDD subZDDs. The operations
UNION (Z(U), Z(V)) := Z(U ∪ V) and DIFF (Z(U), Z(V)) := Z(U \ V) can be
computed in time proportional to |Z(U)| · |Z(V)| (see [14]).

1 The size of a set tends to be much smaller than the size of a ground set.
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3 Algorithm

Our entire algorithm consists of the following 4 parts. Note that S(x) denotes
the set family for a BDD (or ZDD) x. For simplicity, we assume that the ground
set V of an input set family E is {1, . . . , n} and each hyperedge in E is sorted.

1. Compress an input set family E into a ZDD p.
2. Compute the BDD q for all hitting sets for S(p).
3. Compute the ZDD r for all minimal sets in S(q).
4. Decompress r to a set family E∗ and output E∗.

This approach, in particular the use of BDDs as intermediate representations
and Algorithm 2 computing the 2nd part, is a new result. In practice, it would
be better to output the ZDD obtained in the 3rd part, since otherwise additional
time and space are required, and what is worse, a huge number of sets can be
dumped. Nevertheless, in the experimental comparison in a later section, the last
part is included, because we want to compare algorithms under the same input
and output conditions. We analyze the time complexity for the 1st part, since
there seems no literature which explicitly mentions it. The 3rd part is computed
by Algorithm 3. Although this algorithm is implicitly mentioned in [11, pp.255–
256], for the completeness we include and outline it.

Compression of a set family E is given in Algorithm 1. Let U ∈ E . Let ik
denote the k-th number in U in decreasing order. The following recursion holds.

Z({{i1, . . . , ik}}) =
{
ZDD UNIQUE (i1,⊥ZDD,�ZDD) (if k = 1)
ZDD UNIQUE (ik,⊥ZDD, Z({{i1, . . . , ik−1}})) (if 1 < k)

Thus Z({U}) can be constructed in a bottom up fashion in O(|U |) time. Since
ZDDs must be ordered, it is essential to select numbers in U in decreasing order.
Suppose that we have constructed the ZDD p := Z({U1, . . . , Um−1}). For a new
set Um ∈ E , the UNION (p, Z({Um})) produces Z({U1, . . . , Um−1, Um}). In gen-
eral, this function requires time proportional to the product of the sizes of two in-
put ZDDs. However, in this case it can be done in time proportional to the size of
the ground set.We show this while referring to the algorithm for UNION described
in [14]. Suppose that UNION (P,Q) is called in computing UNION (p, Z({Um})).
There are three cases. If V (P ) = V (Q), then since Q is a subZDD of Z({Um})
and its LO arc points to ⊥, the UNION (LO (P ) ,LO(Q)) immediately returns
LO (P ), thus UNION (HI (P ) ,HI (Q)) is then called. If V (P ) < V (Q), then for
the same reason UNION (P,LO (Q)) immediately returns P and no further call
is required. If V (P ) > V (Q) , then UNION (LO (P ) , Q) is called. One can ob-
serve that UNION (P,Q) essentially calls at most one function UNION (P ′, Q′)
with V (P ) < V (P ′). Since V (P ) is bounded above by the size of the ground
set V , the time required to compute UNION (p, Z({Um})) is O(|V |). Therefore,
Algorithm 1 requires O(|V | · |E|) time.

Conversely, decompression of a ZDD can be done as follows. Since paths from
the root to �ZDD correspond in a one-to-one way to sets stored in the ZDD, it
suffices, for each such path, to compute the corresponding set. Since the length
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Algorithm 1. Compress a set family E into a ZDD p

function COMP(E)
p ← ⊥ZDD;
for each set U ∈ E do

t ← �ZDD;
for each number i ∈ U in decreasing order do

t ← ZDD UNIQUE(i,⊥ZDD, t);
end for
p ← UNION(p, t);

end for
return p;

end function

of a path is at most the size of a ground set V , the time required is O(|V | · |E∗|),
where E∗ denotes the output set family.

For the 2nd part of our algorithm, let HIT denote the function given in Al-
gorithm 2. We show by structural induction on an input ZDD p that the HIT
correctly returns the BDD for all hitting sets for S(p). The case that p is a ter-
minal node is immediate. For the other case, let pl and ph denote the LO and
HI children of p, respectively. Observe that S(p) is the disjoint union of S(pl)
and {{V(p)} ∪ U : U ∈ S(ph)}. Thus a necessary and sufficient condition for a
set T to be a hitting set for S(p) is that (1) T is a hitting set for S(pl) and (2)
V (p) ∈ T or T is a hitting set for S(ph). By induction hypothesis, all sets T
satisfying the condition (1) are enumerated by HIT (pl), while those satisfying
the condition (2) are enumerated by BDD UNIQUE (V (p) ,HIT (ph) ,�BDD).
Thus, all sets with the both conditions are enumerated by the following BDD

AND (HIT (pl) ,BDD UNIQUE (V (p) ,HIT (ph) ,�BDD)) .

Therefore, the output HIT (p) is correct.

Algorithm 2. Given a ZDD p, compute the BDD for all hitting sets for S(p)
function HIT(p)

if p = �ZDD then
return ⊥BDD;

end if
if p = ⊥ZDD then

return �BDD;
end if
hl ← HIT(LO (p)); hh ← HIT(HI (p));
t ← BDD UNIQUE(V (p) , hh,�BDD);
q ← AND(hl, t);
return q;

end function



Hypergraph Transversal Computation 97

Theorem 1. Given a ZDD p, Algorithm 2 can be implemented to run in time
proportional to |p| ·N(p)2, where N(p) = max {|HIT (p′) | : p′ is a subZDD of p}.

Proof. Use a hash table to memorize the output BDDs HIT (p′) for subZDDs p′ of
p. For each subZDD p′ of p, the computation of HIT (p′) is executed exactly once.
The BDD UNIQUE can be computed in constant time. Furthermore, AND (hl, t)
can be computed in time proportional to |hl| · |hh| (since |t| ≤ |hh|+2), bounded
above byN(p)2. Thus, the time necessary to compute HIT (p) isO(|p|·N(p)2). ��

Let us proceed to the 3rd part. This part is to extract minimal sets from an
output BDD q of Algorithm 2. For this, we first consider a corresponding notion
to such minimal sets in terms of Boolean functions and then consider the ZDD
representing them. Let fq denote the Boolean function for the BDD q above.
Observe that S(q) is upward closed, that is, for any set U ∈ S(q), if U ⊆ U ′, then
U ′ ∈ S(q). From this, it follows that fq is monotone, that is, for all u, v ∈ {0, 1}n,
if u ≤ v, then fq(u) ≤ fq(v). It is known (see for example [11, pp.54–55]) that
minimal solutions S of a monotone Boolean function h exactly correspond to
prime implicants g of h in such a way that g =

∧
i∈S xi, where recall that a set

S of variable indices is a solution of h if h(v) = 1 for v ∈ {0, 1}n such that for
all 1 ≤ j ≤ n, the j-th component of v equals 1 if and only if j ∈ S. Therefore,
minimal sets in S(q) can be considered as prime implicants of fq. From the
recursion of the ZDD for prime implicants of fq, thus also for minimal sets in
S(q), described in [11, pp.256], we immediately obtain Algorithm 3.

Algorithm 3. Given a BDD q such that S(q) is upward closed, compute the
ZDD for all minimal sets in S(q)

function MIN(q)
if q = ⊥BDD then

return ⊥ZDD;
end if
if q = �BDD then

return �ZDD;
end if
mh ← MIN (HI (q)); ml ← MIN (LO(q));
t ← DIFF (mh,ml);
r ← ZDD UNIQUE(V (q) ,ml, t);
return r;

end function

Let MIN denote the function given in Algorithm 3. The following theorem
can be proved in a similar way to Theorem 1, and thus we omit the proof.

Theorem 2. Given a BDD q, Algorithm 3 can be implemented to run in time
proportional to |q| ·L(q)2, where L(q) = max {|MIN (q′) | : q′ is a subBDD of q}.
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4 Experiments

Implementation and Environment. We implemented our algorithm and Knuth
algorithm [11, pp.669–670] in C. This program is released in [15]. We used the
BDD Package SAPPORO-Edition-1.0 developed by Minato, in which not only
BDDs but also ZDDs are available and basic operations for BDDs and ZDDs
are provided. The implementation of Murakami-Uno algorithms SHD version 3.1
was obtained from the Hypergraph Dualization Repository [16]. All experiments
were performed on a 2.67GHz Xeon R©E7-8837 with 1.5TB RAM, running SUSE
Linux Enterprise Server 11. We compiled our code with version 4.3.4 of the gcc
compiler. Note that our implementation does not make use of multi-cores.

Problem Instances. We used total 90 instances, which are classified into the
10 types listed below. These instances have been commonly used in previous
studies [5, 6, 9] and can be obtained from [16]. For detailed information, the
reader is referred to [6, 16].

1. Matching graph (M(n)): a hypergraph with n vertices (n is even) and n/2
edges forming a matching. The parameter n runs over every other number
from 20 to 46 except for 22 and 26.

2. Dual Matching graph (DM(n)): the transversal hypergraph of M(n), where
n runs over every other number from 20 to 46 except for 22 and 26.

3. Threshold graph (TH(n)): a hypergraph with n vertices (n is even) and the
edge set {{i, j} : 1 ≤ i < j ≤ n, j is even}. The parameter n runs over every
20th number from 40 to 200.

4. Self-Dual Threshold graph (SDTH(n)): a hypergraph whose hyperedges are
obtained from a TH(n − 2) and its transversal hypergraph. The parameter
n runs over every 20th number from 42 to 202 and every 40th number from
242 to 402.

5. Self-Dual Fano-Plane graph (SDFP(n)): A hypergraph with n vertices and
(kn− 2)2/4+ kn/2+ 1 hyperedges, where kn := (n− 2)/7. The parameter n
runs over every 7th number from 9 to 51 (see [9] for details).

6. accidents (ac(n)): the complements of the sets of maximal frequent item-
sets with support threshold n · 103 from a dataset “accident”, where n ∈
{30, 50, 70, 90, 130, 150, 200}.

7. BMS-WebView-2 (bms(n)): this is constructed in the same way as ac(n) from
a dataset “BMS-WebView-2”, where n ∈ {10, 20, 30, 50, 100, 200, 400, 800}.

8. Connect-4 win (win(n)): a hypergraph with n hyperedges corresponding to
minimal winning stages of the first player in a board game “connect-4”. The
parameter n runs over {100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600}.

9. Connect-4 lose (lose(n)): a hypergraph with n hyperedges corresponding to
minimal losing stages of the first player in a board game “connect-4”. The
parameter n runs over {100, 200, 400, 800, 1600, 3200, 6400, 12800}.

10. Uniform random (rand(n)): a hypergraph such that each vertex is included
in a hyperedge with probability n/10 (n ∈ {6, 7, 8, 9}) and the number of
hyperedges is 1000.
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Dominating Factor in Algorithm 3. According to Theorem 2, Algorithm 3 de-
pends on the size of an intermediate ZDD, i.e. |MIN (q′) | for a subBDD q′ of
an input BDD q. It is natural to conjecture |MIN (q′) | ≤ |q′|. Although we ob-
tained a counterexample to this conjecture by the computational experiment
exhaustively conducted on all recursive calls of MIN for all 90 instances, it si-
multaneously turned out that in all cases the size of MIN (q′) was not more
than double the size of q′ (the largest ratio was about 1.8). This suggests that
|MIN (q′) | is likely to be bounded above by a constant factor of |q′|. A similar
observation is done in [11, pp.674]. Recall that DIFF(mh,ml) can be computed
in O(|mh| · |ml|) time. Since the size of any subBDD of q is at most the size of
q, the experimental observation above implies that |mh| · |ml| is bounded above
by a constant factor of |q|2, thus the time required for MIN is O(|q|3).
Dominating Factor in Algorithm 2. The same experiment was conducted on
all recursive calls of the function HIT. We observed that the largest ratio of
|HIT (p′) |/|p′| depends on instances: the ratio was always 1.0 in the instances
TH(n), DM(n), M(n) with all possible parameters, while it drastically changed
in instances lose(n) and rand(n). In particular, the largest ratio was about 1378,
achieved by rand(6). Thus |HIT (p′) | is not likely to be bounded by a constant
factor of |p′|. On the other hand, the smallest ratio among all cases was about
0.5. Thus, for the present instances, |p| is bounded above by a constant factor
of |HIT (p) |, thus Algorithm 2 is dominated only by the maximum size of an
intermediate BDD N(p). However, in general this can not be applied to every
case. An extreme example is a ZDD p with ∅ ∈ S(p). Since no set can hit ∅, the
family of hitting sets for S(p) is empty and the corresponding ZDD is ⊥. On the
other hand, clearly |p| can not be bounded above by a constant. Therefore, we
conclude that Algorithm 2 is dominated by both |p| and N(p).

Running Time for Algorithm 2 and 3. For convenience, we introduce the follow-
ing terminology: for a ZDD p, a BDD x is called a dominating BDD if there
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Fig. 6. Comparisons of running time with existing algorithms, where the horizontal
coordinate of a point represents an instance parameter

is a subZDD p′ of p such that x = HIT (p′) and |x| = N(p) hold. Figure 5
shows a scatter plot in which each point represents an instance with the size of a
dominating BDD (the horizontal coordinate) and the running time (the vertical
coordinate). This makes sense, since as argued above for the present instances
Algorithm 2 and 3 both are dominated only by the size of a dominating BDD
in Algorithm 2. We can observe that the points form a smooth curve. Since the
sizes of dominating BDDs are widely distributed, we used a logarithmic horizon-
tal axis. The instances of the same type have the same color and all instances in
M(n), DM(n), TH(n), SDTH(n), or SDFP(n) are excluded, since they finished
within at most 0.3 seconds. Furthermore, rand(6) is excluded, since the corre-
sponding point, having the coordinate (25640938, 245), has a too larger vertical
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coordinate than the other points have, although this point is roughly placed
along the extension of that curve.

Running Time for Entire Algorithm. We compared running time between our
algorithm, Knuth algorithm and Murakami-Uno algorithms (RS and DFS). We
selected some characteristic results and the corresponding figures are given in
Fig. 6 (see [15] for detailed results). When a computation did not terminate in
1000 seconds, we forcefully closed it and no point for the instance was plotted.

– For the instances in win(n), lose(n), bms(n), and SDFP(n), our algorithm
was significantly faster than the other algorithms.

– For ac(30), which was the most time-consuming instance in ac(n), our algo-
rithm was about 2 times faster than Murakami-Uno algorithms and about 7
times faster than Knuth algorithm.

– For the instances in M(n), most of the running time in our algorithm was
spent by decompression of an output ZDD.

– For rand(6), in which the worst size of a dominating BDD was achieved, our
algorithm was about 4 times slower than Murakami-Uno algorithms.

We remark that our approach needs much memory due to uniquetable. See [15]
for comparisons of maximum memory usages.

5 Conclusion

We presented a new algorithm for the hypergraph transversal computation. Ex-
periments for total 90 instances suggested that this algorithm is highly competi-
tive with the algorithm of Knuth [11, pp.669–670] and the two recently developed
algorithms of Murakami and Uno [6], where it is shown that Murakami-Uno al-
gorithms outperform the existing algorithms [7–10] in almost all datasets they
used. Furthermore, we experimentally observed that the main part of our algo-
rithm is dominated by both the size of an input ZDD of the function HIT and
the largest size of an intermediate BDD generated by HIT.

A future work will be to theoretically prove the experimental observation
above. Parallel algorithms for the hypergraph transversal computation have been
studied (see [2] [17]). It would be interesting to parallelize our algorithm and
compare with existing algorithms. It would be also interesting to apply our
algorithm to problems described in [1]. For this, there is a big advantage of BDD
and ZDD-based approach: as demonstrated in [18], BDDs and ZDDs provide
useful operations to solve combinatorial problems, and compression technique
allows us to solve large-scale instances that cannot be handled otherwise.

Acknowledgments. The author would like to thank Professor Shin-ichi Minato
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Abstract. There are a number of problems that require the counting or the enu-
meration of all occurrences of a certain structure within a given data set. We
consider one such problem, namely that of counting the number of maximal inde-
pendent sets (MISs) in a graph. Along with its complement problem of counting
all maximal cliques, this is a well studied problem with applications in several
research areas.

We present a new efficient algorithm for counting all MISs suitable for sparse
graphs. Similar to previous algorithms for this problem, our algorithm is based
on branching and exhaustively considering vertices to be either in or out of the
current MIS. What is new is that we consider the vertices in a predefined order
so that it is likely that the graph will decompose into multiple connected com-
ponents. When this happens, we show that it is sufficient to solve the problem
for each connected component, thus considerably speeding up the algorithm. We
have performed extensive experiments comparing our algorithm with the previ-
ous best algorithms for this problem using both real world as well as synthetic
input graphs. The results from this show that our algorithm outperforms the other
algorithms and that it enables the solution of graphs where other approaches are
clearly infeasible.

As there is a one-to-one correspondence between the MISs of a graph and
the maximal cliques of its complement graph, it follows that our algorithm also
solves the problem of counting the number of maximal cliques in a dense graph.
To our knowledge, this is the first algorithm that can handle this problem.

1 Introduction

Enumerating all configurations that conforms with a given specification is a well stud-
ied problem in combinatorics. Graph theory deals with many interesting problem of
this type. Enumerating all maximal independent sets (MISs) of a graph is one of these
problems that has attracted considerable attention in the past [5,10,12,14,20]. This prob-
lem is also equivalent to enumerating all the maximal cliques of a graph as there is a
one-to-one correspondence between the MISs of a graph and the maximal cliques of its
complement graph. For a recent overview of applications of this problem, see [6] and
the references therein.

In the classical MIS enumeration problem, the number of configurations to be gen-
erated is potentially exponential in the size of the input. Moon and Moser showed that a
graph on n vertices can have at most 3

n
3 MISs and that this bound is tight [16]. Thus for
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graphs coming close to this bound one can only expect to be able to list or enumerate
all MISs of graphs of fairly limited size.

In this paper we study algorithms for counting the number of MISs, a problem one
might expect can be solved more efficiently than the enumeration problem. However,
it is known that the counting problem is �P-complete even when restricted to chordal
graphs [17], and therefore no polynomial time algorithm exists unless P=NP [12].

The currently fastest algorithm for solving the MIS counting problem on general
graphs is by Gaspers et al. who presented a branch and bound algorithm that runs in
O(1.3642n) time [8]. As 3

n
3 ≈ 1.44n this shows that it is possible to count MISs

faster than by generating each one. For the case of sub-cubic graphs Junosza-Szaniawski
and Tuczyński recently gave an algorithm with running time O(1.2570n) [11]. For
trees, Wilf presented a simple linear time dynamic programming algorithm [21]. He
also showed that the number of MISs in a tree is at most 2n/2−1 + 1 and that there are
graphs that meet this bound.

The counting problem can obviously be solved by enumeration, a problem which
has seen a variety of approaches by a number of authors, see [5] for an overview. The
standard algorithm for this problem is the Bron–Kerbosch algorithm [1] which is a
recursive backtracking algorithm that searches for all maximal cliques in a given graph
G, (which in the complement graph corresponds to the MISs). This algorithm was later
improved by Tomita et al. [18] using a pivoting heuristic that reduces the number of
recursive calls. We also note that Eppstein and Strash gave a variation of the Tomita
algorithm by initially reordering the vertices using a degeneracy ordering [7], something
that is advantageous for very sparse graphs.

Experimental work on these (and other) algorithms for enumerating cliques has
mainly focused on sparse graphs [2,3,7,18]. This means that they are applicable on
dense graphs for enumerating (or counting) MISs. Enumerating MISs on sparse graphs
(or enumerating cliques in dense graphs) is a substantially harder problem as one would
expect the number of MISs to decrease as the graph becomes denser. We are not aware
of any experimental studies of algorithms for this problem.

Our Results: We present the first algorithm specifically suited for counting MISs in
sparse graphs. The algorithm combines a branching approach with a divide and con-
quer strategy. This is achieved by making the branching follow vertex separators in the
graph. In this way the remaining graph will become disconnected and one can solve the
problem for each connected component separately. To find the separators we initially
use graph partitioning software to compute a nested dissection ordering on the graph.

We apply the algorithm to both real world as well as synthetic sparse graphs and show
that it outperforms other suggested algorithms designed for counting or enumerating
MISs. Although the individual aspects of our algorithm are not new, this is, as far as
we know, the first time they have been combined together to create an efficient code for
counting MISs in sparse graphs.

2 Notation

We consider an undirected finite graph G = (V,E) without loops, where V is the set of
vertices of G and E is the set of edges. We denote the neighborhood of a vertex v in the
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graphG by NG(v), that is the set of vertices u such that the edge (u, v) ∈ E. The closed
neighborhood of a vertex v is denoted by NG[v], which is NG(v)∪{v}. The degree of a
vertex dG(v) = |NG(v)|. If I is a set of vertices in G then NG(I) = (∪v∈ING(v)) \ I .
Also, the induced subgraph of I in G is the graph G[I] = (I, EI) where (v, w) ∈ EI if
and only if v, w ∈ I and (v, w) ∈ E.

A set of vertices S is an independent set if no two vertices in S are adjacent. A
vertex v �∈ S which is adjacent to a vertex w ∈ S is said to be dominated by w, or
just dominated. A vertex not in S which is not dominated is undominated. A maximal
independent set is an independent set that is not a subset of any other independent set.

3 Previous Algorithms for Counting and Enumerating MISs

In the following we present previously suggested algorithms for counting or enumerat-
ing all MISs of a graphG. For the enumeration problem we present algorithms that have
been used in experimental studies and that are fairly straight forward to implement. We
also outline the counting algorithm by Gaspers et al. Since our main interest is to count
the number of MISs, we describe all algorithms as applied to this problem.

The Bron-Kerbosch algorithm in its basic form uses recursive backtracking to list
all maximal cliques in a given graph [1]. In the following we present the dual of this
algorithm, so that instead of cliques the algorithm counts all MISs in G.

Given three vertex sets R,P, and X , Algorithm 1: BKMIS(R,P,X) finds all MISs
that include all vertices in R, any possible legal subset of the vertices from P , and
none of the vertices in X . The recursion is initiated by setting both R and X to ∅ and
P = V . Within each recursive call, the algorithm considers in turn every vertex in P for
inclusion in R. Thus for each v ∈ P the algorithm makes a recursive call in which v is
moved from P to R and any neighbor of v is removed from P and X . In any subsequent
call where both P and X are empty, R is counted as a MIS. This will find all maximal
independent set extensions of R that contain v. When the recursive call returns, v is
moved from P to X before the algorithm continues with the next vertex in P .

Intuitively, one can think of the algorithm as having already found the MISs that
contain any vertex from X . Thus any set that does not dominate every vertex in X
cannot be a new MIS.

Algorithm 1. BKMIS(R,P,X)

Input: Three vertex sets R,P , and X .
Output: Number of MISs containing all vertices in R, some from P and none from X .
if P ∪X = ∅ then

Count R as a MIS
for each vertex v ∈ P do

BKMIS(R ∪ {v}, P \NG[v], X \NG(v))
P ← P \ {v}
X ← X ∪ {v}

The Bron–Kerbosch algorithm is not output-sensitive meaning that it does not run in
polynomial time per generated set. The worst-case running time of the Bron–Kerbosch
algorithm is O(3

n
3 ), matching the Moon and Moser bound [18].
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Tomita et al. presented an improved variant of the Bron-Kerbosch algorithm by using
a pivoting heuristic [18]. Here we present its dual for computing MISs. In Algorithm 1,
|P | recursive calls are made, one for each vertex in P . The pivoting strategy seeks to
reduce this number. Consider a vertex u ∈ P ∪ X . It follows that no vertex in NG[u]
has been added to R so far. But for the current R to be expanded to a MIS at least one
vertex of P∩NG[u] must be included in R, otherwise R will not be maximal. Thus once
the pivot u has been selected, it is sufficient to iterate over the vertices in P ∩ NG[u]
for inclusion in R. The idea in Algorithm 2: TOMITAMIS(R,P,X) is then to choose u
such that this number is as small as possible. Computing both the pivot and the vertex

Algorithm 2. TOMITAMIS(R,P,X)

Input: Three vertex sets R,P and X .
Output: Number of MISs containing all vertices in R, some vertices from P and no vertex
from X .
if P ∪X = ∅ then

Count R as a MIS
Choose a pivot u ∈ P ∪X that minimizes |P ∩NG(u)|
for each vertex v ∈ P ∩NG[u] do

TOMITAMIS(R ∪ {v}, P \NG[v], X \NG(v))
P ← P \ {v}
X ← X ∪ {v}

sets for the recursive calls can be done in time O(|P |(|P | + |X |)) within each call
to the algorithm using an adjacency matrix, giving an overall running time of O(3

n
3 ).

Experimental comparisons have shown that the maximal clique algorithm by Tomita
et al. is faster by orders of magnitude compared to other algorithms [18]. However,
both the theoretical analysis and implementation rely on the use of an adjacency matrix
representation of the input graph. For this reason, the algorithm has limited applicability
for large graphs, whose adjacency matrix may not fit into working memory [7].

Eppstein et al. [6] also proposed a variant of the Bron-Kerbosch algorithm. On the
top level this algorithm is similar to the Bron-Kerbosch algorithm, although the ver-
tices are processed according to a degeneracy ordering. Such an ordering can be found
by repeatedly selecting and removing a minimum degree vertex. The algorithm then
makes |V | calls to the algorithm by Tomita et al., each time with R initially set to the
next vertex in the ordering and with P and X updated accordingly. With this setup the
algorithm can be implemented to list all maximal cliques of an n-vertex graph in time
O(dn3

d
3 ), where a graph has degeneracy d if every subgraph has a vertex of degree

at most d. In a recent study Eppstein and Strash [7] show that the algorithm is highly
competitive with the algorithm by Tomita et al. This is particularly true for large sparse
graphs where it in many cases outperform the algorithm by Tomita et al. by orders of
magnitude.

Gaspers et al. gave a fast exponential time algorithm of complexity O(1.3642n) for
counting the number of MISs in a graph [8]. This running time is lower than the Moon
and Moser bound, something that is possible since the algorithm, unlike the previous
mentioned ones, does not enumerate the MISs but only counts their number.
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The structure of the algorithm is similar to TOMITAMIS in that a vertex u ∈ P ∪
X is selected as a pivot according to a degree based criterion before branching on
the vertices in P ∩ N [u]. But unlike the previous algorithms, it will in each call first
try if any of seven reduction rules can be applied to achieve a smaller but equivalent
instance. If this is possible then the instance is reduced accordingly before calling the
recursive function again. We note that all rules but one, will return the value given by
the following recursive call. The only exception being a rule which checks if there exist
two vertices u and v such that their current neighborhoods are identical. In this case v
will be removed from the graph and the value of the recursive call will be returned plus
the number of MISs discovered in this call that contained u. Another difference is that
the algorithm tests if there is a vertex in X having no neighbor in P indicating that the
current configuration cannot be expanded to a MIS. If this is the case then the algorithm
returns immediately. In the paper it is also noted that if the graph at some stage should
become disconnected then the algorithm is called (recursively) for each of its connected
components, and the product of the returned values then gives the number of MISs. As
far as we know there has been no study of how practical the algorithm is. We refer the
interested reader to [8] for the details of the algorithm.

4 A New Algorithm

In the following we present a simple recursive branching algorithm for counting the
number of MISs in a graph. Our algorithm is based on locating and exploiting vertex
separators of the graph, and is similar in spirit to the algorithm by Lipton and Tarjan for
computing a maximum independent set in a planar graph [13].

The Lipton and Tarjan algorithm initially finds a vertex separator S ⊂ V such that
|S| = O(

√
n) and such that no component of G \ S contains more than 2

3 |V | vertices.
This is possible since G is assumed to be planar. Then for every independent set IS
of S the algorithm recursively finds a maximum independent set for each connected
component of G \ (S ∪NG(IS)). The solution giving the combined largest solution is
then the maximum independent set of G. The running time of the algorithm is 2O(

√
n).

We modify the Lipton and Tarjan algorithm to compute the number of MISs by using
ideas from BKMIS and TOMITAMIS. Note however first that it is not possible to use
the algorithm of Lipton and Tarjan to count MISs. The reason for this is that if we pick
a particular independent set IS from a separator S in G and (recursively) calculate the
number of MISs in each component of G[V \ (S ∪NG(IS))], then it is not given that
IS together with every combination of MISs from each of the components will form a
MIS in G as some combinations might leave undominated vertices in S \ IS .

The new algorithm, Algorithm 3: CCMIS, is recursive and uses two vertex sets P
and X to count the number of MISs in G[P ∪X ] containing any combination of vertices
from P while using none of the vertices in X . Thus if P ∪X = ∅ this will be counted
as one MIS. Also, similar to the algorithm by Gaspers et al. if there exist a vertex in X
that is not adjacent to any vertex in P then the algorithm will return 0, as this indicates
that the current solution cannot be expanded into a complete MIS. The algorithm also
tests at each level of recursion if G[P ∪X ] is connected. If this is not the case then the
recursive procedure will be called once for each connected component and the product
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of the number of MISs in each component will be returned. Checking for connectedness
and listing the components is done using a linear depth first search through G[P ∪X ].

In the case that none of the mentioned conditions apply, the algorithm picks one
remaining vertex v from P and then performs two recursive calls, first to compute
the number of MISs containing v and then to compute the number of MISs excluding
v. Finally, the sum of these two numbers is returned. When counting the number of
MISs containing v, any vertex in N [v] is first removed from P and X as these will be
dominated by v. Similarly, when counting the number of MISs not containing v, the
vertex v is moved from P to X as it must then be dominated by some other vertex in
P in a MIS. Note that it is only following a recursive call where v is set to be in the
current MIS that the structure of G[P ∪X ] will change so that there is any possibility of
getting a disconnected graph. The recursion is initiated by setting X = ∅ and P = V .

Algorithm 3. CCMIS(P,X)

Input: Two vertex sets P and X .
Output: Number of MISs in G[P ∪X] containing only vertices from P .
if P ∪X = ∅ then

return 1
if ∃w ∈ X with no neighbor in P then

return 0
if G[P ∪X] is not connected then

count ← 1
for each connected component CC(VCC , ECC) of G[P ∪X] do

count ← count ∗ CCMIS(Vcc ∩ P, Vcc ∩X)
return count

Select a vertex v ∈ P to branch on
count ← CCMIS(P \NG[v], X \NG(v))
count ← count+ CCMIS(P \ {v}, X ∪ {v})
return count

As we explain in the following CCMIS differs substantially from the previous al-
gorithms in which order the vertices are selected from P to branch on. It is clear from
the description of CCMIS that one can select any vertex v ∈ P to branch on. Thus
one could similar to the previous algorithms use degree based information when select-
ing the branching vertex v. Picking a maximum degree vertex could be advantageous
for the the first recursive call as it would give a maximum reduction in the size of
G[P ∪X ], thus making it more likely that the remaining graph is disconnected. Picking
a minimum degree vertex could be advantageous for the second recursive call as there
would be fewer remaining vertices in P that could dominate v. However, as our main
interest is in computing the number of MISs for sparse graphs we use a different selec-
tion criterion that exploits this. Algorithm 3: CCMIS has a considerable advantage over
the Bron-Kerbosh type enumeration algorithms whenever the remaining graph becomes
disconnected. This follows since the CCMIS algorithm does not have to generate ev-
ery MIS but only needs to find the number of MISs in each connected component and
then to multiply these numbers together. Although the algorithm by Gaspers et al. also
exploit connected components in this way, their algorithm is bound to using a degree
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based criterion when selecting a pivot. Thus this might limit how often the remaining
graph becomes disconnected. Since we have no restrictions in CCMIS when selecting
the branching vertex v ∈ P we do so with the sole objective that the remaining graph
should become disconnected.

Prior to running the algorithm we compute a nested dissection ordering
α = {v1, v2, . . . , v|V |} on the vertices of G [9]. Such an ordering strives to number
vertices that make up a (preferably small) separator S of G first, with the added con-
straint that the remaining components of G \ S should be of roughly equal size. This
is then repeated recursively for each connected component. One can also view a nested
dissection ordering as an elimination tree [4]. This tree displays the separators in α,
with vertices in a separator S making up a path hanging of the preceding separator S′

on the component containing S. Within each separator, a vertex vj ∈ S will be a child
of the highest numbered vertex vk ∈ S where k < j. If vj , j �= 1, is the first ordered
vertex in S then vj will be a child of the last ordered vertex of S′, where S′ is as defined
above. It follows that a low elimination tree height is an indication that it was possible
to (recursively) partition the graph using small separators.

As an example of a nested dissection ordering, consider the graph in Figure 1a. Then
a possible α could be {d, c, a, b, f, e, g, h}. The d vertex is the first separator and c and
f the two remaining ones. Note that the relative ordering between the vertices of the
two components of G\{d} can be changed as long as c is ordered before a and b, and f
is ordered before e, g, and h. Also, when a separator consists of multiple vertices their
relative order is not necessarily important.
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Fig. 1. A possible execution of Algorithm 3

The strategy we employ is now to choose the first vertex w ∈ α that is also in P ∪X .
We have two cases for selecting the vertex v to branch on. If w ∈ P then we set v = w
and if w ∈ X then we select v to be a vertex in P ∩NG(w). Such a vertex must exist
since the algorithm would already have returned if w ∈ X had no neighbor in P . The
effect of followingα in this way is that we will only expand solutions where each vertex
in S has either been included in the current MIS or is being dominated. Thus we are
ensured that the remaining graph will be disconnected. Note that the strategy of picking
a vertex in NG(w) to branch on whenever w ∈ X is similar to the pivoting strategy in
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TOMITAMIS. Comparing with the algorithm by Lipton and Tarjan the difference is that
even though we follow the separator structure, for a particular separator S we allow for
vertices in NG(S) to be assigned values before deciding exactly which vertices from S
should be in the MIS.

The tree in Figure 1b shows the recursion tree of the algorithm when applied to the
graph in Figure 1a. Each time the algorithm branches on a particular vertex is denoted
by a round node, where the left branch denotes that the branching vertex is in the current
MIS and the right branch that it is not. Whenever the remaining graph consist of just
one vertex in P we only show the name of the vertex as it must be in any MIS. When
the remaining graph is empty we write ∅, and if a particular branch cannot be extended
to a MIS we write s. We use a square node to indicate when the graph has become
disconnected and then draw one branch for each connected component. The number
inside each node is the number of MISs returned by a particular branch.

With the current description of the algorithm there is still some freedom as to the
order in which the branching vertices are selected. As already pointed out, we can re-
order the vertices within a separator in α. Also, once a vertex v ∈ S has been chosen to
branch on then in the configuration where v is considered to be out of the current MIS,
we are free to decide the order in which we pick vertices from NG(v) ∩ P to dominate
v. We will expand further on these issues in Section 5.

5 Experiments

In the following we describe experiments performed to evaluate the presented algo-
rithms. All implementations have been performed on a Linux workstation running 64-
bit Fedora 14, with Intel Core 2 Duo E6500 processors, and with 2GB of main memory.
The programs are written in C (compiled with gcc (version 4.5.1) with the -O3 flag)
and Java (compiled with javac version 1.6.0 30). Each reported running time is the
average of five runs.

We use graphs from TreewidthLIB [19]. This is a collection of approximately 700
graphs, among which we have chosen a set of 22 graphs drawn from areas such as
computational biology, frequency assignment, register allocation problem, evaluation
of probabilistic inference systems. The graphs were chosen so that in most cases our
implementation of TOMITAMIS would terminate within 24 hours. This limited the max-
imum size to about 200 vertices. Moreover we also avoided most graphs having fewer
than 106 MISs as all algorithms would spend less than a second on these. Table 1 gives
the statistics for the chosen 22 graphs. Here p gives the edge density, eth gives the
elimination tree height, while MISs gives the number of maximal independent sets. In
addition to these graphs we have performed experiments using rectangular grids.

Our first set of experiments concerns a comparison between the algorithm by Gaspers
et al. and TOMITAMIS. In addition to the regular algorithm by Gaspers et al. we also
implemented variants of it where we only apply the reduction rules at regular intervals,
the most extreme case being when the reduction rules are not used at all. Since the
algorithm by Gaspers et al. is by far the most complex of the considered algorithms,
we have performed these comparisons using Java as this offers better support for more
complex data structures such as sets. The results of the comparisons on nine represen-
tative graphs can be seen in the left plot of Figure 2. Here the first seven graphs are the
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ones marked with a * in Table 1, while the 8th graph is a path on 40 vertices, and the
9th and 10th graphs are grids of size 7 × 7 and 8 × 8, respectively. The numbers are
reported relative to the performance of the regular algorithm by Gaspers et al. (G100).
G50 denotes the algorithm where the reduction rules are only applied in 50% of the
recursive calls and G0 where they are not used at all.

Table 1. Description for benchmark real world graphs from TreewidthLIB [19]

Graph No. Graph name V E p eth MISs
1∗ risk 42 83 0.01 13 66498
2∗ pigs-pp 48 137 0.12 17 131402
3∗ 1sem 57 570 0.35 41 12405
4∗ BN 100 58 273 0.16 31 134201
5∗ 1r69 63 692 0.35 46 22993
6∗ 1ail 69 631 0.26 44 160312
7 macaque71 71 444 0.18 30 182044
8 jean 80 508 0.16 22 1251960
9∗ 1aba 85 886 0.25 54 1067404
10 david 87 406 0.11 22 4.41x107

11 celar02 100 311 0.06 29 2.87x1010

12 celar06 100 350 0.07 22 2.72x1010

13 1lkk 103 1162 0.22 62 1.44x107

14 1fs1 114 1351 0.21 73 5.10x107

15 1a62-pp 120 1507 0.21 73 7.56x107

16 miles250 128 387 0.05 36 1.75x1013

17 anna 138 493 0.05 23 2.75x1010

18 mulsol1.i.5 186 3973 0.23 47 3.33x109

19 celar05 200 681 0.03 36 7.86x1020

20 zeroin.i.3 206 3540 0.17 43 1.29x107

21 zeroin.i.2 211 3541 0.16 43 1.81x107

22 BN 93 422 1705 0.02 38 4.55x1011

As can be observed there is no advantage in using the reduction rules, and when they
are not used at all the performance is very similar to that of TOMITAMIS. Based on these
results we did not pursue the algorithm by Gaspers et al. any further. For the remaining
experiments all algorithms have been implemented in C as this gave considerable faster
code compared to using Java.

We then compared BKMIS, TOMITAMIS, and the algorithm by Eppstein et al. These
experiments showed that, as expected, TOMITAMIS outperformed BKMIS, while there
was little difference between TOMITAMIS and the algorithm by Eppstein et al. We note
that this last observation does not contradict the results in [7] as these were concerned
with enumerating cliques in sparse graphs which is equivalent to enumerating MISs in
dense graphs, while we are enumerating MISs in sparse graphs. Due to space constraints
we omit these results.

Our next set of experiments concerns different variants of CCMIS where we use
Metis [15] to precompute a nested dissection ordering. The time spent on this was
insignificant compared to the algorithm itself and is not included in the timings.
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Fig. 2. Relative performance of TOMITAMIS compared to the algorithm by Gaspers et al. (left),
and relative performance of different CCMIS algorithms (right).

The versions we tried include the basic algorithm (NDCC) where the vertices are pro-
cessed for branching according to the ordering given by Metis and versions where we
reorder the vertices within each separator and also the relative order of the neighbor
lists. Similar in spirit with TOMITAMIS we tried a version where one branches on a
vertex v in the current separator such that |P ∩NG[v]| is minimized. This slowed down
the algorithm compared to NDCC and we therefore switched to presorting each sepa-
rator based on their degree in G. We label this algorithm SortSep. Next we considered
the order in which the neighbor lists are ordered. This is of importance when trying
to dominate a vertex v currently in X . Consider a vertex w with several undominated
neighbors in the current separator S. In the configuration where w is in the current MIS
all neighbors of w will be dominated, thus reducing the number of undominated ver-
tices in S. In the configuration where w is in X each undominated neighbor of w will
have one vertex less that must be tried to dominate it. Based on these observations we
implemented a version (SortAdl) where the adjacency list of every vertex v was pre-
sorted according to the number of neighbors each vertex has in the same separator as
v belonged to. We also tried to compute this ordering on the fly using the number of
remaining undominated vertices in the current separator but this only increased the run-
ning time. In the right plot of Figure 2 we display the relative running time for all four
combinations of these approaches. For each graph we report the relative performance
compared to the best algorithm for that graph. In all of these implementations we only
check if the graph is disconnected if the previous call to CCMIS moved a vertex into
the current MIS.

The average distances from the best algorithm was for SortSep + SortAdl 36%, for
NDCC 185%, for SortSep 172%,for NDCC + SortAdl 167%. Thus it is clear that sorting
both the the separators and the neighbor lists is crucial for performance.

Finally we tried two versions of CCMIS where the selection criterion for which
vertex to branch on was strictly based on the degree of the remaining vertices, one
where we always selected the vertex of minimum degree and one where we selected
the vertex of maximum degree (MaxDegCC). Both of these were considerably slower
than any of the other CCMIS variations. The absolute running times for MaxDegCC,
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Table 2. CPU time(sec) for benchmark real world graphs from TreewidthLIB [19]

Graph 1 2 3 4 5 6 7 8 9 10 11
TomitaMIS 0.07 0.22 0.02 0.25 0.03 0.14 0.31 0.69 1.09 29.05 20095.5
NDCC 0.01 0.08 0.02 0.26 0.04 0.09 0.11 0.13 1.04 1.03 0.06
MaxDegCC 0.02 0.23 0.02 0.46 0.05 0.14 0.15 0.09 1.59 0.31 4.56
SortSep+SortAdl 0.01 0.05 0.01 0.22 0.03 0.07 0.06 0.24 0.73 0.22 0.06
Graph 12 13 14 15 16 17 18 19 20 21 22
TomitaMIS 10648.1 16.24 61.5 87.85 - 32716.1 2722.0 - 23.81 32.66 135407.1
NDCC 0.38 8.7 16.4 84.38 3.56 1.18 0.03 187.63 0.06 0.06 1303.0
MaxDegCC 8.67 15.3 40.9 82.06 7.17 0.69 0.18 - 0.84 0.86 1658.85
SortSep+SortAdl 0.07 5.7 8.7 24.37 0.81 0.2 0.04 290.57 0.22 0.22 76.12

TOMITAMIS, NDCC, and SortSEp+SortAdl are given in Table 2. We note that the av-
erage distance from the best algorithm for each graph was for MaxDegCC 1371% and
for TOMITAMIS 1.6× 106%.

As can be seen the running time of TOMITAMIS is by far the highest, for some
graphs the algorithm did not finish. Also, following a nested dissection ordering is ad-
vantageous in most cases, and as already noted presorting the separators and neighbor
lists further emphasizes this effect.

We have also experimented with how often one should check if the graph is discon-
nected in CCMIS. We tried version where we only checked for a certain percentage of
the calls, where we only checked once a separator had been dominated, and checking
when the remaining graph is at least of some predefined size. From these tests we con-
clude that when the remaining graph has at least 10 vertices, then checking every time
after some vertex has been added be in the current MIS was the best option.

6 Conclusion

We have shown the first practical algorithm for counting MISs in moderately sized
sparse graphs. Comparisons with other algorithms showed that our algorithm is highly
competitive for this problem. One can get an indication of how good the algorithm is
likely to be by looking at the height of the elimination tree. These results also extend
to counting cliques in dense graphs. We note that searching for a (small) separator in
a graph is equivalent to searching for a (large) complete r-partite graph, r ≥ 2, in
its complement graph. For r = 2 this is equivalent to searching for a (not necessarily
induced) bi-clique.

We are currently working on implementing the algorithm by Gaspers et al. in C to
be able to perform a more complete comparison of it with the other algorithm, although
we do not expect that this will change any of our conclusions. We would also like to
experiment further with what impact the partitioning strategy has on the running time.

Finally, we note that the presented ideas could be used to compute a maximum in-
dependent set in a graph in a similar fashion as the algorithm by Lipton and Tarjan. We
are not aware of any practical studies of how to solve this problem on sparse graphs,
although the complement problem of finding the maximum size clique has been studied
extensively on sparse graphs.
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11. Junosza-Szaniawski, K., Tuczyński, M.: Counting maximal independent sets in subcubic
graphs. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.)
SOFSEM 2012. LNCS, vol. 7147, pp. 325–336. Springer, Heidelberg (2012)

12. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal independent sets:
NP-hardness and polynomial time algorithms. SIAM J. Comp. 9, 558–565 (1980)

13. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comp. 9(3),
615–627 (1980)

14. Loukakis, E., Tsouros, C.: A depth first search algorithm to generate the family of maximal
independent sets of a graph lexicographically. Computing 4, 349–366 (1981)

15. Metis - serial graph partitioning and fill-reducing matrix ordering,
http://glaros.dtc.umn.edu/gkhome/views/metis/

16. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. of Math., 23–28 (1965)
17. Okamoto, Y., Uno, T., Uehara, R.: Linear-time counting algorithms for independent sets in

chordal graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 433–444. Springer,
Heidelberg (2005)

18. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all
maximal cliques and computational experiments. Theor. Comput. Sci. 363, 28–42 (2006)

19. Treewidthlib (2004-.), http://www.cs.uu.nl/people/hansb/treewidthlib
20. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all max-

imal independent sets. SIAM J. Comp. 6, 505–517 (1977)
21. Wilf, H.S.: The number of maximal independent sets in a tree. SIAM J. Alg. Disc. Meth. 7(1),

125–130 (1986)

http://glaros.dtc.umn.edu/gkhome/views/metis/
http://www.cs.uu.nl/people/hansb/treewidthlib
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Abstract. We consider the problem of building a quadtree subdivision
for a set E of n non-intersecting edges in the plane. Our approach is to
first build a quadtree on the vertices corresponding to the endpoints of
the edges, and then compute the intersections between E and the cells
in the subdivision. For any k ≥ 1, we call a K-quadtree a linear com-
pressed quadtree that has O(n/k) cells with O(k) vertices each, where
each cell stores the edges intersecting the cell. We show how to build a
K-quadtree in O(sort(n + l)) i/o’s, where l = O(n2/k) is the number
of such intersections. The value of k can be chosen to trade off between
the number of cells and the size of a cell in the quadtree. We give an
empirical evaluation in external memory on triangulated terrains and
USA TIGER data. As an application, we consider the problem of map
overlay, or finding the pairwise intersections between two sets of edges.
Our findings confirm that the K-quadtree is viable for these types of data
and its construction is scalable to hundreds of millions of edges.

1 Introduction

The word quadtree describes a class of data structures that partition the space
hierarchically and are defined by a stopping criterion that decides when a region
is not subdivided further. In 2D, the quadtree recursively divides a square con-
taining the data into four equal regions (quadrants or cells), until each region
satisfies the stopping condition (usually, when a cell is “small” enough). The
set of cells that are not split further define the leaves of the tree and represent
a subdivision of the input region. Quadtrees have been used for many types
of data (points, line segments, polygons, rectangles, curves) and many types of
applications. For an ample survey we refer to [12].

In this paper we are interested in quadtrees for data sets that are so large that
they do not fit in the internal memory of the computer, so that at any time,
most of the data has to reside in external memory. To analyze the efficiency of
the construction and query algorithms in this case, we use the standard i/o-
model by Aggarwal and Vitter [2]. In this model, a computer has an internal
memory of size M and an arbitrarily large disk. The data is stored on disk in
blocks of size B, and, whenever the algorithms needs to access data not present in
memory, it loads the block(s) containing the data from disk. The i/o-complexity
of an algorithm is the number of i/o’s it performs, that is, the number of blocks
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transferred (read or written) between main memory and disk. Sorting takes
sort(n) = Θ( n

B logM/B
n
B ) i/o’s [2]; scanning takes scan(n) = Θ(n/B) i/o’s.

Quadtrees can be viewed as trees representing the hierarchical space decom-
position, or as the set of leaf cells ordered along a space-filling curve. The
latter variant of quadtree, called the linear quadtree, was introduced by Gargan-
tini [5]. The linear quadtree is particularly useful when dealing with disk-based
structures, because its space requirements are smaller. Quadtrees are known to
perform well empirically in many different applications, but their worst-case be-
haviour is not ideal, except in the simplest cases. Given a set of n points in the
plane, a quadtree that splits a region until it contains at most one point can have
unbounded size. However, it is known how to construct a compressed quadtree of
O(n) cells which each have at most one point. In a compressed quadtree, paths
consisting of nodes with only one non-empty child are replaced by a single node,
with all empty children merged into one. Throughout this paper, the concept of
quadtrees will encompass both compressed and uncompressed quadtrees.

Building a quadtree on a set of n non-intersecting edges in the plane, rather
than points, is harder. We refer to a quadtree for a set of edges as an edge
quadtree, and we denote by l the number of intersections between the edges
and the cells in the quadtree subdivision. One way to build an edge quadtree
is to first build a compressed quadtree on the endpoints of the edges, and then
compute the intersections between the edges and the cells in the subdivision.
In the worst case, each edge can intersect almost all cells, giving a quadtree
of quadratic size. Another type of edge quadtree may split a region until it in-
tersects a single edge. Since the distance between two edges can be arbitrarily
small, the resulting quadtree has unbounded size. Other edge quadtrees can be
defined by formulating specific stopping criteria. Such structures were described
by Samet et al. [14,13,10]. The PM quadtree [14] allows a region to contain
more than one edge if the edges meet at a vertex inside the region. Variants
of PM quadtrees differ in how to handle regions that contain no vertices. The
segment quadtree [13] is a linear quadtree in which a leaf cell is either empty,
contains one edge and no vertices, or contains precisely one vertex and its in-
cident edges. The PMR quadtree [10] is a linear quadtree where each region
may have a variable number of segments and regions are split if they contain
more than a predetermined threshold. Hoel and Samet [9] compared the PMR
quadtree with some variants of R-trees on TIGER data, in terms of storage re-
quirements, construction time (disk i/o’s), and a number of queries. They find
that the PMR quadtree performs well compared to the R-tree for map overlay.
Subsequently, improved algorithms for the construction of the PMR quadtree
have been proposed [7,6,8]. The algorithms perform well in practice, but there
are several disadvantages: First, the stopping rule of the PMR quadtree means
that the size of a leaf depends on both the splitting threshold and the depth of
the leaf, and the quadtree depends on the insertion order. Second, the complex-
ity is analysed in terms of various parameters that depend on the data, in a way
that is not well understood. Finally, the algorithms are fairly complex, and the
performance is not worst-case optimal.
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Quadtrees in the i/o-model were described by Agarwal et al. [1] and De
Berg et al. [4]. Agarwal et al. describe an algorithm for constructing a quadtree
on a set of n vertices in the plane such that each cell contains O(k) vertices
(for any k ≥ 1), that runs in O( n

B
h

logM/B ) i/o’s, where h is the height of the

quadtree. This is O(sort(n)) i/o’s when h = O(log n) i.e. the vertices are nicely
distributed. Their algorithm was implemented and tested in practice as part of
an application to interpolate LIDAR datasets into grids. De Berg et al. described
the star-quadtree for triangulations, and the guard-quadtree for sets of edges in
the plane, which contain at most one vertex per cell and can be constructed in
O(sort(n + l)) i/o’s, where l = O(n2) is the number of edge-cell intersections.
The star- and guard-quadtrees are designed to exploit fatness and density: for fat
triangulations1 and sets of edges of low density2, respectively, the star-quadtree
and guard-quadtree have the property that each cell intersects O(1) edges, thus
l = O(n). An experimental evaluation of these structures has not been reported.

Our Contribution. We consider building an edge quadtree for a set E of n
non-intersecting edges. Let k ≥ 1 be a user defined parameter. Our algorithm
has two steps: First it builds, in O(sort(n)) i/o’s, a compressed linear quadtree
on the endpoints of E with O(n/k) cells in total and such that each cell has
O(k) vertices. Second, it computes the intersections between the edges and the
quadtree subdivision in O(sort(n + l)) i/o’s (where l = O(n2/k) is the total
number of intersections). We refer to the resulting quadtree as a K-quadtree.

The first step, constructing the quadtree subdivision, is a generalization of
the algorithm for building guard-quadtrees in [4]. Compared to the algorithm
by Agarwal et al. [1], our algorithm has better complexity, is much simpler, and
gives an upper bound on the number of cells in the subdivision. The second step,
which we refer to as edge distribution, is based on an idea communicated to us
by Doron Nussbaum. For k = 1 the algorithm has the same complexity as in [4],
but it is simpler and faster.

In Section 4 we give an empirical evaluation of K-quadtrees on triangulated
terrains (in GIS: TINs) and USA TIGER data. We examine the size of the
quadtree, the size of a cell and the construction time for different values of k.
We use test datasets up to 427 million edges, two orders of magnitude larger than
in related work [7,6,8]. On TINs and TIGER data the K-quadtrees have linear
size, which matches the results of [9,7,6,8]. In terms of construction time (or
bulk loading), a comparison with previous work is difficult. The running times
in [9] are given in terms of disk block accesses, not the total execution time. The
tests in [7,6,8] are performed on three TIGER data sets, the largest one having
approx. 200, 000 edges, on a machine with 64MB RAM. Our largest TIGER
bundle has 427 million edges (6.8 GB), and we use machines with 512MB RAM.
Furthermore a precise comparison is not possible without knowing all the tuning
parameters used in [8].

1 A triangulation such that every angle is larger than some fixed positive constant δ.
2 Any disk D is intersected by at most λ edges whose length is at least the diameter
of D, for some fixed constant λ.
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As an application of quadtrees we consider one of the basic operations in
GIS and spatial data structures, map overlay: computing the pairwise segment
intersections (overlay) between two sets of edges. Given two sets of edges, each
pre-processed as a quadtree, their intersections can be computed in a very simple
manner by scanning the two quadtrees as in [4]. We implemented map overlay
and report on the running time using various values of k.

Overall, our experimental results confirm that the K-quadtree is viable for
very large TIN and TIGER data. These represent relatively simple classes of
inputs; however they arise frequently in practice and have been used extensively
as tests beds for spatial index structures. Further experiments are necessary for
other types of data, and we leave this as a topic for future work.

2 Preliminaries

For simplicity, we assume that the edges E lie in the unit square. For quadtree
background and notation see e.g. [11,4]. A square that is obtained by recursively
dividing the input square into quadrants is called a canonical square. To order
the quadrants, we use the z-order space-filling curve that visits the 4 quadrants,
recursively, in order SW, NW, SE, NE. z-order gives a well-defined ordering
between the cells in the quadtree subdivision, as well as between any two points.
For a point p = (px, py) in the unit square, define its z-index Z(p) to be the value
in the range [0, 1) obtained by interleaving the bits in the fractional parts of px
and py. The value Z(p) is sometimes called the Morton block index of p. The
z-order of two points is the order of their z-indices. The z-indices of all points in
a canonical square σ form an interval [z1, z2) of [0, 1), where z1 is the z-index of
the bottom left corner of σ. A compressed quadtree subdivision has two types of
cells: canonical squares, and donut cells, corresponding to empty nodes that were
merged together. A donut cell is the difference between two canonical squares
[z1, z2]− [z3, z4] and is represented as the union of two intervals [z1, z3]

⋃
[z4, z2].

With this notation, a (compressed) quadtree subdivision corresponds to a
subdivision Q of the z-order curve, and it can be viewed as a set of consecu-
tive, adjacent, non-overlapping intervals, covering [0, 1), in z-order: Q = {[z1 =
0, z2), [z2, z3), [z3, z4), ...}; Each interval corresponds to a cell σi, which is either
a canonical square or a part of a donut. We represent a K-quadtree as a sub-
division of the z-order curve where each intersection of an edge e with a cell σ
corresponding to the interval [z1, z2) is represented by storing edge e with key
z1. A K-quadtree is thus a list of pairs {(z1, e)}, stored in order of z1.

In the rest of the paper we denote by l the number of intersections between
E and the cells in the quadtree subdivision, and we use the terms quadtree,
quadtree subdivision and subdivision interchangeably.

3 Constructing a K-Quadtree

In this section we describe our algorithm for building a K-quadtree. Let k ≥ 1
be a user defined parameter. Our algorithm has two steps: In the first step
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it ignores the edges and builds, in O(sort(n)) i/o’s, a linear quadtree on the
endpoints of the edges. The quadtree has O(n/k) cells in total, each containing
O(k) vertices. Second, it computes the intersections between the edges and the
quadtree subdivision in O(sort(n+ l)) i/o’s. We describe the two steps below.

Constructing the subdivision. Let P = {p0, p1, p2, ...} be the vertices of E . A
straightforward idea to build a quadtree with O(k) vertices per cell would be
to start with one of the standard algorithms for building a quadtree with at
most one vertex per cell, and then traverse the subdivision and merge cells
into cells of size O(k). However, we would like to avoid generating first a larger
subdivision and then merging its cells to get a smaller subdivision. Another
approach might be to build the quadtree top-down: stop if the cell contains
O(k) vertices, otherwise split the cell and distribute the points among the four
children, and continue on the children recursively; however, this may take Θ(n2)
time as the quadtree may have height Θ(n).

Our idea to generate a quadtree subdivision with O(n/k) cells and O(k) ver-
tices in each cell directly, is a simple and elegant generalization of an algorithm
in [4]. Assume that P has been sorted in z-order, and denote Pk the set of every
kth point in P : Pk = {p0, pk, p2k, ...} ⊂ P . The idea is to build the quadtree sub-
division induced by Pk: for every pair of consecutive points in Pk, we find their
smallest enclosing canonical square, and output the five z-indices corresponding
to the four z-intervals of the quadrants of this square. We claim that:

Lemma 1. The resulting list of z-indices represents a compressed quadtree sub-
division with O(n/k) cells and O(k) vertices per cell.
Proof. Every pair of consecutive points of Pk causes a split, and generates 4
cells, therefore O(n/k) cells; each cell contains at most one point of Pk inside
(or otherwise it would have been split), therefore O(k) points of P . ��
Assuming that the operations involving z-indices take O(1) time, this step runs
in O(n) time and O(scan(n)) i/o’s. With the help of the stack described in the
appendix of [4], we can actually output the z-indices in increasing order without
additional i/o. Thus we get a compressed quadtree subdivision represented by a
list of z-intervals, in z-order of their first endpoint: Q = {[z1 = 0, z2], [z2, z3], ...}
= {I1, I2, ...}. We note that in practice we represent the second endpoint of the
intervals implictly.

An algorithm for edge distribution when k = 1. Let Q = {I1, I2, ...} be a sub-
division of the endpoints of E obtained by the algorithm described above, and
assume Q is given in z-order. We will now first consider the case k = 1, i.e.
every cell contains at most one vertex, and the total number of cells is O(n). We
describe how to find the intersections between Q and E in O(sort(n+ l)) i/o’s.
Later we will show how to generalize this process to a subdivision with O(k)
vertices in a cell, where k > 1.

We assume edges are oriented from left to right, vertical segments are oriented
upwards, and let E+ and E− denote the edges of positive and negative slope,
respectively. The crux of the algorithm is to process the edges of positive and
negative slope separately. We describe below the two steps.
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Fig. 1. (a) E+ (b) B7 (c) X7 and processing cell σ7 (d) X8

Distributing the edges of positive slope. The idea is to scan Q, one interval
at a time, and find all the edges in E+ intersecting the cell corresponding to
the current interval. Let Ij = [zj, zj+1] be the next interval we read from Q,
and let σj be the corresponding cell in the subdivision. There are two types of
intersections between σj and E+, see Fig. 1:

– First, there may be edges that intersect σj and originate in σj ;
– Second, there may be edges that intersect σj and originate outside σj .

Intersections of the first type can be detected by scanning Q and E+ in sync,
as follows. Let E+ be sorted in z-order of the first endpoints of the edges. Let
Ij be the current interval in Q, and let e = (p, q) be the next edge in E+. To
check whether e originates in σj means checking if z(p) ∈ Ij . This leads to the
following algorithm: For each interval Ij ∈ Q, we read from E+ all the edges
that originate in σj , and stop when encountering the first edge e′ = (p′, q′) with
z(p′) > zj+1. Then we continue with the next interval from Q, in the same
fashion. Because the edges in E+ are stored in z-order of their first endpoint,
we know that once we encounter an edge with z(p′) > zj+1, then all subsequent
edges have the same property and none of them can originate in σj . This runs
in O(scan(|Q|+ |E+|)) = O(scan(n)) i/o’s.

The harder problem is finding the intersections of σj with the edges that
originate outside σj . It is here that we exploit that E+ and E− are processed
separately. The key observation is that any edge of positive slope that intersects
σj originates in a cell that comes before σj , in z-order. In general we have:

Lemma 2. An edge of positive slope intersects the cells in Q in z-order.

Consider the current interval Ij in Q. By Lemma 2 it follows that all the edges
that intersect σj and do not start in σj must originate in a cell σi before σj ,
that is i < j. Let Bj denote the boundary between the cells explored before σj ,⋃

i<j σi and the rest of the cells
⋃

i≥j σi, for any j ≥ 1. The edges in E+ that
originate (but do not end) in a cell before σj will intersect the boundary Bj ; let
Xj be the set of these edges. See Fig. 1. More precisely, let XLj be the edges
of Xj that intersect Bj between the left edge of the unit square and the lower
left corner of σj , and let XB j be the edges of Xj that intersect Bj between the
lower left corner of σj and the bottom edge of the unit square. Here, if σj is the
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second part of a donut, we define its lower left corner as the upper right corner
of the hole, which is, in fact, the upper right corner of σj−1.

Lemma 3. Bj is a monotone staircase and the intersection of σj and Bj covers
a connected part of Bj.

The algorithm will maintain Xj on two stacks SL and SB , keeping the following
invariant: before processing an interval Ij from Q, the stack SL contains, from
bottom to top, the edges of XLj in the order of their intersections with Bj

from the left edge of the unit square to the lower left corner of σj ; the stack SB
contains, from bottom to top, the edges of XBj in the order of their intersections
with Bj from the bottom edge of the unit square to the lower left corner of σj .
Initially, for j = 1, the boundary B1 is empty and both stacks are empty.

The algorithm now scans Q and E+. When Ij is the next interval in Q, the
algorithm reads all edges that originate in σj from E+, and pops all edges that
intersect σj “from before” from SL and SB . Out of these edges, we push those
that leave σj between the upper left and upper right corner onto SL, and those
that leave σj between the lower right and the upper right corner onto SB , in
order of their intersections with the boundary of σj towards the upper right
corner (if σj is part of a donut surrounding σj+1, we take the lower left corner
of σj+1 as the upper right corner of σj). Finally we establish the invariant for
the next interval: if the lower left corner of σj+1 lies above the lower left corner
of σj , we do this by popping edges from SL and pushing them onto SB one by
one until SL is empty or the top of SL intersects Bj+1 between the left edge
of the unit square and the lower left corner of σj+1; otherwise we establish the
invariant in a symmetric way by moving edges from SB to SL.

From Lemma 3 and the invariant it follows that before processing cell σj , all
edges of Xj that intersect σj are on top of SL or SB , and thus the algorithm
correctly finds all edges intersecting σj and correctly restores the invariant after
every step. It remains to analyse the efficiency of the algorithm. We claim that:

Lemma 4. Each edge of E+ is pushed onto SB at most once and pushed onto
SL at most once for each intersection with Q.

For a brief justification, consider a square and its four quadrants. Let h be the left
half of the horizontal midline of the square, and let H be the edges intersecting
h. These edges leave the lower left quadrant across its top edge and are therefore
pushed onto SL; they are moved to SB just before processing the first cell in
the upper left quadrant. From there, the edges of H will never move back to SL
while still representing the intersection with h, as this would only happen if the
lower left corner of the next cell σj+1 is to the right of the intersections ofH with
h. However, by the monotonicity of Bj+1, this can only happen after all cells
that touch h from above and to the left of σj+1 have already been processed, at
which time the edges of H must have been removed from the stack. Similarly,
the edges crossing the vertical midline of the square leave the quadrants on the
left across their right edges and are therefore pushed onto SB ; they are moved
to SL just before processing the first cell in the lower right quadrant. From there
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they are removed as we traverse the leftmost cells within the quadrants on the
right from bottom to top.

Let l+ be the number of intersections between E+ and Q. Putting everything
together it follows that the intersections of E+ and Q can be found in O(scan(n+
l+)) i/o’s once E+ and Q are sorted.

Distributing the edges of negative slope. To distribute the edges of negative
slope, we observe that Lemma 2 holds for edges of negative slope if we consider
a different z-order: Z’= NW, NE, SW, SE. We convert Q to a subdivision Q′

onto the Z’-order curve, find the intersections with E− using the same algorithm
as above, and map the intersections back to the cells in Q. All these steps run in
O(sort(n+ l−)) i/o’s, where l− stands for the number of intersections between
E− and Q. Overall, the intersections between Q, E+ and E− can be found in
O(sort(n+ l)) i/o’s, where l = l+ + l− is the total number of intersections.

Distributing edges in a K-quadtree. Above we described how to find the intersec-
tions between E and a quadtree subdivision where each cell contains at most one
vertex (k = 1). We now describe briefly how to extend the algorithm to k > 1.

Recall that the algorithm for k = 1 reads intervals in order from Q while
maintaining the stacks SL and SB . For each interval Ij it: (a) finds the edges
that originate in σj ; (b) finds the edges that intersect σj and originate outside
σj ; (c) merges these two groups of edges in order onto the stacks. The only
step that is different when k > 1 is (c). In this case the edges that originate
in σj need to be carefully interleaved with the edges of Xj . Note that we read
the edges originating in σj from E+ in z-order of their start point, which is not
necessarily the order in which they will appear in Xj+1. For each edge we find
the intersection with σj , and then sort all edges intersecting σj (the edges found
on the stacks and the edges originating in σj) by the point where they leave σj .
Since the boundary of σj is a monotone staircase, sorting the edges by these
exit points gives them in the order in which they appear on Bj+1. Overall the
algorithm runs in O(sort(n+ l)) i/o’s.

4 Experimental Results

In this section we present an empirical evaluation of K-quadtrees on two types
of data commonly used in GIS applications, triangulated terrains (TINs) and
TIGER data. We implemented the construction algorithm described in Section 3
and experimented with various values of k. The current implementation assumes
that k = O(M) and the number of edges that intersect a cell fit in memory;
they are sorted using system qsort. We compare the resulting subdivisions in
terms of total number of edge intersections, average number of edge intersections
per cell, maximum number of intersections per cell, and construction time. For
comparison we also implemented the construction algorithm in [4], denote qdt-

1-old. As an application we consider the time to compute the pairwise segment
intersections (overlay) between two sets of edges, which is one of the standard
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operations in GIS and spatial databases. Given two sets of edges, each pre-
processed as a K-quadtree, their intersections can be computed in a very simple
and efficient manner, while scanning the two quadtrees, see e.g. [4].

Let e denote the number of edges in the input dataset, c the number of
cells in the quadtree subdivision, and l the number of edge-cell intersections in
the quadtree subdivision. For each quadtree we measured the following average
quantities: (i) the average number of cells per input edge, c/e; (ii) the average
number of edge-cell intersections per edge, l/e (indicates the total size of the
quadtree, relative to the input size); (iii) the average number of edges intersecting
a cell, l/c (indicates the average size of a cell in the quadtree).

Datasets. In the first set of experiments we built quadtrees on triangulated
terrains, for which we ignored the elevation, with size up to 53.9 · 106 edges,
or 411GB (with 8B per edge). The datasets represent Delaunay triangulations
of elevation samples of real terrains. They have not been filtered to eliminate
narrow triangles. For all our test datasets, the minimum angle is on the order
of 0.001◦ and the maximum angle close to 180◦; 5% of the angles are below 18◦

and 5% above 108◦; the average minimum angle is around 33◦; and the median
angle 57◦. The maximum number of edges incident on a vertex varies widely
across all datasets, ranging between 31 and 356; the average incidence across all
datasets is approx. 6.

In the second set of experiments we used USA TIGER2006SE data. This con-
sists of 50 datasets, one for each state, containing the roads, railways, boundaries
and hydrography in the state. The size of a dataset ranges from 115,626 edges
(DE), to 40.4 million edges (TX). We assembled 4 (larger) datasets: New Eng-
land (25.8 million edges, or 197MB), East Coast (113.0 · 106 edges or 862MB),
Eastern Half (208.3·106 edges or 1.5GB) and All US (427.7·106 edges or 3.2GB).

Platform. The algorithms are implemented in C and compiled with g++ 4.1.2
with optimization level -O3. All experiments were run on HP 220 blade servers,
with an Intel 2.83 GHz processor, 512MB of RAM and a 5400 rpm SATA hard
drive. The hard disk is standard speed for laptop hard-drives. As I/O-library we
used IOStreams [15], an i/o-kernel derived from TPIE [3]. The only components
used were scanning and sorting, so other I/O-libraries can be plugged in.

Results on triangulations. In the first set of experimentswe computedK-quadtrees
on TIN data for various values of k ≥ 1, denotedQDT-k. Some results are shown
in Fig 2. Our construction algorithm is more than 5 times faster than qdt-1-old

(210 minutes vs. 1071 minutes on a TIN with e = 54 · 106). As expected, when
k increases, the construction time decreases (Fig 2(a)); the number of cells in the
quadtree decreases (Fig 2(b)) and the overall size of the quadtree decreases (since
fewer cells lead to fewer edge-cell intersections, Fig 2(c)). On the other hand the
average number of edge intersections per cell, l/c, increases (Fig 2(d)). For exam-
ple, on aTINwith e = 54·106,QDT-1 is built in 210minutes, has c = .6e, l = 2.9e
and l/c = 4.8; QDT-100 is built in 57 minutes, and has c = .004e, l = 1.2e and
l/c = 257. Note that l/c represents an average quantity over the entire TIN and
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Fig. 2. Quadtree build times and sizes on TIN data (512MB RAM)

the maximum number of edges per cell can be much higher. In summary, for in-
creasing k,QDT-k is built faster, has smaller overall size and larger cell size. The
total size of the quadtree stays consistently small across all TINs, and appears to
grow linearly with the number of edges. More detailed results will appear in the
long version of this paper.

Results on TIGER data. In the second set of experiments we computed K-
quadtrees for TIGER data. The results are shown in Fig. 3. Same as for TINs,
the build time gets faster up to k = 100, and then levels. E.g., on EastHalf

(e = 208 ·106), it takes 24.7 hours to build QDT-1, 9.0h to build QDT-10, 4.8h
to build QDT-100, and 4.5h to build QDT-500; on AllUSA (e = 428 · 106),
QDT-100 can be built in 9.7h. The algorithms run at 70% CPU utilization.
Similar to [7,6,8], we found that the bottleneck in quadtree construction is edge
distribution; in our case it accounts for more than 90% of the total running time,
and runs at more than 70% CPU. On TIGER data, our new algorithm is up to 2.9
times faster than QDT-1-old; For example, on NewEngland (e = 25.8 · 106),
QDT-1-old runs in 545 min, while QDT-1 runs in 186 min. Even with our new
algorithm, building a QDT-1 is practically infeasible on moderately large data,
taking more than 20h.

The average quadtrees sizes are relatively consistent across all datasets, which
is somewhat surprising. QDT-1 has one edge per cell (l/c = 1) on average and
an overall size l = 3e. We also computed the maximum cell size (Fig. 3(c)), which
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Fig. 3. Quadtree build times and sizes on TIGER data (512MB RAM)

varies widely from state to state; for example, the largest cell in the EastHalf

bundle intersects 58 edges, while for states like ME and VT, the largest cell in-
tersects 8 edges. For increasing values of k, QDT-k has a larger average cell, but
has fewer cells and an overall smaller size. Empirically, for k = 10, 100, 500, 1000,
QDT-k has l = 1.5e, 1.1e, 1.04e and 1.03e, respectively.

Segment intersection using quadtrees. To test the efficiency of segment intersec-
tion using quadtrees, we ran a set of experiments using a TIN (e = 53.9 · 106)
stored as QDT-1, and the TIGER datasets stored as QDT-k, for various values
of k. To force all datasets to cover the same area, we scaled them to the unit
square; the resulting intersections are artificial, and we only use them for run
time analysis.

Overall, computing the intersecting segments is fast and scalable. For example,
computing the overlay of 262 million TIN edges can be done in under 1.8 hours if
the quadtrees are given. For the larger TIGER sets, we see two competing effects
in the running time. On one hand, as k increases, the size of a cell increases, and
the time to compute the intersections between two cells increases. On the other
hand, the overall number of cells and edge-cell intersections decrease, resulting
in fewer cell-to-cell comparisons. The two effects, combined, cause the total time
to first decrease as k increases from 1 to 100, and again increase for k = 500.
The optimal K-quadtree for segment intersection against QDT-1 is not the one
with k = 1, as one might have expected, but seems to be one with k ∈ [100, 500].
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5 Conclusions

We proposed a simple, i/o-efficient algorithm for the construction of a quadtree
of a set of edges in the plane. For a user defined parameter k ≥ 1, our quadtree
has O(n/k) cells with O(k) vertices each, and can be built in O(sort(n+l)) i/o’s,
where l = O(n2/k) is the total number of edge-cell intersections. The K-quadtree
can trade off the size of a cell with the number of cells, overall size and construc-
tion time, and its i/o-efficient construction is simple and scalable. Our experi-
ments confirm that K-quadtrees are viable for two classes of data used frequently
in practice, TIN and TIGER. In our experiments we use test datasets of up to
427 million edges, two orders of magnitude larger than in related work [7,6,8].
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Abstract. It was reported in a study by Brodal and Moruz that, due
to branch mispredictions, skewed search trees may perform better than
perfectly balanced search trees. In this paper we take the search pro-
cedures under microscopic examination, and show that perfectly bal-
anced search trees—when programmed carefully—are better than skewed
search trees. As in the previous study, we only focus on the static case.
We demonstrate that, by decoupling element comparisons from condi-
tional branches and by writing branchless code in general, harmful effects
caused by branch mispredictions can be avoided. Being able to store per-
fectly balanced search trees implicitly, such trees get a further advantage
over skewed search trees following an improved cache behaviour.

1 Introduction

In traditional algorithm analysis each instruction is assumed to take a constant
amount of time. In real computers pipelining and caching are omnipresent, so
the unit-cost assumption may not always be valid. In this paper we study the
impact of hardware effects on the efficiency of search programs for search trees.
The outcome of the element comparisons performed in searches is often hard to
predict. Also, sequential access is to be avoided in order to support searches in
sublinear time. Both of these aspects make search algorithms interesting subjects
of study.

We focus on the following hardware phenomena (for more details, see [15]):

Branch misprediction: In a pipelined processor, instructions are executed in
parallel in a pipelined fashion. Conditional branches are problematic since
the next instruction may not be known when its execution should be started.
By maintaining a table of the previous choices, a prediction can be made.
But, if this prediction is wrong, the partially processed instructions are dis-
carded and correct instructions are fed into the pipeline.

Cache miss: In a hierarchical memory, the data is transferred in blocks between
different memory levels. We are specifically interested in what happens be-
tween the last-level cache and main memory. Block reads and block writes
are called by a common name: I/Os. When an I/O is necessary, the processor
should wait until the block transfer is completed.
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The motivation for the present study came from a paper by Brodal and Moruz
[4], where they showed that skewed search trees can perform better than perfectly
balanced search trees. This anomaly is mainly caused by branch mispredictions.
Earlier, Kaligosi and Sanders [11] had observed a similar anomaly in quicksort;
namely, when the pivot is given for free, a skewed pivot-selection strategy can
perform better than the exact-median pivot-selection strategy.

In a companion paper [6] we proved that, when a simple static branch pre-
dictor is in use, any program can be transformed into an equivalent program
that only contains O(1) conditional branches and induces at most O(1) branch
mispredictions. That is, in most cases branch-misprediction anomalies can be
avoided, but this program transformation may increase the number of instruc-
tions executed. In spite of the existence of this general transformation, current
compilers can do branch optimization only in some special cases, and it is difficult
for the programmer to force the compiler to do it.

As in the study of Brodal and Moruz [4], our goal is to find the best data
representation for a static collection of N integers so that random membership
searches can be supported as efficiently as possible. We restrict this study to
classical comparison-based methods, so we will not utilize the universe size in
any way. Our hypothesis is that, in this setup, balanced search trees are better
than skewed search trees. We provide both theoretical and experimental evidence
for this proposition. To summarize, the following facts support its validity.

1. The search procedure for a perfectly balanced search tree can be programmed
such that it performs at most lgN + O(1) (two-way) element comparisons
(Section 2). When element comparisons are expensive, their cost will domi-
nate the overall costs.

2. The search procedure can be modified, without a significant slowdown, such
that it induces O(1) branch mispredictions (Section 4) and performs O(1)
conditional branches (Section 7). Hereafter most problems related to branch
mispredictions are avoided and skewing does not give any advantage.

3. In several earlier studies (see, e.g. [2,5,14,16,17,18]) it has been pointed out
that the layout of a search tree can be improved such that it incurs O(logB N)
cache misses per search (Section 5), where B is the size of the cache lines
measured in elements. By making the layout implicit, the representation can
be made even more compact and more cache-friendly (Section 6).

In addition to providing branchless implementations of search algorithms, we
investigated their practical performance. The experiments were carried out on a
laptop (Intel R© CoreTM i5-2520M CPU @ 2.50GHz × 4) running Ubuntu 12.04
(Linux kernel 3.2.0-36-generic) using g++ compiler (gcc version 4.6.3) with opti-
mization -O3. The size of 12-way-associative L3 cache was 3 MB, the size of cache
lines 64 B, and the size of the main memory 3.8 GB. Micro-benchmarks showed
that in this computer unpredictable conditional branches were slow, whereas
predictable conditional branches resulted in faster code than conditional-move
primitives available at the assembly-language level. As expected, random ac-
cess was much slower than sequential access, but the last-level cache (L3) was
relatively large so cache effects were first visible for large problem instances.
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In all experiments the elements manipulated were 4-byte integers; it was en-
sured that the input elements were distinct. All execution times were measured
using the function gettimeofday accessible in the C standard library. All branch-
misprediction and cache-miss measurements were carried out using the simula-
tors available in valgrind (version 3.7.0). Each experiment was repeated 106

times and the mean over all test runs was reported.
Our main purpose was to use the experiments as a sanity check, not to provide

a thorough experimental evaluation of the search procedures. We ported the
programs to a couple of other computers and the behaviour was similar to that
on our test computer. On the other hand, a few tests were enough to reveal
that the observed running times are highly dependent on the environment—like
the computer architecture, compiler, and operating system. Readers interested
in more detailed comparison of the programs are advised to verify the results
on their own platforms. The search programs discussed in this paper are in the
public domain [12].

2 Search Procedure

We assume that a node in a binary search tree stores an element and three point-
ers pointing to the left child, right child, and parent of that node, respectively. For
a node x, we let (*x).element(), (*x).left(), (*x).right(), and (*x).parent()

denote the values of these four fields.
In a textbook description, search algorithms often rely on three-way compari-

sons having three possible outcomes: less, greater, or equal. We, however, assume
that only two-way comparisons are possible. The simulation of a three-way com-
parison involves two two-way comparisons. Hence, a naive implementation of the
search procedure essentially performs two element comparisons per visited node.
The search procedure using two-way branching was discussed and experimentally
evaluated by Andersson [1]. With this procedure only one element comparison
per level is performed, even though more nodes may be visited. According to
Knuth [13, Section 6.2.1], the idea was described in 1962. This optimization is
often discussed in textbooks in the context of binary search, but it works for
every search tree.

Assume that we search for element v. The idea is to test whether to go to the
left at the current node x (when v < (*x).element()) or not. If not, we may have
equality; but, if there is a right child, we go to the right anyway and continue
the search until x refers to null. The only modification is that we remember the
last node y on the search path for which the test failed and we went to the right.
Upon the end of the search, we do one more element comparison to see whether
(*y).element() < v (we already know that (*y).element() ≤ v). It is not hard
to see that, if v = (*y).element(), the last node on the search path is either y

itself (if (*y).right() is null) or its successor (all subsequent tests fail and we
follow the left spine from (*y).right()).
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Let N denote the type of the nodes and V the type of the elements, and let
less be the comparison function used in element comparisons. Using C++, the
implementation of the search procedure requires a dozen lines of code.

1 bool is_member(V const& v) {
2 N∗ y = nullptr ; // candidate node
3 N∗ x = root ; // current node
4 while (x != nullptr) {
5 i f (less(v , (∗x) .element() )) {
6 x = (∗x) .left() ;
7 }
8 else {
9 y = x ;

10 x = (∗x) .right() ;
11 }
12 }
13 i f (y == nullptr | | less((∗y) .element() , v)) {
14 return false ;
15 }
16 return true ;
17 }

3 Models

We wanted to study the branch-prediction and cache behaviour separately.
Therefore, instead of testing the search procedure in a real-world scenario, we
decided to use models that capture its branch-prediction behaviour (see Fig. 1).
The three-way model emulates the search procedure for a random search when
three-way branching is used; the two-way model does the same when two-way
branching is used; and the branchless model mixes Boolean and integer arith-
metic to avoid the conditional branch altogether. In principle, all the models
work in the same way: They reduce the search range from N to � or to N− 1− �
depending on the outcome of the branch executed; here � is the border between
the left and right portions. In the actual implementation the random numbers
were generated beforehand, stored in an array, and retrieved from there.

We measured the execution time and the number of branch mispredictions
induced by these models for different values of N . We report the results of

1 k = random() ∗ N ;
2 while (N > 1) {
3 � = α ∗ N ;
4 i f (k < �) {
5 N = � ;
6 }
7 else if (k > �) {
8 k = k − 1 − � ;
9 N = N − 1 − � ;

10 }
11 else {
12 N = 1;
13 }
14 }

Three-way model

1 k = random() ∗ N ;
2 while (N > 1) {
3 � = α ∗ N ;
4 i f (k < �) {
5 N = � ;
6 }
7 else {
8 k = k − � ;
9 N = N − 1 − � ;

10 }
11 }

Two-way model

1 k = random() ∗ N ;
2 while (N > 1) {
3 � = α ∗ N ;
4 Δ= (k < �) ;
5 k = k − � +Δ ∗ � ;
6 N =Δ ∗ � + (1 −Δ) ∗ (N − 1 − �) ;
7 }

Branchless model

Fig. 1. The models considered
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Table 1. Runtime performance of the models; execution time per lgN [in nanoseconds]

N
Three-way Two-way Branchless
α = 1

2
1
3

1
4
α = 1

2
1
3

1
4
α = 1

2
1
3

1
4

216 7.6 7.4 7.8 7.7 7.6 8.2 7.0 8.4 9.8
224 7.7 7.5 8.0 7.8 7.6 8.1 7.2 8.4 9.7
232 8.0 7.9 8.3 8.1 7.8 8.4 7.6 8.7 10.0

Table 2. Branch behaviour of the models; number of conditional branches executed
(©< ) and branch mispredictions induced per search, both divided by lgN

N
Three-way α = 1

3
Two-way α = 1

3
Branchless α = 1

2

©< Mispred. ©< Mispred. ©< Mispred.

216 2.67 0.44 2.15 0.45 1.00 0.06
224 2.67 0.44 2.16 0.44 1.00 0.04
232 2.79 0.44 2.17 0.44 1.00 0.03

these experiments in Tables 1 and 2. There are three things to note. First, the
differences in the running times are not that big, but the branchless version is
the fastest. Second, the model relying on three-way branching executes more
conditional branches than the model relying on two-way branching. Third, since
the outcome of at least one of the conditional branches inside the loop is difficult
to predict, the first two models may suffer from branch mispredictions.

These experiments seem to confirm the validity of the experimental results
reported by Brodal and Moruz [4]. For example, for the three-way model, for
N = 232, the number of element comparisons increased from 2.4 lgN (α = 1

2 ,
not shown in Table 2) to 2.79 lgN (α = 1

3 ), but the branch-misprediction rate
went down from 0.51 (α = 1

2 ) to 0.44 (α = 1
3 ). This was enough to obtain

an improvement in the running time. For larger values of α the running times
got again higher because of the larger amount of work done. The behaviour
of the two-way model was very similar to that of the three-way model. On the
other hand, the situation was different for the branchless model; the value α = 1

2
always gave the best results and the branch-misprediction rate was 0.06 or lower.

4 Skewed Search Trees

A skewed binary search tree [4] is a binary search tree in which the left subtree
of a node is always lighter than the right subtree. Moreover, this bias is exact so
that, if weight(x) denotes the number of nodes stored in the subtree rooted at
node x, weight((*x).left()) = �α · weight(x)� for a fixed constant α, 0 < α ≤ 1

2 .
A perfectly balanced search tree is a special case where α = 1

2 . We implemented
skewed search trees and profiled their performance for different values of α.

To start with, we consider a memory layout where each node is allocated
randomly from a contiguous pool of nodes. In addition to the search procedure
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relying on a two-way element comparison described in Section 2, we implemented
a variant where the if statement inside the while loop was eliminated. The
resulting program is interestingly simple.

1 N∗ choose(bool c , N∗ x , N∗ y) {
2 return (N∗)((char∗) y + c ∗ ((char∗) x − (char∗) y)) ;
3 }
4

5 bool is_member(V const& v) {
6 N∗ y = nullptr ; // candidate node
7 N∗ x = root ; // current node
8 while (x != nullptr) {
9 bool smaller = less(v , (∗x) .element() ) ;

10 y = choose(smaller , y , x) ;
11 x = choose(smaller , (∗x) .left() , (∗x) .right() ) ;
12 }
13 i f (y == nullptr | | less((∗y) .element() , v)) {
14 return false ;
15 }
16 return true ;
17 }

The statement z = choose(c, x, y) has the same effect as the C statement
z = (c) ? x : y, i.e. it executes a conditional assignment. Here it would have
been natural to use the conditional-move primitive provided by the hardware,
but we wanted to avoid it for two reasons. First, it would have been necessary to
implement this in assembly language, because there was no guarantee that the
primitive would be used by the compiler. Second, our micro-benchmarks showed
that the conditional-move primitive was slow in our test computer.

Assuming that the underlying branch predictor is static and that a while loop
is translated by ending the loop conditionally, the outcome of the conditional
branch at the end of the while loop is easy to predict. If we assume that backward
branches are taken, this prediction is only incorrect when we step out of the loop.
Including the branch mispredictions induced by the last if statement, the whole
procedure may only induce O(1) branch mispredictions per search.

The performance of the search procedures is summed up in Tables 3 and 4.
Compared to the models discussed in the previous section, the running times
are higher because of memory accesses. The results obtained are consistent with
our earlier experiments [6,7], where branch removal turned out to be benefi-
cial for small problem instances. For the problem sizes we considered, when the

Table 3. Runtime performance of the search procedures for skewed search trees (ran-
dom layout); execution time per lgN [in nanoseconds]

Skewed random Skewed random
N Two-way Branchless

α = 1
2

1
3

1
4

α = 1
2

1
3

1
4

215 10.3 10.5 10.7 7.6 11.0 12.3
220 38.5 40.6 44.5 36.1 42.6 48.8
225 75.8 82.6 91.9 76.8 86.3 97.8
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Table 4. Branch behaviour of the search procedures for skewed search trees (ran-
dom layout); number of conditional branches executed (©< ) and branch mispredictions
induced per search, both divided by lgN

Balanced random Skewed random Skewed random Balanced random
N Two-way α = 1

2
Two-way α = 1

3
Two-way α = 1

4
Branchless α = 1

2

©< Mispred. ©< Mispred. ©< Mispred. ©< Mispred.

215 2.13 0.57 2.28 0.52 2.53 0.46 1.13 0.07
220 2.10 0.55 2.26 0.50 2.52 0.44 1.10 0.05
225 2.08 0.54 2.24 0.49 2.51 0.42 1.08 0.04

memory layout was random, we could not repeat the runtime results of Bro-
dal and Moruz [4], although the branch-misprediction rate went down. For the
branchless procedure there is a perfect match between theory and practice: It
executes lgN+O(1) conditional branches but only induces O(1) branch mispre-
dictions.

5 Local Search Trees

By increasing the locality of memory references, improvements in performance
can be seen at two levels:

– At the cache level, when more elements are in the same cache line, fewer
cache misses will be incurred.

– At the memory level, when more elements are in the same page, fewer TLB
(translation-lookaside buffer) misses will be incurred. At each memory access,
the virtual memory address has to be translated into a physical memory
address. The purpose of the TLB is to store this mapping for the most
recently used memory addresses to avoid an access to the page table.

By running a space-utilization benchmark [3, Appendix 3], we observed that
a binary-search-tree node storing one 4-byte integer and three 8-byte pointers
required 48 bytes of memory (even though the raw data is only 28 bytes). Since in
our test computer the size of the cache lines is 64 bytes, we did not expect much
improvement at the cache level. However, as elucidated in an early study by
Oksanen and Malmi [14], improvements at the memory level can be noticeable.

In the literature many schemes have been proposed to improve memory-access
patterns for data structures supporting searching. The cache-sensitive schemes
can be classified into three categories: one-level layouts [2,14], two-level layouts
[5,17], and more complex multi-level layouts [2,16,18]. When deciding which one
to choose, our primary criterion was the simplicity of programming. We were not
interested in schemes solely providing good big-Oh estimates for the critical per-
formance measures; good practical performance was imperative. Furthermore,
cache-obliviousness [16] was not an important issue for us since we were will-
ing to perform some simple benchmarks to find the best values for the tuning
parameters in our test environment.
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In a local search tree the goal is to lay out the nodes such that, when a path
from the root to a leaf is traversed, as few pages are visited as possible. An
interesting variant is obtained by seeing the tree as an F -ary tree, where each
so-called fat node stores a complete binary tree. Since the subtrees inside the fat
nodes are complete, F must be of the form 2h for an integer h, h > 0, and each
fat node of size (up to) 2h − 1. The F -ary tree can be laid out in memory as an
F -ary heap [10] and the trees inside the fat nodes as a binary heap [19].

Jensen et al. [9] gave formulas how to get from a node to its children and
parent in this layout. Using these formulas the pointers at each node can be
set in a single loop. After this, it is easy to populate the tree provided that
the elements are given in sorted order. Searching can be done as before. Each
search will visit at most ��lg(1 +N)� / lgF � fat nodes. The fat nodes may not
be perfectly aligned with the actual memory pages, but this is not a big problem
since F is expected to be relatively large.

In our experiments we first determined the optimal value of F ; in our test
computer this turned out to be 16, but all values between 8 and 64 worked well.
Then we compared our implementation of local search trees to the C++ standard-
library implementation of red-black trees [8]. The results of this comparison are
given in Tables 5 and 6. As seen from these and the previous results, red-black
trees perform almost equally badly as perfectly balanced search trees when the
memory layout is random. By placing the nodes more locally, almost a factor of
two speed-up in the running time was experienced in our test environment.

Table 5. Runtime performance of the search procedures for two search trees; running
time per search divided by lgN [in nanoseconds].

N
Local Red-black

Two-way Branchless Two-way

215 7.6 5.9 10.3
220 21.9 20.9 36.6
225 33.5 36.1 64.7

Table 6. Branch behaviour of the search procedures for two search trees; number of
conditional branches executed (©< ) and branch mispredictions induced per search, both
divided by lgN

N
Local

Two-way
©< Mispred.

Local
Branchless
©< Mispred.

Red-black
Two-way

©< Mispred.

215 2.16 0.57 1.12 0.07 2.12 0.58
220 2.05 0.55 1.05 0.05 2.09 0.56
225 2.13 0.54 1.09 0.04 2.08 0.59
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6 Implicit Search Trees

If the data set is static, an observant reader may wonder why to use a search
tree when a sorted array will do. A sorted array is an implicit binary search
tree where arithmetic operations are used to move from one node to another; no
explicit pointers are needed. Local search trees can also be made implicit using
the formulas given in [9].

It was easy to implement implicit local search trees starting from the code
for local search trees. Each time the left child (or the right child or the parent)
of a node x was accessed, instead of writing (*x).left(), we replaced it with
the corresponding formula. As for local search trees, we did not align the fat
nodes perfectly with the cache lines. This would have been possible by adding
some padding between the elements, but we wanted to keep the data structure
compact and the formulas leading to the neighbouring nodes unchanged.

The results of our tests for implicit search trees are given in Tables 7 (run-
ning time), 8 (branch mispredictions), and 9 (cache misses). As a competitor
to our search procedures, we considered two implementations of binary search
(std::binary search and our branchless modification of it) applied for a sorted
array. Also here, before the final tests, we determined the best value for the
parameter F ; in our environment it was 16.

As to the running time (Table 7), for large problem instances implicit local
search trees were the fastest of all structures considered in this study, but for
small problem instances the overhead caused by the address calculations was
clearly visible and implicit local search trees were slow.

Table 7. Runtime performance of the search procedures for implicit search trees;
running time per search divided by lgN [in nanoseconds]

N
Implicit local Sorted array

Two-way Branchless Two-way Branchless

215 15.0 14.2 6.9 7.2
220 16.3 15.6 14.7 20.7
225 20.1 22.8 32.1 45.8

Table 8. Branch behaviour of the search procedures for implicit search trees; number
of conditional branches executed (©< ) and branch mispredictions induced per search,
both divided by lgN

Implicit local Implicit local Sorted array Sorted array
N Two-way Branchless Two-way Branchless

©< Mispred. ©< Mispred. ©< Mispred. ©< Mispred.

215 3.21 0.86 1.12 0.07 2.07 0.57 1.13 0.10
220 3.05 0.84 1.05 0.05 2.05 0.55 1.10 0.05
225 3.18 0.82 1.09 0.04 2.04 0.54 1.08 0.04
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Table 9. Cache behaviour of three search trees; number of memory references per-
formed, cache I/Os performed, and cache misses incurred per search, all divided by
logB N , where B is the number of elements that fit in a cache line (16 in our test)

Local Implicit local Sorted array
N Two-way Two-way Two-way

Refs. I/Os Misses Refs. I/Os Misses Refs. I/Os Misses

215 9.19 2.43 0.00 9.46 0.40 0.00 6.93 2.00 0.00
220 8.60 3.27 1.32 8.80 0.81 0.12 6.70 3.20 0.73
225 8.84 3.77 2.27 9.00 1.01 0.51 6.56 3.37 3.01

One interesting fact of the formulas used for computing the indices of the
neighbouring nodes is that they all contain an if statement. This is because a
separate handling is necessary depending on whether we are inside a fat node
or whether we move from one fat node to another. By inspecting the assembly-
language code generated by the compiler, we observed that for the branchless
version the compiler used conditional moves to eliminate these if statements,
whereas for the non-optimized version conditional branches were used. This ex-
plains the discrepancies in the numbers in Table 8 (approximatively 3 vs. 1
conditional branches per iteration).

Finally, we compared the cache behaviour of local, implicit local, and implicit
search trees (Table 9). We measured the number of memory references, cache
I/Os, and cache misses. For small problem instances there were no cache misses
since the data structures could be kept inside the cache. For implicit local search
trees both the number of cache I/Os and the number of cache misses were smaller
than the corresponding numbers for other structures. For N = 225, the 2.25 lgN
memory accesses generated 1.01 logB N cache I/Os, which is basically optimal
when the size of the cache blocks is B; only half of the I/Os ended up to be a miss.
One can explain the low number of cache misses by observing that the cache of
our test computer is large enough so that, with an ideal cache replacement, the
top portion of the search tree will be kept inside the cache at all times. A sorted
array was another extreme; it made more than three times as many cache I/Os
and almost every cache I/O incurred a cache miss.

7 Unrolling the Loop

It is well-known that loop unrolling can be used to improve the performance of
programs in many respects (see, e.g. [3, Appendix 4]). Bentley [3, Column 4]
gave a nice description of an ancient idea how to unroll binary search. The same
technique applies for the search procedure of perfectly balanced search trees. In
this section we describe how to do this unrolling so that the search procedure
only contains a few branches and has no loops. An immediate corollary is that
such a straight-line program cannot induce more than a constant number of
branch mispredictions per search.
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When the search tree is perfectly balanced such that the lengths of root-to-leaf
paths only vary by one, the following kind of procedure will do the job.

1 bool is_member(V const& v) {
2 N∗ y = nullptr ; // candidate node
3 N∗ x = root ; // current node
4 bool smaller ;
5 switch (height) {
6 case 31:
7 smaller = less(v , (∗x) .element() ) ;
8 y = choose(smaller , y , x) ;
9 x = choose(smaller , (∗x) .left() , (∗x) .right() ) ;
...

125 case 1:
126 smaller = less(v , (∗x) .element() ) ;
127 y = choose(smaller , y , x) ;
128 x = choose(smaller , (∗x) .left() , (∗x) .right() ) ;
129 default :
130 smaller = (x == nullptr) | | less(v , (∗x) .element() ) ;
131 y = choose(smaller , y , x) ;
132 }
133 i f ((y == nullptr) | | less((∗y) .element() , v) ) {
134 return false ;
135 }
136 return true ;
137 }

To manage skewed trees the bottom-most levels must be handled as in the normal
search procedure, because we cannot be sure when x refers to null. For skewed
trees the procedure should also be able to tolerate larger heights.

A theoretician may oppose this solution because the length of the program
is not a constant. A practitioner may be worried about the portability since we
assumed that the maximum height of the tree is 31. Both of these objections are
reasonable, but neither is critical. The maximum height could be made larger
and the program could even be generated on the fly after the user has specified
the height of the search tree.

As a curiosity we tested the efficiency of the unrolled search procedure; we only
considered perfectly balanced trees with random memory layout. The runtime
performance did not improve at all. The main reason for this seems to be that
in our test computer the cost of easy-to-predict branches is so low. On the other
hand, both the branch-count rate and the branch-misprediction rate went to
zero when N increased.

8 Conclusion

We were mainly interested in understanding the impact of branch mispredictions
on the performance of the search procedures. We hope that we could make
our case clear: Branch prediction is not a good enough reason to switch from
balanced search trees to skewed search trees. In theory, any program can be
transformed into a form that induces O(1) branch mispredictions [6]. As shown
in the present paper, in the context of searching, simple transformations can be
used to eliminate branches and thereby avoid branch mispredictions. In most
cases, these transformations work well in practice.
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Abstract. We introduce a new approach to LZ77 factorization that
uses O(n/d) words of working space and O(dn) time for any d ≥ 1 (for
polylogarithmic alphabet sizes). We also describe carefully engineered
implementations of alternative approaches to lightweight LZ77 factor-
ization. Extensive experiments show that the new algorithm is superior,
and particularly so at the lowest memory levels and for highly repetitive
data. As a part of the algorithm, we describe new methods for computing
matching statistics which may be of independent interest.

1 Introduction

The Lempel-Ziv factorization [28], also known as the LZ77 factorization, or LZ77
parsing, is a fundamental tool for compressing data and string processing, and
has recently become the basis for several compressed full-text pattern matching
indexes [17,11]. These indexes are designed to efficiently store and search mas-
sive, highly-repetitive data sets — such as web crawls, genome collections, and
versioned code repositories — which are increasingly common [22].

In traditional compression settings (for example the popular gzip tool) LZ77
factorization is kept timely by factorizing relative to only a small, recent window
of data, or by breaking the data up into blocks and factorizing each block sepa-
rately. This approach fails to capture widely spaced repetitions in the input, and
anyway, in many applications, including construction of the above mentioned
LZ77-based text indexes, whole-string LZ77 factorizations are required.

The fastest LZ77 algorithms (see [12] for the latest comparison) use a lot of
space, at least 6n bytes for an input of n symbols and often more. This prevents
them from scaling to really large inputs. Space-efficient algorithms are desirable
even on smaller inputs, as they place less burden on the underlying system.

One approach to more space efficient LZ factorization is to use compressed
suffix arrays and succinct data structures [21]. Two proposals in this direction
are due to Kreft and Navarro [16] and Ohlebusch and Gog [23]. In this paper,
we describe carefully engineered implementations of these algorithms. We also
propose a new, space-efficient variant of the recent ISA family of algorithms [15].
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Compressed indexes are usually built from the uncompressed suffix array (SA)
which requires 4n bytes. Our implementations are instead based on the Burrows-
Wheeler transform (BWT), constructed directly in about 2–2.5n bytes using
the algorithm of Okanohara and Sadakane [26]. There also exists two online
algorithms based on compressed indexes [25,27] but they are not competitive in
practice in the offline context.

The main contribution of this paper is a new algorithm to compute the LZ77
factorization without ever constructing SA or BWT for the whole input. At a
high-level, the algorithm divides the input up into blocks, and processes each
block in turn, by first computing a pattern matching index for the block, then
scanning the prefix of the input prior to the block through the index to compute
longest-matches, which are then massaged into LZ77 factors. For a string of
length n and σ distinct symbols, the algorithm uses n log σ + O(n logn/d) bits
of space, and O(dntrank) time, where d is the number of blocks, and trank is the
time complexity of the rank operation over sequences with alphabet size σ (see
e.g. [2]). The n log σ bits in the space bound is for the input string itself which
is treated as read-only.

Our implementation of the new algorithm does not, for the most part, use
compressed or succinct data structures. The goal is to optimize speed rather
than space in the data structures, because we can use the parameter d to control
the tradeoff. Our experiments demonstrate that this approach is superior to
algorithms using compressed indexes.

As a part of the new algorithm, we describe new techniques for computing
matching statistics [5] that may be of independent interest. In particular, we
show how to invert matching statistics, i.e., to compute the matching statistics
of a string B w.r.t. a string A from the matching statistics of A w.r.t. B, which
saves a lot of space when A is much longer than B.

All our implementations operate in main memory only and thus need at least n
bytes just to hold the input. Reducing the memory consumption further requires
some use of external memory, a direction largely unexplored in the literature so
far. We speculate that the scanning, block-oriented nature of the new algorithm
will allow efficient secondary memory implementations, but that study is left for
the future.

2 Basic Notation and Algorithmic Machinery

Strings. Throughout we consider a string X = X[1..n] = X[1]X[2] . . .X[n] of
|X| = n symbols drawn from the alphabet [0..σ− 1]. We assume X[n] is a special
“end of string” symbol, $, smaller than all other symbols in the alphabet. The
reverse of X is denoted X̂. For i = 1, . . . , n we write X[i..n] to denote the suffix of
X of length n− i+ 1, that is X[i..n] = X[i]X[i+1] . . .X[n]. We will often refer to
suffix X[i..n] simply as “suffix i”. Similarly, we write X[1..i] to denote the prefix
of X of length i. X[i..j] is the substring X[i]X[i + 1] . . .X[j] of X that starts at
position i and ends at position j. By X[i..j) we denote X[i..j − 1]. If j < i we
define X[i..j] to be the empty string, also denoted by ε.
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Suffix Arrays. The suffix array [19] SAX (we drop subscripts when they are clear
from the context) of a string X is an array SA[1..n] which contains a permutation
of the integers [1..n] such that X[SA[1]..n] < X[SA[2]..n] < · · · < X[SA[n]..n]. In
other words, SA[j] = i iff X[i..n] is the jth suffix of X in ascending lexicographical
order. The inverse suffix array ISA is the inverse permutation of SA, that is
ISA[i] = j iff SA[j] = i.

Let lcp(i, j) denote the length of the longest-common-prefix of suffix i and
suffix j. For example, in the string X = zzzzzapzap, lcp(1, 4) = 2 = |zz|, and
lcp(5, 8) = 3 = |zap|. The longest-common-prefix (LCP) array [14,13], LCPX =
LCP[1..n], is defined such that LCP[1] = 0, and LCP[i] = lcp(SA[i], SA[i− 1]) for
i ∈ [2..n].

For a string Y, the Y-interval in the suffix array SAX is the interval SA[s..e] that
contains all suffixes having Y as a prefix. The Y-interval is a representation of the
occurrences of Y in X. For a character c and a string Y, the computation of the
cY-interval from the Y-interval is called a left extension and the computation of
the Y-interval from the Yc-interval is called a right contraction. Left contraction
and right extension are defined symmetrically.

BWT and backward search. The Burrows-Wheeler Transform [3] BWT[1..n] is a
permutation of X such that BWT[i] = X[SA[i]− 1] if SA[i] > 1 and $ otherwise.
We also define LF[i] = j iff SA[j] = SA[i] − 1, except when SA[i] = 1, in which
case LF[i] = ISA[n]. Let C[c], for symbol c, be the number of symbols in X
lexicographically smaller than c. The function rank(X, c, i), for string X, symbol
c, and integer i, returns the number of occurrences of c in X[1..i]. It is well
known that LF[i] = C[BWT[i]] + rank(BWT,BWT[i], i). Furthermore, we can
compute the left extension using C and rank. If SA[s..e] is the Y-interval, then
SA[C[c]+ rank(BWT, c, s),C[c]+ rank(BWT, c, e)] is the cY-interval. This is called
backward search [8].

NSV/PSV and RMQ. For an array A, the next and previous smaller value
(NSV/PSV) operations are defined as NSV(i) = min{j ∈ [i+ 1..n] | A[j] < A[i]}
and PSV(i) = max{j ∈ [1..i− 1] | A[j] < A[i]}. A related operation on A is range
minimum query: RMQ(A, i, j) is k ∈ [i..j] such that A[k] is the minimum value
in A[i..j]. Both NSV/PSV operations and RMQ operations over the LCP array
can be used for implementing right contraction (see Section 4).

LZ77. Before defining the LZ77 factorization, we introduce the concept of a
longest previous factor (LPF). The LPF at position i in string X is a pair
LPFX[i] = (pi, �i) such that, pi < i, X[pi..pi + �i) = X[i..i + �i), and �i is max-
imized. In other words, X[i..i + �i) is the longest prefix of X[i..n] which also
occurs at some position pi < i in X. Note also that there may be more than one
potential source (that is, pi value), and we do not care which one is used.

The LZ77 factorization (or LZ77 parsing) of a string X is then just a greedy,
left-to-right parsing of X into longest previous factors. More precisely, if the jth
LZ factor (or phrase) in the parsing is to start at position i, then we output
(pi, �i) (to represent the jth phrase), and then the (j + 1)th phrase starts at
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position i + �i. The exception is the case �i = 0, which happens iff X[i] is the
leftmost occurrence of a symbol in X. In this case we output (X[i], 0) (to represent
X[i..i]) and the next phrase starts at position i + 1. When �i > 0, the substring
X[pi..pi + �i) is called the source of phrase X[i..i+ �i). We denote the number of
phrases in the LZ77 parsing of X by z.

Matching Statistics. Given two strings Y and Z, the matching statistics of Y
w.r.t. Z, denoted MSY|Z, is an array of |Y| pairs, (p1, �1), (p2, �2), ..., (p|Y|, �|Y|),
such that for all i ∈ [1..|Y|], Y[i..i + �i) = Z[pi..pi + �i) is the longest substring
starting at position i in Y that is also a substring of Z. The observant reader will
note the resemblance to the LPF array. Indeed, if we replace LPFY with MSY|Z
in the computation of the LZ factorization of Y, the result is the relative LZ
factorization of Y w.r.t. Z [18].

3 Lightweight, Scan-Based LZ77 Parsing

In this section we present a new algorithm for LZ77 factorization called LZscan.

Basic Algorithm. Conceptually LZscan divides X up into d = �n/b� fixed size
blocks of length b: X[1..b], X[b+ 1..2b], ... . The last block could be smaller than
b, but this does not change the operation of the algorithm. In the description
that follows we will refer to the block currently under consideration as B, and
to the prefix of X that ends just before B as A. Thus, if B = X[kb+ 1..(k + 1)b],
then A = X[1..kb].

To begin, we will assume no LZ factor or its source crosses a boundary of the
block B. Later we will show how to remove these assumptions.

The outline of the algorithm for processing a block B is shown below.

1. Compute MSA|B
2. Compute MSB|A from MSA|B, SAB and LCPB

3. Compute LPFAB[kb+ 1..(k + 1)b] from MSB|A and LPFB

4. Factorize B using LPFAB[kb+ 1..(k + 1)b]

Step 1 is the computational bottleneck of the algorithm in theory and practice.
Theoretically, the time complexity of Step 1 is O((|A|+|B|)trank), where trank is
the time complexity of the rank operation on BWTB (see, e.g., [2]). Thus the total
time complexity of LZscan is O(dntrank) using O(b) words of space in addition
to input and output. The practical implementation of Step 1 is described in
Section 4. In the rest of this section, we describe the details of the other steps.

Step 2: Inverting Matching Statistics. We want to compute MSB|A but we cannot
afford the space of the large data structures on A required by standard meth-
ods [1,23]. Instead, we compute first MSA|B involving large data structures on B,
which we can afford, and only a scan of A (see Section 4 for details). We then
invert MSA|B to obtain MSB|A. The inversion algorithm is given in Fig. 1.
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Algorithm MS-Invert
1: for i ← 1 to |B| do MSB|A[i] ← (0, 0)
2: for i ← 1 to |A| do // transfer information from MSA|B to MSB|A
3: (pA, �A) ← MSA|B[i]
4: (pB, �B) ← MSB|A[pA]
5: if �A > �B then MSB|A[pA] ← (i, �A)
6: (p, �) ← MSB|A[SAB[1]] // spread information in MSB|A
7: for i ← 2 to |B| do // in lexicograhically ascending direction
8: � ← min(�, LCPB[i])
9: (pB, �B) ← MSB|A[SAB[i]]
10: if � > �B then MSB|A[SAB[i]] ← (p, �)
11: else (p, �) ← (pB, �B)
12: (p, �) ← MSB|A[SAB[|B|]] // spread information in MSB|A
13: for i ← |B| − 1 downto 1 do // in lexicograhically descending direction
14: � ← min(�, LCPB[i+ 1])
15: (pB, �B) ← MSB|A[SAB[i]]
16: if � > �B then MSB|A[SAB[i]] ← (p, �)
17: else (p, �) ← (pB, �B)

Fig. 1. Inverting matching statistics

Note that the algorithm accesses each entry of MSA|B only once and the order
of these accesses does not matter. Thus we can execute the code on lines 3–5
immediately after computing MSA|B[i] in Step 1 and then discard that value.
This way we can avoid storing MSA|B.

Step3: Computing LPF. Consider the pair (p, �) = LPFAB[i] for i ∈ [kb+1..(k+
1)b] that we want to compute and assume � > 0 (otherwise i is the position of
the leftmost occurrence of X[i] in X, which we can easily detect). Clearly, either
p ≤ kb and LPFAB[i] = MSB|A[i], or kb < p < i and LPFAB[i] = (kb + pB, �B),
where (pB, �B) = LPFB[i − kb]. Thus computing LPFAB from MSB|A[i] and LPFB

is easy.
The above is true if the sources do not cross the block boundary, but the case

where p ≤ kb but p+ � > kb + 1 is not handled correctly. An easy correction is
to replace MSA|B with MSAB|B[1..kb] in all of the steps.

Step 4: Parsing. We use the standard LZ77 parsing to factorize B except LPFB

is replaced with LPFAB[kb+ 1..(k + 1)b].
So far we have assumed that every block starts with a new phrase, or, put

another way, that a phrase ends at the end of every block. Let X[i..(k + 1)b] be
the last factor in B, after we have factorized B as described above. This may
not be a true LZ factor when considering the whole X but may continue be-
yond the end of B. To find the true end point, we treat X[i..n] as a pattern, and
apply the constant extra space pattern matching algorithm of Crochemore [7],
looking for the longest prefix of X[i..n] starting in X[1..i − 1]. We must modify
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the algorithm of Crochemore so that it finds the longest matching prefix of the
pattern rather than a full match, but this is possible without increasing its time
or space complexity.

4 Computation of Matching Statistics

In this section, we describe how to compute the matching statistics MSA|B. As
mentioned in Section 3, what we actually want is MSAB|B[1..kb]. However, the
only difference is that the starting point of the computation is the B-interval in
SAB instead of the ε-interval.

Similarly to most algorithms for computing the matching statistics, we first
construct some data structures on B and then scan A. During the whole LZ
factorization, most of the time is spend on the scanning and the time for con-
structing the data structures is insignificant in practice. Thus we omit the con-
struction details here. The space requirement of the data structures is more
important but not critical as we can compensate for increased space by reduc-
ing the block size b. Using more space (per character of B) is worth doing if it
increases scanning speed more than it increases space. Consequently, we mostly
use plain, uncompressed arrays.

Standard approach. The standard approach of computing the matching statis-
tics using the suffix array is to compute for each position i the longest prefix
Pi = A[i..i + �i) of the suffix A[i..|A|] such that the Pi-interval in SAB is non-
empty. Then MSA|B[i] = (pi, �i), where pi is any suffix in the Pi-interval. This
can be done either with a forward scan of A, computing each Pi-interval from
Pi−1-interval using the extend right and contract left operations [1], or with a
backward scan computing each Pi-interval from Pi+1-interval using the extend
left and contract right operations [24]. We use the latter alternative but with
bigger and faster data structures.

The extend left operation is implemented by backward search. We need the
array C of size σ and an implementation of the rank function on BWT. For the
latter, we use the fast rank data structure of Ferragina et al. [9], which uses 4b
bytes.

The contract right operation is implemented using the NSV and PSV opera-
tions on LCPB similarly to Ohlebusch and Gog [24], but instead of a compressed
representation, we store the NSV/PSV values as plain arrays. As a nod towards
reducing space, we store the NSV/PSV values as offsets using 2 bytes each. If the
offset is too large (which is very rare), we obtain the value using the NSV/PSV
data structure of Cánovas and Navarro [4], which needs less than 0.1b bytes.
Here the space saving was worth it as it had essentially no effect on speed.

The peak memory use of the resulting algorithm is n+ (24.1)b+O(σ) bytes.

New approach. Our second approach is similar to the first, but instead of main-
taining both end points of the Pi-interval, we keep just one, arbitrary position si
within the interval. In principle, we perform left extension by backward search,
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i.e., si = C[X[i]]+rank(BWT,X[i], si+1). However, checking whether the resulting
interval is empty and performing right contractions if it is, is more involved. To
compute si and �i from si+1 and �i+1, we execute the following steps:

1. Let c = X[i]. If BWT[si+1] = c, set si = C[c] + rank(BWT, c, si+1) and
�i = �i+1 + 1.

2. Otherwise, let BWT[u] be the nearest occurrence of c in BWT before the
position si+1. Compute the rank of that occurrence r = rank(BWT, c, u)
and �u = LCP[RMQ(LCP, u + 1, si+1)]. If �u ≥ �i+1, set si = C[c] + r and
�i = �i+1 + 1.

3. Otherwise, let BWT[v] be the nearest occurrence of c in BWT after the
position si+1 and compute �v = LCP[RMQ(LCP, si+1 + 1, v)]. If �v ≤ �u, set
si = C[c] + r and �i = �u + 1.

4. Otherwise, set si = C[c] + r + 1 and �i = min(�i+1, �v) + 1.

The implementation of the above algorithm is based on the arrays BWT, LCP
and R[1..b], where R[i] = rank(BWT,BWT[i], i). All the above operations can
be performed by scanning BWT and LCP starting from the position si+1 and
accessing one value in R. To avoid long scans, we divide BWT and LCP into
blocks of size 2σ, and store for each block and each symbol c that occurs in B,
the values r, �u and �v that would get computed if scans starting inside the block
continued beyond the block boundaries.

The peak memory use is n+ 27b+O(σ) bytes. This is more than in the first
approach, but this is more than compensated by increased scanning speed.

Skipping repetitions. During the preceding stages of the LZ factorization, we have
built up knowledge of repetition present in A, which can be exploited to skip
(sometimes large) parts of A during the matching-statistics scan. Consider an
LZ factor A[i..i+�). Because, by definition, A[i..i+�) occurs earlier in A too, any
source of an LZ factor of B that is completely inside A[i..i+ �) could be replaced
with an equivalent source in that earlier occurrence. Thus such factors can be
skipped during the computation of MSA|B without an effect on the factorization.

More precisely, if during the scan we compute MSA|B[j] = (p, k) and find that
i ≤ j < j+k ≤ i+� for an LZ factor A[i..i+�), we will compute MSA|B[i−1] and
continue the scanning from i− 1. However, we will do this only for long phrases
with � ≥ 40. To compute MSA|B[i − 1] from scratch, we use right extension
operations implemented by a binary search on SA.

To implement this “skipping trick” we use a bitvector of n bits to mark LZ77
phrase boundaries adding 0.125n bytes to the peak memory.

5 Algorithms Based on Compressed Indexes

We went to some effort to ensure the baseline system used to evaluate LZscan
in our experiments was not a “straw man”. This required careful study and
improvement of some existing approaches, which we now describe.
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FM-Index. The main data structure in all the algorithms below is an implemen-
tation of the FM-index (FMI) [8]. It consists of two main components:

– BWTX with support for the rank operation. This enables backward search
and the LF operation as described in Section 2. We have tried several rank
data structures and found the one by Navarro [20, Sect. 7.1] to be the best
in practice.

– A sampling of SAX. This together with the LF operation enables arbitrary
SA access since SA[i] = SA[LFk[i]] + k for any k < SA[i]. The sampling rate
is a major space–time tradeoff parameter.

In many implementations of FMI, the construction starts with computing the
uncompressed suffix array but we cannot afford the space. Instead, we construct
BWT directly using the algorithm of Okanohara and Sadakane [26]. The method
uses roughly 2–2.5n bytes of space but destroys the text, which is required later
during LZ parsing. Thus, once we have BWT, we build a rank structure over it
and use it to invert the BWT. During the inversion process we recover and store
the text and gather the SA sample values.

CPS2 simulation. The CPS2 algorithm [6] is an LZ parsing algorithm based
on SAX. To compute the LZ factor starting at i, it computes the X[i..i + �)-
interval for � = 1, 2, 3, . . . as long as the X[i..i+�)-interval contains a value p < i,
indicating an occurrence of X[i..i + �) starting at p.

The key operations in CPS2 are right extension and checking whether an
SA interval contains a value smaller than i. Kreft and Navarro [16] as well as

Ohlebusch and Gog [23] are using FMI for X̂, the reverse of X, which allows
simulating right extension on SAX by left extension on SAX̂. The two algorithms
differ in the way they implement the interval checks:

– Kreft and Navarro use the RMQ operation. They use the RMQ data struc-
ture by Fischer and Heun [10] but we use the one by Cánovas and Navarro [4].
The latter is easy and fast to construct during BWT inversion but queries
are slow without an explicit SA. We speed up queries by replacing a general
RMQ with the check whether the interval contains a value smaller than i.
This implementation is called LZ-FMI-RMQ.

– Ohlebusch and Gog use NSV/PSV queries. The position s of i in SA must be
in the X[i..i+�)-interval. Thus we just need to check whether either NSV(s) or
PSV(s) is in the interval too. They as well as we implement NSV/PSV using a
balanced parentheses representation (BPR). This representation is initialized
by accessing the values of SA left-to-right, which makes the construction slow
using FMI. However, NSV/PSV queries with this data structure are fast, as
they do not require accessing SA. This implementation is called LZ-FMI-BPR.

ISA variant. Among the most space efficient prior LZ factorization algorithms
are those of the ISA family [15] that use a sampled ISA, a full SA and a rank/LF
implementation that relies on the presence of the full SA. We reduce the space
further by replacing SA and the rank/LF data structure with the FM-index
described above to obtain an algorithm called LZ-FMI-ISA.
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Table 1. Data set used in the experiments. The files are from the Pizza & Chili
standard corpus1 (S) and the Pizza & Chili repetitive corpus2 (R). The value of n/z
(average length of an LZ77 phrase) is included as a measure of repetitiveness. We
use 100MiB prefixes of original files in order to reduce the time required to run the
experiments with several algorithms and a large number of parameter combinations.

Name σ n/z n/220 Source Description

dna 16 14.2 100 S Human genome
english 215 14.1 100 S Gutenberg Project
sources 227 16.8 100 S Linux and GCC sources

cere 5 84 100 R yeast genome
einstein 121 2947 100 R Wikipedia articles
kernel 160 156 100 R Linux Kernel sources

6 Experiments

We performed experiments with the files listed in Table 1. All tests were con-
ducted on a 2.53GHz Intel Xeon Duo CPU with 32GiB main memory and 8192K
L2 Cache. The machine had no other significant CPU tasks running. The oper-
ating system was Linux (Ubuntu 10.04) running kernel 3.0.0-26. The compiler
was g++ (gcc version 4.4.3) executed with the -O3 -static -DNDEBUG options.
Times were recorded with the C clock function. All algorithms operate strictly
in-memory. The implementations are available at http://www.cs.helsinki.

fi/group/pads/.

LZscan vs. other algorithms. We compared the LZscan implementation using
our new approach for matching statistics boosted with the “skipping trick” (Sec-
tion 4) to algorithms based on compressed indexes (Section 5). The experiments
measured the LZ factorization time and the memory usage with varying param-
eter settings for each algorithm. The results are shown in Fig. 2. In all cases
LZscan outperforms other algorithm across the whole tradeoff spectrum. More-
over, it can operate with very small memory (close to n bytes) unlike other
algorithms, which all require at least 2n bytes to compute BWT. It achieves a
superior performance for highly repetitive data even at very low memory levels.

Variants of LZscan. We made a separate comparison of LZscan with the dif-
ferent variants of the matching statistics computation (see Section 4). As can
be seen from Fig. 3, our new algorithm for matching statistics computation is a
significant improvement over the standard approach. Adding the skipping trick
usually improves further (english) but can also slightly deteriorate the speed
(dna). On the other hand, for highly repetitive data, the skipping trick alone
gives a dramatic time reduction (einstein).

1 http://pizzachili.dcc.uchile.cl/texts.html
2 http://pizzachili.dcc.uchile.cl/repcorpus.html

http://www.cs.helsinki.fi/group/pads/
http://www.cs.helsinki.fi/group/pads/
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
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Fig. 2. Time-space tradeoffs for various LZ77 factorization algorithms. The times do
not include reading from or writing to disk. For algorithms with multiple parameters
controlling time/space we show only the optimal points, that is, points forming the
lower convex hull of the points “cloud”. The vertical line is the peak memory usage of
the BWT construction algorithm [26], which is a space lower bound for all algorithms
except LZscan. For comparison, we show the runtimes of ISA6s [15], currently the fastest
LZ77 factorization algorithm using 6n bytes.
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Fig. 3. Time-space tradeoffs for variants of LZscan (see Section 4)
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Abstract. Rank & select data structures are one of the fundamental building
blocks for many modern succinct data structures. With the continued growth of
massive-scale information services, the space efficiency of succinct data structures
is becoming increasingly attractive in practice. In this paper, we re-examine the
design of rank & select data structures from the bottom up, applying an architec-
tural perspective to optimize their operation. We present our results in the form of
a recipe for constructing space and time efficient rank & select data structures for
a given hardware architecture. By adopting a cache-centric design approach, our
rank & select structures impose space overhead as low as the most space-efficient,
but slower, prior designs—only 3.2% and 0.39% extra space respectively—while
offering performance competitive with the highest-performance prior designs.

1 Introduction

Rank & select data structures [6] are one of the fundamental building blocks for many
modern succinct data structures. Asympototically, these data structures use only the
minimum amount of space indicated by information theory. With the continued growth
of massive-scale information services, taking advantage of the space efficiency of suc-
cinct data structures is becoming increasingly attractive in practice. Examples of suc-
cinct structures that commonly use rank & select include storing monotone sequences
of integers [2,3] and binary or n-ary trees [6,1]. These structures in turn form the basis
for applications such as compressed text or genome searching, and more.

For a zero-based bit array B of length n, the two operations under consideration are:

1. Rank(x) - Count the number of 1s up to position x;
2. Select(y) - Find the position of the y-th 1.

More formally, let Bi be the i-th bit of B, then

Rank(x) =
∑

0≤i<x

Bi, 1 ≤ x ≤ n

and

Select(y) = min{ k | Rank(k) = y }, 1 ≤ y ≤ Rank(n)

For example, in the bit array 0,1,0,1,0, using zero-based indexing, Rank(2)=1,
and Select(1)=2.

V. Bonifaci et al. (Eds.): SEA 2013, LNCS 7933, pp. 151–163, 2013.
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In this paper, we consider the design of rank & select data structures for large in-
memory bit arrays—those occupying more space than can fit in the CPU caches in
modern processors, where n ranges from a few million up to a few tens of billions. We
present our results in the form of a recipe for constructing space and time efficient rank
& select data structures for a given hardware architecture. Our design, like several prac-
tical implementations that precede it [10,5,9], is not strictly optimal in an asymptotic
sense, but uses little space in practice on 64-bit architectures.

The core techniques behind our improved rank & select structures arise from an
aggressive focus on cache-centric design: It begins with an extremely small (and thus,
cache-resident) first-layer index with 64-bit entries. This index permits the second-layer
index to use only 32-bit entries, but maintains high performance by not incurring addi-
tional cache misses. This first-layer index is followed by an interleaved second and third
layer index that is carefully sized so that accessing both of these indices requires only
one memory fetch. The result of this design is a structure that simultaneously matches
the performance of the fastest available rank & select structure, while using as little
space as the (different) most space-efficient approach, adding only 3.2% and 0.39%
space overhead for rank and select, respectively.

2 Design Overview and Related Work

Before we dive into the detailed design of our rank & select data structures, we first pro-
vide an overview of previous approaches, identify common design frameworks shared
among them, and examine their merits and drawbacks. Because rank & select are often
implemented in different ways, we discuss them separately.

2.1 Rank

For rank, almost all previous approaches embrace the following design framework:
1. Determine the size of the basic block, along with an efficient way to count the num-

ber of bits inside a basic block. Because the basic block is the lowest level in the
rank structure, we should be able to do counting directly upon the original bit array.

2. Design an index, with one or multiple layers, that provides the number of 1s preced-
ing the basic block in which x is located. Each index entry maintains aggregation
information for a group of consecutive basic blocks, or superblocks.

Figure 1 illustrates a typical two-layer rank structure. In this example, basic blocks have
a size of 8 bits. Entries in the first layer index are absolute counts, while entries in the
second layer index count relative to the superblock start, rather than the very beginning
of the bit array. Whenever a query for rank(x) comes in,
1. First, look in the first layer index to find p, the number of 1s preceding the su-

perblock into which x falls.
2. Second, look in the second layer index to find q, the number of 1s within that

superblock that are to the left of the basic block into which x falls.
3. Finally, count the number of 1s to the left of x within that basic block, r.

The answer to rank(x) is then p + q + r.
To demonstrate the generality of this design framework, we summarize several rep-

resentative approaches, along with our rank structure, in Table 1. RG 37 is a variant
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Fig. 1. Generalized Rank Structure

Table 1. Previous & Our Rank Structures

Approach Basic Block Size In-block Counting Method Index Design Space Overhead Max Supported Size

Classical solution [5] 
log(n)/2� bits Precomputed table Two-layer index 66.85% 232

RG 37 [5] 256 bits Precomputed table Two-layer index 37.5% 232

rank9 [10] 64 bits Broadword programming Two-layer index 25% 264

combined sampling [9] 1024 bits Precomputed Table One-layer index 3.125% 232

Ours (poppy) 512 bits popcnt instruction Three-layer index 3.125% 264

of the classical constant-time solution proposed by González et al. [5], and adds 37.5%
extra space above the raw bit array. rank9 [10] employs broadword programming [7]
to efficiently count the number of one bits inside a 64-bit word1, and stores the first and
second layer of index in an interleaved form—each first layer index entry is followed
by its second layer entries, which reduces cache misses. combined sampling [9]
explores the fact that the space overhead is inversely proportional to the size of the
basic block, and achieves low space overhead (∼ 3%) by using 1024-bit basic blocks.
However, this space efficiency comes at the expense of performance. It is roughly 50%–
80% slower than rank9. Therefore, our goal is to match the performance of rank9
and the space overhead of combined sampling.

Notice that except for rank9, all of the previous rank structures can only support
bit arrays that have up to 232 bits. However, as the author of rank9 observes, efficient
rank & select structures are particularly useful for extremely large datasets: a bit array
of size 232 substantially limits the utility of building compressed data structures based
on rank & select. Unfortunately, naively extending existing structures to support larger
bit arrays by replacing 32 bit counters with 64 bit counters causes their space overhead
to nearly double.

From the above overview, we identify three important features for a rank structure:

1. Support bit arrays with up to 264 bits.
2. Add no more than 3.125% extra space.
3. Offer performance competitive to the state-of-art.

Section 3.1 explores the design of our new rank structure, called poppy, which fulfills
all three requirements.

1 Broadword programming, also termed as “SWAR” (SIMD Within A Register), can count the
number of one bits in O(log d) instructions, where d is the number of bits in the word. The
latest version of rank9 replaces broadword programming with popcnt instruction.
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Fig. 2. Generalized Position-Based Select Structure

2.2 Select

Two general approaches are used to implement select. One is rank-based selection, and
the other is position-based selection. For both methods, the first step is the same:

1. Determine the size of the basic block, and an efficient way to select within a basic
block. This size need not be the same as the basic block size for rank, but making
them the same is a common design choice.

For rank-based selection, the second step is:

2a. Design an index with one or multiple layers that identifies the location of the basic
block in which the x-th one bit is located. This index is similar to the index for rank,
but the demand imposed on it is different. In rank, we know exactly which entry
is needed. For example, given a rank structure with 8-bit basic blocks, bit 15 is al-
ways in the second basic block. However, the 15-th one bit might be located in the
10000-th basic block! Therefore, in rank-based select, we must find the correct en-
try by searching (most commonly, by binary searching). These two distinct access
patterns give us an intuitive understanding of why select is more difficult than rank.
Although the index for select is similar to that for rank, they are not necessarily the
same.

And for position-based selection, the second step is:

2b. Store a sampling of select answers and possibly an auxiliary index. Using these
two structures, we can reach a position that is very close to the basic block in which
the x-th one bit is located. Then, scan sequentially to find the correct basic block.

Figure 2 presents a typical position-based select structure, which stores select results
for every k ones. To answer select(y), we first find the largest j such that jk ≤ y.
Because select(jk) is stored in a precomputed table, we can obtain the position of
the jk-th one bit by a lookup in that table. Then, we locate the basic block containing
the y-th one bit with or without the help of an auxiliary index. After finding the target
basic block, we perform an in-block select to find the correct bit position.

Table 2 lists several previous approaches for select. The space overhead, excludes the
space occupied by the rank structure, though several select structures rely on their cor-
responding rank structure to answer queries. Similar to rank, three features are desirable
for a select index:
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Table 2. Previous Select Structures

Basic Space Max
Approach Type Block Size In-block Selection Method Overhead Supported Size

Clark’s structure [1] Position-based �log n� bits Precomputed Table 60% 232

Hinted bsearch [10] Rank-based 64 bits Broadword programming ∼ 37.38% 264

select9 [10] Position-based 64 bits Broadword programming ∼ 50% 264

simple select [10] Position-based 64 bits Broadword programming2 9.01%-45.94% 264

combined sampling [9] Position-based 1024 bits Byte-wise table lookup + bit-wise scan ∼ 0.39% 232

Ours (cs-poppy) Position-based 512 bits popcnt + broadword programming ∼ 0.39% 264

1. Support bit arrays with up to 264 bits.
2. Add no more than 0.39% extra space.
3. Offer performance competitive to the state-of-art.

Section 3.2explores the design of our new select structure, calledcombinedsampling
with poppy or cs-poppy for short, which fulfills all three requirements.

3 Design

In light of the above observations, we now present our design recipe for a rank & select
data structure. Like most previous solutions, we use a hierarchical approach to rank &
select. Our recipe stems from three underlying insights from computer architecture:

For large bit arrays, the overall performance is strongly determined by cache misses.
In a bit array occupying hundreds of megabytes of space, it is necessary to fetch at
least one block from memory into the cache. Thus, optimizing the computation to be
much faster than this fetch time does not provide additional benefit. A fetch from mem-
ory requires approximately 100ns, enough time to allow the execution of hundreds of
arithmetic operations.

Parallel operations are cheap. Executing a few operations in parallel often takes only
modestly longer than executing only one. This observation applies to both arithmetic
operations (fast CPUs execute up to 4 instructions at a time) and memory operations
(modern CPUs can have 8 or more memory requests in flight at a time).

Optimize for cache misses, then branches, then arithmetic/logical operations. There
is over an order of magnitude difference in the cost of these items: 100ns, 5ns, and
< 1

4 ns, respectively. A related consequence of this rule is that it is worth engineering
the rank/select structures to be cache-aligned (else a retrieval may fetch two cachelines),
and also to be 64-bit aligned (else a retrieval may cost more operations).

In the rest of this section, we describe our design as optimized for recent 64-bit x86
CPUs. When useful, we use as a running example the machine from our evaluation
(2.3 GHz Intel Core i7 “Sandy Bridge” processor, 8 MB shared L3 cache, 8 GB of
DRAM).

3.1 Rank

Basic Block for Rank The basic block is the lowest level of aggregation. Within a basic
block, both Rank and Selectwork by counting the bits set up to a particular position

2 As rank9, the latest version of simple select uses popcnt + broadword programming.
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Table 3. Performance for different methods of popcounting a 64M bit array 300 times

Method Time (ms)

Precomputed table (byte-wise) 729.0
popcnt instruction 191.7
SSE2 336.0
SSSE3 237.7
Broadword programming 798.9

(often referred as population count or popcount), without using any summary informa-
tion. Both theoretical analysis as well as previous approaches demonstrate that the space
overhead of rank & select is inversely proportional to the size of the basic block. Larger
basic blocks of bits mean that fewer superblocks are needed in the index. Meanwhile,
excessively enlarging the size of the basic block degrades performance, because operat-
ing on larger blocks requires more computation and more memory accesses, which are
extremely expensive. Specifically, the number of memory accesses grows linearly as
the size of the basic block increases. Therefore, algorithm implementers should focus
most of their effort on finding techniques to efficiently increase the number of bits that
can be processed at the lowest level with no auxilary information.

Previous work showed that we can set this size to 32 bits and perform popcount using
lookups in a precomputed table [5,9], or set the size to 64 bits and use the broadword
programming bit-hacking trick to implement popcount in O(log d) instructions where
d is the number of bits in the word [10]. Other choices include using the vector SSE
instructions (SSE2), the PSHUFB instruction (SSSE3) which looks up 4 bits at a time in
a table in parallel, or as proposed recently by Ladra et al. [8], the popcnt instruction
which is available in newer Intel processors (Nehalem and later architectures).

We ran microbenchmarks and measured the performance of each method. The mi-
crobenchmark creates a bit array of 64M bits and measures the performance of each
method by popcounting the entire bit array 300 times. Because we count the number
of one bits over the entire array, multiple popcounts can be in flight at the same time.
The results (Table 3) show that the popcnt instruction is substantially faster than other
approaches.

Next we must choose the basic block size. One straightforward design is to use 64-
bit basic blocks, as in the design by Vigna [10]. However, as we noted above, larger
basic blocks reduce the space overhead of the index; furthermore, executing several op-
erations in parallel often takes only modestly longer than executing a single instruction.
We therefore want to find the largest effective size. We call a size effective if moving
up to that size yields performance benefit from parallel operations. If, instead, when
we double the size of the basic block, the amount of time to popcount also doubles,
this is a strong indicator that it is time to stop increasing the block size. Table 4 shows
the performance of popcounting different basic block sizes using 108 random positions
over a bit array with 232 bits.

Before 512 bits, each doubling of the basic block slows execution by less than 2x,
which implies that 512 is the right answer to the question. This also matches our ex-
pectation from a computer architecture perspective: the overwhelming factor in perfor-
mance is cache misses. The size of a cache line is 512 bits. Hence, for well-aligned
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Table 4. Performance for popcounting 108 randomly chosen blocks of increasing sizes

Size (bits) Time (seconds) # of cache misses

64 0.13 1
128 0.19 1
256 0.30 1
512 0.50 1

1024 0.99 2
2048 2.01 4

Bit Array

Basic Block

……

cumulative absolute counts

……64 bits

512 bits 512 bits 512 bits512 bits 512 bits 512 bits 512 bits512 bits

64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits

s 512 bits

counts 1s to the left of

Fig. 3. Strawman Design of Rank Structure

bit arrays, popcounting 512 bits leads to exactly one cache miss. In short, not only can
we popcount 512 bits extremely quickly, but doing so does not steal memory bandwidth
from other operations. This choice contributes greatly to the speed of our space-efficient
design for rank & select data structures.

Ladra et al. [8] also observed that varying the basic block size of the auxiliary data
structure for rank and select offers a space/time tradeoff, which they can leverage to
improve their space overhead. Here, we provide additional insight about how to best use
their observation: by incorporating knowledge about the underlying memory hierarchy,
our proposed guideline can help algorithm implementors understand how to make this
space/time tradeoff.

Layered Index. With popcount efficiently supporting blocks of 512 (29) bits, we have
considerable flexbility in designing the index without sacrificing space. For example,
an index that supports up to 4 billion bits (232) could simply directly index each 512-
bit basic block, adding only 6.25% extra space. However, efficient rank & select data
structures are particularly useful for extremely large datasets, and thus we would like to
support a larger bit array.

Strawman Design. The strawman design (Figure 3) is to directly index each 512-bit
basic block using a 64-bit counter to store the number of one bits to the left of that basic
block. This solution offers good performance (roughly two cache misses per query: one
for looking up in the rank structure, the other for examing bit vector itself), and adds
12.5% extra space.

To reduce the space overhead, we adopt two optimizations, each of which halves the
index space, as illustrated in Figure 4.
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Optimization I: 64 bit L0. In order to support more than 4 billion bits, the strawman
design used a 64-bit counter for each basic block. Supporting up to 264 bits is important,
but in practice, bit arrays are not too large. Therefore, for each 232 bits (an upper block),
we store a 64-bit counter to store the number of one bits to the left of that upper block.
These 64-bit counters create a new index layer, called the first layer (L0) index. When
answering a query for rank(x), we examine this index to find the number of one bits
preceding the upper block in which x is located, and look up the underlying structure to
find out the number of one bits preceding x within that upper block.

Accessing this additional index does not significantly affect performance for two
reasons: First, the L0 index is small enough to fit in fast cache memory. It contains only
64 bits for each 232 bits in the original array. For a bit array of 16 billion bits (2GB), it
requires only 128 bytes. Second, the lookup in this index is independent of the lookup
in the second-layer index, so these operations can be issued in parallel. This additional
layer of index confers an important space advantage: The underlying indexes now need
only support 232 bits, so we can represent each 512-bit basic block using only a 32-bit
counter. This design results in a rank structure with about 6.25% extra space.

Optimization II: Interleaved L1/L2. We can further improve the space overhead by
adding an additional layer to the index. Recall our architectural insight that the overall
performance is strongly determined by the number of cache misses, which implies that
if no more cache misses are introduced, slightly more computation will have minimal
performance impact. According to this idea, we designed a two-layer index to support
rank queries for 232 bit ranges. For each four consecutive basic blocks (a lower block,
containing 2048 bits), we use a 32-bit counter to store the number of one bits preceding
that lower block. These counters make up the second layer (L1) index. Underneath, for
each lower block, we use three 10-bit counters, each storing the popcount value for one
of the first three basic blocks within that lower block. These 10-bit counters make up
the third layer (L2) index. To look up a block, it is necessary to sum the appropriate
third-layer index entries, but because there are only three such entries, the cost of this
linear operation is low.
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Fig. 5. Process of Answering a Select Query

To avoid causing extra cache misses, we leverage the technique of Vigna [10]: storing
the L1 and L2 index entries in an interleaved form. Each L1 index entry is followed by
its L2 index entries. Since the total size of an L1 index entry and its L2 index entries is
62 bits, which fits in one cache line, this design guarantees that by paying exactly one
cache miss, we are able to fetch all the necessary data to answer a rank query. (We pad
the structure by two bits to ensure that it is both cache and word aligned.) Even though
several additional comparisons and arithmetic operations must be performed, the overall
performance is only slightly reduced. Because each 2048 bits of the bit array require 64
bits, the space overhead is 3.125%.

Of note is that each layer of the index uses a different type of count: The first layer
uses 64-bit cumulative, absolute counts. The second layer uses cumulative counts rel-
ative to the beginning of the upper block, and so fits in 32 bits. The third layer uses
non-cumulative, relative counts in order to fit all three of them into less than 32 bits,
a design constraint required to ensure that the L1/L2 index entries could always be
cache-line aligned. The combination of these three types of counts makes our high-
performance, space-efficient rank structure possible.

3.2 Select

combined sampling [9] is the highest-performing of the space-efficient variants
of select, which uses position-based selection. We therefore focus on it as a target for
applying our cache-centric optimization and improvements from rank. Our goal, as with
combined sampling, is to enable maximal re-use of index space already devoted
to rank. In contrast, many prior approaches [1,10] create an entirely separate index to
use for position-based selection, which requires considerable extra space. As we show,
our rank structure, poppy, is a natural match for the combined design, and enables
support for larger (up to 264 bits) bit arrays while offering competitive or even better
performance.

Basic Block for Select. Similar to rank, we first microbenchmark the best in-block select
method. The result shows that broadword programming [10] is the best method to select
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within 64 bits. Because the popcnt instruction is the fastest way to popcount 512
bits, we combine these two techniques to select within 512 bits—popcnt sequentially
through the basic block to find the 64-bit word in which the target is located, and then
use broadword select to find the individual bit within the word.

Sampling Answers. Like other position-based select structures, we store a sampling of
select answers.

Strawman Design. The strawman design is for every L one bits, we store the position
of the first one among them, which requires 64 bits. We set L to 8192, as in combined
sampling. To answer a query for select(y), we first examine the sampling answers
to find out the position of the (�(y – 1)/8192� · 8192 + 1)-th one bit. We re-use the L1
index of the rank structure to reach the correct lower block, and look up in the L2 index
of that lower block to find the correct basic block. Finally, we use the combination of
popcnt and broadword programming to select within that basic block. In the worst
case, such a structure adds about 0.78% extra space.

Optimization: 64 bit L0. The same idea from our rank optimization can be used
for select, splitting the index into a 64-bit upper part and 32-bit lower part. We binary
search the L0 index of the rank structure to find out the upper block in which the y-th
one bit is located. For each upper block, we store a sampling of answers similar to the
strawman design, but this time only 32 bits are required to store a position. Then the
process of answering a select query is similar to that of strawman design, except that
it requires one more look up, as shown in Figure 5. This re-use of the L0 index halves
the space overhead, from 0.78% to 0.39%. Because we re-use our poppy structure as
a building block, we call this select structure cs-poppy.

This design is similar to combined sampling, with two important differences.
First, cs-poppy can support up to 264 bits. Second, the rank index allows cs-poppy
to locate the correct position to within 512 bits, instead of combined sampling’s
1024-bit basic block, requiring (potentially) one less cache miss when performing select
directly within a basic block. cs-poppy thus outperforms combined sampling
and is performance competitive with the much less space-efficient simple select.

Micro-optimization: Jumping to offset. The sampling index indicates the L1 block
containing the sampled bit. Our select performs a small optimization to potentially
skip several L1 blocks: Each L1 block can only contain 2048 one bits. Therefore, for
select(y), it is safe to skip forward by y%8192

2048 L1 entries. This optimization improves
select performance by 12.6%, 2.4%, and 0.5% for 230-entry bit arrays consisting of
90%, 50%, and 10% ones, respectively.

4 Evaluation

To evaluate our rank & select structures, we performed several experiments on the Intel
Core i7-based machine mentioned above. The source code was compiled using gcc
4.7.1 with options -O9, -march=native and -mpopcnt. We measure elapsed time
using the function gettimeofday.
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Fig. 6. Performance of rank & select operations in bit arrays of increasing size

We pre-generate random bit arrays and 1,000,000 test queries before measurement
begins. Each test is repeated 10 times. Because the deviation among these runs is small,
we report the mean performance. We execute rank & select queries over bit arrays of
densities 10%, 50%, and 90%, similar to the experiments by Navarro et al. [9].

For rank, because our goal is to provide the performance of rank9 while matching
the space overhead of combined sampling, we compare poppy with these two.
We also compare with SDSL [4]’s rank support jmc, which implements the clas-
sical solution [6]. Figure 6 shows the results. For small bit arrays, our rank structure,
poppy performs slower than rank9 and rank support jmc. The performance gap
shrinks as the size of bit array increases. When the size is increased to 234, poppy’s
performance is competitive or even better. For small arrays, the index structure fits in
cache, and the relative cost of poppy’s extra computation adds measureable overhead,
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but as the index grows to exceed cache, this extra arithmetic is overshadowed by the cost
that all schemes must pay to access DRAM. In fact, poppy can out-peform the other
schemes for index sizes where poppy’s smaller index fits in cache and the others do
not. On the other hand, poppy is substantially faster than the original implementation
of combind sampling To understand why, we modified the original implementa-
tion to use the popcnt instruction. poppy still outperforms this modified implemen-
tation of combined sampling by 20%-30%, which we believe is mainly from the
new cache-aware index structure design.

For select, we compare cs-poppy against simple select, combined
sampling, combined sampling using popcnt, and SDSL’s select
support mcl, which is an implementation of Clark’s structure [1] enhanced by broard-
word programming. As shown in Figure 6 (b), (d), and (f), cs-poppy performs
similarly or better than simple select and select support mcl, and always
outperforms combined sampling and its variant. This result matches our analysis
that combined sampling may require one cache miss more than cs-poppy, be-
cause its basic block occupies two cache lines (1024 bits).

5 Conclusion

In this paper, we overview several representative rank & select data structures and sum-
marize common design frameworks for such structures. Then, we present our design
recipe for each component, motivated both algorithmic and computer architecture con-
siderations. Following our design recipe, we build space-efficient, high-performance
rank & select structures on a commodity machine which support up to 264 bits. The
resulting poppy rank structure offers performance competitive to the state of the art
while adding only 3% extra space; building upon it, cs-poppy offers similar or even
better select performance than the best alternative position-based select, while adding
only 0.39% extra space.
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for providing their source code for comparison; Bin Fan and the SEA reviewers for their
feedback and suggestions; and Google, the Intel Science and Technology Center for
Cloud Computing, and the National Science Foundation under award CCF-0964474 for
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Abstract. We present a novel local improvement scheme for graph partitions that
allows to enforce strict balance constraints. Using negative cycle detection algo-
rithms this scheme combines local searches that individually violate the balance
constraint into a more global feasible improvement. We combine this technique
with an algorithm to balance unbalanced solutions and integrate it into a parallel
multi-level evolutionary algorithm, KaFFPaE, to tackle the problem. Overall, we
obtain a system that is fast on the one hand and on the other hand is able to im-
prove or reproduce many of the best known perfectly balanced partitioning results
reported in the Walshaw benchmark.

1 Introduction

In computer science, engineering, and related fields graph partitioning is a common
technique. For example, in parallel computing good partitionings of unstructured graphs
are very valuable. In this area, graph partitioning is mostly used to partition the under-
lying graph model of computation and communication. Generally speaking, nodes in
this graph represent computation units and edges denote communication. This graph
needs to be partitioned such that there are few edges between the blocks (pieces). In
particular, if we want to use k processors we want to partition the graph into k blocks
of about equal size. Here we focus on the case when the bounds on the size are very
strict, including the case of perfect balance when the maximal block size has to equal
the average block size.

The problem is NP-hard and hard to approximate on general graphs so that mostly
heuristics are used in practice. A successful heuristic for partitioning large graphs is
the multi-level approach. Here, the graph is recursively contracted to achieve a smaller
graph with the same basic structure. After applying an initial partitioning algorithm to
the smallest graph in the hierarchy, the contraction is undone and, at each level, a local
refinement method is used to improve the partitioning induced by the coarser level.

During the last years we started to put all aspects of the multi-level graph parti-
tioning (MGP) scheme on trial since we had the impression that certain aspects of
the method are not well understood. Our main focus is partition quality rather than
partitioning speed. In our sequential MGP framework KaFFPa (Karlsruhe Fast Flow
Partitioner) [12], we presented novel local search as well as global search algorithms.

� This paper is a short version of the TR [14].
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c© Springer-Verlag Berlin Heidelberg 2013



Think Locally, Act Globally: Highly Balanced Graph Partitioning 165

In the Walshaw benchmark [15], KaFFPa was beaten mostly for small graphs that com-
bine multi-level partitioning with an evolutionary algorithm. We therefore developed
an improved evolutionary algorithm, KaFFPaE (KaFFPa Evolutionary) [13], that also
employs coarse grained parallelism. Both of these algorithms are able to compute par-
titions of very high quality in a reasonable amount of time when some imbalance ε > 0
is allowed. However, they are not yet very good for small values of ε, in particular for
the perfectly balanced case ε = 0.

State-of-the-art local search algorithms exchange nodes between blocks of the parti-
tion trying to decrease the cut size while also maintaining balance. This highly restricts
the set of possible improvements. We introduce new techniques that relax the balance
constraint for node movements but globally maintain balance by combining multiple lo-
cal searches. We reduce the combination problem to finding negative cycles in a graph,
exploiting the existence of very efficient algorithms for this problem. We also provide
balancing variants of these techniques that are able to make infeasible partitions feasi-
ble. This makes our partitioner the only current system which is able to guarantee any
balance constraint. From a meta heuristic point of view our techniques are an interesting
example for a local improvement technique that vastly increases the size of the neigh-
borhood by efficiently combining many highly localized infeasible improvements into
a feasible one.

The paper is organized as follows. We begin in Section 2 by introducing basic con-
cepts. After presenting some related work in Section 3 we describe novel improvement
and balancing algorithms in Section 4. Here we start by explaining the very basic idea
that allows us to find combinations of simple node movements. We then explain directed
local searches and extend the basic idea to a complex model containing more node
movements. This is followed by a description on how these techniques are integrated
into KaFFPaE. A summary of extensive experiments done to evaluate the performance
of our algorithms is presented in Section 5.

2 Preliminaries

Consider an undirected graph G = (V,E, ω) with edge weights ω : E → R>0,
n = |V |, and m = |E|. We extend ω to sets, i.e., ω(E′) :=

∑
e∈E′ ω(e). Γ (v) :=

{u : {v, u} ∈ E} denotes the neighbors of v. We are looking for blocks of nodes
V1,. . . ,Vk that partition V , i.e., V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i �= j. A
balancing constraint demands that ∀i ∈ {1..k} : |Vi| ≤ Lmax := (1 + ε)�|V |/k�. In
the perfectly balanced case the imbalance parameter ε is set to zero. The objective is
to minimize the total cut

∑
i<j w(Eij) where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}.

A block Vi is called underloaded if |Vi| < Lmax and overloaded if |Vi| > Lmax. A
node v ∈ Vi that has a neighbor w ∈ Vj , i �= j, is a boundary node. An abstract view
of the partitioned graph is the so called quotient graph, where nodes represent blocks
and edges are induced by connectivity between blocks. Given a partition, the gain of a
node v in block A with respect to a block B is defined as g(A,B) = ω({(v, w) | w ∈
Γ (v)∩B})−ω({(v, w) | w ∈ Γ (v)∩A), i.e. the reduction in the cut when v is moved
from block A to block B. By default, our initial inputs will have unit node weights.
However, the proposed algorithms can be easily extended to handle weighted nodes.



166 P. Sanders and C. Schulz

3 Related Work

There has been a huge amount of research on graph partitioning so that we refer the
reader to [3]. Well known software packages based on this multi-level approach include,
Jostle [17], Metis [9], and Scotch [11]. However, for various reasons they are not able
guarantee strict balance constraints. KaFFPaE [13] is a distributed parallel evolution-
ary algorithm that uses our multi-level graph partitioning framework KaFFPa [12] to
create individuals and modifies the coarsening phase to provide new effective combine
operations. It currently holds the best results for many graphs in Walshaw’s Benchmark
Archive [15] when some imbalance is allowed. Benlic et al. [2] provided multi-level
memetic algorithms for perfectly balanced graph partitioning. Their approach is able to
compute many entries in Walshaw’s Benchmark Archive [15] for the case ε = 0. How-
ever, they are not able to guarantee that the computed partition is perfectly balanced
especially for larger values of k.

4 Globalized Local Search by Negative Cycle Detection

In this section we describe our local search and balancing algorithms for strictly bal-
anced graph partitioning. Roughly speaking, all of our algorithms consist of two compo-
nents. The first component are local searches on pairs of blocks that share a non-empty
boundary, i.e. all edges in the quotient graph. These local searches are not restricted to
the balance constraint of the graph partitioning problem and are undone after they have
been performed. The second component uses the information gathered in the first com-
ponent. That means we build a model using the node movements performed in the first
step enabling us to find combinations of those node movements that maintain balance.

We begin by describing the very basic algorithm and go on by presenting an ad-
vanced model which enables us to combine complex local searches. This is followed
by a description on how local search and balancing algorithms are put together. At the
end of this section we show how we integrate these algorithms into our evolutionary
framework KaFFPaE.

Basic Idea – Using a Negative Cycle Detection Algorithm. We start with a very sim-
ple case where the first component only moves single nodes. A node in the graph G
can have two states marked and unmarked. By default a node is unmarked. It is called
eligible if it is not adjacent to a previously marked node. We now build the model of
the underlying partition of the graph G, Q = ({1, · · · , k}, E) where (A,B) ∈ E if
there is an edge in G that runs between the blocks A and B. We define edge weights
ωQ : E → R in the following way: for each directed edge e = (A,B) ∈ E in a random
order, find a eligible boundary node v in block A having maximum gain gmax(A,B), i.e.
a node v that maximizes the reduction in cut size when moving it from block A to block
B. If there is more than one such node, we break ties randomly. Node v is then marked.
The weight of e is then ωQ(e) := −gmax(A,B), i.e., the negative gain value associated
with moving v from A to B. Note that, in general, ωQ((A,B)) �= ωQ((B,A)). An
example for this basic model is shown in Figure 1. Observe that the basic model is a
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Fig. 1. Left: example graph partitioned into three parts (A, B and C). Possible candidates are
highlighted. Middle: corresponding model and one negative cycle is highlighted. Right: updated
partition after associated node movements of cycle are performed. Moved nodes are highlighted.

directed and weighted version of the quotient graph and that the selected nodes form an
independent set.

Note that each cycle in this model defines a set of node movements and furthermore
when the associated nodes of a cycle are moved, then each block contains the same
number of nodes as before. Also the weight of a cycle in the model is equal to the
reduction in the cut when the associated node movements are performed. However, the
most important aspect is that a negative cycle in the model corresponds to a set of node
movements that will decrease the overall cut and maintain the balance of the partition.
To detect a negative cycle in this model we introduce a node s and connect it to all
nodes in Q. The weight of the inserted edges is set to zero. We can apply a standard
shortest path algorithm [4] that can handle negative edge weights to detect a negative
cycle. If the model contains a negative cycle we can perform a set of node movements
that will not alter the balance of the blocks since each block obtains and emits a node.

We can find additional useful augmentations by connecting blocks which can take at
least one node without becoming overloaded to s by a zero weight edge. Now, negative
cycles containing s change some block weights but will not violate any additional bal-
ance constraints. Indeed, when the node following s is overloaded initially, this overload
will be reduced.

If there is no negative cycle in the model, we apply a diversification strategy based
on cycles of weight zero. This strategy is explained in the TR [14]. Moreover, we apply
a balancing algorithm which is explained in the following sections. An interesting ob-
servation is that the algorithm can be seen as an extension of the classical FM algorithm
[6] which swaps nodes between two adjacent blocks (two at a time) which is basically
a negative cycle of length two in our model if the gain of the two node movements is
positive.

Advanced Model. We now integrate advanced local search algorithms. Each edge in
the advanced model stands for a set of node movements found by a local search. Hence,
a negative cycle corresponds to a combination of local searches with positive overall
gain that maintain balance or that can improve balance. Before we build the advanced
model we perform directed local search on each pair of blocks that share a non-empty
boundary, i.e. each pair of blocks that is adjacent in the quotient graph. A local search
on a directed pair of blocks (A,B) is only allowed to move nodes from block A to
block B. The order in which the directed local search between a directed pair of blocks
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is performed is random. That means we pick a random directed adjacent pair of blocks
on which local search has not been performed yet and perform local search as described
below. This is done until local search was done between all directed adjacent pairs of
blocks once.

Directed Local Search. We now explain how we perform a directed local search be-
tween a pair (A,B) of blocks. A directed local search between two blocks A and B is
very localized akin to the multi-try method used in KaFFPa [12]. However, a directed
local search between A and B is restricted to move nodes from block A to block B. It
is similar to the FM-algorithm: We start with a single random eligible boundary node
of block A having maximum gain gmax(A,B) and put this node into a priority queue.
The priority queue contains nodes of the block A that are valid to move. The priority
is based on the gain, i.e. the decrease in edge cut when the node is moved from block
A to block B. We always move the node that has the highest priority to block B. After
a node is moved its eligible neighbors that are in block A are inserted into the priority
queue. We perform at most τ steps per directed local search, where τ is a parameter.
Note that during a directed local search we only move nodes that are not incident to
a node moved during a previous directed local search. This restriction is necessary to
keep the model described below accurate. Thus we mark all nodes touched during a
directed local search after it was performed which also implies that each node is moved
at most once. In addition all moved nodes are moved back to their origin, since these
movements would make the partition imbalanced. We stress that all nodes incident to
nodes that have been moved during a directed local search are not eligible for any later
local search during the construction since this would make the gain values computed
imprecise.

The Model Graph. The advanced model allows us to find combinations of directed
local searches such that the balance of the given partition is at least maintained. The
challenge here is that, in contrast to movements of single nodes, we cannot combine
arbitrary local searches since they do not all move the same number of nodes. Hence,
we specify a more sophisticated graph with the property that a negative cycle maintains
feasibility.

The local search process described above yields for each pair of blocks e = (A,B)
in the quotient graph a sequence of node movements Se and a sequence of gain values
ge. The d’th value in ge corresponds to the reduction in the cut between the pair of
blocks (A,B) when the first d nodes in Se are moved from their source block A to
their target block B. By construction, a node v ∈ V can occur in at most one of the
sequences created and in its sequence only once.

Generally speaking, the advanced model consists of τ layers. Essentially each layer
is a copy of the quotient graph. An edge starting and ending in layer d of this model
corresponds to the movement of exactly d nodes. The weight of an edge e = (A,B) in
layer d of the model is set to the negative value of the d’th entry in ge. In other words
it encodes the negative value of the gain, when the first d nodes in Se are moved from
block A to block B. Hence, a negative cycle whose nodes are all in layer d will move
exactly d nodes between each of the respective block pairs contained in the cycle and
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results in a overall decrease in the edge cut. We add additional edges to the model such
that it contains more possibilities in presence of underloaded blocks. To be more precise,
in these cases we want to get rid of the restriction that each block sends and emits
the same number of nodes. To do so we insert forward edges between all consecutive
layers, i.e. block k in layer d is connected by an edge of weight zero to block k in
layer d + 1. These edges are not associated with node movements. Furthermore, we
add backward edges as follows: for an edge (A,B) in layer d we add an edge with the
same weight between block A in layer d and block B in layer d− � if block B can take
� nodes without becoming overloaded. The newly inserted edge is associated with the
same node movements as the initial edge (A,B) within layer d. This way we encode
movements in the model where a block can emit more nodes then it gets and vice versa
without violating the balance constraint. Additionally we connect each node in layer d
back to s if the associated block can take at least d nodes without becoming overloaded.
Again this means that the model might contain cycles through s which stand for paths in
the quotient graph being associated with node movements that decrease the overall cut.
Moreover, these moves never increase the imbalance of the input partition. An example
for the advanced model can be found in the TR [14]. We can apply the same zero weight
cycle diversification as in the basic model. The advanced model can contain conflicting
cycles that cannot be used. Due to space constraints, we explain when conflicts occur
and how we handle them in the TR [14].

Multiple Directed Local Searches. The algorithm can be further improved by per-
forming multiple directed local searches (MDLS) between each pair of blocks that share
a non-empty boundary. More precisely, after we have computed node movements on
each pair of blocks e = (A,B), we start again using the nodes that are still eligible.
This is done μ times. The model is then slightly modified in the following way: For the
creation of edges in the model that correspond to the movement of d nodes from block
A to block B we use the directed local search on e = (A,B) from the process above
with the best gain when moving d nodes from block A to block B (and use this gain
value for the computation of the weight of corresponding edges).

Balancing. As we will see, to create ε-balanced partitions we start our algorithm with
partitions where larger imbalance is allowed. Hence, to satisfy the balance constraint,
we have to think about balancing strategies. A balancing step will only be applied if
the model does not contain a negative cycle (see next section for more details). Hence,
we can modify the advanced model such that we can find a set of node movements
that will decrease the total number of overloaded nodes by at least one and minimizes
the increase in the number of edges cut. Specifically, we introduce a second node t.
Now instead of connecting s to all vertices, we connect it only to nodes representing
overloaded blocks, i.e. |Vi| > �|V |/k�. Additionally, we connect a node in layer � to
t if the associated block can take at least � nodes without becoming overloaded. Since
the underlying model does not contain negative cycles, we can apply a shortest path
algorithm to find a shortest path from s to t. We use a variant of the algorithm of Bell-
man and Ford since edge weights might still be negative (for more details see Section 5).
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It is now easy to see that a shortest path in this model yields a set of node movements
with the smallest increase in the number of cut edges and that the total number of over-
loaded nodes decreases by at least one. If τ is set to one we call this algorithm basic
balancing otherwise advanced balancing.

However, we have to make sure that there is at least one s-t path in the model. Let
us assume for now that the graph is connected. If the graph is connected then the di-
rected version of the quotient graph is strongly connected. Hence an s-t path exists in
the model if we are able to perform local search between all pairs of blocks that share
a non-empty boundary. Because a directed local search can only start from an eligible
node we might not be able to perform directed local search between all adjacent pairs
of blocks, e.g. if there is no eligible node between a pair of blocks left. We try to en-
sure that there is at least one s-t path in the model by doing the following. Roughly
speaking we try to integrate a s-t path in the model by changing the order in which
directed local searches are performed. First we perform a breadth first search (BFS)
in the quotient graph which is initialized with all nodes that correspond to overloaded
blocks in a random order. We then pick a random node in the quotient graph that cor-
responds to a block A that can take nodes without becoming overloaded. Using the
BFS-forest we find a path P = B → · · · → A from an overloaded block B to A.

w

z
v

B C

A

C AB

Fig. 2. Top: a graph partitioned
into three parts. Bottom: BFS-
tree in the quotient graph start-
ing in overloaded block B. This
path cannot be integrated into
the model. After a directed lo-
cal search on pair (B,C), v is
marked and there is no eligible
node left for the local search on
pair (C,A). A similar argument
holds if local search is done on the
pair (C,A) first.

We now first perform directed local search on all con-
secutive pairs of blocks in P . Here we use τ = 1 for
the number of node movements to minimize the num-
ber of non-eligible nodes. If this was successful, i.e.
we have been able to move one node between all di-
rected pairs of blocks in that path, we perform directed
local searches as before on all pairs of blocks that
share a non-empty boundary. Otherwise we undo the
searches done (every node is eligible again) and start
with the next random block that can take a node with-
out becoming overloaded. In some rare cases the algo-
rithm fails to find such a path, i.e. each time we look
at a path we have one directed pair of blocks where no
eligible node is left. An example is shown in Figure 2.
In this case we apply a fallback balance routine that
guarantees to reduce the total number of overloaded
nodes by one if the input graph is connected. Given the
BFS-forest of the quotient graph from above, we look
at all paths in it from an overloaded block to a block
that can take a node without becoming overloaded. At

this point there are at most O(k) such paths in our BFS-forest. Specifically for a path
P = Z → Y → X → · · · → A we select a node having maximum gain gZ,Y in Z
and move it to Y . We then look at Y and do the same with respect to X and so on until
we move a node to block A. Note that this time we can ensure to find nodes because
after a node has been moved it is not blocked for later movements. After the operations
have been performed they are undone and we continue with the next path. In the end
we use the movements of the path that resulted in the smallest number of edges cut. If
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the graph contains more than one connected component then the algorithms described
above may not work. If this is the case we use a fall back algorithm which is described
in the TR [14].

Putting Things Together. In practice we start our algorithms with an unbalanced input
partition. We define two algorithms, basic and advanced, depending on the models used.
Both the basic and the advanced algorithm operate in rounds. In each round we iterate
the negative cycle based local search algorithm until there are no negative cycles in the
corresponding model (basic or advanced). After each negative cycle local search step
we try to find zero weight cycles in the model to introduce some diversification. Since
we have random tie breaking at multiple places, we iterate this part of the algorithm.
If we do not succeed to find an improved cut using these two operations for λ itera-
tions, we perform a single balancing step if the partition is still unbalanced; otherwise
we stop. The parameter λ basically controls how fast the unbalanced input partition is
transformed into a partition that satisfies the balance constraint. After the balancing op-
eration, the total number of overloaded nodes is reduced by at least one depending on
the balancing model. In the basic algorithm we use the basic balancing model (τ = 1)
and in the advanced algorithm we use the advanced balancing model. Since the bal-
ance operation can introduce new negative cycles in the model we start the next round.
The refinement techniques introduced within this paper are called Karlsruhe Balanced
Refinement (KaBaR).

Integration into KaFFPaE. We now describe how we integrate our new algorithms
into our distributed evolutionary algorithm KaFFPaE [13]. An evolutionary algorithm
starts with a population of individuals (in our case partitions of the graph) and evolves
the population into different populations over several rounds. In each round, the evolu-
tionary algorithm uses a selection rule based on the fitness of the individuals (in our case
the edge cut) of the population to select good individuals and combine them to obtain
improved offspring. Roughly speaking, KaFFPaE uses KaFFPa to create individuals
and modifies the coarsening phase to provide new effective combine operations.

We adopt the idea of allowing larger imbalance since this is useful to create good
partitions [16]. To do so, we modify the create and combine operations as follows:
each time we perform such an operation, we randomly choose an imbalance parameter
ε′ ∈ [0.005, ε̂] where ε̂ is an upper bound for the allowed imbalance (a tuning param-
eter). This imbalance is then used to perform the operation, i.e. after the operation is
performed, the offspring/partition has blocks with size at most (1 + ε′)�|V |/k�. After
the respective operation is performed, we apply our advanced algorithms to obtain a
partition of the graph that fulfils the required balance constraint. This individual is the
final offspring of the operation. We insert it into the population using the techniques of
KaFFPaE [13]. Note that at all times each individual in the population of the evolution-
ary algorithm fulfils the balance constraint. Also note that allowing larger imbalance en-
ables us to use previously developed techniques that otherwise would not be applicable,
e.g. max-flow min-cut based local search methods from [12]. We call the overall algo-
rithm Karlsruhe Balanced Partitioner Evolutionary (KaBaPE). When we use KaBaPE
to create ε-balanced partitions we choose ε′ ∈ [ε + 0.005, ε + ε̂] for the combine and
create operations and transform the offspring into an ε-balanced partition afterwards.



172 P. Sanders and C. Schulz

5 Experiments

Implementation. We have implemented the algorithm described above using C++. We
implemented negative cycle detection with subtree disassembly and distance updates as
described in [4]. Overall, our program (including KaFFPa(E)) consists of about 23 000
lines of code. The implementation of the presented local search algorithms has about
3 400 lines of code.

System. Experiments have been done on two machines. Machine A has four Quad-core
Opteron 8350 (2.0GHz), 64GB RAM, running Ubuntu 10.04. Machine B is a cluster
where each node has two Quad-core Intel Xeon processors (X5355, 2.667 GHz) and 16
GB RAM, 2x4 MB of L2 cache and runs Suse Linux Enterprise 11 SP 1. All programs
were compiled using GCC Version 4.7 and optimization level 3 using OpenMPI 1.5.5.

Parameters. After an extensive evaluation of the parameters we fixed the number of
multiple directed local searches to μ = 20 (larger values of μ, e.g. iterating until no
boundary node is eligible did not yield further improvements). The maximum number
of node movements per directed local search is set to τ = 15 for k ≤ 8 and to τ = 7
for k > 8. The number of unsuccessful iterations until we perform a balancing step λ
is set to three. Each time we perform a create or combine operation we pick a random
number of node movements per directed local search τ ∈ [1, 30], a random number of
multiple directed local searches μ ∈ [1, 20] and λ ∈ [1, 10] and use these parameters
for the balancing and negative cycle detection strategies.

5.1 Walshaw Benchmark

In this section we apply our techniques to all graphs in Chris Walshaw’s benchmark
archive [15]. This archive is a collection of real-world instances for the graph partition-
ing problem. The rules used there imply that the running time is not an issue, but one
wants to achieve minimal cut values for k ∈ {2, 4, 8, 16, 32, 64} and balance parame-
ters ε ∈ {0, 0.01, 0.03, 0.05}. It is the most used graph partitioning benchmark in the
literature. Most of the graphs of the benchmark come from finite-element applications,
VLSI design. A road network is also included.

Improving Existing Partitions. When we started to look at perfectly balanced par-
titioning we counted the number of perfectly balanced partitions in the benchmark
archive that contain nodes having positive gain, i.e. nodes that could reduce the cut
when being moved to a different block. Astonishingly, we found that 55% of the per-
fectly balanced partitions in the archive contain nodes with positive gain (some of them
have up to 1400 of such nodes). These nodes usually cannot be moved by simple lo-
cal search due to the balance constraint. Therefore, we now use the existing perfectly
balanced partitions in the benchmark archive and use them as input to our local search
algorithms KaBaR. This experiment has been performed on machine A and for all con-
figurations of the algorithm we used λ = 20 for the number of unsuccessful tries.
Table 1 shows the relative number of partitions that have been improved by different
algorithm configurations and k (in total there are 34 graphs per number of blocks k).
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Table 1. Rel. no. of improved in-
stances in the Walshaw Benchmark.
Configurations: Basic (Basic Neg. Cy-
cle Impr.), +ZG (Basic + Cycle Diver-
sification), Adv. (Adv. Model + Cycle
Div.), +MDLS. (Adv. + MDLS)

k Basic +ZG Adv. +MDLS

2 0% 0% 0% 0%
4 18% 24% 41% 44%
8 38% 50% 64% 74%
16 64% 68% 71% 79%
32 76% 76% 88% 91%
64 82% 82% 79% 88%

sum 47% 50% 57% 63%

It is somewhat surprising that already the most
basic variant of the algorithm, i.e. negative cy-
cle detection without the zero weight cycle di-
versification mechanism, can improve 47% of
the existing entries. All of the algorithms have
a tendency to improve more partitions when the
number of blocks k increases. Less surprisingly,
more advanced local searches and models in-
crease this percentage further. When applying the
advanced algorithm with multiple directed local
searches (the most expensive configuration of the
algorithm), we are able to improve 128 partitions,
i.e. 63% of the entries. Note that it took overall
roughly two hours to compute these entries using
one core of machine A. This is very affordable
considering the fact that some of the previous ap-

proaches, such as Soper et. al. [15], have taken many days to compute one entry to the
benchmark tables. Of course in practice we want to find high quality partitions without
using input partitions generated by other algorithms. We therefore compute partitions
from scratch in the next section.

Computing Partitions from Scratch. We now compute perfectly balanced partitions
from scratch. We use machine B and run KaBaPE with a time limit tk = 225 · k sec-
onds using 32 cores (four nodes of the cluster) per graph and k > 2. On the eight
largest graphs of the archive we gave KaBaPE a time limit of t̂k = 4 · tk per graph
and k > 2. For k = 2 we gave KaBaPE one hour of time. ε̂ was set to 4% for the
small graphs and to 3% for the eight largest graph in the archive. We summarize the
results in Table 2 and report the complete list of results obtained in the TR [14]. Cur-
rently we are able to improve or reproduce 86% of the entries reported in this bench-
mark1. In the bipartition case we mostly reproduce the entries reported in the benchmark

Table 2. Number of improvements
computed from scratch for the per-
fectly balanced case

k 2 4 8 16 32 64
∑

< 4 19 24 25 30 29 64%
≤ 29 31 27 27 31 30 86%

(instead of improving). This is not surprising
since the models presented in this paper can con-
tain only trivial cycles of length two in this case.
Also recently it has been shown by Delling et. al
[5] that some of the balanced bipartitions reported
there are optimal. We also applied our algorithm
for larger imbalances, i.e. 1%, 3% and 5%, in the
Walshaw Benchmark. For the case ε = 1% we
run our algorithm KaBaPE on all instances using
the same parameters ε̂ and tk as above. Here we are able to improve or reproduce the
cut in 160 out of 204 cases. A table reporting detailed results can be found in the TR
[14]. Afterwards we performed additional partitioning trials on all instances where our
systems (including [8]. [10]. [12], [13]) currently not have been able to reproduce or
improve the entry reported there using different parameters and different machines.

1 1. Oct. 2012.
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We now improved or reproduced 97%, 99%, 99%, 99% of the entries reported there for
the cases ε = 0, 1%, 3%, 5% respectively. These numbers include the entries where we
used the current record as an input to our algorithms and actually improved the input
partition. They contribute roughly 4%, 7%, 11%, 9% for the cases ε = 0, 1%, 3%, 5%
respectively.

Costs for Perfect Balance. It is hard to perform a meaningful comparison to other
partitioners since publicly available tools such as Scotch [11], Jostle [17] and Metis [9]
are either not able to take the desired balance as an input parameter or are not able to
guarantee perfect balance. This is a major problem for the comparison with these tools

Table 3. Cost for Perfect Balance, Rel. to
KaFFPa with ε = 1% imbalance. Rel. EC
average increase in cut after 1% partitions
are balanced and Rel. t is average time used
by KaBaR rel. time of KaFFPa.

k 2 4 8 16 32 64

Rel. EC [%] 9 7 5 6 4 3
Rel. t [%] 12 56 99 107 134 163

since allowing larger imbalances, i.e. ε = 3%,
decreases the number of edges cut signifi-
cantly. However, we have shown in [12] that
KaFFPa produces better partitions compared
to Scotch and Metis. Hence, we have a look
at the number of edges cut by our algorithm
when perfect balance is enforced, i.e. the in-
crease in the number of edges cut when we
seek a perfectly balanced partition. We use
machine B and KaFFPaStrong to create par-
titions having an imbalance of ε = 1% and
then create perfectly balanced partitions using our advanced negative cycle model and
advanced balancing. KaFFPaStrong is designed to achieve very good partition quality.
For each instance (graph, k) we repeat the experiment ten times using different random
seeds. We compare the final cuts of the perfectly balanced partitions to the number of
edges cut before the balancing and negative cycle search started. We further measure
the runtime consumed by the algorithm and report it relative to the runtime of KaFFPa.
The instances used for this experiment are the same as in KaFFPa [12] and are available
for download at [1]. The main properties of these graphs can be found in the TR [14].
Table 3 summarizes the results, detailed results are reported in the TR [14].

6 Conclusion and Future Work

In this paper we have presented novel algorithms to tackle the balanced graph partition-
ing problem, including the case of perfect balance when the maximal block size has to
equal the average block size. These algorithms combine local searches by a model in
which a cycle corresponds to a set of node movements in the original partitioned graph
that roughly speaking do not alter the balance of the partition. Experiments indicate
that previous algorithms have not been able to find such rather complex movements.
In contrast to previous algorithms such as Scotch [11], Jostle [17] and Metis [9], our
algorithms are able to guarantee that the output partition is feasible.

An open question is whether it is possible to define a conflict-free model that encodes
the same kind of node movements as our advanced model. In future work, it could be
interesting to see if one can integrate other types of local searches from KaFFPa [12]
into our models. The MDLS algorithm can be improved such that it finds the best
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combination of the computed local searches. It will be interesting to see whether our
techniques are useful for other problems where local search is restricted by constraints,
e.g. multi-constraint or hypergraph partitioning.

Shortly after we submitted our results to the benchmark archive we lost entries to an
implementation of [7] by Frank Schneider (the original work does not provide perfectly
balanced partitions). However, we are still able to improve more than half of these en-
tries when using those as input to KaBaR. Furthermore, we integrated the techniques of
[7] and again have been able to improve many entries. We conclude that the algorithms
presented in this paper are still very useful.

Acknowledgements. Financial support by the Deutsche Forschungsgemeinschaft
(DFG) is gratefully acknowledged (DFG grant SA 933/10-1).
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Abstract. The NP-hard Colorful Components problem is a graph
partitioning problem on vertex-colored graphs. We identify a new appli-
cation of Colorful Components in the correction of Wikipedia inter-
language links, and describe and compare three exact and two heuristic
approaches. In particular, we devise two ILP formulations, one based on
Hitting Set and one based on Clique Partition. Furthermore, we use
the recently proposed implicit hitting set framework [Karp, JCSS 2011;
Chandrasekaran et al., SODA 2011] to solve Colorful Components.
Finally, we study a move-based and a merge-based heuristic for Col-

orful Components. We can optimally solve Colorful Components

for Wikipedia link correction data; while the Clique Partition-based
ILP outperforms the other two exact approaches, the implicit hitting
set is a simple and competitive alternative. The merge-based heuristic is
very accurate and outperforms the move-based one. The above results for
Wikipedia data are confirmed by experiments with synthetic instances.

1 Introduction

Each entry in Wikipedia has links to the same entry in other languages. Some-
times, these links are wrong or missing, since they are added and updated manu-
ally or by näıve bots. These errors can be detected by a graph model [3, 13, 14]:
Each entry in a language corresponds to a vertex, and an interlanguage link cor-
responds to an edge. Then, ideally, a connected component in this graph would
be a clique that corresponds to a single Wikipedia term in multiple languages,
and, under the plausible assumption that for every language there is at most
one Wikipedia entry on a particular term, each language should occur at most
once in a connected component. However, due to errors this is not the case. Our
goal is to recover the correct terms by removing a minimum number of incorrect
links and completing the resulting components. This can be done using a parti-
tioning problem on a vertex-colored graph where vertices correspond to entries
and colors correspond to languages.
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Colorful Components

Instance: An undirected graph G = (V,E) and a coloring of the ver-
tices χ : V → {1, . . . , c}.
Task: Find a minimum-size edge set E′ ⊆ E such that inG′ = (V,E\E′),
all connected components are colorful, that is, they do not contain two
vertices of the same color.

We remark that the plain model naturally generalizes to an edge-weighted version
and our solution strategies also apply to this. To solveColorful Components,
we need to separate vertices of the same color. A bad path is a simple (i. e., cycle-
free) path between two vertices of the same color.

Related work. Implicitly, Colorful Components has first been considered in
a biological context as part of a multiple sequence alignment process, where it
is solved by a simple min-cut heuristic [8]. Previously, we showed that it is NP-
hard even in three-colored graphs with maximum degree six [4], and proposed
an exact branching algorithm with running time O((c − 1)k · |E|) where k is
the number of deleted edges. We also developed a merge-based heuristic which
outperformed that of Corel et al. [8] on multiple sequence alignment data.

Avidor and Langberg [2] introduced Weighted Multi-Multiway Cut and
provided results on its polynomial-time approximability (with non-constant ap-
proximation factors).

Weighted Multi-Multiway Cut

Instance: An undirected graph G = (V,E) with edge weights w : E →
{x ∈ Q : x ≥ 1} and vertex sets S1, . . . , Sc ⊆ V .
Task: Find a minimum-weight edge set E′ ⊆ E such that in G′ = (V,E\
E′) no connected component contains two vertices from the same Si.

Colorful Components is the special case of Weighted Multi-Multiway

Cut when the vertex sets form a partition.
A previous formalization of the Wikipedia link correction problem leads to a

harder problem: it uses several separation criteria (instead of using only language
data) and also allows to “ignore” the separation criterion for some vertices [13,
14]. The resulting optimization problem is a generalization of Weighted Multi-

Multiway Cut. Since solving to optimality turned out to be too time-costly
and non-scalable, a linear programming approach was followed [12, 13].

2 Solution Methods

We examine three approaches to finding optimal solutions for Colorful Com-

ponents: One based on the implicit hitting set model by Moreno-Centeno and
Karp [11, 15], and two based on integer linear programming (ILP) with row gen-
eration. We then present cutting planes to enhance the performance of all three
approaches. Finally, we describe a previous and a new heuristic for Colorful

Components.
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2.1 Implicit Hitting Set

Many NP-hard problems are naturally related to the well-known NP-hard Hit-

ting Set problem, which is defined as follows:

Hitting Set

Instance: A ground set U and a set of circuits S1, . . . , S� with Si ⊆ U
for 1 ≤ i ≤ �.
Task: Find a minimum-size hitting set, that is, a set H ⊆ U with H ∩
Si �= ∅ for all 1 ≤ i ≤ �.

We can easily reduce Colorful Components to Hitting Set: The ground
set U is the set of edges, and the circuits to be hit are all bad paths. Unfortu-
nately, this can produce an exponentially-sized instance, and thus this approach
is not feasible. However, we can model Colorful Components as an implicit
hitting set problem [1, 6, 11, 15]: the circuits have an implicit description, and
a polynomial-time oracle is available that, given a putative hitting set H , either
confirms that H is a hitting set or produces a circuit that is not hit by H . In
our case, the implicit description is simply the colored graph, and the oracle
either returns a bad path that is not hit by H or confirms that H is a solution
to Colorful Components.

Implicit hitting set models are useful for finding approximation algorithms [1,
6], but also for implementing exact solving strategies [15]. In the latter case, the
approach is as follows. We maintain a list of circuits which have to be hit, initially
empty. Then, we compute an optimal hitting set H for these circuits. If H is a
feasible solution to the implicit hitting set instance, then it is also an optimal
solution to Colorful Components. Otherwise, the oracle yields a bad path
that is not destroyed by H . This bad path is added to the list of circuits, and we
compute again a hitting set for this new list of circuits. This process is repeated
until an optimal solution is found. The hitting set instances can be solved by
using any Hitting Set solver as a black box; Moreno-Centeno and Karp [15]
suggest an ILP solver, using a standard set-cover-constraint formulation.

As suggested by Moreno-Centeno and Karp [15], we use the following two
speed-up tricks. First, we initially solve each hitting set problem using a heuristic,
and only use the ILP solver in case the oracle confirms that the heuristic returns a
valid (but possibly non-optimal) solution for Colorful Components. Second,
instead of adding only one new circuit in each iteration, we greedily compute a
set of disjoint shortest bad paths that are added to the circuit set.

2.2 Hitting Set ILP Formulation

Moreno-Centeno and Karp [15] mention that their approach is related to col-
umn (variable) generation schemes for ILP solvers. Possibly even more straight-
forward, we can solve any implicit hitting set problem with an ILP solver by a
row (constraint) generation scheme (also called “lazy constraints” in the well-
known CPLEX solver). For this, we declare binary variables h1, . . . , h|U|, where
the value of hi is to indicate whether the ith element of U (under some arbitrary
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order) is in H . The objective is to minimize
∑

i hi. We then start the branch-
and-bound process with an empty constraint set and, in a callback, query the
oracle for further constraints once an integer feasible solution is obtained. If new
constraints are generated, they are added to the problem, cutting off some parts
of the search tree. Otherwise, we have found a valid solution. Note that adding
lazy constraints is different from adding cutting planes, since cutting planes are
only allowed to cut off fractional solutions that are not integer feasible, whereas
lazy constraints can also cut off integer feasible solutions.

More concretely, for Colorful Components, we have a variable duv, u < v,
for each {u, v} ∈ E, where duv = 1 indicates that edge {u, v} gets deleted.
We then want to minimize

∑
e∈E de. The oracle deletes all edges {u, v} with

duv = 1, and then looks for a bad path u1, . . . , ul. If it finds one, it yields the
path inequality

l−1∑
i=1

duiui+1 ≥ 1. (1)

We could hope that this process is more effective than the general implicit hitting
set approach which uses an ILP solver as a black-box solver, since constraints are
generated early on without the need for the solver to optimally solve subproblems
that yield solutions that are not globally feasible.

The main disadvantage of this approach, compared to the implicit hitting set
formulation, is that it requires a solver-specific implementation; further, some
ILP solvers such as Coin CBC 2.7 or Gurobi 4.6 do not support adding lazy con-
straints without starting the solving process from scratch (the recently released
Gurobi 5.0 adds this feature).

2.3 Clique Partitioning ILP Formulation

It is known for a long time (e. g. [7]) that multicut problems can be reduced
to Clique Partitioning. In this problem, vertex pairs are annotated as being
similar or as being dissimilar, and the goal is to find a partition of the vertices
that maximizes consistency with these annotations. We model the partition of
the vertices as a cluster graph, that is, a graph where every connected component
is a clique. The formal problem definition is then as follows:

Clique Partitioning

Instance: A vertex set V with a weight function δ :
(
V
2

)
→ Q.

Task: Find a cluster graph (V,E) that minimizes
∑

{u,v}∈E δ(u, v).

Herein, δ(u, v) denotes the dissimilarity between u and v. To obtain a Clique

Partitioning instance from a Colorful Components instance, we set

δ(u, v) =

⎧⎪⎨
⎪⎩
∞ if χ(u) = χ(v),

−1 if {u, v} ∈ E,

0 otherwise.

(2)
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A component in a feasible solution for this Clique Partitioning instance
cannot contain more than one vertex of a color, since the component is a clique
and the two vertices would be connected, incurring a cost of ∞. Thus, the solu-
tion also is a feasible solution for Colorful Components, and the cost is the
number of edges between components, and therefore equals the number of edges
that need to be deleted for Colorful Components.

There is a well-known ILP formulation of Clique Partitioning [9, 17],
which we can adapt for Colorful Components. It has been successfully im-
plemented and augmented with cutting planes [5, 9, 16]. It uses binary variables
euv for u, v ∈ V, u < v, where euv = 1 iff the edge {u, v} is part of the solution
cluster graph. Cluster graphs are exactly those graphs that do not contain a P3

as induced subgraph, that is, three distinct vertices u, v, w with {u, v} ∈ E and
{v, w} ∈ E but {u,w} /∈ E. Thus, we can ensure that the graph is a cluster
graph by avoiding a P3 for each possible triple of vertices u < v < w ∈ V :

euv + evw − euw ≤ 1 (3)

euv − evw + euw ≤ 1 (4)

−euv + evw + euw ≤ 1 (5)

We can shrink the ILP by substituting euv = 0 for u �= v ∈ V, χ(u) = χ(v).
Finally, the objective is to minimize

∑
{u,v}∈E δ(u, v)euv.

Compared to the formulation from Section 2.2, an advantage of this
formulation is that it has only polynomially many constraints, as opposed to
exponentially many, and therefore it can often be stated explicitly. However, the
number of constraints is 3

(
n
3

)
= Θ(n3) which can get easily too large for memory.

Therefore, we also implement here a row generation scheme. We find violated
inequalities by a simple brute-force search. When finding a violated inequality
involving vertices u, v, w, we add all three inequalities (3)–(5), since we found
this to be more efficient in our experiments.

2.4 Cutting Planes

As mentioned, the effectiveness of ILP solvers comes from the power of the re-
laxation. We enhance this by adding cutting planes, which are valid constraints
that cut off fractional solutions. This scheme is called branch-and-cut. As demon-
strated in Section 3, this addition to generic Clique Partitioning or Hitting

Set approaches is necessary to obtain competitive performance.
First, since for both the Hitting Set and the Clique Partitioning formu-

lation we are using row generation, we can check if already a fractional solution
violates a problem-defining constraint. This allows to improve the relaxation and
to cut off infeasible solutions earlier in the search tree. For the Hitting Set

formulation, violated constraints can be found by a modified breadth-first search
from each vertex that considers the current variable values, and for the clique
partitioning model, violated constraints can be found by brute force.

Chopra and Rao [7] suggest several cutting planes for Multiway Cut, the
special case of Multi-Multiway Cut with c = 1. Each color of a Colorful
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Components instance induces a Multiway Cut polytope. The Colorful

Components polytope is thus an intersection of several multiway cut polytopes.
Therefore, these cutting planes are valid for Colorful Components, too. We
present them here for the Clique Partitioning formulation.

Let T = (VT , ET ) be a subgraph of G that is a tree such that all leaves L of
the tree have color c, but no inner vertex has. Then the inequality∑

uv∈ET

euv ≤ (|ET | − |L|) + 1 (6)

is called a tree inequality. Note that for |L| = 2, we get a path inequality (1).
There are exponentially many tree inequalities. Therefore, we consider only tree
inequalities with one (called star inequalities) or two internal vertices. We can
also apply these cuts for the Hitting Set formulation: we need to substitute
euv = 1 − duv and restrict the sums to edges present in the graph. In our
implementation of the Hitting Set row generation scheme, we add all initially
violated star inequalities at once. This already covers all length-2 bad paths.

2.5 Heuristics

One advantage of having an algorithm that is able to solve large-scale instances
optimally is that we can evaluate heuristics more precisely. We can thus fur-
ther examine our previous heuristic [4], which outperformed the one proposed
by Corel et al. [8] on multiple sequence alignment data. For completeness, we
briefly recall this greedy heuristic [4]. The idea is to repeatedly merge the two
vertices “most likely” to be in the same component. During the process, we im-
mediately delete edges connecting vertices with identical colors. Thus, we can
determine the merge cost of two vertices u and v as the weight of the edges that
would need to be deleted in this way when merging u and v. The cut cost is an
approximation of the minimum cut between u and v obtained by looking only at
their common neighbors. We then repeatedly merge the endpoints of the edge
that maximizes cut cost minus merge cost.

For density-based partitioning it was shown that greedy vertex moving out-
performs merge-based heuristics [10]. Hence, it is interesting to consider greedy
vertex moving also for Colorful Components. We follow the approach by
Görke et al. [10]. Here we start with singleton clusters, that is, every cluster
contains exactly one vertex. Then, we consider all possible ways of moving one
vertex from a cluster to another. Of these possibilities, we greedily perform the
one that decreases the number of inter-cluster edges the most without violating
the colorfulness condition. Once no further improvement is possible, clusters are
merged into vertices and the procedure is applied recursively.

3 Experiments

We performed experiments both to evaluate the Colorful Componentsmodel
for Wikipedia interlanguage link correction and to compare the five solution
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approaches.The ILPapproacheswere implemented inC++using the CPLEX12.4
ILP solver. The experimental data and the code are available at http://fpt.akt.
tu-berlin.de/colcom/. The test machine is a 3.6GHz Intel Xeon E5-1620 with
10MB L3 cache and 64GB main memory, running under Debian GNU/Linux 7.0.
Only a single thread was used.

Each connected component is solved separately. Before starting the solver, we
use data reduction as described before [4]. This actually yields an instance of
the more general weighted Multi-Multiway Cut problem. Adapting the ILP
formulations above to this problem is straightforward. We further use the result
of the merge-based heuristic (Section 2.5) as MIP start (that is, we pass this
solution to the ILP solver such that it can start with a good upper bound).

3.1 Medium-Sized Wikipedia Graphs

To construct the Wikipedia interlanguage graph, we downloaded the freely-
available Wikipedia interlanguage links and page data dumps from January
9th, 2012. We chose a set of seven languages: Chinese, English, French, Ger-
man, Hebrew, Russian, and Spanish. We then created the graph as described
in the introduction, with vertices as pages and a link between two pages if one
has an interlanguage link to the other. As suggested by de Melo and Weikum
[13], we weigh the edges as follows: If two pages link to each other, the edge
receives a weight of 2. Otherwise, the weight is 1. The graph contains 4,090,160
vertices and 9,666,439 edges in 1,332,253 connected components. The largest
connected component has size 409. Of these components, 1,252,627 are already
colorful.

We then found the colorful components using the Clique Partitioning

algorithm from Section 2.3, in 54 seconds. The merge-based heuristic obtained
a solution that was 0.22% off the optimum, taking 38 seconds, and the greedy
vertex moving was 0.90% off, taking 37 seconds. Note that our implementations
of the heuristics have not been optimized for speed.

The cost of the optimal solution is 188,843, deleting 184,759 edges. After
removing the edges of the solution we had 1,432,822 colorful components. We
obtained 1,355,641 colorful components of size > 1, each corresponding to an
entry in several languages. Almost half of the colorful components comprise two
vertices, 20% comprise three vertices, 11%, 6%, 3%, 2% comprise four, five, six
and seven vertices, respectively. The remaining components are singletons. In
each colorful component that is not already a clique, two vertices that are not
already connected by an edge represent two pages in different languages that
should have a new inter-language link between them. Overall, we found 52,058
such new links. To get an idea of the correctness of these links we looked at the
Hebrew and English pages and manually checked the new links between them.
For example, we identified missing links between “data compression” and its
Hebrew counterpart, and “scientific literature” and the equivalent Hebrew entry,
which was previously linking to the less fitting “academic publishing”.

http://fpt.akt.tu-berlin.de/colcom/
http://fpt.akt.tu-berlin.de/colcom/
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(a) A single connected component in the
Wikipedia graph, disambiguating different
types of pork. The English page “Prosci-
utto” is connected both to the correct
“Prosciutto” cluster and to the “Ham” clus-
ter. The Colorful Components algo-
rithm separates the two correctly.
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(b) A single connected component in
the Wikipedia graph, regarding the term
“MIR”. The algorithm successfully sepa-
rates the cluster of entries corresponding
to the disambiguation of the term from the
cluster centering on the MIR space station.
The outlier for the band MIR is now also
disconnected.

Fig. 1. Two connected components in the Wikipedia graph. Green edges have been
inserted and dotted red edges have been deleted by the algorithm.

Figures 1(a) and 1(b) demonstrate results of the algorithm. In both cases the
algorithm successfully separates clusters representing related, but not identical
terms and identifies outliers.

3.2 Large-Scale Wikipedia Graphs

To test our fastest ILP formulation (Clique Partitioning) and the heuris-
tics on even larger inputs, we downloaded Wikipedia interlanguage link data for
the largest 30 languages1 on 7 June 2012. To decrease noise, we excluded user
pages and other special pages. The resulting instance has 11,977,500 vertices and
46,695,719 edges. Of the 2,698,241 connected components, 225,760 are not col-
orful, the largest of which has 1,828 vertices and 14,403 edges. The instance can
be solved optimally in about 80 minutes (we cannot give a more precise figure
since, because of memory constraints, we had to run our implementation on a
different machine that was also loaded with other tasks). In the solution, 618,660
edges are deleted, and the insertion of 434,849 can be inferred. The merge-based
heuristic has an error of 0.81%. Solving the largest component takes 182 seconds;
10.2% of the edges are deleted. The merge-based heuristic takes 13.4 seconds,
with 1.15% error. The languages in the component are similarly distributed as
in the overall graph. It contains mostly terms related to companies, in particu-
lar different legal forms of these, and family relationships. We noted that many
inconsistencies have been introduced by bots that aim to fill in “missing” trans-
lations; for example, the Hungarian word “Részvény” (stock) is wrongly linked
to the term for “free float” in many languages.

1 http://meta.wikimedia.org/wiki/List_of_Wikipedias

http://meta.wikimedia.org/wiki/List_of_Wikipedias
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3.3 Random Graphs

To compare the performance of our approaches, we generated a benchmark set
of random instances. The model is the recovery of colorful components that have
been perturbed. More precisely, the model has five parameters: c is the number
of colors; n is the number of vertices; pv is the probability that a component
contains a vertex of a certain color; pe is the probability that between two vertices
in a component there is an edge; px is the probability that between two vertices
from different components there is an edge.

Clearly, for the instances to be meaningful, pe must be much higher than px.
We first generate a benchmark set of 243 instances with parameters similar to
those of the largest connected components in the 7-language Wikipedia instance.
Note that since each instance models a connected component, they are much
smaller than a typical real-world instance.

Based on the parameters corresponding to the largest connected components
in the Wikipedia instance, we choose the parameters as follows: c ∈ {3, 5, 8}, n ∈
{60, 100, 170}, pv ∈ {0.4, 0.6, 0.9}, pe ∈ {0.4, 0.6, 0.9}, and px ∈ {0.01, 0.02, 0.04}.
In Fig. 2(a), we compare the running times for the three approaches and ad-
ditionally the branching algorithm from [4], with a time limit of 15 minutes.
The branching algorithm is clearly not competitive. Among the ILP-based ap-
proaches, the Clique Partitioning formulation eventually comes out as a win-
ner. All instances with n = 60 are solved, and only 4 of the n = 100 instances
remain unsolved, all of which have px = 0.04. The performance of the row gener-
ation scheme is somewhat disappointing, solving less instances than the implicit
hitting set formulation. One possible reason is that for the implicit hitting set
formulation, the solver is able to employ its presolve functions to simplify the
instance. Further tuning and application of cutting planes might give the row
generation scheme an advantage, though.

We now compare the effect of varying a single parameter, starting with the
base parameters n = 70, c = 6, pv = 0.6, pe = 0.7, and px = 0.03. We set a
timeout of 5 minutes. In Fig. 2(b), the exponential growth of the running time
when increasing the instance size is clearly visible. This is as expected for an
exact approach to an NP-hard problem. In Fig. 2(c), we vary the number c of
colors. The running time grows with more colors, but remains manageable. The
parameter pv does not seem to have a large effect on running times (Fig. 2(d));
the approach copes well even with components with many missing vertices. For
the parameter pe (Fig. 2(e)), we note lower running times for high values. This
matches intuition, since dense clusters should be easier to identify. The running
time is also lower for small values; this can probably be explained by the fact
that such instances have overall very few edges. Finally, we see that the pa-
rameter px, which models the number of “errors” in the instance, has a large
influence on running time (Fig. 2(f)); in fact, the running time also seems to
grow exponentially with this parameter.

Finally, we examine the performance of the heuristics (Section 2.5) on the bench-
mark set for those 213 instances where we know the optimal solution. The maxi-
mum running time for an instance is 0.4 s for both heuristics. The merge-based
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Fig. 2. Running times for synthetic Colorful Components instances: (a) method
comparison; (b)–(f) running time dependencies on parameters for the Clique Parti-
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heuristic finds an optimal solution for 124 instances; the average error is 0.86%
and the maximum 12.5%. The move-based heuristic finds an optimal solution for
55 instances; the average error is 4.9% and the maximum 38.7%.

Discussion. The most critical parameter that determines whether the exact
methods can successfully be employed is the amount of inter-cluster edges (that
is, the solution size), since it determines both the size n of connected components
and the parameter px. If this value is small enough, then even very large instances
like the Wikipedia interlanguage network can be solved optimally. Otherwise,
the merge-based heuristic provides excellent results typically very close to the
optimum.

Among the exact approaches, the Clique Partitioning ILP formulation
performs better than the implicit hitting set approach, but its implementation
is tied to a specific solver (in our case, the proprietary CPLEX), while the
implicit hitting set approach can easily be adapted to any ILP solver including
free software solvers. Thus, there are use cases for both, while the Hitting Set

row generation does not seem like a good option in its current form.
Similar to our previous results for multiple sequence alignment [4], the merge-

based heuristic gives an excellent approximation here. It also clearly outperforms
a move-based approach, in contrast to the results of Görke et al. [10] for density-
based clustering. A possible explanation is that the merge-based heuristic al-
ready takes the color constraints into account when determining the cost of a
modification, and not only for its feasibility.

4 Outlook

There are several ways the methods presented here could be improved. For the
implicit hitting set, there are many further ways to tune it [15]. For the ILPs, it
would be interesting to find cutting planes that take vertices of more than one
color into account. In ongoing work, we experimented with a column generation
approach based on the Clique Partitioning model, using a greedy heuristic
and an ILP formulation for solving the column generation subproblem. While
on the synthetic data it is slower than the other ILP-based approaches with a
time limit of 10 seconds, it can solve almost as many instances as the fastest
approach after 15 minutes. Thus, it seems to be a good candidate for solving
even larger-scale problems. As a next natural step, one should also see whether
our mathematical programming solving methods for Colorful Components

which are based on Weighted Multi-Multiway Cut formulations extend
to applications where one actually needs to solve the more general Weighted

Multi-Multiway Cut. For instance, cleansing of taxonomies [12] would be a
natural candidate.

Concerning applications and modeling, there are several ways to expand our
results. First, we currently only demand a cluster to be a connected subgraph;
further restrictions on its density might be useful. Also, for some applications
the conditions on colors in a component might be relaxed, for example by al-
lowing a constant number of duplicates per component. Finally, finding further
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applications would be interesting. We briefly sketch one candidate application
here. Consider a graph where each vertex corresponds to a user profile in a so-
cial network, two profiles are adjacent when they are similar, and the color of a
vertex is the network (Twitter etc.). Then, Colorful Components could be
used to identify groups of profiles that correspond to the same natural person,
assuming that every person has at most one profile in each network.
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Abstract. Most network clustering methods share the assumption that
the network can be completely decomposed into modules, that is, every
node belongs to (usually exactly one) module. Forcing this constraint
can lead to misidentification of modules where none exist, while the true
modules are drowned out in the noise, as has been observed e. g. for
protein interaction networks. We thus propose a clustering model where
networks contain both a modular region consisting of nodes that can
be partitioned into modules, and a transition region containing nodes
that lie between or outside modules. We propose two scores based on
spectral properties to determine how well a network fits this model. We
then evaluate three (partially adapted) clustering algorithms from the
literature on random networks that fit our model, based on the scores
and comparison to the ground truth. This allows to pinpoint the types
of networks for which the different algorithms perform well.

1 Introduction

A common way of analyzing networks is to partition them into clusters (or
modules, communities) where similar or interacting nodes are grouped together.
This is known as Graph Clustering. Such a grouping can help identifying the
underlying structure of the network and extract insights from it. For example,
modules in a protein–protein interaction (PPI) network can correspond to pro-
tein complexes (see, e.g. [9, 27]). Accordingly, many clustering methods have
been developed, varying in their definition of the optimal clustering and in the
approach taken to compute it [17]. However, in most of these methods, the par-
tition must be a full partition, meaning every node must belong to exactly one
module. This constraint both limits the classes of networks that can be clustered,
and the insights that can be gained from them.

In this work, we propose a more flexible model, where networks have two
parts: a modular region, which can be fully partitioned into individual modules,
and a transition region, containing nodes that cannot be assigned to any module.
We call these networks “not completely clusterable” (NCC networks). Consider
for example the PPI network mentioned above. It is well-known that there are
proteins that are involved in more than one protein complex [10]. Additionally,
� Supported by project NANOPOLY (PITN-GA-2009–238700).
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not every protein takes part in a complex, meaning that many proteins should
not be assigned to any cluster [24]. By forcing each node into a cluster, we
could fail to single out these proteins and regions and could introduce errors and
meaningless clusters.

Previous work. In recent years, there has been interest in methods that challenge
one part of the “full partition” assumption: Methods to find overlapping clus-
ters, or perform fuzzy clustering on the network, allow each node in the network
to belong to more than one module. Overlapping Clusters approaches, such as
those based on clique percolation [14], variants of modularity [13, 28] or other
concepts [22], identify modules that can share nodes. In fuzzy graph clustering,
each node receives a probability of being assigned to each module and the mod-
ules can then be determined by thresholding the probabilities [19, 25]. Fewer
methods exist, to our knowledge, that further weaken the assumptions above:
methods like SCAN [26] and the one described by Feng et al. [6] define three
types of nodes: nodes that belong to a single module, nodes that can belong
to more than one module (hubs), and nodes that belong to no module at all
(outliers). This is close to the framework that we present in this paper; however,
we assume here that the nodes that do not belong in modules (either hubs or
outliers, as termed by the other methods) need not necessarily comprise a small
and negligible part of the network.

The MSM (Markov State Model) algorithm was proposed by some of us [20]
to directly address the problem of identifying modules in NCC networks. It uses
the concept of metastability and tries to identify metastable sets, which are then
equated with modules.

Our Contributions. We discuss NCC networks exhibiting the properties defined
above: (1) presence of a transition region, (2) presence of modules. In Section 2,
we propose a simple characterization of such networks, partial modularity. In-
tuitively, the structures of the modular region of our networks are dense, while
the transition region is relatively sparse. We propose and discuss two scores to
formalize these notions, and demonstrate their behavior on simple networks.

The next natural question is, given that a network has a high partial modular-
ity, how can we identify its modules? In Section 3, we first present a score for the
quality of a clustering resulting from an algorithm by comparing it with the clus-
tering dictated by some ground truth. We use this scoring function to compare
the performance of state-of-the-art module finding methods on benchmark net-
works. Two of these algorithms are adaptations of existing popular algorithms,
and the third, MSM, is designed for NCC networks.

2 Scoring Partial Modularity

To formalize the notion of an NCC network, we want a quantitative score for
a network that evaluates the degree to which it contains modules. The natural
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candidate for this is Newman’s modularity [12], designed to measure the strength
of a full partition of a network into modules: dense connections within modules,
sparse connections between the modules. However, this score has a quality that
makes it not suitable for NCC networks: Networks that are tree and tree-like
have a high modularity [2]. This means that sparse networks without any dense
subgraphs have a high modularity, despite having no dense modules.

Since Newman’s modularity is not adequate, we search in a different direction.
It has been known (see, e.g. [11, 23]) that the number of eigenvalues of the
transition matrix of a network that are close to 1 are linked to the number
of modules in the network, and that the size of the eigenvalue gap could then
indicate the difference between modules and the rest of the network. We take
this idea further by looking at the gap of a different transition matrix: that of
an embedded Markov chain of the continuous Markov process defined by Sarich
et al. [20], where the continuous random walk is generated by a custom generator
L such that the process stays for extended periods of time in dense regions of
the network.The advantage is a better correspondence between eigenvalues close
to 1 and dense modules, and a clearer gap. We therefore consider as a network
score the size of the largest gap of this matrix P = exp(αL), where α is the
lag time defined in [20], which acts as a granularity parameter. Let λu be the
eigenvalue of L that lies above the gap, and λl the eigenvalue below the gap.
Then we define the gap score as

Qγ := exp(αλu) − exp(αλl). (1)

We first note that sparse networks do not have a high gap score. For example, we
tested several road networks.1 These networks have a very low average clustering
coefficient (∼ 0.01) and density (∼ 0.0002). While their Newman modularity [12]
is > 0.95, the gap score is < 0.002, considerably lower and better reflecting the
absence of modules.

The gap score has several drawbacks. First, there is not one “true” gap in
the spectrum, just as there is not one “true” clustering of the network. Different
gaps induce different network partitions, and the choice of largest gap can be
arbitrary. Second, there can be networks that contain modules, but do not have
a clear gap. This can occur, e.g. when the density of the modules is close to that
of the transition region. We will demonstrate this in Section 3.

To try and overcome these problems, we use the concept of metastability to
define “good” NCC networks. In [20] we introduced the following definition of
a metastable partition (see also [3]):

R := max
y /∈ M

Ey(τ(M)) � min
i=1,...,m

Ei(τ(Mi)) =: W, (2)

Here, Ey(τ(M)) is the expected entry time of the process into an arbitrary
module, if started in some node y ∈ T in the transition region T = V \ M.
Likewise Ei(τ(Mi)) denotes the expected entry time into a module Mj with
j �= i if started from Mi. In other words, the return time R the random walk
1 Downloaded from http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
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Fig. 1. Metastability and gap scores for random networks with transition region 1000
nodes and 2 modules

needs to enter one of the modules, if in the transition region, is small compared
to its typical waiting time W between transitions from one module to another.
Based on this, we define the metastability score as

Qm := 1 − R/W. (3)

This score, unlike the gap score above, explicitly takes the transition region
into account, therefore might be better suited for NCC networks. The main
drawback is that this is not a global score, but rather a score for single partition.
We would have liked to continue, analogously to Newman modularity [12], by
then finding the partition that minimizes R/W , and assigning the network its
score. Unfortunately, this will not be useful, since every full partition (T = ∅)
will set R = 0 and the score to 1. However, as the experiments below show, it
is still indicative of the presence of modules and can be used to compare NCC
networks.

Experiments. We performed a set of simple experiments to test the gap and
metastability scores.

Figure 1 demonstrates the behavior of the metastability score on networks
with a transition region of 1000 nodes (random Erdős–Rényi (ER) graph with
density 0.05) and two modules (random graphs with given density and size).
To create the network, we first generated the transition region and modules
separately, and then for each module randomly identified a vertex from the
module and a vertex from the transition region.

In Figure 1(a) the modules have size 100 each, and they are random graphs
with density 0.03 to 1. The metastability score was computed for the planted
ground truth partition. As the density of modules increases, the metastability
score increases also, as the denser modules become more metastable. The tran-
sition region does not change, therefore R is the same and only W changes. The
gap score increases as well with the module density, except in the cases where
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the density is low (< 0.18): The 3rd eigenvalue, corresponding to the transition
region, is farther and farther from the 2nd eigenvalue as the density of the mod-
ules grows further from the transition region density. The errors are a result
of the gap not being clear enough when the module density is close to that of
the transition region, being identified between the 1st and 2nd eigenvalues. The
same cannot be said when the density is constant but the module size changes:
The set of networks whose scores are displayed in Figure 1(b) have modules of
changing sizes, from 55 to 400, that are complete graphs. Again we see that the
metastability increases with the module size, since the larger modules are more
metastable. All scores are high since even the small modules, being large com-
plete graphs, are already metastable. The gap score shows the opposite trend:
The gap between the 2nd and 3rd eigenvalues decreases as the module size in-
creases and the module size becomes closer to the transition region size. This
demonstrates that the gap score does not always agree with our intuition of a
modular network, and underscores the need for a better modularity score.

3 Algorithms

We select three clustering algorithms from literature, which we partially adapt
for our setting. We choose standard parameters for all algorithms.

SCAN. The SCAN algorithm [26] clusters vertices together based on neighbor-
hood similarity and reachability. It can identify vertices as hubs or outliers; we
interpret both as the transition region. SCAN requires a user-defined parameter
μ that determines the minimum size of a module. This we set to 10, 1% of the
network size of most of the NCC networks we use for evaluation.

Markov Clustering. The idea of the MCL (Markov Clustering) algorithm [5] is to
simulate random walks on the network and identify modules as regions where the
random walker stays for a prolonged time. MCL always returns a full partition.
It has been demonstrated (e. g. [21]) that MCL tends to produce imbalanced
clusterings, consisting of a few large clusters and many small clusters of size
two or three and singletons. Usually viewed as a shortcoming of the algorithm,
we now interpret this tendency to our advantage: We introduce a parameter μ
similar to SCAN to set a minimum size for a module. All modules with less
than μ nodes are assigned to the transition region.

Markov State Model. The MSM (Markov State Model) algorithm [20] first tries
to identify the modular region as the region where a random walker spends the
most time. The rest is classified as transition region, and the modular region is
clustered with a simple heuristic.

Ground-Truth-Based Evaluation. We evaluate the algorithms by comparing their
output to the known clustering using the adjusted Rand index [16, 18], which
measures how well two partitions match. We propose three versions of the score:
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ρMT to measure how well the modular region and transition region are distin-
guished, ρM to measure the quality of the clustering within the modular region,
and ρc as a combined score.

3.1 Experiments on Random Networks

We now test the algorithms on random NCC networks, constructed as follows:
Each node belongs either to exactly one of the modules, or to the transition
region. We use a similar random graph model as in Section 2, with each module
and the transition region being a random ER graph. In addition, each module
and the transition region are connected by adding a random spanning tree. Then,
from the transition region and from each module a node is chosen at random,
and these nodes are connected by a random spanning tree to ensure that the
whole graph is connected. Finally, each possible edge between a vertex from a
module and a vertex from the transition region is added with a small probability.

This class has the following parameters: Network size (total number of
nodes) N , number of modules M , total number of nodes in mod-
ules Nmtot, module density pm, transition region density pt and inter-
connection density pi . The inter-connection density is an indicator for the
number of edges between modules and the transition region. We also define the
number of nodes in transition region Nt := N − Nmtot and number of nodes per
module Nm := Nmtot/M .

The standard parameter values are as follows: N = 1000 nodes, M = 5
modules, pm = 0.6 module density, pt = 0.01 transition region density, and pi =
0.01 interconnection density. The minimal module size under these constraints
is then 10 nodes.

Since in practice the running time of the algorithms depends on implementa-
tion, and in every case the running time was < 1 minute, we focus here on the
accuracy of the algorithm as determined by our evaluation measure.

Experiment 1: Varying transition region size. In this experiment, our goal is to
evaluate the behavior of the different algorithms on networks where the transi-
tion region comprises between 0% and 90% of the network. In the case of 0%
transition region, the modular region occupies the entire network, and the prob-
lem will again be that of full partitioning. We hypothesize that the algorithms
should perform better on networks with a small transition region, as they are
closer to the full partition case: SCAN looks for hubs and outliers but those are
usually single nodes, not entire regions; MCL was originally designed for full
partitions. Since MSM does not make assumptions about the size of the transi-
tion region, it is possible that this algorithm performs the same on the networks
regardless of the transition region size.

Indeed, our experiments show that for 80% or less transition region, all algo-
rithms perform optimally (ρc = 1 for MSM) or close to optimally (ρc > 0.92).
For larger transition regions, all algorithms perform progressively worse.

Figure 2 shows the performance of the algorithms, giving the ρc score averaged
over 5 networks for each transition region size. SCAN and MCL both identify
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Fig. 2. Comparing the ρc score for SCAN, MCL, and MSM on networks with varying
transition region size. All networks were generated with 1000 nodes and 5 modules,
having the default densities.

only two or three modules, assigning the rest to the transition region. SCAN
additionally identifies no hubs or outliers, thus the transition region is a result
of small clusters, just as in the case of MCL. MSM separates the modular
and transition region well (ρMT > 0.95), identifies five modules in the modular
region, but partitions it less than optimally (average ρM = 0.77). MSM begins
to deteriorate a little later than the others, at 89%, but the score decreases fast,
with a score of 0 (all nodes are identified as transition region nodes) from 92%.
Therefore, MSM is clearly the choice in case the transition region is large, but
not too large.

We additionally plot the metastability index of these networks using the
ground truth partition. This score also decreases with the size of the modu-
lar region, since there are less nodes in modules. The gap scores decreases more
quickly, reaching 0.5 when the transition region comprises 75% of the network,
but being close to 1 when the transition region is 10% or less.

Experiment 2: Varying module size. As we increase the size of the transition
region in Experiment 1, the size of a module decreases automatically, since fewer
nodes are now divided into a constant number of 5 modules. Specifically, for a
transition region which covers 80% of the network, the corresponding module
size is 40, and for 90% it is already 20. To test whether the difference in scores
in Experiment 1 is a result of varying the transition region size or of varying the
module size, we run a set of experiment where we directly vary the module size.
The module size is between 20 and 200, there are 5 modules as before, and the
transition region comprises 50% of the network, a value for which all algorithms
in Experiment 1 performed perfectly (ρc = 1). Naturally, to preserve the same
proportion of transition region to modular region while varying the total size of
the modular region, the overall network size has to change as well, varying from
200 to 2000, respectively. All 3 algorithms performed perfectly for all module
sizes: All three ρ scores were 1 or > 0.99. We additionally tested module size < 20,
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but the results were unstable due to the small difference between the true and the
minimal module size: in some cases the modules were detected correctly, in others,
only 9 nodes from a 10-node module were detected, and were assigned to the
transition region, causing low scores. Therefore, while a very small module size
can negatively influence the algorithm, this effect disappears for slightly larger
module sizes, and the low scores of Experiment 1 cannot be fully attributed to
the module size, but must be due to the proportion of the transition region.

In the next set of experiments we keep the proportions between the network
components constant but vary their densities.

Experiment 3: Varying module and transition region densities. In this experi-
ment, we test combinations of the module density pm and the transition region
density pt. We take as before networks with 1000 nodes and 5 modules, with the
transition region comprising 50% of the network. We additionally set pi = 0.01.
For these parameters and the default densities pt = 0.01, pm = 0.6 all three
algorithms performed optimally in the previous experiments.

We set pm = 0.1, 0.2, . . . , 0.9, 1, and pt = 0.01, 0.06, 0.11, . . . , 0.81. Figure 3
shows a heatmap for each of the algorithms, giving the ρc score for each com-
bination of transition region density and module density. Intuitively, we expect
the algorithms to do well when the module density is high and the transition
density is low. Indeed, we see that this is the case for all algorithms. SCAN per-
forms the best, erring only when pt > 0.45. The other two algorithms perform
optimally when pt < 0.06 and pm = 0.8, and performance quickly deteriorates.
Looking more closely at the ρMT and ρM scores, we see that the ρM score is
perfect while ρMT is low: the entire transition region is detected as a single mod-
ule in all these cases. The gap score follows this intuition as well, giving a low
score only to networks where the module density is much lower than that of the
transition region.

The poor performance of MSM could perhaps be attributed to the fact that
the algorithm tends to reward (with a high waiting time) those nodes that have
a relatively high degree. Those nodes end up being assigned to modules more
often. As the density of the transition region increases, so does the average degree.
Since we have fixed pi at 0.01, and as the modules are smaller than the transition
region (each module has size 100, compared to 500 for the transition region), the
average degree of nodes in the module is also bounded, and for some values of
pm and pt, the degrees are about the same, and thus MSM cannot tell them
apart as well.

Discussion. Unfortunately, no algorithm comes out the clear leader in every
case. MSM identifies modules even when the transition region is large, but does
not perform so well when the average degree in the transition region is high.
While SCAN performs better than the other algorithms whenever the densities
of the transition region and modules are close, in many cases it too identifies the
transition region as a module.

With regards to the different steps of module identification, we first note that
MSM performs best the task of guessing the correct number of modules. SCAN
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(a) Value of ρc for MCL. (b) Value of ρc for SCAN.

(c) Value of ρc for MSM. (d) Gap score

Fig. 3. Plotting the ρc score for the three algorithms for different combinations of pm

and pt. All networks have 1000 nodes and 5 modules with 100 nodes each.

and MCL both under-estimate the module number, identifying modules that are
too small and are therefore assigned to the transition region. No algorithm over-
estimated the number of modules throughout our experiments. On the task of
separating the transition region and the modular region (assessed with the ρMT

measure), the three algorithms had successes and shortcomings: In Experiments 1
and 2 the errors were a result of nodes from the modular region being assigned
to the transition region. In Experiment 3, the error resulted from the transition
region being identified as a single module.

3.2 Experiments on Real-World Networks

We now apply MSM to a real biological network, the well-known FYI network
from [7], in order to test whether the results obtained can provide insight about
biological truth. The PPI network of Saccharomyces cerevisiae was constructed
by integrating the results of several large-scale experiments. The outcome is a
network whose nodes represent proteins and an edge between two nodes exists if
the interaction between the corresponding proteins has been verified by multiple
experiments. We note that we chose to analyze this particular network despite
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(a) CYC2008 protein complexes (b) Modules found by MSM

Fig. 4. Modules in the yeast protein interaction network FYI

the abundance of more modern and complete yeast protein interaction networks,
since it is unweighted and simpler. In fact, the gap score of this network is 0.17,
in contrast to the Newman modularity score [12] of 0.90, suggesting that the
partition with the highest Newman modularity could contain many nodes not
belonging to modules.

We analyze the largest component of the FYI network, containing 778 nodes.
We run the MSM algorithm on this network with the same parameters as for
the benchmark networks above. Figure 4(b) shows the FYI network with the
modules found by MSM in different colors. The black nodes comprise the tran-
sition region, with 556 nodes that do not belong to any modules. We identify 21
modules. The largest module contains 58 nodes, and the smallest 14 nodes.

It is a common approach in the study of PPI networks to equate network
modules in PPI networks with putative proteins complexes [1, 4]. This approach
can be useful for identifying previously unknown complexes, as well as in as-
signing previously unknown function to proteins: if a particular protein can be
grouped together with a set of other proteins, it can be assumed that it has
similar properties or functions to those already known about the protein set.

We therefore compare the modules we identified with the protein complexes
listed in the CYC2008 [15] dataset. Figure 4 shows our modules side-by-side
with the CYC2008 complexes. For this comparison we projected the complexes
on the network, including very small complexes with only two proteins and also
complexes comprised partially of proteins that are not a part of our network.
We find that large complexes such as the 19/22S regulator complex (far left
in the figure) with its 17 protein and the cytoplasmic ribosomal small subunit
complex (23 proteins, far right) are identified. Many smaller complexes such as
the Cytoplasmic exosome complex with 9 proteins are almost completely iden-
tified (MSM finds 8 of the proteins). We observe 38.8% of the nodes do not
belong to any CYC2008 complex, and thus indeed the gap score could be said
to better capture the modularity of the network than the high score given by
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the Newman modularity. Of course, as the network is somewhat outdated, we
cannot use the CYC2008 complexes as a reliable ground truth, but these results
indicate that there is promise to our approach.

4 Outlook

We introduced NCC networks, discussed two scores to evaluate their modularity,
and compared the behavior of several algorithms on the task of detecting modules
in such networks. There are many avenues for further research. We are currently
developing a new network score to overcome the disadvantages of the two scores
we presented. From the perspective of algorithms, there are many other types
of clustering algorithms that might be adapted to NCC networks. One such
interesting class is that of methods to identify the densest subgraph (see e.g. [8]),
where it could be possible to run the algorithm repeatedly until all modules are
identified. The MSM algorithm can be further improved to avoid the pitfalls of
a transition region with a high average degree, as seen in Experiment 3. Finally,
our random graph model is quite simple. It would be interesting to apply the
three algorithms we employed and the scoring function to a richer set of networks,
including more real-world examples.
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UMR5558, Laboratoire de Biométrie et Biologie Évolutive,
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Abstract. This paper presents a linear-time delay algorithm for enu-
merating all directed acyclic subgraphs of a directed graph G(V,E) that
have their sources and targets included in two subsets S and T of V ,
respectively. From these subgraphs, called pitches, the maximal ones,
called stories, may be extracted in a dramatically more efficient way in
relation to a previous story telling algorithm. The improvement may even
increase if a pruning technique is further applied that avoids generating
many pitches which have no chance to lead to a story. We experimentally
demonstrate these statements by making use of a quite large dataset of
real metabolic pathways and networks.

1 Introduction

Directed graphs are a widely used model in computational biology, notably to
represent metabolism, which is the set of chemical transformations that sustain
life. If an organism is exposed to a given condition (for instance, some kind of
stress), the vertices of the directed graph may be colored depending on whether
the quantity of the chemical the vertex represents changed (one color, say black)
or remained the same (another color, say white) in relation to what may be
defined as the organism’s “normal state”. Data such as these may be obtained
through a technique called metabolomics [9] whose need for analytical methods
is giving rise to new research topics. One question of interest then is to under-
stand which subparts of the graph are affected by the condition change. One
biologically pertinent definition for such subparts is as follows [7]: a maximal
directed acyclic subgraph whose sets of sources and targets are blacks (note
that black vertices may also be internal, that is neither sources nor targets, but
white vertices can only be internal). In [1], these subgraphs have been called
metabolic stories, or stories for short. Stories are a novel object for the analysis
of metabolomics data, but we believe that they may also be useful in other do-
mains. In this paper, we are interested in efficiently enumerating all the stories
included in a directed graph.
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Enumerating maximal directed acyclic subgraphs of a given directed graph G,
without any constraint on their sources and targets, is equivalent to enumerating
all feedback arc sets of G, which is itself a classical problem in computer sci-
ence. An elegant polynomial-time delay algorithm for solving this problem was
proposed by Schwikowski and Speckenmeyer [2]. In [1], however, it was shown
that the constraint on the sets of sources and targets is enough to drastically
change the nature of the problem. Although the complexity of enumerating sto-
ries remains open, in [1] the authors proposed an algorithm that is able to go
to completion for small enough graphs, and that can be used in a randomized
fashion in the case of larger graphs, in order to produce a large sample of stories
(as far as we know, this is the only known algorithm for enumerating stories).
This algorithm is based on the notion of pitch, which is defined as a story with-
out the maximality constraint, and on the following fact: any permutation π of
the vertices of G can be transformed in polynomial time to a pitch Pπ so that,
for any story S, there exists a permutation π of the vertices in G such that Pπ

can be “completed” in polynomial time in order to obtain S. The algorithm for
enumerating stories then proceeds by enumerating all permutations, transform-
ing each of them into the corresponding pitch, and completing this pitch into a
story. Unfortunately, this algorithm, called Gobbolino, is not polynomial-time
delay, that is, the time between the generation of two distinct stories can be ex-
ponential in the number of vertices of G (for definitions concerning enumeration
algorithms and complexity we refer the reader to the seminal paper [3]). For
this reason, in [1] a randomized implementation of the algorithm has been sug-
gested, which simply generates permutations uniformly at random: a biological
application of Gobbolino and of its randomized version is described in [6].

The main contribution of this paper is twofold. From a theoretical point of
view, we show that pitches can be enumerated in linear-time delay. In particular,
we show how pitches can be sorted in a rooted tree T and how a depth-first
search of T can be performed while ensuring the linear-time delay constraint,
by applying the so-called reverse search technique [4]. From a practical point of
view, we propose a new algorithm for enumerating stories, called Touche, which
is based on the linear-time delay pitch enumeration and on the pitch completion
mechanism introduced in [1]. In particular, we first show how the depth-first
search of T can be made more efficient by using a pruning technique which
allows us to avoid visiting parts of the tree that certainly do not contain any
story, and we then experimentally compare the Gobbolino algorithm with the
Touche algorithm, on a large dataset of metabolic networks. Our experiments
show that Touche always significantly outperforms Gobbolino, and that it is
able to enumerate all stories in the case of bigger networks for whichGobbolino

is not even able to produce a significant fraction of them.

1.1 Preliminaries

Let G(V,E, S, T ) be a directed graph, where V is the set of all vertices of G, E
the set of arcs, and S and T two subsets of V . A vertex u is said to be a source
if its out-degree is greater than 0 and its in-degree is 0, and it is said to be a
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Fig. 1. The visualization of a pitch and a child obtained by adding the dashed path q.
The path p is outlined when it is not empty.

target if its in-degree is greater than 0 and its out-degree is 0. A pitch P of G is
a set of arcs E′ ⊆ E, such that the subgraph G′ = (V ′, E′) of G, where V ′ ⊆ V
is the set of vertices of G having at least one out-going or in-coming arc in E′,
is acyclic and for each vertex w ∈ V ′ − S, w is not a source in G′, and for each
vertex w ∈ V ′−T , w is not a target in G′. We say that a pitch P is a story if it is
maximal. A vertex w is said to belong to P if it belongs to V ′. A path p is simple
by definition and is denoted by p0, . . . , p|p|. We refer to a path p by its natural
sequence of vertices or set of edges. We will assume without loss of generality
that, for each vertex v, there is a path from a source to v and from v to a target
(otherwise we may remove v from the graph). The vertices in S and T are said
to be black, while the vertices in (V − S) − T are said to be white. It is worth
observing that, besides the fact that a pitch may contain a subset of the black
vertices instead of all of them, we work in this paper with a generalization of the
definition of pitch introduced in [1] in the sense that here, instead of considering
one set of black vertices, we distinguish between black source vertices (they form
the set S) and black target vertices (they form the set T ). The problem treated
in [1] corresponds to the case in which all black vertices are both in S and in T .
Finally, we refer to |V |+ |E| as the size of the graph |G|.

2 Enumerating Pitches

In order to enumerate all the pitches contained in a graph G = (V,E, S, T ), we
first sort them in a rooted tree T , and then we perform a depth-first search of T .
In order to construct T , we introduce an appropriately defined child relationship,
such that, for every pitch Q, there exists one and only one pitch P such that Q
is a child of P : P is said to be the father of Q, and it can be computed starting
from Q via a linear-time computable function father. A child of a pitch P is
always obtained by attaching to P a path q “outside P”, that is, such that each
internal vertex of q is outside P and each arc of q is not in P (see Fig. 1). We
will also impose that in P there is a (possibly empty) path p such that each path
in P ∪ q from a source to a target is in P or starts by pq. In the following, we
will associate to the i-th child of a pitch P the two corresponding paths pi and
qi (which are uniquely determined).

In order to visit the search tree T in a depth-first fashion without storing its
nodes in a stack (and thus saving space), we also define a linear-time computable
function next, that allows us to jump from a child Qi of a pitch P , corresponding
to the paths (pi, qi), to the next child Qi+1: in particular, next(P, pi, qi) =



Telling Stories Fast 203

(pi+1, qi+1). If Qi is the last child of P , then the function returns the empty
pair. Moreover, if the function next is invoked with arguments P and the two
paths p and q that make P the child of its father, then it returns the pairs (p1, q1)
corresponding to the first child of P (if it exists). By using the father and the
next functions, we can then implement a depth-first search of the pitch tree T
as shown in Fig. 2, where the dotted arcs denote a child relation. The rest of
this section is devoted to the definition of the two functions father and next

and to the proof of their time and space complexity.
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2.1 The father Function

The idea behind the definition of the child relationship (and thus of the pitch
tree T ) is to build all pitches (starting from the empty one, which is the root of
T ) by repeatedly adding paths from a source in S to a target in T (in short, st-
paths). Since we want T to be a tree, we have to specify in which order st-paths
are added, so that each pitch has a unique father. To this aim, we fix an arbitrary
ordering of V , we lexicographically sort st-paths (which are ordered sequences
of vertices), and impose that each new (explicitly or implicitly) added st-path
is bigger than all st-paths included in the current pitch. In order to make this
approach work, we need to overcome some problems, as shown in the following
example.

Example 1. Let us consider the bold pitch shown in Fig. 3, which is formed by
the st-paths (0, 4, 6), (1, 4, 6), (2, 0, 4, 6), and (2, 1, 4, 6) (listed in lexicographic
order). If we allow any st-path bigger than (2, 1, 4, 6) to be added to the pitch,
then some problems might arise.

1. If we add (2, 1, 4, 7), we are implicitly adding (0, 4, 7), which is smaller than
(2, 1, 4, 6), contradicting the uniqueness of the father relationship, since the
same pitch will also be reached through the explicit addition of (0, 4, 7).

2. Sometimes it is necessary to implicitly add an st-path “much bigger” than
the ones already present in the current pitch: adding (2, 5, 0, 4, 6), we also
add (5, 0, 4, 6), thus eliminating the possibility of subsequently adding (2, 6).
Conversely, if we add first (2, 6), then (2, 5, 0, 4, 6) cannot be added. Therefore
a pitch containing both (2, 6) and (2, 5, 0, 4, 6) will be missed.
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In order to deal with the second problem, we need to specify that the st-paths
that can be added to a pitch satisfy the following definition.

Definition 1. A path (p0, . . . , pk) of a pitch P is a component of P if it satisfies
the following conditions: (1) p0 ∈ S is a source and pk ∈ T is a target, and (2)
p0 is not reachable in P from a smaller source in P (i.e., there is no s ∈ P ∩ S
such that p0 is reachable in P from s).

Note that every arc in a pitch belongs to a component. Hence, a pitch can be
specified by listing the set of its components: in particular, our pitch enumeration
algorithm will proceed in lexicographic order with respect this time to the set
of components.

Definition 2. Given a pitch P , a child of P is a pitch Q = P ∪ c where c
satisfies the following conditions: (1) c is the smallest component in Q which is
not in P ; and (2) c is bigger than any component in P .

Example 2. Let us consider again the bold pitch P shown in Fig. 3. According
to the above definition, the subtree of T rooted at P starts as shown in Fig. 4,
where the labels of the edges denote the added component c. Observe that adding
a component can cause the implicit addition of other components: for example,
adding (5, 2, 0, 4, 6) results also in adding (5, 2, 1, 4, 6), which is however greater
than (5, 2, 0, 4, 6). Note also that (2, 1, 4, 7) cannot be added to P , since it would
not be the smallest new component not in P .

The following lemma shows that the child relationship defined above sorts all
pitches in a tree with root the empty pitch.

Lemma 1. Every pitch Q, apart from the empty one, has a unique father P .

Proof. We start with the uniqueness: let us suppose Q = P ∪ c where P and
c satisfy the conditions of Def. 2. We now show how c can be split into three
paths, c = pqp′, where p is contained in P , q is “outside” of P (in the sense
that it has no arc and no internal vertex in P ), and p′ is the remaining part of
c (we denote by v and w respectively the start and the end of q). By the first
condition of Def. 2, p′ must be the smallest path in P from w to a target vertex
in T ∩ P : hence, P = Q − q (see Fig. 1). This means that each internal vertex
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in q has in-degree and out-degree equal to 1 in Q. Moreover, p is the only path
from a source in S ∩ P to v: indeed, a smaller one would contradict the first
condition of Def. 2, while a bigger one would contradict the second condition.
This means that pq is an initial segment of the smallest component of Q which
is not in P and that no vertex x in pq before w verifies any of the following
conditions: (1) x has at least two incoming edges in Q; (2) x is a source smaller
than the first vertex of p; and (3) x has no outgoing edge in Q. Since Q− q is a
pitch, w has to satisfy one of the conditions above and this characterizes w. We
now need to characterize v. Since no internal vertex in q is in P , v must be the
first vertex before w verifying one of the following conditions: (a) v has at least
two outgoing edges in Q; (b) v is a target; and (c) v has no incoming edge in
Q. Since both v and w are uniquely determined, we have that also q is uniquely
determined: hence, the uniqueness is proved. In order to prove the existence, it
is enough to show that P ∪ c is a child of P , where c = pqp′ and p, q and p′ are
the paths determined by the previous conditions. We have that c is bigger than
every component in P because pq is a prefix of the last component of Q and
q is outside P . Moreover, c satisfies the first condition of Def. 2 because each
component of Q not in P contains an arc in q. This means that it contains the
whole pq because of the conditions on v and w. ��

From the proof of the previous lemma, the next result immediately follows.

Corollary 1. It is possible to find in linear time the father of a pitch.

Instead, the next consequence of the above lemma will yield a more “algorithmic”
definition of the child relationship (see Fig. 1).

Corollary 2. Let P and Q be two pitches. Q is a child of P if and only if
Q = P ∪ pq where:

– pq is bigger than the last path in P ;
– p ⊆ P ;
– q is “outside” P ∪ T , i.e. q is disjoint from P and q1, . . . , q|q|−1 are not in

P ∪ T ;
– no vertex in p satisfies Conditions 1-3 in the proof of Lemma 1.

Moreover, p and q are uniquely determined.

Proof. If Q is a child of P , the proof of Lemma 1 implies all the conditions
required and that p and q are uniquely determined. For the other direction, let
p′ be the first path in P from the end of q to a target. The path pqp′ satisfies all
conditions required in the child definition. ��

2.2 The next Function

As we already said before, the next function should allow us to compute the
first child Q1 of P (if it exists) and the next child Qk+1 from the child Qk (if it
exists). In order to define this function well, we first prove the following result.



206 M. Borassi et al.

Lemma 2. For any pitch P , the function

ΦP : {children of P} → {paths in G satisfying Corollary 2}
P ∪ q "→ (p, q)

(1)

is an order-preserving bijection (pitches are sorted lexicographically as sets of
components).

Proof. The function is well defined because of Corollary 2 and it is a bijection
because the inverse function is ΨP (p, q) := P ∪ q. It preserves the order because
pq is a prefix of the first component Q not in P and a path satisfying Corollary 2
is never a prefix of another component (by the 3rd condition in Corollary 2). ��
The function next is then defined as follows. Given a graph G = (V,E, S, T ), a
pitch P , and a path r of G starting from a source which is a prefix of the last
path in P or is bigger than every component of P , the function next returns the
smallest path pq such that P and pq satisfy all conditions in Corollary 2, and pq
is strictly bigger than r.

Theorem 1. The next function is computable in time O(|G|).

2.3 Complexity Analysis

The pitch enumeration algorithm is based on a depth-first search of the pitch
tree T , which uses the two functions father and next. Because of Corollary 1
and Theorem 1, every node can be visited in linear time. By the well-known
alternative output technique [5, Theorem 1], it is possible to output a solution
every time two nodes are visited, to obtain linear delay. To do so, all solutions
with even depth in T must be output as soon as they are found, while solutions
with odd depth must be output before computing their father. Since the depth
changes by 1 every time a node is visited, the previous condition is accomplished.
It is also easy to show that only a linear amount of space to store G, P and
r = (p, q) is required.

3 Enumerating Stories

In order to enumerate all the stories contained in a graph G = (V,E, S, T ),
the approach described in [1] was based on generating all permutations of the
vertices, and on cleaning and completing the corresponding DAG in order to
turn it into a story. By using the results in the previous section instead, all the
stories can be enumerated by enumerating all the pitches and outputting only
the maximal ones. However, even if, in many real cases, this approach already
outperforms the method proposed in [1], the method itself fails in enumerating,
within a reasonable amount of time, all the stories in the case of large graphs.
Indeed, usually an exponential number of pitches that are not stories can be
generated. In order to avoid the computation of many useless pitches, we will
now show how very often it is possible to verify a priori whether a pitch can lead
to a story, thus performing a pruning of the pitch tree T . In order to explain
the pruning process, we introduce the following definitions.
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Definition 3. A pitch is a successor of P ∪ r if it is a descendant of P bigger
than P ∪ r (pitches are sorted lexicographically as sets of components).

Definition 4. Given a pitch P and a path r, a vertex v ∈ V is (P, r)-open if it
belongs to a successor of P ∪ r. A vertex is (P, r)-closed if it is not (P, r)-open.

For example, the vertex 3 of Fig. 3 is (P, (2, 5, 0, 4, 6))-closed.

Lemma 3. Let G be strongly connected and let P be a non-empty pitch. If (S ∪
T )− P �= ∅, then P is not a story.

Proof. Assume there exists s ∈ S − P and let p be a shortest path from s to
any vertex in P (this path exists since G is strongly connected). Then P ∪ p is
a pitch strictly containing P : this proves that P is not a story. Analogously, we
can prove that if there exists t ∈ T − P , then P is not a story. ��

Corollary 3. Given a pitch P and a path r, if a source or a target is (P, r)-
closed, no successor of P ∪ r is a story.

For example, in the case of the fragment of a pitch tree shown in Fig. 4, we have
that the subtrees rooted at Q2, Q3, and Q4 do not contain any story (since the
vertex 3 of Fig. 3 is (P, (2, 5, 0, 4, 6))-closed). Actually, vertex 3 is closed with
respect to the empty pitch (which is the root of T ), and the path (0, 4, 6), hence
P will not even be reached since the pruning will be effective on the very first
branch from ∅ to P . We may now state the main theorem used to prune the tree
of all pitches.

Theorem 2. Given a pitch P and a path r such that there exists a story which
is a successor of P ∪ r, there is no path p that verifies the following conditions:
(1) P ∪ p is a pitch; (2) the last vertex of p is not in r; and (3) p is “outside”
any successor of P ∪ r, that is, no arc of p is in a successor of P ∪ r and all
internal vertices of p are (P, r)-closed.

Proof. Let Q be a successor of P ∪ r which is a story (Q exists by hypothesis).
By the third condition on p, it follows that p is outside Q. Moreover, Q ∪ p is
not a pitch (since Q is maximal): hence, there must be a path q in Q from the
last vertex of p to the first one. By the first condition on p, it follows that q is
not in P (since P ∪ p is acyclic). Consider now a path in P from a source to
the last vertex of p (this path exists because of the second condition on p) and
link this path to q: this can be extended to a component of Q. By the second
condition on p, this component is smaller than r: this is a contradiction because
this component is not in P (since it contains q which is not in P ). ��

The above theorem gives us a powerful tool to prune the tree of all pitches.
Indeed, given a pitch P and a path r, if we can find a path p satisfying the three
conditions of the theorem, we can then conclude that there is no story which is
a successor of P ∪r. However, in order to apply this pruning criterion, we should
be able to compute the set of vertices which are (P, r)-closed (or, equivalently,
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Fig. 5. Ratio between time consumed by Gobbolino and Touche to compute all
stories in input graphs with 2 to 10 vertices (logarithmic scale)

the set of vertices which are (P, r)-open). So far, we have not been able to solve
this latter problem (indeed, we conjecture it is NP-hard), but we can efficiently
“approximate from above” the set of (P, r)-open vertices, that is, we can compute
in linear time a superset of this set, which in practice is not too much bigger.
Thanks to this result and to Theorem 2, we obtain an algorithm that decides
if it is possible to prune the pitch tree in time O(|V ||G|). The efficiency of this
pruning process will be experimentally validated in the next section.

4 Experimental Results

In order to evaluate the efficiency of the new algorithm for the enumeration of
stories, called Touche, we performed three experiments, two of them compar-
ing with the previous algorithm proposed in [1], called Gobbolino, and the
third one to evaluate the effect of the pruning approach (the entire dataset,
the Java code, and the detailed experimental results are available starting from
amici.dsi.unifi.it/lasagne/).

Enumerating All Stories
Our first experiment consisted in the enumeration of the whole set of stories
using both Gobbolino and Touche (with the pruning approach implemented)
and the comparison of their running time. Gobbolino is guaranteed to find all
stories only if all permutation orderings of the vertices of the input graph are
inspected, which limits its application to small input graphs. In [6], Gobbolino

was applied in order to automatically recover the so-called metabolic pathways in
a dataset consisting of 69 such pathways, among which 62 represented an input
graph with no more than 10 vertices. For this subset, we obtained the results
summarized in Figure 5. Let tG(G) (resp., tT(G)) denote the time consumed by
Gobbolino (resp., Touche) to compute all stories in the graph G, and let
ρ1(G) = tG(G)/tT(G). In the figure we show the logarithm of ρ1 for all the 62
graphs, ordered in increasing order with respect to their number of vertices.
As it can be seen from the figure, Touche performs better than Gobbolino
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Fig. 6. Ratio between number of stories produced by Gobbolino and Touche after
1 minute of computation (logarithmic scale)

for the whole dataset (even if the size of the instances is very small). Clearly,
Gobbolino consumes more time as the size of the input increases, since it
has to check all orderings of the vertices. For inputs with up to 7 vertices,
both algorithms finish the enumeration process in less than 1 second. For the
three inputs of size 8, Gobbolino consumes between 3.8 and 4.7 seconds, while
Touche never uses more than 0.05 seconds of computation. The result is even
more impressive when we look at the inputs of size 9 and 10. Gobbolino takes
around 1 minute for the three inputs of size 9 and more than 15 minutes for
the input with 10 vertices, while Touche finishes processing them in no more
than 0.14 seconds. Indeed, the figure suggests that the ratio ρ1 increases as an
exponential with respect to the number of vertices, in the case of networks with
at least 6 vertices (in the case of smaller networks, file management overhead
has to be taken into account).

Sampling Stories
One approach used in [6] in order to apply Gobbolino for bigger inputs was
to use random permutations of the orderings of the vertices to sample the space
of pitches and, therefore, the space of solutions (i.e., stories). Our second ex-
periment consisted in comparing this randomized approach of Gobbolino to
Touche (with the pruning approach implemented), giving a fixed amount of
time for both algorithms (1 minute, in our experiment) and checking how many
stories each method produced. For this experiment, we selected 118 metabolic
networks of various sizes. The dataset may be divided as follows: 8 networks
(with size greater than or equal to 10) come from the same metabolic pathways
considered in the first experiment; 4 networks are inputs for some experiments
also performed in the context of [6] and for which the set of black vertices came
from biological experiments; the remaining 106 were metabolic networks down-
loaded from the public database MetExplore ([8]) and with a random set of black
vertices (5% of the vertices of the graph were considered to be black). For this
dataset, we obtained the results summarized in Figure 6. Let sG(G) (resp., sT(G))
denote the number of stories produced by Gobbolino (resp., Touche) with in-
put the graph G after 1 minute of computation, and let ρ2(G) = sT(G)/sG(G).
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Fig. 7. Ratio between time consumed by Touche to compute all stories without and
with pruning

In the figure we show the logarithm of ρ2 for all the 118 graphs, ordered in
increasing order with respect to their number of vertices. The first outcome
of this experiment is that Touche always computed a number of stories bigger
than or equal to the number of stories computed by Gobbolino. For 19 of them
(mostly small size ones), the number is the same, but the time spent by Touche

is smaller than the limit of 1 minute, which indicates that the number of stories
computed is in fact the total number of stories: this highlights another advantage
of Touche over the randomized version of Gobbolino, that continues exploring
permutations of pitches even if it has already computed the whole set of stories.
Moreover, note that Touche produces the entire set of stories in the case of 10
other networks. In the case of bigger instances, the number of stories found by
Touche could be up to 950 times the number of stories found by Gobbolino.
Indeed, the figure suggests that the ratio ρ2 increases as an exponential with
respect to the number of vertices. The extreme case is the YERYP364 network for
which Gobbolino found 4 stories while Touche found 3815 stories: this result
strongly suggests that the correspondence between permutation of the vertices
and stories is highly biased and that there might be stories corresponding to
very few permutations and hence unlikely to be produced by Gobbolino.

Evaluating the Pruning Methods
Our third experiment was designed in order to evaluate how effective is the
pruning approach described in the previous section. By referring to the dataset
used in the first experiment, for each network we collected the running time of
Touche with and without the pruning. The results are summarized in Figure
7. Let tT,n(G) (resp., tT,y(G)) denote the time consumed by Touche without
(resp., with) pruning to compute all stories in the graph G, and let ρ3(G) =
tT,n(G)/tT,y(G). In the figure we show the logarithm of ρ3 for all the networks,
ordered in increasing order with respect to their number of vertices. As it can be
seen from the figure,Touche with pruning always performs better thanTouche

without pruning (even if the size of the instances is very small). The improvement
seems to remain constant, even though in the case of two networks (that is,
PRPP-PWY and THREOCAT2-PWY) it is quite impressive: the pruning improves the
computational time by a factor of 275 in the first case and 43 in the second case.
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Finally, we repeat this experiment in the case of two further networks analyzed
in [6]: the first contains 10 vertices (8 black) and 222 stories and Touche with
pruning computed them about 5 times faster, the second contains 35 vertices
(21 black) and Touche with pruning computed its 3,934,160 stories in about
three hours while Touche without pruning did not finish after one day.

5 Conclusion

We presented a linear-time delay enumeration algorithm for pitches, that allowed
us to enumerate all stories more efficiently than the previous known method [1].
The main question left open by our paper is to determine the complexity of the
story enumeration problem.

Acknowledgements. The research leading to these results was funded by: the
European Research Council under the European Community’s Seventh Frame-
work Programme (FP7 / 2007-2013) / ERC grant agreement n [247073]10;
the French project ANR MIRI BLAN08-1335497; and the ANR funded LabEx
ECOFECT.

References
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Abstract. In this paper, we present a new branching strategy for non-
convex MINLP that aims at driving the created subproblems towards
linearity. It exploits the structure of a minimum cover of an MINLP, a
smallest set of variables that, when fixed, render the remaining system
linear: whenever possible, branching candidates in the cover are pre-
ferred.

Unlike most branching strategies for MINLP, Undercover branching is
not an extension of an existing MIP branching rule. It explicitly regards
the nonlinearity of the problem while branching on integer variables with
a fractional relaxation solution. Undercover branching can be naturally
combined with any variable-based branching rule.

We present computational results on a test set of general MINLPs
from MINLPLib, using the new strategy in combination with reliability
branching and pseudocost branching. The computational cost of Under-
cover branching itself proves negligible. While it turns out that it can in-
fluence the variable selection only on a smaller set of instances, for those
that are affected, significant improvements in performance are achieved.

1 Introduction

State-of-the-art solvers for generic mixed integer linear programs (MIPs) and
mixed integer nonlinear programs (MINLPs) are based on the branch-and-bound
paradigm [1]. The question of how to split a given MIP or MINLP into sub-
problems, commonly referred to as the branching step, lies at the heart of any
branch-and-bound algorithm. Its main purpose is to improve the dual bound by,
e.g., eliminating fractionality of the integer variables and, for MINLP, reducing
the convexification gap between the nonconvex constraint functions and the re-
laxation. In MIP solving, typically an LP relaxation is solved for the bounding
step. For MINLP, although an NLP relaxation is a natural choice, most state-of-
the-art solvers also rely on an LP relaxation.

The branching rule is one of the components with highest impact on the
overall performance of MIP solvers [2,3]. Consequently, the literature has seen
many publications on efficient branching rules, which will be reviewed in the next
paragraphs. For MINLP, up to now, research has mainly focused on adopting MIP

branching rules [4,5].
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In mixed integer programming, the most common methodology is variable-
based branching (an exception being [6]), i.e., considering integer variables with a
fractional LP solution value as branching candidates. State-of-the-art branching
rules, sometimes also called variable selection heuristics, estimate the impact
that splitting a variable’s domain has on the dual bound and the solvability of
the created subproblems. A very prominent approach is the usage of so-called
pseudocosts [7], an estimate of the increase that branching on a variable has on
the optimum of the LP relaxation.

In [8], it is shown that initializing pseudocosts by strong branching [9,10]
is beneficial, an approach further refined in reliability branching [11]. Hybrid
branching [12] combines reliability branching with VSIDS [13] and inference
values [14], two common branching dichotomies in satisfiability testing and con-
straint programming, respectively. Methods that combine pseudocost and strong
branching information can be considered to be the state-of-the-art for MIP
solvers.

In recent years several publications have investigated new paradigms for
variable-based branching schemes that show superior performance on important
classes of hard MIPs. Kılınc et. al. [15] suggest to use conflict learning information
for branching on 0-1 integer programs. To this end, they run a sampling phase
of 500 branch-and-bound nodes during which they collect conflict constraints,
restart the solution process, and prefer branching on variables that appear in
short conflict constraints during the second phase.

Backdoor branching [16] goes one step further: it applies multiple restarts,
attempting to find a good approximation of a backdoor. Here, a backdoor is
a (preferably small) set of variables such that, whenever these variables get
assigned integer values, solving an LP on the remaining variables gives a proof
of feasibility or infeasibility. After each restart, the approximated backdoor is
computed by solving a set covering problem. Branching is exclusively performed
on backdoor variables until all of them are fixed. Non-chimerical branching [17]
is a criterion to rule out candidates for strong branching which are not promising.

For nonconvex MINLP, it is possible that the LP relaxation is integral and
cannot be strengthened further by gradient cuts (see Footnote 3), while some of
the nonconvex constraints are still violated. In this case, spatial branching can be
applied, i.e., branching on variables contained in violated nonconvex constraints,
including continuous variables. Subsequently, the relaxation can be tightened in
the created subproblems; thereby, the infeasible relaxation solution is cut off.

To select a branching variable for spatial branching, Tawarmalani and Sahini-
dis [18] suggest performing a so-called violation transfer. This estimates the
impact of each variable on the problem by minimizing and maximizing a La-
grangian function over a neighborhood of the current relaxation solution when
holding all other variables fixed. For a linear relaxation, this is similar to selecting
variables with large reduced cost.

In [5], the concept of pseudocosts has been extended to continuous variables
by investigating suitable counterparts for the violation of integrality, which is
used in pseudocost formulas for MIP. Their computational analysis suggests that
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pseudocost-based branching is superior for hard MINLPs, while for easy instances
and nonconvex NLPs it is outperformed by violation transfer or even simpler
violation-based rules.

In this paper, we suggest a branching strategy that aims at driving the sub-
problems towards linearity. To this end, Undercover branching restricts the set of
branching candidates to a minimum cover [19] of an MINLP, i.e., a smallest set
of variables that, when fixed, linearizes all constraints. It builds on the ideas of
the Undercover heuristic [19,20], which computes feasible solutions for MINLPs
by solving a sub-MIP defined via a minimum cover.

Whereas many branching rules are history-based and share heuristic compo-
nents, Undercover branching exploits structural information of the problem in
an exact manner. In the spirit of backdoor branching, it features a pre-selection
rule for branching candidates: independent of the current subproblem, Under-
cover branching globally separates a set of variables with a certain predicate from
others. Consequently, it can be combined with any variable-based branching rule.

A major characteristic of Undercover branching is that it respects informa-
tion on the nonlinearity of the problem already in the branching decisions for
fractional integer variables, not only during spatial branching. From a compu-
tational point of view, Undercover branching has the benefit that it costs little
additional time. In the way that we suggest, a minimum cover has to be com-
puted only once in the beginning of the solution process. Our experiments show
this to be computationally cheap in practice. In contrast to backdoor branching,
Undercover branching does not require repeated restarts of the main solution
procedure.

The remainder of the article is organized as follows. Section 2 states a formal
definition of a minimum cover, explains how it can be computed, and analyzes
minimum cover sizes of the test problems in MINLPLib [21]. In Section 3, we
present the general idea and implementational details of the newly proposed
branching strategy. In Section 4, we evaluate the applicability and the impact
of Undercover branching on instances from MINLPLib. Finally, we discuss the
results and give an outlook on future work in Section 5.

2 Covers of Mixed Integer Nonlinear Programs

The branching strategy investigated in this paper relies on the concept of a
minimum cover, a structural feature of an MINLP that is a measure for its “grade
of nonlinearity”. This notion has been introduced in [19] and utilized for the
design of a primal heuristic. In the following, we give a brief summary of the
main results from [19,20].

Definition 1 (cover of an MINLP). Let P be an MINLP of form

min cTx

s.t. gk(x) � 0 for k = 1, . . . ,m,

�i � xi � ui for i = 1, . . . , n,

xi ∈ Z for i ∈ I,

(1)
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where c ∈ Rn, gk : Rn → R, �i ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞}, �i < ui, and
I ⊆ {1, . . . , n}.1 We call a set of variable indices C ⊆ {1, . . . , n} a cover of the
function gk if and only if for all x∗ ∈ [�, u] the set

{(x, gk(x)) : x ∈ [�, u], xi = x∗
i for all i ∈ C} (2)

is an affine set intersected with [�, u]× R. We call C a cover of P if and only if
C is a cover of all constraint functions g1, . . . , gm.

Trivial examples of covers are the set of all variables or the set of all variables ap-
pearing in nonlinear terms. As will be shown at the end of this section, however,
many instances of practical interest allow for significantly smaller covers. Mini-
mum covers can be computed generically by solving a vertex covering problem.
This is a crucial observation for exploiting them in an MINLP solver.

Definition 2 (co-occurrence graph). Let P be an MINLP of form (1) with
g1, . . . , gm twice continuously differentiable on the interior of [�, u]. We call GP =
(VP , EP ) the co-occurrence graph of P with node set VP = {1, . . . , n} given by
the variable indices of P and edge set

EP =
{
ij : i, j ∈ V, ∃k ∈ {1, . . . ,m} : ∂2

∂xi∂xj
gk(x) �≡ 0

}
,

i.e., an edge connects nodes i and j if and only if the Hessian matrix of some
constraint has a structurally nonzero entry (i, j).

This leads to the following result:

Theorem 1. Let P be an MINLP of form (1) with g1, . . . , gm twice continuously
differentiable on the interior of [�, u]. Then C ⊆ {1, . . . , n} is a cover of P if and
only if it is a vertex cover of the co-occurrence graph GP .

Proof. See [20].

Since vertex covering is NP-hard [22] and any graph can be interpreted as the
co-occurrence graph of a suitably constructed MINLP, we obtain

Corollary 1. Computing a minimum cover of an MINLP is NP-hard.
In practice, however, minimum covers can be computed rapidly by solving a
binary programming formulation of the vertex covering problem with a state-
of-the-art MIP solver as has been argued already in [20]. As an example, we
have computed minimum covers for 255 instances2 from MINLPLib [21] for the
present paper. Using the MINLP solver SCIP 3.0 [23] and the expression inter-
preter CppAD 20120101.3 [24] for obtaining the sparsity patterns of the Hes-
sians, the binary programs were all solved within the root node and took at most
0.2 seconds on the hardware described in Sec. 4.
1 W.l.o.g. we may assume a linear objective, because for a nonlinear objective f(x), we
can always append a constraint f(x) � x0 and minimize the auxiliary variable x0.

2 This excludes 18 instances that cannot be handled by SCIP 3.0, e.g., because
they contain trigonometric functions: blendgap, deb{6,7,8,9,10}, dosemin{2,3}d,
prob10, var con{5,10}, water{3,ful2,s,sbp,sym1,sym2}, and windfac.
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Fig. 1. Distribution of the sizes of a minimum cover relative to the total number of
variables over 255 instances from MINLPLib. Numbers above the bars state how many
instances fall in the corresponding 5% interval. Shaded bars indicate the proportion
of minimum covers with integer variables only. The cumulative distribution function
refers to the right-hand scale.

The distribution of the sizes of minimum covers is depicted in Fig. 1. One
third of the instances allows for covers consisting of less than 14% of the vari-
ables and another third of the instances has covers with less than 36% of the
variables. As indicated by the shaded bars, 65 instances have a minimum cover
with only integer variables. For the vast majority of 163 instances it contains
only continuous variables. The minimum covers for the remaining 27 instances
are formed by continuous variables complemented by a small fraction of less than
1% integer variables.

To summarize, we observe that the majority of problems from MINLPLib fea-
tures small covers. Note that this even holds for many instances that have almost
all variables contained in nonlinear terms. The latter underlines that the size of
a minimum cover valuably complements other measures of nonlinearity such as
number of nonlinear nonzeros, constraints, or variables appearing in nonlinear
terms.

3 Using MINLP Covers for Branching

Although MIP and MINLP are both NP-hard, arguably MIPs are computation-
ally easier than MINLPs. For MIP, it is possible to compute a relaxation solution
in polynomial time that only drops the integrality requirements, but respects
all constraint functions. For MINLP, solving a (nonconvex) NLP relaxation is
already NP-hard. Also, generic cutting plane algorithms, which contribute a
lot to the practical success of MIP solvers, do not have a direct equivalent in
MINLP. Of course, they can be used to strengthen a MIP relaxation, but they do
not yield a finite algorithm. Last, but not least, considering today’s state-of-the-
art in optimization software, MIP codes have reached an impressive maturity and
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have become a standard industry tool, whereas MINLP software has just recently
evolved and only few codes are available by now.

From this point of view it is an important observation that a cover of an MINLP

presents a structure that turns an MINLP into a MIP for any assignment of the
variables in the cover. Branching shrinks variables’ domains, ideally fixes them,
and therefore, branching on cover variables offers itself as a promising strategy
to drive an MINLP towards linearity. If a pure branch-and-bound algorithm is
applied without domain propagation techniques, the size of the cover corresponds
to the minimum number of branching decisions that have to be taken before
obtaining a linear subproblem. In particular, the following observation holds:

Lemma 1. Let P be an MINLP of form (1) and C ⊆ I a cover of P with
�i, ui ∈ Z for all i ∈ C. Then, P can be solved by solving a sequence of at most∏

i∈C(ui − �i + 1) MIPs.

In the case of variables with infinite domain, i.e., continuous or unbounded inte-
ger variables, branching on cover variables does not necessarily enforce linearity
in a bounded number of steps. Nevertheless, branching on such a variable, and
thereby tightening its domain, is likely to produce better underestimators than,
e.g., branching on an integer variable which is not even part of a nonlinear ex-
pression. Better underestimators lead to better relaxation bounds which lead to
earlier pruning (or feasibility) of the created subproblems.

In particular, Undercover branching explicitly regards the nonlinearity of the
problem also when branching on integer variables with a fractional relaxation
solution.

We therefore suggest to use a branching strategy that prefers cover variables
over others as depicted in Fig. 2. The methods branch int and branch spat in
lines 7 and 10, respectively, are black box methods for which any standard
variable-based rule for branching on fractional integer variables and for spatial
branching can be used.

input MINLP P as in (1) with cover C1

set of fractional variables F2

set of candidates for spatial branching S3

begin4

if F �= ∅ then5

if F ∩ C �= ∅ then F ← F ∩ C ;6

branch int (P , F) ;7

else8

if S ∩ C �= ∅ then S ← S ∩ C ;9

branch spat (P , S) ;10

end11

Fig. 2. Undercover branching algorithm
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To perform Undercover branching, a cover of the MINLP P has to be com-
puted once before the branch-and-bound process starts. This global structure
can be exploited also by other solver components, e.g. an Undercover heuristic
as in [19,20].

As a distinguishing feature, the structure used for branching is computed
exactly, at negligible cost (see previous section), and no sampling phase as,
e.g., in [15] or [16], is required. Furthermore, we do not enforce branching on
cover variables via strict branching priorities: if the candidate set lies completely
outside of the cover, we do not continue branching on unfixed cover variables,
but stick with the candidates proposed by the solver.

4 Experimental Results

In this section we investigate the computational impact of Undercover branching
when combined with standard branching rules implemented in the MINLP solver
SCIP 3.0 [3,23].

SCIP implements a branch-and-bound algorithm based on an LP relaxation
that is constructed via gradient cuts3 for convex constraints and linear over- and
underestimators of the nonconvex terms. Further algorithmic components com-
prise primal heuristics, cutting planes applied to the MIP relaxation, an extensive
presolving and propagation engine, conflict analysis, and several reformulation
steps to detect convex or convexifiable constraints at the beginning. For details,
we refer to [4,25].

By default, SCIP applies binary branching, i.e., it splits the current node
into two subproblems. Branching on integer variables is prefered, however, not
categorically: if all integer variables have integral value in the LP solution (and
nonlinearities are still violated), SCIP continues with spatial branching even if
not all of the integer variables are fixed.

For branching on integer variables with a fractional LP value, the default vari-
able selection rule is hybrid reliability branching [12], which uses pseudocosts that
are initialized by multiple strong branches per variable as in reliability branch-
ing [11]. VSIDS [13] and inference values [14,26], two scores from satisfiability
testing and constraint programming, are taken into account for tie breaking. For
spatial branching, SCIP implements the pseudocost strategy “rb-int-br”4 from [5]
weighted by the violations of the constraints in which a variable appears.

All experiments were conducted on a cluster of 64bit Intel Xeon X5672 CPUs
at 3.2GHz with 12MB cache and 48GB main memory and a time limit of one
hour. Hyperthreading and Turboboost were disabled. For the latter experiment,
we ran only one job per node to avoid random noise in the measured running
time that might be caused by cache-misses if multiple processes share common re-
sources. As subroutines, SCIP was linked to the LP solver CPLEX 12.4 [27], the ex-
pression interpreter CppAD 20120101.3 [24], and the NLP solver Ipopt 3.10.2 [28].

3 If a convex constraint g(x) � 0, g ∈ C1([�, u],R), is violated at some x∗, then x∗ can
be cut off by the gradient cut ∇g(x∗)T(x− x∗) + g(x∗) � 0.

4 For this strategy, the pseudocosts are multiplied by the distance of the current
relaxation solution to the bounds of a variable when computing the branching score.
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To avoid interactions, we deactivated the Undercover heuristic. To measure tree
sizes accurately, we deactivated restarts.

As test set we chose the MINLPLib [21,29] featuring 273 instances. We excluded
18 instances that cannot be parsed or handled by SCIP 3.0, see Footnote 2. 13
instances were linearized during presolving; 42 further instances could be solved
already during root node processing, hence no branching was applied; for two
instances, branching had not started after one hour. We also removed three
instances for which SCIP 3.0 suffers from numerical inaccuracies which lead to
inconsistent solution values (independent of applying Undercover branching).
All in all, this leaves a test set of 195 instances. Note that in MINLP, even more
than in MIP, standard test sets often decompose into very easy and extremely
difficult instances, with very few medium hard problems. Also, they are typically
not as heterogeneous as, e.g., the MIPLIBs.

How often? As an initial experiment, we analyzed how often the Undercover
pre-selection can be applied to reduce the candidate set. Note that there are
two general cases when Undercover branching does not make a difference. If all
candidates lie outside the cover (e.g., when the cover is entirely continuous, but
there are integer variables with fractional LP solution), the algorithm will select
a non-cover variable; if all candidates lie inside the cover (e.g., when the set of
fractional variables is a subset of the cover), our algorithm does not yield any
impact at that node of the tree.

To this end, we ran SCIP with its default branching rules, and enforced the
pre-selection of cover variables as in Fig. 2 whenever possible. At each branching
decision taken, we recorded whether all candidates were inside the cover, all
candidates were outside, or whether the intersection was nontrivial.

It turned out that on 23 of the instances Undercover branching actually af-
fected the branching decisions. For a further 26 instances the candidates from
F were always included in the cover; all of these had a cover of at least 40% of
the variables. For the majority of instances, no candidates were contained in the
minimum cover used.5

This result is not overly surprising: it is explained by the fact that we are
employing minimum covers and consequently increase the likelihood that the
branching candidates are all outside the cover. However, since the computa-
tional overhead of Undercover branching is negligible, it does not degrade the
performance on the unaffected instances. It remains to be analyzed whether it is
helpful for the set of instances for which it actually affects branching decisions.

How good? The goal of our second experiment was to compare the performance
impact of Undercover branching on the 23 instances that are affected. Before
discussing the complete results, consider the small instance ex1264a as an illus-
trative example, modelling a nonconvex trim-loss problem from [30]. Figure 3

5 For 6 instances, SCIP did not branch on integer variables at all; for 140 instances,
F ∩ C was always empty. Spatial branching did not get performed for 61 instances,
111 times S ∩ C was always empty.
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Fig. 3. Search trees explored by SCIP 3.0 for instance ex1264a with default branching
reliability/pseudocost (top, 111 nodes processed) and Undercover branching (bottom,
52 nodes processed). White nodes pruned unprocessed. Linear nodes marked black.

shows the actual search trees explored by SCIP 3.0 default and SCIP with Under-
cover branching added. As can be seen, both trees have similar structure, but the
number of nodes is reduced significantly because subtrees can be pruned earlier.
This instance indeed confirms our hope that Undercover branching helps to drive
the subproblems towards linearity faster: while without, only three nodes are lin-
ear, with Undercover branching eleven nodes become linear. Without Undercover
branching, linear nodes only appear in depth twelve and below, whereas with
Undercover branching, linear nodes can be observed from depth four onwards.

Our main hope is to reduce the number of branch-and-bound nodes processed
by exploiting the global perspective provided by a cover in addition to the local
perspective of a branching rule at a specific node. However, note that if the
base rule employed in the branch int procedure applies strong branching on
its candidates such as the hybrid reliability rule in SCIP, then the restriction
of the candidate set affects the solving process beyond the branching variable
selection. On the one hand, computation time for solving strong branching LPs
on the excluded candidates is saved; on the other hand, variable fixings that can
be learned from strong branching might be lost.

Hence, we evaluated the impact of Undercover branching w.r.t. two base
rules: SCIP’s default reliability/pseudocost as described above, and pseudocost/
pseudocost, i.e., exchanging the hybrid reliability rule for branching on integer
variables by a pure pseudocost rule without any strong branching. The results
for those instances that could be solved by at least one variant can be seen in
Tab. 1 and Tab. 2, respectively. Using Undercover branching, for both cases two
more instances could be solved as compared to not using it.

On four instances in Tab. 1 solved by both variants, Undercover branching
increases the number of branch-and-bound nodes. This might be due to the side
effect on strong branching described above. For the majority of cases, however, it
reduces the number of branch-and-bound nodes significantly. The impact is even
more visible on the number of performed strong branches, which is decreased ten
times and only increased once. Since the main goal of Undercover branching is to
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Table 1. Impact of Undercover branching on number of nodes, time, and strong
branches performed for affected instances solved to optimality within one hour

reliability/pseudocost with undercover relative [%]

instance nodes strbrs time [s] nodes strbrs time [s] nodes strbrs time

ex1263a 273 292 0.56 132 135 0.17 −52 −54 −70
ex1264a 111 218 0.33 52 120 0.08 −53 −45 −76
ex1265a 135 171 0.18 75 109 0.11 −44 −36 −39
ex1266a 59 220 0.38 101 177 0.35 +71 −20 −8
fac1 5 6 0.04 5 2 0.06 0 −67 +50
fac3 15 54 0.30 9 5 0.24 −40 −91 −20
nvs15 4 5 0.02 4 2 0.02 0 −60 0
pump 509 110 2.96 773 113 3.57 +52 +3 +21
st e36 206 0 0.79 200 0 0.77 −3 0 −3
st e40 19 22 0.08 25 22 0.10 +32 0 +25
tln4 2518 291 1.99 171 41 0.55 −93 −86 −72
tln5 500254 2621 373.73 7977 463 5.89 −98 −82 −98
tloss 78 227 0.19 77 166 0.12 −1 −27 −37
tltr 4 57 0.18 17 88 0.20 +325 +54 +11

shifted mean 291 144 3.68 141 79 0.77 −52 −45 −79

timed out:

tln6 4101772 4007 58% gap 17005 471 22.28 −99 −88 ·
tln7 2609508 3946 124% gap 9703667 5296 3156.38 +272 +34 ·

Table 2. Impact of Undercover branching on number of nodes and time for affected
instances solved to optimality within one hour

pseudocost/pseudocost with undercover relative [%]

instance nodes strbrs time [s] nodes strbrs time [s] nodes strbrs time

ex1263a 166 · 0.20 163 · 0.18 −2 · −10
ex1264a 38 · 0.20 85 · 0.18 +124 · −10
ex1265a 138 · 0.21 104 · 0.40 −25 · +90
ex1266a 70 · 0.08 141 · 0.20 +101 · +150
fac1 7 · 0.05 5 · 0.05 −29 · 0
fac3 23 · 0.52 9 · 0.23 −61 · −56
nvs15 4 · 0.02 4 · 0.03 0 · +50
pump 1007 · 4.38 827 · 3.62 −18 · −17
st e36 206 · 0.79 200 · 0.73 −3 · −8
st e40 23 · 0.07 25 · 0.10 +9 · +43
tln4 1454 · 1.49 202 · 0.67 −86 · −55
tln5 622318 · 446.86 11013 · 8.39 −98 · −98
tloss 73 · 0.09 77 · 0.11 +5 · +22
tltr 18 · 0.17 4 · 0.16 −78 · −6

shifted mean 287 · 3.85 159 · 0.91 −45 · −76

timed out:

tln6 4963908 · 79% gap 16382 · 21.54 −99 · ·
tln7 3207274 · 226% gap 468231 · 593.74 −85 · ·

restrict the set of branching candidates, this could be expected. Finally, consid-
ering computation time, Undercover branching helps nine times, four times the
performance deteriorates. Regarding the shifted geometric means,6 Undercover

6 We used a shift of 100 nodes, 100 strong branchings, and 10s to compute the means.
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branching reduces the computation time by 79% and the number of branch-and-
bound nodes by 45%. Note that also when excluding the two positive outliers
tln4 and tln5 and one negative outlier tltr, Undercover branching still yields
an overall reduction of all considered performance measures.

For pure pseudocost branching, see Tab. 2, we observe a similar behavior:
Undercover branching shows an improvement in the performance measures sig-
nificantly more often than a deterioration, in shifted geometric mean we see
improvements of 76% w.r.t. computation time and 45% w.r.t. the number of
branch-and-bound nodes.

5 Conclusion and Outlook

In this paper, we have introduced Undercover branching, a new branching strat-
egy for MINLP that exploits minimum covers to drive the subproblems created
faster towards linearity. We showed that a combination of Undercover branching
with either hybrid reliability branching or pseudocost branching outperforms the
corresponding branching rules without Undercover information, yielding savings
of 45% w.r.t. the number of branch-and-bound nodes and more than 70% w.r.t.
running time in geometric mean for affected instances. The time consumed by
the branching rule itself proved negligible.

Currently, the main limitation of Undercover branching is that the fraction
of affected instances is relatively small (23 out of 195 instances). Therefore,
the main goals of our future research are to employ alternative (not minimum)
covers and to investigate the trade-off between cover size and number of affected
instances. Furthermore, we work on identifying linear subproblems with large
sub-trees, which could then be solved more efficiently using a pure MIP solver.
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10. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, USA (2007)

11. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Re-
search Letters 33, 42–54 (2005)

12. Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.-J., Hooker, J.N.
(eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 309–311. Springer, Heidelberg (2009)

13. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Proc. of the DAC (July 2001)

14. Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In:
Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 342–356. Springer, Heidelberg
(1997)
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Abstract. We present a quadratic outer approximation scheme for solv-
ing general convex integer programs, where suitable quadratic approx-
imations are used to underestimate the objective function instead of
classical linear approximations. As a resulting surrogate problem we
consider the problem of minimizing a function given as the maximum
of finitely many convex quadratic functions having the same Hessian
matrix. A fast algorithm for minimizing such functions over integer vari-
ables is presented. Our algorithm is based on a fast branch-and-bound
approach for convex quadratic integer programming proposed by Buch-
heim, Caprara and Lodi [5]. The main feature of the latter approach
consists in a fast incremental computation of continuous global minima,
which are used as lower bounds. We generalize this idea to the case of k
convex quadratic functions, implicitly reducing the problem to 2k − 1
convex quadratic integer programs. Each node of the branch-and-bound
algorithm can be processed in O(2kn) time. Experimental results for a
class of convex integer problems with exponential objective functions
are presented. Compared with Bonmin’s outer approximation algorithm
B-OA and branch-and-bound algorithm B-BB, running times for both
ternary and unbounded instances turn out to be very competitive.

1 Introduction

Many optimization problems arising in real world applications can be formulated
as convex mixed-integer nonlinear programs (MINLP) of the form

min f(x)

s.t. gj(x) ≤ 0 ∀j = 1, . . . ,m

xi ∈ Z ∀i ∈ I ,

where f, g1, . . . , gm : Rn → R are convex functions and I ⊆ {1, . . . , n} is the
set of indices of integer variables. Allowing both integrality and nonlinearity
makes this class of problems extremely hard. In fact, MINLP comprises the
NP-hard subclasses of mixed-integer linear programming (MILP) and general
nonlinear programming (NLP). The restriction to convex MINLP preserves NP-
hardness, as MILP is still contained as a special case. The most important exact

V. Bonifaci et al. (Eds.): SEA 2013, LNCS 7933, pp. 224–235, 2013.
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approaches applied to convex MINLP are branch-and-bound by Dakin [7], gener-
alized Benders decomposition by Geoffrion [10], outer approximation by Duran
and Grossmann [8] and Fletcher and Leyffer [9], branch-and-cut by Quesada
and Grossmann [12], and the extended cutting plane method by Westerlund and
Pettersson [15]. A detailed survey of algorithms and software for solving convex
MINLP is given by Bonami, Kilinç and Linderoth [3].

In the further course of this paper, for simplicity, we focus on the pure integer
case with box-constraints, thus assuming I = {1, . . . n} and l ≤ x ≤ u for some
fixed lower and upper bound vectors l ∈ (R∪{−∞})n and u ∈ (R∪{∞})n. Note
that the resulting box-constrained convex integer nonlinear program (INLP) of
the form

min f(x)
s.t. x ∈ B ,

(1)

where B := {x ∈ Zn | l ≤ x ≤ u}, still belongs to the class of NP-hard problems,
since minimizing a convex quadratic function over the integers is equivalent to
the Closest Vector Problem, which is known to be NP-hard [14]. The algorithm
for solving convex INLP presented in the following is based on the outer approx-
imation scheme.

1.1 Organization of the Paper

After giving a short recapitulation of the standard linear outer approximation
scheme, we describe our quadratic outer approximation scheme in Section 2.
Section 3 presents our approach for solving a convex piecewise quadratic integer
program with constant Hessian matrix, which occurs as a surrogate problem
in every iteration of our extended outer approximation scheme. In Section 4,
we present computational results and compare the effectiveness of the proposed
algorithm, applied to a special class of convex integer nonlinear optimization
problems, with existing state-of-the-art software. Finally, we summarize our main
results and give a short outlook in Section 5.

2 Outer Approximation

2.1 Linear Outer Approximation

The main idea of the classical linear outer approximation approach is to equiv-
alently transform the original integer nonlinear problem into an integer linear
problem by iteratively adding linearizations to the objective function. As soon as
we obtain an iterate that has already been computed in an earlier iteration, we
have reached optimality. Applied to (1), we get the simplified scheme described
in Algorithm 1. The main computational effort of the presented approach lies in
the computation of the integer minimizer in Step 3 of each iteration, by solving
a box-constrained convex piecewise linear integer program, which can be formu-
lated as an integer linear program (ILP). The approach is illustrated in Fig. 1.
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Algorithm 1. Linear Outer Approximation Scheme

input : convex and continuously differentiable function f
output: integer minimizer x∗ ∈ B of f

1. set k := 1 and choose any x1 ∈ B
2. compute supporting hyperplane for f in xk:

f(x) ≥ f(xk) +∇f(xk)�(x− xk)

3. compute xk+1 ∈ B as an integer minimizer of

max
i=1,...,k

{f(xi) +∇f(xi)�(x− xi)}

4. if xk+1 �= xi for all i ≤ k, set k := k + 1 and go to 2, otherwise, xk+1 is optimal
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Fig. 1. Linear Outer Approximation applied to f : [−2, 2] → R, f(x) = (x+1)2+ex
2−2.

Iterates are x1 = 0, x2 = −2, x3 = −1, and x4 = −1

2.2 Quadratic Outer Approximation

The main drawback of Linear Outer Approximation is that in general many
iterations are necessary to obtain an appropriate approximation of the origi-
nal objective function. The basic idea of our approach is to modify Step 2 of
Algorithm 1 by replacing the linearizations by appropriate quadratic underesti-
mators. Unfortunately, the second-order Taylor approximation is not necessarily
a global underestimator of the original function. One important challenge there-
fore is to find a suitable quadratic underestimator. The following observation
gives a sufficient condition for an underestimator to be feasible.

Theorem 1. Let f be twice continuously differentiable and let Q ∈ Rn×n such
that Q � ∇2f(x) for all x ∈ Rn, i.e. Q−∇2f(x) is negative semidefinite for all
x ∈ Rn. Consider the supporting quadratic function

T (x) := f(xk) +∇f(xk)�(x− xk) + 1
2 (x − xk)�Q(x− xk).

Then f(x) ≥ T (x) for all x ∈ Rn.

Proof. By construction, we have ∇2(f −T )(x) = ∇2f(x)−Q � 0 for all x ∈ Rn

and ∇(f − T )(xk) = ∇f(xk) − ∇f(xk) = 0. This implies that f − T is convex
with minimizer xk, yielding f(x)−T (x) ≥ f(xk)−T (xk) = 0 for all x ∈ Rn. ��

The entire quadratic outer approximation scheme is described in Algorithm 2.
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Algorithm 2. Quadratic Outer Approximation Scheme

input : convex and twice continuously differentiable function f ,
matrix Q s.t. 0 � Q � ∇2f(x) for all x ∈ Rn

output: integer minimizer x∗ ∈ B of f

1. set k := 1 and choose any x1 ∈ B
2. compute supporting quadratic underestimator for f in xk:

f(x) ≥ f(xk) +∇f(xk)�(x− xk) + 1
2
(x− xk)�Q(x− xk)

3. compute xk+1 ∈ B as an integer minimizer of

max
i=1,...,k

{f(xi) +∇f(xi)�(x− xi) + 1
2
(x− xi)�Q(x− xi)}

4. if xk+1 �= xi for all i ≤ k, set k := k + 1 and go to 2, otherwise, xk+1 is optimal

In Step 2 of Algorithm 2, the new underestimator for a given iterate xk is
computed as follows:

f(xk) +∇f(xk)�(x − xk) + 1
2 (x− xk)�Q(x− xk)

= f(xk)−∇f(xk)�xk + 1
2 x

k�Qxk︸ ︷︷ ︸
=:ck+1

+(∇f(xk)� − xk�Q)︸ ︷︷ ︸
=:L�

k+1

x+ 1
2 x

�Qx ,

the new quadratic underestimator

1
2 x

�Qx+ L�
k+1x+ ck+1

is a convex quadratic function with Hessian Q � 0 not depending on k.
Step 3 of Algorithm 2 requires to compute an integer minimizer of a quadratic

program instead of a linear program, as was the case in Algorithm 1. Although
the hardness of this surrogate problem increases from a practical point of view,
this approach might pay off if the number of iterations decreases significantly
with respect to linear approximation. In fact, we observed in our experiments
that the number of iterations stays very small in general, even for problems in
higher dimensions; see Section 4.

However, the surrogate problem of solving a convex box-constrained piecewise
quadratic integer program, being the most expensive ingredient in Algorithm 2,
requires an effective solution method to keep the whole algorithm fast. The
surrogate problem can be formulated as an integer quadratic program (IQP), it
is of the form

min
x∈B

max
i=1,...,k

(
1
2 x

�Qx+ L�
i x+ ci

)
, (2)

where Q � 0, L1, . . . , Lk ∈ Rn, and c1, . . . , ck ∈ R. At this point it is crucial to
underline that the Hessian Q of each quadratic function is the same, so that we
can rewrite (2) as
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min
x∈B

(
1
2 x

�Qx+ max
i=1,...,k

(L�
i x+ ci)

)
,

which in turn can be reformulated as an integer quadratic program using a
dummy variable α ∈ R:

min 1
2 x

�Qx+ α

s.t. L�
i x+ ci ≤ α ∀i = 1, . . . , k

x ∈ B
α ∈ R .

(3)

The quadratic outer approximation scheme is illustrated in Fig. 2. In this exam-
ple, the algorithm terminates after two iterations.

−5

 0

 5

 10

 15

−2 −1  0  1  2

−5

 0

 5

 10

 15

−2 −1  0  1  2

−5

 0

 5

 10

 15

−2 −1  0  1  2

Fig. 2. Quadratic Outer Approximation for f : [−2, 2] → R, f(x) = (x + 1)2 + ex
2−2,

using Q = 2 + 2e−2. The iterates are x1 = 0, x2 = −1, and x3 = −1.

3 Convex Piecewise Quadratic Integer Programming

Solving the convex piecewise quadratic integer program (2) in each iteration
is the core task of the quadratic outer approximation scheme. We implicitly
reduce this problem, in iteration k, to at most 2k − 1 convex quadratic integer
programs, which are solved by a fast branch-and-bound algorithm proposed by
Buchheim, Caprara and Lodi [5]. Our computational results in Section 4 show
that only few iterations of Algorithm 2 are necessary in general to solve an
instance to optimality, so that the number 2k − 1, though being exponential,
remains reasonably small in practice.

3.1 Branch-and-Bound for Convex Quadratic Integer Programming

For a better understanding of the branch-and-bound algorithm, we shortly sum-
marize its key ingredients; all results can be found in [5]. For given Q � 0,
L ∈ Rn, and c ∈ R, consider the convex quadratic integer program

min
x∈Zn

f(x) = 1
2 x

�Qx+ L�x+ c . (4)
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For simplicity, assume Q to be positive definite. Otherwise, we can transform the
objective function of (4) into a strictly convex function having the same integer
minimizer. If Q is positive definite, we can easily determine the unique global
minimizer x̄ of f over Rn by solving a system of linear equations, as

x̄ = −Q−1L with f(x̄) = c− 1
2 L

�Q−1L,

which we can use as a lower bound for f over Zn. Simple rounding of the con-
tinuous minimizer

xj := �x̄j�, j = 1, . . . , n

to the next integer yields a trivial upper bound f(x) for f over Zn.
In our branch-and-bound scheme, we branch by fixing the variables in in-

creasing distance to their values in the continuous relaxation. By exploiting the
convexity of f and its symmetry with respect to x̄, we can cut off the current
node of the tree and all its siblings as soon as we fix a variable to some value for
which the resulting lower bound exceeds the current best known upper bound.
Using these ingredients we get a straightforward branch-and-bound algorithm
with running time O(n3) per node, mainly for computing the continuous mini-
mizer by solving a linear system of equations. However, the running time of this
computation can be improved to even linear running time per node, in two steps.

First, note that after fixing the first d variables, the problem reduces to the
minimization of

f̄ : Zn−d → R, x "→ 1
2 x

�Q̄dx+ L̄�x+ c̄

where Q̄d % 0 is obtained by deleting all rows and columns of Q corresponding
to fixed variables and L̄ and c̄ are adapted properly. The main idea is to fix
the variables in a predetermined order. Following this approach, the reduced
matrices Q̄d only depend on the depth d, but not on specific fixings. This implies
that only n different matrices Q̄d appear in the entire branch-and-bound tree, so
that their inverse matrices can be predetermined in a preprocessing phase. The
resulting running time reduces to O((n− d)2) per node.

The second improvement is a consequence of the following observation [5]:

Theorem 2. For each d ∈ {0, . . . , n− 1}, there exist vectors zd, vd ∈ Rn−d and
a scalar sd ∈ R, only depending on Q and the chosen order of variables, such
that the following holds: if x̄old ∈ Rn−d denotes the minimizer of f̄ after fixing
variables x1, . . . , xd, and xd+1 is fixed to rd+1 ∈ Z, then the resulting continuous
minimizer and associated minimum can be computed incrementally by

x̄new := x̄old + αzd

and
f̄(x̄new) := f̄(x̄old) + α

(
(x̄old)�vd + L̄�zd

)
+ α2sd

where α = rd+1 − x̄old
1 .

As a conclusion, if zd, vd and sd are computed in a preprocessing phase for
all d = 0, . . . , n− 1, the resulting total running time per node is O(n− d).
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3.2 Lower Bound Computation for the Surrogate Problem

To solve the surrogate problem (2) with a branch-and-bound algorithm, we com-
pute a lower bound at every node by solving its continuous relaxation

min
x∈Rn−d

max
i=1,...,k

(
1
2 x

T Q̄dx+ L̄T
i x+ c̄i

)
.

The main idea is to decompose this problem into subproblems, namely the min-
imization of several auxiliary quadratic functions defined on affine subspaces
of Rn−d, and finally make use of the incremental computation technique de-
scribed in the last subsection. To describe this decomposition procedure, we
need to introduce some definitions. First, we define

f̄(x) := max
i=1,...,k

f̄i(x)

as the maximum of the reduced functions

f̄i(x) :=
1
2 x

�Q̄dx+ L̄�
i x+ c̄i, i = 1, . . . , k .

For all J ⊆ {1, . . . , k}, J �= ∅, we define

UJ := {x ∈ Rn−d | f̄i(x) = f̄j(x) ∀i, j ∈ J}

and consider the auxiliary function

f̄J(x) : UJ → R, f̄J(x) := f̄i(x), i ∈ J .

As all functions f̄i have the same Hessian matrix Q̄d, each set UJ is an affine
subspace of Rn−d. In particular, we can compute the minimizers x∗

J of all f̄J
incrementally as described in Section 3.1.

Theorem 3. For each J ⊆ {1, . . . , k} with J �= ∅, let x∗
J be a minimizer of f̄J

over UJ . Then the global minimum of f̄ is

min {f̄J(x∗
J ) | ∅ �= J ⊆ {1, . . . , k}, f̄(x∗

J ) = f̄J(x
∗
J )}.

Proof. We clearly have “≤”. To show “≥”, let x∗ ∈ Rn−d be the global minimizer
of f̄ and define

J∗ := {i | f̄i(x∗) = f̄(x∗)} �= ∅.
Then it follows that x∗ ∈ UJ∗ and f̄(x∗) = f̄J∗(x∗). Moreover, x∗ minimizes f̄J∗

over UJ∗ , hence x∗ = x∗
J∗ by strict convexity. In summary,

f̄(x∗
J∗) = f̄(x∗) = f̄J∗(x∗) = f̄J∗(x∗

J∗) ,

from which the result follows. ��
Corollary 1. The running time of the modified branch-and-bound algorithm for
solving the surrogate problem (2) is O(2k · (n− d)) per node.

Note that the index set J does not need to be considered any more in the current
node and its branch-and-bound subtree as soon as the value of f̄J(x

∗
J ) exceeds

the current upper bound.
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4 Experimental Results

To show the potential of our approach, we carried out two types of experiments.
First, we compared our branch-and-bound algorithm for solving the surrogate
problems (2), called CPQIP, to CPLEX 12.4 [1]. Second, we created a class of
hard convex integer programs, to illustrate the effectiveness of our quadratic
outer approximation algorithm, called QOA, and to compare its performance to
that of Bonmin-OA and Bonmin-BB 1.5.1 [13] using Cbc 2.7.2 and Ipopt 3.10.

4.1 Implementation Details

We implemented our algorithm in C++. To speedup our algorithm, we used a
straightforward local search heuristic to determine a good starting point. We
start by taking the origin x = (0, . . . , 0) and continue to increase the first vari-
able x1 until no further improvement can be found. In the same way we test if
decreasing the variable leads to a better solution. We repeat this procedure for
every consecutive variable x2, . . . , xn. The improvement in running time can be
seen in Table 2. Another small improvement in running time can be achieved by
using the optimal solution x∗

k of the surrogate problem in iteration k to get an
improved global upper bound UB for the next iteration, i.e.

UB := max
i=1,...,k+1

1
2 x

∗
k
�Qx∗

k + L�
i x

∗
k + c .

4.2 Surrogate Problem

We randomly generated 160 instances for the surrogate problem (2), 10 for each
combination of n ∈ {20, 30, 40, 50} and k ∈ {2, . . . , 5}. We chose B = Zn, i.e., we
consider unbounded instances. For generating the positive semidefinite matrixQ,
we chose n eigenvalues λi uniformly at random from [0, 1] and orthonormalize
n random vectors vi, where all entries are chosen uniformly at random from
[−10, 10], then we set Q =

∑n
i=1 λiviv

�
i . The entries of all Li and ci, i = 1, . . . , k,

were chosen uniformly at random from [−10, 10].
We compared our algorithm CPQIP with the Mixed-Integer Quadratic Pro-

gramming (MIQP) solver of CPLEX 12.4 [1] applied to the QP model (3). For
both approaches, we used a time limit of 3 hours and an absolute optimality
tolerance of 10−6. The relative optimality tolerance of CPLEX was set to 10−10.

The results are summarized in Table 1. Running times are measured in cpu
seconds and the numbers of nodes explored in the branch-and-bound trees are
given in the corresponding column. First, we can observe that our algorithm
could solve 158 out of 160 instances in total within the given time limit, while
CPLEX 12.4 managed to solve only 154 instances. Second, for instances with a
large number n of variables but small k, our approach turns out to be significantly
faster. Instances of this type are the most relevant instances in a quadratic outer
approximation scheme, as shown in Section 4.3.

As expected, CPQIP tends to be slower than CPLEX on most of the instances
with k = 5, since the running time per node in our branch-and-bound algorithm
is exponential in k.
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Table 1. Average running times, numbers of instances solved and average numbers
of branch-and-bound nodes for CPQIP and CPLEX 12.4 on randomly generated un-
bounded instances for the surrogate problem of type (2)

CPQIP CPLEX 12.4

n k solved time nodes solved time nodes

20 2 10/10 0.02 1.39e+4 10/10 0.24 2.52e+3
20 3 10/10 0.03 9.84e+3 10/10 0.18 1.68e+3
20 4 10/10 0.06 9.51e+3 10/10 0.21 1.59e+3
20 5 10/10 0.05 2.91e+3 10/10 0.10 1.14e+3

30 2 10/10 0.07 4.23e+4 10/10 0.90 1.33e+4
30 3 10/10 0.40 1.09e+5 10/10 1.94 2.81e+4
30 4 10/10 4.48 4.20e+5 10/10 7.75 9.06e+4
30 5 10/10 4.57 2.63e+5 10/10 2.90 3.92e+5

40 2 10/10 10.41 5.35e+6 10/10 138.77 1.31e+6
40 3 10/10 30.70 7.18e+6 10/10 69.58 7.91e+5
40 4 10/10 66.13 7.15e+6 10/10 73.32 8.28e+5
40 5 10/10 141.53 7.21e+6 10/10 92.80 1.00e+6

50 2 10/10 320.30 1.45e+8 10/10 2337.91 1.81e+8
50 3 10/10 844.18 1.72e+8 8/10 646.15 5.41e+7
50 4 10/10 1925.06 1.79e+8 8/10 864.92 6.95e+7
50 5 8/10 1650.26 6.90e+7 8/10 931.00 7.50e+7

4.3 Quadratic Outer Approximation Scheme

In order to evaluate the entire quadratic outer approximation scheme, we con-
sider the following class of problems:

min
x∈Zn

f(x), f : D ⊆ Rn → R, f(x) =

n∑
i=1

exp(qi(x)) (5)

where qi(x) = x�Qix+L�
i x+ci. We assume Qi % 0 for all i = 1, . . . n, so that f

is a strictly convex function.
In order to determine a feasible matrix Q according to Theorem 1, we first

compute mi := minx∈D qi(x) for all i = 1, . . . , n and then choose

Q :=

n∑
i=1

2Qi exp(mi) % 0 .

It is easy to see that ∇2f(x) − Q � 0 for all x ∈ Rn, so that Q can be used
in Algorithm 2. The quality of Q and therefore of the quadratic underestimator
strongly depends on D: the smaller the set D is, the larger are the mi, and the
better is the global underestimator.

To test the quadratic outer approximation scheme, we randomly generated
ternary and unbounded instances of type (5), i.e., we consider both D = [−1, 1]
and D = Rn. All data were generated in the same way as in Section 4.2, except
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that all coefficients of Q and Li, ci, i = 1, . . . , n, were scaled by 10−5, to avoid
problems with the function evaluations.

We tested our algorithm against Bonmin-OA and Bonmin-BB [13, 2], which
are state-of-the-art solvers for convex mixed-integer nonlinear programming.
While Bonmin-OA is a decomposition approach based on outer approxima-
tion [8, 9], Bonmin-BB is a simple branch-and-bound algorithm based on solving
a continuous nonlinear program at each node of the search tree and branching on
the integer variables [11]. Again the time limit per instance was set to 3 hours.

Table 2. Running times, number of instances solved, average and maximum number
of iterations of QOA(h), QOA compared to Bonmin-OA and Bomin-BB for randomly
generated ternary instances of problem type (5)

QOA(h) QOA Bonmin-OA Bonmin-BB

n solved ø it mx time (s) solved ø it mx time (s) solved time (s) solved time (s)

20 10/10 1.00 1 0.03 10/10 2.00 2 0.07 10/10 91.53 10/10 2.12
30 10/10 1.50 4 5.87 10/10 2.50 4 28.46 5/10 1017.99 10/10 148.85
40 10/10 1.40 3 20.19 10/10 2.40 4 65.42 0/10 — 9/10 4573.80
50 10/10 2.00 3 69.54 10/10 3.10 4 151.88 0/10 — 0/10 —
60 9/10 2.11 4 1154.66 9/10 3.00 5 1692.76 0/10 — 0/10 —
70 5/10 3.80 6 3363.11 4/10 3.75 5 2916.21 0/10 — 0/10 —

Table 3. Running times, number of instances solved, average and maximum number
of iterations of QOA(h) compared to Bonmin-BB for randomly generated unbounded
instances of problem type (5)

QOA(h) Bonmin-BB

n solved ø it mx time (s) solved time (s)

20 10/10 2.30 3 0.12 10/10 113.13
30 8/10 3.12 5 26.38 1/10 4897.10
40 6/10 2.83 3 134.42 0/10 —
50 2/10 3.00 3 7630.12 0/10 —

Results for ternary and unbounded instances are shown in Table 2 and 3,
respectively. “QOA(h)” denotes our quadratic approximation scheme using the
local search heuristic, while in “QOA” the heuristic was turned off. Running
times are again measured in seconds. The columns named “ø it” and “mx” show
the average and maximum number of iterations in our approach, respectively.

Overall our quadratic outer approximation approach could solve more in-
stances and seems to be considerably faster for the ternary instances as well as
the unbounded instances. For the unbounded instances, we unfortunately expe-
rienced some numerical issues, because the function evaluations seem to cause
problems. While Bonmin-OA did not converge properly, the branch-and-bound
algorithm Bonmin-BB, which seems to be faster than B-OA in all cases, some-
times computed solutions which were slightly worse than ours and hence not
always optimal. In the ternary case, no such problems occured in any of the
approaches tested.
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An important observation in all our experiments is that both the average and
maximum number of iterations in our outer approximation scheme tend to be
small, here up to 4 for the instance sizes we could solve to optimality within
the given time limit. In particular, the number of iterations does not seem to
increase significantly with the number of variables n, contrary to the standard
linear outer approximation approach.

5 Conclusion

We proposed a quadratic outer approximation scheme for solving convex integer
nonlinear programs, based on the classical linear outer approximation scheme.
From our computational results, we can conclude that quadratic underestimators
have the potential to yield significantly better approximations, which might lead
to considerably fewer iterations of the entire algorithm.While the standard linear
outer approximation scheme requires to solve an integer linear program in each
iteration, our method requires the solution of integer quadratic programs with
linear constraints. Therefore we proposed an algorithm which is based on the
reduction of the surrogate problems to a set of unconstrained convex quadratic
integer programs, which are effectively solved by a branch-and-bound algorithm
introduced by Buchheim et al. [5].

For future work it remains to study possible and good choices of Q for other
classes of problems. Moreover, the running time could be further reduced by,
e.g., trying to eliminate non-active underestimators or approximately solving
the surrogate problem instead of solving it to optimality, in order to obtain
additional quadratic underestimators quickly. Furthermore, our approach could
be extended to constrained convex integer programs by using penalty functions.
For this, note that a feasible Q stays feasible if adding a convex penalty function
to the objective function.

Finally, one could also consider using non-convex quadratic underestimators
for non-convex nonlinear integer optimization within our framework, assum-
ing that a fast algorithm for solving non-convex quadratic integer programs is
at hand; potential candidates are the algorithms proposed by Buchheim and
Wiegele [4] or by Buchheim, De Santis, Palagi and Piacentini [6]. Such an exten-
sion would allow our approach to be applied to a much wider class of problems
than classical linear outer approximation.
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Abstract. We present a new approach to constrained quadratic binary
programming. Dual bounds are computed by choosing appropriate global
underestimators of the objective function that are separable but not nec-
essarily convex. Using the binary constraint on the variables, the min-
imization of this separable underestimator can be reduced to a linear
minimization problem over the same set of feasible vectors. For most
combinatorial optimization problems, the linear version is considerably
easier than the quadratic version. We explain how to embed this approach
into a branch-and-bound algorithm and present experimental results.

1 Introduction

Many combinatorial optimization problems admit natural formulations as binary
quadratic optimization problems. Such problems take the form

min f(x) := x�Qx+ L�x
s.t. x ∈ X ,

(1)

where Q ∈ Rn×n is a symmetric matrix, L ∈ Rn is a vector and X ⊆ {0, 1}n is
the set of feasible binary vectors. In this paper, we consider problems where the
linear counterpart of Problem (1),

min c�x
s.t. x ∈ X ,

(2)

can be solved efficiently for any vector c ∈ Rn. We do not make any assumptions
on how Problem (2) is solved. In particular, any combinatorial algorithm can
be used, a compact linear description (or polynomial-time separation algorithm)
for conv (X) is not required.

Even under this assumption, the quadratic problem (1) is usually NP-hard.
This is true, e.g., for the unconstrained case X = {0, 1}n, where Problem (1)
is equivalent to unconstrained quadratic binary optimization and hence to the
max-cut problem. To give another example, the quadratic spanning tree problem
is NP-hard [1], while the linear counterpart can be solved very quickly, e.g., by
Kruskal’s algorithm.
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The standard approach for solving problems of type (1) is based on lineariza-
tion. In a first step, a new variable yij representing the product xixj is introduced
for each pair i, j. Then the convex hull of feasible solutions in the extended space
is usually approximated either by a polyhedral relaxation or by semidefinite pro-
gramming (SDP) models, or by a combination of both. The main focus lies on
enforcing the connection between x- and y-variables. For the unconstrained case,
we point the reader to [5] and the reference therein. In the constrained case, most
approaches presented in the literature are highly problem-specific.

A different approach to binary optimization is the QCR technique [2]. Instead
of linearizing the problem, it is reformulated as an equivalent binary optimization
problem with a convex quadratic objective function. This allows to apply more
powerful software tailored for convex problems. In particular, it is now possible
to solve the continuous relaxation of the problem efficiently. The QCR approach
is designed such that this relaxation yields as tight lower bounds as possible.

In this paper, we propose a different approach. It is based on computing under-
estimators g of the quadratic objective function f . A lower bound on Problem (1)
can then be computed by minimizing g(x) over x ∈ X . Unlike most other ap-
proaches based on underestimators, we however do not use convex functions in
general, but separable non-convex functions. The main idea of our approach is
to determine a good separable underestimator g of f in the first step; in the
second step we can reduce the separable quadratic function to a linear function
exploiting the binarity of all variables. The minimization of g(x) over x ∈ X can
thus be performed by solving Problem (2). Convexity is not required for this
approach. The resulting lower bounds are embedded into a branch-and-bound
scheme for solving Problem (1) to optimality.

Compared with linearization, the advantage of our approach lies in the fact
that we do not need to add any additional variables. Moreover, we do not require
any polyhedral knowledge about conv (X) and do not use any LP solver at
all. At the same time, any algorithmic knowledge about the linear problem (2)
is exploited directly. Compared with the convexification approach, we have a
chance to obtain better lower bounds, since we do not require convexity of the
underestimator.

An important question in our approach is how to compute the separable
underestimator g. We first fix a point z ∈ Rn where f(z) = g(z), i.e., where
the underestimator touches the original objective function. Reasonable choices
discussed in this paper are the stationary point x̄ of f , the origin, and the
center of the box 1

21. Under this restriction, we compute a separable quadratic
function g that is a global underestimator for f and that maximizes the minimum
of g(x) over X , i.e., that yields a best possible lower bound. We show that this
task can be accomplished efficiently either by solving a semidefinite program or
by applying a subgradient method, depending on z and X .

This paper is organized as follows. In the next section, we formalize the main
ideas of our approach. In Section 3, we present strategies to determine separa-
ble underestimators yielding best possible lower bounds. In Section 4, we discuss
how lower bounds can be improved by taking valid linear equations into account.
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Details of our branch-and-bound algorithm are given in Section 5. In Section 6,
we evaluate our approach computationally, applying it to unconstrained prob-
lems and to instances of the quadratic spanning tree problem. It turns out that
the new algorithm, though being very general, can solve problems of medium
size in reasonable running time.

2 Notation and Basic Idea

We consider Problem (1) and assume that its linear counterpart, Problem (2),
can be solved efficiently for any vector c ∈ Rn. We will use Problem (2) as a black
box in the following. Our main idea is to derive a lower bound for Problem (1) by
globally underestimating f by a separable but not necessarily convex function g
and then using Problem (2) to compute the bound.

For an arbitrary point z ∈ Rn, we can rewrite f(x) as

f(x) = (x− z)�Q(x− z) + (L+ 2Qz)�x− z�Qz . (3)

Now define

g(t)z (x) := (x− z)�Diag(t)(x − z) + (L+ 2Qz)�x− z�Qz

=
n∑

i=1

tix
2
i +

n∑
i=1

(−2ziti + li + 2q�i z)xi +
n∑

i=1

z2i ti − z�Qz

for t ∈ Rn, where qi denotes the i-th row of Q. Then g
(t)
z (z) = f(z), i.e., the

function g
(t)
z touches f in the point z. By (3), it is easy to see that the function g

(t)
z

is a global underestimator of f if and only if Q & Diag(t). In this case, the desired
lower bound can be obtained as

min g(t)z (x) s.t. x ∈ X . (4)

As X ⊆ {0, 1}n, we can replace Problem (4) by the equivalent problem

min l(t)z (x) s.t. x ∈ X (5)

where the function

l(t)z (x) :=

n∑
i=1

tixi +

n∑
i=1

(−2ziti + li + 2q�i z)xi +

n∑
i=1

z2i ti − z�Qz

= ((1− 2z) · t+ L+ 2Qz)�x+ z2 · t− z�Qz

is bilinear in x, t ∈ Rn. Here we use · to denote entrywise multiplication and
define z2 := z · z. Note that Problem (5) is of type (2) and can thus be solved
efficiently by our assumption.

This approach is feasible for each touching point z ∈ Rn. Throughout this
paper, we concentrate on three different choices of z: the origin, the point 1

21,
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and the stationary point x̄ := − 1
2Q

−1L of f (if Q is a regular matrix). In the

respective special cases, the function l
(t)
z can be simplified as follows:

l(t)z (x) =

⎧⎪⎨
⎪⎩

x�t+ L�x if z = 0
1
41

�t+ (L+Q1)�x− 1
41

�Q1 if z = 1
21

((1− 2x̄) · x+ x̄2)�t− x̄�Qx̄ if z = x̄ .

3 Optimal Separable Underestimators

The choice of t is crucial for the strength of the lower bound resulting from (5).
As discussed above, this lower bound is valid for each t ∈ Rn with Q & Diag(t).
Our objective is to maximize the lower bound induced by t. In other words, our
aim is to solve the problem

max minx∈X l
(t)
z (x)

s.t. Q & Diag(t) .
(6)

In the easiest case X = {0, 1}n, we have

min
x∈{0,1}n

l(t)z (x) = min
x∈{0,1}n

((1− 2z) · t+ L+ 2Qz)�x+ z2 · t− z�Qz

= z2 · t− z�Qz +
n∑

i=1

min{0, (1− 2zi)ti + li + 2q�i z}

so that Problem (6) reduces to solving the semidefinite program

max
∑n

i=1 z
2
i ti + yi

s.t. yi ≤ 0
yi ≤ (1− 2zi)ti + li + 2q�i z
Q & Diag(t) .

For general X , Problem (6) can be solved by a subgradient approach; this is
discussed in Section 3.1. However, if the chosen touching point is z = 1

21, the
problem can again be reduced to solving a single semidefinite program, as ex-
plained in Section 3.2.

3.1 Subgradient Method

For general X ⊆ {0, 1}n, Problem (6) can be solved by a subgradient method.
For this, we can model the constraint Q & Diag(t) by a penalty function, and
obtain the following problem:

max minx∈X l
(t)
z (x) + μmin{0, λmin(Q−Diag(t))}

s.t. t ∈ Rn ,
(7)
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where μ is a suitably large non-negative number. The objective function of (7)
is concave, so that a subgradient approach can be used to solve the problem
efficiently. The supergradient of

min
x∈X

l(t)z (x)

at a given point tk can be computed by using the black box (2), as l
(tk)
z (x) is a

linear function in x. Given the optimal solution x̂k, the desired supergradient is

the gradient of l
(t)
z (x̂k), which is easily computed since l

(t)
z (x̂k) is a linear function

also in t. If λmin(Q − Diag(tk)) < 0, the supergradient of the penalty term can
be obtained as −μv2, where v is a normalized eigenvector corresponding to the
eigenvalue λmin(Q− Diag(tk)).

The resulting subgradient approach is sketched in Algorithm 1. Note that
Algorithm 1 can be stopped at any time. Let tk be the best solution to Prob-
lem (7) obtained so far. If Q − Diag(tk) & 0, then tk is also feasible for (6).
If λmin(Q −Diag(t∗)) < 0, then a new solution t̄ can be obtained by

t̄ := tk + λmin(Q−Diag(tk))1

and t̄ is a feasible solution for (6) by construction.

Algorithm 1. computation of optimal underestimator

input : function f , set X, touching point z, penalty parameter μ,
procedure for solving Problem (2)

output: a (near-)optimal solution to Problem (6)

t0 ← λmin(Q)1;
k ← 0, STOP← false;

while STOP= false do

solve minx∈X l
(tk)
z (x), let x̂k be the optimal inner solution;

// using black box to solve the inner problem

Δtk ←
(
∇t l

(t)
z (x̂k)

)
(tk); λ ← λmin(Q−Diag(tk));

if λ < 0 then

choose normalized eigenvector v of Q−Diag(tk) to eigenvalue λ;
Δtk ← Δtk − μv2;

end
// computing a supergradient

if Δtk ≈ 0 then

STOP←true; // tk is (near-)optimal
end
else

tk+1 ← tk +Δtk; k ← k + 1;
end

end
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3.2 Box Center as Touching Point

If the touching point z is chosen as 1
21, the optimization problem (6) can be

solved more efficiently. In this case, the function

l(t)z (x) =
1

4
1�t+ (L+Q1)�x− 1

4
1�Q1

does not contain any product between x and t. Problem (6) can thus be decom-
posed as follows:

max 1
41

�t + min (L+Q1)�x − 1
41

�Q1
s.t. Q & Diag(t) s.t. x ∈ X

The first problem is an SDP, while the second problem can be solved by calling
the oracle (2) once. In particular, the optimal underestimator only depends on Q
in this case, but not on L. This fact can be exploited in our branch-and-bound
algorithm, as explained in Section 5.1.

4 Taking Valid Equations into Account

So far, we assumed that we can access the set X of feasible solutions only via the
linear optimization oracle (2). This oracle is used in the second step of the lower
bound computation, the minimization of the underestimator. In particular, this
step implicitly exploits full knowledge about X .

On the other hand, the computation of an underestimator does not exploit

any properties of X , we require that g
(t)
z globally underestimates f . If it is known

that the set X satisfies certain linear equations Ax = b, this information can be
used to improve the lower bounds significantly: it is enough to require that the

function g
(t)
z is an underestimator of f on the affine subspace given by Ax = b.

This leads to a weaker condition on t, which can still be handled efficiently.
More precisely, let H = {x ∈ Rn | Ax = b} be nonempty and choose w ∈ H .

Let v1, . . . , vk be an orthonormal basis of the kernel of A and set V = (v1| . . . |vk),
so thatH = {w+V y | y ∈ Rk}. We first assume that the touching point z belongs
to H , e.g., by defining it as the orthogonal projection of 1

21 to H :

z := w + V V �(121− w)

Now g
(t)
z |H is an underestimator of f |H if and only if

(x − z)�Q(x− z) ≥ (x− z)�Diag(t)(x − z) ∀x ∈ H

⇔ y�V �QV y ≥ y�V �Diag(t)V y ∀y ∈ Rk

⇔ V �QV & V �Diag(t)V .

The latter constraint can be used to replace the stronger constraint Q & Diag(t)
both in the subgradient approach and in the SDP based computation of t, po-
tentially yielding tighter lower bounds in both approaches. In the former ap-
proach, the penalty term can be replaced by min{0, λmin(V

�(Q−Diag(t))V )} .
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The corresponding supergradient is −(V v)2, where v is a normalized eigenvector
of V �(Q −Diag(t))V corresponding to its smallest eigenvalue.

In the latter approach, the constraint Q − Diag(t) & 0 can be replaced
by V �(Q − Diag(t))V & 0 and the resulting problem remains a semidefinite
program. Note that the dimension of this SDP decreases by n − k = rk(A). In
other words, a bigger rank of A implies a smaller number of variables in the
semidefinite program.

5 Branch-and-bound Algorithm

In order to solve Problem (1) exactly, we embed the lower bounds derived in Sec-
tion 3 into a branch-and-bound framework. We thus need to compute the lower
bounds as quickly as possible and for many related problems. In the following,
we describe how the ideas presented in the previous sections can be adapted to
this situation.

5.1 Branching Strategy

In order to compute lower bounds as quickly as possible, we restrict ourselves in
two different ways:

1. We determine an order of variables at the beginning and fix variables always
in this order. More precisely, if x1, . . . , xn is the chosen order, the next vari-
able to be fixed is the free variable with smallest index. The same idea has
been used in [3] and [4].

2. We do not call the subgradient method to compute an optimal t in every
node, but try to find one fixed t for each level of the enumeration tree that
yields strong lower bounds on average. This reduces the number of oracle
calls to one per node.

The reason for accepting Restriction 1 is as follows: by this branching strategy,
the reduced matrices Q in the nodes of the enumeration tree only depend on the
depth of the node but not on the specific subproblem. Consequently, only n such
matrices can appear in the enumeration tree, instead of 2n when applying other
branching strategies. All time-consuming computations concerning this matrix
can now be performed in a preprocessing phase. In particular, in combination
with Restriction 2, we can now determine one feasible t for all nodes on a given
depth in the preprocessing.

More precisely, consider a subproblem on depth d of the enumeration tree.
This means that variables x1, . . . , xd have been fixed to some values α ∈ {0, 1}d
and the resulting objective function in the given node becomes

fα : R
n−d → R, fα(x) = x�Qαx+ L�

αx+ cα ,

where Qα is obtained from Q by deleting the first d rows and columns and

(Lα)j := Ld+j + 2
d∑

i=1

αiQd+j,i, cα :=
d∑

i,j=1

αiαjQi,j +
d∑

i=1

αiLi .
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As Qα only depends on the depth d but not on α, we may denote it by Qd. The
coefficients of Lα and cα can be computed incrementally in O(n − d) time per
node using the recursive formulae

(Lα)j = (L(α1,...,αd−1))j+1 + 2αdQd+j,d

cα = c(α1,...,αd−1) + α2
dQd,d + αdLd .

In Section 3 we showed that for the special touching point 1
21 the optimal lower

bound can be computed as

max 1
41

�t + min (L+Q1)�x − 1
41

�Q1 .
s.t. Q & Diag(t) s.t. x ∈ X

The first problem is a semidefinite program that does not depend on Lα or cα.
In other words, the optimal t for all nodes on depth d is the same and can be
computed in the preprocessing.

In order to accelerate the computation of lower bounds, we can apply this
approach for any choice of a touching point z. Any solution of the SDP

max 1�t
s.t. Q & Diag(t)

(8)

yields feasible lower bounds. In general, the resulting lower bounds are weaker
than the bounds obtained from the subgradient method presented in Section 3,
but in terms of total running time this approach outperforms the subgradient
approach, as only one oracle call per node is necessary.

5.2 Incremental Update for Valid Equations

The fixed order of variables can also be exploited to accelerate the computation
of data necessary to handle valid equations. It implies that the induced constraint
matrix in a given node again only depends on its depth d in the enumeration
tree, it results from deleting the first d columns from A; denote the resulting
matrix by Ad. Consequently, the kernel vectors Vd of Ad can be computed in a
preprocessing phase again, and the same is true for the matrices V �

d QdVd needed
in the computation of lower bounds.

On contrary, the induced right hand side of the set of valid equations depends
on the fixings applied so far, it turns out to be

bα := b−
d∑

i=1

αiA•,i ∈ Rm .

This implies that the projection zα of some touching point zd ∈ Rn−d to the
subspace given by Adx = bα depends on the specific node and cannot be com-
puted in the preprocessing. However, it can be calculated incrementally, thus
avoiding to solve a linear system of equations in every node of the enumeration
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tree: in the preprocessing phase we determine vectors w0 ∈ Rn and yd ∈ Rn−d

for d = 1, . . . , n satisfying

Aw0 = b and A•,d+1...nyd = A•,d for all d = 1, . . . , n .

When enumerating the branch-and-bound nodes, we incrementally compute a
vector wα satisfying Adx = bα as follows: for d = 0, we can use wα = w0.
For d ≥ 1, we set

wα := (w(α1,...,αd−1))2...n−d+1 + ((w(α1,...,αd−1))1 − αd)yd ∈ Rn−d .

Then

Adwα = Ad(w(α1,...,αd−1))2...n−d+1 + ((w(α1,...,αd−1))1 − αd)Adyd

= Ad−1w(α1,...,αd−1) − αdA•,d

so that by recursion we obtain

Adwα = A0w0 −
d∑

i=1

αiA•,i = bα

as desired. The projected touching point can now be computed using the formula

zα := wα + VdV
�
d (zd − wα)

given in Section 4, where VdV
�
d can again be computed in the preprocessing.

The total running time for computing zα in a node on depth d using this ap-
proach is O((n − d)2). The time spent in the preprocessing is dominated by
the time needed to solve the n + 1 systems of linear equations determining w0

and y1, . . . , yn.

5.3 Application of the Subgradient Method

Inside a branch-and-bound framework, the running time of the subgradient
method for computing a vector t, as presented in Section 3, can be cut in several
ways. As with any subgradient method, a careful tuning of parameters, such as
step length, is important for obtaining a decent rate of convergence. Moreover,
in a given node on depth d ≥ 1, we use the best solution t∗(α1,...,αd−1)

of the

parent node for warmstarting. More precisely, we use the last n − d entries of
this solution as initial solution for t0α and choose an initial step length that is
decreasing with increasing depth d in the enumeration tree.

Furthermore, as every feasible iterate in the subgradient method yields a valid
lower bound for our primal problem, we can stop Algorithm 1 as soon as the
current lower bound given by (5) exceeds the primal bound, i.e., the objective
value of the best known solution of Problem (1).

From a practical point of view, a good strategy is to perform a few re-
optimization iterations of Algorithm 1 in every node. An even more restricted
approach is to determine the best possible t in the root node and then keep
the corresponding underestimator throughout the entire branch-and-bound al-
gorithm, with the necessary adaptions. We will compare these choices in the
numerical experiments in Section 6.
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6 Experiments

The aim of this section is to determine which variant of our approach yields the
most effective underestimator t. As benchmark we use two sets of instances:

– Unconstrained BQP.
We generated a set of random binary instances with n = 20, 30. Ten possible
levels of convexity of Q are tested: from 10% to 100% of negative eigenvalues.
For a given concavity, we randomly generate three different instances for a
total of 60 instances.

– Quadratic Spanning Tree Problem.
We generated a set of random graphs G = (V,E) and associated linear and
quadratic costs L and Q with uniformly distributed random integer entries,
with absolute value in the interval [1, 100]. A given instance is characterized
by (1) the number of nodes |V | = 15, 20, (2) the density d = 25%, 50%, 75%
of G, and (3) the percentage of positive coefficients p = 25%, 50%, 75%; the
matrix Q is dense in all instances. For each combination of parameters we
randomly generate three different instances for a total of 54 instances.

For all tests, we use an Intel Xeon E5-2670 processor, running at 2.60 GHz with
64 GB of RAM. Running times are stated in CPU seconds.

As first step, we test different touching points z as explained in Section 2.
For each candidate, we solve Problem (8) in the preprocessing phase. As test
bed we use the Unconstrained BQP. In Figure 1 we present the average number
of branch-and-bound nodes for a given percentage of negative eigenvalues. In
addition to the results obtained by using the optimal t of Problem (8) (SDP),
we also report those obtained by using the trivial underestimator t = −λmin(Q)1
(Triv). For each policy for t we report the results obtained by fixing the touching
point to the origin (0), 1

21 (0.5) or x̄ (stat). It is obvious from these results that
the best choice is z = 1

21 (yellow and green columns): the total number of
explored nodes is 10 times and 100 times less than the number of nodes needed
with touching point z = 0 (blue and red columns) and z = x̄ (brown and light
blue columns) respectively.

As second step we want to test how t is improved by taking valid inequalities
into account; see Section 4. The set Quadratic Spanning Tree Problem is used
and the (only) valid equation is

∑
e∈E xe = |V | − 1. In Table 1 we show how

even one single equation is improving the behaviour of the corresponding t. Every
line is reporting the number of nodes and computing time (corresponing to an
average of three instances). The dimension n of the instances is stated in the
second column. With Eq we indicate that t is obtained considering equations and
with NoEq the opposite, moreover we report the ratio r between these values.
Also in this case the answer is clear: considering equations decreases significantly
the number of nodes. E.g., for the larger instances this decreases the number of
nodes by a factor of 50 and the solution time by a factor of 20. We finally remark
that Table 1 only reports results for smaller instances, because only 15 out of 21
large instances were solved within our time limit of four hours by NoEq. Also in
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Fig. 1. Touching points comparison

Table 1. Effect of taking equations into account

Nodes Time
instances n NoEq Eq ratio NoEq Eq ratio

qstp 15 25 25 26 2,714.3 2,685.0 1.0 0.4 1.1 0.4

qstp 15 25 50 26 7,514.3 6,747.0 1.1 0.4 1.1 0.4

qstp 15 25 75 26 5,545.7 5,141.7 1.1 0.4 1.0 0.4

qstp 15 50 25 52 456,420.3 138,324.3 3.3 24.0 66.4 0.4

qstp 15 50 50 52 29,846,421.7 1,203,823.0 24.8 163.0 70.3 2.3

qstp 15 50 75 52 983,578,822.3 18,793,411.7 52.3 4452.3 207.0 21.5

this case, using Eq improved the performance, allowing to solve 5 out of the 6
instances unsolved by NoEq.

Finally, we test whether updating t during the exploration of the branch-
and-bound tree applying Algorithm 1 is better than solving a series of SDPs
in the preprocessing. Using the warmstart described in Section 5.3, the values
of t in the non-root nodes of the tree are computed by k rounds of Algorithm 1.
We tried different settings k = 1, 2, 5, 10, 100, but none of them succeeded in
improving the overall computation time. In Figure 2, we show how the increase
in k affects the total number of nodes and the running time for the set of instances
qstp 15 50 50. The red line represents the values obtained by computing t in
the preprocessing and the blue line represents the subgradient evolution. As we
can see, almost 100 iterations of Algorithm 1 per node are needed in order to
improve at least the number of nodes.

The results presented clearly indicate that the best setting is using 1
21 as

touching point, fixing the best underestimators t levelwise from the beginning
and taking into account valid equations. Obtaining a good solution to Prob-
lem (6) is a crucial aspect, additional tests showed also that increasing the
tolerance in the SDP solver (and hence allowing worse solutions) provides signifi-
cantly worse underestimators. This consideration, together with the other results
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Fig. 2. Results of the subgradient method for qstp 15 50 50

provided in this section, gives an idea about the strong sensitivity of the overall
algorithm to the chosen vector t. The importance of valid inequalities makes
problems such as the quadratic assignment problem or the quadratic shortest
path problem particularly appealing for future applications of our approach.

Acknowledgments. The authors would like to thank Antonio Frangioni for
fruitful discussions and suggestions that improved the present paper significantly.
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Abstract. The principal idea of this paper is to exploit Semidefinite
Programming (SDP) relaxation within the framework provided by Mixed
Integer Nonlinear Programming (MINLP) solvers when tackling Binary
Quadratic Problems. We included the SDP relaxation in a state-of-the-
art MINLP solver as an additional bounding technique and demonstrated
that this idea could be computationally useful. The Quadratic Stable Set
Problem is adopted as the case study. The tests indicate that the Hy-
brid SDP Bounding Procedure allows an average 50% cut of the overall
computing time and a cut of more than one order of magnitude for the
branching nodes.

Keywords: Binary Quadratic Problems, Semidefinite Relaxation, Branch
and Cut, Quadratic Stable Set Problem.

1 Introduction

There are two main classical approaches present in the literature for solving Bi-
nary Quadratic Problems (BQP). The first one is directly using a Mixed Integer
Nonlinear Programming (MINLP) solver to tackle a mathematical formulation
(possibly linearizing the quadratic terms). The second approach uses Branch
and Bound techniques which rely on the Semidefinite Programming (SDP) re-
laxation. The advantage of using MINLP solvers is that they have been strongly
developed for decades. To mention just a few examples, we can cite some com-
mercial software like BARON [2], CPLEX [7] and Gurobi [9]; as well as non
commercial, for instance Bonmin [4]. They rely on sophisticated Branch and Cut
(BC) algorithms based on a smart implicit enumeration of the branching tree.
The bounding procedure typically makes use of Continuous Relaxation (CR) in
order to prune the branching nodes. This relaxation can be efficiently computed
but often, to be effective, it must be strengthened by adding families of valid
inequalities. The second approach relies instead on the SDP relaxation. This re-
laxation is typically stronger than CR but generally it is computationally heavy.
To the best of our knowledge, there are not many generic SDP-based solvers,
BiqCrunch [3] to name one. On the other hand, there are many problem-oriented
SDP algorithms, and we refer the interested reader for instance to [6], [12] or [14].

V. Bonifaci et al. (Eds.): SEA 2013, LNCS 7933, pp. 248–259, 2013.
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Within this context, we mention some works (see for example [1]), where the au-
thors compare SDP relaxation and CR proving that stronger bounds can be
achieved.

The principal contribution of this paper is to combine the strengths of both
approaches, exploiting the SDP relaxation when enhancing the pruning strate-
gies and thus the overall performances of a MINLP solver. To summarize, our
goal boils down to addressing the following research questions:

– Is it worth exploiting the strength of bounds provided by SDP relaxation
within a well tuned BC framework?

– Which mathematical formulation will profit more from the addition of the
SDP bounding techniques?

– Which SDP relaxation has the best trade-off between the time saved by
pruning nodes and the time needed for computing the SDP relaxation?

– What additional policies are necessary in order to improve the overall com-
putational performances?

The presentation of the theoretical part of the paper is done for the generic case
of the BQP. After each technique is presented, we apply it to the specific case of
the Quadratic Stable Set Problem (QSSP). Recalling that a stable set in a graph
is a subset of vertices such that for every two vertices selected in the solution,
there is no edge connecting the two, the formal definition of the QSSP is the
following: given an undirected graph G = (V,E), with V (n = |V |) the set of
vertices and E the set of edges, a vector of linear profit L ∈ Rn and a symmetric
matrix of quadratic profit Q ∈ Rn×n (possibly negative), the Quadratic Stable
Set Problem (QSSP) searches for a stable set of G with maximum profit. In
other words, if vertices i and j are in the solution, not only the linear profits are
collected but also an additional profit equal to Qij . This quadratic counterpart of
the Linear Stable Set Problem has not received much attention in the literature
(we refer the interested reader for the linear case to [8] and [13]). Furthermore,
to the best of our knowledge, the only papers that address the QSSP are [10]
and [11]. In these works it appears as the sub-problem of a Column Generation
algorithm and little computational analysis is presented.

2 Different Mathematical Formulations

The first step of the present work is to introduce the mathematical formulations
that can be handled by a generic MINLP solver, i.e. the Quadratic Formulation
and the Linear Formulation.

2.1 Quadratic Formulation

The Quadratic Formulation (QF) of the BQP, with n variables and p constraints,
is defined as follows:
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(QF) max

n∑
i=1

n∑
j=1

Qijxixj +

n∑
i=1

Lixi

x ∈ K

x ∈ {0, 1}n,
with Q ∈ Rn×n, L ∈ Rn, K = {x ∈ Rn : Ax ≥ b}, A ∈ Rp×n and b ∈ Rp. Q is a
generic symmetric matrix, not restricted to being convex.

In the case of QSSP on a given undirected graph G = (V,E), with V the set
of vertices and E the set of edges, we have:

K = {x ∈ Rn : xi + xj ≤ 1, ∀{i, j} ∈ E} .

In order to solve the QF, many generic MINLP solvers are available. In addi-
tion, other solvers, explicitly defined for BQP can be used, such as Cplex and
GloMIQO.

2.2 Linear Formulation

Another option for modelling BQP is to linearise the quadratic terms (we refer
the interested reader to [16]) and obtain the following Linear Formulation (LF):

(LF) max
n∑

i=1

n∑
j=i

Qijyij +
n∑

i=1

Lixi

yij ≤ xi

yij ≤ xj

yij ≥ xi + xj − 1
yij ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ i, j = 1, . . . , n (1)

x ∈ K

x ∈ {0, 1}n .

This linearization increases the size of the problem adding at most n2 non-
negative variables and 3n2 constraints.

3 SDP Formulation

BQP can also be formulated as follows:

max 〈Q̃, Y 〉

Y =

(
1
x̄

)(
1
x̄

)�
(2)

x̄ ∈ K̄ (3)

x̄ ∈ {−1, 1}n (4)
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obtained after applying the linear transformation x̄i = 2xi − 1, imposing

Q̃ =

( 1
2

∑n
j=1 Li +

1
4

∑n
i=1

∑n
j=1 Qij

1
4 (L+ 1

2

∑n
j=1 Qj)

�
1
4 (L + 1

2

∑n
j=1 Qj)

1
4Q

)

where Qj is the j-th column of Q, and K is modified to K̄ accordingly.

For the QSSP we have:

K̄ = {x ∈ Rn : xi + xj ≤ 0, ∀{i, j} ∈ E} .

Alternatively, we can exploit the fact that the quadratic constraints xixj = 0 for
every edge {i, j} ∈ E (valid for the stable set) becomes linear when rewritten in
the Y space, we can hence instead of K̄ add the following set of valid equations:

Yij + Y0i + Y0j + 1 = 0, ∀{i, j} ∈ E . (5)

Constraints (2) and (4) together can be rewritten as Y & 0, diag(Y ) = e and
rank(Y ) = 1, leading to the following equivalent formulation:

max 〈Q̃, Y 〉
Y & 0

rank(Y ) = 1 (6)

diag(Y ) = e

Y0 ∈ K̄ (7)

with e being the all-ones vector and Y0 being the first row of Y without the
first element (note that Y0 = x̄). To the best of our knowledge, few solvers are
able to deal directly with this formulation, BiqCrunch is one of them. Normally
these solvers rely on solving special kinds of SDP relaxations. By relaxing the
rank constraints (6) we obtain the classic SDP relaxation which provides valid
bounds for all the BQP formulations. Note that this relaxation can be weakened
by eliminating constraints (7) or strengthened by substituting them by the equa-
tions (5). Moreover, any valid inequalities for the LF, for the convex hull of K̄
and for the convex hull of their intersection can be added in order to improve the
bound further. An important class of valid inequalities for the SDP relaxation
are the so-called triangle inequalities, see for example in [14], where the authors
suggest how to carefully separate them and keep the overall computational time
under control. Finally, in order to tackle the SDP relaxation, we recall that there
are different solvers available in the literature, for instance [5] and [15].

4 Hybrid Bounding Procedure

The Hybrid Bounding Procedure is the idea of mixing two different relaxations,
i.e. the basic relaxation used by a generic BQP solver and the SDP relaxation.
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As previously underlined there are many different possible ways of deriving an
SDP relaxation for a BQP. In the following we will define with Ψ a generic
version of the SDP relaxation. Furthermore we introduce another function called
Ω which controls the fact of performing function Ψ in a specific node or not.
This is done because potentially the computation of Ψ can be time-consuming
and hence it has to be used ideally only when worth it, in other words, when it
prunes the node. Accordingly we need two functions available at each node of the
BC tree:

– Function Ψ is the SDP relaxation that takes as inputQ, L and a partial fixing
of the variables and returns a bound (UBSDP ) on the original objective
function.

– Function Ω is an oracle that takes as input all the information about the
current node and returns a binary variable indicating whether Ψ should be
used or not.

The node processing is represented in Algorithm 1, where LB is the incumbent
best feasible solution.

Input: best incumbent solution of value LB and current variable fixing.
Output: 1 if the current node can be fathomed, 0 otherwise.

Solve the continuous relaxation and get the bound UB;
if (UB ≤ LB) then return 1.
OK ← Ω.
if (OK = FALSE) then return 0.
solve Ψ and get the bound UBSDP .
if (UBSDP ≤ LB) then return 1.
else return 0.

Algorithm 1. Processing at each decision node

In the following computational section we measure the effectiveness of different
options of Ψ and Ω in order to improve the overall efficiency.

5 Computational Experiments

The experiments are divided into two steps: first we start with a wide test-bed of
instances of small sizes in order to test different possible options and strategies
for the Hybrid SDP bounding procedure described in Section 4, once the best
settings have been identified, we test bigger instances to evaluate the practical
impact of our procedure. All algorithms were coded in C, and run on a PC with
an Intel(R) Core2 Duo CPU E6550 at 2.33GHz and 2 GB RAM memory, under
Linux Ubuntu 12 64-bit. The optimization software used in our test was Cplex
12.4 single thread. The SDP relaxation solver used is CSDP (described in [5])
and it was inserted in the Cplex framework using the callBack functions of the
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Callable Library of Cplex. Moreover, we stop the SDP solver as soon as we
find a dual bound able to prune the current node, checking the corresponding
dual feasibility.

5.1 Testbed Description

As a first test-bed we randomly generated a set of QSSP instances; the goal
was to have a statistical relevance (several instances with the same features)
and to have the complete control of the characteristics of the different classes of
instance proposed. The instance generator produces random graphs according to
the desired number of vertices n and density μ (which implies a number of edges

equal to �μ× n(n−1)
200 �). The linear and quadratic profits take a uniformly random

integer value in the interval [−100, 100], a third parameter ν represents the
percentage of positive profits. We generated 27 classes of instances by considering
all combinations of:

– number of vertices: n ∈ {50, 60, 70};
– density of edges: μ ∈ {25%, 50%, 75%};
– percentage of positive costs: ν ∈ {25%, 50%, 75%}.

In addition we created 10 instances for each class using different random seeds,
thus obtaining in total 270 QSSP instances. As a second test-bed we focus on
instances with 100 vertices with the same range of densities and percentages of
positive costs. The whole set of instances is available upon request to the authors.
In the next sections we discuss the computational outcome of the experiments.

5.2 Identifying the Best Mathematical Formulations

The goal of this section is to computationally evaluate the different formula-
tions, i.e. QF or LF. In order to do that, we used Cplex with default parameter
settings. In Figure 1(a) and 1(b) the computing time (seconds) and number of
nodes (logarithmic scale) required for the optimization are reported, dividing
the instances (from bottom to top) by vertex number (n), density (μ) and per-
centage of positive profits (ν). As far as the computing time is concerned, the
best mathematical formulation is always QF. It is interesting to stress that the
behaviour in terms of number of nodes is exactly the opposite: QF performs
a number of nodes on average which is at least one order of magnitude bigger
than LF. The tests also confirm the tendency for instances with low density to
be more difficult than instances with high density. On the other hand, instances
with a high percentage of positive profits ν are more difficult than the ones with
a low value. These experiments allow us to conclude that QF is better than LF.
Moreover, the fact that QF explores a larger amount of nodes makes it a more
promising candidate for testing the addition of a second bounding procedure.
For these reasons, in the rest of the tests we will focus only on QF.
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Fig. 1. Performance comparison of different mathematical formulations (QF-LF)

5.3 Different Strategies for Ψ

We propose the following three different options for Ψ :

– Unconstrained: SDP relaxation without constraints.
– Constrained: SDP relaxation with the family of constraints (7).
– Constrained2: SDP relaxation with the family of constraints (5).

In order to access the performance of the different options, six different bounds
are computed and compared in Table 1. QF is the root bound of the Cplex
BQP solver, LF is the root bound of the continuous relaxation of LF and LFc is
like LF but with the addition of the cuts separated by Cplex in the root node.
Finally Uncon, Con1 and Con2 are respectively the bounds of the three different
strategies (Ψ). For each option we provide two values: the ratio between the
bound obtained and the optimal solution (where a ratio of 1 indicates that the
relaxation has no gap with the optimal solution) and the average time needed to
compute it. The information concerning QF and LFc confirms the results obtained
in Section 5.2: a BC based on LF is not competitive. It is also interesting to
notice that Unconstrained presents a worse gap than QF, although this does
not imply that the addition of Unconstrained is not helpful because the SDP
relaxation is computationally sensitive to variable fixing during the BC tree

Table 1. Bound Comparison

Ratios Times

n QF LF LFc Uncon Con1 Con2 QF LF LFc Uncon Con1 Con2

50 4.0 8.9 2.1 7.5 4.8 1.1 0.1 0.0 7.5 0.0 1.8 1.3
60 4.8 11.8 2.6 9.7 6.0 1.1 0.2 0.1 14.7 0.0 4.6 3.1
70 5.2 14.3 2.9 11.1 6.9 1.1 0.2 0.2 29.2 0.1 10.0 6.9

4.7 11.7 2.5 9.4 5.9 1.1 0.2 0.1 17.1 0.0 5.5 3.8
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explorations and the bound provided becomes stronger in lower levels of the
BC tree. If we consider the SDP based bounds we see that Constrained1 is
dominated by Constrained2 and that there is an interesting trade-off between
Constrained2 and Unconstrained. Between the three configurations proposed
we hence decided to discard Constrained and to focus on Unconstrained and
Constrained2.

5.4 Different Strategies for the Oracle Ω

Ideally the SDP relaxation should be performed only in the cases in which it
helps in pruning. To cope with this problem, we tried seven different strategies
for the Oracle Ω. The strategies used are:

– 1 Always. The SDP relaxation Ψ is triggered at each node of the BC tree.
– 2 OnOne. Ψ is triggered every time we branch on one.
– 3 UnderAverage. Ψ is triggered if the current integrality gap is lower than

the average integrality gap of the nodes explored so far.
– 4 OverAverage. Ψ is triggered if the current integrality gap is bigger than

the average.
– 5 SmallGap. Ψ is triggered only when the integrality gap is within [0%, 5%].
– 6 MediumGap.Ψ is triggered only when the integrality gap is within [5%, 30%].
– 7 Random. Ψ is triggered with a random 50% probability.

Strategy OnOne exploits the fact that usually when we branch on one the solu-
tion in the child nodes will probably change more significantly than when we
branch on zero, increasing the probability of pruning. Strategies OverAverage

and MediumGap tend to prune the branch and bound tree at the first levels and
they are effective in the case in which the SDP relaxation is much stronger than
the continuous relaxation, and/or they tend not to prune in the same points of
the branching tree. Strategies UnderAverage and SmallGap tend to prune the
nodes at the final levels and are effective in the cases in which the LP relaxation
and the SDP relaxation are strong in the same nodes. Finally, strategies Always
and Random serve as terms of comparison.

5.5 Identifying the Best Ω

Let QF be the basic formulations and QF(Ψ ,Ω) be the same formulation using a
given couple of SDP relaxation (Ψ) and Oracle strategy (Ω). Four performance
indices are collected to assess the computational impact:

δ =
100 · nodQF (Ψ,Ω)

nodQF
, τ =

100 · tQF (Ψ,Ω)

tQF
, π =

100 · t̂QF (Ψ,Ω)

tQF
, β =

100 · tSDP

ttotal

with t being the total optimization time and nod the number of nodes in the BC
tree. Time t̂ represents the “useful” computation time, in other words the total
time minus the time used for non-pruning SDP relaxation Ψ . tSDP is the total
time spent solving SDP in the bounding procedure. Values of δ and τ lower than
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Fig. 2. Comparison of the different strategies (Ω)

one hundred correspond to an improvement in the performances of the BC. The
percentage π gives what in statistics is called “gold standard”, in other words it
gives an idea about what the results could be in presence of an “exact” Ω. β is
useful in order to establish how much an increase in the speed of the SDP solver
would affect the overall performances.

In Figure 2 we compare how these indices change with the increase of the
instance size when we use Constrained2 and all the Ω strategies described. In
particular, from Figure 2(a) we see that the Strategies OnOne, SmallGap and
MediumGap are promising because of the decreasing trend of τ that goes below
the threshold value of 100. The UnderAverage trend seems roughly constant
and the remaining three strategies seem unpromising. From Figure 2(b) we see
that with SmallGap and MediumGap the pruning index δ is high, for these strate-
gies the SDP relaxation is not often computed. The overall good performance of
OnOne can be explained by comparing the performance indices δ and β in Fig-
ures 2(b) and 2(d): on one side the trend of δ is going below 10, in other words
ensuring a decrease of the number of processed BC nodes greater than one or-
der of magnitude; on the other, the fraction of time spent in solving the SDP
(β) is significantly lower when compared to other strategies (but still relevant
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in comparison to SmallGap and MediumGap). Those two points together make
OnOne the best candidate for Ω. Finally, as one could expect, the majority of
the trends of the “gold standard” π (represented in Figure 2(c)) present values
lower than one hundred.

In order to study the interaction between Ψ and Ω we introduce Table 2. The
upper part of the table concerns the Unconstrained option and the lower part
the Constrained2 option. The structure of both parts is identical: vertically the
instances are divided first by density and then by percentage of positive weights
and horizontally, the values of δ and τ concerning the 7 different strategies
are reported. Each entry in the table is the average value over 10 instances
of identical features. Each entry of τ is in bold if the index is less than one
hundred (i.e. if the addition of (Ψ ,Ω) improved the performances). The instances
considered have 70 vertices. Concerning the node reduction, strategy Always

gives the best insight about the maximum reduction achievable. With respect
to the SDP strategy Ψ , as expected, Constrained2 dominates Unconstrained
node-wise, leading to a reduction of almost two orders of magnitude in terms
of nodes explored when the edge constraints are also taken into account. If we
observe the same entries for the Unconstrained mode we see a decrease of
slightly less then one order of magnitude. If we consider the time index τ , the
best behaviour is given by the couple (Constrained2, OnOne), that guarantees
on average an improvement of about 30% over the total running time.

Table 2. QF + SDP Unconstrained and SDP Constrained2 (Ψ)

δ τ

strategy 1 2 3 4 5 6 7 1 2 3 4 5 6 7

n μ ν SDP Unconstrained

70 25 25 1.5 8.3 1.6 9.6 83.7 20.4 4.7 78.6 65.3 65.9 63.4 144.4 99.5 61.3
50 13.8 31.9 13.9 57.9 80.4 19.2 29.5 201.3 125.8 149.2 185.9 134.9 113.6 153.7
75 21.9 43.0 22.8 83.6 79.4 29.2 44.7 227.3 131.2 159.3 201.9 124.1 136.8 177.8

50 25 4.0 15.4 4.1 17.6 96.4 50.7 9.9 96.9 68.1 82.1 93.9 102.5 88.2 83.5
50 13.6 31.7 14.8 46.6 92.3 43.5 28.1 108.9 80.2 89.4 111.9 100.5 86.6 97.1
75 16.4 36.7 16.9 56.3 90.0 47.2 33.4 105.0 74.2 80.2 116.2 97.8 80.5 93.3

75 25 10.0 23.3 14.3 31.1 97.1 63.0 20.7 111.6 90.7 95.7 113.7 99.9 96.3 103.0
50 20.8 40.5 22.2 55.8 98.5 65.5 37.9 111.3 94.9 97.1 113.8 100.3 97.9 104.8
75 18.7 40.0 20.6 57.2 94.6 66.6 36.5 109.6 89.4 91.3 114.3 99.5 95.7 101.7

avg. 13.4 30.1 14.6 46.2 90.2 45.0 27.3 127.8 91.1 101.1 123.9 111.5 99.5 108.5

n μ ν SDP Constrained2

70 25 25 0.4 2.1 0.7 3.8 83.7 20.4 1.1 120.3 65.8 109.9 76.4 186.9 174.0 83.4
50 0.4 1.8 0.8 4.0 80.4 13.9 0.9 71.8 49.4 61.2 54.1 160.5 103.5 46.8
75 0.1 0.4 0.2 1.1 79.9 17.7 0.3 16.6 13.4 16.1 15.4 133.4 76.1 13.4

50 25 1.2 6.4 2.7 5.8 96.4 50.7 3.0 765.7 95.6 404.3 623.8 103.4 94.3 446.8
50 0.7 5.2 1.8 4.9 92.3 43.9 2.0 232.5 82.4 113.7 262.4 101.6 91.6 169.3
75 0.5 3.1 1.4 3.5 90.0 47.0 1.3 207.0 55.2 97.4 213.5 98.1 82.0 146.4

75 25 2.9 15.4 8.7 10.1 97.1 63.0 6.0 1033.3 94.0 371.7 1139.7 99.9 96.8 655.1
50 3.4 13.9 6.6 14.3 98.5 65.4 6.0 796.6 91.4 319.9 660.0 100.4 98.3 420.9
75 1.7 8.6 4.3 8.8 94.6 66.6 5.0 1038.2 85.9 398.1 1079.1 99.6 95.8 654.8

avg. 1.3 6.3 3.0 6.2 90.3 43.2 2.8 475.8 70.4 210.3 458.3 120.4 101.4 293.0
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5.6 Results for Instances with 100 Nodes

One main issue when dealing with a SDP-based approach is the scalability of the
method. In order to answer to this question, we keep the best settings obtained
from the first set of tests and we use them to solve bigger instances, i.e., strategy
Constrained2 (Ψ) and OnOne (Ω). We also decided to keep strategy Always (Ω)
in the analysis for comparison. In Table 3 we report the results concerning the
four parameters introduced in Section 5.5 subdivided horizontally by μ and ν
and vertically by Ω strategy. In Columns avg. times we report the average
times (in seconds) needed for solving the instances without (column QF) and
with (column QF(Ψ ,Ω)) the additional bounding procedure Constrained2 using
OnOne as oracle. The strategy (Constrained2, OnOne) is able to reduce the overall
computational time by 50%. If we consider only the non dense instances (μ = 25)
the overall computational time is reduced by 80%. The results concerning Always
shows how the idea of running the additional bounding procedure without an
oracle is useless in terms of overall computational time.

Table 3. QF + Constrained2 SDP (Ψ) - Instances with 100 nodes

δ τ π β avg. time

str 1 2 1 2 1 2 1 2 QF QF(Ψ ,Ω)

n μ ν

100 25 25 0.1 0.7 89.5 25.0 13.9 18.3 99.0 95.5 345.4 85.2
50 0.1 1.0 49.1 24.0 11.5 17.9 90.9 84.6 419.2 86.9
75 0.0 0.2 5.0 3.1 1.3 2.4 90.1 86.4 4378.0 133.7

50 25 0.3 2.5 679.3 67.0 57.9 57.4 97.5 50.3 41.6 27.9
50 0.2 1.9 489.7 54.9 42.7 48.9 96.7 41.5 54.5 30.0
75 0.2 2.2 274.8 31.0 22.9 23.6 95.8 48.8 120.6 37.6

75 25 1.5 7.2 3449.9 80.9 172.6 79.7 99.3 9.1 20.3 16.4
50 1.4 11.3 2490.0 83.1 164.6 79.7 98.9 9.2 22.7 18.8
75 0.9 6.4 2269.8 72.2 123.9 69.3 98.2 10.3 27.0 19.5

avg. 0.5 3.7 1088.5 49.0 67.9 44.1 96.3 48.4 603.3 50.7

6 Conclusions

In this paper we have explored the use of SDP-based bounding procedures within
the BC framework provided by MINLP solvers. In order to do that, we performed
an extensive computational analysis on the QSSP that allows us to conclude that
the Hybrid SDP Bounding Procedure allows a noticeable reduction of computing
time and BC nodes. The SDP bounds help in pruning but are heavy to compute,
and thus in this optic we proposed different strategies in order to make the
Hybrid bounding procedure more efficient. The addition of these strategies is
crucial for the improvement of the performances over the standard BC.

Finally, the SDP relaxation can be used to enhance any of the essential in-
gredients of a generic purpose MINLP solver, which are: bounding techniques,
primal heuristics and branching strategies. Specifically the information provided
by the solution of the SDP relaxation at each branching node can be used either



Hybrid SDP Bounding Procedure 259

to derive alternative branching strategies, to compute different heuristic solutions
or to strengthen LP relaxation for pruning the node. In this paper we have
focused on this last aspect, deriving effective Hybrid Bounding Procedures. We
leave the other two aspects for further development.

References

1. Anstreicher, K.M.: Semidefinite programming versus the reformulation-
linearization technique for nonconvex quadratically constrained quadratic
programming. J. Global Optim. 43(2-3), 471–484 (2009)

2. BARON (2012), http://archimedes.cheme.cmu.edu/?q=baron
3. BiqCrunch (2012), http://www-lipn.univ-paris13.fr/BiqCrunch/
4. Bonmin (2012), https://projects.coin-or.org/Bonmin
5. Borchers, B.: CSDP, A C library for semidefinite programming. Optim. Methods

Softw. 11, 613–623 (1999)
6. Burer, S., Vandenbussche, D.: Globally solving box-constrained nonconvex

quadratic programs with semidefinite-based finite branch-and-bound. Comp. Op-
tim. Appl. 43, 181–195 (2009)

7. Cplex (2012), http://www-01.ibm.com/software/integration/optimization/
cplex-optimizer/

8. Giandomenico, M., Letchford, A.N., Rossi, F., Smriglio, S.: A new approach to
the stable set problem based on ellipsoids. In: Günlük, O., Woeginger, G.J. (eds.)
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11. Jaumard, B., Marcotte, O., Meyer, C., Vovor, T.: Comparison of column generation

models for channel assignment in cellular networks. Discrete Appl. Math. 112(1-3),
217–240 (2001)

12. Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure for
solving max-cut problems to optimality. To appear in Math. Prog. (2013)

13. Mahdavi Pajouh, F., Balasundaram, B., Prokopyev, O.: On characterization of
maximal independent sets via quadratic optimization. J. Heuristics, 1–16 (2011)

14. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting
semidefinite and polyhedral relaxations. Math. Prog. 121, 307–335 (2010)

15. SeDuMi (2012), http://sedumi.ie.lehigh.edu/
16. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving

Discrete and Continuous Nonconvex Problems. Springer (1998)

http://archimedes.cheme.cmu.edu/?q=baron
http://www-lipn.univ-paris13.fr/BiqCrunch/
https://projects.coin-or.org/Bonmin
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.gurobi.com/
http://sedumi.ie.lehigh.edu/


Computing Multimodal Journeys in Practice�

Daniel Delling1, Julian Dibbelt2, Thomas Pajor2,
Dorothea Wagner2, and Renato F. Werneck1

1 Microsoft Research Silicon Valley, Mountain View, CA 94043, USA
{dadellin,renatow}@microsoft.com

2 Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
{dibbelt,pajor,wagner}@kit.edu

Abstract. We study the problem of finding multimodal journeys in
transportation networks, including unrestricted walking, driving, cycling,
and schedule-based public transportation. A natural solution to this
problem is to use multicriteria search, but it tends to be slow and to
produce too many journeys, several of which are of little value. We pro-
pose algorithms to compute a full Pareto set and then score the solu-
tions in a postprocessing step using techniques from fuzzy logic, quickly
identifying the most significant journeys. We also propose several (still
multicriteria) heuristics to find similar journeys much faster, making the
approach practical even for large metropolitan areas.

1 Introduction

Efficiently computing good journeys in transportation networks has been an
active area of research in recent years, with focus on the computation of routes
in both road networks [11] and schedule-based public transit [2,5], but these
are often considered separately. In practice, users want an integrated solution
to find the “best” journey considering all available modes of transportation.
Within a metropolitan area, this includes buses, trains, driving, cycling, taxis,
and walking. We refer to this as the multimodal route planning problem.

In fact, any public transportation network has a multimodal component,
since journeys require some amount of walking. To handle this, existing solu-
tions [4,10,14] predefine transfer arcs between nearby stations, then run a search
algorithm on the public transit network to find the “best” journey. Unlike in
road networks, however, defining “best” is not straightforward. For example,
while some people want to arrive as early as possible, others are willing to spend
a little more time to avoid extra transfers. Most recent approaches therefore
compute the Pareto set of non-dominating journeys optimizing multiple crite-
ria, which is practical even for large metropolitan areas [10].

Extending public transportation solutions to a full multimodal scenario (with
unrestricted walking, biking, and taxis) may seem trivial: one could just incor-
porate routing techniques for road networks [9,17] to solve the new subproblems.
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Unfortunately, meaningful multimodal optimization must take more criteria into
account, such as walking duration and costs. Some people are happy to walk 10
minutes to avoid an extra transfer, while others are not. In fact, some will walk
half an hour to avoid using public transportation at all. Taking a taxi to the
airport is a good solution for some; users on a budget may prefer cheaper al-
ternatives. Considering more criteria leads to much larger Pareto sets, however,
with many of the additional journeys looking unreasonable (see full paper [8]).

Previous research thus tends to avoid multicriteria search altogether [3], look-
ing for reasonable routes by other means. A natural approach is to work with
a weighted combination of all criteria, transforming the search into a single-
criterion problem [19]. When extended to find the k-shortest paths [6], this
method can even take user preferences into account. Unfortunately, linear com-
bination may miss Pareto-optimal journeys [7] (also see full paper [8]). To avoid
such issues, another line of multimodal single-criterion research considers label-
constrained quickest journeys [1]. Here, journeys are required to obey a user-
defined pattern, typically enforcing a hierarchy of modes [6] (such as “no car
travel between trains”). Although this approach can be quite fast when using
preprocessing techniques for road networks [12], it has a fundamental conceptual
problem: it relies on the user to know her options before planning the journey.

Given the limitations of current approaches, we revisit the problem of finding
multicriteria multimodal journeys on a metropolitan scale. Instead of optimiz-
ing each mode of transportation independently [15], we argue in Section 2 that
most users optimize three criteria: travel time, convenience, and costs. As this
produces a large Pareto set, we propose using fuzzy logic [20] to identify, in a
principled way, a modest-sized subset of representative journeys. This postpro-
cessing step is very quick and can incorporate personal preferences. As Section 3
shows, we can use recent algorithmic developments [10,12,17] to answer exact
queries optimizing time and convenience in less than two seconds within a large
metropolitan area, for the simpler scenario of walking, cycling, and public transit.
Unfortunately, this is not enough for interactive applications and becomes much
slower when more criteria, such as costs, are incorporated. Section 4 proposes
heuristics (still multicriteria) that are significantly faster and closely match the
representative journeys in the actual Pareto set. Section 5 presents a thorough
experimental evaluation of all algorithms in terms of both solution quality and
performance and shows that our approach can be fast enough for interactive
applications. Moreover, since it does not rely on heavy preprocessing, it can be
used in dynamic scenarios.

2 Problem Statement

We want to find journeys in a network built from several partial networks. The
first is a public transportation network representing all available schedule-based
means of transportation, such as trains, buses, rail, or ferries. We can specify this
network in terms of its timetable, which is defined as follows. A stop is a location
in the network (such as a train platform or a bus stop) in which a user can board
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or leave a particular vehicle. A route is a fixed sequence of stops for which there
is scheduled service during the day; a typical example is a bus or subway line. A
route is served by one or more distinct trips during the day; each trip is associated
with a unique vehicle, with fixed (scheduled) arrival and departure times for
every stop in the route. Each stop may also keep a minimum change time, which
must be obeyed when changing trips. Besides the public transportation network,
we also take as input several unrestricted networks, with no associated timetable.
Walking, cycling, and driving are modeled as distinct unrestricted networks, each
represented as a directed graph G = (V,A). Each vertex v ∈ V represents an
intersection and has associated coordinates (latitude and longitude). Each arc
(v, w) ∈ A represents a (directed) road segment and has an associated duration
dur(v, w), which corresponds to the (constant) time to traverse it. The integrated
transportation network is the union of these partial networks with appropriate
link vertices, i. e., vertices (or stops) in different networks are identified with
one another to allow for changes in modes of transportation. Note that, unlike
previous work [18], we do not necessarily require explicit footpaths in the public
transportation networks (to walk between nearby stops). A query takes as input
a source location s, a target location t, and a departure time τ , and it produces
journeys that leave s no earlier than τ and arrive at t. A journey is a valid path
in the integrated transportation network that obeys all timetable constraints.

We still have to define which journeys the query should return. We argue
that users optimize three natural criteria in multimodal networks: arrival time,
costs, and “convenience”. For our first (simplified) scenario (with public transit,
cycling, and walking, but no taxi), we work with three criteria. Besides arrival
time, we use number of trips and walking duration as proxies for convenience.
We add cost for the scenario that includes taxi. Given this setup, a first natural
problem we need to solve is the full multicriteria problem, which must return a
full (maximal) Pareto set of journeys. We say that a journey J1 dominates J2
if J1 is strictly better than J2 according to at least one criterion and no worse
according to all other criteria. A Pareto set is a set of pairwise nondominating
journeys. If two journeys have equal values in all criteria, we only keep one.

Solving the full multicriteria problem, however, can lead to solution sets that
are too large for most users. Moreover, many solutions provide undesirable trade-
offs, such as journeys that arrive much later to save a few seconds of walking
(or walk much longer to save a few seconds in arrival time). Intuitively, most
criteria are diffuse to the user, and only large enough differences are signifi-
cant. Pareto optimality fails to capture this. To formalize the notion of signifi-
cance, we propose to score the journeys in the Pareto set in a post-processing
step using concepts from fuzzy logic [20]. Loosely speaking, fuzzy logic gener-
alizes Boolean logic to handle (continuous) degrees of truth. For example, the
statement “60 and 61 seconds of walking are equal” is false in classical logic,
but “almost true” in fuzzy logic. Formally, a fuzzy set is a tuple S = (U , μ),
where U is a set and μ : U → [0, 1] a membership function that defines “how
much” each element in U is contained in S. Mostly, we use μ to refer to S.
Our application requires fuzzy relational operators μ<, μ=, and μ>. For any
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x, y ∈ R, they are evaluated by μ<(x − y), μ>(y − x), and μ=(x − y). We
use the well-known [20] exponential membership functions for the operators:

μ=(x) := exp( ln(χ)ε2 x2), where 0 < χ < 1 and ε > 0 control the degree of fuzzi-
ness. The other two operators are derived by μ<(x) := 1 − μ=(x) if x < 0 (0
otherwise) and μ> := 1 − μ=(x) if x > 0 (0 otherwise). Moreover, we require
binary operators (norms) T, S : [0, 1]2 → [0, 1] to represent fuzzy (logical) dis-
junction (T ) and conjunction (S). We use the maximum/minimum norms, i. e.,
T = max and S = min. Note that S(x, y) = 1 − T (1− x, 1 − x) holds, which is
important for consistency. Other norms are evaluated in the full paper [8].

We now recap the concept of fuzzy dominance in multicriteria optimization,
which is introduced by Farina and Amato [16]. Given journeys J1 and J2 with M
optimization criteria, we denote by nb(J1, J2) the (fuzzy) number of criteria in

which J1 is better than J2. More formally nb(J1, J2) :=
∑M

i=1 μ
i
<(κ

i(J1), κ
i(J2)),

where κi(J) evaluates the i-th criterion of J and μi
< is the i-th fuzzy less-

than operator. (Note that each criterion may use different fuzzy operators.)
Analogously, we define ne(J1, J2) for equality and nw(J1, J2) for greater-than.
By definition, nb+ne+nw = M . Hence the Pareto dominance can be generalized
to obtain a degree of domination d(J1, J2) ∈ [0, 1], defined as (2nb+ne−M)/nb

if nb > (M−ne)/2 (and 0 otherwise). Here, d(J1, J2) = 0 means that J1 does not
dominate J2, while a value of 1 indicates that J1 Pareto-dominates J2. Otherwise,
we say J1 fuzzy-dominates J2 by degree d(J1, J2). Now, given a (Pareto) set J
of n journeys J1, . . . , Jn, we define a score function sc : J → [0, 1] that computes
the degree of domination by the whole set for each Ji. More precisely, sc(J) :=
1 − max(J1, . . . , Jn), i. e., the value sc(J) is determined by the (one) journey
that dominates J most. See the full paper [8] for more details, including an
illustration of the fuzzy dominance function d. We finally use the score to order
the journeys by significance. One may then decide to only show the k journeys
with highest score to the user.

3 Exact Algorithms

We now study exact algorithms for the multicriteria multimodal problem. We
first propose two solutions (building on different methods for multicriteria op-
timization on public transportation networks), then describe an acceleration
technique that applies to both. For simplicity, we describe the algorithms con-
sidering only the (schedule-based) public transit network and the (unrestricted)
walking network. We later deal with cycling and taxis, which are unrestricted
but have special properties.

Multi-label-correcting Algorithm. Traditional solutions to the multicriteria prob-
lem on public transportation networks typically model the timetable as a graph.
A particularly effective approach is to use the time-dependent route model [18].
For each stop p, we create a single stop vertex linked by time-independent trans-
fer edges to multiple route vertices, one for each route serving p. We also add
route edges between route vertices associated to consecutive stops within the



264 D. Delling et al.

same route. To model the trips along a route, the cost of a route edge is given by
a function reflecting the traversal time (including waiting for the next departure).

A journey in the public transportation network corresponds to a path in
this graph. The multi-label-correcting (MLC) [18] algorithm uses this to find full
Pareto sets for arbitrary criteria that can be modeled as edge costs. MLC extends
Dijkstra’s algorithm [13] by operating on labels that have multiple values, one per
criterion. Each vertex v maintains a bag B(v) of nondominated labels. In each
iteration, MLC extracts from a priority queue the minimum (in lexicographic
order) unprocessed label L(u). For each arc (u, v) out of the associated vertex
u, MLC creates a new label L(v) (by extending L(u) in the natural way) and
inserts it into B(v); newly-dominated labels (possibly including L(v) itself) are
discarded, and the priority queue is updated if needed. MLC can be sped up
with target pruning and by avoiding unnecessary domination checks [14].

To solve the multimodal problem, we extend MLC by augmenting its input
graph to include the walking network, creating an integrated network. The MLC
query remains essentially unchanged. Although labels can now be associated to
vertices in different networks, they can all share the same priority queue.

Round-based Algorithm. A drawback of MLC (even restricted to public trans-
portation networks) is that it can be quite slow: unlike Dijkstra’s algorithm,
MLC may scan the same vertex multiple times (the exact number depends on
the criteria being optimized), and domination checks make each such scan quite
costly. Delling et al. [10] have recently introduced RAPTOR (Round bAsed Pub-
lic Transit Optimized Router) as a faster alternative. The simplest version of the
algorithm optimizes two criteria: arrival time and number of transfers. Unlike
MLC, which searches a graph, RAPTOR uses dynamic programming to operate
directly on the timetable. It works in rounds, with round i processing all relevant
journeys with exactly i−1 transfers. It maintains one label per round i and stop
p representing the best known arrival time at p for up to i trips. During round i,
the algorithm processes each route once. It reads arrival times from round i− 1
to determine relevant trips (on the route) and updates the labels of round i at
every stop along the way. Once all routes are processed, the algorithm considers
potential transfers to nearby (predefined) stops in a second phase. Simpler data
structures and better locality make RAPTOR an order of magnitude faster than
MLC. Delling et al. [10] have also proposed McRAPTOR, which extends RAP-
TOR to handle more criteria (besides arrival times and number of transfers). It
maintains a bag (set) of labels with each stop and round.

Even with multiple modes of transport available, one trip always consists
of a single mode. This motivates adapting the round-based paradigm to our
scenario. We propose MCR (multimodal multicriteria RAPTOR), which extends
McRAPTOR to handle multimodal queries. As in McRAPTOR, each round has
two phases: the first processes trips in the public transportation network, while
the second considers arbitrary paths in the unrestricted networks. We use a
standard McRAPTOR round for the first phase (on the timetable network) and
MLC for the second (on the walking network). Labels generated by one phase
are naturally used as input to the other. During the second phase, MLC extends
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bags instead of individual labels. To ensure that each label is processed at most
once, we keep track of which labels (in a bag) have already been extended. The
initialization routine (before the first round) runs Dijkstra’s algorithm on the
walking network from the source s to determine the fastest walking path to each
stop in the public transportation network (and to t), thus creating the initial
labels used by MCR. During round i, the McRAPTOR subroutine reads labels
from round i − 1 and writes to round i. In contrast, the MLC subroutine may
read and write labels of the same round if walking is not regarded as a trip.

Contracting Unrestricted Networks. As our experiments will show, the bottle-
neck of the multimodal algorithms is processing the walking network G = (V,A).
We improve performance using a quick preprocessing technique [12]. For any
journey involving public transportation, walking between trips always begins and
ends at the restricted setK ⊂ V of link vertices. During queries, we must only be
able to compute the pairwise distances between these vertices. We therefore use
preprocessing to compute a smaller core graph that preserves these distances.
More precisely, we start from the original graph and iteratively contract [17]
each vertex in V \K in the order given by a rank function r. Each contraction
step (temporarily) removes a vertex and adds shortcuts between its uncontracted
neighbors to maintain shortest path distances (if necessary). It is usually advan-
tageous to first contract vertices with relatively small degrees that are evenly
distributed across the network [17]. We stop contraction when the average degree
in the core graph reaches some threshold (we use 12 in our experiments) [12].

To run a faster multimodal s–t query, we use essentially the same algorithm
as before (based on either MLC or RAPTOR), but replacing the full walking
network with the (smaller) core graph. Since the source s and the target t may
not be in the core, we handle them during initialization. It works on the graph
G+ = (V,A ∪ A+) containing all original arcs A as well as all shortcuts A+

added during the contraction process. We run upward searches (only following
arcs (u, v) such that r(u) > r(w)) in G+ from s (scanning forward arcs) and
t (scanning reverse arcs); they reach all potential entry and exit points of the
core, but arcs within the core are not processed [12]. These core vertices (and
their respective distances) are used as input to MCR’s (or MLC’s) standard
initialization, which can operate on the core from this point on. The main loop
works as before, with one minor adjustment. Whenever MLC extracts a label
L(v) for a scanned core vertex v, we check if it has been reached by the reverse
search during initialization. If so, we create a temporary label L′(t) by extending
L(v) with the (already computed) walking path to t and add it to B(t) if needed.
MCR is adjusted similarly, with bags instead of labels.

Beyond Walking. We now consider other unrestricted networks (besides walk-
ing). In particular, our experiments include a bicycle rental scheme, which can
be seen as a hybrid network: it does not have a fixed schedule (and is thus
unrestricted), but bicycles can only be picked up and dropped off at designated
cycling stations. Picking a bike from its station counts as a trip. To handle cycling
within MCR, we consider it during the first stage of each round (together with
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RAPTOR and before walking). Because bicycles have no schedule, we process
them independently (from RAPTOR) by running MLC on the bicycle network.
To do so, we initialize MLC with labels from round i− 1 for all relevant bicycle
stations and, during the algorithm, we update labels of (the current) round i.

We consider a taxi ride to be a trip as well, since we board a vehicle. Moreover,
we also optimize a separate criterion reflecting the (monetary) cost of taxi rides.
If taxis were not penalized in any way, an all-taxi journey would almost always
dominate all other alternatives (even sensible ones), since it is fast and has no
walking. Our round-based algorithms handle taxis as they do walking, except
that in the taxi stage labels are read from round i− 1 and written into round i.
Note that we link the taxi network to public transit stops and bicycle stations.

Dealing with personal cars or bicycles is simpler. Assuming that they are only
available for the first or last legs of the journey, we must only consider them
during initialization. Initialization can also handle other special cases, such as
allowing rented bicycles to be ridden to the destination (to be returned later).

Note that contraction can be used for cycling and driving. For every unre-
stricted network (walking, cycling, driving), we keep the link vertices (stops and
bicycle stations) in one common core and contract (up to) all other nodes. As
before, queries start with upward searches in each relevant unrestricted network.

4 Heuristics

Even with all accelerations, the exact algorithms proposed in Section 3 are not
fast enough for interactive applications. This section proposes quick heuristics
aimed at finding a set of journeys that is similar to the exact solution, which we
take as ground truth. We consider three approaches: weakening the dominance
rules, restricting the amount of walking, and reducing the number of criteria.
We also discuss how to measure the quality of the heuristic solutions we find.

Weak Dominance. The first strategy we consider is to weaken the domination
rules during the algorithm, reducing the number of labels pushed through the
network. We test four implementations of this strategy. The first, MCR-hf, uses
fuzzy dominance (instead of strict dominance) when comparing labels during
the algorithm: for labels L1 and L2, we compute the fuzzy dominance value
d(L1, L2) (cf. Section 2) and dominate L2 if d exceeds a given threshold (we use
0.9). The second, MCR-hb(κ), uses strict dominance, but discretizes criterion κ:
before comparing labels L1 and L2, we first round κ(L1) and κ(L2) to predefined
discrete values (buckets); this can be extended to use buckets for several criteria.
The third heuristic, MCR-hs(κ), uses strict dominance but adds a slack of x units
to κ. More precisely, L1 already dominates L2 if κ(L1) ≤ κ(L2) +x and L1 is at
least as good L2 in all other criteria. The last heuristic, MCR-ht, weakens the
domination rule by trading off two or more criteria. More concretely, consider
the case in which walking (walk) and arrival time (arr) are criteria. Then, L1

already dominates L2 if arr(L1) ≤ arr(L2)+a·(walk(L1)−walk(L2)), walk(L1) ≤
walk(L2) + a · (arr(L1)− arr(L2)), and L1 is at least as good as L2 in all other
criteria, for a tradeoff parameter a (we use a = 0.3).
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Restricting Walking. Consider our simple scenario of walking and public transit.
Intuitively, most journeys start with a walk to a nearby stop, followed by one or
more trips (with short transfers) within the public transit system, and finally a
short walk from the final stop to the actual destination. This motivates a second
class of heuristics, MCR-tx. It still runs three-criterion search (walking, arrival,
and trips), but limits walking transfers between stops to x minutes; in this case
we precompute these transfers. MCR-tx-ry also limits walking in the beginning
and end to y minutes. Note that existing solutions often use such restrictions [4].

Fewer Criteria. The last strategy we study is reducing the number of criteria
considered during the algorithm. As already mentioned, this is a common ap-
proach in practice. We propose MR-x, which still works in rounds, but optimizes
only the number of trips and arrival times explicitly (as criteria). To account for
walking duration, we count every x minutes of a walking segment (transfer) as a
trip; the first x minutes are free. With this approach, we can run plain Dijkstra
to compute transfers, since link vertices no longer need to keep bags. The round
index to which labels are written then depends on the walking duration (of the
current segment) of the considered label. A special case is x =∞, where a trans-
fer is never a trip. Another variant is to always count a transfer as a single trip,
regardless of duration; we abuse notation and call this variant MR-0. We also
consider MR-∞-tx: walking duration is not an explicit criterion and transfers
do not count as trips, but are limited to x minutes.

For scenarios that include cost as a criterion (for taxis), we consider variants
of the MCR-hb and MCR-hf heuristics. In both cases, we drop walking as an
independent criterion, leaving only arrival time, number of trips, and costs to
optimize. We account for walking by making it a (cheap) component of the costs.

Quality Evaluation. To measure the quality of a heuristic, we compare the set of
journeys it produces to the ground truth, which we define as the solution found
by MCR. To do so, we first compute the score of each journey with respect to
the Pareto set that contains it (cf. Section 2). Then, for a given parameter k,
we measure the similarity between the top k scored journeys returned by the
heuristics and the top k scored journeys in the ground truth. Note that the
score depends only on the algorithm itself and does not assume knowledge of
the ground truth, which is consistent with a real-world deployment. To compare
two sets of k journeys, we run a greedy maximum matching algorithm. First, we
compute a k × k matrix where entry (i, j) represents the similarity between the
i-th journey in the first set and the j-th in the second. Given two journeys J1 and
J2, the similarity with respect to the i-th criterion is given by ci := μi

=(κ
i(J1)−

κi(J2)), where κ
i is the value of this criterion and μi

= is the corresponding fuzzy
equality relation. Then, we define the total similarity between J1 and J2 as
min(c1, c2, . . . , cM ). After computing the pairwise similarities, we greedily select
the unmatched pairs with highest similarity (by picking the highest entry in the
matrix that does not share a row or column with a previously picked entry). The
similarity of the whole matching is the average similarity of its pairs, weighted by
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the fuzzy score of the reference journey. This means that matching the highest-
scored reference journey is more important than matching the k-th one.

5 Experiments

All algorithms from Sections 3 and 4 were implemented in C++ and compiled
with g++ 4.6.2 (64 bits, flag -O3). We ran our experiments on one core of a dual
8-core Intel Xeon E5-2670 clocked at 2.6GHz, with 64GiB of DDR3-1600 RAM.

We focus on the transportation network of London (England); results for
other instances (available in the full paper [8]) are similar. We use the timetable
information made available by Transport for London (TfL), from which we ex-
tracted a Tuesday in the periodic summer schedule of 2011. The data includes
subway (tube), buses, tram, and light rail (DLR), as well as bicycle station lo-
cations. To model the underlying road network, we use data provided by PTV
AG from 2006, which explicitly indicates whether each road segment is open for
driving, cycling and/or walking. We set the walking speed to 5 km/h and the
cycling speed to 12 km/h, and we assume driving at free-flow speeds. We do not
consider turn costs, which are not defined in the data. The resulting combined
network has 564 cycle stations and about 20 k stops, 5M departure events, and
259k vertices in the walking network.

Recall that we specify the fuzziness of each criterion by a pair (χ, ε), roughly
meaning that the corresponding Gaussian (centered at x = 0) has value χ for
x = ε. We set these pairs to (0.8, 5) for walking, (0.8, 1) for arrival time, (0.1, 1)
for trips, and (0.8, 5) for costs (given in pounds; times are in minutes). Note that
the number of trips is sharper than the other criteria. Our approach is robust to
small variations in these parameters, but they can be tuned to account for user-
dependent preferences. We run location-to-location queries, with sources, targets,
and departure times picked uniformly at random (from the walking network and
during the day, respectively).

For our first experiment, we use walking, cycling, and the public transporta-
tion network and consider three criteria: arrival time, number of trips, and walk-
ing duration. We ran 1 000 queries for each algorithm. Table 1 summarizes the
results (the full paper [8] has additional statistics). For each algorithm, the ta-
ble first shows which criteria are explicitly taken into account. The next five
columns show the average values observed for the number of rounds, scans per
entity (stop/vertex), label comparisons per entity, journeys found, and running
time (in milliseconds). The last four columns evaluate the quality of the top 3
and 6 journeys found by our heuristics, as explained in Section 4. We show both
averages and standard deviations.

The methods in Table 1 are grouped in blocks. Those in the first block compute
the full Pareto set considering all three criteria (arrival time, number of trips, and
walking). MCR, our reference algorithm, is round-based and uses contraction in
the unrestricted networks. As anticipated, it is faster (by a factor of about three)
than MCR-nc (which does not use the core) and MLC (which uses the core but
is not round-based). Accordingly, all heuristics we test are round-based and use
the core.
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Table 1. Performance and solution quality on journeys considering walking, cycling,
and public transit. Bullets (•) indicate the criteria taken into account by the algorithm.

Scans Comp. Time Quality-3 Quality-6
Algorithm A

rr
.

T
rp
.

W
lk
.

Rnd. /Ent. /Ent. Jn. [ms] Avg. Sd. Avg. Sd.

MCR-nc • • • 13.8 13.8 168.2 29.1 4 634.0 100% 0% 100% 0%
MCR • • • 13.8 3.4 158.7 29.1 1 438.7 100% 0% 100% 0%
MLC • • • — 10.6 1 246.7 29.1 4 543.0 100% 0% 100% 0%

MCR-hf • • • 15.6 2.9 14.3 10.9 699.4 89% 15% 89% 11%
MCR-hb • • • 10.2 2.1 12.7 9.0 456.7 91% 12% 91% 10%
MCR-hs • • • 14.7 2.6 11.1 8.6 466.1 67% 28% 69% 23%
MCR-ht • • • 10.5 2.0 6.4 8.6 373.6 84% 22% 82% 20%

MCR-t10 • • • 13.8 2.7 132.7 29.0 1 467.6 97% 10% 95% 10%
MCR-t10-r15 • • • 10.7 1.7 73.3 13.2 885.0 38% 40% 30% 31%
MCR-t5 • • • 13.8 2.7 126.6 28.9 891.9 93% 16% 92% 15%

MR-∞ • • ◦ 7.6 1.4 4.8 4.5 44.4 63% 28% 63% 24%
MR-0 • • ◦ 13.7 2.1 6.9 5.4 61.5 63% 28% 63% 24%
MR-10 • • ◦ 20.0 1.1 4.8 4.3 39.4 51% 33% 45% 29%
MR-∞-t10 • • ◦ 7.6 1.1 4.8 4.5 22.2 63% 28% 62% 24%

The second block contains heuristics that accelerate MCR by weakening the
domination rules, causing more labels to be pruned (and losing optimality guar-
antees). As explained in Section 4, MCR-hf uses fuzzy dominance during the
algorithm, MCR-hb uses walking buckets (discretizing walking by steps of 5
minutes for domination), MCR-hs uses a slack of 5 minutes on the walking cri-
terion when evaluating domination, and MCR-ht considers a tradeoff parameter
of a = 0.3 between walking and arrival time. All heuristics are faster than pure
MCR, and MCR-hb gives the best quality at a reasonable running time.

The third block has algorithms with restrictions on walking duration. Limit-
ing transfers to 10 minutes (as MCR-t10 does) has almost no effect on solution
quality (which is expected in a well-designed public transportation network).
Moreover, adding precomputed footpaths of 10 minutes is not faster than using
the core for unlimited walking (as MCR does). Additionally limiting the walk-
ing range from s or t (MCR-t10-r15) improves speed, but the quality becomes
unacceptably low: the algorithm misses good journeys (including all-walk) quite
often. If instead we allow even more restricted transfers (with MCR-t5), we get
a similar speedup with much better quality (comparable to MCR-hb).

The MR-x algorithms (fourth block) reduce the number of criteria consid-
ered by combining trips and walking. The fastest variant is MR-∞-t10, which
drops walking duration as a criterion but limits the amount of walking at trans-
fers to 10 minutes, making it essentially the same as RAPTOR, with a different
initialization. As expected, however, quality is much lower than for MCR-tx, con-
firming that considering the walking duration explicitly during the algorithm is
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Table 2. Performance on our London instance when taking taxi into account

Scans Comp. Time Quality-3 Quality-6
Algorithm A

rr
.

T
rp
.

W
lk
.

C
os
t

Rnd. /Ent. /Ent. Jn. [ms] Avg. Sd. Avg. Sd.

MCR • • • • 16.3 3.1 369 606.0 1 666.0 1 960 234.0 100% 0% 100% 0%
MCR-hf • • • • 17.1 2.1 137.1 35.2 6 451.6 92% 12% 92% 6%
MCR-hb • • • • 9.9 1.3 86.8 27.6 2 807.7 96% 8% 92% 6%

MCR • • ◦ • 14.6 2.4 7 901.4 250.9 25 945.8 98% 6% 97% 5%
MCR-hf • • ◦ • 12.0 1.4 33.6 17.6 2 246.3 87% 12% 74% 12%
MCR-hb • • ◦ • 9.0 1.0 20.0 11.6 996.4 86% 12% 74% 12%

important to obtain a full range of solutions. MR-10 attempts to improve quality
by transforming long walks into extra trips, but is not particularly successful.

Summing up, MCR-hb should be the preferred choice for high-quality solu-
tions, while MR-∞-t10 can support interactive queries with reasonable quality.

Our second experiment considers the full multimodal problem, including taxis.
We add cost as fourth criterion (at 2.40 pounds per taxi-trip plus 60 pence per
minute). We do not consider the cost of public transit, since it is significantly
cheaper. Table 2 presents the average performance of some of our algorithms
over 1 000 random queries in London. The first block includes algorithms that
optimize all four criteria (arrival time, walking duration, number of trips, and
costs). While exact MCR is impractical, fuzzy domination (MCR-hf) makes the
problem tractable with little loss in quality. Using 5-minute buckets for walking
and 5-pound buckets for costs (MCR-hb) is even faster, though queries still take
more than two seconds. The second block shows that we can reduce running
times by dropping walking duration as a criterion (we incorporate it into the
cost function at 3 pence per minute, instead), with almost no loss in solution
quality. This is still not fast enough, though. Using 5-pound buckets (MCR-hb)
reduces the average query time to about 1 second, with reasonable quality.

6 Final Remarks

We have studied multicriteria journey planning in multimodal networks. We
argued that users optimize three criteria: arrival time, costs, and convenience.
Although the corresponding full Pareto set is large and has many unnatural
journeys, fuzzy set theory can extract the relevant journeys and rank them.
Since exact algorithms are too slow, we have introduced several heuristics that
closely match the best journeys in the Pareto set. Our experiments show that
our approach enables efficient realistic multimodal journey planning in large
metropolitan areas. A natural avenue for future research is accelerating our ap-
proach further to enable interactive queries with an even richer set of criteria in
dynamic scenarios, handling delay and traffic information. The ultimate goal is
to compute multicriteria multimodal journeys on a global scale in real time.
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Abstract. We study the problem of computing jogging (running) routes
in pedestrian networks: Given source vertex s and length L, it asks for a
cycle (containing s) that approximates L while considering niceness cri-
teria such as the surrounding area, shape of the route, and its complexity.
Unfortunately, computing such routes is NP-hard, even if the only op-
timization goal is length. We therefore propose two heuristic solutions:
The first incrementally extends the route by joining adjacent faces of
the network. The other builds on partial shortest paths and is even able
to compute sensible alternative routes. Our experimental study indicates
that on realistic inputs we can compute jogging routes of excellent quality
fast enough for interactive applications.

1 Introduction

We study the problem of computing jogging routes in pedestrian networks. Given
a source vertex s (the user’s starting point), and a desired length L (in kilome-
ters), the problem asks for a cycle of length (approximately) L that contains the
vertex s. A “good” jogging route is, however, not only determined by its length;
other criteria are just as important. An ideal route might follow paths through
nice areas of the map (e. g., forests, parks, etc.), has rather circular shape, and
not too many intersection at which the user is required to turn. A practical
algorithm must, therefore, take all of these criteria into account.

Much research focused on efficient methods for the related, but simpler,
problem of computing point-to-point (shortest) paths. In fact, a plethora of
algorithms exist, many of which are surveyed in [3,9]. They usually employ so-
phisticated preprocessing to speed up query performance. In contrast, much less
practical work exists for computing cycles. Graphs may contain exponentially
many (in the number of vertices) cycles, even if they are planar [1]. If the length
of the cycles is restricted by L, they can be enumerated in time O((n+m)(c+1)),
where c is the number of cycles of length at most L [8]. If one is interested in
computing cycles with exactly k edges, the problem can be solved in O(2km)
expected time [10]. Unfortunately, none of these methods seem practical in our
scenario. To the best of our knowledge, no efficient algorithms that quickly com-
pute sensible jogging routes exist.

This work introduces the Jogging Problem. It turns out to be NP-hard,
hence, we propose two heuristic approaches. The first, Greedy Faces is based
� Partially supported by DFG grant WA 654/16-1.

V. Bonifaci et al. (Eds.): SEA 2013, LNCS 7933, pp. 272–283, 2013.
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on building the route by successively joining adjacent faces of the network. The
second, Partial Shortest Paths, exploits the intuition of constructing equilateral
polygons via shortest paths. The latter can be easily parallelized and has the
inherent property of providing sensible alternative routes. The result of our al-
gorithms are routes of length within (1± ε)L, but also consider other important
criteria that optimize the surrounding area, shape, and route complexity. An
experimental study justifies our approaches: Using OpenStreetMap data, we are
able to compute jogging routes of excellent quality in under 200 ms time, which
is fast enough for interactive applications.

The paper is organized as follows. Section 2 defines variants of the problem
and shows NP-hardness. Section 3 introduces our two algorithmic approaches.
Section 4 presents experiments, and Section 5 contains concluding remarks.

2 Problems

Before we formally define the considered problems, we need to develop some
notation. We model pedestrian networks as undirected graphs G = (V,E) with
nonnegative integral edge costs � : E → Z≥0. Usually, vertices correspond to
intersections and edges to walkable segments. Also, we assume that our graphs
admit straight-line embeddings, since vertices have associated latitude/longitude
coordinates. For simplicity, our graphs are always connected. A path P is a
sequence of vertices P = [u1, . . . , uk] for which uiui+1 ∈ E must hold. Note
that we sometimes just write u1-uk-path or Pu1,uk

for short. If the first and last
vertices coincide, we call P a cycle. The cost of a path, denoted by �(P ), is the
sum of its edge-costs. A shortest path between two vertices u1 and u2 is a u1-
u2-path with minimum cost. At some places we require intervals around a value
x ∈ Z≥0 with error ε ∈ R≥0. We define them by I(x, ε) = [�(1− ε)x�, �(1+ ε)x�].

Simple Jogging Problem. The first problem we consider is the Simple Jogging

Problem (SJP): We are given a graph G, source vertex s ∈ V , and a tar-
geted cost L ∈ Z≥0 as input. The goal is to compute a cycle P through s with
cost �(P ) = L. In practical scenarios, cost usually represent geographical length.
It turns out that SJP is NP-hard by reduction from Hamiltonian Cycle. Note
that from this, NP-hardness follows for the respective optimization problem, i. e.,
finding a cycle that minimizes |�(P )− L|.

If we allow running time in the order of L, one can solve SJP by a dynamic
program, similarly as it is known for the Subset Sum Problem [5]. The algo-
rithm maintains a boolean matrix Q : V × Z≥0 → {0, 1} of size |V | × L, which
indicates whether a path to vertex u with cost � exists. Initially, Q is set to all-
zero, except for the entry Q(s, 0), which is set to 1. It then considers subsequent
cost values � in increasing order (beginning at 0). In each step, the algorithm
checks for all edges uv ∈ E if an existing path can be extended to v with cost �.
It does so by looking if Q(u, �− �(uv)) is set to 1, updating Q(v, �) accordingly.
The algorithm stops as soon as � exceeds the input cost L. Then, the requested
jogging route exists iff Q(s, L) = 1 holds. The running time of the algorithm
is O(L|E|), and thus we conclude that the SJP is weakly NP-hard [5].
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Relaxed Jogging Problem. In practice, solely optimizing length (or cost) may re-
sult in undesirable routes. Jogging is a recreational activity, therefore, one usually
also considers the surrounding area (parks and forests), the shape (preferably
edge-disjoint), and the complexity of the route (small number of turns). We argue
that the primary goal remains geographical length. However, we allow some (user-
specified) slack on the length to take the aforementioned criteria into account.
This motivates the Relaxed Jogging Problem (RJP): Given a graph G, a
source vertex s ∈ V , input length L ∈ Z≥0, and a parameter ε ∈ [0, 1], the goal
is to compute a cycle P through s with cost �(P ) ∈ I(L, ε) while optimizing a
set of soft criteria. We identify three important criteria in the following.

To account for the surrounding area, we introduce badness as a mapping on the
edges bad: E → [0, 1]. Smaller values indicate “nicer” areas (e. g., parks). Badness
values on the edges are provided by the input data. To extend badness to paths,
we combine it with the path’s length. (Note that we assume costs to represent
geographical length for the remainder of the paper.) That is, for a path P =
[u1, . . . , uk] its badness is defined by bad(P ) =

∑
bad(uiui+1)�(uiui+1)/�(P ).

By these means, badness values are scaled by their edge lengths, but are still
in the interval [0, 1]. This enables comparing paths (wrt. badness) of different
lengths.

To optimize edge-disjointness of paths, we consider sharing. It counts edges
that appear at least twice on P , scaled by their length. Formally, it first ac-
cumulates into a set D all indices i, j for which either uiui+1 = ujuj+1 or
uiui+1 = ujuj−1 hold. (Note that edges are undirected.) The sharing of path P
is then sh(P ) =

∑
i∈D �(uiui+1)/�(P ). Sharing values are also in [0, 1].

To evaluate route complexity, we consider turns. For two edges a and b, we
measure their angle 	(a, b), and regard them as a turn, iff 	(a, b) /∈ I(180◦, α)
holds. We usually set α to 15%.

3 Algorithms

We now introduce our two approaches for the Relaxed Jogging Problem:
Greedy Faces and Partial Shortest Paths. We present each approach in turn,
starting with a basic version, then, proposing optimizations along the way.

3.1 Greedy Faces

Assume that we are already given a tentative jogging route (i. e., a cycle in G
that contains s). A natural way to extend it, is to attach one of its adjacent
“blocks” that lie on the “outer” side of the route. Then, repeat this step, until a
route of desired size and shape has been grown. In a planar graph, blocks corre-
spond to faces. But our inputs may contain intersecting edges (such as bridges
and tunnels), albeit only few in practice. We, therefore, propose preprocessing G
to identify blocks (we still call them faces). These are used by our greedy faces al-
gorithm. Finally, we present smoothening techniques to reduce route complexity
in a quick postprocessing step.
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Identifying Faces. For our algorithm to work, we must precompute a set F of
faces in G. We identify each face f ∈ F with its enclosing path Pf . Our pre-
processing involves several steps. First, we delete the 1-shell of G by iteratively
removing vertices (and their incident edges) from G that have degree one. The
resulting graph is 2-connected and no longer contains dead-end streets (which
we want to avoid, anyway). Next, we consider all remaining edges uv ∈ E. For
each, we perform a right-first search, thereby, constructing an enclosing path Pf

for a new face f . More precisely, we run a depth-first search, beginning at uv.
Whenever it reaches a vertex x (via an edge a), it identifies the unique edge b
that follows a in the (counterclockwise) circular edge ordering at x. (Note that
this ordering is always defined for embedded graphs.) It adds b to Pf . If b = uv,
the algorithm stops, and adds f to F , discarding duplicates. However, since G is
not necessarily planar, the edge b might intersect with one of its preceding edges
on Pf . In this case, it removes b from Pf , and considers the next edge (after b)
in the circular order at x for expansion. While constructing F , the algorithm
remembers for each edge a list of its incident faces. It uses them to build a dual
graph G∗ = (V ∗, E∗): Vertices correspond to faces (of G), and two faces are
connected in G∗, iff they share at least one edge in G. This definition of G∗

extends the well-known graph duality for planar graphs, however, as G may not
be planar, so may not be G∗. The running time of the preprocessing is dom-
inated by the face-detection step. For every edge it runs a right-first search,
each in time O(|E|). Whenever it expands an edge, it must perform intersection
tests with up to O(|V |) preceding edges. This results in a total running time
of O(|V ||E|2). Note that we expect much better running times in practice: On
realistic inputs we may assume faces to have constant size.

Greedy Faces Algorithm. Our greedy faces algorithm, short GF, now uses G∗ as
input. Its basic idea is to run a (modified) breadth first search (BFS) on G∗. It
starts by selecting an arbitrary face f ∈ V ∗ that contains the source vertex s, i. e.,
where s ∈ Pf holds. It then grows a BFS-tree T (rooted at f), until a stopping
condition is met. When it stops, the jogging route P is retrieved by looking at
the set of cut edges that separate T from V ∗−T : Their corresponding edges in G
constitute a cycle. (Note that this is a well-known property on planar graphs,
but carries over to our definition of G∗.) However, to make P a feasible jogging
route, we must ensure two properties: The cycle must be (a) simple, and (b) still
contain s. We ensure both while growing T . Regarding (a), we know that the
corresponding cycle P in G is simple iff the subgraph induced by V ∗ − T is
connected. We check this condition when expanding an edge fg ∈ E∗ during the
BFS, discarding fg if adding g to T would disconnect V ∗ − T . Regarding (b),
The vertex s is still part of the jogging route as long as at least one incident
face of s remains in V ∗ − T . We also perform this check while expanding edges,
discarding them whenever necessary. The result of every iteration of the BFS
is a potential jogging route P . The algorithm stops as soon as the cost of P
exceeds (1 + ε)L. It then returns, among all discovered routes whose length is
in I(L, ε), the one with minimum total badness.
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However, up to now, GF does not optimize badness. To guide the search to-
wards “nice” areas of the graph, we propose a force-directed approach. Therefore,
consider a face f and the geometric center C(f) of its enclosing path. Inspired
by Newton’s law of gravity, we define a force vector φ(f, p) acting upon a point p
of the map by φ(f, p) = (bad(f) − 0.5)�(f)/|d|2 · d/|d|, where d = p − C(f).
Note that, depending on bad(f), the force is repelling/attracting. Also, the vec-
tor φ(f, p) is directed, and its intensity decreases with the distance squared. Now,
the force that acts upon a face g is the sum of the forces over all (other) faces in
the graph (toward g). More precisely, φ(g) =

∑
f∈V ∗ φ(f, C(g)). In practice, we

quickly precompute these values restricted to reachable faces (i. e., faces within a
radius of L/2 from s). The BFS in our algorithm now extends the edge fg ∈ E∗

next, for which g has the highest force in direction of extension. More precisely,
it extends fg, iff g maximizes the term φ(g) cos(	(φ(g), C(f) − C(P ))). Note
that C(P ) is the geometric center of the current (tentative) jogging route P in
the algorithm, and 	(·, ·) measures the angle of two vectors. In principle, further
criteria can be added to the BFS (e. g., via linear combinations): The roundness
considers the ratio of the route’s perimeter to its area (lower values are better);
convexity takes the distance between a candidate face and the current route into
account (higher values are better). However, preliminary experiments showed
that (on realistic inputs) the effect of these criteria is limited. The running time
of GF is bounded by the BFS on G∗. In the worst case, it scans O(|V ∗|) faces.
The next face it expands to can be determined in time O(|V ∗|), yielding a total
running time of O(|V ∗|2). Finally, recall that our preprocessing removes the 1-
shell of G. For the case that the source vertex s is part of the 1-shell, we quickly
find the (unique) path P ′ to the first vertex s′ that is not in the 1-shell. We then
run our algorithm, but initialized with s′ and L′ = L − 2�(P ), simply attach-
ing P ′ to the route afterward. Also note that routes obtained by GF are optimal
with respect to sharing: The only (unavoidable) place it may occur is on P ′ (in
case s is in the 1-shell).

Route Smoothening. By default, GF provides no guarantee on route complex-
ity (i. e., on the number of turns). We, therefore, propose reducing it by smoothing
the route in a postprocessing step. To do so, we first select a small
subsequence P ′ ⊂ P of the route’s vertices. (Note that smust be part ofP ′.) Then,
for each two subsequent vertices uv ∈ P ′, we compute a shortest u-v-path (e. g., by
Dijkstra’s algorithm [4]). Finally, concatenating these paths produces the
smoothened route. To also take badness into account, we use a custom metric
ω : E → Z≥0, defined by ω(a) = bad(a)�(a), when computing shortest paths.

It remains to discuss how we choose the subsequence P ′ from P . We propose
three rules. The first, called equidistant rule (es), simply selects the k (an input
parameter) vertices from P , which are distributed equally regarding their subse-
quent distances. More precisely, vertex u ∈ P is selected as the i-th vertex on P ′

if it minimizes �(P )i/k − �(Ps,u) (here, Ps,u denotes the subpath of P up to ver-
tex u). Unfortunately, this rule may select vertices at arbitrary (with respect to
the route’s shape) positions. Therefore, our second rule, called convex rule (cs),
obtains P ′ by computing the convex hull of P , e. g., by running Graham’s Scan
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Fig. 1. Left: Intuition of constructing 2-via-routes. Middle: Shortest path tree rooted
at s and ring Rs with candidate vertices u, v forming a feasible route (dotted). Right: Se-
lecting middle vertices m that lie “behind” u, v in the shortest path trees of u′, v′.

algorithm [6] on P . In case the source vertex s is not part of the convex hull,
we must still add it to P ′: We set its position next to the first vertex of P that
is contained in P ’s convex hull. Finally, the third rule, called important vertex
rule (ivs), tries to identify k (again, an input parameter) “important” vertices of P :
At first, it slices P into k subpaths of equal length. From each, it then selects the
vertex u whose incident edges have lowest total badness (i. e.,

∏
uv∈E bad(uv) is

minimized). This rule follows the intuition that vertices that share many edges of
low badness are more likely in “nicer” areas. Note that while smoothening helps
to reduce route complexity, its drawback is that the route’s length may change
arbitrarily. We address this issue by our next approach.

3.2 Partial Shortest Paths

As discussed, GF provides no guarantee on the deviation from the requested
route length, if they are smoothened. We, therefore, propose a second approach:
It directly computes a set of via vertices, connected by shortest paths, but such
that the length of the resulting routes is guaranteed to be in I(L, ε). In the
following, we refer to jogging routes that use k via vertices by k-via-routes.

2-via-routes. For our basic version, we exploit the intuition of constructing equi-
lateral triangles (see Fig. 1, left), thus, obtaining 2-via-routes. We know that s
must be part of the route. Therefore, we choose s as one of the triangle’s ver-
tices. It now remains to compute two vertices u, v (and related paths), such
that �(Ps,u), �(Pu,v), �(Pv,s) ∈ I(L/3, ε). From this, we obtain the required to-
tal length of I(L, ε). To select u and v, we, at first, define a metric on the
edges ω : E → Z≥0 that takes the edge’s badness into account. As in Section 3.1,
we set ω(a) = bad(a)�(a). We now run a shortest path computation on G from s
using this metric with Dijkstra’s algorithm [4]. To limit the search, we do not
relax edges out of vertices x for whom �(Ps,x) exceeds (1 + ε)L/3. (Note that
�(Px,s) can be stored with x during the algorithm with negligible overhead.) The
resulting shortest path tree Ts (rooted at s) accounts for “nice” paths by optimiz-
ing ω, and provably contains all feasible candidate vertices u (and v). We refer
to this subset of candidate vertices as ring around s with distance I(L/3, ε),
in short Rs. We must now find two vertices of the ring that have a connecting
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path with length I(L/3, ε). To do so, we pick a vertex u from the ring Rs, and,
compute its ring Ru (also with respect to length I(L/3, ε)) by running Dijk-
stra’s algorithm from u, similarly to before. Now, the intersection of Rs with Ru

exactly contains the matching vertices v, that is, concatenating Ps,u, Pu,v, Pv,s

yields an admissible jogging route (i. e., of length I(L, ε)). See Fig. 1 (middle) for
an illustration. The algorithm repeats this step for all vertices in Rs, and selects
among all admissible routes it discovers the one minimizing badness. We call this
algorithm PSP2 (partial shortest paths with two vias). We remark that distances
other than L/3 are possible when computing rings. This varies the route’s shape,
and corresponds to constructing “triangles” with nonuniform side lengths. The
running time of PSP2 is dominated by up to O(|V |) shortest path computations,
thus, it is bounded by O(|V |2 log |V |+ |V ||E|). Note that we expect much better
performance in practice, as the shortest path computations are local.

We now propose two optimizations for PSP2. First, the algorithm can be sped
up by a stopping criterion. For it to work, it must pick vertices u from Rs in
order of increasing value ω(Ps,u). Note that this order is automatically provided
by Dijkstra’s algorithm. It then only needs to consider paths Pv,s as third leg
of the route, for whom ω(Pv,s) ≥ ω(Ps,u) holds (all others have been evaluated
earlier). By this, the total badness of any route P the algorithm may still find
is lower-bound by badlb = 2ω(Ps,u)/(1 + ε)L. If we keep track of the route Popt
minimizing badness, the algorithm may stop as soon as badlb exceeds bad(Popt)—
it will provably not find any route with lower badness. Up to now, PSP2 has no
guarantee on the sharing of P . In fact, it can be up to 100 % in extreme cases,
thus, we propose the following optimization. When the algorithm computes Ru

for a vertex u ∈ Rs, we forbid it to relax any edges from Ps,u. This ensures
that Ps,u and Pu,v are edge-disjoint. To also make Pu,v and Pv,s edge-disjoint,
we disregard routes whose last edges of Pu,v and Pv,s coincide. Note that we still
allow sharing wrt. to the first and last legs of the route (around s).

3-via-routes. Jogging routes obtained by PSP2 follow shortest paths for each of
its three legs Ps,u, Pu,v, and Pv,s. However, no such guarantee exists around u
and v, which might be undesirable. We now propose an optimized variant of our
algorithm, PSP3. It aims to smoothen the route around u and v. Moreover, it
uses three via-vertices, which, in general, produces more circular shaped routes.

The algorithm follows the intuition of constructing regular quadrilaterals. Tak-
ing the source vertex s as one of the quadrilateral’s vertices, it must therefore
compute vertices u, m, and v, connected by paths Ps,u, Pu,m, Pm,v, and Pv,s, each
with length I(L/4, ε). We refer to m as middle vertex. The algorithm starts, again,
by first computing a ring Rs of vertices from s, but now with distance I(L/4, ε).
(It does so by using Dijkstra’s algorithm with metric ω.) To smoothen the route
around u and v, we do not use u and v directly as sources for the subsequent short-
est path computations (like we did with PSP2). Instead, we consider the (tighter)
ring R′

s of vertices around s with distance I(αL/4, ε). Here, the parameter α
takes values from [0.5, 1], and controls smoothness around u and v. We obtain
the ring R′

s by traversing the shortest path tree from each vertex u ∈ Rs upward,
until the distance condition is met. Moreover, the vertex u remembers which
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vertex u′ it created in R′
s (this is required later). Next, the algorithm picks ver-

tices u′ from R′
s (in any order), and computes, for each, a ring Ru′ around u′. To

account for α, we set the distance of Ru′ to I((2−α)L/4, ε). It follows that ver-
tices in Ru′ have distance I(L/2, ε) from s, containing potential middle vertices.
Having computed all rings, we then consider for each pair of vertices u′, v′ in R′

s

the intersection M of their rings, i. e., M = Ru′ ∩Rv′ . The algorithm now selects
only such middle vertices m ∈ M that result in smooth paths around u and v.
More precisely, a vertex m ∈ M is selected, iff the smoothing condition holds,
i. e., the path Pu′,m contains u and the path Pv′,m contains v. Intuitively, we are
only interested in the part of M that lies “behind” u (resp. v) on the shortest
path tree of Ru′ (Rv′). See Fig. 1 (right) for an illustration. Each vertex m that
fulfills the smoothing condition represents an admissible jogging route by con-
catenating Ps,u, Pu,m, Pm,v, and Pv,s. The algorithm returns, among those, the
one with minimum badness. With PSP3, the only vertex around which sharing
may occur is m (besides s). We avoid it by discarding middle vertices m, for
which the last edges of Pu′,m and Pv′,m coincide. This can be efficiently checked
during the algorithm.

We now propose two optimizations to speed up PSP3. The first avoids the
costly computation of set-intersections: Instead of storing (and intersecting)
rings Ru′ , the algorithm maintains a vertex-set Mm at each vertex m of the
graph. Whenever Dijkstra’s algorithm scans a potential middle vertex m, it
adds u to Mm (iff the smoothing condition holds). Moreover, it suffices to keep
the (at most) two vertices u, v with lowest associated badness values in each
set Mm. As a result, managing middle vertices is a constant time operation. The
second optimization avoids some calls to Dijkstra’s algorithm: If the ring R′

s

contains vertices u′ and v′ for which u′ is an ancestor of v′ in the shortest path
tree, a single Dijkstra run from u′ suffices to handle both u′ and v′. Including
these optimizations, PSP3 essentially runs O(|V |) times Dijkstra’s algorithm. Its
total running time is thus O(|V |2 log |V |+ |V ||E|), as well as PSP2’s.

Bidirectional Search. To allow more flexibility for selecting the middle vertex, we
propose the algorithm PSP3-Bi which is an extension of PSP3 using bidirectional
search [2]. As PSP3, it starts by computing Rs, and from that, R′

s. However, it
now runs (in turn) for each pair of vertices u′, v′ a bidirectional search. Whenever
it scans a vertex m that has already been scanned by the opposite direction, it
checks (a) whether u (resp. v) are ancestors of m in the forward (resp. backward)
shortest path tree, and (b) if the total length of the combined route is in I(L, ε). If
both hold true, it stops, and considers the just-found jogging route as output (it
keeps track of the one that minimizes badness). Note that by design, sharing
around m cannot occur. Since PSP3-Bi must run a bidirectional search for each
pair of vertices in R′

s, its running time is bounded by O(|V |3 log |V |+ |V |2|E|).

Parallelization. All PSP-based algorithms can be parallelized quite easily in a
shared memory setup: They, first, sequentially compute the ring Rs (resp. R′

s).
Subsequent Dijkstra runs may then be distributed among the available proces-
sors. Each processor computes its locally optimal route, and the globally optimal
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route is selected in a sequential postprocessing step. To avoid race conditions,
we use locking as synchronization primitive, whenever necessary.

Alternative Routes. All PSP-based algorithms provide alternative routes without
significant computational overhead. Instead of just outputting the route with
minimum badness, we may output the k best routes. However, these routes tend
to be too similar. We, therefore, only consider routes as alternatives that are
pairwise different in their via-vertices u and v from Rs (still selecting the k best
regarding badness). By these means, we obtain jogging routes that cover different
regions of the graph around the source vertex s.

4 Experiments

We implemented all algorithms from Section 3 in C++ compiled with GCC 4.7.1
and flag -O3. Experiments were run on one core of a dual 8-core Intel Xeon E5-2670
clocked at 2.6 GHz with 64 GiB of DDR3-1600 RAM. We focus on the pedestrian
network of the greater Karlsruhe region in Germany. We extracted data from a
snapshot of the freely available OpenStreetMap1 (OSM) on 5 August 2012. We
only keep walkable street segments and use OSM’s highway and landuse (of the
surrounding polygon, if available) tags to define sensible badness values (see [11]
for details). The resulting graph has 104 759 vertices and 118 671 edges.

Our first experiment evaluates quality and performance of our algorithms. For
each, we ran (the same) 1 000 queries with source vertex s chosen at random. We
request routes of 10 km length and ε set to 10 %. Results are summarized in Ta-
ble 1. We report the average length (in km) of the computed routes, the standard
deviation (Std.-Dev.) of their length, their average badness values (Bad.), their
average amount of sharing (Sh.), the number of turns on them (No. Trn.), and
the average running time of the algorithm on one, and where applicable, also on
four and eight processors (Time-x). Sometimes our algorithms may not find any
feasible solution. Therefore, we also report their success rates (Succ. Rate).

Algorithms in Table 1 are grouped into blocks. The first evaluates the greedy
faces approach from Section 3.1. We observe that GF succeeds in approximating
the required route length of 10 km with very little error. However, for 7 % of our
queries no solution was found. One reason is that GF is unable to recover from local
optima. However, sharing is almost nonexistent with an average value of 0.2 %.
This is expected, since by design sharing for GF only occurs around s, iff it lies in a
dead-end street. On the downside, route complexity is quite high with 51 turns on
average. This justifies our smoothening rules by shortest paths. We set the number
of selected vertices to 6 for GF-es and to 9 for GF-ivs. Interestingly, figures are
quite similar for all rules: They reduce route complexity by a factor of almost two,
which comes with little increase in sharing (up to 6.9 %). Recall that smoothening
may arbitrarily change route lengths. Our experiments indicate that the average
route length deviates little (it is still 9.5–9.7 km, depending on the specific rule).
However, the figure is much less stable: The mean error (Std.-Dev.) increases to
1 http://openstreetmap.org

http://openstreetmap.org
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Table 1. Solution quality and performance on our Karlsruhe input for both the Greedy
Faces (GF) and Partial Shortest Paths (PSP) algorithms. For smoothening, we apply
the equidistant rule (es), convex hull rule (cs), and important vertex rule (ivs) to GF.

Length Std.- Bad. Sh. No. Succ. Time-1 Time-4 Time-8
Algorithm [km] Dev. [%] [%] Trn. Rate [ms] [ms] [ms]

GF 9.89 0.58 48.7 0.2 51 93% 285 — —
GF-es 9.61 2.07 43.8 6.5 28 93% 289 — —
GF-cs 9.73 2.23 43.0 6.9 29 93% 296 — —
GF-ivs 9.48 1.98 41.7 6.0 30 93% 293 — —

PSP2 9.99 0.58 27.3 52.5 16 98% 179 84 63
PSP3 10.14 0.41 31.0 23.6 20 98% 155 78 72
PSP3-Bi 10.06 0.53 33.4 13.9 21 98% 446 177 140

around 2 km. Regarding running times, GF runs in 285 ms on average, with a mild
increase up to 296 ms (≈ 4 %), if we enable smoothening.

The second block evaluates the PSP approach from Section 3.2 (we set α
to 0.6, where applicable). Again, we succeed approximating the required route
length of 10 km with little error (≈ 0.5 km on average for all algorithms). Be-
cause PSP considers more route combinations than GF, it is more likely to find
a feasible solution. This is reflected by the excellent success rate of 98 % (for
all PSP algorithms). Regarding badness, PSP finds “nicer” routes (lower average
badness) than any of the GF algorithms. However, their sharing (still only pos-
sible around s) is much higher. On average, sharing is 52 % for PSP2’s, though,
we are able to reduce it to 14 % with PSP3-Bi. This is well acceptable in prac-
tice. An important advantage of PSP over GF is route complexity: With 16–21
turns on average, this figure is lower than any of the GF algorithms, even with
applied smoothening. Enabling the stopping criterion decreases running times
from 3 579 ms (not reported in the table) to 179 ms, a factor of 20. The fastest
algorithm is PSP3 with 155 ms on average. PSP3-Bi is slower by a factor of 2.9.
(Recall that it must run a bidirectional search for every pair of vertices from Rs;
cf. Section 3.2.) Regarding parallelism, we observe speedups of factor 2.1 (PSP2)
and 1.9 (PSP3) on four processors over a sequential execution. As expected,
with a speedup of 2.5, PSP3-Bi benefits most from parallelization. Increasing
the number of processors to eight, improves little. Still, PSP3-Bi benefits most,
with a total speedup of 3.1.

We now present two detailed experiments. The first concerns our smoothening
rules, the second evaluates variations of the input parameter ε. Each datapoint is
based on (the same) 1 000 queries with s selected at random, and L set to 10 km.
Fig. 2 shows results of our first experiment. We set ε to 10 %, and vary (on
the abscissa) the number of vertices between which the smoothening process
computes shortest paths. The left plot reports, for each smoothening rule, how
much it affects the length of the routes. We report the average amount (in
percent) it changes. The right plot shows the same figure, but for badness. We
observe that our routes tend to get shorter after smoothening. This is expected,
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Fig. 2. Evaluating the effect of the smoothening rules on GF. We report the relative
amount by which the route’s length (left) and badness (right) change while varying the
number of vertices the algorithm selects to compute shortest paths (cf. Section 3.1).
The legend of the left figure also applies to the right.

since we rebuild routes using shortest paths. Selecting too few vertices shortens
routes severely (to below 50 %). Their length eventually stabilizes above 90 % for
six vertices and more. Badness generally improves when using smoothening, but
continuously increases with more vertices. Interestingly, the convex rule (which
is independent of the number of vertices) seems good regarding both length and
badness, which makes it the preferred rule in practice.

Our final experiment evaluates all algorithms for varying input parameter ε.
Results are summarized in Fig. 3, which evaluates, for each ε, the average success
rate (left plot) and the resulting route’s badness (right plot). Note that applying
smoothening to GF does not affect the success rate, therefore, we do not enumer-
ate smoothening rules in the left figure. We observe that too much restriction
on the allowed length (small ε-values), may result in a low success rate (down
to 75 %) and high badness values (more than 50 % for GF). Setting ε > 0.07
already significantly improves the success rate. Unsurprisingly, badness values
gradually improve with increasing ε, as this gives the algorithms more room for
optimization. Here, a good tradeoff seems setting ε to 0.1. Interestingly, PSP3-
Bi’s success rate is almost unaffected by ε, even for tiny values below 0.07.

5 Conclusion

In this work, we introduced the NP-hard Jogging Problem. To compute use-
ful jogging routes, we presented two novel algorithmic approaches that solve a
relaxed variant of the problem. Besides length, both explicitly optimize two im-
portant criteria: Badness (i. e., surrounding area) and sharing (i. e., shape of the
route). The methods are based on different intuitions. The first incrementally ex-
tends routes by carefully joining adjacent faces of the graph, possibly smoothened
by a quick postprocessing step. The second computes sets of alternative routes
that resemble equilateral polygons via shortest path computations. Experiments
on real-world data reveal that our algorithms are indeed practical: They compute
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Fig. 3. Evaluating success rate and badness on all algorithms for varying ε. The legend
of the left figure also applies to the right. Note that, regarding the greedy faces approach,
smoothening does not affect the success rate, hence, we only report it for GF.

jogging routes of excellent quality in under 200 ms time, which is fast enough for
interactive applications. Future work includes comparing our algorithms to exact
solutions, and better methods for selecting via vertices—either as smoothening
rules, or for computing routes directly. Also, providing via vertices (or “areas”) as
input is an interesting scenario. Finally, we like to accelerate our algorithms fur-
ther. Especially, PSP may benefit from speedup techniques [3,9]. This, however,
requires adapting them to compute rings instead of point-to-point paths.
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laura@dis.uniroma1.it
3 Department of Computer Science, Princeton University, 35 Olden Street,

Princeton, NJ, 08540, and Hewlett-Packard Laboratories
ret@cs.princeton.edu

Abstract. We present the first implementations of certified algorithms
for computing dominators, and exhibit their efficiency experimentally
on graphs taken from a variety of applications areas. The certified al-
gorithms are obtained by augmenting dominator-finding algorithms to
compute a certificate of correctness that is easy to verify. A suitable cer-
tificate for dominators is obtained from the concepts of low-high orders
and independent spanning trees. Therefore, our implementations provide
efficient constructions of these concepts as well, which are interesting in
their own right. Furthermore, we present an experimental study of effi-
cient algorithms for computing dominators on large graphs.

1 Introduction

A flow graph is a directed graph with a distinguished start vertex s such that
every vertex is reachable from s. Throughout this paper G = (V,A, s) is a flow
graph with vertex set V , arc set A, start vertex s, and no arc entering s. (Arcs
entering s can be deleted without affecting any of the concepts we study.) We
denote the number of vertices by n and the number of arcs by m (m ≥ n− 1).
A fundamental concept in flow graphs is that of dominators. A vertex u is a
dominator of a vertex v (u dominates v) if every path from s to v contains
u; u is a proper dominator of v if u dominates v and u �= v. The dominator
relation is reflexive and transitive. Its transitive reduction is a rooted tree, the
dominator tree D: v dominates w if and only if v is an ancestor of w in D. If
v �= s, d(v), the parent of v in D, is the immediate dominator of v: it is the
unique proper dominator of v that is dominated by all proper dominators of v.
Dominators have applications in diverse areas including program optimization
and code generation [11], constraint programming [32], circuit testing [4], the-
oretical biology [2], memory profiling [27], connectivity and path-determination
problems [15,16,24], and the analysis of diffusion networks [22]. Allen and Cocke
showed that the dominance relation can be computed iteratively from a set of
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data-flow equations [1]. A direct implementation of this method has an O(mn2)
worst-case time bound, for a flowgraph with n vertices and m edges. Cooper,
Harvey, and Kennedy [10] presented a clever tree-based space-efficient imple-
mentation of the iterative algorithm. Although it does not improve the O(mn2)
worst-case time bound, the tree-based version is much more efficient in practice.
Purdom and Moore [31] gave an algorithm, based on reachability, with complex-
ity O(mn). Improving on previous work by Tarjan [34], Lengauer and Tarjan [25]
gave two near-linear-time algorithms for computing D that run fast in practice
and have been used in many of these applications. The simpler of these runs
in O(m log(m/n+1) n) time. The other runs in O(mα(m,n)) time, where α is a
functional inverse of Ackermann’s function [35]. Subsequently, more-complicated
but truly linear-time algorithms were discovered [3,6,7,17].

In [18,19,20] the problem of verifying the dominator tree of a flow graph was
considered: we wish for a simple way to verify that the tree produced by one
of the fast but complicated dominator-finding algorithms is in fact the domina-
tor tree. The correctness of a simpler but less efficient algorithm for computing
dominators has been mechanically verified [37], but to our knowledge none of the
fast algorithms has had its correctness mechanically verified. The approach in
[19,20] was to augment the dominator-finding algorithm to compute additional
information, a certificate of correctness. The verifier uses the certificate to make
dominator verification easier. This makes the dominator-finding algorithm a cer-
tifying algorithm [28]. A suitable certificate for dominators is that of a low-high
order of a flow graph and a rooted tree. Let T be a rooted tree. We denote by
t(v) the parent of vertex v; t(v) = null if v is the root of T . If v is an ancestor
of w, T [v, w] is the path from v to w. Tree T is flat if its root is the parent of
every other vertex. Given a tree T rooted at s with vertex set V (not neces-
sarily a spanning tree of G), a preorder of T is low-high on G if, for all v �= s,
(t(v), v) ∈ A or there are two arcs (u, v) ∈ A, (w, v) ∈ A such that u is less than
v, v is less than w, and w is not a descendant of v. See Figure 1.

Low-high orders are related to the notion of independent spanning trees. Two
spanning trees B and R rooted at s are independent if for all v, B[s, v] and
R[s, v] share only the dominators of v; B and R are strongly independent if for
every pair of vertices v and w, either B[s, v] and R[s, w] share only the common
dominators of v and w, or B[s, w] and R[s, v] share only the common dominators
of v and w. Given a low-high order it is easy to construct in O(n) time two
strongly independent spanning trees, and, conversely, given two independent
spanning trees we can construct a low-high order in O(n) time [19,20]. These
three definitions are interesting in their own right, and have applications in other
graph problems [19]. Previously, they were considered only for flow graphs with
flat dominator trees [9,23,30,36].

In this work we present efficient implementations of certified, near-linear-time
algorithms for computing dominators, based on low-high orders, as described in
[19]. 1 This way we also obtain efficient implementations of near-linear-time al-
gorithms for computing a low-high order and two strongly independent spanning

1 Werefer to [19] for the complete description of the algorithms and proofs of correctness.
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Fig. 1. A flow graph, its dominator tree with vertices numbered in low-high order
(numbers in brackets), and two strongly independent spanning trees B and R.

trees of a given flow graph.2 We exhibit the efficiency of our algorithms exper-
imentally on graphs taken from a variety of applications areas. Furthermore,
we present experimental results for various efficient algorithms for computing
dominators. A previous experimental study of algorithms for computing domi-
nators was presented in [21], where careful implementations of both versions of
the Lengauer-Tarjan algorithm, the iterative algorithm of Cooper, Harvey, and
Kennedy, and a new hybrid algorithm (snca) were given. In these experimen-
tal results the performance of all these algorithms was similar, but the simple
version of the Lengauer-Tarjan algorithm and the hybrid algorithm were most
consistently fast, and their advantage increased as the input graph got bigger
or more complicated. The graphs used in [21] have moderate size (at most a
few thousand vertices and edges) and simple enough structure that they can be
efficiently processed by the iterative algorithm. In our experiments we deal with
larger and more complicated graphs for which simple iterative algorithms are not
competitive with the more sophisticated algorithms based on Lengauer-Tarjan.

2 Dominator Certification

Let T be a rooted tree whose vertex set is V . Tree T has the parent property if
for all (v, w) ∈ A, t(w) (the parent of w in T ) is an ancestor of v in T . Since

2 Similarly, we can obtain truly linear-time algorithms by augmenting the linear-time
algorithm for computing dominators in [6].
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s has no entering arcs, but every other vertex has at least one entering arc (all
vertices are reachable from s), the parent property implies that T is rooted at
s. Tree T has the sibling property if v does not dominate w for all siblings v and
w. The parent and sibling properties are necessary and sufficient for a tree to be
the dominator tree.

Theorem 1. [19,20] A tree T has the parent and sibling properties if and only
if T = D.

By Theorem 1, to verify that a tree T is the dominator tree, it suffices to show
(1) T is a rooted tree, (2) T has the parent property, and (3) T has the sibling
property. It is straightforward to verify (1) and (2) in O(m+n) time as follows.
We execute a preorder traversal of T , assigning a preorder number pre(v) from
1 to n to each vertex v, and computing the number of descendants size(v) of v.
To verify (1) we simply check if size(s) = n. To verify (2), we use the fact that
v is an ancestor of w if and only if pre(v) ≤ pre(w) < pre(v) + size(v) [33]. This
takes O(1) time per arc, for a total of O(m) time. If T is given by its parent
function, we can number the vertices and compute their sizes by first building a
list of children for each vertex and then doing a depth-first traversal, all of which
take O(n) time. The hardest step in verification is to show (3), but the use of a
low-high order gives a straightforward test.

Theorem 2. [19,20] A tree with the parent property has the sibling property, and
hence is the dominator tree, if and only if it has a low-high order with respect
to G.

Given a tree T with the parent property and a preorder ord , we can test the
sibling property by performing the following steps. Construct lists of the children
of each vertex in T in increasing order with respect to ord . Do a depth-first
traversal of T to verify that the preorder generated by the search is the same as
ord and to compute the size of each vertex. Check that each vertex has the one
or two entering arcs needed to make ord a low-high order, using the numbers
and sizes to test the ancestor-descendant relation in O(1) time.

Although it is easy to test if a given order is low-high, it is not so easy to test
for the existence of a low-high order. Thus we place the burden of constructing
such an order on the algorithm that computes the dominator tree, not on the
verification algorithm: the order certifies the correctness of the tree. Furthermore,
an algorithm that computes the dominator tree and a low-high order does not
need to output the low-high order explicitly. It suffices to output the edges of
the dominator tree in an order such that an edge (u, v) precedes (u,w) if and
only if v is less than w in the low-high order. A verification algorithm can then
perform the verification steps (1)-(3) concurrently. In the following section we
will refer to this verification algorithm as verify.

2.1 Low-High Orders and Independent Spanning Trees

An efficient way to construct a low-high order of G is via two independent span-
ning trees. In [18,19] it is shown that two such spanning trees can be computed
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by a simple extension of the fast algorithms for finding dominators [3,6,25]. This
extension requires additional O(n) time and space computations.

Let F be a depth-first spanning tree of G rooted at s, with vertices numbered
from 1 to n as they are first visited by the search. Identify vertices by number.
A path from u to v is high if all its vertices other than u and v are higher than
both u and v. If v �= s, the semi-dominator of v, sd(v), is the minimum vertex
u such that there is a high path from u to v. Vertex sd(v) is the ancestor u
of v in F closest to s such that there is a path from u to v avoiding all other
vertices on F [u, v] (the path in F from u to v) [25]. Since there is a path from s
to v avoiding all vertices on F [sd(v), v] except sd(v) and v, d(v) ≤ sd(v). The
relative dominator rd(v) is the vertex x on F (sd(v), v] (the path in F from a
child of sd(v) to v) such that sd(x) is minimum, with a tie broken in favor of the
smallest x. The algorithm to construct two independent spanning trees, B and
R, processes the vertices in increasing order. For each vertex v �= s it chooses
one of f(v) and g(v) to be the parent b(v) of v in B and the other to be the
parent r(v) of v in R, as follows: if sd(v) = sd(rd(v)) or b(rd(v)) = f(rd(v)),
set b(v) = g(v) and r(v) = f(v); otherwise, set b(v) = f(v) and r(v) = g(v). We
will refer to this algorithm in the next section as sltist.

For the computation of a low-high order it is convenient to modify the above
construction as follows. For each vertex v �= s, if (d(v), v) is an arc of G then
replace b(v) and r(v) by d(v). Clearly, B and R remain independent spanning
trees of G after this modification.

2.2 Derived Arcs

The next step of the construction is to compute the derived arcs of B and R. Let
(v, w) be an arc of G. By the parent property, d(w) is an ancestor of v in D. The
derived arc of (v, w) is null if w is an ancestor of v in D, (v′, w) otherwise, where
v′ = v if v = d(w), v′ is the sibling of w that is an ancestor of v if v �= d(w).
Given a list of arcs L we can compute in O(n+ |L|) time the derived arcs of all
arcs in L using a three-pass radix sort. See [19] for the details.

2.3 Construction of a Low-High Order

Let B′ and R′ be the graphs formed, respectively, by the derived arcs of B and
R. Let G′ be the union of B′ and R′. Then, G and G′ have the same dominator
tree, and B′ and R′ are independent spanning trees of G′.

Given B′, R′ and G′ we can compute a low-high order of D as follows. For
each v, initialize its list of children C(v) to be empty. Then apply the following
reduction step. If G′ contains only one vertex v �= s, insert v anywhere in C(s).
Otherwise, let v be a vertex whose in-degree in G′ exceeds its number of chil-
dren in B′ plus its number of children in R′. Assume v is a leaf in R′; proceed
symmetrically if v is a leaf in B′. If v is not a leaf in B′, let w be its child in B′,
and replace b′(w) by b′(v). Delete v, and apply the reduction step recursively to
insert the remaining vertices other than s into lists of children. If b′(v) = d(v),
insert v anywhere in C(d(v)); otherwise, insert v just before b′(v) in C(d(v)) if
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r′(v) is before b′(v) in C(d(v)), just after b′(v) otherwise. After processing all
vertices, do a depth-first traversal of D, visiting the children of each vertex v in
their order in C(v). Number the vertices from 1 to n as they are visited. The
resulting order is low-high on G.

In order to implement this algorithm we need to specify how to: (1) perform
the insert operations in each list of children, and (2) maintain G′, B′ and R′ as
the algorithm removes vertices during the reduction step. The first problem is a
special case of the dynamic list maintenance problem [5,13], for which a simple
solution that supports insertions and order tests in O(1) time is given in [19].
For problem (2), we can maintain the parents in B′ and R′ easily using two
arrays that store the corresponding parent functions. Also, instead of storing
the adjacency lists of G′ it is more convenient to store the adjacency lists of B′

and R′ using three integer arrays, each of size n. Consider the structure for B′.
The first array, listB′ , stores the vertices sorted in increasing order by parent
in B′, the second array, firstB′ , stores the position in listB′ of the first child of
each vertex, and the third array, positionB′ , stores the position of each vertex
in listB′ . Consider vertex v that is removed in an application of the reduction
step. If v is a leaf in B′ then we set listB′ [positionB′ [v]] = null . Otherwise, let
w be the (unique) child of v in B′. To find w, we search for the first (and only)
child of v in firstB′ that is not null. Then we set listB′ [positionB′ [v]] = w and
positionB′ [w] = positionB′ [v]. The structure for R′ is updated similarly. Since
we search the list of children of a vertex v only once (when v is removed) the
total running time for updating B′ and R′ is O(n). In the next section, we will
refer to this algorithm as sltcert.

2.4 Alternative Construction of a Low-High Order

In [19] it is conjectured that the spanning trees B and R computed by the
algorithm described in Section 2.1 can be generated from some low-high order
of D. That is, there is an order of the vertices such that for each vertex v,
b(v) < v < r(v) if b(v) �= r(v), and b(v) = r(v) = d(v) < v otherwise. This
conjecture is supported by our experimental results, but we have no proof. If
the conjecture holds, then we can compute a low-high order with the following
simpler alternative to the algorithm of Section 2.3. Construct the independent
spanning trees B′ and R′ of the derived graph, as in Section 2.2. Form the graph
K whose arcs are all those in B′ and the reversals of all arcs in R′ that are not
in B′. Find a topological order of K. For each vertex v �= s, arrange its children
in D in an order consistent with the topological order of K. The preorder on D
corresponding to its ordered lists of children will be a low-high order. We will
refer to this algorithm in the next section as sltcert-ii.

3 Empirical Analysis

We evaluate the performance of eight algorithms, four to compute domina-
tors (the simple (slt) and the sophisticated (lt) versions of the Lengauer-
Tarjan algorithm [25], the hybrid algorithm (snca) of [21], and the iterative
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algorithm of Cooper, Harvey, and Kennedy (chk) [10]), the simple version of the
Lengauer-Tarjan algorithm augmented to compute two independent spanning
trees (sltist), two versions of a certified simple version of the Lengauer-Tarjan
algorithm (sltcert and sltcert-ii), and the low-high verification algorithm
(verify). For the first four algorithms we adapted the implementations from
[21]. Our implementations of the independent spanning trees constructions and
the certified algorithms are based upon slt which usually performs better than
lt in practice and it is easier to code. We made all implementations as efficient
and uniform as we could, within reason. (Of course, there might be room for
further improvements.) Both certified algorithms compute a low-high order of
the dominator tree via two independent spanning trees, which are computed as
described in Section 2.1. Then, algorithm sltcert computes a low-high order
by applying the method of Section 2.3, while algorithm sltcert-ii applies the
method of Section 2.4. The latter construction of a low-high order is simpler
than the former, but we have no proof that it is guaranteed to work. The algo-
rithm detects if the construction has succeeded or not; it succeeds if and only
if graph K, defined in Section 2.4, is acyclic. Of course, one can combine both
methods by applying that of Section 2.3 if the method of Section 2.4 fails. In
all the experiments we performed, however, the method of Section 2.4 always
succeeded in computing a low-high order. We note that we cannot directly apply
these methods to augment snca into a certified algorithm. The reason is that
the construction of the two independent spanning trees requires the computation
of relative dominators, which are not computed by snca.

Experimental Setup. Our implementations have been written in C++, and the
code was compiled using g++ v. 4.3.4 with full optimization (flag -O4). The source
code is available from the authors upon request. We have tested our code under
Windows (Seven), Mac OSX (10.8.2 Mountain Lion), and GNU/Linux Debian
(6.06); the behaviour of the code was comparable on all the architectures, and
therefore in the following, due to space constraints, we report only the results
against the GNU/Linux machine: namely an HP Proliant server 64-bit NUMA
machine composed by two AMD Opteron 6174 processors and 32GB of RAM
memory. Each processor is equipped with 12 cores that share a 12MB L3 cache,
and each core has a 512KB private L2 cache and 2200MHz speed. We report CPU
times measured with the getrusage function. All the running times reported in
our experiments were averaged over ten different runs. To minimize fluctuations
due to external factors, we used the machine exclusively for tests, took each
measurement three times, and picked the best. Running times do not include
reading the input file (the programs read the input arcs from a text file and
store them in an array), but they do include creating the graph (successor and
predecessor lists, as required by each algorithm), and allocating and deallocating
the arrays used by each algorithm.

Instances. We conducted experiments for a collection of (mostly) large
graphs, detailed in Table 1, from several distinct application domains. This
collection includes road networks taken from the 9th DIMACS Implementation
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Table 1. Real-world graphs sorted by file size; n is the number of vertices, m the
number of edges, and δavg is the average vertex degree.

Graph n m file size δavg type

rome99 3.3k 8.8k 98k 2.65 road network
s38584 20.7k 34.4k 434k 1.67 circuit
Oracle-16k 15.6k 48.2k 582k 3.08 memory profiling
p2p-gnutella25 22.6k 54.7k 685k 2.41 peer2peer
soc-Epinions1 75.8k 508k 5.9M 6.71 social network
USA-road-NY 264k 733k 11M 2.78 road network
USA-road-BAY 321k 800k 12M 2.49 road network
Amazon0302 262k 1.2M 18M 4.71 product co-purchase
web-NotreDame 325k 1.4M 22M 4.6 web graph
web-Stanford 281k 2.3M 34M 8.2 web graph
Amazon0601 403k 3.4M 49M 8.4 product co-purchase
wiki-Talk 2.3M 5.0M 69M 2.1 social network
web-BerkStan 685k 7.6M 113M 11.09 web graph
SAP-4M 4.1M 12.0M 183M 2.92 memory profiling
Oracle-4M 4.1M 14.6M 246M 3.55 memory profiling
Oracle-11M 10.7M 33.9M 576M 3.18 memory profiling
SAP-11M 11.1M 36.4M 638M 3.27 memory profiling
LiveJournal 4.8M 68.9M 1G 14.23 social network
USA road complete 23.9M 58.3M 1.1G 2.44 road network
SAP-32M 32.3M 81.9M 1.5G 2.53 memory profiling
SAP-47M 47.0M 131.0M 2.2G 2.8 memory profiling
SAP-70M 69.7M 215.7M 3.7G 3.09 memory profiling
SAP-187M 186.9M 556.2M 11G 2.98 memory profiling

Challenge website [12], a circuit from VLSI-testing applications [4] obtained from
the ISCAS’89 suite [8], graphs taken from applications of dominators in mem-
ory profiling (see e.g., [29]), and graphs taken from the Stanford Large Network
Dataset Collection [26]. Almost all the graphs considered were completely reach-
able from the chosen root vertex; only three of them had a reachable fraction
of nodes smaller than 90%: soc-Epinions (63%), web-Stanford (77%), and
web-BerkStan (67%).

Evaluation. We first focus on algorithms for computing dominators, in order
to later provide a perspective for the other algorithms we implemented.

Dominators computation. In Table 2, we present the results of the four dominator-
finding algorithms (slt, lt, snca, and chk) against small and medium scale
graphs. We observe that the iterative algorithm is not competitive with the
more sophisticated LT-based algorithms as the graph size increases. Among the
LT-based algorithms there is no clear winner. In order to provide a better picture
of the overall performances of these three algorithms, Figure 2 gives a plot of
their running times in microseconds, normalized to the number of the edges. As
we can see, the processing time per edge is almost constant, i.e. the values range
in a very small interval. This result is consistent with what observed in [21] and,
for large scale graphs, in [14].
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Table 2. Running times against small and medium graphs, measured in seconds, of
the four dominator computation algorithms considered. The best result in each row is
marked in bold.

Graph n m lt slt snca chk

rome99 3.3k 8.8k 0.002 0.001 0.001 0.003
s38584 20.7k 34.4k 0.008 0.007 0.007 0.010
Oracle-16k 15.6k 48.2k 0.004 0.006 0.003 0.003
p2p-gnutella25 22.6k 54.7k 0.006 0.007 0.006 0.006
soc-Epinions1 75.8k 508k 0.052 0.057 0.053 0.083
USA-road-NY 264k 733k 0.072 0.066 0.061 0.624
USA-road-BAY 321k 800k 0.086 0.076 0.070 1.130
Amazon0302 262k 1.2M 0.35 0.35 0.39 0.96
web-NotreDame 325k 1.4M 0.10 0.09 0.10 0.51
web-Stanford 281k 2.3M 0.29 0.28 0.27 5.68
Amazon0601 403k 3.4M 0.51 0.53 0.47 1.41
wiki-Talk 2.3M 5.0M 1.44 1.38 1.14 2.14
web-BerkStan 685k 7.6M 0.36 0.35 0.33 15.64
SAP-4M 4.1M 12.0M 1.35 1.22 1.07 1199.08
Oracle-4M 4.1M 14.6M 1.77 1.63 1.45 6.05
Oracle-11M 10.7M 33.9M 7.29 6.06 5.16 4583.74
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Fig. 2. Running times (in microsecs) normalized to the number of edges (shown in
logarithmic scale)

Dominators certification. Table 3 shows the running times against medium and
large scale graphs for all algorithms except chk. We also provide the running
times for executing a DFS traversal of the graphs (including the time to build
adjacency lists and other auxiliary arrays used by DFS), which we use as a
baseline; the first step of all algorithms considered in this study is to execute a
DFS on the input graph, with the exception of verify, which executes a DFS
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Table 3. Running times against medium and large graphs, measured in seconds. The
best result in each row among the three dominator-finding algorithms, and between
the two certified algorithms is marked in bold.

Graph n m dfs lt slt snca sltcert sltcert-ii verify sltist

Amazon0302 262k 1.2M 0.10 0.35 0.35 0.39 0.49 0.42 0.13 0.32
web-NotreDame 325k 1.4M 0.03 0.10 0.09 0.10 0.18 0.15 0.04 0.09
web-Stanford 281k 2.3M 0.10 0.29 0.28 0.27 0.36 0.33 0.10 0.28
Amazon0601 403k 3.4M 0.13 0.51 0.53 0.47 0.74 0.81 0.19 0.50
wiki-Talk 2.3M 5.0M 0.32 1.44 1.38 1.14 1.97 1.82 0.74 1.36
web-BerkStan 685k 7.6M 0.15 0.36 0.35 0.34 0.53 0.59 0.12 0.36
SAP-4M 4.1M 12.0M 0.38 1.35 1.22 1.07 2.49 2.92 0.67 1.29
Oracle-4M 4.1M 14.6M 0.54 1.77 1.64 1.45 3.03 2.57 0.57 1.70
Oracle-11M 10.7M 33.9M 1.42 7.30 6.06 5.16 9.46 11.13 2.23 6.37
SAP-11M 10.7M 36.4M 1.27 8.73 6.22 5.30 9.86 11.36 1.81 6.60
USA road complete 23.9M 58.3M 3.13 7.72 6.88 6.88 21.59 15.24 2.68 7.92
LiveJournal 4.8M 68.9M 3.08 18.09 18.52 16.44 21.50 27.64 7.72 18.74
SAP-32M 32.3M 81.9M 3.13 16.46 9.62 8.77 20.01 16.62 4.53 11.26
SAP-47M 47.0M 131.0M 5.13 20.91 14.82 15.79 28.77 24.56 6.99 18.29
SAP-70M 69.7M 215.7M 7.86 40.47 26.95 31.81 55.34 42.11 11.67 38.77
SAP-187M 186.9M 556.2M 21.44 51.61 43.77 41.95 104.77 93.53 21.38 46.93

on the input tree. Figure 2 gives the corresponding plot of the running times,
normalized to the number of the edges. The results indicate that the certified
algorithms perform well in practice even for very large graphs: in all of our tests
the running time of sltcert and sltcert-ii is very close to slt, and only for
the largest graph they took slightly more than twice its time. With respect to
dfs, we see that all algorithms are slower than dfs by a small constant factor.
As already mentioned, the correctness of sltcert-ii hinges on a conjecture from
[19]. We tested it on several synthetic and real world graphs (not reported in the
tables) and, so far, we did not find a counterexample.

Dominator tree and low-high order verification. The running time of the verifica-
tion algorithm,verify, are shown inTable 3, and plotted in Figure 2. As expected,
the verification algorithm is very fast, and for some inputs even faster than dfs.

Independent spanning trees computation. Finally, in the last column of Table 3
we can see the running times needed to compute two independent spanning
trees: the overhead needed by sltist, compared to slt that is based on, is
approximately no more than 15-20%, with only one exception (43% more for the
sap-70M graph).

4 Conclusion

In light of our experimental results we conclude that the use of the more elaborate
algorithms for computing dominators is necessary for applications that deal with
very large graphs. This, in turn, advocates for the use of practical dominator
verification methods. Here we presented efficient implementations of certified
algorithms for computing dominators that make verification straightforward and
very fast. In the process, the algorithms compute two independent spanning trees
and a low-high order of the input flow graph, which are useful in other graph
algorithms. Our algorithms were based on the simple version of the Lengauer-
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Tarjan algorithm, which is easier to implement compared to the sophisticated
version, and usually performs better in practice.
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2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)

6. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook,
J.R.: Linear-time algorithms for dominators and other path-evaluation problems.
SIAM Journal on Computing 38(4), 1533–1573 (2008)

7. Buchsbaum, A.L., Kaplan, H., Rogers, A., Westbrook, J.R.: A new, simpler linear-
time dominators algorithm. ACM Transactions on Programming Languages and
Systems 20(6), 1265–1296 (1998); Corrigendum in 27(3), 383–387 (2005)

8. CAD Benchmarking Lab: ISCAS’89 benchmark information,
http://www.cbl.ncsu.edu/www/CBL_Docs/iscas89.html

9. Cheriyan, J., Reif, J.H.: Directed s-t numberings, rubber bands, and testing digraph
k-vertex connectivity. Combinatorica, 435–451 (1994), also in SODA 1992

10. Cooper, K.D., Harvey, T.J., Kennedy, K.: A simple, fast dominance algorithm.
Software Practice & Experience 4, 110 (2001)

11. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4), 451–490 (1991)

12. Demetrescu, C., Goldberg, A., Johnson, D.: 9th DIMACS Implementation Chal-
lenge: Shortest Paths (2007), http://www.dis.uniroma1.it/~challenge9/

13. Dietz, P., Sleator, D.: Two algorithms for maintaining order in a list. In: Proc. 19th
ACM Symp. on Theory of Computing, pp. 365–372 (1987)

14. Firmani, D., Italiano, G.F., Laura, L., Orlandi, A., Santaroni, F.: Computing strong
articulation points and strong bridges in large scale graphs. In: Klasing, R. (ed.)
SEA 2012. LNCS, vol. 7276, pp. 195–207. Springer, Heidelberg (2012)

15. Georgiadis, L.: Testing 2-vertex connectivity and computing pairs of vertex-disjoint
s-t paths in digraphs. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 738–749.
Springer, Heidelberg (2010)

http://www.cbl.ncsu.edu/www/CBL_Docs/iscas89.html
http://www.dis.uniroma1.it/~challenge9/


Dominator Certification and Independent Spanning Trees 295

16. Georgiadis, L.: Approximating the smallest 2-vertex connected spanning subgraph
of a directed graph. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS,
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30. Plehn, J.: Über die Existenz und das Finden von Subgraphen. Ph.D. thesis, Uni-
versity of Bonn, Germany (May 1991)

31. Purdom Jr., P.W., Moore, E.F.: Algorithm 430: Immediate predominators in a
directed graph. Communications of the ACM 15(8), 777–778 (1972)

32. Quesada, L., Van Roy, P., Deville, Y., Collet, R.: Using dominators for solving con-
strained path problems. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819,
pp. 73–87. Springer, Heidelberg (2006)

33. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1(2), 146–159 (1972)

34. Tarjan, R.E.: Finding dominators in directed graphs. SIAM Journal on Comput-
ing 3(1), 62–89 (1974)

35. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of
the ACM 22(2), 215–225 (1975)

36. Whitty, R.W.: Vertex-disjoint paths and edge-disjoint branchings in directed
graphs. Journal of Graph Theory 11, 349–358 (1987)

37. Zhao, J., Zdancewic, S.: Mechanized verification of computing dominators for for-
malizing compilers. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679,
pp. 27–42. Springer, Heidelberg (2012)

http://snap.stanford.edu


Novel Techniques for Automorphism Group

Computation �

José Luis López-Presa1, Luis Núñez Chiroque2, and Antonio Fernández Anta2

1 DIATEL-UPM, Madrid, Spain
jllopez@diatel.upm.es

2 Institute IMDEA Networks, Madrid, Spain
{luisfelipe.nunez,antonio.fernandez}@imdea.org

Abstract. Graph automorphism (GA) is a classical problem, in which
the objective is to compute the automorphism group of an input graph.
In this work we propose four novel techniques to speed up algorithms
that solve the GA problem by exploring a search tree. They increase
the performance of the algorithm by allowing to reduce the depth of the
search tree, and by effectively pruning it.

We formally prove that a GA algorithm that uses these techniques
correctly computes the automorphism group of the input graph. We also
describe how the techniques have been incorporated into the GA algo-
rithm conauto, as conauto-2.03, with at most an additive polynomial
increase in its asymptotic time complexity.

We have experimentally evaluated the impact of each of the above
techniques with several graph families. We have observed that each of
the techniques by itself significantly reduces the number of processed
nodes of the search tree in some subset of graphs, which justifies the
use of each of them. Then, when they are applied together, their effect
is combined, leading to reductions in the number of processed nodes in
most graphs. This is also reflected in a reduction of the running time,
which is substantial in some graph families.

1 Introduction

Graph automorphism (GA), graph isomorphism (GI), and finding a canonical
labeling (CL) are closely-related classical graph problems that have applications
in many fields, ranging from mathematical chemistry [4,20] to computer vision
[1]. Their general time-complexity is still an open problem, although there are
several cases for which they are known to be solvable in polynomial time. Hence,
the construction of tools that are able to solve these problems efficiently for a
large variety of problem instances has significant interest. This work focuses on
the GA problem, whose objective is to compute the automorphism group of an
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input graph (e.g., by obtaining a set of generators, the orbits and the size of this
group). In this paper, novel techniques to speed up algorithms that solve the GA
problem are proposed. Additionally, most of these techniques can be applied to
increase the performance of algorithms for solving the other two problems as
well.

1.1 Related Work

There are several practical algorithms that solve the GA problem. Most of them
can also be used for CL (and consequently, for GI testing). For the last three
decades, nauty [13,14] has been the most widely used tool to tackle all these
problems. Other interesting algorithms that solve GA and CL are bliss [6,5],
Traces [17], and nishe [19,18]. Recently, McKay and Piperno have jointly released
a new version of both nauty and Traces [15] with significant improvements over
their previous versions. Another tool, named saucy [3,7,8], which solves GA (but
not CL), has the advantage of being the most scalable for many graph families,
since it is specially designed to efficiently process big and sparse graphs. Recently,
it was shown that the combined use of saucy and bliss improves the running times
of bliss for the canonical labeling of graphs from a variety of families [9].

All these tools are based on the same principles, using variants of theWeisfeiler-
Lehman individualization-refinement procedure [21]. They explore a search tree,
whose nodes are identified by equitable vertex partitions, using a backtracking
algorithm to compute the automorphism group of the graph and, optionally, a
canonical labeling. The efficiency of an algorithm depends on the speed at which
it performs basic operations, like refinement, and, mainly, on the size of the search
tree generated (the number of nodes of the search tree which are explored). There
are twomain ways to reduce the search space: pruning, and choosing a good target
cell (and vertex) for individualization.

Miyazaki showed in [16] that it is possible to make nauty choose bad target
cells for individualization, so its search space becames exponential in size when
computing the automorphism group for a family of colored graphs. This suggests
that a rigid criterion cell selector may be easily misled so that many nodes are
explored, while choosing the right cells could dramatically reduce the search
space. Thus, different colorings of a graph, or just differently labeled instances,
may generate radically different search trees. Algorithms for CL use different
criteria to choose the target cell for individualization, but these criteria must
be isomorphism invariant to ensure that the search tree for isomorphic graphs
are isomorphic, what is not necessary for GA. Examples of cell selectors are: the
first cell, the maximum nonuniformly joined cell, the cell with more adjacencies
to non-singleton cells, etc. A cell selector immune to this dependency on the
coloring or the labeling would be desirable.

Pruning the search space may be accomplished using several techniques. Or-
bit pruning and coset pruning are extensively used by GA and CL algorithms.
Perhaps, the most sophisticated pruning based on orbit stabilizer algorithms is
that of the latest versions of nauty and Traces [15], that use the random Schreier
method. However, when the number of generators grow, the overhead imposed



298 J.L. López-Presa, L.N. Chiroque, and A. Fernández Anta

is not negligible. Conflict propagation is used by bliss [5] to prune brother nodes
when one of them generates a conflict which was not found in the corresponding
node of the first path. Conflicts may be detected at the nodes of the search tree,
or during the refinement process as done by conauto [12] (for GI) and saucy [8].

Limited early automorphism detection, when a node has exactly the same
non-singleton cells (in the same position) as the corresponding (and compatible)
node in the first path, is present in all versions of conauto [10]. Recently, this
feature has been added to saucy [8] under the name of matching OPP pruning.
A more ambitious component detection was added to bliss [5] for early automor-
phism detection. However, components are not always easy to discover and keep
track of.

1.2 Contributions

In this paper we propose a novel combination of four techniques to speed up
GA algorithms, but which can be used in GI and CL algorithms as well. (Such
extensions are out of the scope of this work.) These techniques can be used in
GA algorithms that follow the individualization-refinement approach. One key
concept that we define, and that is used by some of the proposed techniques,
is the property of a partition being a subpartition of another partition (see the
definition in Section 3).

We propose a novel approach to early automorphism detection (EAD) without
the need of explicitly identifying components, unlike the component recursion of
bliss. EAD is based on the concept of subpartition, and its correctness is proved
by Theorem 2. This technique is useful, for example, when the graph is built
from regularly connected sets of isomorphic components, and components which
have automorphisms themselves.

A second technique which, to our knowledge, has never be used in any other
GA algorithm is backjumping (BJ) in the search tree, under the condition that
the partition of the current node is a subpartition of its parent node. In this case,
if the current node has been fully explored and no automorphism has been found,
instead of backtracking to its parent node, it is possible to backtrack directly
to another ancestor. Specifically, to the nearest ancestor of which the current
node is not a subpartition. The correctness of BJ is proved by Theorem 3. This
technique helps, for example, when there are isomorphic and non-isomorphic
components in a graph.

As previously stated, the target cell selector for individualization is key to
yield a good search tree. We propose a dynamic cell selector (DCS) that tries
to generate a tree in which nodes are subpartitions of their parent nodes, so the
previous techniques can be applied. If that is not possible, it chooses the vertex
to individualize to be the one, among a non isomorphism invariant subset of all
the possible candidates, that generates the partition with the largest number of
cells. DCS adapts to a large variety of graph families. Since it is not isomorphism
invariant, it cannot be applied to CL. However, it can be used for GA, using a
different one for CL, once the automorphism group has been computed, in a way
similar to the combined use of saucy and bliss for CL proposed in [9].
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The last technique proposed is conflict detection and recording (CDR), an
improvement of the conflict propagation of bliss. Besides recording a hash for
each different conflict found exploring branches of the nodes of the first path,
the number of times each conflict appeared is counted. Then, if the number of
times a certain conflict has been found on a node outside the first path exceeds
the number of times it was found in the corresponding node of the first path,
then no other branches need to be explored in this node. This technique helps
in a large variety of graph families.

We have implemented the four techniques described, and integrated them into
our program conauto-2.0,1 resulting in the new version conauto-2.03. It is worth
to mention that all versions of conauto process both directed and undirected
graphs (in fact they consider all graphs as directed).

We have performed an analysis of the time complexity of conauto-2.03. It
is easy to adapt prior analyses [12] to show that conauto-2.0 has asymptotic
time complexity O(n3) with high probability when processing a random graph
G(n, p), for p ∈ [ω(ln4 n/n ln lnn), 1−ω(ln4 n/n ln lnn)] [2]. We then show that,
in the worst case, the techniques proposed here increase the asymptotic time
complexity of conauto-2.03 by an additive polynomial term with respect to that
of conauto-2.0. In particular, DCS can increase the asymptotic time complexity
in up to O(n5), while EAD and BJ in up toO(n3). Finally, CDR does not increase
the asymptotic time complexity. Hence, if conauto-2.0 has polynomial execution
time, the execution time of conauto-2.03 does not become superpolynomial. Fur-
thermore, as will be observed experimentally, in some cases the techniques added
can drastically reduce the computing time.

We have experimentally evaluated the impact of each of the above techniques
for the processing of several graph families, and different graph sizes for each
family. To do so, we have compared the number of nodes traversed by conauto-2.0
and the number of nodes traversed when each of the above techniques is applied.
Then we have compared the number of nodes traversed, and the running times
of conauto-2.0 and conauto-2.03. The improvements are significant as the size
of the search tree increases, and the overhead introduced is only noticeable for
very small search trees.

1.3 Structure

The next section defines the basic concepts and notation used in the analytical
part of the paper. In Section 3 we define the concept of subpartition and state the
main theoretical properties, which imply the correctness of EAD and BJ. Then,
in Section 4 we describe how these results have been implemented in conauto-
2.03 and in Section 5 we evaluate the time complexity of conauto-2.03. Finally,
in Section 6 we present the experimental evaluation of conauto-2.03, concluding
the paper with Section 7.

1 The original algorithm conauto [12] solves the GI problem but not the GA problem;
conauto-2.0 is a modified version that computes automorphism groups and uses
limited, though quite effective, coset and orbit pruning.
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2 Basic Definitions and Notation

Most of the concepts and notation introduced in this section are of common use.
For simplicity of presentation, graphs are considered undirected. However, all
the results obtained can be almost directly extended to directed graphs.

2.1 Basic Definitions

A graph G is a pair (V,E) where V is a finite set, and E is a binary relation over
V . The elements of V are the vertices of the graph, and the elements of E are
its edges. The set of graphs with vertex set V is denoted by G(V ). Let W ⊆ V ,
the subgraph induced by W in G is denoted by GW . Let W ⊆ V and v ∈ V , we
denote by δ(G,W, v) the number of neighbors of vertex v which belong to W .
More formally, δ(G,W, v) = |{(v, w) ∈ E : w ∈ W}|. If W = V , then it denotes
the degree of the vertex.

Two graphs G = (VG, EG) and H = (VH , EH) are isomorphic if and only if
there is a bijection γ : VG → VH , such that (v, w) ∈ EG ⇐⇒ (γ(v), γ(w)) ∈ EH .
This bijection γ is an isomorphism of G onto H . An automorphism of a graph
G is an isomorphism of G onto itself. The automorphism group Aut(G) is the
set of all automorphisms of G with respect to the composition operation.

An ordered partition (or partition for short) of V is a list π = (W1, ...,Wm)
of nonempty pairwise disjoint subsets of V whose union is V . The sets Wi are
the cells of the ordered partition. For each vertex v ∈ V , π(v) denotes the index
of the cell of π that contains v (i.e., if v ∈ Wi, then π(v) = i). The number of
cells of π is denoted by |π|. Let A ⊆ V , πA denotes the partition of A obtained
by restricting π to A. The set of all partitions of V is denoted by Π(V ). A
partition is discrete if all its cells are singletons, and unit if it has only one
cell. Let π, ρ ∈ Π(V ), then ρ is finer than π, if π can be obtained from ρ by
replacing, one or more times, two or more consecutive cells by their union. Let
π = (W1, ...,Wm) and v ∈ Wi, the partition obtained by individualizing vertex
v is π↓v = (W1, ...,Wi−1, {v},Wi \ {v},Wi+1, ...,Wm).

A colored graph is an ordered pair (G, π) ∈ G(V )×Π(V ). Partition π assigns
color π(v) to each vertex v ∈ V . Let π = (W1, ...,Wm), for each vertex v ∈ V ,
its color-degree vector is defined as d(G, π, v) = (δ(G,Wi, v) : i = 1, ...,m).
A colored graph (G, π) is equitable if for all v, w ∈ V , π(v) = π(w) implies
d(G, π, v) = d(G, π,w). (I.e., if all vertices of the same color have the same
number of adjacent vertices of each color.) The notion of isomorphism and au-
tomorphism can be extended to colored graphs as follows. Two colored graphs
(G, π) and (H, ρ) are isomorphic if there is an isomorphism γ of G onto H , such
that γ(v) = w implies π(v) = ρ(w).

Two equitable colored graphs (G, π) ∈ G(VG)×Π(VG) and (H, ρ) ∈ G(VH)×
Π(VH) are compatible if and only if (1) |π| = |ρ| = m; (2) let π = (W1, ...,Wm)
and ρ = (W ′

1, ...,W
′
m), then for all i ∈ [1,m], |Wi| = |W ′

i |; (3) and for all v ∈ VG,
w ∈ VH , π(v) = ρ(w) implies d(G, π, v) = d(H, ρ, w). Note that, if two colored
graphs are not compatible, then they can not be isomorphic.
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2.2 Individualization-Refinement and Search Trees

Most algorithms for computing GA or CL use variants of the Weisfeiler-Lehman
individualization-refinement procedure [21]. This procedure requires two func-
tions: a cell selector and a partition refiner. A cell selector is a function S that,
given a colored graph (G, π), returns the index i of a cell Wi ∈ π such that
|Wi| > 1. A partition refiner is an isomorphism-invariant function R that, given
a colored graph (G, π), returns (G, π) if it is already equitable. Otherwise, it
returns an equitable colored graph (G, ρ) such that ρ is finer than π.

The automorphism group of a graph is usually computed by traversing a
search tree in a depth-first manner. A search tree of a graph G ∈ G(V ) is a
rooted tree T (G) of colored graphs defined as follows.

1. The root of T (G) is the colored graph R(G, (V ))2.

2. Let (G, π) be a node of T (G). If π is discrete, it is a leaf node.

3. Otherwise, let π = {W1, ...,Wm} and assume S(G, π) = j, j ∈ [1,m], and
Wj = {v1, ..., vk} (recall that |Wj | > 1 from the definition of a cell selec-
tor). Then, (G, π) has exactly k children, where the ith child is (G, πi) =
R(G, π↓vi).

A path in T (G) starts at some internal (non-leaf) node and moves toward a leaf.
A path can be denoted as π0[v1〉π1...[vk〉πk, indicating that, starting at node
(G, π0) and individualizing vertices v1, ..., vk, node (G, πk) is reached. The depth
(or level) of a node in T (G) is determined by the number of vertices which have
been individualized in its path from the root. Thus, if (G, π0) is the root node,
then π0 is the partition at level 0, and πk is the partition at level k. The first
path traversed in T (G) is called the first-path, and the leaf node of the first-path
is called the first-leaf.

Theorem 1. Let G = (V,E) be a graph. Let (G, π) and (G, ρ) be two compatible
leaf-nodes in T (G). Then, mapping γ : V → V such that, for all v ∈ V , π(v) =
ρ(γ(v)) is an automorphism of G.

Proof. Direct from the definition of compatibility among colored graphs, and
the fact that, since (G, π) and (G, ρ) are leaf-nodes, all their cells are singleton.

3 Correctness of EAD and BJ

In this section we define specific concepts needed to develop our main results, like
the concept of the kernel of a partition, and that of a partition being a subpar-
tition of another partition. Then, we state theorems that prove the correctness
of the EAD and BJ techniques.

We start by defining the kernel of a partition, which intuitively is the subset
of vertices in non-singleton cells with edges to other vertices in non-singleton
cells, but not to all of them. More formally, we can define the kernel as follows.

2 We write R(G, (V )) and S(G, π) instead of R((G, (V ))) and S((G, π)) to avoid du-
plicated parentheses.
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Definition 1. Let (G, π) ∈ G(V ) × Π(V ) be an equitable colored graph, π =
(W1, ...,Wm) and W =

⋃
i:|Wi|>1 Wi. Then, the kernel of partition π is defined

as κ(π) = {v ∈ W : δ(G,W \ {v}, v) ∈ [1, |W | − 1]}. The kernel complement of
π is defined as κ(π) = (V \ κ(π)).
Now we can define the concept of a subpartition of another partition.

Definition 2. Let (G, π) and (G, ρ) be two equitable colored graphs such that ρ
is finer than π. Then, ρ is a subpartition of π if and only if each cell in the
kernel of ρ is contained in a different cell of π. (I.e., ρκ(ρ) = πκ(ρ).)

The next result allows for early automorphism detection (EAD) when, at some
node in the search tree, the node’s partition is a subpartition of an ancestor’s
partition. In practice, it limits the maximum depth in the search tree, necessary
to determine if a path is automorphic to a previously explored one.

Definition 3. Let G ∈ G(V ) and T (G) its search tree. Let (G, πk) be a node of
T (G). Let (G, πl) and (G, ρl) be two descendants of (G, πk) such that (1) they
are compatible, and (2) πl and ρl are subpartitions of πk. Let πl = (W1, ...,Wm)
and ρl = (W ′

1, ...,W
′
m). For all i ∈ [1,m], let βi be any bijection from Wi to W ′

i .
Let us define the function α : V → V as follows.
– For all v ∈ κ(πl), α(v) = βπl(v)(v).

– For all v ∈ κ(πl), α(v) = f(v), where f(v) = v if v ∈ κ(ρl), and f(v) =
f(β−1(v)) if v ∈ κ(ρl).

Theorem 2. Let G ∈ G(V ) and T (G) its search tree. Let (G, πk) be a node of
T (G). Let (G, πl) and (G, ρl) be two descendants of (G, πk) such that (1) they are
compatible, and (2) πl and ρl are subpartitions of πk. Then, (G, πl) and (G, ρl)
are isomorphic, and α (as defined in Definition 3) is an automorphism of G.

Interestingly, some of the properties used for early automorphism detection in
other graph automorphism algorithms are special cases of the above theorem.
For instance, the early automorphism detection used in saucy-3.0 is limited to
the case in which all the non-singleton cells are the same in both partitions. This
corresponds to the particular case of Theorem 2 in which κ(πl)∩ κ(ρl) = ∅, and
all the cells in κ(πl) are singleton.

The following theorem shows the correctness of backjumping (BJ) when search-
ing for automorphisms. This allows to backtrack various levels in the search tree
at once.

Theorem 3. Let (G, πk) be a node of T (G). Let (G, πl) and (G, ρl) be two
compatible descendants of (G, πk). Let (G, πm) and (G, ρm) be two descendants
of (G, πl) and (G, ρl) respectively, such that πm is a subpartition of πl and ρm is
a subpartition of ρl. If (G, πm) and (G, ρm) are compatible but not isomorphic,
then (G, πl) and (G, ρl) are not isomorphic either.

A direct practical consequence of Theorem 3 is that, when exploring alterna-
tive paths at level k, if a level m is reached that satisfies the conditions of the
theorem, it is not necessary to explore alternative paths at level l. Instead, it is
possible to backjump directly to the closest level j ∈ [k, l) such that ρm is not a
subpartition of ρj.
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4 Implementation of the Techniques in conauto-2.03

The starting point is algorithm conauto-2.0, which is the first version of co-
nauto that solves GA. It obtains a set of generators, and computes the orbits
and the size of the automorphism group using the individualization-refinement
approach. Its cell selector chooses a non-singleton cell with the largest number
of adjacencies to non-singleton cells, and the one with the smallest size among
them. The basic algorithm works in the following way. It starts by generating
the first path, recording the positions of the individualized cells at each node
of the path, for future use. Then, starting from the leaf parent, it explores each
alternative branch. When a leaf node compatible with the leaf of the first path
is reached, an automorphism is found and stored. Then, the algorithm moves to
the parent node and explores the new branches of its subtree, which will gener-
ate paths of length two. This process continues until the root node of the search
tree has been explored, using limited coset and orbit pruning.

EAD is implemented as follows. The first path is explored to find, for each
non-leaf node (G, π), its nearest successor (G, ρ) which is a subpartition of (G, π).
Note that a leaf node is a subpartition of all its ancestors. (G, ρ) is recorded as
the search limit for (G, π). Then, when searching for automorphisms from (G, π),
if a new node compatible with (G, ρ) is found, an automorphism α is inferred
applying Definition 3. This requires a subpartition test which is linear in the
number of cells, that will be executed, for each non-leaf node in the first path, at
most as many times as the length of the path from that node to the leaf. Every
time the search limit is not a leaf, a subtree is pruned.

BJ requires the execution of the subpartition test for the ancestors of each
node (G, π) of the first path, until a node of which it is not a partition is found.
That will be the backjump point for node (G, π). The point is recorded, and BJ
can be subsequently applied with zero overhead.

EAD and BJ can only be applicable if there are nodes in the first path that
satisfy the subpartition condition. Without a cell selector that favours subparti-
tions, they cannot be expected to be useful in general. Hence, a cell selector like
DCS is needed. DCS works in the following way. At node (G, π), it first selects, as
candidates, one cell in κ(π) of each size and number of adjacencies to its kernel.
From each such cell, it takes the first vertex v, and computes the corresponding
refinement R(G, π↓v). If it gets a partition which is a subpartition of π, it selects
that cell (and vertex) for individualization. If no such cell is found, it selects the
cell (and vertex) which produces the partition with the largest number of cells.
Observe that this function is not isomorphism-invariant (not all the vertices of
a cell will always produce compatible colored graphs), and it has a significant
cost in both time and number of additional nodes explored. However, it pays off
because the final search tree is drastically reduced for a great variety of graphs,
and other techniques compensate the overhead introduced.

Conflict detection and recording (CDR) requires a function to compute the
hash of each conflict found, and storing a couple of integers for the hash and the
counters. The cost incurred is very limited and there is a large variety of graphs
that benefit from this technique.
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5 Complexity Analysis

It was shown in [12] that conauto-1.0 is able to solve the GI problem in poly-
nomial time with high probability if at least one of the two input graphs is a
random graph G(n, p) for p ∈ [ω(ln4 n/n ln lnn), 1 − ω(ln4 n/n ln lnn)]. Using
a similar analysis, it is not hard to show a similar result for the complexity of
conauto-2.0 solving the GA problem. I.e., conauto-2.0 solves the GA problem
in polynomial time with high probability if the input graph is a random graph
G(n, p) for p ∈ [ω(ln4 n/n ln lnn), 1− ω(ln4 n/n ln lnn)].

We argue now that the techniques proposed in this work only increase the
asymptotic time complexity of conauto-2.0 by a polynomial additive term. This
implies that there is no risk that, if a graph is processed in polynomial time by
conauto-2.0, by using these techniques it will require superpolynomial time with
conauto-2.03. Let us consider each of the techniques proposed independently.

DCS only increases the execution time during the computation of the first-
path. This follows since it is only used by the cell selector to choose a cell, and
the cell selector is only used to choose the first-path. (Every time the cell selector
returns a cell index, this index is recorded to be used in the rest of the search
tree exploration.) The cell selector is called at most a linear number of times
in n, where n is the number of vertices of the graph. Then, DCS is applied
a linear number of times. Each time it is applied it may require to explore a
linear number of branches. Each branch is explored with a call to the partition
refiner function, whose time complexity if O(n3). Therefore, DCS increases the
asymptotic time complexity of the execution by an additive term of O(n5).

Regarding EAD, like DCS, it requires additional processing while the first-
path is created. In particular, for each partition π in the first-path, the closest
partition down the path which is a subpartition of π is determined. This process
always finishes, since the leaf of the first-path is a trivial subpartition of all the
other partitions in the first-path. There is at most a linear number of partitions
π and, hence, at most a linear number of candidate subpartitions. Moreover,
checking if a partition is a subpartition of another takes at most linear time.
Hence, EAD adds a term O(n3) to the time complexity of processing the first-
path. On the other hand, when the rest of the search tree is explored, checking the
condition to apply EAD has constant time complexity. If EAD can be applied,
an automorphism is generated in linear time. Observe that if EAD were not
used, then an equivalent automorphism would have been found, but at the cost
of exploring a larger portion of the search tree (which takes at least linear time
and may have up to exponential time complexity). Hence the application of EAD
does not increase the asymptotic time complexity of exploring the rest of the
search tree, and may in fact significantly reduce it.

The time complexity added by BJ to the processing of the first-path is similar
to that of EAD, i.e., O(n3), since for each partition in π the task is to find
the closest partition up the first-path which is not a subpartition of π (if such
a partition exists). The application of BJ in the exploration of the rest of the
search tree takes constant time to check and to apply, while the time complexity
reduction can be exponential.
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CDR on its hand involves no processing during the generation of the first-
path. Then, during the exploration of the rest of the search tree, every time a
conflict is detected, the hash of that conflict is computed and the corresponding
counter has to be updated (see Section 4). This takes in total at most linear
time. Observe that conflict detection, which takes at least linear time, has to be
done in any case. Hence, CDR does not increase the asymptotic time complexity
of the algorithm.

6 Evaluation of the Techniques in conauto-2.03

In this section, we evaluate the improvement in performance of conauto-2.0 by
adding the proposed techniques. The experiments have been carried out in an
Intel(R) Core(TM) i5 750 @2.67GHz, with 16GiB of RAM under Ubuntu Server
9.10. All the programs have been compiled with gcc 4.4.1 and optimization flag
‘-O2’, and all the results have been verified to be correct. First, we evaluate the
impact of each of the techniques proposed separately on the number of nodes
that are explored during the search. Then, we evaluate the impact of their joint
use in conauto-2.03 with respect to conauto-2.0. Finally, we compare the run-
ning times of conauto-2.03 vs. conauto-2.0. For the experiments, we have used
all the graphs in our benchmark [11], which include a variety of graph fami-
lies with different characteristics. It includes strongly regular graphs, random
graphs, projective planes, Hadamard matrices, multiple variations of Miyazaki’s
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construction, different kinds of union graphs, etc. When counting the number
of nodes of the search tree explored, each execution was stoped when the count
reached 108. For the time comparison, a timeout of 5,000 seconds was estab-
lished. When an execution reached the limit, its corresponding point is placed
on boundary of the plotting area. The plots are shown in Figure 1.

As can be observed in the plots, EAD, BJ, and CDR never increase the number
of nodes explored. This number slightly increases with DCS in some graphs, but
only in a few executions with small search tress, and the benefit attained for
most graphs is very noticeable. In fact, many executions that reached the count
limit without DCS, lay within the limit when DCS is used (see the rightmost
boundary of the plot). In the case of component-based graphs with subsets of
isomorphic components, EAD is able to prune many branches, but with other
graph families it has no visible effect. That is why the diagonal of the plot is
crowded. BJ has a similar effect, but for different classes of graphs. It is mostly
useful for component-based graphs which have few automorphisms, so they are
complementary. EAD exploits the existence of automorphisms, and BJ exploits
the inexistence of automorphisms. CDR is useful with a variety of graphs. It is
mostly useful when the target cells used for individualization are big and there
are few automorphisms. When DCS and/or BJ are combined with DCS, their
effect increases, since DCS favours the subpartition condition, generating more
nodes at which EAD and BJ are applicable. When all the techniques proposed
are used (in conauto-2.03), the gain is general (big search trees have disapeared
from the diagonal), and the overhead generated by DCS is compensated by the
other techniques in almost all cases.

The techniques presented help pruning the search tree, but they have a com-
putational cost. Hence, we have compared the time required by conauto-2.0 and
conauto-2.03, to evaluate the computation time paid for the pruning attained.
The results obtained show that the improvement in time is general and only a
few runs are slower (with running time below one second). Additionally, many
executions that timed out in conauto-2.0 are able to complete in conauto-2.03
(see the rightmost boundary of the time plot). Finally, we want to mention that
exetensive experiments, not presented here for lack of space, show that only DCS
increases the running time of the algorithm, and only for a few cases, while all
the other techniques never increase the running times.

7 Conclusions

We have presented four techniques than can be used to improve the performance
of any GA algorithm that follows the individualization-refinement approach. In
particular, a new way to achieve early automorphism detection has been proposed
which is simpler and more general than previous approaches, and its correction
has been proved. These techniques have been integrated in the algorithm conauto
with only a polynomial additive increase in asymptotic time complexity. We have
experimentally shown that, both isolated and combined, the proposed techniques
drastically prune the search tree for a large collection of graph instances.
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Abstract. We discuss a method for tracking individual molecules which glob-
ally optimizes the likelihood of the connections between molecule positions fast
and with high reliability even for high spot densities and blinking molecules. Our
method works with cost functions which can be freely chosen to combine costs
for distances between spots in space and time and which can account for the
reliability of positioning a molecule. To this end, we describe a top-down poly-
hedral approach to the problem of tracking many individual molecules. This im-
mediately yields an effective implementation using standard linear programming
solvers. Our method can be applied to 2D and 3D tracking.

1 Introduction

The possibility to observe single fluorescent molecules in real-time has opened up a
lot of new insights into the dynamics of systems in biology and material sciences. Sin-
gle molecule microscopy (SMM) allows for the parallel observation of translational
and rotational motion of many single fluorescent molecules beyond the diffraction limit
provided that their concentration is reasonably low. However, tracking of single fluo-
rescent molecules bears the challenge that the fluorescent spots are rather weak with
a low signal/noise-ratio and show significant changes in signal intensity [1,2,3]. In the
extreme case, a fluorescent molecule is dark for several recorded frames, a phenomenon
which is termed blinking [4,5].

The fact that the fluorescence signals of single molecules cannot be classified accord-
ing to their intensity or shape in different frames and even disappear in some frames
causes severe problems for single molecule tracking. Thus, many tracking algorithms
which have been developed for single particle tracking (e.g. for cells) in video mi-
croscopy fail for tracking single molecules.

The path from the recorded single molecule microscopy movies to the results about
their motion includes typically the following steps:

(i) determination of the positions of each fluorescent molecule,
(ii) connecting the positions to single molecule tracks, and

(iii) statistical analysis of these tracks.
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1.1 Previous Work

Nowadays, single molecule positions are most often determined using center of mass
or Gaussian fits, with the latter being the best option for low signal-to-noise ratios of
around four [6]. Usually the images are preprocessed by various filters, e.g. Mexican
hat [7], before the actual localization.

After localization, the positions of subsequent frames have to be connected to tracks
[8]. Different approaches have been developed for this purpose, but up to now it re-
mains challenging to improve and develop algorithms not only for special tasks but for
a universal set of problems [9].

Single Particle Tracking procedures started with the connection of one point with its
closest neighbor in consecutive frames [10]. In 1999, Chetverikov et al. published a new
algorithm called IPAN Tracker [11]. Using a competitive linking process that develops
as the trajectories grow, this algorithm deals better with incomplete trajectories, high
spot densities, faster moving particles and appearing and disappearing spots. Sbalzarini
et al. used the same approach, but did not make any assumptions about the smoothness
of trajectories [12]. Their algorithm was implemented as ParticleTracker in ImageJ.

The SpotTracker [7] is a very powerful tool to follow single spots throughout one
movie, but it can only proceed spot by spot. The algorithm proposed by Bonneau et
al. [13] falls in the same category of greedy algorithms that iteratively compute shortest
paths in space-time, which are not revised subsequently.

One of the most accurate solutions to single particle tracking is provided by multiple-
hypothesis tracking (MHT). This method chooses the largest non-conflicting ensemble
of single particle paths simultaneously accounting for all position in each frame. Jaqa-
man et al. used such an approach where they first linked positions in consecutive frames
by solving bipartite matching problems and combined these links into entire trajecto-
ries [14] with a post-processing step to account for missing points in a frame. Both steps
were optimized independently yielding a very likely solution of the tracking problem.
Dynamic multiple-target tracing was used by Sergé et al. to generate dynamic maps
of tracked molecules at high density [15]. Subtracting detected peaks from the images
allows them for a detection of low intensity peaks which would be otherwise hidden in
movies of high particle density. Peak positions were connected using statistical infor-
mation from past trajectories.

Moreover, manual or semi-automated approaches, which only perform unambiguous
choices automatically, are still used though there are cumbersome due to many user
interaction at high particle densities.

For the analysis of the tracks, different approaches have been developed [16,9]. The
most common approach is the analysis of the mean squared displacement for different
time intervals [17,18] which can readily distinguish between different modes of mo-
tion such as normal diffusion, anomalous diffusion, confined diffusion, drift and active
transport [19]. Alternatively, the empirical distribution of squared displacements [20]
and radii of gyration [21,22,16] can be used to analyze single molecule tracks.

In a compagnion paper [23], we report on the implications of our work from a chem-
ical point of view. Whereas in this paper, we highlight the algorithmic aspects of our
approach.



310 A. Karrenbauer and D. Wöll

1.2 Our Contribution

We present a method for single molecule tracking which globally optimizes the likeli-
hood of the connections between molecule positions fast and with high reliability even
for high spot densities. Our method uses cost functions which can be freely chosen to
combine costs for distances between spots in space and time and which can account
for the reliability of positioning a molecule. Using a suitable positioning procedure, re-
liable tracking can be performed even for highly mobile, frequently blinking and low
intensity fluorescent molecules, cases for which most other tracking algorithms fail.

In the following, we present a top-down approach for modeling molecule tracking.
We thereby unify the previous approaches in one framework. By developing a suit-
able polyhedral model in Sec. 2, we show theoretically that it remains computationally
tractable. A major advantage of our method is that we immediately obtain an effective
software solution using standard linear programming software. Moreover, we experi-
mentally evaluate our implementation in Sec. 3. To this end, we use real-world data
and realistic data, i.e. randomly generated according to a physical model. We qualita-
tively compare our tracking on the real-world data to tracks obtained by a human expert,
whereas we exploit the knowledge about the ground-truth in the realistic data to quan-
titatively measure the impact of noise and the validity of the parameters that we have
chosen. We evaluated our approach for two-dimensional tracking, but the extension to
3D is straight-forward. We provide our software as open source code1 for MATLAB
using CPLEX as LP-solver.

2 A Polyhedral Model for Molecule Tracking

It is easy to see that the number of possible trajectories grows exponentially with the
number of points. To tackle this combinatorial explosion [13], we consider the a top-
down polyhedral approach for a concise representation in this paper. Suppose we are
given a set of points V = {v1, . . . , vn}. Each point has one temporal and d spatial
coordinates, say (ti, xi, yi), i ∈ V , with d = 2 as used in the following for the sake of
presentation. We postulate the following conditions for a track:

– Each point has at most one predecessor.
– Each point has at most one successor.

We model the predecessor/successor relation of two points by ordered pairs. To this
end, let Vt<tj := {vi ∈ V : ti < tj} and A := {(vi, vj) : vi ∈ Vt<tj , vj ∈ V }. We
denote the predecessor/successor relation by f : A→ {0, 1}. Moreover, let g, h : V →
{0, 1} denote missing predecessors and successors, respectively. That is, g(v) = 1 iff
v ∈ V does not have a predecessor, and h(v) = 1 iff it does not have a successor.
Let δin(v), δout(v) ⊆ A denote the sets of possible predecessor/successor relations for
point v.

Definition 1. A track partition or tracking of V is a collection of disjoint tracks cov-
ering V , i.e. each point appears in exactly one track, which might consist of a single
point.

1 http://arxiv.org/src/1212.5877v2/anc/tracking.m

http://arxiv.org/src/1212.5877v2/anc/tracking.m
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The characteristic vector (f, g, h) of a track partition is a {0, 1}-vector in which the first
|A| entries corresponding to f denote the predecessors/successor relation, the following
|V | entries corresponding to g determine the starting points of the tracks, and the last
|V | entries corresponding to h define the endpoints of the tracks.

Theorem 1. The tracking polytope, i.e. the convex hull of all track partitions, is given by

P := {(f, g, h) ∈ R
|A|+2|V |
≥0 : ∀v ∈ V : g(v)+f(δin(v)) = 1, h(v)+f(δout(v)) = 1}.

Proof. It is easy to see that the characteristic vector of a tracking is contained in P .
Moreover, each {0, 1}-vector in P corresponds to a tracking. Hence, it remains to show
that these are the only vertices of P . To this end, we prove that the constraint matrix
M that defines P in the form P = {x : Mx = 1, x ≥ 0} is totally unimodular.
First, we observe that M = (M ′I) where M ′ corresponds to the f -variables. Hence, it
suffices to show total unimodularity for M ′. To this end, we consider an auxiliary graph
G′ = (V1∪̇V2, E

′) at which each of V1,2 contains a copy of each point in V and E′

is the set of edges that mimics the set A on V1 × V2. Note that by this definition G′ is
bipartite. Moreover, its adjacency matrix is given by M ′. Hence, M ′ and M are totally
unimodular.

2.1 Optimization

Based on the compact representation of all possible tracks as described before, we now
consider the problem of selecting an appropriate tracking out of all these possibilities.
To this end, we leverage the fundamental paradigm of normal diffusion: Tracks are
Markov chains, i.e. the transition probability from one state to another does only de-
pend on the current state and not on the history that led to it. Thus, all transitions are
independent random events.

Suppose that we are given probabilities p1 : A → [0, 1] for the transitions and
p2,3 : V → [0, 1] denoting the probability that a point is the beginning or the end of a
track, respectively. We wish to find a tracking with maximum likelihood, i.e. a tracking
that maximizes the joint probability of the independent random events

L(f, g, h) =
∏
a∈A

f(a)=1

p1(a)
∏
v∈V

g(v)=1

p2(v)
∏
v∈V

h(v)=1

p3(v)

or, equivalently,

logL(f, g, h) =
∑
a∈A

f(a)=1

log p1(a) +
∑
v∈V

g(v)=1

log p2(v) +
∑
v∈V

h(v)=1

log p3(v).

Hence, by substituting ci = − log pi ≥ 0, finding the most likely tracking amounts to
solve the linear programming problem

min

{∑
a∈A

c1(a)f(a) +
∑
v∈V

c2(v)g(v) +
∑
v∈V

c3(v)h(v) : (f, g, h) ∈ P

}
, (1)
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where we exploit the consequence of Thm. 1 that the minimum is attained by a {0, 1}-
solution for (f, g, h). Put differently, it is not necessary to enforce an integer solution
by Integer Linear Programming, which is NP-hard in general, but it is sufficient to
solve the LP-relaxation (1), which can be done in polynomial time using the ellipsoid
method [24] or interior point methods [25,26]. Note that the formulation (1) is general
enough to capture arbitrary separable likelihood functions L(f, g, h).
Lemma 1. For all optimum solutions (f, g, h) ∈ P and a = (v, w) ∈ A, we have

f(a) = 1 ⇒ c1(a) ≤ c2(v) + c3(w).

Proof. By contradiction: We would obtain a better feasible solution by setting f(a) = 0
and g(v) = h(w) = 1.

Although it is possible to consider different probabilities for appearing and vanishing
particles, we choose a constant one, i.e. let c2(v) = c3(v) = C for all v ∈ V . Hence,
c(a) ≤ 2 · C for all a ∈ A which appear in any optimum solution. This inspires
the definition of a tracking radius R such that we will only consider predecessors
and successors within that range. This dramatically limits the size of an instance and
enables us to use space partition techniques to efficiently construct the tracking LP. Put
differently, the restriction to a certain tracking radius for efficiency reason is justified by
Lem. 1. In the experiments section, we will discuss suitable choices for R. Similarly, it
makes sense to limit the number of frames that a molecule might be invisible.

2.2 Dealing with Noise

Since the points are usually detected from noisy images, there are false positive and
false negatives. That is, a spot v ∈ V is a false positive, if it does not correspond to any
track. A false negative is a point that does not have a correspondent in V .

Moreover, there might be v, w ∈ V that correspond to the same point. To deal with
these duplicates, we introduce so-called joins into A. That is, we allow that two points
from the same frame appear in one track. We thereby maintain the integrality of our
polyhedron. However, we treat these joins differently w.r.t. the objective function to
reflect the special situation. We propose to set the cost of such a link to the ordinary
cost of that connection plus the mean of the penalties for not having a successor and a
predecessor, respectively. Taking the penalty into account is necessary to avoid 2-cycles.

Since we can only deal with points that are present in V , we shall avoid false neg-
atives in the point detection. However, a low false negative rate often leads to a high
false positive rate. Therefore, we utilize the possibility to consider a quality measure of
each detected point. That is, we reduce the cost of not tracking a point according to its
quality. This can be modeled easily by multiplying c2,3(v) by some quality factor q(v),
e.g. proportional to the strength of the signal of this spot.

3 Experiments

So far, we described a generic approach for tracking blinking molecules. In this section,
we propose our choice for the cost-function, i.e.

c(vi, vj) = (xi − xj)
2 + (yi − yj)

2 + (ti − tj)
2,
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Fig. 1. Tracking with Δx2+Δy2 (left) and Δx2+Δy2+Δt2 (right). Two interleaved tracks are
produced for one molecule on the left, whereas there is exactly one on the right. The background
images are inverted for better readability.

which is validated experimentally. The rationale for using this function is based on the
following observation: if time is not penalized, then track fragmentation becomes more
likely as shown in Fig. 1.

Thus, we introduced the superlinear term Δt2 such that two time steps of length 1 are
cheaper than one time step of length 2. Hence, the spatial distance is mainly responsible
for comparing positions within the same frame. We consider closer destinations to be
more likely. Therefore, we do not use the time in this part of the objective.

We evaluated our approach w.r.t. efficiency and accuracy (the latter is only discussed
briefly in this paper to the extent that is relevant for algorithmic conclusions and a more
detailed analysis, in particular w.r.t. chemistry, is presented in [23]). We first consider a
controlled testing environment based on the normal diffusion model mentioned above.
We thereby obtain realistic randomly generated instances. Though the experiments with
the simulated realistic data has the advantage that we know the ground truth and thus we
can quantify the deviation of the computed results in certain situations, we shall also
validate our approach on real-world instances. To this end, we compare the diffusion
coefficients obtained manually by a human expert with our automated approach in the
final subsection of this paper.

3.1 Realistic Data

Synthetic trajectories were generated to test our tracking approach. Random walk simu-
lations with 500 steps were performed using four different diffusion coefficients (10−15,
10−14, 10−13, and 10−12 m2s−1), five different signal-to-noise ratios (1, 2, 3, 4, and 5,
see Fig. 2) and five different particle densities (100, 200, 300, 400 and 500 particles per
frame). These values can be found in many tracking challenges of practical importance,
but were also chosen to determine the sensitivity of our algorithms.

The initial x- and y-position of each spot was chosen uniformly at random in the
range [0;500]. The single molecule trajectories were used to construct movies with 500
frames. Two dimensional Gaussian functions were constructed with their center located
at the positions obtained from the random walk simulations and their widths being
diffraction limited (ca. 300 nm). We did not explicitly vary the intensities of the spots
as it might appear in practice because testing the localization routine is not our primary
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Fig. 2. Different signal-to-noise ratios (1,2,3,4, and 5 from left to right)

focus in this paper.2 However, we implicitly simulated variations in the intensities due
to noise and blinking. The time between consecutive frames was chosen as 0.1 s and
the resolution as 100 nm per pixel. Gaussian white noise was added to the movies
corresponding to the signal-to-noise ratio defined as with the amplitude of the center of
the 2D Gaussian and the standard deviation of the Gaussian white noise.

Evaluation of Running Times. The running times were measured on a Dell Precision
T7500 with an Intel Xenon CPU X5570 at 2.93 GHz and 24 GB RAM. The memory
usage never exceeded 2 GB. In the following, we will discuss the scaling behavior of
the running time. That is, the CPU time used for constructing the constraints using a
space partition3 and for solving the LP with CPLEX’s barrier interior point method,
which turned out to perform best to solve such problems from scratch. In Fig. 3, we
present the scaling behavior in dependence on the particle density.
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Fig. 3. The running times in seconds depending on the number of particles per frame. The plots
correspond to tracking radii 5,10,15 pixels from left to right. The error bars indicate the 95%
confidence intervals. Quadratic polynomials are fitted to the data.

The naive hypothesis for the running time coming from the theoretical bound of
Ye [26] for log-barrier interior point methods, i.e. cubic in the number of variables,
can be clearly dismissed. This is not surprising since the special sparse structure of our
constraint matrix is unlikely to serve as a worst-case example. Instead, we found exper-
imental support for the hypothesis that the running times scale quadratically w.r.t. the
number of particles per frame. The rationale for this hypothesis is that the degree of the

2 Note that our approach is modular such that any localization procedure may be used.
3 We use a regular grid with spacing equal to the tracking radius.
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node of a point in a frame is proportional to the number of particles per frame. Thus, the
number of arcs is quadratic in the number of particles per frame. Hence, the construction
of the LP model takes quadratic time, which is the dominating part for low densities and
slow molecules. However, with high densities and fast molecules, we see a turn-over to
the LP-solver: the faster the molecules, the fewer arcs (because the shorter is the time
a molecule stays within a fixed circle), but on the other hand the more connected the
graph becomes because each molecule sees more other molecules. We believe that the
increasing correlation is responsible for the slow-down of the LP-solver and the higher
running times for D = 10−12 m2s−1. This is supported by the observation that for
small tracking radii the computations for fast molecules finish earliest while for the
large tracking radius it takes more time than the others (see Fig. 3). Nevertheless, we
stress that these running times are negligible w.r.t. the time necessary for preparing and
executing such an experiment in reality. Thus, concerning computational resources, our
approach is well suited for being applied in the lab.

Determination of Tracking Accuracy for Simulated Data. Tracking procedures have
to meet several conditions to be suitable. Apart from practical aspects such as tracking
speed and memory consumption, the number of false positives is the key factor which
has to be minimized in order to obtain reliable results. Similarly to the definition of
false positive and false negative w.r.t. particle locations, false positives in this context
are connections between positions in different frames which have been set even though
the positions do not belong to the same molecule/particle. They can result in severe
errors in single molecule tracking and cause wrong interpretations of collected data.
Thus, the number of false positives should be kept as low as possible. False negatives
are connections between positions in different frames which are not recognized by the
tracking algorithm.

We counted the number of false positives and false negatives for movies of different
diffusion coefficients and signal-to-noise-ratios by comparing ground truth and ana-
lyzed connections between points. The fraction of false positive connections decreases
from 13% to 3% as the S/N-ratio increases from 1 to 5. False negatives particularly
occur with fast moving molecules if the tracking radius is not chosen carefully. The
reason is that the probability of finding the destination within a radius of R is

P (R, t) =

∫ R

0

r

2Dt
exp

(
− r2

4Dt

)
dr = 1− exp

(
− R2

4Dt

)
.

Thus, picking the tracking radius too low yields biased false negatives and hence an
underestimation of the diffusion coefficients. However, the tempting choice of an ex-
cessive tracking radius does not only require much more computational resources, but
may also lead to an overestimation of the diffusion coefficients if there occur leaps in
the tracks due to false positives (in particular with high particle densities).

We propose to choose the tracking radius such that a displacement is smaller with a
probability of about 99%. Since those leaps are easily determined in a post-processing
steps, a repetition of the tracking with different radii in a feedback loop is feasible. In
particular, allowing or disallowing connections between spots can be done efficiently
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with linear programming since the LP remains primal feasible or dual feasible, re-
spectively. Thus, in the former case, we shall use the primal simplex method for re-
optimization and the dual simplex method in the latter case.

Positioning and tracking are the key steps in the determination of diffusion coeffi-
cients. To distinguish the errors appearing in these steps, we analyzed four different
cases shown in Fig. 4.

Ground Truth Movie Creation Positioning Tracking Statistical Analysis4

3

1

2

Fig. 4. Steps from the simulated ground truth data to the analysis of the trajectories. To analyze
the accuracy of each single step different paths were considered (labeled 1 to 4).

In case (1), the distribution of diffusion coefficient was directly calculated from the
ground truth tracks. Though all tracks were created with respect to fixed diffusion co-
efficients, the calculation yields peaked distributions around the true values because of
the finite number of sample points in each track.

In a second set of analysis (case 2) the same ground truth positions were tracked
using our polyhedral model solved with CPLEX. Good results were obtained except for
fast molecules and high densities. That is, the probability of foreign spots moving into
the tracking range of another molecule is too high, and thus the tracking algorithm in
general returns diffusion coefficients lower than the real value.

The third set of analysis, case 3, allows for an investigation of the influence of
positioning inaccuracies on the distribution of diffusion coefficients. Movies were con-
structed from the ground truth positions with different S/N-ratios. Our positioning al-
gorithm was applied to these movies and, where possible, the positions matched to the
positions of the ground truth tracks. With the determined positions of each track, a dif-
fusion coefficient was obtained. The distribution of diffusion coefficients of these tracks
resembles the distributions of the ground truth tracks with the exception of low diffu-
sion coefficients with low S/N-ratios where the poor localization accuracy results in a
seemingly higher diffusion coefficient than simulated.

Case 4 describes the procedure which is applied for real movies to determine single
molecule diffusion coefficients. Spots in movies are positioned, the positions tracked
and a diffusion coefficient calculated from these tracks. For high S/N-ratios, the ob-
tained distributions are similar to the simulated distributions. Two trends can be ob-
served in particular at low S/N- ratios:

(i) molecules with very low diffusion coefficients tend to be analyzed as being faster
as they were simulated, and

(ii) analysis of the motion of very fast molecules in average results in a lower diffusion
coefficient as the ground truth data.
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The former observation can be explained by the poorer localization accuracy at low
S/N-ratios. This inaccuracy resembles diffusion and thus a low diffusion coefficient
will be assigned even to immobile molecules. The localization accuracy determines the
lowest diffusion coefficient which can be determined by the corresponding experimental
settings.

Tracking of Blinking Data. In the previous subsection, points were missing due to
false negatives in the localization at low S/N-ratios. However, even with perfect lo-
calization missing points may occur naturally in real-world experiments because the
fluorescence intensity of single molecules is typically not constant, but shows blinking
behavior due to photochemical or photophysical quenching processes [1]. The lengths
of on- and off-times typically show a power law distribution [1]. In order to simulate
blinking behavior, we generated on- and off-times for our simulated tracks using the fol-
lowing procedure. At the beginning a molecule was u.a.r. set as on or off. The number of
frames remaining in this state was determined randomly from a probability distribution
with P (t) ∼ (t/τ)

α. We chose realistic values for τ and α, i.e. τ = 1s and α = −2,
respectively.
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Fig. 5. Distributions of diffusion coefficients obtained after tracking of blinking data for a maxi-
mum step length of 5 (left) and 15 (right). The scale for the x-axis is log10(D · m−2s).

The analyzed distributions of diffusion coefficients for tracking of blinking ground
truth data are shown in Fig. 5. For a tracking radius of 5 pixels, the distributions of
diffusion coefficients resemble the ground truth data except for fast molecules where
a tracking radius of 5 pixels is not sufficient as discussed before. A tracking radius
of 15 pixels yields good results for fast diffusing molecules, but for slower ones, the
distributions have a long tail or even a second band at higher D values (see Fig. 5
(right)). The deviation of distribution from the ground truth distribution is caused by
tracks which include at least one large jump from one molecule to another one which
results in a significant increase of the track radius. However, these situations can be rec-
ognized easily or even automatically by an outlier detection algorithm. As said before,
we propose to integrate such a post-processing in a feedback loop to deal with the such
situations especially when heterogeneous ensembles with slow and fast molecules are
observed.
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3.2 Real-World Data

The real-world data were obtained from single molecule fluorescence widefield exper-
iments during the bulk radical polymerization of styrene to polystyrene. The motion
of single perylene diimide fluorophores was observed at various monomer-to-polymer-
conversions and thus different viscosities which allowed us to probe a broad range of
diffusion coefficients. The interested reader is referred to [27] for more details.

Before this project, the tracks were constructed semi-manually due to the lack of a
satisfying alternative. That is, only a simple search in the neighborhood of the points
was performed automatically as long as there were no ambiguities, i.e. only one local-
ized point within the tracking radius and no competition among potential predecessors.
In the case when the automatic continuation of the tracks fails, the user was presented
with 10 consecutive frames of the movie with the options to select a successor among
the alternatives, to introduce a new spot that was not detected by the localization, or to
end the track. Needless to say that this was a tedious task, which took several working
days to complete the tracking of a 5-minute-movie with high particle density. The ad-
vantage of this method is that the human expert maintains the full control over the pro-
cess and the pattern recognition capabilities of the human brain is leveraged to resolve
situations in which the image processing tools fail. On the other hand, these possibilities
are also a disadvantage as the user might introduce systematic errors in the data and it
is unlikely that a repetition of the task yields exactly the same results.

It remains to show that our automatic method not only works for realistic data but
also in the real-world. To this end, we compare the average diffusion coefficients ob-
tained from 6 movies by manual and automatic tracking:

manual 0.019 0.053 0.126 0.537 1.166 4.864 ·10−13 m2s−1

automatic 0.023 0.054 0.132 0.509 1.054 4.372
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Abstract. The general Art Gallery Problem (AGP) consists in finding
the minimum number of guards sufficient to ensure the visibility coverage
of an art gallery represented by a polygon. The AGP is a well known
NP-hard problem and, for this reason, all algorithms proposed so far
to solve it are unable to guarantee optimality except in special cases.
In this paper, we present a new method for solving the Art Gallery
Problem by iteratively generating upper and lower bounds while seeking
to reach an exact solution. Notwithstanding that convergence remains an
important open question, our algorithm has been successfully tested on
a very large collection of instances from publicly available benchmarks.
Tests were carried out for several classes of instances totalizing more than
a thousand hole-free polygons with sizes ranging from 20 to 1000 vertices.
The proposed algorithm showed a remarkable performance, obtaining
provably optimal solutions for every instance in a matter of minutes on
a standard desktop computer. To our knowledge, despite the AGP having
been studied for four decades within the field of computational geometry,
this is the first time that an exact algorithm is proposed and extensively
tested for this problem. Future research directions to expand the present
work are also discussed.

1 Introduction

The Art Gallery Problem (AGP) is one of the most investigated problems in
computational geometry. The problem’s input consists of a simple polygon, rep-
resenting the outline of an art gallery, and one seeks to find a smallest set of
points where guards should be placed so that the entire gallery is visually cov-
ered. Guards are assumed to have 360 degrees of unlimited vision, distance wise,
and a polygon is said to be (visually) covered when every point of it is visible by
at least one guard. We say that a point is visible by another whenever the line
segment connecting them does not intersect the exterior of the polygon. Figure 1
illustrates a simplified floor plan of the Musée du Louvre and an optimal solution
consisting of ten guards.
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Fig. 1. Louvre polygon representation (left); an optimal guard positioning (right)

In the version of the AGP considered in this work, often referred to as the
AGP with point guards, there are no constraints on the positions of the guards.
Moreover, we assume that the polygon is hole-free, meaning that its complement
is connected. Many variations of this problem have been studied in the literature,
including generalizations in which one allows for the presence of holes in the
interior of the polygon or restrictions where guard placement is limited a priori
to some finite set of points (e.g., the set of vertices), see [18,20]. Both of these
cases are known to be NP-hard [18,17]. To this date, as no exact algorithm
exists except for the latter case [8], a great deal of effort has been placed on the
development of heuristics and approximation techniques [1,4,13].

Our Contribution. In this paper, we present a practical iterative algorithm for
the Art Gallery Problem with point guards, which finds a sequence of decreasing
upper bounds and increasing lower bounds for the optimal value. As evidence of
the effectiveness of the proposed algorithm, we also present results showing that
for every one of more than 1440 benchmark polygons of various classes gathered
from the literature with up to a thousand vertices, optimal solutions are attained
in just a few minutes of computing time. This work is unprecedented since,
despite several decades of extensive investigation on the AGP, all previously
published algorithms were unable to handle instances of that size and often
failed to prove optimality for a significant fraction of the instances tested. As
a matter of fact, as recently as last year, experts have claimed that “practical
algorithms to find optimal solutions or almost-optimal bounds are not known”
for this problem [15].

Organization of the Text. In the next section, a few basic definitions and
notations are presented. Section 3 is devoted to a short survey of the relevant
related works. Section 4 describes the main steps of the proposed algorithm.
The most relevant implementation details are given in Section 5, while Sec-
tion 6 discusses the computational results obtained from the experiments. Fi-
nally, in Section 7, we draw some conclusions and identify future directions in this
research.
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2 Preliminaries

We briefly review, in this section, concepts that are relevant for understanding
the remaining of the paper. Recall that, in the Art Gallery Problem, the gallery
is represented by a simple polygon P , which, in this work, is assumed to contain
no holes. We say that two points in P are visible from each other if the line
segment that joins them does not intersect the exterior of the polygon. The
visibility polygon of a point p ∈ P , denoted by Vis(p), is the set of all points in
P that are visible from p. The edges of Vis(p) are called visibility edges and they
are said to be proper for p if and only they are not contained in any edges of P .

Given a finite set S of points in P , a maximal connected region in ∪p∈SVis(p)
(P \∪p∈SVis(p)) is called a covered (uncovered) region induced by S in P . More-
over, the geometric arrangement defined by the visibility edges of the points in
S partitions P into a collection of closed polygonal faces called Atomic Visibility
Polygons or simply AVPs. Clearly, the edges of an AVP are either portions of
edges of P or portions of proper visibility edges for points of S. AVPs can be
classified according to their visibility properties relative to the points of S. We
say that an AVP F is a light (shadow) AVP if there exists a subset T of S such
that F is (is not) visible from any point in T and the only proper visibility edges
that bounds F emanate from points in T (see Figure 2).

Fig. 2. Basic definitions: Visibility polygon of a point (left); a finite subset of points
S (center) and the arrangement induced by S with the light (gray) and shadow (dark
gray) AVPs (right)

We now describe discretized versions of the AGP that are fundamental to our
approach. Recollect that in the most general version of the problem, the set of
points to be covered and the set of potential guards are both infinite (equal to
P ). In contrast, the discretizations we consider here aim at reducing the set of
points to be covered and/or the set of guard candidates to be finite.

Firstly, in the Art Gallery Problem With Fixed Guard Candidates (AGPFC),
one is given a finite set of points C ⊂ P , and the question consists of selecting the
minimum number of guards in C that are sufficient to cover the entire polygon.
A special case of the AGPFC is obtained when the elements of C are restricted
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to the vertices of P , in which case we call it the Art Gallery Problem With Vertex
Guards (AGPVG).

In another discrete version, named Art Gallery Problem With Witnesses
(AGPW), one is given a finite set of points W ⊂ P , and the problem con-
sists in finding the minimum number of guards in P that are sufficient to cover
all points in W . Clearly, coverage of W does not ensure that of P . In [7], the
authors define a polygon P to be witnessable if there exists a finite witness set
W ⊂ P satisfying the property that any set of guards that covers W also covers
the entire polygon P . They also show that non-witnessable polygons are rather
common. Nonetheless, a simple process for constructing witness sets for witness-
able polygons is described. In Section 4.2, we show how the implementation of
our algorithm takes advantage of this process.

Finally, a third discretization is introduced when both the witness set and
the guard candidate set are required to be finite. This discretization leads to a
hybrid of the last two problems which we will denote by AGPWFC. It is worth
noting that the latter problem can easily be cast as a Set Cover Problem (SCP)
in which the elements of W have to be covered using the subsets comprised of the
witness points that are covered by the candidate guards. Despite being NP-hard,
large instances of the SCP can be solved quite efficiently using modern integer
programming solvers. Our algorithm takes advantage of this fact.

Although we tackle the discrete versions of AGP described above, the reader
should bear in mind that, under the assumption of convergence, the algorithm
presented in Section 4 leads to an optimal solution to the original problem. Later,
we shall further elucidate this point. As we close this section, let us evoke that,
to avoid ambiguities, unless stated otherwise, the term Art Gallery Problem and
its acronym AGP are employed throughout this text to refer to the formulation
with point guards.

3 Related Work

The Art Gallery Problem was initially proposed by Klee in 1973 as the question
of determining the minimum number of guards sufficient to watch over an entire
art gallery, represented by a simple polygon of n edges [14]. Since then, the AGP
became one of the most discussed problem in Computational Geometry and gave
rise to several important works including O’Rourke’s classical book [18], a recent
text by Ghosh on visibility algorithms [12] and surveys by Shermer in 1992 [19]
and Urrutia in 2000 [20].

The first significant theoretical result on this problem was due to Chvátal
in 1975, when he proved that �n/3� guards are sufficient to visually cover any
simple polygon of size n [6]. Among other important theoretical results, Lee and
Lin proved, in 1986, the NP-hardness of the AGP when using vertex guards,
point guards or edge guards [17].

On the algorithmic side, several techniques have been proposed for different
variants of the problem, including approximation algorithms, heuristics and even
an exact method. For instance, based on an early work [11], Ghosh [13] recently
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presented an O(n4) time approximation algorithm for simple polygons yielding
solutions within a logn factor of the optimal. Further approximation results are
also found in Eidenbenz’s work [10], which describes algorithms designed for
several variations of terrain guarding problems.

On the other hand, in 2007, Amit et al. [1] presented a series of heuristic
techniques for the AGP based on greedy strategies and methods that employ
polygon partitions. According to the authors, some of these algorithms achieved
good results for a large set of instances and, in many cases, optimal solutions
were found.

In 2011, Bottino and Laurentini [4] proposed a new heuristic for the AGP
based on an incremental algorithm that solves a restricted problem in which the
goal is to cover only the edges of the polygon using as few guards as possible.
The edge covering algorithm from [3] performed quite well in practice and, for
this reason, was modified by the authors so as to yield a guard set to ensure the
covering of the entire polygon. The heuristic thus obtained was tested and led
to high quality solutions, even in comparison with the results of Amit et al. [1].

Finally, in 2011 Couto et al. [8] extended their previous work [9] and presented
an exact algorithm for the AGPVG (with vertex guards). That algorithm itera-
tively discretizes a witness set creating a sequence of AGPWFC instances (see
Section 2 for notation) which are then modeled as SCPs and solved using inte-
ger programming techniques. The experimental tests carried out by the authors
confirm the algorithm’s efficiency and robustness, showing that it is a viable op-
tion for the exact computation of AGPVG in practice. Remarkably, the authors
also showed how to determine an initial witness set that enables the algorithm
to execute in a single iteration, notwithstanding that experiments showed that
such decrease in the number iterations does not always pay off in terms of total
computing times. The challenges of this approach reside not only on finding an
effective way to compute this ideal witness set, but also on coping with the huge
set cover instance that ensues. In the research presented here, the algorithm
of Couto et al. turned out to be a useful tool in solving the AGP (with point
guards) to optimality, as we shall see later.

Kröller et al. [16] developed another approach aiming at solving the AGP in
an exact way. The idea of their algorithm is again to discretize not only the
witness set but also the guard set and to model the restricted AGP as an SCP.
Firstly, lower and upper bounds are computed iteratively from the linear pro-
gramming relaxation of the SCP formulation. The solutions of the primal and
dual linear programs are used to guide the refinement of the witness and the
guard candidate sets, giving rise to larger models, in an attempt to continuously
reduce the duality gap. Whenever convergence happens and integrality of the
primal linear relaxation variables is obtained, an optimal solution is found. The
computational results proved the usefulness of the algorithm to generate bounds
of high quality, even for polygons with holes. Nevertheless, convergence uncer-
tainty and difficulties in obtaining integral solutions are major drawbacks that
do not commend this algorithm as an effective alternative to optimally solve the
AGP in practice.
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The article by Chwa et al. [7] is also relevant to the work presented here.
Therein, the authors study the so-called “Witness Problem” in which one wishes
to determine whether a given polygon is witnessable. Necessary and sufficient
conditions for the occurrence of this property are presented along with a de-
scription of how to create a minimum-sized set of witnesses that ensures this
attribute. This result will be used later in the development of our algorithm.

4 An Iterative Exact Algorithm for the AGP

Before we describe the algorithm we developed for solving the AGP, some ad-
ditional notation will be introduced to facilitate the exposition. Let V denote
the set of vertices of the input polygon P and assume that |V | = n. Given a
finite set S of points in P , we denote by Arr(S) the arrangement defined by the
visibility edges of the points in S. Let CU (S) be a set comprised of one point
from the interior of each uncovered region induced by S in P . Denote by VL(S)
the set of vertices of the light AVPs of Arr(S) and by CS(S) the set of centroids
of the shadow AVPs of this arrangement.

Let D and C denote, respectively, a finite witness set and a finite candidate
guard set. Let AGPW(D) indicate the AGP with witness set D and AGPFC(C)
the AGP with candidate guard set C. Lastly, AGPWFC(D,C) refers to the AGP
with witness set D and candidate guard set C.

4.1 Fundamental Results

At each iteration of the algorithm, lower (dual) and upper (primal) bounds are
generated for the optimal value of the AGP. The next two theorems establish
basic results needed to compute these bounds and to ensure the correctness of
our algorithm.

Theorem 1. Let D be a finite subset of points in P . Then, there exists an
optimal solution for AGPW(D) where each guard belongs to a light AVP of
Arr(D).

Proof. Let G be an optimal (cardinality-wise) set of guards that covers all points
in D. Suppose there is a guard g in G that belongs to a face F of the arrangement
Arr(D) that is not a light AVP. Then, there must exist an edge e of F that
belongs to the boundary of the visibility polygon of some point p in D, which is
not visible from any point inside F . Let F ′ be an AVP of Arr(D) that share e
with F . It follows from the construction of Arr(D) that every point in D \ {p}
visible from F is also visible from F ′. If g′ is any point in F ′, then g′ sees p
along with every point of D seen by g. An inductive argument suffices to show
that this process eventually reaches a light AVP wherein lies a point that sees
at least as much of D as g does, i.e., g may be replaced by a guard that lies on
a light AVP. The Theorem then follows, by induction, on the number of guards
of G. ��
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From Theorem 1, one can conclude that there exists an optimal solution for
AGPW(D) for which all the guards are in VL(D). Therefore, an optimal solution
for AGPW(D) can be obtained simply by solving AGPWFC(D,VL(D)). As seen
before, the latter problem can be modeled as an SCP by an integer program
whose number of constraints and variables are polynomial in |D|. Moreover, it
is important to observe that, since D is a subset of points of P , the optimum of
AGPW(D) gives rise to a lower bound for AGP. Later, we will see how a well
chosen sequence of increasingly larger sets can be constructed to augment one
such lower bound.

Thus, as we now know how to produce dual bounds for the AGP, the next
task is to find a way to compute good upper bounds for the problem. To this
end, we rely on the following result.

Theorem 2. Let D and C be two finite subsets of P , so that C covers P . As-
sume that G(D,C) is an optimal solution for AGPWFC(D,C) and let z(D,C) =
|G(D,C)|. If G(D,C) covers P , then G(D,C) is also an optimal solution for
AGPFC(C).

Proof. Firstly, assume that G(D,C) covers P , but it is not an optimal solution
for AGPFC(C). Then, there exists G′ ⊆ C with |G′| < z(D,C) such that G′ is
a feasible solution for AGPFC(C), i.e., G′ covers P . This implies that G′ is also
a feasible solution for AGPWFC(D,C), contradicting the fact that G(D,C) is
optimal for this problem. ��

Notice that, as a corollary of Theorem 2, we also have that z(D,C) is an upper
bound for the optimum value of the AGP on P . This result can be explored
in practice by applying a strategy analogous to that used in [8] to solve the
AGPVG. Below, we describe how this is done.

Let D be a witness set and C = VL(D)∪V . Assume that G(D,C) is an optimal
solution for AGPWFC(D,C) computed, possibly, with the aid of Theorem 1.
Suppose, regrettably, that G(D,C) does not cover P lending the conditions of
Theorem 2 unfulfilled. Hence, z(D,C) = |G(D,C)| is not a valid upper bound
for the AGP. To mend this situation, the witness set D is updated to D ∪
CU (G(D,C)). This process is then repeated until G(D,C) covers P and, thus,
Theorem 2 is applicable and z(D,C) is an upper bound for the AGP. As in the
algorithm given in [8], since the entire set C is a coverage for P , one can prove
that this procedure converges in a number of steps that is polynomial in |C|
and n. Moreover, a single step actually suffices if one solves the SCP instance
corresponding to AGPWFC(D,C) for D = CS(C) (see [8] for a proof of this).

Basic Steps. Algorithm 1 displays a pseudo-code that summarizes the steps of
our method to solve the AGP. Up to the third line, the algorithm only does the
basic initializations, including that of the initial discretization of the witness set
and of a known solution so far, G∗. Tests show that initializing G∗ to V makes our
algorithm run faster, in general, than spending O(n log n) time to compute the
placement of |V |/3 guards based on the algorithm in [2]. The remaining lines
form the main loop. In line 4, AGPW(D) is solved. According to Theorem 1
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Algorithm 1. AGP Algorithm
1: D ← initial witness set {see Section 4.2}
2: Set: LB ← 0, UB ← n and G∗ ← V
3: loop
4: Solve AGPW(D) : set Gw ← optimal solution and zw ← |Gw |
5: C ← VL(D) ∪ V
6: if Gw is a coverage of P then
7: return Gw

8: else
9: U ← CU (Gw)

10: LB ← max{LB, zw} {Theorem 1}
11: end if
12: if LB = UB then
13: return G∗

14: end if
15: Df ← D ∪ U
16: repeat
17: Solve AGPWFC(Df , C) : set Gf ← optimal solution and zf ← |Gf |
18: if Gf is a coverage of P then
19: UB ← min{UB, zf} and, if UB = zf , set G∗ ← Gf {Theorem 2}
20: else
21: Df ← Df ∪ CU (Gf )
22: end if
23: until Gf is a coverage of P
24: if LB = UB then
25: return Gf

26: else
27: D ← D ∪ U ∪M {M : see Section 4.3}
28: end if
29: end loop

this can be done via the solution of AGPWFC(D,VL(D) ∪ V ). Also, from this
theorem, a lower bound is computed in line 10. The commands in lines 5, 9 and
15 prepare the witness and the candidate guard sets to obtain a (new) upper
bound for the AGP, according to Theorem 2 and the subsequent discussion. The
actual computation of the primal bound is accomplished in the repeat loop from
lines 16 to 23. If the upper and lower bounds do not coincide, a new iteration of
the outer loop is set up by redefining the witness set in line 27. Notice that the
update of D requires the computation of a subset M , which, together with the
choice of the initial witness set (first line), is a crucial issue for the performance
of the algorithm. Both of these points are discussed in the Sections that follow.
Finally, note that halting the main loop (lines 7, 13 and 25) strictly depends on
finding a viable solution with the same cardinality as an AGPW solution. Thus,
convergence of the algorithm, which remains an open question, is contingent on
the choice of the initial set of witnesses and on how it is incremented.
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4.2 Constructing the Initial Witness Set

We implemented and tested several procedures to calculate the initial witness
set that best improves the algorithm’s performance. The first of them assigned
D simply to V , i.e., to the set of all vertices of P . This strategy was named
All-Vertices (AV). Preliminary tests indicated, though, that reflex vertices are
not very hard to be covered, so little can be gained by including them in D. This
led us to a second strategy, Convex-Vertices (CV), where D starts off with only
the convex vertices. Recall that the more witnesses there are in D, the more
complex Arr(D) is and, consequently, the larger the set VL(D) becomes. As a
consequence, with the second strategy, the number of constraints and variables
in the integer program that models the associated SCP instance tend to be much
smaller, leading to the expectation that the algorithm will perform better.

In [7], Chwa et al. presented a theorem stating that if P is witnessable, then a
minimum size witness set for P can be constructed by placing a witness anywhere
in the interior of every reflex-reflex edge of P and on the convex vertices of every
convex-reflex edge. The terms convex and reflex here refer to the angles formed
at a vertex or at the endpoints of an edge. Based on this result, we devised a
third discretization method called Chwa-Points (CP). In our implementation,
this discretization is made up of the midpoints of all reflex-reflex edges and
all convex vertices from convex-reflex edges. Notice that, when the polygon is
witnessable and this initial witness set is used, our algorithm finds an optimal
solution in just one iteration, halting on the first execution of line 7.

However, as one should expect, most polygons are not witnessable. Conse-
quently, even with the CP strategy, the algorithm often performs multiple iter-
ations. Nevertheless, as we shall see in Section 6 , this strategy performs well in
practice. Still, it inspired us to design a fourth strategy, named Chwa-Extended
(CE). In this case, the initial witness set is populated with the same points as
in CP plus all reflex vertices from convex-reflex edges. Preliminary experiments
showed that this strategy speeds up the algorithm in some cases.

It is worth noticing that the size of the discretization set certainly affects the
computation time, since it directly determines the size of the SCP integer pro-
grams and, indirectly, it may also have an influence on the number of iterations.
Nonetheless, from our experience, the algorithm’s performance is not merely de-
pendent on the size of this set. The quality of the points chosen to be brought into
the witness set is critical in determining for how long the algorithm iterates. Expe-
rience shows that points less exposed to surveillance seem to play a better role as
witnesses. Moreover, even though a solid formalization of this concept is yet unre-
solved, heuristically speaking, the earlier such points can be identified, the better.

4.3 Incrementing the Witness Set

If the last test comparing the bounds in line 24 of Algorithm 1 fails, the else clause
is executed, and the algorithm will iterate again. This brings about an update on
the witness set (line 27). Initially, we included inD only the centroids of the regions
that remain uncovered byGw from the solution of AGPW(D) (line 4), but this did
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Fig. 3. Solving the AGPW (Lower Bound): The initial witness set D (Chwa-
Points) (left); the arrangement Arr(D) and the light AVPs (center); the solution to
AGPW(D) (right)

Fig. 4. Solving AGPFC (Upper Bound): Updated witness set Df (left); the solu-
tion to AGPWFC(Df , VL(D) ∪ V ) and to AGPFC(VL(D) ∪ V ) (right)

Fig. 5. Solving the AGPW (Lower Bound): The new witness set D (left); the
arrangement Arr(D) and the light AVPs (center); the solution to AGPW(D) and to
AGP (right)
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not produce good results. Apparently, the main reason for this behavior is that this
criterion precludes the choice of points on the boundary of the polygon. To over-
come this drawback, we decided to also include in the discretization the midpoint
of each edge of the shadow regions which lies on an edge of the polygon. These
additional witnesses are the elements of the set M that appear in line 27 of the
algorithm. This approach proved to be very effective for most polygon instances
tested. However, some rare cases still required a number of iterations before the
algorithm was capable of closing the duality gap.

Further analyzes led to yet another attempt to curb the occurrence of slow
convergence by also including in M the vertices of the edges whose midpoints
had been inserted as previously mentioned. These additional witnesses proved
conducive to a performance improvement, as we will see in Section 6, by boosting
the iterative algorithm to find optimal solutions quicker.

Figures 3, 4 and 5 illustrate the execution of the AGP algorithm on an or-
thogonal polygon from [8].

5 Implementation

For computational testing, Algorithm 1 was coded in the C++ programming
language. The program uses the Computational Geometry Algorithms Library
(cgal) [5], version 3.9, to benefit from visibility operations, arrangement con-
structions and other geometric tasks. To solve the integer programs that model
the SCP instances, we used the xpress Optimization Suite [21], version 7.0.

Some implementation details are worth discussing. Firstly, notice that to solve
AGPW(D) we rely on Theorem 1 and actually solve AGPWFC(D,VL(D)∪ V ).
However, this requires the construction of Arr(D) which is an expensive step.
This cost can be amortized, if the arrangement is simply updated every time
the witness set is modified. In our implementation, we carefully kept track of
the arrangement changes, avoiding its recalculation from scratch throughout the
iterations. For this task, we used the Arrangement_2 class from cgal, which
employs the DCEL data structure. Moreover, a hash table containing all the
visibility polygons from witnesses and guard candidates already calculated was
used to speed up the process. If Dl denotes the final witness set, the overall
complexity of the arrangement construction amounts to the time for calculating
|Dl| visibility polygons plus the time spent adding each of the n× |Dl| edges to
the arrangement. Asymptotically, this procedure is quadratic in n× |Dl|.

Another important aspect of the implementation amounts to the use of exact
arithmetic as provided by cgal. The coordinates of the input points as well as
those generated during the execution of the algorithm are all expressed in frac-
tional form. In principle, both the numerators and the denominators of these
fractions are represented by integers with an unlimited number of digits. As
mentioned before, the update of the witness set along the iterations of our algo-
rithm avails itself of the computation of a point interior to each uncovered region.
A natural choice would be to compute the centroid of any triangle contained in
the uncovered region. However, even when the vertices of P have integral co-
ordinates, it is easy to encounter instances for which these calculations lead
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to numbers whose representations are extremely large. As a consequence, any
arithmetic operation with such numbers becomes very time consuming, severely
deteriorating the algorithm’s overall performance. To circumvent this situation,
we initially replaced the computation of this centroid by that of another point
in the interior of this triangle with a much shorter representation. For the cor-
rectness of the algorithm, it is immaterial which point we choose in the interior
of the uncovered region. Notwithstanding, exceedingly long terms of fractions
might still be generated. In this case, we perform verifiably valid truncation
operations along with a simple trial-and-error procedure on these terms. This
produced a dramatic gain in performance when compared with the computation
of the centroids. Hence, this method was incorporated to the code and used in
all tests, which are reported in the next section.

6 Computational Experiments

In this section, we describe the computational experiments that were carried out,
reporting and analyzing the results obtained for a collection of 1440 instances in
the public domain containing polygons from a large variety of classes and sizes.

Environment. All tests were conducted using a single desktop PC featuring an
Intel R© Core

TM
i7-2600 at 3.40 GHz, 8 GB of RAM and running under GNU/Linux

3.2.0. As described in Section 5, cgal and xpress libraries were used in our
implementation. Furthermore, all our tests were run in isolation, meaning that
no other processes were executed at the same time on the machine.

Instances. The experiments were conducted on a set of instances in the public
domain. This allowed us to make more direct comparisons with other works
published earlier on the AGP. The benchmark is composed of instances grouped
together according to their distinctive polygonal forms and sizes. This helps in
highlighting the quality and robustness of our algorithm.

Firstly, our algorithm was tested with random simple polygon instances ob-
tained from Bottino et al. [4] and Couto et al. [8]. A total of 670 polygons were
used in this experiment, 250 of which came from [4], while the remaining 420
were collected from [8]. These instances were divided into groups according to
their sizes: those from Bottino et al. contain from 30 to 60 vertices while those
from Couto et al. range from 20 to 1000 vertices.

The second category of instances included 500 random orthogonal polygons,
which also came from [4] (80 instances) and [8] (420 instances). As in the previous
case, they were grouped according to their original benchmarks and their sizes.

Finally, we also tested with random orthogonal von Koch polygons from [8]
since, as shown by the authors, such instances represent a challenge to AGP
solvers. In total, this group contained 270 instances partitioned into nine smaller
subgroups according to their sizes, ranging from 20 to 500 vertices.

Additionally, we experimented on a few singular polygons such as a floor
plan of the Musée du Louvre and a simple polygon used in [16] to illustrate a
convergence problem occurring with the algorithm proposed in that paper.
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Fig. 6. Sample instances used in experiments obtained from [4] and [8]

Examples of polygons (in the public domain) used in the computational ex-
periments are shown in Figure 6.

Analysis. Let us start off by declaring unambiguously that our algorithm was
able to prove optimality for all 1440 instances of the benchmark. This unprece-
dented success for an AGP solver can be better appreciated by analyzing the
data on the tables that follow.

In Table 1 we compare the results we have obtained with those reported in [16].
For this comparison, we used the simple and orthogonal polygons of sizes 60,
100, 200 and 500 from Couto et al. [8], as these were the polygon sizes used in
the experiments reported in [16]. The most important aspect to analyze, not to
say the only one that has significance, refers to the number of instances solved to
proven optimality. Recall that the algorithm presented by Kröller et. al. in [16]
generates a sequence of primal and dual bounds for AGP which are computed
through a sequence of linear programs obtained by incrementing the number of
variables and constraints of the model. As mentioned earlier, that method has no
proof of convergence and is only able to guarantee optimality if the primal linear
program has an integer optimal solution whose value is equal to the known dual
bound. As seen in this table, the algorithm often failed to converge and, hence,
to provide an optimal solution. In contrast, our algorithm always returned an
optimal solution, leading to a substantial increase in the number of instances
in the literature with known optima. This can be perceived from the results
of optimality rate on Table 1. It should be noticed that in [16] the algorithm
was always halted after 20 minutes of execution. Therefore, one can legitimately
argue that it might have converged to the optimum in other cases had extra
computation time been given. However, as noted by the authors, in the cases of
failure, little or no improvement in the duality gap had been observed when the
algorithm was halted.

The computation times given in [16] are also displayed in Table 1 even though
a fair comparison is not possible since the computational environments for the
two experiments are rather different. Therefore, we restrict ourselves to pointing
out that our implementation was able to solve each of the 240 instances that
comprise the tests displayed in this table within a maximum time of 141 seconds.
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Table 1. Comparison between the method of Kröller et al. [16] and ours

Instance
Groups n

Optimality Rates
Method [16] Our Method

Simple (30
inst. per size)

60 80% 100%
100 64% 100%
200 44% 100%
500 4% 100%

Orthogonal
(30 inst. per
size)

60 80% 100%
100 54% 100%
200 19% 100%
500 7% 100%

Instance
Groups n

Average Time (sec)
Method [16] Our Method

Simple (30
inst. per size)

60 0.70 0.57
100 29.40 1.72
200 14.90 7.09
500 223.30 65.64

Orthogonal
(30 inst. per
size)

60 0.40 0.30
100 1.10 0.95
200 4.30 3.95
500 25.30 30.85

Now, we analyze the cardinality of the guard sets produced by the heuristic
of Bottino et al. [4] relative to the optima computed with our algorithm. This
study involved uniquely the instances treated in [4]. The data are summarized in
Table 2. Although an instance-based comparison would be more desirable, this
was not possible since in [4] only average values are reported. Nevertheless, one
can see that, except for the small random simple polygons with 30 vertices, the
heuristic was unable to reach the optimum on all remaining instance subgroups.
As a side remark, one may perceive a trend of a growing gap between the results
from the heuristic and the optimal values as the number of vertices grow. As
in the previous analysis, a direct comparison of execution times would not be
adequate as the two algorithms have distinct goals and were executed on different
computer systems. As an illustration, the tests in [4] were conducted on an Intel R©

Core2
TM

processor at 2.66 GHz and 2 GB of RAM. Despite this observation, it
seems remarkable that the average time spent by our code to find a provably
optimal solution is orders of magnitude smaller than that consumed by the
heuristic of Bottino et al. to generate a suboptimal solution.

Table 2. Comparison between the method of Bottino et al. [4] and ours

Instance
Groups n

Number of Guards (average)
Method [4] Our Method

Simple (20
inst. per size)

30 4.20 4.20
40 5.60 5.55
50 6.70 6.60
60 8.60 8.35

Orthogonal
(20 inst. per
size)

30 4.60 4.52
40 6.10 6.00
50 7.80 7.70
60 9.30 9.10

Instance
Groups n

Average Time (sec)
Method [4] Our Method

Simple (20
inst. per size)

30 1.57 0.17
40 2.97 0.23
50 221.92 0.42
60 271.50 0.54

Orthogonal
(20 inst. per
size)

30 1.08 0.12
40 9.30 0.17
50 6.41 0.23
60 81.95 0.30

Initial Discretizations. As explained in Section 4.2, four different discretiza-
tion strategies were developed to construct the initial witness set W . Our tests
revealed significant changes in the performance of the algorithm when these
strategies are adopted. This observation can be better understood from the data
exhibited in Tables 3 and 4.
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Table 3. Number of iterations (main loop) and average time spent until an optimal
solution is found for each initial discretization strategy, using Bottino et al. instances [4]

Instance Groups n
Iterations

AV CV CP CE
50x30 (170 inst.) 30 1.14 1.14 1.10 1.11

Simple (20 inst. per
size)

30 1.50 1.55 1.45 1.50
40 1.25 1.40 1.15 1.10
50 1.45 1.70 1.55 1.35
60 1.55 1.80 1.20 1.40

Orthogonal (20
inst. per size)

30 1.38 1.38 1.14 1.10
40 1.50 1.75 1.45 1.35
50 1.55 1.65 1.45 1.45
60 1.80 1.90 1.40 1.55

Instance Groups n
Time (seconds)

AV CV CP CE
50x30 (170 inst.) 30 0.19 0.15 0.16 0.18

Simple (20 inst. per
size)

30 0.22 0.17 0.19 0.22
40 0.32 0.25 0.23 0.29
50 0.61 0.43 0.42 0.58
60 0.91 0.79 0.54 0.84

Orthogonal (20
inst. per size)

30 0.14 0.12 0.12 0.13
40 0.21 0.18 0.17 0.20
50 0.28 0.26 0.23 0.28
60 0.41 0.35 0.30 0.38

Table 4. Number of iterations (main loop) and average time spent until an optimal
solution is found for each initial discretization strategy, using Couto et al. instances [8]

Instance
Groups n

Iterations
AV CV CP CE

Simple (30 inst.
per size)

100 2.53 2.63 1.80 1.87
500 3.83 3.93 3.97 3.80
1000 4.70 4.67 4.47 4.57

Orthogonal (30
inst. per size)

100 2.80 2.57 2.37 2.33
500 4.50 4.37 3.73 3.80
1000 5.40 5.87 5.00 5.43

Von Koch (30
inst. per size)

100 1.57 1.70 1.60 1.77
500 2.03 2.20 2.43 2.13

Instance
Groups n

Time (seconds)
AV CV CP CE

Simple (30 inst.
per size)

100 3.03 2.29 1.72 2.12
500 114.51 78.62 65.64 103.60
1000 926.39 554.24 408.71 718.93

Orthogonal (30
inst. per size)

100 1.34 1.09 0.95 1.17
500 68.01 41.31 30.85 42.46
1000 297.50 233.82 155.00 235.35

Von Koch (30
inst. per size)

100 2.26 1.44 1.62 2.60
500 1064.08 256.77 595.89 1639.80

Analyzing these tables one can notice that the number of iterations increases
slightly as the size of the polygons grows. As an example, in the case of random
orthogonal instances from [8], the number of iterations increases by a factor of 2
when the polygon size is multiplied by 10. Regarding the alternative strategies,
one can verify that CP and CE lead to the fewest number of iterations in almost
all cases, with some advantage to the former.

To analyze computation times attained with each strategy, we initially focus
our attention on the tests with Random (Simple and Orthogonal) polygons. It is
clear that CP outperforms the other strategies and, hence, should be the preferred
one. Although the CE strategy needs almost the same number of iterations as CP,
as far as computing times are concerned, it failed to keep up with the latter. This
can be explained by the fact that the CE discretization starts with more witnesses,
which increases the time needed to calculate the visibility polygons, the arrange-
ment and, as a consequence, the SCP integer model. In this context, one can also
notice that the execution time required grows approximately quadratically with
the size of the polygon, strongly contrasting with what happens with the number
of iterations. An explanation for this behavior is that, at each iteration, the num-
ber of witnesses and, therefore, the complexity of the arrangement formed by them
increase, leading to extra time spent at each iteration.

We now turn our attention to the results obtained for the random Von
Koch polygons. In this case, CV was, surprisingly, the strategy with which the
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algorithm reached the optima faster. It is also important to note that, for these
instances, the execution times seem to grow more rapidly than a quadratic func-
tion on the size of the polygon. For both observations, a possible explanation could
be the much higher complexity of the arrangements associated to Von Koch poly-
gons when compared to other type of polygons.

7 Concluding Remarks

The absence of algorithms for the Art Gallery Problem with efficiency confirmed
in practice has often been mentioned in the literature. This work contributes to
fill this gap. We developed an algorithm for the AGP aiming at solving the prob-
lem exactly. This algorithm was implemented and the code tested on more than
a 1400 instances of polygons in the public domain. Not only the algorithm found
provably optimal solutions for all instances, but it also achieved low computa-
tion times to accomplish the task. This is particularly remarkable in light of the
fact that, in many situations, these times were even smaller than what heuristics
published earlier in the literature required.

Despite the excellent experimental results, on the theoretical side, it must
be said that to prove that the algorithm always converges remains a challenge.
To raise the appreciation for the difficulty of this endeavor, recall that in [16]
the authors introduced a carefully crafted instance to illustrate a convergence
problem occurring with the algorithm proposed in their own work. Given a
particular initial discretization of the witness set and a strategy for choosing
the new witnesses to be added along the iterations, one can tweak this instance
of Kröller et al.’s to create a pathological example that forces our algorithm to
iterate forever. Randomization obviously affords the possibility of dramatically
reducing the chance that the algorithm might run into convergence uncertainty.
However, the theoretical question remains on whether there exists a strategy to
initialize and update the witness set in a way that avoids this bad behavior.

On the other hand, in view of further practical applications, we should di-
vulge that we are presently refining the implementation in order to broaden the
classes of polygons that it can address, by allowing for the solution of instances
comprised of polygons with holes.

Acknowledgments. We thank A. Kröller for fruitful discussions and A. Bot-
tino for providing us with some polygon instances. We are also grateful to the
anonymous referees for their helpful comments.
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Abstract. Given an undirected graph G and an integer k ≥ 0, the NP-
complete Two-Layer Planarization problem asks whether G can be
transformed into a forest of caterpillar trees by removing at most k edges.
Since transforming G into a forest of caterpillar trees requires breaking
every cycle, the size f of a minimum feedback edge set is a natural
parameter with f ≤ k. We refine and enhance ideas that led to previous
algorithms running in O(3.562kk+ |G|) time and O(6ff2 + f · |G|) time,
respectively, to an improved branching algorithm running in O(3.8ff2 +
f · |G|) time. Since we expect f to be significantly smaller than k for a
wide range of input instances, the presented algorithm can be considered
superior to the previous algorithms. We present an empirical study of
an implementation of our algorithm and compare it to implementations
of previous algorithms. Our experiments show that even large instances
can be solved as long as they are sparse.

1 Introduction

A strategy of drawing hierarchical graphs in human readable form is the “Sugiyama
approach” [12, 9, 7], an important part of which is finding good 2-layered drawings
of graphs. A 2-layered drawing can be understood as an assignment and arrange-
ment of the vertices to two layers such that edges only occur between the layers
and edges are drawn as straight lines. Furthermore, “good” means that the number
of edges that do not “behave well”, that is, the number of edges we have to remove
such that no two edges of the drawing cross, is minimum. If a graph has a 2-layered
drawing such that no two edges cross, then the graph is called biplanar. Given a set
of edges such that their removal makes a graph biplanar, then the corresponding
drawing can be computed efficiently. Hence, we focus on the problem of finding
such an edge set or, more precisely, its decision variant.

Two-Layer Planarization (2LP):
Given: An undirected graph G = (V,E) and an integer k ≥ 0.
Question: Is there an edge subset E′ ⊆ E with |E′| ≤ k such that (V,E\
E′) is biplanar?
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c© Springer-Verlag Berlin Heidelberg 2013



338 M. Weller

It has been shown that a graph is biplanar if and only if it consists of disjoint
caterpillars1 [9, 2]. This allows for appropriate alternative formulations of 2LP.
Apart from being proposed as an alternative method to minimize crossings [9],
solving 2LP is important in DNA mapping [15] and global routing for row-based
VLSI layout [8]. Due to the space constraint, proofs are deferred to an appendix.

Previous and Related Work. Two-Layer Planarization is NP-hard even if
the input graph is bipartite and one set of the partition contains only vertices of
degree at most two [4]. Concerning the parameter k (“number of edge deletions”),
Dujmović et al. [2] showed that 2LP can be solved in O(6k · k+ |G|) time by de-
vising a search tree algorithm and several polynomial-time data reduction rules
leading to a problem kernel with O(k) vertices and edges. Suderman and White-
sides [11] implemented and tested this algorithm, also in comparison with an
ILP formulation developed earlier [6]. Fernau [5] presented a refined search tree
for 2LP leading to a running time of O(5.19276k · k2 + |G|). Finally, based on a
different branching analysis, Suderman [10] developed an O(3.562k ·k+ |G|)-time
algorithm and published running time results. Unfortunately, we were unable to
get in contact with Suderman to obtain his implementation. Hence, we will have
to compare our results to the ones obtained in 2005 [10].

Recently, we considered 2LP with respect to the parameter “size f of a min-
imum feedback edge set of G” [14]. We developed data reduction rules that led
to a problem kernel of size O(f). We also presented a branching algorithm that
solves 2LP in O(6f · f + f · |G|) time [14].

New Results. In this work, we consider the parameter “feedback edge set num-
ber f ” of the input graph and develop a branching algorithm running
in O(3.8ff2 + f · |G|) time. The algorithm refines previous branching algo-
rithms [10, 14] by choosing adequate forbidden subgraphs to branch on and
applying further data reduction if no such subgraphs can be found. We make
use of our previously shown kernelization algorithm for 2LP [14].

To support the practical relevance of our work, we performed experiments
with our algorithm. On the one hand, we used the generated bipartite graphs
used by Mutzel [9] and Suderman and Whitesides [11]. On the other hand, we
generated treelike graphs since we expect a variety of inputs encountered in the
context of drawing hierarchical graphs to be very sparse. Dujmović et al. [2] even
pointed out that “instances of Two-Layer Planarization for dense graphs
are of little interest from a practical point of view” since the resulting drawings
are unreadable anyway. Although our algorithm does not perform significantly
better than the state-of-the-art branching algorithm [10] on the first type of
instances, it shows its strength in the second experiment.

Considering the parameter f has numerous advantages. For example, the num-
ber of necessary edge deletions to make a graph biplanar is an upper bound on
the feedback edge set number, since we have to destroy all cycles to obtain a
forest of caterpillars. In this sense, we improve on previous work [2, 5, 10]. As Du-
jmović et al. [2] pointed out (see quote above), the solution size can be expected
1 A caterpillar is a tree each of whose vertices is adjacent to at most two non-leaves.
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to be small in practice. This is even more plausible for the feedback edge set
number of a graph, which is directly linked to the number of edges, and, hence,
the sparseness of the graph. The feedback edge set number f is a parameter
that can easily be computed in advance and, hence, allows for a meta-algorithm
that chooses an algorithm for a given input by computing an estimation on the
running time prior to running the algorithm for the problem itself. Since the
parameter k (“number of edge deletions”) is NP-hard to compute, this is another
advantage over previous approaches.

2 Preliminaries

We assume the reader is familiar with general graph notation. For a vertex v of
a graph G, we write G− v for G[V (G) \ {v}]. Analogously, for an edge set S we
abbreviate (V (G), E(G) \ S) to G − S. If G − S is acyclic, S is called feedback
edge set of G. We denote the size of a minimum feedback edge set, the feedback
edge set number of G (also known as circuit rank, cyclomatic number or nullity),
by f(G) or simply f if G is clear from the context. An edge whose removal does
not decrease f is called a bridge. Note that, for a graph (V,E) with c connected
components, f = |E| − |V | + c. A tree is a caterpillar tree (or caterpillar for
short) if each of its vertices has at most two non-leaf neighbors (we say its non-
leaf degree is at most two). Equivalently, a caterpillar is a tree that does not
contain a 2-claw [4] (a claw whose edges have been subdivided, that is, replaced
by paths of length two (see Figure 2a)). Thus, a graph is a forest of caterpillars
if and only if it is acyclic and does not contain a 2-claw as subgraph.

For a graph G, the maximum induced subgraph G∗ of G that has minimum
degree two is the result of repeatedly removing degree-one vertices and is called
the 2-core of G. Its edgewise complement with respect to G (called 1-shell of G)
is acyclic. For a vertex v ∈ V (G∗) let T v denote the tree in G − E(G∗) that
contains v and note that no other vertex of G∗ is contained in T v. The tree T v is
called the pendant tree of v and v is called its connection point. The pendant trees
shown in Figure 1 are of particular interest in this work. Herein, the neighbor
w of v in a Y-graph Y is called center(Y ). We use G© to denote the subgraph
of G that results from deleting all bridges from G. Given G, both G∗ and G©

can be computed in linear time. The next lemma is essential in various proofs
throughout this work.

Lemma 1 ([14]). Let G be a graph that is reduced with respect to the kernel-
ization of Uhlmann and Weller [14] and let T v be the pendant tree of a vertex v
in G∗. Then, T v is isomorphic to one of the trees shown in Figure 1.

The exponential part of the running time of our branching algorithm depends
only on the feedback edge set number f . In the literature, such an algorithm
is called fixed parameter tractable, or fpt with respect to f . The idea behind a
branching algorithm is to find a subgraph H that contains a forbidden subgraph
(A 2-claw or a cycle) and then try all feasible ways of destroying all forbidden
subgraphs in H . We call H a branching structure. We present our algorithm as a



340 M. Weller

v

(a) A singleton
or a leaf

v

(b) A P2 with an
optional leaf

v

(c) 2 P2 with an op-
tional leaf

v

w

(d) A Y-graph with
an optional leaf

Fig. 1. In an instance reduced with respect to the known kernelization for parame-
ter f [14], the pendant tree T v of each vertex v ∈ V (G∗) is isomorphic to one of the
trees shown in Figures 1a–1d

collection of branching rules, that is, polynomial-time executable graph modi-
fication rules that, given a graph, create “partial solutions” (edge sets whose
removal destroys the forbidden subgraphs in H). We call a rule correct if one of
the created partial solutions can be extended to an optimal solution for the input
instance. Each partial solution corresponds to a decrease in the parameter. The
vector of these differences for all partial solutions of a branching rule is called its
branching vector. If only one partial solution is created, then we call the modifi-
cation rule a data reduction rule. If the requirements of a rule are not met by a
graph, then we call this graph reduced with respect to this rule. A collection of
data reduction rules such that the size of graphs reduced with respect to these
rules can be bounded in the parameter, is called a kernelization with respect to
the parameter.

3 An Improved Branching Algorithm for 2LP

Our algorithm is a non-trivial adaptation of the algorithm of Suderman [10],
which runs in O(3.8k · |G|) time.2 Suderman [10] defined five branching struc-
tures and developed a branching rule for each of them (see Figure 2). However,
the branching vectors of these rules are with respect to the solution size k and
not with respect to the feedback edge set number f . We use the same structures
for our branching, but, in order to maintain the branching vectors, we ensure
that the feedback edge set number decreases in each branch. To this end, we find
specific locations of branching structures in the input graph that allow this kind
of branching. However, the price we pay for this advantage is that it becomes
possible that none of the branching rules apply to the input graph. To deal with
such graphs, we augment the process with a reduction rule that applies to graphs
reduced with respect to the branching rules, thereby solving the given instance.

Throughout the section, G denotes the input graph, G∗ denotes its 2-core,
and G© denotes the result of stripping G of all its bridges.

2 Note that Suderman [10] provided a refined algorithm running in O(3.562k ·|G|) time
that we could not adapt for our parameterization.
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v

v1 v2 v3

(a) CLAW0

v

v1 v2 v3

(b) CLAW1

v

v1 v2 v3

(c) CLAW2

v

v1 v2 v3

(d) CLAW3

Fig. 2. Schematic view on four of the first five branching rules of Suderman [10]
(“3CYC” is omitted since it is equal to Branching Rule 1). Gray ellipses indicate
the edges deleted in each branch. The branching vectors are (1, 1, 1, 2), (1, 1, 1, 2, 2),
(1, 1, 1, 2, 2), and (1, 1, 1, 2, 2, 2).

3.1 Adapting Previous Branching Rules

The first branching rule of Suderman [10] branches on cycles of length at most
three and, thus, already decreases the feedback edge set number in each branch.

Branching Rule 1 Let u, v, w be vertices in G forming a cycle. Then, create
the partial solutions {{u, v}},{{v, w}}, and {{w, u}}.

In the following, we develop a strategy to apply the branching rules of Suder-
man [10] while avoiding bridges of G. This is necessary since deleting bridges
does not decrease the feedback edge set number. Two obstacles arise when trying
to maintain the branching vectors of the branching rules of Suderman [10]: First,
there may be a bridge of G in a partial solution. Second, a partial solution may
contain two non-bridges but deleting one of them makes the other a bridge.

By carefully selecting a branching structure, we can avoid bridges of G. To
this end, we differentiate between two kinds of bridges in G. The first kind are
edges in G−E(G∗), that is, edges of pendant trees. We call them A-bridges. The
second kind are the bridges in G∗, called B-bridges. The following observation
(whose proof is roughly the same as the proof of Lemma 6 in [14]) shows that
not all A-bridges pose a problem to the branching rules, allowing us to ignore
partial solutions containing these bridges.

Observation 1 Let G be reduced with respect to the kernelization [14] and let T v

be the pendant tree of a vertex v of G∗ such that T v is not a Y-graph. Then, there
is an optimal solution for G that does not delete any edge of T v.

With Observation 1, we can simply ignore branches that include A-bridges, un-
less they belong to Y-graphs. In fact, we can further limit the structure of optimal
solutions involving certain Y-graphs.

Observation 2 (consequence of Observation 1 of [14]) Let Y be a pendant
Y-graph with connection point v and center w such that v is incident to exactly
two non-bridges e1 and e2 and no B-bridge in G. Then, there is an optimal so-
lution S for G − {e1, e2} such that S ∪ {{v, w}} or S ∪ {e1, e2} is an optimal
solution for G.
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In the following, we call an A-bridge {v, w} relevant if there is a Y-graph with
connection point v that does not satisfy the conditions of Observation 2, that is,
v is incident to B-bridges or more than two non-bridges.

In the following, we describe how to find branching structures in G such that
applying a created partial solution decreases the feedback edge set number by
the size of the partial solution. To this end, let v ∈ V (G©). We define edges
incident to v that can be included in partial solutions.

Definition 1. Let v ∈ V (G©). We call v branchable if there are three ver-
tices v1, v2, v3 ∈ NG(v) (called branching partners of v) such that
(1) For each 1 ≤ i ≤ 3, {v, vi} is not a relevant A-bridge.
(2) For each 1 ≤ i ≤ 3, there is no B-bridge incident to vi.

By finding a vertex with degree at least three in the graph that remains after
deleting all relevant A-bridges and all B-bridges from G, a branchable vertex
and its branching partners can be found in linear time. Although we need some
more properties of branching partners to prove the desired branching vectors,
we can show that these properties follow from Definition 1.

Observation 3 Let v ∈ V (G©) be branchable and v has three branching partners
in G©. Then, there are three branching partners v1, v2, v3 ∈ V (G©) of v such that

(1) degG(v1) = 2⇒ degG(v2) = 2 and degG(v2) = 2⇒ degG(v3) = 2.
(2) if degG(v1) = 2, then {v, v2} is not a bridge in G− {{v, v1}}, and
(3) if degG(v1) > degG(v2) = 2, then {v, v3} is not a bridge in G− {{v, v2}}.

For Observation 3(1), we can simply sort v1, v2, and v3 by their degree in G. For
Observation 3(2), we can just swap v2 and v3 if necessary. For Observation 3(3),
note that if deleting {v, v2} makes {v, v3} a bridge, then, deleting both {v, v2}
and {v, v3} does not make {v, v1} a bridge. Since v1 ∈ V (G©), there is some v4 ∈
NG©(v) such that {v, v4} is not a bridge in G. This allows us to replace v2 by v4,
while maintaining all properties stated before.

In the following, we assume that v is branchable and its branching partners v1,
v2, and v3 fulfill all properties of Definition 1 and Observation 3. To complete
the branching structure, it remains to select edges incident to v1, v2, and v3.

Definition 2. For 1 ≤ i ≤ 3, let ei = {v, vi} and let Ei denote a set of at most
two edges of G such that

(i) all edges in Ei are incident to vi but not to v,
(ii) if |Ei| = 1, then degG(vi) = 2,
(iii) if degG©(vi) ≥ 3, then there is an edge {vi, u} ∈ Ei such that u is connected

to v via a path in G that avoids vi, and
(iv) if there is a bridge of G in Ei, then degG©(vi) = 2.

An algorithm to compute Ei for given v and vi can be found in the appendix.
We can now state the modified versions of the branching rules of Suderman [10].
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Branching Rule 2 (based on “CLAW0” in [10]) Let |E1| = 1. Then, cre-
ate the partial solutions E1, E2, E3, and {e1, e2}. Discard all partial solutions
containing non-relevant A-bridges.

Branching Rule 3 (based on “CLAW1” in [10]) Let |E1| > |E2| = 1. Then,
create the partial solutions E2, E3, {e1}, and {e2, e3}. If E1 does not contain
an A-bridge, then additionally create the partial solution E1. Discard all partial
solutions containing non-relevant A-bridges.

Branching Rule 4 (based on “CLAW2” in [10]) Let |E2| > |E3| = 1. Then,
create the partial solutions E3, {e1}, and {e2}. For each 1 ≤ i ≤ 2, if Ei does not
contain an A-bridge, then additionally create the partial solutions Ei. Discard
all partial solutions containing non-relevant A-bridges.

Branching Rule 5 (based on “CLAW3” in [10]) Let |E3| > 1. Then, cre-
ate the partial solutions {e1}, {e2}, and {e3}. For each 1 ≤ i ≤ 3, if Ei does not
contain an A-bridge, then additionally create the partial solutions Ei. Discard
all partial solutions containing non-relevant A-bridges.

The correctness proof of Branching Rules 2–5 is based on the correctness of the
original rules [10]. We can show that the worst-casebranching vector (1, 1, 1, 2, 2, 2)
(see Figure 2) is matched by our branching rules.

Lemma 2. If one of the branching partners of v is not in G©, then the branch-
ing number of Branching Rules 2–5 is at most 2.733. Otherwise, removing the
edges of a partial solution created by one of Branching Rules 2–5 decreases the
feedback edge set number of G by |S|.

3.2 Reducing the Remaining Graph

A reason why our branching rules could not be applied is that branching partners
must not be incident to B-bridges (see Definition 1). Thus, we present a way to
deal with B-bridges in reduced graphs. To this end, consider the tree that results
from contracting each connected component of G© and making two components
adjacent if there is a bridge between them in G. We call this tree the “component
tree” TC of G. By considering a leaf in TC , we can limit the possibilities for
branching structures to contain B-bridges. Note that TC can be computed in
linear time.

In the following, we consider graphs G that are reduced with respect to the
presented data reduction and branching rules. Consider a leaf L in the component
tree TC of G and let u denote the only vertex in L that is incident to a B-bridge
in G. We can observe the following properties of G.

Observation 4 Let G be reduced with respect to all presented branching and
reduction rules. Let L be a leaf in TC and let u ∈ L with NG(u) �⊆ L. Then,
(a) G[L] does not contain B-bridges;
(b) |NG©(u)| = 2 because, otherwise, we could apply a branching rule to u;
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(c) each vertex x ∈ L \ NG© [u] has at most two non-leaf neighbors in G since,
otherwise, we could apply a branching rule to x;

(d) the two vertices in NG©(u) have the same degree in G©, since by (c) and
(b) all degree-2 paths starting in one of them must end in the other.

Observation 4 fixes the structure of G[L] which we can exploit with the following
data reduction rule. In the following, we call a vertex dirty if its pendant tree
is not a leaf, a singleton or a Y-graph. Let {v, w} = NG©(u) such that if w is
dirty, then so is v.

Reduction Rule 1 If degG©(v) = 2 and w is dirty, then delete an edge of G∗[L]
with maximum distance to u. Otherwise, delete {u, v}. In both cases, decrement k.

Since Reduction Rule 1 can be applied whenever none of the other reduction or
branching rules can be applied, applying all presented rules exhaustively solves the
input instance. The worst-case branching vector corresponds to Branching Rule 5
and is (1, 1, 1, 2, 2, 2). This implies a search tree with 3.8f nodes.

Theorem 1. Two-Layer Planarization can be solved in O(3.8f · f2 + f ·
|G|) time, where f denotes the feedback edge set number of the input graph.

4 Heuristic Speedups and Experimental Results

4.1 Heuristic Speedups

In the following, we describe heuristic tricks that we used in our implementation
to speed up the computation of the size of an optimal solution.

Observe that the correctness proofs of Suderman [10] for the branching rules
we employ are not limited to |Ei| ≤ 2. They work just as well if Ei contains all
edges incident to vi except {v, vi}. Hence, we extended the sets Ei accordingly.
Note that, since the new sets E′

i are supersets of the sets Ei, the branching
vectors of Branching Rules 2-5 improve.

In each search-tree node, we are challenged with finding a “good” branching
structure to continue our search for an optimal solution. A branching structure is
good if the smallest branching number of any applicable branching rule is small.
Our strategy is to find all reasonable branching structures, sort them by their
branching number, and branch using the best possible branching rule.

In each search-tree node, we use a linear-time algorithm of Tarjan [13] to find
and mark all bridges in the current graph G. This algorithm is also capable of
detecting whether G is disconnected. If G contains multiple connected compo-
nents, then an optimal solution is split among them, allowing us to return the
sum of the sizes of optimal solutions for each component.

We keep track of an optimal solution found by our algorithm so far. If any
branch cannot contain a better solution, then we cancel the branching and return
failure back to the parent of the search-tree. Lower-bound techniques are used
to determine whether a better solution is possible in this branch. We tested
different algorithms and found that the best overall performance was delivered
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by simply using the feedback edge set number f as a lower bound. On the one
hand, this is not a good bound, since f can be far from the solution size k. On
the other hand, f can be computed very quickly.

If a partial solution contains a single edge e then, after searching the search-
subtree corresponding to the deletion of this edge, we can exclude e from further
branching, thereby improving the branching vectors.

4.2 Experiments

For comparability of results, we followed the example of Suderman and White-
sides [11] and included the size of the search tree in the results, since this value
is a measure of speed that depends only on the algorithm, not the hardware.

The tests were run on an Intel(R) Xeon(R) E5-1620 CPU at 3.6GHz without
taking advantage of the multiprocessor capabilities. The systems were running
Debian Linux 3.2 with GNU libc 2.13 and gcc 4.7.1. The program was compiled
with CFLAGS=-march=native -msahf -O3. Each run was canceled after 600s.

Instance Generation. We studied two test-case scenarios. First, we reproduced
the generated instances used by Mutzel [9], Suderman and Whitesides [11], and
Suderman [10] (where detailed descriptions on reproducing the instances can
be found). This test set comprises 1700 “dense” bipartite graphs (V1 * V2, E)
with |V1| = |V2| = 20 and |E| between 20 and 100 and 900 “sparse” bipartite
graphs with |V1| = |V2| between 20 and 100 and |E| = 2|V1|.

The second set of instances comprises 1500 large, sparse graphs that were gen-
erated by for each n ∈ {100i | 1 ≤ i ≤ 10} and each p ∈ {3%, 6%, 9%, 12%, 15%},
constructing a tree on n vertices and adding p · n edges uniformly at random.
If some insertion failed because the edge was already present, we repeated the
insertion with new random values so that the graphs are guaranteed to con-
tain n− 1 + p · n edges. The results can be found in Table 2 in the appendix.

Results. The results obtained by the branching algorithm of Suderman [10] and
the ILP formulation of Jünger and Mutzel [6] (which had a 300s timeout) are
compared to the results of our implementation in Table 1. First, consider the
set of “dense” graphs (first 12 rows). Although our average running times rival
those of Suderman’s algorithm, it is important to realize that these results were
obtained in 2005 on a 1GHz Pentium III computer [10]. Thus, we can conclude
that our algorithm does not perform as well as theory suggests. In the following,
we identify possible reasons hopefully leading to future improvements.
1. The tested graphs do not fit well in the picture we painted in the introduction.

More precisely, their feedback edge set number f differs from the solution
size k by at most 2.

2. Looking at the search-tree sizes for the algorithm of Suderman, it quickly
becomes apparent that they differ only marginally for all k between 14 and
61 leading to the conjecture that the search-tree sizes are influenced by some
other, hidden factor.
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Table 1. Results of the first test. The columns labeled “%” give the percentages of
instances solved within the respective timelimit. “∅” indicates an average over these
instances, while “med.” indicates the median over all instances. Columns labeled “steps”
contain the numbers of explored search-tree nodes. Columns labeled “t” contain running-
times in seconds.

ILP 3.562k algo. [10] 3.8f time algorithm
|Vi| |E| ∅k ∅f ∅ t ∅ t ∅ steps % ∅ t med. t ∅ steps med. steps %
20 45 11 9 26 0 85 100 0 0 157 80 100
20 50 14 13 100 4 4, 694 100 0 0 897 253 100
20 55 18 17 81 1 946 100 0 0 2, 417 102 100
20 60 23 22 56 5 6, 232 100 1 0 18, 596 128 100
20 65 27 27 54 3 3, 645 97 8 0 305, 501 117 99
20 70 32 31 26 7 8, 263 99 14 0 489, 962 107 98
20 75 37 36 22 2 2, 249 100 4 0 147, 080 85 99
20 80 41 41 12 2 2, 060 99 1 0 27, 630 88 99
20 85 46 46 20 5 5, 366 100 2 0 82, 563 139 99
20 90 51 51 8 6 6, 503 99 2 0 89, 623 77 99
20 95 56 55 4 8 8, 276 99 3 0 126, 372 84 97
20 100 61 60 4 4 5, 243 98 1 0 37, 733 109 96
20 40 7 6 6 0 95 100 0 0 24 13 100
30 60 11 10 49 0 356 100 0 0 231 73 100
40 80 16 13 150 3 3, 002 100 0 0 1, 546 212 100
50 100 19 16 - 14 11, 876 99 1 0 21, 754 403 99
60 120 24 19 - 64 48, 240 96 2 0 37, 182 3, 852 99
70 140 28 23 - 129 91, 339 88 6 1 112, 015 11, 098 99
80 160 31 26 - - - - 22 2 339, 282 37, 172 90
90 180 35 29 - - - - 44 4 661, 619 60, 600 91
100 200 38 32 - - - - 74 26 1, 097, 335 323, 228 81

3. Suderman employs a very tight lower bound to cancel branches that cannot
yield a better solution than what was already computed. Our lower bound,
however, is simply the feedback edge set number of the current graph. If this
was indeed the cause of the observed difference in search-tree sizes, then we
could just replace our crude lower bound with Suderman’s.

4. Finally, Suderman describes a sophisticated divide-and-conquer technique
based on “p-components”. While a mathematical analysis of this technique
is open, Suderman described it as very effective and should be incorporable
in our algorithm as well.

On the “sparse” instances (last 9 rows of Table 1), we expected our algorithm to
perform better than on the set of dense graphs. In fact, we were able to solve
a good portion of the larger instances that could not be solved in the past. On
the one hand, this may again be due to our hardware advantage. On the other
hand, we observe a larger divergence between the parameters f and k.

A closer inspection of the running times of our implementation reveals that
averages do not reflect the behavior of our algorithm very well. Therefore, we
also provided median running times and search-tree sizes in Table 1 and draw
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the cumulative distribution function of running times on the set of dense graphs
in Figure 3. Notice the striking difference between average and median running
times and search-tree sizes that differ by a factor of up to 4, 500. Figure 3 shows
that, after about one second, more than 90% of all “dense” instances were solved.
Table 1 and Figure 3 raise hope that our algorithm will perform well on a wide
range of inputs.

While the tested instances are very sparse, we also note that Suderman [10]
performed tests on instances with |E|/|V | = 0.6. Furthermore, our algorithm is
designed to run on sparse graphs, making dense graphs an unreasonable input.

Last but not least, we want to get a glimpse of the efficiency of our implementa-
tion of the kernelization with respect to the feedback edge set number [14]. To this
end, we plotted the time per search-tree node versus the size of the input graph in
Figure 4. Although the time per search-tree node is also influenced by our elabo-
rate method of selecting the best possible branching vector first, we estimate that
the application of the reduction rules dominates the running time. Although no
clear trend can be made out, times between 100μs and 200μs per search-tree node
can be observed for all input sizes, suggesting a rather slowly growing function.

5 Conclusion

In this work, we presented a branching algorithm solving the Two-Layer Pla-

narization problem in O(3.8ff2 + f · |G|) time, where f denotes the feedback
edge set number of the input graph. Although the theoretical advantages of our
algorithm are apparent, our implementation does, on average, not deliver the
desired results on “dense” inputs. However, our algorithm is designed to perform
well on sparse graphs, which we could demonstrate. Results of our tests indicate
that Suderman’s heuristic speedups enable his implementation to outperform
ours, especially the “p-component” technique which we consider a reasonable
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future addition to our implementation as well. This can be seen as a general
lesson that heuristic speedups are equally important for developing fast solvers
as theoretical considerations. We interpreted the slow increase in the time per
search-tree node as an indicator for the efficiency of our kernelization implemen-
tation. It would be interesting to provide a theoretical analysis thereof.

In further theoretical development, it is desirable to search for fixed-parameter
algorithms (and problem kernels) for parameters upper-bounded by f . The feed-
back vertex set number and the odd cycle transversal number would be canonical
candidates. Additionally, it may be interesting to investigate the parameter k−f
that represents an “above guarantee” parameter for the problem.

Other interesting problems in the context of Sugiyama’s algorithm [12] are the
multilayered problem versions [3] and One Layer Plararization [2, 5]. Are
they also fixed-parameter tractable with respect to the feedback edge set num-
ber? Another variant of 2LP is obtained by replacing edge deletion as the allowed
graph modification operation by the so-called “node duplication” operation3,
yielding the Node Duplication based Crossing Elimination problem [1].
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Appendix

Observation 1. Let G be reduced with respect to the kernelization [14] and
let T v be the pendant tree of a vertex v of G∗ such that T v is not a Y-graph.
Then, there is an optimal solution for G that does not delete any edge of T v.

Proof (of Observation 1). For the sake of contradiction, assume that there is an
optimal solution S∗ containing an edge e of T v. Lemma 1 allows us to assume
that e is incident to v. Deleting e splits G into two components, one of which,
say T ′, is a subgraph of T v. Let S′ := S∗ \ {e} and note that S′ is not a solution
for G, that is, there is a 2-claw centered at a vertex u ∈ NG−S′ [v]. With Lemma 1,
it is easy to see that u /∈ V (T v)\{v}. Hence, deleting {v, u} from G−S′ decreases
the non-leaf degree of v. Thus, all vertices whose non-leaf degree in G − S∗ is
larger than their non-leaf degree in G− S′ −{v, u} are in T ′, contradicting that
no 2-claw is centered in T ′. ��

Ni ← non-bridges incident to vi except for {v, vi};
if degG©(vi) = 2 then

Ei ← Ni;
if there is a bridge a incident to vi then add a to Ei;

else if degG©(vi) ≥ 3 then
Ei ← a non-bridge in Ni that respects Definition 2(iii);
add a non-bridge in Ni \ Ei to Ei;

Algorithm 1. An algorithm that, given v and vi, computes Ei

Lemma 3. Branching rules 2–5 are correct, that is, for each of these branching
rules, one of the created partial solutions can be extended to an optimal solution
for G.

Proof (of Lemma 3). For the sake of contradiction, assume that none of the
created partial solutions can be extended to an optimal solution for G. Hence,
by correctness of the branching rules of Suderman [10], there is some 1 ≤ i ≤ 3
such that Ei is not created and Ei can be extended to an optimal solution S∗

for G. Since Ei is not created, Ei contains an A-bridge b. Hence, Definition 2(iv)
implies degG©(vi) = 2 and, thus, Observation 2 is applicable. Then, however,
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we can replace b with ei in S∗, implying that the partial solution {ei}, which is
created in all branching rules in question, can be extended to an optimal solution
for G. ��

Lemma 2. If one of the branching partners of v is not in G©, then the branch-
ing number of Branching Rules 2–5 is at most 2.733. Otherwise, removing the
edges of a partial solution created by one of Branching Rules 2–5 decreases the
feedback edge set number of G by |S|.

Proof (of Lemma 2). First, consider V ′ := {v1, v2, v3} \ V (G©).
By Definition 1, no {v, vi} is a relevant A-bridge or a B-bridge Hence, by the

statement of the branching rules, all partial solutions containing edges incident
to vertices in V ′ are discarded. Thus, if |V ′| ≥ 2, then the worst-case branching
vector of the branching rules is (1, 1), corresponding to a branching number of
two. Hence, assume |V ′| = 1. Consider |Ei| for all vi /∈ V ′ and note that Ei

does not contain a bridge of G because, by Definition 1, branching partners of v
are not incident to B-bridges and the branching rules do not create Ei if it
contains A-bridges. By Definition 2(iii), deleting Ei decreases the feedback edge
set number by |Ei|.

In the following, let V ′ = {vx} and recall that Ex and any partial solution con-
taining ex contain non-relevant A-bridges and are, therefore, discarded. Consider
the branching rules separately:

Case 1. 1 Branching Rule 2 applies to v. Then, by symmetry, we may rela-
bel v1, v2, v3 such that vx = v2. This implies a branching vector of (1, 1) cor-
responding to a branching number of two.

Case 2. 2 Branching Rule 3 applies to v. Then, either vx = v1, implying a
branching vector of (1, 1, 2) or vx ∈ {v2, v3}, implying a branching vector of (1, 1, 2).
In both cases, the branching number is 2.415.

Case 3. 3 Branching Rule 4 applies to v. Then, either vx ∈ {v1, v2}, implying a
branching vector of (1, 1, 2) or vx = v3, implying a branching vector of (1, 1, 2, 2).
In both cases, the branching number does not exceed 2.733.

Case 4. 4 Branching Rule 4 applies to v. Then, the branching vector is (1, 1, 2, 2),
corresponding to a branching number of 2.733.

Next, let v1, v2, v3 ∈ V (G©) and let S be a partial solution created by one of
Branching Rules 2–5.

Consider the case that |S| = 1, that is, S = {e}. If e is incident to v, then,
since v1, v2, v3 ∈ V (G©), e is not a bridge. If e is not incident to v, then, e ∈
Ei for some 1 ≤ i ≤ 3. Since partial solutions Ei are only created if they do not
contain A-bridges and, by Definition 1, e is not a B-bridge, e is not a bridge. In
both cases, removing e decreases the feedback edge set number by one.

In the following, we assume |S| = 2, that is S = {e1, e2}. First, let S consist
of edges incident to v. Since v1, v2, v3 ∈ V (G©), neither e1 nor e2 are bridges.
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Towards a contradiction, assume that deleting an edge of S makes the other a
bridge. Note that either S = {e1, e2} in Branching Rule 2 or S = {e2, e3} in
Branching Rule 3. The first case contradicts Observation 3(2), the second case
contradicts Observation 3(3).

In the following, we assume that the edges of S are not incident to v, that
is, S = Ei for some 1 ≤ i ≤ 3. Then, by Definition 1, Ei does not contain
B-bridges and by the statements of the branching rules, Ei does not contain
A-bridges. Thus, Ei consists of two non-bridges. Hence, degG©(vi) ≥ 3 and, by
Definition 2(iii), there is an edge e = {vi, u} in Ei such that there is a path
from u to v that avoids vi. Let Ei = {e, e′}. Clearly, deleting e′ does not make e
a bridge, since, otherwise, all paths from u to v would contain e′ and, therefore,
also vi, contradicting the choice of e. Hence, deleting Ei decreases the feedback
edge set number by two. ��

Lemma 4. Reduction Rule 1 is correct and can be applied in linear time.

Proof (of Lemma 4). First, consider the case that degG©(v) = 2 and w is dirty.
Then, by choice of v, also v is dirty. Hence, by Observation 4(c), G∗[L] is a degree-
2 path from u to u. There are no dirty vertices in L\{u, v, w}, since otherwise, we
could apply a branching rule to this vertex. Hence, by reducedness with respect
to Path Reduction Rule 4 [14], the 2-claws centered in v and w in G overlap in
an edge with maximum distance to u. Deleting an edge from G[L] that does not
have maximum distance to u does not destroy both 2-claws centered at v and w.
Clearly, if any optimal solution contains two edges of G[L], then replacing these
two edges with an edge with maximum distance to u and the B-bridge incident
to u yields an optimal solution for G.

In the following, we assume that degG©(v) > 2 or w is not dirty. We prove
that there is an optimal solution S for G that contains {u, v}. We will use the
following arguments in the proof.

(1) If there is an optimal solution for G containing {u, v}, then we are done.
Hence, we assume that no optimal solution contains {u, v}. Then, however,
for all solutions S, all 2-claws in G − ((S \ E(G[L]) ∪ {{u, v}}) have their
center in L, that is, “shuffling” edge deletions in G[L] does not create a 2-claw
whose center is not in L, as long as {u, v} is deleted.

(2) Let S∗ be an optimal solution for G and assume that, for some pendant
Y-graph Y of a vertex z in G∗ − v, S∗ contains {z, center(Y )}. Then, there
is an optimal solution for G containing {u, v} if and only if there is an
optimal solution for G− {z, c(Y )} containing {u, v}. Thus, in the following,
we assume that no optimal solution contains an edge of a pendant Y-graph
except for the pendant Y-graph of v.

(3) If there is a vertex z with a pendant Y-graph in L, then, by (2), all optimal so-
lutions contain degG(z)−1 edges incident to z. However, deleting degG(z)−2
of these makes the last one a bridge. Hence, the feedback edge set number
decreases by only degG(z)− 2. Thus, the feedback edge set number of G[L]
plus the number of pendant Y-graphs in G[L] is a lower bound for the size
of a solution for G[L].
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Table 2. Detailed results for running times and search-tree sizes of our O(3.8ff2 +
f(n+m))-time algorithm run on the second batch of tests. The instances consist of a
random tree on the vertex set V augmented by p·|V | edges. The fifth column labeled “#”
shows the number of instances that were solved within the timelimit of 600s. For each
row, 30 instances were generated. The minimum running times never exceeded 10ms
and were therefore dropped from the table. Since maxima are not meaningful if the
timelimit of 600s was hit, maximum running times are omitted and, for maximum
search-tree sizes, we just give a lower bound. Herein, > 2M means that a canceled
process had explored over 2 million search-tree nodes at the point of termination. Note
that averages also loose meaning in this case, but medians do not. For graphs with up
to 1000 vertices and |E|/|V | ≤ 1.12, our algorithm always finishes within half a second.
However, for |E|/|V | = 1.15, we could not solve all instances containing 600 vertices.
Again, the median running times paint a brighter picture. Half of all input instances
with 1000 vertices and |E|/|V | = 1.15 were solved after about 2 minutes.

running time (s) search-tree size
|V | p f k # max median avg min max median avg
100 12% 12 20 30 0.01 0.01 0.01 1 65 5 8
200 12% 24 40 30 0.06 0.01 0.01 1 506 9 50
300 12% 36 61 30 0.24 0.01 0.03 1 2, 529 18 173
400 12% 48 81 30 0.06 0.01 0.02 1 327 8 53
500 12% 60 103 30 0.68 0.01 0.04 1 2, 569 12 122
600 12% 72 123 30 0.28 0.01 0.03 1 1, 234 7 123
700 12% 84 143 30 0.43 0.01 0.04 1 3, 882 11 211
800 12% 96 164 30 5.55 0.01 0.37 1 28, 684 3 2, 013
900 12% 108 185 30 5.30 0.01 0.26 1 23, 007 11 1, 143

1000 12% 120 206 30 0.49 0.03 0.07 1 1, 466 10 172
100 15% 15 22 30 0.06 0.01 0.01 1 873 22 72
200 15% 30 44 30 0.36 0.02 0.06 1 3, 249 36 455
300 15% 45 66 30 4.23 0.04 0.43 1 40, 287 174 4, 475
400 15% 60 88 30 42.05 0.34 3.60 17 255, 928 2, 862 26, 277
500 15% 75 111 30 409.56 0.39 21.38 1 2, 774, 889 2, 592 143, 482
600 15% 90 134 27 6.04 32.38 18 > 2M 41, 900 194, 055
700 15% 105 156 24 21.65 64.31 202 > 2M 112, 614 317, 224
800 15% 120 180 24 13.24 61.55 3 > 2M 95, 136 347, 082
900 15% 135 201 22 65.93 73.47 22 > 2M 249, 645 368, 608

1000 15% 150 225 16 109.78 20.54 104 > 1M 316, 186 61, 974

(4) u is not dirty, since otherwise, by Observation 4(b) the non-leaf degree of u
in G−b is at least three, implying that we could apply a branching rule to u.

Let fL denote the feedback edge set number in G[L] and let Z ⊆ E denote
the set of all relevant A-bridges in G[L]. Then, by Observation 4(c and d),
fL = degG∗(v) − 1. By (3), an optimal solution for G[L] contains at least
|Z|+degG∗(v)−1 edges. We construct a solution S for G[L] that contains {u, v}
and matches this lower bound and show that S can be extended to an optimal
solution for G.
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If fL > 2, then, by Observation 4(c), degG©(v) > 3, implying that we could
apply a branching rule to v in G. Hence, in the following, we assume that 1 ≤
fL ≤ 2. If fL = 1, let S := Z ∪ {{u, v}} and note that, by definition, w is not
dirty. If fL = 2, let S := Z ∪ {{u, v}, {w, z}} for some z ∈ NG©(w) \ {u} and
note that w is not dirty, since otherwise, we could apply a branching rule to w
in G − {u,w}. Since in both cases degG©−S(w) < 3 and Z ⊂ S, we conclude
that w has at most two non-leaf neighbors in G− S.

We show that S is a solution for G[NG[L]]. If this is not the case, then there
is a 2-claw centered at some x ∈ L in G[N [L]] − S. Clearly, x ∈ NG[L][u],
since, otherwise, we could have applied a reduction rule to x in G. By (4), x �= u.
Since Z ⊂ S, we conclude x ∈ {v, w}. Since w has at most two non-leaf neighbors
in G − S, we conclude x �= w and, hence, x = v. However, since {u, v} is not
in G[L]−S, we could apply a reduction rule to v in G, contradicting reducedness
of G. Since |S| = |Z|+ fL, by (3), S is an optimal solution for G[N [L]]. Let S∗

denote an optimal solution for G and let b denote the B-bridge incident to u.
If |S∗ ∩E(G[N [L]])| > |S|, then S ∪ {b} can be extended to an optimal solution
for G. Otherwise, G − (S ∪ (S∗ \ E(G[N [L]])) contains a 2-claw, which, by (1)
and S being an optimal solution for G[N [L]], is centered at u and contains b.
However, by (4), the 2-claw contains {u,w} and {u, v}, contradicting {u, v} ∈ S.

To prove that Reduction Rule 1 can be applied in linear time, recall that all
leaves of the component tree of G can be found in linear time and then solved
individually. Clearly, for each leaf L, we can check the conditions in O(1) time
and apply the deletion in O(|L|) time, implying linear time overall. ��
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Abstract. Stabilization procedures for column generation can be viewed as cut-
ting plane strategies in the dual. Exploiting the link between in-out separation
strategies and dual price smoothing techniques for column generation, we de-
rive a generic bound convergence property for algorithms using a smoothing
feature. Such property adds to existing in-out asymptotic convergence results.
Beyond theoretically convergence, we describe a proposal for effective finite con-
vergence in practice and we develop a smoothing auto-regulating strategy that
makes the need for parameter tuning obsolete. These contributions turn stabi-
lization by smoothing into a general purpose practical scheme that can be used
into a generic column generation procedure. We conclude the paper by showing
that the approach can be combined with an ascent method, leading to improved
performances. Such combination might inspire novel cut separation strategies.
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Introduction

Separation strategies from the cut generation literature and algorithmic strategies for
stabilization in column generation algorithms are dual counterparts. The pricing pro-
cedure in column generation is understood as a separation routine for the master dual.
Therefore, efficient strategies to define the separation point or select cuts translate into
stabilization techniques and column generation strategies, as emphasized in several pa-
pers including [2,3,8,9]. In this paper, we specifically formalize the link between in-out
separation [2,5] and dual price smoothing techniques whereby the price vector used for
column generation is defined as a combination of the optimal solution over the current
polyhedral approximation of the master dual (denoted πout hereafter) and a feasible dual
solution for the true master (denoted πin). We show that dual price smoothing schemes
(such as that of [6,10]) can be understood as an extension of in-out separation, introduc-
ing an in-point updating strategy that relies on a valid dual bound computation. Note
that dual price smoothing addresses at once the dual oscillations, tailing-off, and degen-
eracy drawbacks of the column generation procedure. It acts through both smoothing
and centralization, and it is simple to implement. Our work brings an additional quality
to smoothing. Our proposal for a parameter self-adjusting scheme allows one to avoid
the drawback of many alternative stabilization approaches (such as the popular piece-
wise linear penalty functions [4]) that require fine tuning of several parameters.

More specifically, the contributions of the paper are:
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– Establishing the detailed properties of a generic smoothing scheme (that encom-
passes several variants), including a bound convergence property that has no equiv-
alent in a general in-out procedure. For already existing results, the link with in-out
separation has lead to simpler proofs under weaker conditions.

– Proposing a simple scheme for dealing in practice with a sequence of mis-pricings
(a mis-pricing is a failure to separate πout) that impairs convergence.

– Developing a parameter self-adjusting scheme for automatic tuning that uses gradi-
ent information. The scheme is shown to experimentally reproduce the best results
obtained by fine tuning the single but critical parameter of the smoothing proce-
dure, essentially making the method parameter-tuning-free. We emphasize that the
performance of smoothing techniques, and more generally stabilization techniques,
highly depends on proper parameter tuning that is moreover instance dependent.
Hence, our automated scheme has practical significance, transforming smoothing
into a general purpose technique well suited for a generic branch-and-price solver.

– Extending the smoothing paradigm by combining it with an ascent method that is
experimentaly shown to lead to significant improvements.

The paper places dual price smoothing as a key technique in the context of existing col-
umn generation stabilization strategies. The features that we introduced in smoothing
techniques could inspire dual strategies for cutting plane separation. An extended ver-
sion of the paper with proposition proofs, illustrative figures and details on experimental
test instances is available on the authors’ web page.

1 Column Generation

Below we review the main concepts underlying column generation approaches in order
to emphasize the properties on which smoothing schemes rely. Consider the integer
program:

[F] ≡ min{cx : x ∈ X} (1)

where

X :=Y ∩Z with Y :={x ∈ IRn
+ : Ax ≥ a} , and Z :={x ∈ INn : Bx ≥ b, l ≤ x ≤ u}.

In the decomposition of system X , it is assumed that Z defines a “tractable” subproblem
(assumed to be non-empty and bounded to simplify the presentation), but Ax ≥ a are
“complicating constraints”. In other words, we assume that subproblem

[SP] ≡ min{cx : x ∈ Z} (2)

is “relatively easy” to solve compared to problem [F]. Then, a natural approach to solve
[F], or to estimate its optimal value, is to exploit our ability to optimize over Z . We
review this technique below.

Let Q be the enumerated set of subproblem solutions (it is a finite set given the
boundedness of Z), i.e. Q = {z1, . . . , z|Q|} where zq ∈ Z is a subproblem solution
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vector. Abusing notations, q ∈ Q is used hereafter as a short-cut for zq ∈ Q. Thus, we
can reformulate Z and conv(Z), the convex-hull of the integer solution to Z , as:

Z = {x ∈ IRn
+ : x =

∑
q∈Q

zqλq,
∑
q∈Q

λq = 1; λq ∈ {0, 1} ∀q ∈ Q} , (3)

conv(Z) = {x ∈ IRn
+ : x =

∑
q∈Q

zqλq,
∑
q∈Q

λq = 1, λq ≥ 0 ∀q ∈ Q} . (4)

Note that conv(Z) defines an ideal formulation for Z . Hence, [SP] can be rewritten as:

[SP] ≡ min{cx : x ∈ Z} ≡ min{czq : q ∈ Q} ≡ min{cx : x ∈ conv(Z)}. (5)

Exploiting the assumption that the subproblem is tractable, one can derive dual
bounds for the original problem [F] by Lagrangian relaxation of the constraints Ax ≥ a.
For any Lagrangian penalty vector π ∈ IRm

+ , the Lagrangian function,

L(π, x) := π a+ (c− πA)x , (6)

is optimized over Z to yield a valid dual bound on [F], by solving the Lagrangian
subproblem:

[LSP(π)] ≡ L(π) := min
x∈Z

L(π, x) . (7)

The Lagrangian dual function is defined by L : π ∈ IRm
+ → L(π) . Maximizing func-

tion L leads to the best dual bound that can be derived from the Lagrangian relaxation.
The Lagrangian dual problem is defined as:

[LD] ≡ max
π∈IRm

+

L(π) . (8)

The Lagrangian dual problem can be reformulated as a max-min problem, or as a linear
program:

[LD] ≡ max
π∈IRm

+

min
x∈Z

{π a+ (c− πA)x}; (9)

≡ max{η, (10)

η ≤ czq + π(a−Azq) ∀q ∈ Q, (11)

π ∈ IRm
+ , η ∈ IR1}; (12)

≡ min{
∑
q∈Q

(c zq)λq, (13)

∑
q∈Q

(Azq)λq ≥ a, (14)

∑
q∈Q

λq = 1, λq ≥ 0 ∀q ∈ Q}; (15)

≡ min{cx : Ax ≥ a, x ∈ conv(Z) }. (16)

The Dantzig-Wolfe reformulation is a valid reformulation of [F] expressed in terms of
variables λq that were introduced for the reformulation of Z given in (3). Its linear
programming (LP) relaxation, which we denote by [M], is precisely the form (13-15)
of [LD].
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A column generation procedure to solve [M] proceeds as follows. At a stage t, the
restriction of [M] to columns defined from Qt = {z1, . . . , zt} is denoted by [Mt]. This
restricted master LP is:

[Mt] ≡ min{
t∑

τ=1

c zτλτ :

t∑
τ=1

Azτλτ ≥ a;

t∑
τ=1

λτ = 1;λτ ≥ 0, τ = 1, . . . , t} (17)

Linear program [Mt] is solved to optimality. Let λt denote an optimal solution to [Mt].
Its projection in X is:

xt :=
t∑

τ=1

zτ λt
τ . (18)

Let c xt denote its objective value. The linear program dual of [Mt] is:

[DMt] ≡ max{η : π(Azτ − a) + η ≤ czτ , τ = 1, . . . , t;π ∈ IRm
+ ; η ∈ IR1} (19)

Let (πt, ηt) denote an optimal solution to [DMt]. Using this dual solution, one searches
for the most negative reduced cost column, by solving the subproblem:

zt+1 ← zπt := argminx∈Z{(c− πtA)x} . (20)

If (c− πtA) zπt + πt a− ηt < 0, then zπt defines a negative reduced cost column that
is added to the restricted master. Otherwise, the current LP solution is optimal for the
unrestricted master program [M].

The above algorithm outputs a sequence of values for the Lagrangian price vector:
{πt}t, that converges towards an optimal dual price vector, π∗. In the process, one
can also derive a sequence of candidate primal solutions, {xt}t, converging towards an
optimal solution x∗ of problem (16). One can observe the following properties:

Observation 1
(i) The vector xt defined in (18) is a solution to [Mt] ≡ min{cx : Ax ≥ a, x ∈
conv({z1, . . . , zt})}.
(ii) The dual solution of [DMt] is such that πt = argmaxπ∈IRm

+
Lt(π) where Lt()

defines an approximation of the Lagrangian dual function L(), considering only the
subset of subproblem solutions {z1, . . . , zt}: i.e.,

Lt() : π → min
z∈{z1,...,zt}

{πa+ (c− πA)z} = min{L(z1, π) . . . , L(zt, π)} . (21)

Function Lt() is an upper approximation of function L(): Lt(π) ≥ L(π) ∀π ∈ IRm
+ .

The hypograph of function Lt() defines a polyhedral outer approximation of the master
LP dual program (10-12). By duality, Lt(πt) = ηt = c xt.
(iii) Solving [LSP(πt)] exactly serves four purposes simultaneously:

(iii.a) it yields the most negative reduced cost column: zt+1 = zπt ∈ Q \ Qt

for [M];
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(iii.b) it yields the most violated constraint defined by a subproblem solution
zq ∈ Q \Qt for [DM];

(iii.c) the constraint violation of the oracle solution zπt defines a sub-gradient of
L(.) at point πt:

gt := (a−A zπt) ; (22)

(iii.d) the correct value of the Lagrangian function L() is now known at point πt:
L(πt) = πta+(c−πtA)zπt , and therefore this value remains unchanged in any further
approximation of L(), i.e., Lτ (πt) = L(πt) ∀τ > t.
(iv) At stage t, conv({(πτ , Lτ+1(πτ ))}τ=1,...,t) defines an inner approximation of the
master LP dual program (10-12). Outer and inner approximation are equal at these
points as Lτ+1(πτ ) = L(πτ ). One of these points defines the incumbent dual solution
π̂ = argmaxτ=1,...,tL

τ+1(πτ ) with value L̂ = L(π̂) = η̂.

(v) If Lt(πt) = L̂, or equivalently cxt = L̂, then the optimal solution is reached, i.e.,
η∗ = L̂.

In the sequel, (π∗, η∗) denotes an optimal solution to the Lagrangian dual, while L̂ =
L(π̂) denotes the current best dual (lower) bound on η∗.

2 Stabilization Techniques in Column Generation

The above column generation procedure, also known as Kelley’s cutting plane algo-
rithm for the dual master, yields a sequence of dual solution candidates {πt}t con-
verging towards optimal prices, π∗. The sequence of primal solution candidates {xt}t
is a by-product used to prove optimality of the dual solution. Stabilization techniques
are devised to accelerate the convergence of the dual sequence {πt}t towards π∗ by
targetting the following drawbacks, as listed in [9]:

– Dual oscillations: Solutions πt jump erratically. One extreme solution of the re-
stricted dual master (10-12) at iteration t, [DMt], is followed by a different extreme
point of [DMt+1], leading to a behavior often refered to as “bang-bang”. Because
of these oscillations, it might be that ||πt+1 − π∗|| > ||πt − π∗||. Moreover, the
dual boundsL(πt) are converging non monotically, with ups and downs in the value
curve (the yo-yo phenomenon).

– The tailing-off effect: Towards the end of the algorithm, added inequalities in [DMt]
tend to cut only a marginal volume of the dual solution space, making progress very
slow.

– Primal degeneracy and alternative dual optimal solutions: An extreme point λ of
polyhedron [Mt] has typically fewer non zero values than the number of master
constraints. The complementary dual solution solves a system with fewer con-
straints than variables that admits many alternative solutions. As a consequence,
the method iterates between alternative dual solutions without making any progress
on the objective value.

Techniques to stabilize column generation belongs to one of the three standard families
listed in [9]:
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Penalty Functions: A penalty is added to the dual objective function to drive the opti-
mization towards dual solutions that are close to a stability center, typically defined
as the incumbent dual solution π̂. The dual problem (19) is replaced by

πt := argmaxπ∈IRm
+
{Lt(π) − Ŝ(π)}, (23)

where the penalty function,

Ŝ : π ∈ IRm
+ → IR+ ,

is typically convex, takes value zero at π̂, and increases as ||π − π̂|| increases. The
Bundle method [3] is a special case where Ŝ(π) = 1

2θ ||π − π̂||2. One can also
make use of a piecewise linear penalty function S (see [4] for instance) in order
to ensure that the master problem is still a linear program (with additional artificial
variables whose costs and bounds are chosen to model a piecewise linear stabilizing
function). Penalty function methods require delicate tuning of several parameters.

Smoothing Techniques: The dual solution πt used for pricing is “corrected” based on
previous dual solutions. In particular, Neame [6] proposes to define smoothed price
as:

π̃t = απ̃t−1 + (1− α)πt , (24)

i.e., π̃t is a weighted sum of previous iterates: π̃t =
∑t

τ=0(1−α)αt−τπτ . Wentges
[10] proposes another smoothing rule where:

π̃t = απ̂ + (1− α)πt . (25)

i.e., π̃t = π̂+(1−α)(πt−π̂), which amounts to taking a step of size (1−α) from π̂
in the direction of πt. In both rules, α ∈ [0, 1) parameterizes the level of smoothing.
The pricing problem is then solved using the smoothed prices, π̃t, instead of πt:

zπ̃t := argminx∈Z{(c− π̃tA)x} . (26)

Solving this modified pricing problem might not yield a negative reduced cost col-
umn, even when one exists for πt. This situation is the result of a mis-pricing. In
such case, applying (24) or (25) with the same πt solution leads to a new dual price
vector that is closer to πt. Note moreover that the incumbent π̂ is updated each time
the current Lagrangian bound improves over L̂.

Centralized Prizes: One makes faster progress in improving the polyhedral outer ap-
proximation of the master LP dual program (10-12) when separating a point (π, ηπ)
in the interior of (10-12) rather than an extreme point. The analytic-center cutting-
plane method (ACCPM) defines iterate πt as the analytic center of the linear pro-
gram (10-12) augmented with an optimality cut η ≥ L̂ that defines a trust region.
Alternatives exist to keep a formulation of the master as a linear program (see ref-
erences in [9]).

Note that using a smoothed price vector or an interior point for pricing has a drawback.
The pricing problem can be harder for some solvers, as there are typically fewer non
zero components and less clear dominance that can be exploited in dynamic program-
ming recursions for instance.
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3 The Link with In-Out Separation

The above smoothing techniques are related to the in-out separation scheme of [2,5].
The solution over the outer approximation of dual polyhedron (10-12) at iteration t
defines an out-point, i.e., a point outside polyhedron (10-12):

(πout, ηout) := (πt, Lt(πt)) . (27)

Symetrically, consider a point inside the inner approximation of polyhedron (10-12).
Possible definitions of such in-point are provided by the smoothing rules described
above:

(πin, ηin) :=

{
(π̃t−1, L(π̃t−1)) under rule (24),
(π̂, L̂) under rule (25).

(28)

These are in-points, because L(π̃t−1) and L(π̂) have been computed exactly when pric-
ing as noted in Observation 1-(iii.d). On the segment between the in-point and the
out-point, one defines a sep-point at distance α from the out-point:

(πsep, ηsep) := α (πin, ηin) + (1 − α) (πout, ηout) . (29)

The in-out separation strategy consists in attempting to cut such sep-point. If an exact
separation/pricing oracle fails to yield a separation hyperplan that cuts this sep-point,
the point proves to be a valid in-point. Else, the out-point is updated. For standard in-out
separation, where either the in-point or the out-point is replaced by the sep-point at each
iteration, [2] proves that the distance between them tends to zero during a mis-pricing
sequence.

The following proposition formalizes the properties common to Neame’s and Went-
ges’ smoothing schemes for column generation. Observe that the smoothing schemes
described by rule (24) and (25) differ from the above standard in-out separation by the
way in which the component η of the current solution is updated. Indeed, solving the
separation/pricing problem yields a supporting hyperplan and a valid Lagrangian bound
which is exploited in point (ii) below.

Proposition 1. Common properties to both Neame’s and Wentges’ Smoothing Schemes.
(i) If the separation point (πsep, ηsep) is cut by the inequality defined by zπsep , i.e., if
L(πsep) = πsepa + (c − πsepA)zπsep < ηsep, then (πout, ηout) is cut off and zπsep defines a
negative reduced cost column for [Mt], i.e., (c− πoutA)zπsep + πout a < ηout.
(ii) In the case (πsep, ηsep) is not cut, i.e., if L(πsep) ≥ ηsep, then (πsep, L(πsep)) defines
a new in-point that may be used for the next iteration. Moreover, as ηsep = α ηin +
(1 − α) ηout, the new dual bound, L(πsep), obtained when solving the pricing problem,
improves the optimality gap at the smoothed price (c xt − L(π̃t)) by a factor α:

(c xt −L(π̃t)) = (ηout−L(πsep)) ≤ (ηout − ηsep) = α (ηout − ηin) ≤ α (c xt−L(π̃t−1)) .
(30)

(iii) The cut defined by zπsep can cut-off (πout, ηout) even if it did not cut (πsep, ηsep). If
it does, both the in-point and the out-point can be updated. Otherwise, failing to cut
the out-point leads to a mis-pricing. Then, (πout, ηout) = (πt, ηt) remains solution for
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[DMt+1] defined from [DMt] by adding generator zπsep ; but, under both rules (24) and
(25), the smoothed prices of the next iterate get closer to kelley’s prices:

||π̃t+1 − πt+1|| = α ||π̃t − πt|| < ||π̃t − πt|| . (31)

Other smoothing schemes that differ by the rules for updating the in-point are possible.
Property (30) remains valid provided ηin ≥ L(π̃t−1).

Hence, the smoothing rules of Neame and Wentges can be understood as a projection
in the π-space of the in-out separation procedure of [2], where the in-point is updated
even when the sep-point is cut. The update of the η value to a valid dual bound guar-
antees the feasibility of the udpated in-point. In Wentges’smoothing scheme [10], the
in-point is redefined as the dual incumbent at each iterate. Note however that when the
separation point cannot be cut, L(πsep) > L̂ according to Proposition 1-(ii) and π̂ is
updated to πsep. Thus, Wentges’smoothing conforms to the standard in-out paradigm.
However, Neame smoothing scheme [6] differs from the standard in-out procedure
by the fact that πin is updated to πsep whether or not the sep-point was cut. It can be
seen as a valid variant of the in-out procedure as, even if (πsep, ηsep) is not an in-point,
(πsep, L(πsep)) defines an in-point that can used in the next iteration, as done implicitly
in rule (24). In any case, Proposition 1 holds true for Neame smoothing scheme, as well
as for Wentges. We emphasize that Proposition 1-(ii) is valid even if there is no mis-
pricing. It has no equivalent for the general in-out procedure of [2] where no special
component is associated with the objective value. To the best of our knowledge, such
results had not been proven for Neame’s smoothing scheme [6]. For Wentges smooth-
ing, Property (iii) was already mentioned in [10], while Property (ii), which then takes
the form (c xt − L(π̂t)) ≤ α (c xt − L(π̂t−1)), was proven in [7], but in a more in-
tricate manner relying on the concavity of function Lt() defined in (21) and under a
mis-pricing assumption.

4 α-Schedule and Convergence

Instead of using the same α for all iterations, one can define iteration-dependent values
αt. We refer to α-schedule as the procedure used to select values of αt dynamically.
Intuitively, a large α can yield deeper cut if no mis-pricing occurs, while a small α can
yield large dual bound improvement if a mis-pricing occurs. But a large α resulting in
a mis-pricing or a small α with no mis-pricing result in an iterate with little progress
being made. The primary concern should be the overall convergence of the method,
which can be guaranteed by Proposition 1. If no smoothing is used, i.e., αt = 0 ∀t, the
procedure is a standard Simplex based column generation for which finite convergence
is proven, provided a cycle breaking rule that guarantees that each basis is visited at
most once. When smoothing is used on the other hand, the same basis can remain op-
timal for several iterations in a sequence of mis-pricings. However, Proposition 1-(ii)
provides a global convergence measure: the optimality gap ||cxt−L(π̃t)|| decreases by
a factor α in the case of a mis-pricing, hence the total number of mis-pricing iterations
is bounded. Alternatively, Proposition 1-(iii) provides a convergence measure local to
a mis-pricing sequence: ||πsep−πout|| decreases during such sequence, thereby bounding
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the number of mis-pricings for a given LP solution πout. Thus, in the line of the asymp-
totic convergence proof for in-out separation of [2], one can show that:

Proposition 2. Finite convergence.
Applying a Simplex based column generation procedure to (13-15) while pricing on
smoothed prices as set in (26), using either Neame (24) or Wentges (25)’s rule, con-
verges to an optimal solution after a finite number of iterations, i.e., for some t ∈ IN ,
(πt, ηt) = (π∗, η∗), where (π∗, η∗) is an optimal solution to (10-12).

Asymptotically convergent algorithms might not be suitable for practical purposes. For
instance, consider setting α = 0.8 for all t. Then, the distance reduction in a mis-pricing
sequence becomes small very quickly. In practice, it would be better to choose an α-
schedule such that π̃t = πt after a small number of mis-pricing iterations t. Given a
static baseline α, we propose as outlined on the left side in Table 1, to adapt αt during
a mis-pricing sequence in such a way that (1−Πk

τ=0ατ ) = k ∗ (1−α). Hence, αt = 0

after k =
⌈

1
(1−α)

⌉
mis-pricing iterations, at which point smoothing stops, as π̃t = πt,

which forces the end of a mis-pricing sequence.
So far we assumed a static baseline α provided as an input. Let us now consider how

the user could be free from having to tune α for his application. In deriving an auto-
adaptive α-schedule, one could consider using high α while the out-point is believed to
be a bad approximation, and reducing α as the method converges, which is measured
by smaller gaps |ηt − L̂|, and the purpose becomes to prove optimality. Alternatively,
one could rely on local information, as we do. We propose to decrease α when the
sub-gradient at the sep-point indicates that a larger step from the in-point would further
increase the dual bound (i.e., when the angle of the ascent direction, gsep, as defined
in (22), and the direction (πout − πin) is less than 90◦), and vice versa. We outline this
procedure on the right side in Table 1. Functions for increasing and decreasing α are:
fincr(αt) = αt + (1 − αt) · 0.1, while fdecr(αt) = αt/1.1 if αt ∈ [0.5, 1), and
fdecr(αt) = max{0, αt − (1− αt) · 0.1}, otherwise.

Table 1. α-schedule in a mis-pricing sequence for a given initial α (on the left) and dynamic
α-schedule based on sub-gradient information for a given intial α (on the right)

Step 0: k ← 1, π0 ← πin

Step 1: α̃ ← [1− k ∗ (1− α)]+

Step 2: πsep = α̃ π0 + (1− α̃) πout

Step 3: k ← k + 1
Step 4: call the pricing oracle on πsep

Step 5: if a mis-pricing occurs, goto
Step 1;
else, let t ← t+1, solve the mas-
ter and goto Step 0.

Step 0: Let α0 ← α, t ← 0.
Step 1: Call pricing on πsep = αtπ

in+(1−
αt)π

out.
Step 2: If a mispricing occurs, start the

mispricing schedule.
Step 3: Else, let gsep be the sub-gradient in

sol zπsep .
Step 4: If gsep(πout − πin) > 0, αt+1 ←

fincr(αt); otherwise, αt+1 ←
fdecr(αt).

Step 5: Let t ← t + 1, solve the master
and goto Step 1.
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5 Hybridization with an Ascent Method

With a pure smoothing technique, the price vector is defined by taking a step (1 − α)
from the in-point in the direction of the out-point: πsep = πin +(1−α)(πout−πin) . Here,
we consider modifying the direction (πout − πin) by twisting it towards the direction of
ascent observed in πin. The resulting method can be viewed as a hybridization of column
generation with a sub-gradient method. When Wentges’s rule (25) is used, the resulting
hybrid method is related to the Volume algorithm [1] where πt is obtained by taking a
step from π̂ in a direction that combines previous iterate information with the current
sub-gradient. However, contrary to the Volume algorithm, our purpose here is not to
derive the next πt iterate, but simply to bring a correction to the price vector that is used
in the pricing procedure.

Table 2. Directional smoothing with parameter β

Step 1: π̃ = πin + (1− α)(πout − πin)

Step 2: πg = πin + gin

‖gin‖ ‖πout − πin‖
Step 3: ρ = βπg + (1− β)πout

Step 4: πsep =
(
πin + ‖π̃−πin‖

‖ρ−πin‖ (ρ− πin)
)+

The hybrid procedure, that we call directional smoothing, is outlined in Table 2. Let
g in denote the sub-gradient associated to oracle solution zπin . In Step 1, π̃ is computed
by applying smoothing. In Step 2, πg is computed as the point located on the steepest
ascent direction at a distance from πin equal to the distance to πout. In Step 3, a rotation
is performed, defining target ρ as a convex combination between πg and πout. Then, in
Step 4, the sep-point is selected in direction (ρ − πin) at the distance from πin equal to
‖π̃ − πin‖ and it is projected on the positive orthant. As is the case with non-directional
smoothing, using modified dual prices can result in mis-pricing. When this arises, we
switch off directional smoothing by setting β = 0 in the next iteration. Apart for mis-
pricing, directional smoothing can be implemented with a fixed value of parameter
β. However, computational experiments showed that the larger the angle γ between
vectors (πout − πin) and (πg − πin), the smaller the value for β should be. Indeed, if
the angle γ is large, then twisting the direction is likely to lead to a mis-pricing. Our
proposal is to use an adaptive β-schedule by setting β = cos γ. As γ is always less than
90◦, since vector (πout − πin) is an ascent direction, β ∈ [0, 1].

6 Numerical Tests

In the experiments we describe next, we assess numerically the stabilization effect
of applying Wentges smoothing with static α-schedule versus auto-adaptive sched-
ule starting with α0 = 0.5. Additionally, we estimate the effect of using directional
smoothing, with static and auto-adaptive value of parameter β, in combination with
Wentges smoothing. The experiments are conducted on 98 representative instances of
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Table 3. Stabilization effect of Wentges smoothing with static versus auto-adaptive α: showing
geometric means

α = 0 Best α
α = 0

α = best

α = 0

α = auto

α = best

α = auto
Problem time Range It T It T It T

Generalized Assignment 98 [0.5,0.95] 3.37 4.46 3.36 4.57 1.00 1.03
Lot-Sizing 88 [0.4,0.95] 2.26 3.31 2.51 4.58 1.11 1.38
Machine Scheduling 33 [0.65,0.9] 2.30 3.04 2.29 2.98 1.00 0.98
Bin Packing 7.9 [0.75,0.95] 1.54 1.79 1.49 1.65 0.97 0.92
Vehicle Routing 6.3 [0.2,0.8] 1.32 1.37 1.15 1.28 0.88 0.94

Table 4. Extra stabilization effect when applying directional smoothing

α = best, β = 0

α, β = best

α = best, β = 0

α = best, β = auto

α = best, β = 0

α, β = auto

α, β = 0

α, β = auto
Problem It T It T It T It T

General. Assignment 1.11 1.93 1.35 1.95 1.48 2.25 5.00 10.03
Lot-Sizing 1.17 1.50 1.32 1.61 1.37 1.83 3.09 6.06
Machine Scheduling 0.94 0.91 1.04 1.12 1.10 1.21 2.53 3.68
Bin Packing 0.95 0.94 1.03 0.98 1.04 0.96 1.60 1.72
Vehicle Routing 0.90 0.92 0.94 0.97 0.83 0.92 1.09 1.25

the following problems: Machine Scheduling, Generalized Assignment, Multi-Echelon
Small-Bucket Lot-Sizing, Bin Packing, Capacitated Vehicle Routing.

For each instance, we determine experimentally the best static α-value for which the
master LP solution time by column generation with Wentges smoothing is minimum, by
testing all α values in {0.05, 0.1, . . . , 0.95}. The first columns of Table 3 report respec-
tively the geometric mean of CPU time without smoothing on a Dell PowerEdge 1950
(32Go, Intel Xeon X5460, 3.16GHZ) and the range of best α-values that vary a lot from
one instance to the next and between applications. In the other columns of Table 3, we
compare tuned and self-adjusting smoothing to standard column generation without any
smoothing. Next, in Table 4, we compare performance with and without the extra direc-
tional feature, using both a static parameter β (the best in the set {0.05, 0.1, 0.2, 0.3})
and an adaptive β. Thus, in total we compare 6 variants of column generation: (i) with-
out any stabilization (α = 0, β = 0), (ii) with static Wentges stabilization (α = best,
β = 0), (iii) with auto-adaptive Wentges stabilization (α = auto, β = 0), (iv) with
combined static Wentges and directional stabilization (α = best, β = best), (v) with
combined static Wentges and adaptive directional stabilization (α = best, β = auto),
and (vi) with combined adaptive Wentges and directional stabilization (α = auto,
β = auto). In the tables, we report ratios of geometric means for the following statis-
tics: It is the number of iterations in column generation; T is the solution time. The
last columns of Table 4 summarizes the overall performance of smoothing. Note that
smoothing improves solution times by a larger factor than the number of iterations, in
spite of the potentially harder pricing subproblems.



In-Out Separation and Column Generation Stabilization 365

Conclusion

In this paper, we have specified the link between column generation stabilization by
smoothing and in-out separation. We also extended the in-out convergence proof for
Neame’s and Wentges’ smoothing schemes, deriving an extra global convergence prop-
erty on the optimality gap. These results trivially extend to the case of multiple subprob-
lems. On the practical side, our numerical results confirm the effectiveness of smoothing
and show that it can be implemented in a way that does not require parameter tuning.
Our hard coded initialization and dynamic auto-adaptive scheme based on local sub-
gradient information experimentally matches or improves the performance of the best
user tuning as revealed in Table 3. The extra directional twisting feature is shown in Ta-
ble 4 to bring further performance improvement in the non-identical subproblem case.
When there are identical subproblems, as in Bin Packing and Vehicle Routing, sub-
gradient information is aggregated and hence probably less pertinent. The adaptive set-
ting of parameter β outperforms the static value strategy leading to a generic parameter-
tuning-free implementation. This work can hopefully inspire a renewed interest in cut
separation strategies, possibly developing in-out separation with a self-adjusting param-
eter scheme and a gradient direction twist.
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Abstract. We present an optimal primal-dual algorithm for the energy
minimization preemptive open-shop problem in the speed-scaling setting.
Our algorithm uses the approach of Devanur et al. [JACM 2008], by ap-
plying the primal-dual method in the setting of convex programs and
KKT conditions. We prove that our algorithm converges and that it re-
turns an optimal solution, but we were unable to prove that it converges
in polynomial time. For this reason, we conducted a series of experiments
showing that the number of iterations of our algorithm increases linearly
with the number of jobs, n, when n is greater than the number of ma-
chines, m. We also compared the speed of our method with respect to
the time spent by a commercial solver to directly solve the correspond-
ing convex program. The computational results give evidence that for
n > m, our algorithm is clearly faster. However, for the special family of
instances where n = m, our method is slower.

1 Introduction

The primal-dual method has been extensively used for obtaining optimal [7,8,13]
and approximate [9,14] solutions for many well known optimization problems.
It has been mainly applied for problems formulated as linear programs. Only
recently Devanur et al. [6] applied the primal-dual paradigm in the more general
setting of convex programming and the Karush-Kuhn-Tucker (KKT) conditions.
Our work is in the same vein. We explore the primal-dual paradigm in the context
of energy minimization scheduling with respect to the speed-scaling model. In
this model the speed of each processor can dynamically change at any time,
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while the energy consumption is a convex function of the speed. More formally,
if a processor runs at speed s(t) at time t, then the power needed is P (t) = s(t)α,
where α > 1 is a machine-dependent constant.1 The energy consumption of the
processor is equal to the integral of the power over time, i.e., E =

∫
P (t)dt.

Moreover, the processor’s speed is the rate at which work is executed and, thus,
the total of work amount executed by a processor is the integral of its speed, i.e.
w =

∫
s(t)dt.

We focus on the speed-scaling preemptive open-shop problem for which there
is a natural formulation as a convex program. In the energy minimization speed-
scaling preemptive open-shop problem, we are given a set of n jobs J = {J1, J2,
. . . , Jn} and a set of m processors M = {M1,M2, . . . ,Mm}. Each job consists
of operations that have to run on different processors. Operations of the same
job cannot be executed at the same time. The operation Oij of the job Jj has
to be executed on processor Mi and it has an amount of work wij ≥ 0. Note
that, it is not necessary for each job to have an operation to all processors;
in this case wij = 0. The operations may be preempted, that is they can be
interrupted and continue their execution later. The goal is to minimize the total
energy consumed such that all operations are completed before a given deadline
d. Extending the Graham’s three-field notation [11] for scheduling problems, we
denote our problem by O|pmtn, d|E.

Related Work. The preemptive open-shop problem has been extensively studied
in the classical setting (without caring about the energy consumption). In this
setting, each operationOij has a processing time pij , instead of a work. When the
goal is the minimization of the length of the schedule (makespan) the problem
O|pmtn|Cmax can be solved in polynomial time [10]. Several other results for the
preemptive open-shop can be found in [5]. The speed-scaling preemptive open-
shop problem has beed studied, recently, by Bampis et al. [3], who presented a
combinatorial algorithm for O|pmtn, d|E based on a transformation to a convex
cost flow problem.

In [12], Gupta et al. apply a primal-dual approach in order to obtain a constant
factor competitive algorithm for a speed-scaling problem in the online setting.
This algorithm is based on a primal-dual schema using the Lagrangian duality
and it is quite different from our primal-dual approach.

There is a lot of work in the speed-scaling area, and the interested reader is
referred to the recent reviews [1,2].

Our contribution. In linear programming, the idea of the primal-dual approach
is, in general, to modify the dual and the primal variables in turns, based on
the complementary slackness conditions. In the convex programming setting, it
is not possible to define a dual program as for the linear problems. However,
there is always an optimal solution for any convex program in which the primal
variables are related with the dual variables through some equality relationships
known as the stationarity conditions. Therefore, by modifying the dual variables,

1 In most applications, α is considered to be between two and three.
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that correspond to Lagrangian multipliers, there is a direct impact on the values
of the primal variables.

In Section 3 we formulate our problem as a convex program. Then, in Sec-
tion 4, we propose a primal-dual algorithm and we prove that it is optimal and
that it converges. Unfortunately, we are unable to prove that it converges in
polynomial time. In Section 5, we present a series of experiments showing that
the number of iterations of our algorithm increases linearly with the number of
jobs when n > m. We are also interested in the comparison of the execution time
of our method with respect to the time spent by a commercial solver to directly
solve the corresponding convex program. The computational results show that
for n > m, our algorithm is clearly faster. However, for the special family of
instances where n = m, our method is slower.

2 Preliminaries

In most of the speed-scaling problems, due to the convexity of the speed-to-
power function, each job/operation runs at a constant speed during its whole
execution in an optimal schedule (see for example [15]). This observation holds
also for our problem and its proof directly follows from the convexity of the
power function. Note that, given the speed sij of the operation Oij , the time
needed for the execution of Oij is

wij

sij
, while the energy consumed during its

execution is
wij

sij
sαij = wijs

α−1
ij .

In what follows in this paper, we will consider a relaxation Π ′ of our original
problem Π , in which operations of the same job are allowed to be executed
simultaneously but the sum of the execution times of the operations of the
same job cannot exceed d. A solution of this problem gives the speeds of the
operations, without determining their order. Clearly, for an optimal solution E′

of Π ′, it holds that E′ ≤ E, where E is the energy consumption in an optimal
solution for Π .

In the following sections we formulate the relaxed problem as a convex pro-
gram and we propose a primal-dual algorithm to find an optimal solution for
it. A solution for Π ′ determines the speeds of operations, and hence their pro-
cessing times. Then, we can run a polynomial algorithm for O|pmtn|Cmax (see
for example [10]) to get a feasible open-shop solution for our problem Π . This
procedure is described formally in Algorithm 1.

Algorithm 1.

1: Solve optimally the relaxed problem Π ′ to define the speeds of operations;
2: For each Oij set processing time pij =

wij

sij
;

3: Run the algorithm proposed in [10] for O|pmtn|Cmax;

Theorem 1. Algorithm 1 returns an optimal schedule for O|pmtn, d|E.
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Proof. In an optimal solution for Π ′, all jobs and processors are active for time
at most d, while it is easy to see that there is at least one job or processor
with processing time exactly d. If not, we can decrease the speeds of all oper-
ations and get a feasible schedule for Π ′ of smaller energy consumption, which
is a contradiction as we have considered an optimal schedule. Moreover, it is
known (e.g. [5]) that any optimal solution for O|pmtn|Cmax has length equal to
max{maxi

∑
Oij∈Mi

pij , maxj
∑

Oij∈Jj
pij}, which in our case is d. Thus, Algo-

rithm 1 returns a feasible open-shop solution for Π , i.e., a solution where no
operations of the same job are executed simultaneously and the completion time
of all operations is at most d. In other words, the algorithm for O|pmtn|Cmax

produces a feasible solution of Π given the speeds obtained by a feasible solution
for Π ′, and hence the energy consumed for Π is equal to E′. As the speeds, and
hence the processing times, of operations are selected in Line 1 in such a way
that E′ is minimized, the theorem holds. ��

3 Convex Programming Formulation and the KKT
conditions

In this section we first formulate our relaxed problem as a convex program.

min
∑

Oij∈Jj

∑
Oij∈Mi

wijs
α−1
ij

∑
Oij∈Mi

wij

sij
≤ d 1 ≤ i ≤ m (1)

∑
Oij∈Jj

wij

sij
≤ d 1 ≤ j ≤ n (2)

sij ≥ 0 Oij ∈ Jj , Oij ∈Mi

Constraints (1) and (2) do not allow a job and a processor, respectively, to be
active for a time period greater than d.

The Karush-Kuhn-Tucker conditions are necessary and sufficient conditions
[4] for a feasible solution of our convex program to be optimal. Note that, the
βi’s, 1 ≤ i ≤ m, correspond to the Lagrangian multipliers for the Constraints (1)
and the γj ’s, 1 ≤ j ≤ n, correspond to the Lagrangian multipliers for the Con-
straints (2).

Stationarity conditions:

∇

⎛
⎝ ∑

Oij∈Jj

∑
Oij∈Mi

wijs
a−1
ij

⎞
⎠+

m∑
i=1

βi · ∇

⎛
⎝ ∑

Oij∈Mi

wij

sij
− d

⎞
⎠

+
n∑

j=1

γj · ∇

⎛
⎝ ∑

Oij∈Jj

wij

sij
− d

⎞
⎠+

∑
Oij∈Jj

∑
Oij∈Mi

δij · ∇(−sij) = 0
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or equivalently

∑
Oij∈Jj

∑
Oij∈Mi

(
wij(a− 1)sa−2

ij − (βi + γj)
wij

s2ij
− δij

)
∇sij = 0 (3)

Complementary slackness conditions:

βi ·

⎛
⎝ ∑

Oij∈Mi

wij

sij
− d

⎞
⎠ = 0 1 ≤ i ≤ m (4)

γj ·

⎛
⎝ ∑

Oij∈Jj

wij

sij
− d

⎞
⎠ = 0 1 ≤ j ≤ n (5)

δij · (−sij) = 0 Oij ∈ Jj , Oij ∈Mi (6)

Note that operations with work wij = 0 are not counted into the above sums.
Then, as each operation has a work wij > 0 to execute, it holds that sij > 0,
and hence, by condition (6) we have that δij = 0. Thus, Equation (3) can be
reformulated as

sαij =
βi + γj
α− 1

Oij ∈ Jj , Oij ∈Mi (7)

As we already mentioned in the introduction, the KKT conditions, and especially
the stationarity conditions, give a relation between the primal and the dual
variables. Indeed, Equations (7) directly connect our primal variables sij with
our dual variables βi and γj . Intuitively, each dual variable βi, 1 ≤ i ≤ m,
can be considered as the contribution of the processor Mi to the speed of the
operations Oij , 1 ≤ j ≤ n. In a similar way, each dual variable γj , 1 ≤ j ≤ n, can
be considered to be the contribution of the job Jj to the speed of the operations
Oij , 1 ≤ i ≤ m.

4 The Primal-Dual Algorithm

In this section we present a combinatorial algorithm based on the primal-dual
approach. The main idea of the algorithm is to determine the values of dual
variables, βi and γj , and hence the speeds of operations, through a primal-dual
scheme. Our algorithm initializes the dual variables according to the following
proposition that provides upper and lower bounds for them.

Proposition 1.

(i) For each βi, 1 ≤ i ≤ m, it holds that 0 ≤ βi ≤ (α− 1)

(∑
Oij∈Mi

wij

d

)α

.

(ii) For each γj, 1 ≤ j ≤ n, it holds that 0 ≤ γj ≤ (α− 1)

(∑
Oij∈Jj

wij

d

)α

.
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Proof. The lower bounds follow by the definition of βi’s and γj ’s.
For the upper bound on βi’s, consider a processor Mi, 1 ≤ i ≤ m. As we

search for an upper bound we can assume that βi > 0. Hence, by the comple-
mentary slackness conditions (4) and applying the stationarity conditions (7),
in an optimal solution it holds that∑

Oij∈Mi

wij

sij
− d = 0⇔

∑
Oij∈Mi

wij

α

√
βi+γj

α−1

= d

To obtain the upper bound on βi, we can consider that the speeds of all oper-
ations Oij ∈ Mi depend only on the contribution of the processor Mi, that is
γj = 0 for all Oij ∈Mi. Hence, we have that

∑
Oij∈Mi

wij

α

√
βi

α−1

≥ d⇔ βi ≤ (α− 1)

(∑
Oij∈Mi

wij

d

)α

The same arguments hold for the upper bounds on γj ’s. ��

Based on the previous proposition, we initialize each dual variable βi, 1 ≤ i ≤
m, to its lower bound and each dual variable γj , 1 ≤ j ≤ n, to its upper
bound. Given these initial values, the obtained schedule may not be feasible.
More specifically, the processing time of some processors may be more than d,
i.e.,

∑
Oij∈Mi

wij

α
√

γj
α−1

> d. For such a processor Mi, we increase βi such that the

processing time of Mi is exactly d, i.e.,
∑

Oij∈Mi

wij

α
√

βi+γj
α−1

= d. We refer to this

step as an “infeasible-to-feasible” step. The increasing of βi’s has as a result
some jobs to become non-tight, i.e.,

∑
Oij∈Jj

wij

α
√

βi+γj
α−1

< d. For such a job Jj ,

we decrease γj such that to be equal to the maximum between zero (respecting
our definition) and the value of γj needed so that Jj becomes tight again, i.e.,∑

Oij∈Jj

wij

α
√

βi+γj
α−1

= d. We refer to this step as a “non-tight-to-tight” step. Thus,

the decreasing of γj ’s has as a result some processors to become non-feasible,
and so on. The criterion to terminate this procedure is when after a “non-tight-
to-tight” step all the complementary slackness conditions are satisfied. A formal
description of the above procedure is given in Algorithm 2.

Note that, the algorithm modifies a dual variable βi only if the processor Mi

is non-feasible in such a way to make it feasible (and tight). To do this, the
speed of each operation Oij ∈ Mi is increased through the increasing of βi. By
the definition of the algorithm, Mi can be in a feasible and non-tight state only
if βi = 0. In a similar way the algorithm modifies a dual variable γj only if the
job Jj is non-tight (and feasible) in such a way to make it tight. To do this,
the speed of each operation Oij ∈ Jj is decreased through the decreasing of γj .
By the definition of the algorithm, Jj cannot be in an infeasible state. Based on
these observations, the following proposition follows.
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Algorithm 2.

1: For each i, 1 ≤ i ≤ m, set βi = 0;

2: For each j, 1 ≤ j ≤ n, set γj = (α− 1)

(∑
Oij∈Jj

wij

d

)α

;

3: while the complementary slackness conditions are not satisfied do
4: for each i, 1 ≤ i ≤ m, such that the processor Mi is not feasible do

5: Choose βi such that

⎛
⎝∑

Oij∈Jj

wij

α
√

βi+γj
α−1

− d

⎞
⎠ = 0;

6: for each j, 1 ≤ j ≤ j, such that the job Jj is not tight do

7: Choose the maximum value of γj such that γj ·

⎛
⎝d−

∑
Oij∈Jj

wij

α

√
βi+γj
α−1

⎞
⎠ = 0;

Proposition 2.
(i) For each i, 1 ≤ i ≤ m, the value of βi is always non-decreasing.
(ii) For each j, 1 ≤ j ≤ n, the value of γj is always non-increasing.

Theorem 2. Algorithm 2 converges to an optimal solution of the relaxed problem.

Proof. In each iteration the algorithm modifies at least one dual variable; oth-
erwise the complementary slackness conditions are satisfied and the algorithm
terminates. By Proposition 2 the modification of the dual variables is monotone,
while by Proposition 1 there are well-defined lower and upper bounds for them.
Therefore, the algorithm terminates.

In order to show that the algorithm converges in an optimal solution, we
just have to show that the solution obtained satisfies the KKT conditions. The
stationarity conditions (7) hold as for any operation Oij the assigned speed by

construction can be written as sij = α

√
βi+γj

α−1 . The complementary slackness

conditions (4) hold since after the final “non-tight-to-tight” step any processor
Mi is either tight or its βi = 0; if not then the algorithm would have executed a
new iteration. The complementary slackness conditions (5) hold since in Line 7

we force γj ·
(
d−

∑
Oij∈Jj

wij

α
√

βi+γj
α−1

)
= 0. The complementary slackness condi-

tions (6) hold since for any operation Oij we have set δij = 0. ��

5 Experimental Results

In this sectionwe experimentally test our primal-dual algorithmtowards twodirec-
tions. The first direction is to observe the behavior of our algorithm when the size
of the instance increases. The second direction is to compare the execution time of
the primal-dual approach against the execution time of a baseline algorithm, that
is a commercial solver that solves directly the corresponding convex program.
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5.1 System Specification and Benchmark Generation

Our simulations have been performed on a machine with a CPU Intel Xeon
X5650 with 8 cores, running at 2.67GHz. The operating system of the machine
is a Linux Debian 6.0. We used Matlab with cvx toolbox. The solver used for the
convex program is SeDuMi. For both our algorithm and the convex program, we
set ε = 10−7 to be the desired accuracy of the returned solution.

The instance of the problem consists of a matrix m × n that corresponds
to the work of the operations, the value of α and the deadline d. However, we
experiment with two more parameters: (i) the density p of the instance, that
is the number of non-zero work operations, and (ii) the range [1, wmax] of the
values of works.

We have considered several combinations for the parameters m, 1 ≤ m ≤ 50,
and n, 1 ≤ n ≤ 200. For each combination, we have first decided randomly with
probability p if there is a non-zero work operation in each position of the m× n
matrix. The value of p has been selected to be 0.5 or 0.75 or 1. If the created
instance did not correspond to the selected values of m and n, we rejected it and
we replaced it by another. In other words, we reject a matrix iff there exists a
line or a column in which each value is equal to zero. Then, for each operation
with non-zero work, we selected at random an integer in the range of [1, wmax].
Note here that wmax and the deadline d are strongly related. Indeed, given a
matrix of works and a deadline d, if we increase all works and the deadline by
the same factor, then the optimal solutions of the two instances will tend to have
very similar (if not the same) speeds and energy consumption. For this reason,
we have fixed the value of d = 1000 and we examined three different values for
wmax, i.e., wmax = 10, wmax = 50 and wmax = 100. These values are selected, in
general, in the direction of creating instances in which the average speed in the
optimal solution is greater than one, almost equal to one and smaller than one,
respectively. Finally, as in most applications the value of α is between two and
three, we used three different values for it, that is α = 2, α = 2.5 and α = 3.

For each combination of parameters we have repeated the experiments with
30 different matrices. All results we present below, concern the average of these
30 instances.

The benchmark as well as the code we used in our experiments are freely
available at http://todo.lamsade.dauphine.fr/spip.php?article85.

5.2 Results

The main goal of our experiments is to study the behavior of the primal-dual
algorithm when the size of the instance increases. However, during our experi-
ments we noticed that the speed of convergence strongly depends on the relation
between the number of jobs n and the number of processors m.

In Table 1, we show how the size of the instance affects the number of mod-
ifications of the dual variables made by the primal-dual algorithm. We observe
that, if n > m then the number of modifications increases linearly with the size
of the instance (see also Fig. 1). Moreover, the parameters α, wmax and p do not
play any role to the number of modifications.
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Table 1. The number of modifications of the dual variables done by the primal-dual
algorithm. The values of the table correspond to α = 2, wmax = 10, p = 1. Each entry
of the table is the average over 30 instances. The empty entries correspond to cases
with m = n and take time longer than 30 minutes each and are interrupted.

n m = 5 m = 10 m = 15 m = 20 m = 25 m = 30 m = 40 m = 50

5 40101 1 2 2 2 2 2 2
10 151 279611 3 4 3 4 4 4
20 255 295 384 – 34 7 7 10
30 355 410 443 500 593 – 12 15
40 455 510 565 572 640 756 – 32
50 555 610 665 720 768 755 947 –
60 655 710 765 820 872 864 1040 1294
70 755 810 865 920 975 1030 1034 1250
100 1055 1110 1165 1220 1275 1330 1440 1495
150 1555 1610 1665 1720 1775 1830 1940 2050
200 2055 2110 2165 2220 2275 2330 2440 2550

Note also that if n < m then the number of modifications increases linearly
with the size of the instance. In fact the two cases n > m and n < m should
be symmetric. However, the initialization step of our algorithm breaks this sym-
metry. Recall that the algorithm initializes the dual variables that correspond
to processors (βi’s) to zero and the dual variables that correspond to jobs (γj ’s)
to their upper bounds. In the case where n < m, we expect to have all jobs
tight and most of the processors non-tight in the optimal schedule of a random
instance. Hence, the number of non-zero βi’s is expected to be very small. The
initialization step helps in this direction, and this is the reason why the number
of modifications is very small if n < m.

However, if n = m the behavior of our algorithm completely changes. For
example, for m = 10 and n = 10 we need 279611 modifications, while for m = 10
and n = 20 we need only 295. Even more, for m = n = 20 the primal-dual
algorithm does not even converge in 30 minutes. Furthermore, if m = n then the
parameters α, wmax and p affect the convergence of the algorithm. For example,
in the case where m = 10 and n = 10, then the following table shows the number
of modifications of the dual variables performed by our algorithm when we fix
the two of the three parameters. Note that in the last line of the table, the
algorithm did not terminate within the time threshold.

Parameters Modifications

α = 2
p = 0.5 344

wmax = 10
p = 0.75 23915
p = 1 179611

wmax = 10
α = 2 279611

p = 1
α = 2.5 59785
α = 3 10716

α = 2
wmax = 10 279611

p = 1
wmax = 50 406608
wmax = 100 –
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In Table 2 we give a comparison of the execution time of the primal-dual
algorithm with the execution time of solving directly the convex program using
the SeDuMi solver in Matlab. We observe again the difference between n �= m
and n = m. In the first case, our algorithm highly outperforms the solver (see
Fig. 1). In the second case, our algorithm does not even terminate within 30
minutes if n = m = 20, while the execution time of the solver is not affected.
Note also that the solver’s execution time as well as the execution time of the
primal-dual algorithm when n = m depend on the parameters α, wmax and p.

Table 2. A comparison of the execution time of the primal-dual approach (PD) with
the execution time of the SeDuMi solver for convex programs (CP). The execution times
are computed in seconds. The values of the table correspond to α = 2, wmax = 10, p = 1.
Each entry of the table is the average over 30 instances. The empty entries correspond
to cases with m = n and take time longer than 30 minutes each and are interrupted.

n
m = 10 m = 20 m = 30 m = 40 m = 50
CP PD CP PD CP PD CP PD CP PD

5 0.59 0.00 0.99 0.00 1.41 0.01 1.83 0.01 2.11 0.01
10 1.22 147.93 1.26 0.01 1.81 0.01 2.42 0.01 2.59 0.01
20 1.25 0.06 3.12 – 2.57 0.02 3.11 0.02 3.92 0.03
30 1.72 0.08 2.58 0.12 5.57 – 4.36 0.03 5.30 0.04
40 2.17 0.10 3.28 0.13 4.38 0.21 8.31 – 6.48 0.05
50 2.67 0.12 4.00 0.16 5.19 0.19 6.72 0.33 11.49 –
60 3.47 0.15 4.96 0.18 6.72 0.23 8.39 0.29 9.87 0.47
70 3.86 0.16 5.99 0.21 7.73 0.26 9.84 0.28 11.42 0.40
100 5.85 0.22 8.62 0.27 11.85 0.32 13.86 0.38 17.56 0.42
150 9.31 0.31 14.34 0.38 19.30 0.47 24.66 0.52 31.10 0.56
200 12.89 0.42 19.87 0.51 28.78 0.59 36.83 0.68 46.31 0.74

The results presented above motivated us to further explore the case n = m.
For this reason, we performed more experiments for m = 10, 20, 30, 40, 50 and
n = m−5,m−4, . . . ,m+4,m+5. The results of these experiments are shown in
Fig. 2. The horizontal axis corresponds to the difference m−n, while the vertical
axis corresponds to the logarithm of the modifications of the dual variables made
by our algorithm.

We observe that the behavior of the primal-dual algorithm dramatically
changes when n = m, while there is a much smaller perturbation when n = m±1
and n = m± 2. In all other cases the number of modifications seems to increase
linearly with the size of the instance. The problem with the case where n = m
probably occurs because in an optimal solution of a random instance almost all
processors and jobs are tight, that is the total execution time of each processor
and each job is equal to the deadline d. In other words, all βi’s and γj ’s are
expected to be non-zero. The primal-dual algorithm, in each iteration “corrects”
first the values of βi’s and then the values of γj ’s. As all of them are expected
to be non-zero in the optimal solution the required precision plays a significant
role to the speed of the convergence of the algorithm.
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(a) (b)

Fig. 1. Parameters: α = 2, wmax = 10, p = 1. (a) The number of modifications of
the dual variables made by the primal-dual algorithm if n > m. (b) A comparison of
the execution times of the primal-dual algorithm and the SeDuMi solver for convex
programs if n > m (m = 10).

Fig. 2. Parameters: α = 2, wmax = 10, p = 1. The vertical axis represent the logarithm
of the modifications of the dual variables made by the primal-dual algorithm.

6 Conclusions

We have presented a primal-dual algorithm in the general setting of convex pro-
gramming and KKT conditions and we have proved that it converges to an
optimal solution. In the direction of exploring the complexity of our algorithm,
we performed simulations to observe its behavior when the size of the instance
increases. Our experiments highlight the case in which the primal-dual algorithm
has a problematic behavior, i.e., when n = m. In all other cases, and more inter-
estingly in the case where n > m that is closer to applications, the complexity
of the algorithm seems to depend linearly on the size of the instance. An inter-
esting open question remaining is whether our algorithm has a polynomial-time
complexity. If not, the design of another algorithm based on the primal-dual
paradigm that runs in polynomial time would be a challenging direction.
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Abstract. We consider reoptimization (i.e., the solution of a problem
based on information available from solving a similar problem) for branch-
and-bound algorithms and propose a generic framework to construct a re-
optimizing branch-and-bound algorithm. We apply this to an elevator
scheduling algorithm solving similar subproblems to generate columns us-
ingbranch-and-bound.Our results indicate that reoptimization techniques
can substantially reduce the running times of the overall algorithm.

1 Introduction

Many powerful solutionmethods for hard optimization problems, e.g., Lagrangian
relaxation and column generation, are based on decomposing a problem into a
master problem and one or more subproblems. The subproblems are then repeat-
edly solved to update the master problem that will eventually be solved to opti-
mality. Usually, the subproblems solved in successive rounds are rather similar;
typically, only the cost vector changes reflecting updated information from the
master problem (i.e., Lagrangian multipliers in the case of Lagrangian relaxation
approaches and dual prices in column generation methods). It is obvious that this
similarity in subproblems should be exploited by “warmstarting” the solving pro-
cess of a subproblem using information from the last round in order to reduce
the running time. Methods to achieve this are known as reoptimization techniques
and have been investigated in the context of decompositionmethods for some time
now, see e.g., [12] as an example for reoptimization in the context of Lagrangian
methods and [2] as an example for column generation methods.

There is much literature on reoptimization of polynomially solvable optimiza-
tion problems like the (standard) shortest path problems, see e.g. [13] and the
references therein. However, for theoretical reasons the decomposition is usu-
ally done such that the resulting subproblems are NP-hard, though solvable
effectively in practice. Recently, there is also growing theoretical interest in re-
optimization methods focusing on the case that only the optimal solution from
the last problem is known, see e.g. [1] for a survey.
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Usually, specialized combinatorial algorithms are used to solve the subprob-
lems, but there are also cases in which the subproblems may be solved using
branch-and-bound algorithms, see e.g., [11,4,10]. Moreover, there is a recent
interest to automatically reformulate mixed-integer programs (MIPs) and then
apply decomposition techniques [6,7,8,5,3]. The subproblems in these reformu-
lated models are solved by standard MIP solvers, which are very sophisticated
branch-and-bound algorithms. Thus there is a need for reoptimization techniques
for branch-and-bound-type algorithms.

In this paper, we propose a generic way to implement a reoptimizing branch-
and-bound algorithm using the typical ingredients of a branch-and-bound algo-
rithm. The essential idea is to “continue” the branch-and-bound search; in order
to do that correctly, we do not only have to keep the search frontier, but also
the set of pruned nodes and all solutions found so far. The intuition is that once
the cost vector has converged to some extent, the branch-and-bound trees gen-
erated in successive rounds are basically the same in the higher levels. Thus the
effort for creating this part again may be saved by reoptimization. In contrast
to e.g., [2], our approach does not require any assumption on the structure of
the change of the cost function, although we propose a way to exploit a special
common structure. The details of our approach are presented in Section 2.

The main part of the paper is devoted to an application to elevator control,
where reoptimization allows to substantially improve the running times of the
column generation algorithm ExactReplan presented in [9,10]. In addition to
the extensions suggested by the generic reoptimization scheme, we also adjust the
branching rule to facilitate reoptimization. This is necessary to take advantage
of additional pruning possibilities that arise from properties of the lower bound
used in ExactReplan.

2 Construction of a Reoptimizing Branch-and-Bound
Algorithm

To formally introduce our concept of a reoptimizing branch-and-bound algo-
rithm, we consider the following abstract setting. The aim is to solve the com-
binatorial optimization problem

min{c(x) | x ∈ S}, (1)

given by a finite set of feasible solutions S and a cost function c : S → R,
successively for a sequence of cost functions (ci : S → R)i∈I , I ⊆ N. For the
applications we have in mind, ci+1 depends on the solutions obtained for ci, but
this is not used in the following.

Consider a branch-and-bound algorithm A that solves (1). We could just
invoke A as-is once for every ci to solve the sequence of optimization problems.
We now design a branch-and-bound algorithm A′ that allows to benefit from
computations done for ci when solving (1) with cost function ci+1. To do that,
we denote by v a node in A’s search tree corresponding to a subproblem of (1)
and think of A as being specified by the following subalgorithms:
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lb(v) A function to compute a lower bound for node v in the search tree.
branch(v) A branching rule that partitions the search space corresponding to v

into smaller regions, creating nodes v1, . . . , vk, k ≥ 2, of the search tree.
heu(v) A function to compute a heuristic solution for node v in the search tree;

this function may also fail in the sense that no solution is produced. If,
however, v corresponds to a single solution x (i.e., v is a leaf in the search
tree), heu(v) returns x.

feas(v) A function to check whether the search tree rooted at node v still contains
feasible solutions.

Using these subalgorithms, A basically divides the search space S into

– the set Σ ⊆ S of feasible solutions found so far,
– a set of subproblems Pf that have been pruned since the corresponding

regions do not contain elements of S (i.e., for v ⊆ S feas(v) is false),
– a set of subproblems Pc that have been pruned since the corresponding

regions do not contain elements with cost less than some upper bound U
(i.e., for v ⊆ S we have lb(v) > U),

– and a set O of as-yet unexplored subproblems,

such that we have S ⊆ Σ∪S(Pc)∪S(O), where S(V ) ⊆ S denotes the solutions
represented by the search tree nodes V .

As an example, consider the well-known LP-based branch-and-bound algo-
rithm to solve mixed-integer programs. In this case, lb(v) is just the value of
the LP relaxation at node v and branch(v) is a (possibly quite sophisticated)
branching rule that selects a fractional variable and creates two child nodes with
integer bounds for that variable excluding its current fractional value. heu(v)
corresponds to the set of heuristics applied at v, including the trivial heuristic
that returns the current LP solution if it is integer. Finally, feas(v) is the check
whether the LP relaxation at node v is still feasible.

Assuming that (Σ,Pf ,Pc,O) are the corresponding sets after running A for
cost function ci, we may observe the following:

– The nodes in Pf do not have to be considered for cost function ci+1.
– An optimal solution for cost function ci+1 is contained in Σ ∪S(Pc)∪S(O).
– Any solution x ∈ Σ may be optimal for ci+1.
– A node v ∈ Pc might be attractive for cost function ci+1, i.e., lb(v) ≤ U for

some given upper bound U .
– A node v ∈ O might be pruned due to cost for cost function ci+1, i.e.,

lb(v) > U .

Based on these observations it is straightforward to construct a branch-and-bound
algorithmA′ that uses the subalgorithms ofA and exploits the computations done
in the last round. To this end,A′ maintains the setsΣ and Pc in addition toO1 for
use in the next round and initializes them properly based on the sets from the last
round. A pseudo-code for this reoptimizing branch-and-bound algorithm is shown

1 O may not be empty in case the branch-and-bound search is stopped early, which is
useful when applied to subproblems as a part of a decomposition scheme.
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Input: cost function c : S → R; upper bound U ; sets Σ′, P ′
c, O′

Output: sets Σ, Pc, O; set of solutions Σ∗ costing at most U
1: Σ ← Σ′, Pc ← ∅, O ← ∅, Σ∗ ← ∅ � Initialization
2: for all x ∈ Σ do
3: Put x in Σ∗ if c(x) ≤ U .

4: for all v ∈ P ′
c ∪O′ do

5: Put v in O if lb(v) ≤ U and in Pc otherwise.

6: while O �= ∅ do � Standard branch-and-bound
7: Choose v ∈ O.
8: if heu(v) is successful and returns solution x then
9: Put x in Σ.
10: Put x in Σ∗ if c(x) ≤ U .

11: v1, . . . , vk ← branch(v)
12: for i = 1, . . . , k do
13: if feas(v) then
14: Put v in O if lb(v) ≤ U and in Pc otherwise.

Fig. 1. Pseudocode for reoptimizing branch-and-bound algorithm A′

in Figure 1. This version computes the set Σ∗ of all feasible solutions with cost at
most that of a given upper boundU . This formulation of the optimization is due to
our application, where (1) corresponds to a pricing problem in a column generation
context and U is some small negative constant, i.e., we look for any columns with
negative reduced cost. We may as well consider all truely optimal solutions only.

From the preceding discussion and the logic of standard branch-and-bound,
we have the following result.

Theorem 1. Assuming that S = Σ′ ∪ S(P ′
c) ∪ S(O′), algorithm A′ defined

in Figure 1 correctly computes the set Σ∗ and upon termination we have S =
Σ ∪ S(Pc) ∪ S(O).

Proof. Consider a solution x ∈ S. In the case that x is in Σ′, by Step 1 it will
be in Σ, too. Moreover, it will also be in Σ∗ iff its cost are at most U . If x
is represented by a search tree node v′ ∈ P ′

c ∪ O′, i.e., x ∈ S(P ′
c) ∪ S(O′) =

S(P ′
c ∪ O′), after Step 4 node v′ is either in O (if lb(v′) ≤ U) or in Pc (if

c(x) ≥ lb(v′) > U).
Assume now that v′ ∈ O after the initialization phase. The remaining steps

of A′ maintain the invariant x ∈ Σ ∪ S(Pc ∪ O). To see this, let v be the node
representing x at the beginning of the while loop. In case x is found by heu(v),
it is put in Σ (and in Σ∗ if necessary). Otherwise, it will be represented by
at least one of the nodes v1, . . . , vk created by branch(v), say v1. By definition,
feas(v1) is true, so v1 is either put in O or Pc. Moreover, v1 is only put in Pc if
c(x) ≥ lb(v1) > U . Thus in case c(x) ≤ U it will eventually be found by heu(),
and thus be contained in Σ∗.

As for the running time, initializingΣ∗ in Step 2 takes |Σ′| evaluations of c, which
is usually cheap. To initialize O and Pc in Step 4 requires |P ′

c ∪ O| evaluations
of lb(), which may be rather expensive. It is, however, possible to avoid the
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recomputation of the lower bounds if the cost functions ci and ci+1 and the
lower bound method exhibit special structure. Assume that the cost functions
ci and ci+1 have the same (separable) structure of the form

c(x) = c0(x) +
m∑
j=1

cj(x)πj , (2)

where only the coefficients πj change from iteration i to iteration i + 1. Denote
by c(v) the minimum cost of a solution represented by node v. If lb(v) actually
provides (additionally) lower bounds cj(v) for cj(x), 0 ≤ j ≤ m, for any x ∈ S
represented by v, we can compute a lower bound for v as

c(v) ≥ c0(v) +

m∑
j=1

cj(v)πj , (3)

which takes time O(m) for each node v if cj(v), 0 ≤ j ≤ m, are stored with v. A
cost structure like (2) arises in the contexts of column generation and Lagrangian
relaxation, where the πj are dual prices or Lagrangian multipliers, respectively.

3 Elevator Control as an Application of a Reoptimizing
Branch-and-Bound Algorithm

We now apply our framework for reoptimizing branch-and-bound algorithms
to the column-generation-based elevator scheduling algorithm ExactReplan

from [9,10]. The ExactReplan algorithm is designed to schedule elevators in
destination call systems, where a passenger registers his destination floor upon
his arrival at the start floor. Let E be the set of elevators. A (destination) call is a
triple of the release time, the start floor and the destination floor corresponding
to this registration. Note that the elevator control knows only calls, not about
passengers. At any point in time we can build a snapshot problem describing the
current system state. ExactReplan determines an optimal solution for each
snapshot problem, giving the schedule to follow until new information becomes
available. In a snapshot problem, the calls are grouped to requests according
to certain rules reflecting the communication between the passenger and the
elevator control. A request has a start floor and a set of destinations floors.
We distinguish between assigned requests R(e) for each elevator, for which it
has already been decided that elevator e is going to serve them, and unassigned
requests Ru, which still may be assigned to any elevator. In fact, determining
the elevator serving each request ρ ∈ Ru is the main task of an elevator control
algorithm. Solving a snapshot problem requires to schedule the elevators such
that each request is served, i.e., there is an elevator traveling to the corresponding
start floor (to pick up the calls/passengers) and visiting its destination floors
(to drop the calls/passengers) afterwards. In particular, a feasible schedule for
elevator e needs to serve all assigned requests R(e) and may serve any subset
of the unassigned requests Ru. We call a selection of feasible schedules, one for
each elevator, that together serve all requests, a dispatch.
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3.1 The Original ExactReplan Algorithm

Let S(e) be the set of all feasible schedules for elevator e and define S :=⋃
e∈E S(e). For each S ∈ S we introduce a decision variable xS ∈ {0, 1} for

including a schedule in the current dispatch or not. Denoting by c(S) the cost
of schedule S, the following set partitioning model describes the problem:

min
∑
S∈S

c(S)xS (4)

s.t.
∑

S∈S : ρ∈S

xS = 1 ∀ρ ∈ Ru (5)

∑
S∈S(e)

xS = 1 ∀e ∈ E (6)

xS ∈ {0, 1} ∀S ∈ S (7)

Equations (5) and (6) ensure that each request is served by exactly one elevator
and each elevator has exactly one schedule, respectively. Note that the model
only decides assignment for the unassigned requests and the assigned requests
are treated implicitly by the sets S(e). The number of variables of this Integer
Programming (IP) problem is very large, because each permutation serving a
request subset R ⊆ Ru corresponds to a feasible schedule. We therefore use
column generation to solve the LP relaxation of the model above using a branch-
and-bound algorithm to solve the following pricing problem.

For all requests ρ ∈ R and e ∈ E we denote the dual prices associated with
constraints (5) and (6) by πρ and πe , respectively. Moreover, let Ru(S) be the
unassigned requests served by schedule S. For each elevator e we have to find
S ∈ S(e) with negative reduced cost

c̃(S) := c(S)−
∑

ρ∈Ru(S)

πρ − πe (8)

or to decide that no such schedule exists. The cost of S is the sum of the cost c(ρ)
for serving each request ρ, i.e.,

c(S) =
∑

ρ∈R(e)∪Ru(S)

c(ρ). (9)

Pricing via Branch-and-Bound. A schedule S is a sequence of stops
(s0, . . . , sk) describing future visits to floors. We enumerate all feasible schedules
for elevator e by constructing a schedule stop by stop, branching if there is more
than one possibility for the next stop. Thus each search tree node v corresponds
to a feasible schedule Sv and one of its stops sv ; the schedule up to sv is fixed
and the later stops correspond to dropping off passengers. Moreover, we main-
tain for each v the set Av ⊆ R(e) of not yet picked up assigned requests and the
set Ov ⊆ Ru of not yet picked up optional requests. At v there are the following
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branching possibilities: Either the next stop is the one following sv (if there is
one) or the next stop is at a starting floor of a request in Av ∪Ov , which is then
picked up there. We create a child node for any of these possibilities.

Our branch-and-bound pricing algorithm computes for each node v a lower
bound of the reduced costs by

c̃(v) = c(Sv) +
∑
ρ∈Av

c(ρ) +
∑

ρ∈Ov : c(ρ)−πρ<0

(c(ρ)− πρ) − πe , (10)

where c(ρ) is a lower bound on the primal-costs of requests ρ. An important
observation is that we can prune all optional requests with c(ρ)−πρ ≥ 0, leading
to a much smaller search tree.

Proposition 1. Consider a node v of the search tree corresponding to an eleva-
tor e and dual prices (πρ)ρ∈Ov . If the search tree rooted at v contains a schedule
with negative reduced cost, then it also contains one with negative reduced cost
that does not serve the requests in O≥

v := {ρ ∈ Ov | c(ρ)− πρ ≥ 0}.

An important feature of our pricing algorithm is that we do not solve the pricing
problem to optimality, but stop as soon as k schedules with negative reduced
cost are found. These schedules are then added to the set partitioning master
problem, whose LP relaxation is then resolved to obtain new dual prices. The
rationale for this is to avoid to spend too much time due to bad dual prices.

Similarity of Search Trees. In our computations we observed that the sets of
generated nodes in successively generated search trees get more and more similar.
To quantify this, we use the following similarity measure for rooted trees [14]. We
denote by T the set of all rooted trees and define for two rooted trees T , T ′ ∈ T
the number

α(T , T ′) := |{v ∈ T | the unique (r, v)-path in T is contained in T ′|},

where r is the root of T . The similarity Λ(T , T ′) ∈ [0, 1] between T and T ′ is
then given by

Λ : T× T→ [0, 1], (T , T ′) "→
{

α(T ,T ′)
|V |+|V ′|−α(T ,T ′) , V �= ∅, V ′ �= ∅
0, otherwise.

(11)

An example of the evolution of this similarity measure from pricing round to
pricing round is shown in Table 1.

3.2 The Reoptimizing ExactReplan Algorithm

In Section 2 we presented a straightforward way to transform a standard branch-
and-bound algorithm to a reoptimizing one. Now we aim to apply this scheme to
the ExactReplan algorithm. Recall that an upper bound is given by U , the set
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Table 1. Example for similarity of rooted trees. Entry (i, j), i ≥ j, represents the
similarity between the rooted search tree Ti at the end of pricing round i and the
rooted search tree Tj at the end of pricing round j. For instance, 91.87% of all nodes
from the rooted search trees T5 and T6 are part of both trees.

Ti 1 2 3 4 5 6 7

1 1.0000 0.2581 0.1048 0.1044 0.1069 0.1030 0.1039
2 1.0000 0.2591 0.2637 0.2658 0.2604 0.2626
3 1.0000 0.5706 0.5105 0.5537 0.5629
4 1.0000 0.8484 0.9098 0.9286
5 1.0000 0.9187 0.8965
6 1.0000 0.9778
7 1.0000

of solutions found so far is denoted by Σ, Pc is the set of nodes v that have been
pruned since c̃(v) > U and finally, O is the the set of as-yet unexplored nodes.
The implementation of these basic structures and the initialization procedure in
Algorithm 1 is straightforward.

We already mentioned that, assuming that the cost function has the struc-
ture (2) and the lower bound method “is compatible” with this structure, the
updates of the lower bounds for all nodes v ∈ Pc ∪ O can be done in time
O(m). Observe that the schedule cost function (9) is exactly of type (2) and also
the lower bound (10) matches this structure. We can thus use Formula (3) to
update the lower bounds for each node v, which only requires storing c0(v) :=
c(Sv)+

∑
ρ∈Av

c(ρ) and c(ρ) for ρ ∈ Ov with v. Our computational experiments

show [14] that using this fast update of the lower bounds reduces the time spent
in the initialization phase by 60–85%.

A disadvantage of the straightforward reoptimizing branch-and-bound algo-
rithm is that we cannot exploit Proposition 1: It might happen that a request ρ
with c(ρ)−πρ ≥ 0 at iteration i will have c(ρ)−πρ < 0 at iteration j > i, which
we would not detect if we just remove ρ from Ov in iteration i. An immediate
consequence is an unnecessarily high number of generated nodes in the reopti-
mizing branch-and-bound algorithm. To avoid that, we use a different branching
procedure when reoptimizing that records pruning due to Proposition 1 explic-
itly. It is thus equivalent to the original one in the sense that it generates the
same search tree when used without reoptimization. To describe this, we intro-
duce the following notation.

– The set of all floors which are branching possibilities at node v is denoted
by B(v).

– O<
v := {ρ ∈ Ov | the start floor of ρ is in B(v) and c(ρ)− πρ < 0} ⊆ Ov

– O≥
v := {ρ ∈ Ov | the start floor of ρ is in B(v) and c(ρ)− πρ ≥ 0} ⊆ Ov

– A node v is called branched, if O≥
v = O<

v = ∅.
– A node v is called pseudo-branched, if O≥

v �= ∅ and O<
v = ∅.

In each branching step we branch only on the start floors corresponding to
optional requests in O<

v . If O≥
v = ∅, v is branched and can be deleted as in
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the non-reoptimizing branch-and-bound algorithm. Otherwise we store v in Pc.
Additionally, we extend the initialization phase: If a node v from Pc is not yet
branched, we compute the new sets O≥

v and O<
v from the set O≥

v of the last
iteration, creating child nodes for each start floor of an request in O<

v . These
child nodes are stored in O for further processing. Moreover, the requests in O<

v

are removed from O≥
v , recording the fact that the corresponding branches have

been created. We call this modified branching method Pseudo-Branching.
The Pseudo-Branching technique has a positive side effect, namely a re-

duction of schedules which have to be stored, because we are generating fewer
nodes. Thus the time needed for the initialization phases decreases, too. Our com-
putational experiments show that on average, the number of generated nodes
decreases by 60%, the initialization time by 25% and the number of stored
schedules by 24% due to Pseudo-Branching.

3.3 Computational Results

In our simulations we consider two buildings and six traffic patterns with three
different traffic intensities [10]. Building A has a population of 1400 people,
23 floors and 6 elevators; building B has a population of 3300 people, 12 floors
and 8 elevators. The traffic patterns are standard for assessing elevator control
algorithms and mimic traffic arising in a typical office building. In the morning,
passengers enter the building from the ground floor, causing up peak traffic.
Then there is some interfloor traffic where the passengers travel roughly evenly
between the floors. During lunch traffic, people leave and reenter the building
via the ground floor. Finally, there is down peak traffic when people leave the
building in the afternoon. In addition, we also consider real up peak traffic and
real down peak traffic, which mix the up peak and down peak traffic which 5%
of interfloor and 5% of down peak and up peak traffic, respectively. These two
patterns are supposed to model the real traffic conditions more closely than
the pure ones. One hour of each traffic pattern is simulated for three different
intensities: 80%, 100% and 144% of the population arriving in one hour.

We compare the original ExactReplan algorithm to its reoptimizing ver-
sion ExactReplan-reopt with fast updating of lower bounds and Pseudo-

Branching. Both variants of the ExactReplan algorithm solve the LP relax-
ation of any snapshot problem in the root node to optimality and then solve the
resulting IP to optimality without generating further columns. All computations
ran under Linux on a system with an Intel Core 2 Extreme CPU X9650 with
3.0 GHz and 16 GB of RAM. We did not use the 64bit facility on this machine.
Results are shown in Tables 2 and 3. The number of generated nodes is at least
halved on the average. A comparison between the total time and the initialization
time shows that the initialization of the reoptimizing branch-and-bound algo-
rithm is cheap compared to the branching procedure. Moreover, the column time
ratio shows that it is possible to save up to 85% of computation time (Up Peak
144% on building A) when using the reoptimizing variant. Since the branching
rules are equivalent w. r. t. generated search trees without reoptimization, the
speedup is entirely due to our reoptimization techniques.
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4 Conclusion

We proposed a general scheme to use reoptimization in a branch-and-bound
algorithm and applied this scheme to the elevator scheduling algorithm
ExactReplan based on column generation. Moreover, we adjusted the branch-
ing rule of our reoptimizing version of ExactReplan to take advantage of
additional pruning possibilities also when using reoptimization. This reoptimiz-
ing version of ExactReplan outperforms ExactReplan substanstially up to a
factor of 6. As a next step, we want to employ reoptimization also to the branch-
and-price version of ExactReplan, which also uses column generation to solve
the LP relaxation of nodes below the root. Moreover, we will study reoptimiza-
tion for LP-based branch-and-bound used in state-of-the-art MIP solvers to im-
prove the performance of automatic decomposition frameworks like GCG [8].
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Abstract. The Team Orienteering Problem with Time Windows
(TOPTW) deals with deriving a number of tours comprising a subset
of candidate nodes (each associated with a “profit” value and a visiting
time window) so as to maximize the overall “profit”, while respecting a
specified time span. TOPTW has been used as a reference model for the
Tourist Trip Design Problem (TTDP) in order to derive near-optimal
multiple-day tours for tourists visiting a destination featuring several
points of interest (POIs), taking into account a multitude of POI at-
tributes. TOPTW is an NP-hard problem and the most efficient known
heuristic is based on Iterated Local Search (ILS). However, ILS treats
each POI separately; hence it tends to overlook highly profitable areas
of POIs situated far from the current location, considering them too
time-expensive to visit. We propose two cluster-based extensions to ILS
addressing the aforementioned weakness by grouping POIs on disjoint
clusters (based on geographical criteria), thereby making visits to such
POIs more attractive. Our approaches improve on ILS with respect to
solutions quality, while executing at comparable time and reducing the
frequency of overly long transfers among POIs.

Keywords: Tourist Trip Design Problem, Point of Interest, Team Orien-
teering Problem with Time Windows, Iterated Local Search, Clustering.

1 Introduction

A TTDP [15] refers to a route-planning problem for tourists interested in visiting
multiple points of interest (POIs). The objective of the TTDP is to select POIs
that match tourist preferences, thereby maximizing tourist satisfaction, while
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taking into account a multitude of parameters and constraints (e.g., distances
among POIs, visiting time required for each POI, POIs visiting hours, entrance
fees) and respecting the time available for sightseeing in daily basis. Different
versions of TTDP have been studied in the literature. Herein, we deal with a
version of TTDP that considers the following input data: (a) a set of candidate
POIs, each associated with the following attributes: a location (i.e. geographical
coordinates), time windows(TW) (i.e. opening hours), a “profit” value, calcu-
lated as a weighted function of the objective and subjective importance of the
POI (subjectivity refers to the users’ individual preferences and interests on spe-
cific POI categories) and a visiting time (i.e. the anticipated duration of visit
of a user at the POI), (b) the travel time among POIs, based on the topolog-
ical distance between a pair of POIs, (c) the number k of routes that must be
generated, based upon the period of stay (number of days) of the tourist at the
destination, and (d) the daily time budget B that a tourist wishes to spend on
visiting sights; the overall daily route duration (i.e. the sum of visiting times
plus the overall travel time among visited POIs) should be kept below B.

By solving the TTDP we expect to derive k routes (typically starting and
ending at the tourist’s accommodation location) each of length at most B, that
maximize the overall collected profit. A well-known optimization problem that
may formulate this version of TTDP is the team orienteering problem with time
windows (TOPTW) [13]. TOPTW is NP-hard (e.g. see [3], [6]). Hence, exact
solutions for TOPTW are feasible for instances with very restricted number
of locations (e.g. see the work of Li and Hu [7], which is tested on networks
of up to 30 nodes). Note that since the TTDP is typically dealt with online
web and mobile applications with strict execution time restrictions, only highly
efficient heuristic approaches are eligible for solving it. The most efficient known
heuristic for TOPTW is based on Iterated Local Search (ILS) [14], offering a fair
compromise with respect to execution time versus deriving routes of reasonable
quality. However, ILS treats each POI separately, thereby commonly overlooking
highly profitable areas of POIs situated far from current location considering
them too time-expensive to visit. ILS is also often trapped in areas with isolated
high-profit POIs, possibly leaving considerable amount of the overall time budget
unused.

Herein, we introduce CSCRatio and CSCRoutes, two cluster-based algorith-
mic approaches to the TTDP, which address the shortcomings of ILS. The main
incentive behind our approaches is to motivate visits to topology areas featuring
high density of ‘good’ candidate nodes (such areas are identified by a geograph-
ical clustering method performed offline); the aim is to improve the quality of
derived solutions while not sacrificing time efficiency. Furthermore, both our al-
gorithms favor solutions with reduced number of overly long transfers among
nodes, which typically require public transportation rides (such transfers are
costly and usually less attractive to tourists than short walking transfers). The
remainder of this article is organized as follows: Section 2 overviews TOPTW
heuristics. Section 3 presents our novel cluster-based heuristics, while Section
4 discusses the experimental results. Section 5 concludes the paper.



392 D. Gavalas et al.

2 Related Work

Labadi et al. [4] proposed a local search heuristic algorithm for TOPTW based
on a variable neighborhood structure. In the local search routine the algorithm
tries to replace a segment of a path by nodes offering more profit. For that,
an assignment problem related to the TOPTW is solved and based on that
solution the algorithm decides which arcs to select. Lin et al. [9] proposed a
heuristic algorithm for TOPTW based on simulated annealing. On each iteration
a neighbouring solution is obtained from the current solution by applying one of
the moves swap, insertion or inversion, with equal probability. A new solution is
adopted provided that it is more profitable than the current one; otherwise, the
new solution might again replace the current one with a probability inversely
proportional to their difference in profits. After applying the above procedure for
a certain number of iterations the best solution found so far is further improved
by applying local search.

The Iterated Local Search (ILS) heuristic proposed by Vansteenwegen et al.
[14] is the fastest known algorithm proposed for TOPTW [13]. The algorithm
is discussed in the following section. Montemanni and Gambardella proposed
an ant colony system (ACS) algorithm [10] to derive solutions for a hierarchical
generalization of TOPTW, wherein more than the k required routes are con-
structed. At the expense of the additional overhead, those additional fragments
are used to perform exchanges/insertions so as to improve the quality of the k
tours. ACS has been shown to obtain high quality results (that is, low average
gap to the best known solution) at the expense of prolonged execution time,
practically prohibitive for online applications. In [2] a modified ACS framework
(Enhanced ACS) is presented and implemented for the TOPTW to improve the
results of ACS.

Labadi et al. [5] recently proposed a method that combines the greedy ran-
domized adaptive search procedure (GRASP) with the evolutionary local search
(ELS). Their approach derives solutions of comparable quality and significantly
less computational effort to ACS. Compared to ILS, GRASP-ELS gives better
quality solutions at the expense of increased computational effort [5]. Tricoire
et al. [12] deal with the Multi-Period Orienteering Problem with Multiple Time
Windows (MuPOPTW), a generalization of TOPTW, wherein each node may
be assigned more than one time window on a given day, while time windows may
differ on different days. Both mandatory and optional visits are considered. The
authors developed two heuristic algorithms for the MuPOPTW: a deterministic
constructive heuristic which provides a starting solution, and a stochastic local
search algorithm, the Variable Neighbourhood Search (VNS), which considers
random exchanges between chains of nodes. Vansteenwegen et al. [13] argue
that a detailed comparison of ILS, ACS and the algorithm of Tricoire et al. [12],
is impossible since the respective authors have used (slightly) different bench-
mark instances. Nevertheless, it can be concluded that ILS has the advantage
of being very fast (its execution time is no longer than a few seconds), while
ACS, Enhanced ACS and the approach of Tricoire et al. have the advantage of
obtaining high quality solutions.



Cluster-Based Heuristics for the Team Orienteering Problem 393

3 Cluster-Based Heuristics

In TOPTW we are given a directed graph G = (V,A) where V = {1, ..., N}
is the set of nodes (POIs) and A is the set of links, an integer k, and a time
budget B. The main attributes of each node are: the service or visiting time
(visiti), the profit gained by visiting i (profiti), and each day’s time window
([openim, closeim],m = 1, 2, . . . , k) (a POI may have different time windows per
day). Every link (i, j) ∈ A denotes the transportation link from i to j and is
assigned a travel cost travelij . The objective is to find k disjoint routes starting
from 1 and ending at N , each with overall duration limited by the time budget
B, that maximize the overall profit collected by visited POIs in all routes.

The ILS heuristic proposed by Vansteenwegen et al. [14] defines an “insertion”
and a “shake” step. At each insertion step (ILS Insert) a node is inserted
in a route, ensuring that all following nodes in the route remain feasible to
visit, i.e. their time window constraints are satisfied and the time budget is
not violated. ILS modeling involves two additional variables for each node i:
(a) waiti defined as the waiting time in case the arrival at i takes place before
i’s opening time, and (b) maxShifti defined as the maximum time the start of
the visit of i can be delayed without making any visit of a POI in the route
infeasible. If a node p is inserted in a route t between i and j, let shiftp =
travelip + waitp + visitp + travelpj − travelij denote the time cost added to the
overall route time due to the insertion of p. The node p can be inserted in a route
t between i and j if and only if startit +visiti + travelip ≤ closept and at the
same time shiftp ≤ waitj +maxShiftj . For each node p not included in a route,
its best possible insert position is determined by computing the lowest insertion
time cost (shiftp). For each of these possible insertions the heuristic calculates

the ratio ratiop =
profit2p
shiftp

, which represents a measure of how profitable is to

visit p versus the time delay this visit incurs. Among all candidate nodes, the
heuristic selects for insertion the one with the highest ratio .

At the shake step (Shake) the algorithm tries to escape from local optimum
by removing a number of nodes in each route of the current solution, in search
of non-included nodes that may either decrease the route time length or increase
the overall collected profit. The shake step takes as input two integers: (a) the
removeNumber that determines the number of the consecutive nodes to be re-
moved from each route and (b) the startNumber that indicates where to start
removing nodes on each route of the current solution. If throughout the process,
the end location is reached, then the removal continues with the nodes following
the start location.

To the best of our knowledge, ILS is the fastest known algorithm for solv-
ing the TOPTW offering a fair compromise in terms of speed versus deriving
routes of reasonable quality. However, it presents the following weaknesses: (i)
During the insertion step, ILS may rule out candidate nodes with high profit
value because they are relatively time-expensive to reach (from nodes already
included in routes). This is also the case even when whole groups of high profit
nodes are located within a restricted area of the plane but far from the current
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route instance. In case that the route instance gradually grows and converges
towards the high profit nodes, those may be no longer feasible to insert due to
overall route time constraints. (ii) In the insertion step, ILS may be attracted
and include into the solution some high-score nodes isolated from high-density
topology areas. This may trap ILS and make it infeasible to visit far located areas
with “good” candidate nodes due to prohibitively large traveling time (possibly
leaving considerable amount of the overall time budget unused).

Herein, we propose two heuristic algorithms, Cluster Search Cluster Ratio
(CSCRatio) and Cluster Search Cluster Routes (CSCRoutes), which address
the aforementioned weaknesses of the ILS algorithm. Both algorithms employ
clustering to organize POIs into groups (clusters) based on topological distance
criteria. POIs at the same cluster are close to each other e.g., they are within
walking distance or they belong to the same area of the city. Having visited a
high-profit POI that belongs to a certain cluster, our algorithms encourage visits
to other POIs at the same cluster because such visits reduce (a) the duration of
the routes and (b) the number of transfers among clusters. Note that a tourist
apart from maximizing the total profit, may also prefer to minimize inter-cluster
tranfers as those are typically long and require usage of public transportation,
this may incur a considerable budget cost, while walking is usually a preferred
option than using the public transportation.

Both CSCRatio and CSCRoutes employ the global k-means algorithm [8] to
build a clustering structure consisting of an appropriate (based on the network
topology) number of clusters (numberOfClusters). Once the clusters of POIs
have been formed during a preprocessing (clustering) phase, a route initialization
phase RouteInitPhase starts. During this phase one POI is inserted into each
of the k initially empty routes. Each of the k inserted POIs comes from a different
cluster, i.e. no two inserted POIs belong to the same cluster. Since the number of
clusters is usually larger that k we need to decide which k clusters will be chosen
in the route initialization phase. Different approaches may be followed such as
choosing the k clusters with the highest total profit, or trying different sets of k
high-profit clusters and run CSCRatio and CSCRoutes algorithms for each such
set searching for the best possible solution. Following the second approach, we
consider a listOfClusterSets list containing a specific number of different sets of
k high-profit clusters. The list may contain all k-combinations of the elements
of a small set S with the most profitable clusters. RouteInitPhase takes as
argument a set of k clusters from listOfClusterSet and proceeds as follows: for
each cluster Ci in the set, it finds the POI p ∈ Ci with the highest ratiop
and inserts it into one of the empty routes. By initializing each one of the k
routes of the TOPTW solution with a POI from different clusters the algorithms
encourage searching different areas of the network and avoid getting trapped at
specific high-scored nodes. Then the algorithms combine an insertion step and
a shake step to escape from local optima.

Cluster Search Cluster Ratio Algorithm. The CSCRatio algorithm intro-
duces an insertion step CSCRatio Insert which takes into account the cluster-
ing of the POIs by using a parameter clusterParameter≥ 1. The higher the value
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of clusterParameter, the more the insertion of a node p before or after a node
that belongs to the same cluster with p is favored. Specifically, the parameter
clusterParameter is used to increase the likelihood of inserting p between i and j
if p belongs to the same cluster with either i or j. For that, CSCRatio considers

the variable shiftClusterp defined as the ratio
shiftp

clusterParameter in the case that

cluster(p) coincides with cluster(i) or cluster(j) (cluster(l) denotes the cluster
where a node l belongs to). Otherwise, shiftClusterp = shiftp. Then the lowest
insertion time cost (shiftClusterp) i.e. the best possible insert position for p, is
determined. For each of those best possible insertions, the heuristic calculates

ratiop =
profit2

p

shiftClusterp
. CSCRatio initializes the clusterParameter with the value

of 1.3 in order to initially encourage visits to be within the same clusters and de-
creases the value of clusterParameter by 0.1 every a quarter of maxIterations. At
the last quarter the CSCRatio Insert step becomes the same as ILS Insert.
Thus, routes with a lot of POIs belonging to the same cluster are initially fa-
vored, while as the number of iterations without improvement increases, the
diversification given by ILS is obtained.

The maximum value of the parameter removeNumber used in the shake step
is allowed to be half of the size of the largest route (currentSolution.maxSize)
in the current solution and not N

3k as in ILS [14]. In this way, execution time
is saved, since local optimum is reached in short time, if a small portion of the
solution has been removed. As a result, the number of iterations of CSCRatio
can be larger than the number of iterations of ILS [14] without increasing the
overall algorithm’s execution time.

CSCRatio loops for a number of times equal to the size of the listOfCluster-
Sets. Within the loop, firstly all POIs included into the current solution’s routes
are removed and the route initialization phase is executed with argument a set
of high-profit clusters taken (pop operation) from the listOfClusterSets list. Sec-
ondly, the algorithm initializes the parameters startNumber and removeNumber
of Shake to 1 and the parameter clusterParameter of CSCRatio Insert as
discussed above, and executes an inner loop until there is no improvement of
the best solution for maxIterations successive iterations. The insertion step is
iteratively applied within this loop until a local optimum is reached. Lastly, the
shake step is applied. The pseudo code of CSCRatio algorithm is listed below
(Algorithm 1). In order to reduce the search space (therefore, the execution
time) of CSCRatio Insert, in case that a non-included POI p is found infea-
sible to insert in any route, it is removed from the list of candidate POIs and
added back, only after Shake has been applied.

Cluster Search Cluster Routes Algorithm. Given a route t of a TOPTW
solution, any maximal sub-route in t comprising a sequence of nodes within the
same cluster C is defined as a Cluster Route (CR) of t associated with cluster
C and denoted as CRt

C . The length of CRt
C may be any number between 1

and |C|. Note that a route t of a TOPTW solution constructed by the ILS or
CSCRatio algorithm may include more than one cluster route CRt

C for the same
cluster C, i.e., a tour t may visit and leave cluster C more than once. CSCRoutes
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run the global k-means algorithm with k=numberOfClusters
construct the list listOfClusterSets
it1 ← maxIterations

4
; it2 ← 2·maxIterations

4
; it3 ← 3·maxIterations

4

while listOfClusterSets is not empty do
remove all POIs visited in the currentSolution
theClusterSetIdToInsert ← listOfClusterSets.pop
RouteInitPhase(theClusterSetIdToInsert)
startNumber ← 1; removeNumber ← 1; notImproved ← 0
while notImproved < maxIterations do

if notImproved < it2 then
if notImproved < it1 then clusterParameter ← 1.3
else clusterParameter ← 1.2
end if

else
if notImproved < it3 then clusterParameter ← 1.1
else clusterParameter ← 1.0
end if

end if
while not local optimum do

CSCRatio Insert(clusterParameter)
end while
if currentSolution.profit > bestSolution.profit then

bestSolution ← currentSolution ; removeNumber ← 1; notImproved ← 0
else increase notImproved by 1
end if
if removeNumber > currentSolution.maxSize

2
then removeNumber ← 1

end if
Shake(removeNumber,startNumber)
increase startNumber by removeNumber
increase removeNumber by 1
if startNumber ≥ currentSolution.sizeOfSmallestTour then

decrease startNumber by currentSolution.sizeOfSmallestTour
end if

end while
end while
return bestSolution

Algorithm1. CSCRatio(numberOfClusters,maxIterations)

algorithm is designed to construct routes that visit each cluster at most once,
i.e. if a cluster C has been visited in a route t it cannot be revisited in the same
route and therefore, for each cluster C there is only one cluster route in any
route t associated with C. The only exception allowed is when the start and the
end node of a route t belong to the same cluster C′. In this case, a route t may
start and end with nodes of cluster C′, i.e. C′ may be visited twice in the route
t and therefore, for a route t there might be two cluster routes CRt

C′ .
The insertion step CSCRoutes Insert of CSCRoutes does not allow the

insertion of a node p in a route t, if this insertion creates more than one
cluster routes CRt

C for some cluster C. Therefore, a POI cannot be inserted
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at any position in the route t. In the sequel, the description of insertion step
CSCRoutes Insert is given, based on the following assumptions. Consider
w.l.o.g. that the start and end nodes in the TOTPW coincide (depot). If a route
t contains two CRs associated with the cluster of the depot, then let CRt

f be the

first cluster route (starts at the depot) in t, and CRt
l be the last cluster route

(ends at the depot) in t. Also, assume that for each POI p ratiop is calculated
as in ILS algorithm. Finally, consider for each route t, the list listOfClusters(t)
containing any cluster C for which there is a nonempty CRt

C . Given a candidate
for insertion node p and a route t, CSCRoutes Insert distinguishes among the
following cases:

– cluster(p)=cluster(depot) and listOfClusters(t) contains only the cluster
(depot). Then p can be inserted anywhere in the route, since the insertion
would not violate the CR constraints.

– cluster(p)=cluster(depot) and listOfClusters(t) contains more than one clus-
ter. Then p can be inserted anywhere in CRt

f and in CRt
l .

– cluster(p)�=cluster(depot) and listOfClusters(t) contains only cluster(depot),
then the insertion is feasible anywhere in t. If the insertion occurs, then a
new CR will be created with p as its only POI.

– cluster(p)�=cluster(depot) and listOfClusters(t) contains two or more clusters
but not cluster(p). Then p can be inserted after the end of every CR in t. If
the insertion occurs, then a new CR will be created with p as its only POI.

– cluster(p)�=cluster(depot) and listOfClusters(t) contains two or more clusters
and also includes cluster(p). Then p can be inserted anywhere in CRt

cluster(p).

The CSCRoutes algorithm is likely to create solutions of lower quality (w.r.t.
overall profit), especially in instances featuring tight time windows. However,
it significantly reduces the number of transfers among clusters and therefore
it favors routes that include POIs of the same cluster. Thus, walking trans-
fers are preferred while overly long travel distances are minimized. In effect,
CSCRoutes is expected to perform better than ILS and CSCRatio with respect
to execution time, since CSCRoutes Insert is faster than ILS Insert and
CSCRatio Insert (this is because the number of possible insertion positions
for any candidate node is much lower).

4 Experimental Results

Test Instances.Montemanni and Gambardella [10] designed TOPTW instances
based on previous OPTW instances of Solomon [11] and Cordeau et al. [1] (data
sets for vehicle routing problems with time windows). Solomons instances com-
prise 100 nodes, with c1*, r1* and rc1* featuring much shorter time budget and
tighter time windows than c2*, r2* and rc2* instances. Likewise, Cordeau et al.
instances feature 48-288 nodes, constant time budget (=1000 min) and average
time windows equal to 135 min and 269 min for pr01-10 and pr11-20 instances,
respectively. All the aforementioned instances involve one, two, three and four
tours.
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The aforementioned instances, though, are not suitable for real-life TTDP
problems, wherein: (a) POIs are typically associated with much wider, overlap-
ping, multiple time windows; (b) POIs are densely located at certain areas, while
isolated POIs are few; (c) visiting time at a POI is typically correlated with its
profit value ; (d) the daily time budget available for sightseeing is typically in the
order of a few hours per day (in contrast, most existing instances define unreal-
istically long time budgets). Along this line, we have created 100 new TOPTW
instances (t*) with the following characteristics: the number of tours is 1-3; the
number of nodes is 100-200; 80% of the nodes are located around 1-10 zones;
the visiting time at any vertex is 1-120 min and proportional to the profit; re-
garding time windows, we assume that 50% of the nodes are open in 24h basis,
while the remaining are closed either for one or two days per week (during their
opening days, the latter are open 08:30-17:00); the daily time budget is set to
10h in t1* and 5h in t2* instances, respectively. The instances of Montemanni
and Gambardella are available in
http://www.mech.kuleuven.be/en/cib/op/, while the t* instances in
http://www2.aegean.gr/dgavalas/public/op instances/.

Results. All computations were carried out on a personal computer Intel Core
i5 with 2.50 GHz processor and 4 GB RAM. Our tests compared our proposed
algorithms against the best known real-time TOPTW approach (ILS). Clearly,
mostly preferred solutions are those associated with high profit values, low num-
ber of transfers and reduced execution time. CSCRatio and CSCRoutes set the
value of maxIterations equal to 400

|listOfClusterSets| ·
k+1
2·k . ListOfClusterSets is im-

plemented by adding �numberOfClusters/k� disjoint sets of k clusters which are
randomly selected from the set of the clusters. The value of numberOfClusters
is set to N/10.

Table 1 illustrates the average gaps among CSCRatio and ILS over all the
existing and new test instances, with respect to profit, number of transfers and
execution time; the existing instances have been tested on 1 to 4 tours. Positive
gaps denote prevalence of our algorithm against ILS (the opposite is signified
by negative gap values). CSCRatio yields significantly higher profit values, es-
pecially for instances with tight daily time budget and small number of tours
(e.g. 0.79 in r1* and 2.04 in rc1*, for one tour). This is because ILS is com-
monly trapped in isolated areas with few high profit nodes, failing to explore
remote areas with considerable numbers of fairly profited candidate nodes, As
regards the number of transfers, CSCRatio clearly prevails, mainly when the
time budget is prolonged (e.g. in c2*, r2* and rc2* instances), as it prioritizes
the successive placement of nodes assigned to the same cluster into the tours. ILS
and CSCRatio attain similar execution times in most cases, however the former
clearly executes faster when examining instances with both long time budget
and wide time windows. With regards to our new benchmark instances (i.e. t1*
and t2*) CSCRatio achieves considerably higher profit gaps than ILS, especially
when considering instances featuring tight time budgets (t2* instances). This
improvement is attributed to the RouteInitPhase incorporated into both our
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proposed algorithms, which increases the probability of initially inserting high-
profit nodes located on far-reached clusters (such nodes are typically overlooked
by ILS itineraries due to the high travel time, hence, low insertion ratio). On the
other hand, ILS performs better as regards the number of transfers yield on t2*
instances (CSCRatio commonly explores areas far located from the depot, hence,
it is forced to perform a number of inter-cluster transfers to connect those areas
to the depot). Last, the two algorithms present comparable execution times.

Table 1. Average gaps between ILS and CSCRatio for Solomon, Cordeau et al., t*
instances

Profit Gap(%) Transfers Gap (%) Time Gap (%)
Name 1 2 3 4 1 2 3 4 1 2 3 4
c1* 0.21 0.32 0.53 0.68 -0.2 -0.01 3.12 6.21 -40.8 8.45 35 24.9
c2* 0.84 0.79 0.29 0 19.1 12.6 12.3 20 -4.29 -18.2 -101 -398
r1* 0.79 0.91 -0.57 0.33 4.96 4.55 -0.11 2.71 -20.7 18.1 39.3 21.9
r2* 0.11 0.47 0.03 0 9.78 9.86 10.8 14 -4.88 -120 -305 -608
rc1* 2.04 0.87 0.81 -0.47 9.17 3.75 4.81 4.94 -1.07 36.3 34.7 44.7
rc2* 0.45 -0.34 0.32 0 5.49 1.83 0.48 5.49 11.9 -38.4 -197 -416
pr* 1.46 -0.02 0.4 0.9 -0.72 -9.99 4.5 4.62 29.1 27.4 7.44 -27.4
t1* 0.28 2.19 -5.27
t2* 2 -13.2 8.33

Table 2 illustrates the average gaps among CSCRoutes and ILS. The results
indicate a trade-off between the profit and the number of transfers. In particular,
ILS yields improved quality solutions as it inserts best candidate nodes freely,
irrespective of their cluster assignment. This is especially true when consider-
ing instances which combine long time budgets with tight time windows (e.g.
r2*), whereby CSCRoutes fails to use the time budget effectively, as it might
get trapped within clusters, spending considerable amounts of time waiting for
the nodes opening time, while not allowed to escape by visiting neighbor clus-
ter nodes. This disadvantage is mitigated when the number of tours increases,
as high-profit nodes are then more likely to be selected. On the other hand,
CSCRoutes clearly improves on ILS with respect to the number of transfers due
to its focal design objective to prohibit inter-cluster transfers. CSCRoutes also
attains shorter execution times (excluding the c2*, r2* and rc2* instances for
4 tours), as it significantly reduces the search space on its insertion phase (i.e.
in order to insert a new vertex between a pair of nodes that belongs to the
same cluster, it only examines nodes assigned to the same cluster). As regards
the new benchmark instances, ILS yields higher profit values than CSCRoutes in
t1*, however, the performance gap is decreased compared to the results reported
on previous instances. This is due to the wider and overlapping time windows
chosen in t* instances, which diminishes the wait time (until opening) and allows
more effective use of the budget time by CSCRoutes. CSCRoutes performs much
better with respect to number of transfers and execution time. Interestingly, the
results differ significantly on t2* instances, with CSCRoutes deriving solutions
of considerably higher quality at the expense of increased number of transfers.
This is mainly due to some outlier values, which largely affect the average value.
In those instances, CSCRoutes is initialized inserting a far-located high-profit
vertex and is forced to traverse a number of intermediate clusters in order to
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Table 2. Average gaps between ILS and CSCRoutes for Solomon, Cordeau et al., t*
instances

Profit Gap(%) Transfers Gap (%) Time Gap (%)
Name 1 2 3 4 1 2 3 4 1 2 3 4
c1* -1.65 -3.59 -1.03 -1.36 19.2 22.1 23.8 20.2 -21.1 29 38.2 31.2
c2* -0.82 0.79 0.14 0 36 30.5 25.7 37.7 65.5 57.9 10.4 -170
r1* -1.2 -1.27 -2.37 -2.15 23 21.7 16.6 22.2 0.1 36.5 49.4 38.6
r2* -15.5 -10.3 -3.79 -1.21 56.3 55.4 52.6 46.4 76.7 25.1 -77.7 -284
rc1* 1.06 -1.8 -1.26 -1.86 16.7 11.9 14.8 14.4 10.7 50.3 42.9 52.9
rc2* -9.5 -12.5 -8.21 -2.63 39.7 42.6 44.5 45.2 76 51.1 -40 -203
pr* -8.11 -8.11 -5.44 -4.8 35.5 34.1 32.6 32.4 62.2 62.9 42.9 14.6
t1* -0.52 5.31 22.2
t2* 1.91 -4.5 4.59

connect it to the depot vertex. It is noted that CSCRoutes retains lead over ILS
with regard to the execution time on t2* instances.

5 Conclusions

The comparison of CSCRatio over ILS demonstrated that CSCRatio achieves
higher quality solutions in comparable execution time (especially when consid-
ering limited itinerary time budget), while also reducing the average number of
transfers. As regards the CSCRoutes-ILS comparison, the former clearly pre-
vails in situations where the reduction of inter-cluster transfers is of critical
importance. The transfers gap, though, is achieved at the expense of slightly
lower quality solutions. CSCRoutes achieves the best performance results with
respect to execution time, compared to ILS and CSCRatio. Notably, the perfor-
mance gap of our algorithms over ILS increases when tested on realistic TTDP
instances, wherein nodes are located nearby each other and feature wide, over-
lapping time windows, while the daily time budget is 5-10h. We argue that our
two cluster-based heuristics may be thought of as complementary TTDP algo-
rithmic options. The choice among CSCRatio and CSCRoutes (when considering
real-world online TTDP applications) should be determined by user-stated pref-
erences. For instance, a user willing to partially trade the quality of derived
solutions with itineraries more meaningful to most tourists (i.e. mostly walk-
ing between successive POI visits, rather than public transportation transfers)
should opt for the CSCRoutes algorithm.
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Abstract. Although combinatorial algorithms have been designed for
problems with given, deterministic data, they are often used to find good,
approximate solutions for practical problems in which the input data
are stochastic variables. To compensate for the stochasticity, in many
cases the stochastic data are replaced, either by some percentile of the
distribution, or by the expected value multiplied by a ‘robustness’ factor;
the resulting, deterministic instance is then solved, and this solution is
run in practice. We apply a different approach based on a combination of
local search and simulation. In the local search, the comparison between
the current solution and a neighbor is based on simulating both solutions
a number of times. Because of the flexibility of simulation, each stochastic
variable can have its own probability distribution, and the variables do
not have to be independent. We have applied this method to the job
shop scheduling problem, where we used simulated annealing as our local
search method. It turned out that this method clearly outperformed the
traditional rule-of-thumb methods.

Keywords: Stochastic variables, simulation, local search, job shop
scheduling, simulated annealing, simulation optimization.

1 Introduction

One of the standard assumptions in traditional machine scheduling theory is
that the processing times are given, deterministic values. In practice, however,
this assumption is violated once in a while, and more and more attention is spent
on problems with stochastic processing times. In this paper, we look at the job
shop scheduling problem where (some of the) processing times are stochastic
variables. We assume that all characteristics are known at time zero, that is, we
are scheduling a batch of stochastic jobs, according to the division by Niño-Mora
(2008) of stochastic scheduling problems. Moreover, we assume that we have
to come up with a nonpreemptive static list policy in the terminology of Pinedo
(2005), which implies that it is not possible (desired) to adjust the solution when
information becomes available about the realized processing times.
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The theoretical results obtained for stochastic scheduling problems are quite
different from the ones obtained for their deterministic counterparts. Most
importantly, only problems in which all processing times follow a similar dis-
tribution with nice characteristics are analyzable. Pinedo (2005) describes a
number of such problems in which an optimal nonpreemptive static list pol-
icy can be constructed. In most of these cases, a similar rule can be applied
to solve both the stochastic problem and its deterministic counterpart. For ex-
ample, Rothkopf (1966) showed that the stochastic problem of minimizing the
expected total weighted completion time can be tackled by solving the determin-
istic problem that is obtained by taking the expected processing time; hence, the
single-machine problem can be solved using Smith’s rule (Smith, 1956), but the
problem with two or more parallel, identical machines is NP-hard. On the con-
trary, if the processing times are exponentially distributed, then the problem
of minimizing the expected maximum completion time in case of two parallel,
identical machines is solvable through the list scheduling rule where the jobs are
added in order of nonincreasing expected processing time (Pinedo and Weiss,
1979), whereas its deterministic counterpart is NP-hard. Moreover, in some
cases the problem has to be adjusted to make it meaningful. For example, since
the completion times become stochastic variables as well, hard deadlines do not
make sense anymore and have to be reformulated. Van den Akker and Hoogeveen
(2008) and Trietsch and Baker (2008) use a relaxation of these ‘hard’ deadlines
by issuing chance constraints, which state that the probability that a deadline is
missed should remain below a given upper bound. Using this concept, they show
that, when the processing times are drawn from a probability distribution that
possesses a number of properties, then the problem of minimizing the number of
tardy jobs on one machine is solvable by Moore-Hodgson’s rule (Moore, 1968).

In this paper, we look at the job shop scheduling problem, for which no clear-
cut solution method exists; Williamson et al. (1997) have shown that already
the problem of deciding whether there exists a feasible schedule of length 4 is
NP-hard in the strong sense. Moreover, the job shop scheduling problem is much
more affected by the presence of stochasticity in the processing times than for
example single machine problems, because of the possibility of delay propagation
between machines due to the precedence constraints. To counter this, we apply
a local search algorithm that has been designed for the deterministic case, which
we make applicable to deal with the stochastic processing times. Our goal is to
find a good, robust solution, where the quality of the solution is measured by
the expected value. The only assumption we need here is that we, either know
for each random variable the probability distribution that it follows, or that we
can generate it from historic data; we do not require that each random variables
comes from the same probability distribution. Furthermore, we do not require
that the stochastic variables are independent, as long as we know their covariance
matrix. We compare several methods to adapt the local search algorithm to the
stochastic processing times, some of which are based on discrete-event simulation
(Law, 2007). We have conducted extensive computational experiments to test
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the resulting algorithms. It turns out that incorporating simulations in the local
search clearly outperforms the traditional methods.

The outline of our paper is as follows. In Section 2 we give an introduction
to the job shop scheduling problem. In Section 3 we describe the local search
algorithm that we want to apply. In Section 4 we discuss the possible adaptations
of the local search algorithm that are needed to make these applicable to the
case with stochastic processing times. In Section 5 we discuss the computational
experiments, and in Section 6 we draw some conclusions.

2 The Job Shop Scheduling Problem

Our method to deal with stochastic processing times is based on local search.
We illustrate our approach on the job shop scheduling problem, which is defined
as follows. In a job shop scheduling problem we have m machines, which have to
carry out n jobs. Each job j (j = 1, . . . , n) consists of a chain of operations, which
must be executed without interruption in the given order: operation i+1 of job j
can only start when operation i of job j has been completed. For each operation,
we know the machine that has to execute it, and we know the characteristics of
the random variable that represents its processing time. We assume that each
machine is constantly available from time zero onwards, and that each machine
can handle only one operation at a time. The goal is to find for each machine
an order in which the operations should be executed, such that the expected
makespan, which is defined as the time by which all jobs have been completed,
is minimum. We assume that all relevant data are known at time zero. We follow
the common assumption that each job should visit each machine exactly once;
hence, each job consists of m operations. Formally, we use Jj (j = 1, . . . , n)
to denote job j, and we use Oij (i = 1, . . . ,m; j = 1, . . . , n) to denote the
ith operation of Jj . Extending the three-field notation scheme introduced by
Graham et al (1979), we denote our problem by J |stoch pij |E(Cmax).

Our approach can easily be made suitable for any kind of job shop scheduling
problem, as long as the starting times and completion times are not bounded
from above, which implies that we cannot handle deadlines and precedence con-
straints that incur exact and/or maximum delays between operations. Exten-
sions that can be handled are minimum delays (which decree that at least a
given amount of time should elapse between the execution of two operations in
the same job), release dates, and more complex precedence constraints between
the operations. In case of deadlines and/or maximum delays, we can use our
approach, if these deadlines and/or maximum delays are stated in the form of
chance constraints.

Since the deterministic job shop scheduling problem is NP-hard and, more
importantly, since it is very hard from a computational point of view, many
researchers have studied local search methods, like for example Tabu Search
based algorithms (Taillard, 1994; Nowicki and Smutnicki, 1996; Ten Eikelder et
al., 1999), Simulated Annealing based algorithms (Yamada and Nakano, 1996)
and, more recently, the hybrid Genetic Algorithms by: Wang and Zheng (2001),
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who combine a GA with Simulated Annealing; Gonçalves et al. (2005), who use a
GA in combination with Iterative Improvement; and Moraglio et al. (2005), who
combine their GA with Tabu Search. All of these studies report that good results
are obtained. We have decided to use Simulated Annealing, since it requires
some effort to compare two solutions, which seems to make Tabu Search less
attractive. We have not applied any enhancements of Simulated Annealing, like
the commonalities used by Kammer et al. (2011), which approach is based on
the thesis by Schilham (2001).

Since a local search move can cause the schedule to change drastically, there
is no algebraic way to compute the difference in solution value; therefore, we use
simulation as a tool to evaluate each neighbor. The combination of local search
with simulation has been applied before. We refer to the survey by Bianchi et
al. (2009).

3 Local Search

All local search methods for the job shop scheduling problem are based on the
disjunctive graph model that was introduced by Roy and Sussman (1964). This
graph is constructed as follows. For each operation Oij we introduce a vertex
vij , which gets a weight equal to its processing time. Furthermore, there are two
dummy vertices vstart and vend with weight zero. The precedence constraints
between operations Oij and Oi+1,j (i = 1, . . . ,m−1) within a job j (j = 1, . . . , n)
are modeled by including an arc from vij to vi+1,j . Furthermore, we include an
edge between each pair of vertices that correspond to two operations that must
be executed by the same machine. All arcs and edges get weight zero. Finally,
we add arcs from vstart to v1j , for j = 1, . . . , n, and we add arcs from vertices
vmj (j = 1, . . . , n) to vend. Since a schedule is fully specified when the order of
the operations on the machines is given, we have to direct the edges such that an
acyclic graph remains. After the edges have been oriented, we call them machine
arcs; to distinguish these from the original arcs in the graph, the latter ones are
called job arcs.

Given the directed graph, we can compute the starting time of each operation
as the length of the longest path in the graph from vstart to the vertex corre-
sponding to this operation. Hence, the makespan is equal to the length of the
longest path to vend. Adams et al. (1988) have shown that the calculation of the
longest path on a directed acyclic graph can be done in linear time.

A longest path in the directed acyclic graph is also called a critical path; the
critical path does not have to be unique. We can decompose a critical path into
critical blocks, where each critical block consists of one or more operations that
are carried out contiguously on the same machine; at the end of a critical block,
the critical path jumps to another machine.

In this paper we focus on a neighborhood that consists of two different parts,
which both come down to swapping, that is, reversing the order of a machine arc.

– Critical path block swap (Nowicki and Smutnicki, 1996);
– Waiting left shift.
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The makespan can only be decreased by removing the currently longest path
from the disjunctive graph. Therefore, a common neighborhood is to reverse
the order of a machine arc on the critical path; Van Laarhoven et al. (1992)
have shown that such a reversal will never lead to a cycle in the disjunctive
graph. Moreover, Nowicki and Smutnicki (1996) have shown that we can restrict
ourselves to reversing machine arcs that are, either between the first pair of
operations, or between the last pair of operations in a critical block. This is the
first part of our neighborhood.

The second part of our neighborhood is the so-called waiting left shift. When
optimizing the job shop scheduling problem, we see that in order to improve
the objective value, waiting times need to be reduced. Bad schedules come from
operations that cause a significant amount of waiting time on machines. By
reducing these waiting times, the length of the schedule may become shorter.
The idea of the waiting left shift neighborhood is to reduce the waiting time of the
operation with the largest waiting time; suppose this is operation Oab. During
this waiting time, the machine waits until the predecessor Oa−1,b of Oab gets
finished. Therefore, we want to make changes in the execution of the operations
belonging to Jb. Our neighborhood consists of swapping a machine arc between
an operation Oib and its immediate predecessor on this machine; here Oib can
be any operation in Jb, as long as it is not the first operation on its machine. If
everything works out as we hope, then all operations of that job shift left. Since
the relative positions of jobs are changed, this neighborhood is able to modify
the structure in such a way that new solutions can be explored to get out of a
local optimum. A negative side-effect is that it is possible to create a cycle in
the disjunctive graph. When this is detected, we discard this neighbor.

In our local search, we select the part of the neighborhood that we use de-
terministically. Given an initial solution, which is determined by scheduling all
jobs sequentially, we twice apply a sequence of critical path block swaps and
then once a sequence of waiting left shift swaps, after which we continue with
a new series of sequences. We quit the current sequence and start the next one
as soon as we encounter a series of X iterations in which we have not seen an
improvement of the best solution found so far.

We use the traditional idea of Simulated Annealing that we always accept
improvements, and that we accept equal or worse solutions according to a prob-
ability scheme. In contrast to traditional Simulated Annealing, the probability
of accepting a worse solution does not depend on the amount of deterioration
Δ. We apply a deterministic cooling scheme, that is, an equal or worse solution
is accepted with probability T , which we call the temperature. The value of T
depends on the number of iterations that we have had so far in the local search:
after each series of Q iterations, we multiply the current value of T by some
given value α < 1. We stop the Simulated Annealing after a fixed number of
iterations.

We have chosen to apply this probability mechanism, because the difference in
objective function value Δ between the two solutions will be a stochastic value,
as we are working with stochastic processing times. Therefore, if we would apply



Including Simulation in Local Search 407

the classical method, the behavior of accepting solutions will be unstable. By
using the temperature T as a probability number, we make sure we have a stable
acceptance probability that is not influenced by stochastic realizations.

4 Dealing with Stochastic Processing Times

In this section we discuss a number of possible approaches to deal with the
complications caused by the stochastic processing times. We distinguish be-
tween classical methods, which are often used in practice as rule-of-thumb, and
simulation-based methods, which we have applied in this research. At the end of
this section we describe the adaptations to the local search algorithm needed in
our simulation-based methods and the simulation model that we have used.

4.1 Classical Methods

The classical methods try to find a deterministic value for a stochastic variable;
this deterministic value is then used instead. Usually the derived value is chosen
in such a way that a small amount of ‘slack’ is included. This is done by making
sure that the derived value is (slightly) larger than the mean of the underlying
distribution. The quality of the solutions that are produced by these classical
methods highly depends on whether the correct amount of slack is included.
A successful solution will contain just enough slack to cope with a reasonable
amount of disturbances. The derived value must also somehow resemble the
underlying distribution’s shape to be effective.

Essentially, there are two classical methods, which in some cases are identi-
cal. The first one is to use a robustness factor: the deterministic value that is
plugged in for the stochastic value is then equal to the expected value times
the robustness factor. The second classical method works with robustness per-
centiles: the stochastic variable is replaced by a deterministic value, which is put
equal to a given percentile of the probability distribution. For some distributions,
these methods boil down to the same. For example, the 70% percentile of the
exponential distribution is equal to 1.2 times the mean.

4.2 Simulation-Based Methods

The core of this paper concerns our derivation of more sophisticated methods
based on including simulation in the local search. We first discuss this type of
method, and after that discuss the adaptations that we have to make to the local
search algorithm.

Result Sampling. The disadvantage of the classical methods is that it is not
possible to have very small and very large values anymore for the processing
times: all values are average or average-plus. In practice, only a portion of the
operations will receive an average processing time while other operations will
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have smaller or larger processing times. Taking average or average-plus process-
ing times for all operations will remove this interaction. To overcome this, we
apply simulation. Given the order in which each machine executes its operations,
we apply a single run of discrete event simulation to find a realization of this
schedule, which is given to the local search method. Since all operations in the
schedule are influenced by stochastic processing times the makespan can behave
very erratically. This behavior allows us to make decisions based on situations
that could occur in real life. However, a large disadvantage of the single result
sampling method is that no two realizations will look the same. Even in differ-
ent iterations of the local search, a schedule that first might have been a good
schedule, can turn out to be very bad in later iterations.

To limit this effect we extended the heuristic to five times result sampling and
ten times result sampling. Instead of running the simulation once, the simulation
will be run either five or ten times, depending on the heuristic. The results of
executing the schedule are then averaged. Again in each individual simulation
run only one sample for each processing time is obtained. As the collaboration
of operations determines in the end how a schedule performs, and since each
individual simulation obtains one sample from each processing time variable,
this interaction is preserved.

Finally, we have applied Cutoff Sampling to better guide the local search. The
reasoning behind is that for a ‘wild’ probability like the exponential distribution
it is nearly impossible to be robust against realizations of the processing times
that are either far above or far below the mean. To counter this, we do not use
the results of all ten runs of the simulation, but just the ones that appear in the
middle to construct the neighborhood of the local search. We sort the obtained
makespans and disregard the three schedules with smallest makespan and the
two schedules with largest makespan, and proceed as before with the remaining
five schedules.

4.3 Necessary Adaptations

To make the local search work, we have to make a number of adaptations.
First of all, we have to find a way to compare the current schedule with the
selected neighbor. Fortunately, since we have the outcomes of the simulation,
we can just compute the value of the selected neighbor as the average of the
realized makespans in the five or ten runs. To have a fair comparison, we apply
Common Random Numbers (Law, 2007), that is, we use the same realizations of
the processing times generated in the simulations to compute the value of the
current solution. In this way we avoid that a solution gets an advantage from
a fortunate set of processing times. If the neighbor is better than the current
solution, then we test it against the best solution known so far as well.

Second, we have to define the moves that form the neighborhood. If only one
solution has been generated according to a given schedule, like in the case of the
classical methods and the single result sampling, then we follow the standard
local search as described in Section 3. If on the other hand five or ten solutions
have been generated, then we compute for each solution the neighborhood as
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described. These moves are then combined, after which a move is selected from
this set randomly. In this way, moves that occur in multiple solutions have a
better chance of getting selected.

Third, we have to apply the discrete event simulation to compute each of the
solutions needed in the one/five/ten result sampling. This is a discrete event
simulation as generally applied to a queuing system, but now the servers are the
machines and the customers are the operations. However, the machines do not
execute the operations in a first-come-first-served order, but in the order fixed
by the schedule. Hence, the machine can have operations in the queue, but still
it has to wait, if the next operation in the schedule is not available yet. Next to
the makespan, we store the critical path and the waiting times of the jobs, such
that we can compute the neighborhood of the solution.

5 Computational Results

To test our methods, we have conducted a large number of computational ex-
periments. Due to a lack of space, we only present a few of the results; we refer
to Van Blokland (2012) for the full set of results. The instances used in the
experiments can also be downloaded from this website.

Set Up Local Search. To avoid any bias, we have kept the local search settings
the same in all experiments. We apply

– At most 10 restarts
– At most 25000 iterations per restart
– The initial temperature is equal to 0.8
– The current temperature is multiplied with 0.95 after 400 iterations
– A new sequence of neighborhood search is started after 15 successive failures

to improve the best solution known so far.

When a restart takes place, the local search is repeated starting with the best
solution known so far as initial solution. The final solution will be simulated
1000 times to find the expected makespan and the corresponding variance in the
outcomes. Furthermore, each specific experiment is repeated 5 times, resulting in
5 possibly different solutions to the problem instance. The instances we used in
our experiments are randomly generated since there are no benchmarks instances
known for the stochastic job shop scheduling problem in the literature.

Instance Generation. We first have created an initial set of job shop schedul-
ing instances with 10 machines and 10 jobs and moderate processing times; later
on, we have considered bigger instances with larger processing times as well.
Given the number of machines, we generate for each job a random order of the
indices 1, . . . ,m to find the order in which the machines are visited. Then, we
determine for each operation the base processing time by drawing a random in-
teger from U [10, 20]; the base processing time corresponds to the parameter in
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the probability distribution. Next, we select the probability distribution that the
processing time will follow. In general, we assume independent distributions, and
we assume that the random variables, either follow the same type of probabil-
ity distribution, or are deterministic. Given a base processing time value p, the
realization of the processing time is, either equal to p, or drawn from one of the
following distributions:

– The uniform distribution U [0.8× p, 1.2× p];
– The exponential distribution Exp(p);
– The 4-Erlang distribution Gamma(4, p/4);

– The LogNormal distribution LogNormal(ln(p)− ln(2)
2 , ln(2)).

For each probability distribution, we apply 7 different scenarios, which indicate
how many operations will get a stochastic processing time. Depending on the
scenario, we decree that, either all operations within a job, or all operations on
the same machine get a stochastic processing time. In the scenarios 30%, 50%,
70%, 100% of the machines or jobs yield stochastic processing times, respectively.

Experiments and Initial Conclusions. We have experimented in three phases.
In the first phase, we have applied all possible methods to just one instance to
get an idea of which methods work and which ones do not work. We have chosen
to use an instance with 10 machines and 10 jobs. The processing times of the op-
erations of 5 jobs are deterministic; the other operations have processing times
that follow an exponential distribution. The base processing times are drawn
from U [10, 20]. There are four series of experiments (always on the same, single
instance):

1. Robustness factor 1.2; percentiles 60, 70, 80, 90; single sampling.
2. Multiple (1, 5, 10) times sampling; neighborhood based on the first sample;

no dominance test;
3. Multiple (5, 10) times sampling; neighborhood based on all samples; domi-

nance test; cut-off sampling.

The remark with dominance test indicates that we check, each time that the
neighbor is better than the current solution, whether it also dominates the best
solution known so far by running 5 or 10 simulations. It turns out that this
dominance test is crucial. The best solutions are found when sampling 10 times
with the dominance test; this is about 2 % better than the same experiment
with 5 times sampling. After that, trailing the ten times sampling by 8% is the
experiment with percentile 70. The solutions without dominance test are far
away.

Next, we have executed Phase 2 of the experiments. For each combination of a
scenario (out of the 7 mentioned above) and a probability distribution (out of the
4 mentioned above) we have generated an instance with 10 jobs and 10 machines,
where all base processing times are random integers drawn from U [10, 20]. To
each of these instances, we have tested the following methods:
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– Robustness factors 1.1, 1.2, 1.3;
– Percentiles 60, 70, 80, 90;
– Local search with 1 time sampling;
– Local search with 5 times sampling, neighborhood based on all samples,

dominance test, and cut-off sampling (LS5 );
– Local search with 10 times sampling, neighborhood based on all samples,

dominance test, and cut-off sampling (LS10 ).

It turns out that for most of the simulation results, the difference in performance
between the LS5 and LS10 methods is relatively small, and sometimes LS5
outperforms LS10, which suggests that taking only five samples is sometimes
sufficient for the search process.

Remarkably enough, for two out of the 28 experiments the sampling meth-
ods are beaten (albeit by at most one percent) by one of the classical methods.
In both cases, this occurs when 70% of the machines or jobs yields stochastic
processing times that follow a LogNormal probability distribution. Surprisingly,
the winners then are the methods with Robustness Factors 1.1 and 1.3 respec-
tively. Overall, the sampling methods yield a consistently better and more stable
performance.

Finally, we have executed Phase 3 of the experiments. Here we increase the
number of jobs and machines to 20 jobs and 20 machines at most with a base
processing time drawn from U [10, 30]. Moreover, we have generated a number of
10 job, 10 machine instances with a base processing time drawn from U [10, 40],
U [10, 80], and U [10, 120], respectively. In all instances, we have that all opera-
tions have stochastic processing times that, either all come from the exponential
distribution, or all come from the 4-Erlang distribution. For these instances we
have only applied the Percentile Robustness method with percentile 70 and the
multiple times sampling (either 5 or 10 samples) with a neighborhood based on
all samples, including a dominance test and cut-off sampling. In all our exper-
iments, the 10 times sampling method outperformed the other methods with a
typical gap of 3% with the 5 times sampling method and a large gap with the
70 percentile method, which was more than 50% for the largest instance.

6 Conclusions and Future Research

We have presented a simulation based method as an alternative for the classical
methods of using a robustness factor or a robustness percentile. Our experimental
results, depicted in the figure below clearly show that our new method dominates
the classical ones.
So far, we have looked at the stochastic job shop scheduling problem with
stochastic processing times. Obviously, there are more sources of stochasticity
available, like for example

– Machine failures;
– Uncertain changeover times or set-up times;
– Travel times between machines that are stochastic.
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Fig. 1. Overview of the Percentile Robustness method compared to the Ten Times
Sampling method. The data represented in this figure is based on the mean makespan
of 1000 simulations. Each method is executed five times, resulting in five schedules.

It is an interesting question whether a simulation-based method can provide
good solutions for these situations as well.

Another question is whether it is possible to combine a simulation-based
method with Tabu Search. Based on our experiments, you need to sample at
least five times to evaluate each neighbor, which makes the method computa-
tionally unattractive.

Finally, we have used cut-off sampling to look at the average solutions in our
local search. It might be an interesting idea to use a similar technique to find
solutions that are both good and stable, that is, with a small variance in outcome
value.
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