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Covariance Intersection Fusion Robust
Steady-State Kalman Filter for Multi-
Sensor Systems with Unknown Noise
Variances

Wenjuan Qi, Peng Zhang, Wenqing Feng and Zili Deng

Abstract For multi-sensor systems with uncertainties of noise variances, a local
robust steady-state Kalman filter with conservative upper bounds of unknown
noise variances is presented. Based on the Lyapunov equation, its robustness is
proved. Further, the covariance intersection (CI) fusion robust steady-state Kalman
filter is presented. It is proved that its robust accuracy is higher than that of each
local robust Kalman filter. A Monte-Carlo simulation example shows its correct-
ness and effectiveness.

Keywords Multi-sensor data fusion � Covariance intersection fusion � Robust
Kalman filter � Uncertain noise variances

95.1 Introduction

The multi-sensor information fusion has received great attentions and has been
widely applied in many high-technology fields, such as tracking, signal proceed-
ing, GPS position, robotics and so on. There are three optimal distributed weighted
state fusers [1] which have the limitation to compute the optimal weights, the
computation of the variances and cross-covariances of the local estimators are
required. However, in many application problems, the systems have the uncer-
tainty of model parameters or noise variances, so that the local filtering error
variances and cross-covariances are unknown. To solve the filtering problems for
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uncertain systems, in recent years, several results have been derived on the design
of robust Kalman filters that give an upper bound of the filtering error variances for
any admissible uncertainty of model parameters [2–4], based on the Riccati
equations. Recently, the covariance intersection (CI) fusion method has been
presented by Julier and Uhlman [5, 6], which can avoid the computation of cross-
covariances, but which requires the consistency of the local Kalman filters.

In this paper, the multi-sensor uncertain systems with uncertainties of noise
variances are considered. First, we construct the local robust Kalman filters which
give the upper-bounds of actual filtering error variances, their robustness is proved
based on the Lyapunov equation. Secondly, the covariance intersection fusion
robust Kalman filter is proposed by the convex combination of the local robust
Kalman filters, whose robust accuracy is higher than that of each local robust
Kalman filter. The geometric interpretation of these accuracy relations is given
based on the variance ellipses.

95.2 Local Robust Steady-State Kalman Filter

Consider the multi-sensor uncertain system with unknown noise variances

x t þ 1ð Þ ¼ Ux tð Þ þ Cw tð Þ ð95:1Þ

yi tð Þ ¼ Hix tð Þ þ vi tð Þ; i ¼ 1; � � � ; L ð95:2Þ

where t is the discrete time, x tð Þ 2 Rn is the state, yi tð Þ 2 Rmi is the measurement
of the ith subsystem, w tð Þ 2 Rr, vi tð Þ 2 Rmi are uncorrelated white noises with
zeros mean and unknown actual variances �Q and �Ri, respectively. U, C and Hi are
known constant matrices. Assume that Q and Ri have conservative upper bounds �Q
and �Ri, respectively, i.e.

�Q�Q; �Ri�Ri; i ¼ 1; � � � ; L ð95:3Þ

in the sense that A�B means that B� A� 0 is a semi-positive definite matrix.
And assume that each subsystem is completely observable and completely
controllable.

Based on the ith sensor, the local steady-state suboptimal Kalman filters with
upper bound variances Q and Ri are given by Kailath et al. [7] and Jazwinski [8]

x̂i tjtð Þ ¼ Wix̂i t � 1jt � 1ð Þ þ Kiyi tð Þ ð95:4Þ

Wi ¼ In � KiHi½ �U; Ki ¼ RiH
T
i HiRiH

T
i þ Ri

� ��1 ð95:5Þ

where Wi is a stable matrix and Ri satisfies the steady-state Riccati equation

Ri ¼ U Ri � RiH
T
i HiRiH

T
i þ Ri

� ��1
HiRi

h i
UT þ CQCT ð95:6Þ
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where the symbol T denotes the transpose. The local steady-state conservative
filtering error variances satisfy the Lyapunov equation

Pi ¼ WiPiW
T
i þ In � KiHi½ �CQCT In � KiHi½ �TþKiRiK

T
i ð95:7Þ

Defining the actual steady-state filtering error variance as

�Pi ¼ E ~xi tjtð Þ~xT
i tjtð Þ

� �
; ~xi tjtð Þ ¼ x tð Þ � x̂i tjtð Þ ð95:8Þ

Theorem 95.1 The suboptimal conservative Kalman filters (95.4–95.7) is robust
for all admissible actual variances �Q and �Ri, such that �Q�Q; �Ri�Ri in the sense
that �Pi�Pi. i.e. Pi is the upper bound variance.

Proof Substituting (95.1) and (95.4) into ~xi tjtð Þ ¼ x tð Þ � x̂i tjtð Þ; we obtain that

~xi tjtð Þ ¼ Ux t � 1ð Þ þ Cw t � 1ð Þ �Wix̂ t � 1jt � 1ð Þ � Kiyi tð Þ ð95:9Þ

Substituting (95.2) into the above equation yields

~xi tjtð Þ ¼ Wi~x t � 1jt � 1ð Þ þ In � KiHið ÞCw t � 1ð Þ � Kivi tð Þ ð95:10Þ

Substituting (95.10) into (95.8) yields the actual steady-state filtering error
variances as

�Pi ¼ Wi�PiW
T
i þ In � KiHi½ �C�QCT In � KiHi½ �TþKi�RiK

T
i ð95:11Þ

Defining DPi ¼ Pi � �Pi, subtracting (95.11) from (95.7) yields the Lyapunov
equation

DPi ¼ WiDPiW
T
i þ Ui ð95:12Þ

Ui ¼ In � KiHi½ �C Q� �Qð ÞCT In � KiHi½ �TþKi Ri � �Rið ÞKT
i ð95:13Þ

Applying (95.3) and (95.13) yields that Ui� 0, noting that Wi is a stable matrix,
applying the property of the Lyapunov equation [7], we have DPi� 0, i.e.

�Pi�Pi ð95:14Þ

The proof is completed.

Remark 95.1 The robustness (95.14) is also called the consistency or non-diver-
gent estimation [5, 6]. If P�i is another upper bound variance for all admissible
�Q�Q and �Ri�Ri. Taking �Q ¼ Q; �Ri ¼ Ri yields Pi�P�i . This shows that Pi is
also the minimum upper bound variance.
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.3 CI Fusion Robust Steady-State Kalman Filter

Applying the CI fused algorithm [5, 6], the CI fusion robust steady-state filter is
presented as following

x̂CI tjtð Þ ¼ PCI

XL

i¼1

xiP
�1
i x̂i tjtð Þ ð95:15Þ

PCI ¼
XL

i¼1

xiP
�1
i

" #�1

;
XL

i¼1

xi ¼ 1; xi� 0 ð95:16Þ

The weighting coefficients xi is obtained by minimizing the performance index

min
xi

tr PCI ¼ min
xi2 0;1½ �

x1þ���þxL¼1

tr
XL

i¼1

xiP
�1
i

" #�1
8
<

:

9
=

;
ð95:17Þ

where the symbol tr denotes the trace of matrix. For Eq. (95.17), the optimal
weights xi can be obtained by ‘‘fimincon’’ function in Matlab.

Theorem 95.2 The covariance intersection fused filter (95.15) and (95.16) has
the actual error variance �PCI as

�PCI ¼ E ~xCI tjtð Þ~xT
CI tjtð Þ

� �
¼ PCI

XL

i¼1

XL

j¼1

xiP
�1
i

�PijP
�1
j xj

" #

PCI ð95:18Þ

where ~xCI tjtð Þ ¼ x tð Þ � x̂CI tjtð Þ; �Pij ¼ E ~xi tjtð Þ~xT
j tjtð Þ

h i
are unknown actual cross-

covariances among the local filtering errors, and it can be computed by the
following Lyapunov equation

�Pij ¼ Wi�PijW
T
j þ In � KiHi½ �C�QCT In � KjHj

� �T
; i; j ¼ 1; � � � ; L; i 6¼ j ð95:19Þ

�Pii ¼ �Pi ð95:20Þ

Proof From Eq. (95.16), we have

x tð Þ ¼ PCI

XL

i¼1

xiP
�1
i

" #

x tð Þ ð95:21Þ

Subtracting (95.15) from (95.21), we easily obtain the CI fused actual filtering
error

~xCI tjtð Þ ¼ PCI

XL

i¼1

xiP
�1
i ~xi tjtð Þ ð95:22Þ
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Applying (95.10) and (95.11) yields (95.19) and substituting (95.22) into (95.18)
yields the actual fused error variance (95.18). The proof is completed.

Remark 95.2 References [5, 6, 9] proved that when the local filter is robust or
consistent, then the CI fusion filter is also robust or consistent, i.e.

�PCI �PCI ð95:23Þ

Remark 95.3 From (95.23), we can see that PCI is a common upper bound of the
unknown actual fused variances �PCI for all possible �Pi satisfying the relation �Pi�Pi,
i ¼ 1; � � � ; Lð Þ and all possible unknown �Pij. From 95.16, we see that PCI is inde-

pendent of actual variances �Pi and cross-covariances �Pij. So that the accuracy of the
CI fuser has the robustness with respect to unknown �Pi and �Pij, or equivalently, the CI
fuser is robust with respect to uncertainty of �Q and �Ri satisfying (95.3).

95.4 Accuracy Analysis

Theorem 95.3 The accuracy comparison of the local and the CI fusion robust
filter is given by

tr�Pi� trPi; i ¼ 1; � � � ; L ð95:24Þ

tr�PCI � trPCI � trPi; i ¼ 1; � � � ; L ð95:25Þ

Proof From the robustness (95.14), (95.24) holds. From (95.23), the first
inequality of (95.25) holds. From (95.17), taking xi ¼ 1 and xj ¼ 0 j 6¼ ið Þ yield
trPCI ¼ trPi; hence we have the accuracy relations trPCI � trPi; i ¼ 1; � � � ; L: The
proof is completed.

Remark 95.4 Equation (95.24) means that the actual accuracy of the local filter for
all admissible �Q and �Ri satisfying (95.3) is globally controlled by trPi, therefore
trPi is called the robust accuracy of the local filter. From (95.25) we see that the
actual accuracy of CI fuser is globally controlled by trPCI , hence trPCI is also
called the robust accuracy of the CI fuser. The second inequality of (95.25) means
the robust accuracy of the CI fuser is higher than that of each local filter. The
robustness of the local and CI fused filters means that the robust accuracies trPi

and trPCI are independent of arbitrarily variances satisfying �Q�Q and �Ri�Ri,
i.e., trPi and trPCI are insensitive to uncertain �Q and �Ri.

95.5 Simulation Example

Consider the two-sensor tracking system with uncertain variances

x t þ 1ð Þ ¼ Ux tð Þ þ Cw tð Þ ð95:26Þ
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yi tð Þ ¼ Hix tð Þ þ vi tð Þ; i ¼ 1; 2 ð95:27Þ

U ¼ 1 T0

0 1

� �
;C ¼ 0:5T0

2

T0

� �
; H1 ¼ 1 0½ �; H2 ¼ I2 ð95:28Þ

where T0 ¼ 0:25 is the sampled period, x tð Þ ¼ x1 tð Þ; x2 tð Þ½ �T is the state, x1 tð Þ and
x2 tð Þ are the position and velocity of target at time tT0. w tð Þ and vi tð Þ are inde-
pendent Gaussion white noises with zero mean and unknown variances Q and Ri

respectively. In the simulation, we take Q ¼ 1; R1 ¼ 0:8; R2 ¼ diagð8; 0:36Þ,
�Q ¼ 0:8, �R1 ¼ 0:65, �R2 ¼ diagð6; 0:25Þ.

According to the Kalman filtering, the variances of the local and CI fused filter
are obtained as

P1 ¼
0:2492 0:1855

0:1855 0:3046

� �
; P2 ¼

0:4035 0:0645

0:0645 0:121

� �
; �P1 ¼

0:2019 0:1497

0:1497 0:2447

� �
;

�P2 ¼
0:2922 0:0448

0:0448 0:0892

� �
; PCI ¼

0:2645 0:0977

0:0977 0:1668

� �
; �PCI ¼

0:0986 0:0386

0:0386 0:0944

� � :

The accuracy of the local and CI fuser is defined as the trace of their error
variance matrix, the smaller trace means the higher accuracy and the larger trace
means the lower accuracy. The traces of the error variance of the local and CI
fused Kalman filters are compared in Table 95.1. From Table 95.1, we see that the
accuracy relations (95.24) and (95.25) hold.

In order to give a geometric interpretation of the accuracy relations, the
covariance ellipse is defined as the locus of points x : xTP�1x ¼ c

� 	
, where P is

the variance matrix and c is a constant. Generally, we select c ¼ 1. It has been
proved in [9] that P1�P2 is equivalent to that the covariance ellipse of P1 is
enclosed in that of P2.

The accuracy comparison of the covariance ellipses is shown in Fig 95.1. From
Fig 95.1, we see that the ellipse of the actual variance �P1 or �P2 is enclosed in that
of the upper bound variance P1 or P2, respectively, which verify the consistent Eq.
(95.14). The ellipse of actual CI fused variance �PCI is enclosed in that of PCI ,
which verifies the robustness of the Eq. (95.23), and the ellipse of PCI encloses the
intersection of the variance ellipses formed by P1 and P2, and passes through the
four points of intersection of the local ellipses for P1 and P2 [9].

In order to verify the above theoretical accuracy relations, taking N ¼ 200 runs,
the curves of the mean square error (MSE) of local and fused Kalman filters are
shown in Fig. 95.2.

Table 95.1 The accuracy comparison of local and fused filters

trP1 trP2 tr�P1 tr�P2 trPCI tr�PCI

0.5538 0.5245 0.4466 0.3814 0.4313 0.1930
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From Fig. 95.2, we see that the MSEi tð Þ values of the local and CI fused filters
are close to the corresponding theoretical trace values, which also verifies the
accuracy relations (95.24), (95.25) and the accuracy relations in Table 95.1.

95.6 Conclusion

For the multi-sensor systems with uncertainties of noise variances, using the
Kalman filtering the local steady-state robust Kalman filter and the CI robust fuser
have been presented, and the robustness of the local filtering estimates is proved
based on the Lyapunov equation. The corresponding CI fuser is also robust, and its
robust accuracy is higher than that of each local robust filter.
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