
Chapter 8
Experimental Study on Improved
Differential Evolution for System
Identification of Hammerstein Model
and Wiener Model

Weili Xiong, Minfang Chen, Le Yao and Baoguo Xu

Abstract For nonlinear system of the Hammerstein model and Wiener model,
a method for nonlinear system identification is proposed based on differential
evolution Algorithm (DE). The based idea of the method is that the problem of
nonlinear system identification is changed into optimization problems in parameter
space. In order to enhance the performance of the DE identification, put forward a
kind of adaptive mutation differential evolution algorithm for scaling factor
(MDE), and on this basis, we make an improvement on crossover to make a better
performance. To make an analysis for particle swarm optimization (PSO), DE and
improved DE, the improvement DE has higher accurate and recognition ability,
stronger convergence.

Keywords DE � Hammerstein model � Winner model � Improvement

8.1 Introduction

For the linear system identification, theoretical studies have tended to mature, but
in real life, actual system is almost nonlinear system, so the research for nonlinear
system is necessary [1]. The Wiener model and Hammerstein model [2] which
Narendra and Gallman proposed not only simple but also can effectively describe
the nonlinear characteristics of dynamic system. Literature [3] based on PSO has a
identification for Hammerstein model, although the algorithm has a good
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robustness, the running speed of the program is relatively slow; Literature [4]
based on PSO has a identification for Hammerstein model, QPSO algorithm has
more strong nonlinear recognition ability, the program running time is also rela-
tively fast, however, to some extent, identification of the complexity of the
operation increased.

Differential evolution (DE) algorithm was first introduced by Storn and Price
for global optimization in 1995 [5], as a stochastic global optimizer, DE has
appeared as a simple and very efficient optimization technique. The DE’s
advantages are easy to implement, require a few control parameters turning and
exhibit fast convergence. The DE algorithm is a population-based algorithm using
the following operators: crossover, mutation and selection. In recent years, DE is
widely applied in neural network [6], parameter identification [7], function opti-
mization [8, 9] and constraint optimization problem [10, 11] and other areas.
However, it has been observed that the convergence rate of DE do not meet the
expectation in cases of highly multimodal problems. Several variants of DE have
been proposed to improve its performance.

8.2 Differential Evolution

In this section we will describe briefly the working of basic DE. Compared with
other evolutionary algorithms (EA), DE is a simple yet powerful optimizer with
fewer parameters [12]. Scale factor (F) and crossover rate (CR) are two very
important control parameters of DE. Setting the parameters to inappropriate values
may not only deteriorate the search efficiency, but also lead to solutions with poor
quality. Differential evolution’s basic steps can be described as follows [13]:

Mutation operation: The mutation operation of DE applies the vector differ-
entials between the existing population members for determining both the degree
and direction of perturbation applied to the individual subject of the mutation
operation. The mutation process at each generation begins by randomly selecting
three individuals Xr1;G; Xr2;G and Xr3;G; in the population set of NP elements. The
ith perturbed individual, Vi;Gþ1; is generated based on the three chosen individuals
as follows:

Vi;Gþ1 ¼ Xr3;G þ F � Xr1;G � Xr2;G
� �

ð8:1Þ

where, i ¼ 1 � � �NP; r1; r2; r3 2 1 � � �NPf g are randomly selected such that r1 6¼
r2 6¼ r3 6¼ i; F is the control parameter such that F 2 0;þ1½ �:

Crossover operation: once the mutant vector is generated, the perturbed indi-
vidual, Vi;Gþ1 ¼ V1;i;Gþ1; . . .;Vn;i;Gþ1

� �
; and the current population member, Xi;G ¼

X1;i;G; . . .Xn;i;G

� �
; are then subject to the crossover operation, that finally generates

the population of candidates, or ‘‘trial’’ vectors, Ui;Gþ1 ¼ u1;i;Gþ1; . . .; un;i;Gþ1
� �

; as
follows:
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uj;i;Gþ1 ¼
vj;i;Gþ1 if randj � Cr _ j ¼ k

xj;i;G otherwise

(

ð8:2Þ

where, j ¼ 1 � � � n; k 2 1 � � � nf g is a random parameter’s index, chosen once for
each i. The crossover rate, Cr 2 0; 1½ �; is set by the user.

Selection operation: If the new individual is better than the original one then
the new individual is to be an offspring n the next generation G ¼ t þ 1 else the
new individual is discarded and the original one is retained in the next generation.

Xi;Gþ1 ¼
Ui;Gþ1 if f Ui;Gþ1

� �
� f Xi;G

� �

Xi;G otherwise

(

ð8:3Þ

where, f ðÞ is the fitness function. Each individual of the temporary population is
compared with its counterpart in the current population. The one with the lower
projective function value will survive generation.

8.2.1 Improvement of DE

To make DE more efficient for different scenarios, efforts are needed to improve its
performance and a chaotic algorithm, simulated annealing algorithm or some
adaptive methods have been applied in DE.

A. In the differential evolution algorithm, the constant of differentiation F is a
scaling factor of the difference vector. It is an important parameter that controls
the evolving rate of the population. One of the most useful differential evo-
lution strategies are described in the following.

It is proposed a adaptive scaling factor formula [14]:

M ¼ F0 � 2k k ¼ e 1� T
Tþ1�tð Þ ð8:4Þ

where F0 is the initial scaling factor, T is the number of iterations and t is the
current evolution number. Early in the algorithm, k ¼ 1; make the M ¼ 2F0; the
improvement called MDE.

Early in the algorithm, adaptive mutation operator was F0 � 2F0; it has great
value and makes the individuals diversity in the population at the initial genera-
tions to overcome the premature. With the algorithm progress, mutation operator
gradually reduced, mutation rates is closed to F0 later, preserve the excellent
individuals, enhance the probability of obtaining the global optimum.

B. As mentioned in the above subsection, CR is a very important control
parameters of DE. At early stage, the diversity of population is large because
the population individuals are all different from each other. Small values of CR
increase the possibility of stagnation and slow down the search process. On the
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other hand, if the CR value is relatively high, this will increase the population
diversity and improve the convergence. Therefore, the CR must take a suitable
value in order to avoid the premature convergence or slow convergence rate.
Based on the analysis above, in order to balance between the diversity and the
convergence rate, a dynamic nonlinear increased crossover probability method
was proposed, which is called KDE, formula is as follows [15]:

CR ¼ CRmax þ ðCRmin � CRmaxÞ � ð1� count=gen maxÞk ð8:5Þ

Which count is the current generation number, gen max is the maximum number
of generations, CRmin and CRmax denote the maximum and minimum value of the
CR; and k is a positive number. The optimal setting for these parameters are
CRmin ¼ 0:5; CRmax ¼ 0:55 and k ¼ 4:

In this paper, a new method is put forward. Combining the two kinds of
methods include KDE and MDE, which have mentioned above, trying to combine
MDE and KDE, make use of MDE can increase the global search of the optimal
value of the probability and KDE has a good performance in accuracy.

8.2.2 Hammerstein Model and Wiener Model

A. Hammerstein model is a special kind of nonlinear system, the structure series
composition by a no memory nonlinear gain link and a dynamic linear link, as
Fig 8.1 show.

The difference equation of Hammerstein model expressed as:

Aðq�1ÞyðkÞ ¼ Bðq�1ÞxðkÞ þ Cðq�1ÞwðkÞ
xðkÞ ¼ f ðuðkÞÞ ¼ u kð Þ þ r2u2ðkÞ þ � � � þ rpupðkÞ
Aðq�1Þ ¼ 1þ a1q�1 þ � � � þ anq�n

Bðq�1Þ ¼ b0 þ b1q�1 þ � � � þ btq�t

Cðq�1Þ ¼ 1þ c1q�1 þ � � � þ cmq�m

8
>>>><

>>>>:

ð8:6Þ

Among them uðkÞand yðkÞ are identification system input and output sequence;
wðkÞ is the Gaussian white noise sequence with zero-mean and variance of r2;
uðkÞand wðkÞ independent; xðkÞ is unmeasured intermediate input signal, it is not
only linear dynamic input but also the output of the nonlinear part. q�1 for lag

No memory 
nonlinear gain 

link

Dynamic linear 
link

y(k)w(k)

x(k)u(k)

Fig. 8.1 Hammerstein model
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operator, Aðq�1ÞBðq�1Þ and Cðq�1Þ are lagging operator polynomial; f ð�Þ is no
memory for the nonlinear gain. Introducing parameter vector for h1 ¼ a1 a2 � � � an½
b1 b2 � � � bt c1 c2 � � � cm r1 r2 � � � rp�T ; identify target is based on a given input uðkÞ
and system output yðkÞ estimate parameter vector h1; set the estimate of parameter

vector h1; h1

^
¼ a1

^
a2
^ � � � an

^
b1

^
b2

^
� � � bt

^
c1
^

c2
^ � � � cm

^
r1
^

r2
^ � � � rp

^
� �T

.

B. Wiener model is a special kind of nonlinear system, the structure series com-
position by a no memory nonlinear gain link and a dynamic linear link, as Fig 8.2
shows.

The difference equation of Wiener model expressed as:

Aðq�1ÞzðkÞ ¼ q�dBðq�1ÞuðkÞ
yðkÞ ¼ f ½zðkÞ� þ eðkÞ
Aðq�1Þ ¼ 1þ a1q�1 þ � � � þ anq�n

Bðq�1Þ ¼ b0 þ b1q�1 þ � � � þ btq
�t

8
>>>><

>>>>:

ð8:7Þ

Among them uðkÞ and yðkÞ are identification system input and output sequence,
eðkÞ is white Gaussian noise, zðkÞ is the linear part of the output. Definition

parameter variables h2 ¼ ½a1 � � � an b0 � � � bt�T ; identify target is based on a given

input uðkÞ and system output yðkÞ estimate parameter vector h2; set the estimate of

parameter vector h2; ĥ2 ¼ ½â1 � � � ân b̂0 � � � b̂t�T :
The estimate of the deviation can use the following criterion function to measure.

JðkÞ ¼
XL

i¼0

yðk � iÞ � y
^
ðk � iÞ

� �2

ð8:8Þ

The L for identification window length, yðk � iÞ y
^
ðk � iÞ is k � iði ¼ 1; . . .LÞ

moment output measurement signal and estimate.

( )u k
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( )e k

( )y k
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Fig. 8.2 Wiener model
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8.3 Experiment Study

8.3.1 Test Function Used in Simulation Studies

In this paper, aim at the problem of Hammerstein model, using PSO, DE and
improved DE do some simulation. For PSO, study gene c1 ¼ 2; c2 ¼ 1:6; inertia
weight w linear decreases along with the iteration times 0.4 from 0.9, maximum speed
limit in 1; For DE, the scale factor F ¼ 0:5 and the crossover probability CR ¼ 0:3;
for MDE, F0 ¼ 0:1; and CR ¼ 0:4; for MKDE, F0 ¼ 0:3; CRmin ¼ 0:3; CRmax ¼
0:55: population size (NP) between 5D and 10D;D is the number of the goal function
decision variables, no less than 4, this lab take NP ¼ 40; the maximum iterations are
for 1,200. Each differential evolution algorithm based on each improvement is run 20
times, the results are presented in Tables 8.1, 8.2, where various standard statistical
measures including mean, minimum and RMSE. The Hammerstein model select is as
follows:

Aðq�1ÞyðkÞ ¼ Bðq�1ÞxðkÞ þ Cðq�1ÞwðkÞ
xðkÞ ¼ f ðuðkÞÞ ¼ uðkÞ þ 0:5u2ðkÞ þ 0:3u3ðkÞ þ 0:1u4ðkÞ
Aðq�1Þ ¼ 1� 1:5q�1 þ 0:7q�2

Bðq�Þ ¼ q�1 þ 0:5q�2

Cðq�1Þ ¼ 1þ 1:5q�1

8
>>>>>>><

>>>>>>>:

ð8:9Þ

Wiener model select is as follows:

x kð Þ ¼ 15x k � 1ð Þ � 07x k � 2ð Þ þ u k � 1ð Þ þ 0:5u k � 2ð Þ
y kð Þ ¼ f x kð Þ½ � þ e kð Þ;

f x kð Þ½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x kð Þ=2;

p
x kð Þ� 0;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x kð Þ=2;

p
x kð Þ[ 0

(

8
>>><

>>>:

ð8:10Þ

Table 8.1 The numerical comparison of four kinds of algorithm for Hammerstein model

Parameter Truth-value Estimate-value

PSO DE MDE MKDE

a1 -1.5 -1.5001 -1.5000 -1.5000 -1.5000
a2 0.7 0.7000 0.7000 0.7000 0.7000
b1 1.0 1.0430 1.0000 0.9997 1.0000
b2 0.5 0.4998 0.5000 0.5000 0.5000
c1 1.5 1.4566 1.5000 1.5003 1.5000
r1 0.5 0.4855 0.5000 0.4999 0.5000
r2 0.3 0.3342 0.3001 0.3021 0.3001
r3 0.1 0.0483 0.1005 0.1319 0.1005
RMSE 5.3506e-004 3.7822e-004 2.5512e-008 2.5512e-008
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The input signal uðkÞ is zero-mean, variance is 1 of the Gaussian white noise
sequence, wðkÞ is Gaussian white noise which variance is 0.1, identify window

width is 500, to identify the parameters of the true value vector is, h1 ¼
½�1:5 0:7 1:0 0:5 1:5 0:5 0:3 0:1�T; h2 ¼ ½�1:5 0:7 1:0 0:5�T: In simulation experi-
ments, define root mean square error (RMSE) to measure precision.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL

j¼1
yðjÞ � yðjÞ

^� �2

L

vuuut
ð8:11Þ

8.3.2 Experimental Results

The experiment works on MATLAB7.1 software simulation platform. For Ham-
merstein model, There are 8 parameters (a1 a2 b1 b2 c1 r1 r2 r3), this paper drawing
results put five linear parameters (a1 a2 b1 b2 c1) and three nonlinear parameter
(r1 r2 r3) separate display. Figures 8.3, 8.4, 8.5, 8.6 are respectively the parameter
identification results of Hammerstein model system with PSO algorithm DE
algorithm and improved DE algorithm, Figs. 8.7, 8.8, 8.9, 8.10 are the results of
Wiener model.

Table 8.2 The numerical comparison of four kinds of algorithm for Wiener model

Parameter Truth-value Estimate-value

PSO DE MDE MKDE

a1 -1.5 -1.4998 -1.5000 -1.5000 -1.5000
a2 0.7 0.6998 0.7000 0.7000 0.7000
b0 1.0 1.0000 1.0000 1.0000 1.0000
b1 0.5 0.4999 0.5000 0.5000 0.5000
RMSE 2.47e-008 1.32e-010 1.32e-012 4.81e-015
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Fig. 8.3 Performance curves of PSO algorithm for Hammerstein model
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Fig. 8.4 Performance curves of DE algorithm for Hammerstein model
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Fig. 8.5 Performance curves of MDE algorithm for Hammerstein model
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Fig. 8.6 Performance curves of MKDE algorithm for Hammerstein model
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Figure 8.3 shows that PSO algorithm identifies Hammerstein model parameters
with less iteration, the whole curve relatively smooth, identify the linear parameter
within 100 generation, identify the nonlinear parameter in about 300 generation,
but its program running time is many times as other algorithm.

Figure 8.4 shows that DE algorithm identify Hammerstein model parameters a
little more iteration than PSO algorithm, identify the linear parameter around 200
generation, also identify the nonlinear parameter in about 340 generation, but its
running faster and has more accurate identification parameter results.
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Fig. 8.8 Performance curves
of DE algorithm for Wiener
model
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Fig. 8.9 Performance curves
of MDE algorithm for Wiener
model
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We can see from Fig. 8.5 that MDE algorithm not only identify Hammerstein
model parameters with less iteration, identify the linear parameter around 150
generation, identify the nonlinear parameter around 250 generation, but also its
running faster with the most accurate result, and has the maximum probability of
getting the global optimal solution.

It is shown in Fig. 8.6 that MKDE algorithm identifies the linear parameters
with only about 100 iterations, identify the nonlinear parameters with about 200
iterations. Compare this method with the methods mentioned above, we know that
the convergence rate of the MKDE is much fast than the other algorithms.

From Figs. 8.7, 8.8, 8.9, 8.10, we also can see that it is evident that the con-
vergence of DE algorithm is faster than PSO algorithm. Figure 8.7 shows the
identification iterations of PSO is about 36 generations and the oscillating
amplitude is big before it achieves stability; Fig. 8.8 illustrates that DE algorithm
can identify the parameters of Wiener model with 30 iterations, and the oscillating
amplitude is smaller than the PSO algorithm; Fig. 8.9 shows that MDE algorithm
identify the parameters of Wiener model in about 25 iterations; Fig. 8.10 shows
that MKDE algorithm identify the parameters of Wiener model with only about 20
iterations.

In the same parameter setting conditions, we get the data result when the graph
output. Take the average of the 30 group data, the results shown in Tables 8.1 and 8.2.

From Tables 8.1 and 8.2, it can be clearly observed that the DE algorithm and
the improved DE algorithms perform more or less in a similar result although
MKDE outperforms other algorithms. Although MDE can increase global search
ability, and MKDE has a better performance both in accuracy and convergence.
From Tables 8.1 and 8.2, we can see that the accuracy of PSO algorithm is smaller
than the DE and the improved DE. PSO algorithm identifies the parameters is
closed to the truth-value, however, the DE algorithm and improved DE can
identify the parameters perfectly with little error, especially the MKDE algorithm.

8.4 Conclusions

In this paper we have investigated the performance of DE and the improved DE,
the simulation of results showed that relative to the basic DE algorithm, improved
DE algorithm some more advanced, the MKDE not only do better than other
algorithms in accuracy, but also performs excellent at convergence speed. It turns
out that the performance of DE algorithm is very sensitive to the choice of
parameters and is related with the feature of problem. The next work we should do
is to improve the stability of the DE algorithm.
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