
Chapter 7
Modified Ant Colony Optimization
Algorithm for the Multi-Sensor Dynamic
Scheduling

Hai Huang, Jing Zhang, Xiaomin Ran and Wengao Lv

Abstract Sensor is a sort of important monitoring resources and plays an irre-
placeable role in the modern battlefield. Multi-sensor scheduling optimization is a
problem of theoretical and practical significance. In order to monitor the multi-
target with time windows effectively, this paper presents a multi-sensor dynamic
scheduling model and demonstrates its reasonableness. Based on the model, we
adopt a modified Ant Colony Optimization (ACO) algorithm with local optimi-
zation method to find optimal solutions, and conduct several experiments under
different scenarios. The results show that more targets are monitored effectively in
each solution, therefore the modified ACO algorithm has better performance than
basic ACO algorithm in scheduling optimization.

Keywords Ant colony optimization (ACO) � Multi-sensor � Dynamic scheduling
� Time window � Local optimization

7.1 Introduction

With the development of network and information technology, a variety of sensors
is widely used on the battlefield, multi-sensor scheduling subsequently becomes an
important problem. Multi-sensor scheduling try to fulfill a series of monitoring
tasks using a given set of sensors. The number of sensor and target creates a huge
number of combinations to be searched for producing a scheduling solution that
optimizes appraisal indices such as monitoring quality and sensor utilization. In
essence, it is a combinatorial optimization problem that has been proven to be a
NP-hard problem. Exact optimization algorithms cannot produce an acceptable
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solution in the available time. It is also awkward to deal with some necessary
constraints or objective function characteristics in the algebraic form required by
classical optimization methods. Therefore, the algorithm cannot meet the
requirements of practical application. Moreover, when the targets with feature of
time window, static scheduling cannot make full use of sensor resources and a
large number of missions cannot be completed.

In the field of research on sensor dynamic scheduling, Liu [1] proposed a sensor
management method based on utility function. It obtains the optimal solution by
establishing a linear programming objective function that relates to effective
matching function and target priority. Although this method is simple and feasible,
the amount of computing is too large to achieve large-scale scheduling. Xiao and
Xiao [2, 3] proposed an incremental sensor selection heuristic algorithm and
introduced the Monte Carlo operator to calculate the detection probability of target
and schedule the sensors under the condition that the sensor must meet the
effective detection probability demand. However, this method only refers to a
single target tracking tasks. Considering the characteristics of multi-sensor multi-
target assignment, Zhang et al. [4] presented a sensor scheduling method amid at
Joint Information incremental performance. The method is combined with Genetic
Algorithm. However, this method only focuses on the overall incremental infor-
mation. Besides, all the methods mentioned above are not involved in the target
problem of time window.

In this paper, we present a sensor dynamic scheduling model that adapted to the
scheduling environments of multi-sensor and multi-target with time window. It
takes global coverage of targets as the optimization objective. Then we introduce
an approach to scheduling that relies on a biologically-inspired optimization
algorithm known as Ant Colony Optimization (ACO). Moreover, the algorithm has
been modified. The simulation results show that the improved ACO is more
effective than basic ACO. The results are simply intended to be a proof that ACO
can successfully deal with the challenge we describe.

7.2 Models and Problem Statement

U ¼ u1; u2. . .; uMf g denotes a monitoring system with M sensors. The target set
T ¼ t1; t2. . .; tNf g is composed of N targets. A real-time task to monitor ti is
represented by the tuple ðtbi; teiÞ, where tbi is the task start time and tei is the task
end time. vij denotes the monitoring ability when tj is monitored by ui. dij denotes
the distance between ui and tj. eidenotes the probability that ti can be detected. It is
related to the size, shape and velocity of target. Therefore, the monitoring ability

vij is almost linearly related to the product of ei and 1
.

d2
ij
: vij / ej � 1

.
d2

ij
. gi

denotes the threshold which is the lowest value when ui can monitor target
effectively. It is determined by the sensitivity of sensor.
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In order to utilize resource fully and monitor as more targets as possible, we
take global coverage of targets as the optimization objective, rather than the usual
total monitoring quality. So this problem can be described as a mathematical
programming model as shown below:

max f ðXÞ ¼
XM

i¼1

XN

j¼1
xij

.
N ð7:1Þ

s.t.

XM

i¼1
xij� 1; j ¼ 1; 2; . . .. . .;N ð7:2Þ

xij ¼ 1;ui 2 U; ti 2 T ) vij� gi ð7:3Þ

8i; j; ti 2 T,tj 2 T,uk 2 U; if xki ¼ xkj ¼ 1) tbi� tej or tbj � tei ð7:4Þ

Where X ¼ ðxijÞM�N is the decision matrix and the xij is as follows:

xij ¼
1; if sensor i is to target j

0; otherwise

(
ð7:5Þ

As stated in constraint given in Eq. 7.2, the target cannot be monitored by
multiple sensors. It means that some targets can be abandoned for the global
optimization. Eq. 7.3 explains the requirement of the effective monitoring: the
monitoring quality vij must be greater than or equal to the ability threshold of ui

when tj is assigned to ui. Meanwhile, Eq. 7.4 means that one sensor can monitor
only one target simultaneously, but can monitor other target at non-intersecting
time window. The two constraints cannot only avoid invalid monitoring, but also
increase resource utilization.

According to the analysis above, the dynamic scheduling problem is abstracted
to a combination problem with optimization objectives and complex constraints.
Based on the model, we will adopt the method combined with Ant Colony
Optimization (ACO) algorithm and local optimization to solve the problem
effectively. The details are as follows.

7.3 The Solving Method for Multi-Sensor Dynamic
Scheduling

7.3.1 ACO Background

The Ant Colony Optimization was inspired by the behavior of ants. Ants com-
municate among themselves through pheromone, a substance they deposit on the
ground in variable amounts as they move about. It has been observed that the more
ants use a particular path, the more pheromone is deposited on that path and the
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more it becomes attractive to other ants seeking food. The pheromone on the
shorter path will therefore be more strongly reinforced and will eventually become
the preferred route for the other ants. The works of Colomi et al. [5] offer detailed
information on the workings of the algorithm and the choice of the various
parameters. Moreover, the ACO algorithm has been applied to many classical
problem such as TSP [6], VRP [7], JSP [8] and so on.

7.3.2 Modified ACO Algorithm for the Problem

We use a digraph based on the ACO algorithm [9, 10] to treat the complex
problem that we have described. As shown in Fig. 7.1, each node except starting
node represents a target and each path in front of node represents a sensor. Each
ant establishes a complete tour in a digraph (a feasible solution) by repeatedly
choosing path to next node in probability. The probability is a combination of
heuristic and pheromone information. To ensure the production of a feasible
solution, paths that ant cannot go through because of constraints on the current tour
are excluded from the choice by using a tabu list. After a tour, ant leaves the
pheromone on the path. The pheromone trails reinforce successful paths discov-
ered by the ants so that those paths are more likely to be followed in future tours.
The algorithm will end and output the best result when it gets max iteration. We
will explain the key steps as follow.

7.3.3 Trail Selection Probability

Ant k ¼ ð1; 2; . . .. . .NantsÞ selects moving path according to probability in the
process of solution construction. pk

ijðtÞ is the probability that an ant will assign task
j to sensor i ant at time t:

Fig. 7.1 Digraph based on the ACO algorithm
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ð7:6Þ

For the selection of a path, the ant uses heuristic information as well as pher-
omone information. The heuristic information, denoted by gij and the pheromone

information, denoted by sk
ijðtÞ. Initial pheromone in each path iss0, where a, b

denote the parameters correlating to the importance of the pheromone and heu-
ristic, respectively. tabuk

j ðtÞ is the tabu list of ant k that represents the sensors can
not assigned to target j. gij is shown by Eq. 7.7:

gij ¼
vij
�
gi
; vij � gi

0; vij \ gi

�
ð7:7Þ

7.3.4 Pheromone Update

7.3.4.1 Local Update Rule

The pheromones sk
ijðtÞ are updated by the local updating rule after an ant has one

solution. The modified ACO adopts the following local updating rule to prevent
succeeding ants from searching in the neighborhood of the current schedule of the
current ant. The pheromone levels are modified as follows:

skþ1
ij ðtÞ ¼ ð1� qÞsk

ijðtÞ þ qDs; if i; jð Þ 2 pk ð7:8Þ

Where Ds represents local pheromone increment and is constant. q is the local
evaporation rate of pheromone trails. pk is the solution of ant k.

7.3.4.2 Global Update Rule

After all ants have built all feasible schedules, the global update rule, Eq. (7.10) is
used to increase the pheromone sk

ijðtÞ by applying the best solution in this iteration.

For all sk
ijðtÞ, the pheromone is increased by the global update and evaporated by

global pheromone evaporation rate, as shown in Eq. (7.10).

sijðt þ 1Þ ¼ ð1� kÞsNants
ij ðtÞ þ Ds�ijðtÞ; k 2 0; 1ð Þ ð7:9Þ
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Ds�ijðtÞ ¼
Q� BestValue; if i; jð Þ 2 p�ðtÞ
0; else

(
ð7:10Þ

Where k is the global evaporation rate of pheromone trails. Ds�ij tð Þ is the
pheromone of best solution in the t th iteration. Q represents local pheromone
increment and is constant. Nants is the max number. BestValue is the best solution
in tth iteration when the algorithm runs.

This is an elitiststrategy that leads ants to search near the best-foundsolution.
Using the best ant for updating makes the search much more aggressive. Best
combinations which often occur in good solutions will get a lot of reinforcement.
Therefore, the algorithm has some extra features to balance exploration versus
exploitation. So we must make choice between using the iteration-best ant and the
global-best. Using global-best results in strong exploitation will lead to quick
convergency of algorithm, so we will alternate it with the use of iteration-best.

7.3.5 Local Optimization Strategy

It is known that the performance of ACO algorithms can sometimes be greatly
improved when coupled to local search algorithms [11]. What normally happens is
that a population of solutions is created using ACO, and then these solutions are
improved via local search. The improved solutions are then used to update the
pheromone trail, so it is in fact a form of Lamarckian search.

In the our version of the ACO algorithm, the best solution is improved through
local optimisation phase.In this phase, one of the targets that have been monitored
frees its sensor. Then, for every remaining targets that no sensor monitors it, it is
investigated whether the sensors can be allocated to it. If it is possible, the algotithm
assigns one of the feasible sensors to this targets randomly. The algorithm suc-
cessively tries to make more other vacant targets get sonor. So, a complete new
solution is created. If the result of new solution is better than the best solution before,
the complete local search procedure is then repeated with this new solution and
updates the pheromone trail globally. This procedure is iterated until no improve-
ment in fitness is detected between the solutions before and after the local search is
applied. Hence, the local search is in fact a hill-climbing algorithm which takes the
original solution created by the ACO procedure to the nearest local optimum.

7.4 Experimental Simulations

To verify the validity of our proposed methods, we conduct two experiments. After
many simulations, we get optimal parameters and set it in the experiments: q = 0.9,
a = 2, b = 1, s0 = 1, k = 0.85, Q = 10, Ds = 1.5, Nants = 20, NCmax = 100.
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Experiment 1: We test the improved ACO algorithm with data of small scale.
Suppose there are 5 sensors and 12 targets in this numerical example. Table 7.1
shows the time information of the targets. Table 7.2 shows the capacity that every
sensor monitors the targets. Table 7.3 shows the scheduling scheme result of
modified ACO. The result shows that the algorithm is effective to solve this
problem. The scheduling scheme is reasonable and makes full use of multi-sensor.
Almost all targets can be monitored effectively and timely.

Experiment 2: The modified ACO algorithm is tested on the different size
problem and compared with basic ACO algorithm. We generate four groups of
data randomly to test the algorithm we introduce. The capacity vij is a integer value
set to a uniform random number in 0; 25½ �. gi is a integer value set to a uniform
random number in 15; 20½ �. Scheduling time is between 0 and 200. The period of
task tei � tbi is set to a uniform random number in 10; 30½ �.

Table 7.4 shows the simulation results of modified ACO and basic ACO. Each
case was simulated 100 times; each simulation as set to run for 100 iterations.
Simulation results indicate that the modified ACO can find optimal solution for the
problems of different size. Moreover, when the problem size is small, modified
algorithm runs faster to find optimal solution. In the problem of large size,
modified ACO can reach better value than basic ACO though needs a little more
iterations. Actually, we can accept time consumption the modified ACO makes.

Figure 7.2 shows the global-best value of modified ACO and basic ACO for
cases of 35 sensors and 150 targets in best simulation result. It illustrates that basic
ACO is trapped in local optimum.However, modified ACO avoid immature con-
vergence and the global search ability of the algorithm is strengthened to escape
from local optimum and approach the global optimum.

Table 7.1 The targets’ time information of experiment 1

Target 1 2 3 4 5 6 7 8 9 10 11 12

StartTime 41 184 182 135 89 115 122 183 154 173 52 114
EndTime 55 196 198 146 100 127 132 195 169 188 67 124

Table 7.2 The monitoring quality matrix of experiment 1

Target sensor 1 2 3 4 5 6 7 8 9 10 11 12

1 7 5 2 11 8 0 2 4 6 10 3 24
2 17 12 5 13 15 23 20 17 20 21 10 22
3 10 7 8 19 21 6 7 3 3 3 24 18
4 20 13 24 25 24 14 11 13 17 17 19 15
5 8 25 5 18 6 14 18 14 17 20 21 23

Table 7.3 Scheduling result of experiment 1

Target 1 2 3 4 5 6 7 8 9 10 11 12
Sensor 4 5 4 4 3 4 2 – 2 2 4 1
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7.5 Conclusion and Future Work

In this paper, we propose a sensor dynamic scheduling model considering time
windows of targets. The global coverage of targets and several constraints are
introduced to the model. We also present a hybrid ACO algorithm combined with
local optimization method to solve the problem. Preliminary test shows that this
approach is appropriate for multi-sensor dynamic scheduling and has better per-
formance than basic ACO algorithm. Experimental results regarding the reduction
of energy consumption will be presented in a future paper. We also plan to
investigate the impact of heuristic on the performance of our ACO algorithm.

Table 7.4 Comparison of modified ACO with basic ACO in different problem size

Problem size Modified ACO Basic ACO

Best-value
(%)

Best-
iteration

Avg-value
(%)

Best-value
(%)

Best-
Iteration

Avg-value
(%)

M = 15, N = 50 94 17 90.6 94 19 90.3
M = 15, N = 100 78 26 72.4 72 29 69.2
M = 20, N = 100 84 39 81.1 77 36 75.8
M = 35, N = 150 92.67 50 87.3 90 47 81.7

Fig. 7.2 Global-best value for cases of 35 sensors and 150 targets
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