
Chapter 11
Adaptive Tracking Control of Nonlinear
Systems with Unmodeled Dynamics
and Unknown Gain Sign

Zhiyuan Gao, Tianping Zhang and Yuequan Yang

Abstract Based on backstepping design, a novel adaptive tracking control
scheme is proposed for a class of strict feedback nonlinear systems with unmod-
eled dynamics and completely unknown function control gain in this paper. An
available dynamic signal is used to dominate the unmodeled dynamics. The
unknown virtual control gain signs are dealt with using the property of Nussbaum
function. The controller singularity problem is avoided using integral Lyapunov
function. By theoretical analysis, the closed-loop systems is proved to be semi-
global uniformly ultimately bounded.

Keywords Strict feedback systems � Adaptive neural control � Dynamic signal �
Nussbaum function

11.1 Introduction

In recent years, adaptive control of nonlinear systems with unknown gain sign has
received a great deal of attention [1–4]. Nussbaum function was firstly proposed in
Ref. [1] for the control problem of a class of linear time-invariant systems with
unknown control gain coefficient. Nussbaum function has already been used to
cope with the adaptive control problem of nonlinear systems with unknown control
gain. The backstepping design was an important method to construct nonlinear
adaptive controller recursively, and has solved a lot of problems that appeared in
the process of the design of adaptive controllers in the early stage of the research,
such as the matching condition, the growth condition. An adaptive control design
was investigated in Ref. [2], using a modified Lyapunov function to remove the
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possible controller singularity problem. Applying the universal approximation
properties of fuzzy logic systems (FLS) and the properties of Nussbaum function,
an adaptive control scheme was developed for a class of MIMO nonlinear systems
with unknown control gain in Ref. [3]. Using the dynamic surface control method
and the properties of Nussbaum function, two adaptive neural network control
schemes were proposed for a class of nonlinear pure feedback systems with dead-
zone in Ref. [4].

The unmodeled dynamics exists widely in the actual systems, which influences
the stability of nonlinear systems, and limits the performance of practical systems.
Two robust adaptive control schemes were proposed for the existing unmodeled
dynamics in Ref. [5, 6]. On the basis of it, using the universal approximation
properties of neural networks, a robust adaptive approach was developed for a
class of nonlinear pure feedback systems in Ref. [7]. Applying the small-gain
approach and the properties of output feedback, [a novel adaptive control design is
investigated in [8]. By introducing an available dynamic signal to dominate the
unmodeled dynamics, a fuzzy adaptive control approach was developed for a class
of nonlinear systems in Ref. [9]. Based on the neural networks universal
approximator, adaptive neural dynamic surface control (DSC) was proposed for a
class of pure feedback nonlinear systems in Ref. [10]. This scheme relaxed the
assumption of the systems, and used the technique of DSC to deal with the control
problem of nonlinear systems including the umodeled dynamics. A new fuzzy
adaptive control approach was developed for a class of nonlinear with unknown
virtual control gain and the unmodeled dynamics in Ref. [11].

On the basis of Refs. [4, 10, 11], a novel adaptive neural network control
scheme is developed for a class of strict feedback nonlinear systems in this paper.
The main contributions of this paper are addressed as follows: (1) The discussed
plant in Ref. [11] is extended to more general strict-feedback nonlinear systems,
and the assumption of the dynamic disturbances is relaxed. Furthermore, tracking
performance is carried out by constructing appropriately unknown continuous
functions; (2) The completely unknown virtual function control gains are dealt
using the property of Nussbaum function while the completely unknown virtual
constant control gains are only discussed in Ref. [11]; (3) The other restriction of
class k1 function �cðjx1jÞ is removed except �cðjx1jÞ � cðjx1jÞ:

11.2 Problem Formulation and Preliminaries

Consider a class of strict-feedback systems with unmodeled dynamics in the fol-
lowing form:

_z ¼ qðz; xÞ
_xi ¼ fið�xiÞ þ gið�xiÞxiþ1 þ Diðx; z; tÞ
t _xn ¼ fnð�xnÞ þ gnð�xnÞuþ Dnðx; z; tÞ
y ¼ x1

8
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where i ¼ 1; 2; . . .; n� 1; z 2 Rr0 is the unmodeled dynamics, �xi ¼ ½x1; x2;

. . .; xi�T 2 Ri; �xn ¼ ½x1; x2; . . .; xn�T 2 Rn is the state vector, u 2 R is the system
input, y 2 R is the system output, fið�xiÞ and gið�xiÞ are the unknown continuous
functions, Diðz; x; tÞ; i ¼ 1; 2; . . .; n are the nonlinear dynamic disturbances, and
Diðz; x; tÞ and qðz; xÞ are uncertain Lipschitz functions.

The control objective is to design adaptive control u for system (11.1) such that
the output y follows the specified desired trajectory yd:

Assumption 1 The unknown dynamic disturbance Diðz; x; tÞ; i ¼ 1; 2; . . .; n
satisfies:

jDiðz; x; tÞj �/i1ðjj�xijjÞ þ /i2ðjjzjjÞ ð11:2Þ

where /i1ð�Þ and /i2ð�Þ is an unknown non-negative continuous function, /i2ð�Þ is
a non-negative non-decreasing function, and jj � jj is the Euclidean norm.

Assumption 2 The unmodeled dynamics are exponentially input-to-state practi-
cally Stable (exp-ISpS); that is, the system _z ¼ qðz; xÞ has an exp-ISpS Lyapunov
function VðzÞ satisfying:

a1ðjjzjjÞ �VðzÞ� a2ðjjzjjÞ ð11:3Þ

oVðzÞ
oz

qðz; xÞ� � cVðzÞ þ cðjx1jÞ þ d ð11:4Þ

where a1ð�Þ; a2ð�Þ and cð�Þ are of class of k1 functions, c and d are known positive
constants. Moreover, cð�Þ is a known function.

Assumption 3 The desired tracking trajectory �xid is continuous and available, and

jj�xndjj 2 L1; i.e.,
Pn

i¼0 ½y
ðiÞ
d �

2�B0; 8t [ 0; where �xid ¼ ½yd; _yd; . . .; yðiÞd �
T ;

i ¼ 1; . . .; n; B0 is a positive constant.

Assumption 4 The sign of control gain gið�Þ is unknown. Moreover, there exist
positive constants gmin and gmax such that 0\gmin� jgið�Þj � gmax; 1� i� n:

Lemma 1 [6] If V is an exp-ISPS Lyapunov function for a control system
_z ¼ qðz; xÞ; i.e. Eqs. (11.3) and (11.4) hold, then for any constants �c in ð0; cÞ; any
initial instant t0 [ 0; any initial condition z0 ¼ zðt0Þ and v0 [ 0; for any function

�cð�Þ such that �cðjx1jÞ � cðjx1jÞ; there exists a finite T0 ¼ Vðz0Þv�1
0 eðc��cÞt0 �ðc�

�cÞ�1� 0; an available signal v [ 0; a nonnegative function Dðt0; tÞ defined for all
t� t0 with Dðt0; tÞ ¼ 0 and VðzÞ� vðtÞ þ Dðt0; tÞ when t� t0 þ T0 ; and a signal
described by

_v ¼ ��cvþ �cðjx1jÞ þ d; vðt0Þ ¼ v0 ð11:5Þ

Without loss of generality, we choose �cðjx1jÞ ¼ cðjx1jÞ:

11 Adaptive Tracking Control of Nonlinear Systems 109



Lemma 2 [12] For any real-valued continuous function f x; yð Þ where x 2 Rm and
y 2 Rn; there are smooth scalar-value functions u xð Þ� 0 and # yð Þ� 0; such that
jf x; yð Þj �uðxÞ þ #ðyÞ:

The Nussbaum gain technique is introduced in this paper, in order to deal with
the unknown sign of control gain. A function NðfÞ is called a Nussbaum-type
function if it has the following properties [1]:

lim
s!1

sup s�1
Z s

0
NðfÞdf ¼ þ1 and lim

s!1
infs�1

Z s

0
NðfÞdf ¼ �1 ð11:6Þ

Commonly used Nussbaum functions include: f2 cosðfÞ; f2 sinðfÞ and

expðf2Þ cosððp=2ÞfÞ: We assume that NðfÞ ¼ ef2
cosððp=2ÞfÞ is used in throughout

this paper.

Lemma 3 [13] Let Vð�Þ and fð�Þ both be smooth functions on ½0; tf Þ; with VðtÞ� 0
and 8t 2 ½0; tf Þ; Nð�Þ be an even smooth Nussbaum-type function, if the following
inequality holds:

VðtÞ� c0 þ e�c1t
Z t

0
gðxðsÞÞNðfÞ _fec1sdsþ e�c1t

Z t

0

_fec1sds; 8t 2 ½0; tf Þ ð11:7Þ

where c0 is a suitable constant, c1 is a positive constant, gðxðtÞÞ is a time-varying
parameter that takes values in the unknown closed intervals I :¼ ½l�; lþ�; with

0 62 I; then VðtÞ; fðtÞ and
R t

0 gðxðsÞÞNðfÞ _fds must be bounded on ½0; tf Þ:

Lemma 4 [14] For any given positive constant tf [ 0; if the solution of the
resulting closed-loop system is bounded on the interval t 2 ½0; tf Þ; then tf ¼ 1:

Let W�Ti wiðniÞ be the approximation of the radial basis function neural net-
works on a given compact set Xni

	 Rq to the unknown continuous function hiðniÞ;
i.e., hiðniÞ ¼ W�Ti wiðniÞ þ wiðniÞ; where ni 2 Xni

	 Rq is the input vector of neural
networks; W�i 2 Rli is the ideal weight vector for sufficient large integer li which
denotes the neural networks node number satisfying li [ 1; the basis function

vector wiðniÞ ¼ ½qi1ðniÞ; . . .; qiliðniÞ�T 2 Rli with qiðniÞ being chosen as the com-
monly used Gaussian functions, which have the form:

qijðniÞ ¼ exp½�ðni � 1ijÞTðni � 1ijÞ/�2
ij �; 1� j� li; 1� i� n ð11:8Þ

where, 1ij ¼ ½1ij1; 1ij2; . . .; 1ijqij
�T is the center of the receptive field and /ij is the

width of the Gaussian function. The unknown ideal weight vector is defined as
follows:

W�i ¼ arg min
Wi2Rli

½ sup
ni2Xni

jWT
i wiðniÞ � fiðniÞj� ð11:9Þ

jwiðniÞj � ei; and ei [ 0 is the unknown constant
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11.3 Control System Design and Stability Analysis

Based on backstepping, an adaptive neural control scheme will be proposed in this
section. The control procedure consists of n steps, and is based on the following
change of coordinates: s1 ¼ x1 � yd; s2 ¼ x2 � a1; . . .; sn ¼ xn � an�1; where
ai; i ¼ 1; . . .; n� 1 is the virtual control input, and will be obtained in the fol-
lowing design. For convenience, define the Lyapunov function candidates as
follows:

Vs1 ¼
Z s1

0
jg�1

1 ðrþ ydÞjrdrþ k�1v ð11:10Þ

Vsj ¼
Z sj

0
jg�1

j ð�xj�1; rþ aj�1Þjrdr; 2� j� n ð11:11Þ

Vi ¼ Vsi þ 0:5c�1
i

~h2
i ð11:12Þ

where ~hi ¼ ĥi � hi; ĥi is the estimate of hi at time t; hi ¼ jjW�i jj; ci [ 0 is a design
constant,i ¼ 1; . . .; n:

The virtual control laws and the adaptive laws are employed as follows
(i ¼ 1; � � � ; n):

ai ¼ NðfiÞ½kisi þ 0:5a�2
i siĥijjwiðniÞjj2� ð11:13Þ

_fi ¼ kis
2
i þ 0:5a�2

i s2
i ĥijjwiðniÞjj2 ð11:14Þ

_̂hi ¼ ci½0:5a�2
i s2

i jjWiðniÞjj2 � riĥi� ð11:15Þ

where ki is a design constant, ai; ci and ri are strictly positive constants.
For the sake of clarity and convenience, let

B1 ¼ jg1ðx1Þj; F1ðr; ydÞ ¼ jg�1
1 ðrþ ydÞj ð11:16Þ

Bi ¼ jgið�xiÞj; Fiðr; ai�1Þ ¼ jg�1
i ð�xi�1; rþ ai�1Þj ð11:17Þ

Gi;jðr; ai�1Þ ¼ ojg�1
i ð�xi�1; rþ ai�1Þj=oxj ð11:18Þ

KiðtÞ ¼ gið�xiÞB�1
i ð11:19Þ

where j ¼ 1; � � � ; i� 1; i ¼ 2; � � � ; n:
Step 1: According to the second mean value theorem, there exists k1 2 ð0; 1Þ

such that
R s1

0 F1ðr; ydÞrdr can be rewritten as
R s1

0 F1ðr; ydÞrdr ¼
0:5s2

1F1ðk1s1; ydÞ: Due to 0\gmin� jgið�Þj � gmax; it is shown that
R s1

0 F1ðr; ydÞrdr
is positive definitive with respect to s1: Differentiating s1 with respect to t; we
obtain
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_s1 ¼ _x1 ¼ f1ð�x1Þ þ g1ð�x1Þx2 þ D1ðx; z; tÞ � _yd ð11:20Þ

The time derivative of Vs1 is:

_Vs1 ¼ B�1
1 s1 _s1 þ _yd B1s1 �

Z s1

0
F1ðr; ydÞdr

� �

þ k�1
0 �cðjx1jÞ þ dk�1

0 � �ck�1
0 v

ð11:21Þ

According to Assumption 1, using Young’s inequality, we obtain

js1D1ðx; z; tÞj � js1j/11ðj�x1jÞ þ js1j/12ðjzjÞ ð11:22Þ

B�1
1 js1j/11ðj�x1jÞ � s2

1/
2
11ðj�x1jÞe�2

1 B�2
1 þ 0:25e2

1 ð11:23Þ

Because of a1ð�Þ being class of k1-functions, it’s seen that a�1
1 ð�Þ is also a

single-increasing function. Noting Assumption 2 and Lemma 1, we have

jjzjj � a�1
1 ðmðtÞ þ Dðt0; tÞÞ ð11:24Þ

/12ðjjzjjÞ �/12 
 a�1
1 ðmðtÞ þ Dðt0; tÞÞ ð11:25Þ

where /12 
 a�1
1 ð�Þ ¼ /12ða�1

1 ð�ÞÞ: Noticing that /12 
 a�1
1 ð�Þ is a non-negative

smooth function, and using Lemma 2, we have

js1j/12ðjjzjjÞ � js1j/12 
 a�1
1 ðmðtÞ þ Dðt0; tÞÞ� js1ju1 vðtÞð Þ þ js1j#1ðDðt0; tÞÞ

ð11:26Þ

Similar to the inequalities (11.23), from Young’s inequalities, we obtain

B�1
1 js1ju1 vðtÞð Þ� s2

1u
2
1ðvðtÞÞe�2

u1 B�2
1 þ 0:25e2

u1 ð11:27Þ

B�1
1 js1j#1ðDðt0; tÞÞ� s2

1B�2
1 þ 0:25#2

1ðDðt0; tÞÞ ð11:28Þ

From Lemma 1, it is shown that Dðt0; tÞ turns to be zero, when t� t0 þ T0:We
assume that #2

i ðDðt0; tÞÞ�#�i ; i ¼ 1; 2; . . .; n; due to Dðt0; tÞ and #ið�Þ being
smooth functions to be bounded. From Young’s inequality, we obtain

K1ðtÞs1s2� s2
1 þ 0:25s2

2 ð11:29Þ

s1w1ðn1Þ� s2
1 þ 0:25w2

1ðn1Þ� s2
1 þ 0:25w�21 ð11:30Þ

Substituting (11.23) (11.27) and (11.28) into (11.21), we have

_Vs1 �K1ðtÞs1x2 þ s1h1ðn1Þ þ 1� s2
1=e

2
�c

h i
k�1

0 �cðjx1jÞ

� �ck�1
0 vþ dk�1

0 þ 0:25e2
1 þ 0:25e2

u1 þ 0:25#�1
ð11:31Þ

where h1ðn1Þ ¼ B�1
1 f1ð�x1Þ þ s1u2

1ðvðtÞÞB�2
1 e�2

u1 þ s1/
2
11ðjx1jÞB�2

1 e�2
1 þ s1B�2

1
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� _yds�1
1

Z s1

0
F1ðr; ydÞdrþ k�1

0 s1�cðjx1jÞe�2
�c :

In the above inequalities, e�c is a positive constant. Substituting (11.29) and
(11.30) into (11.31), we have:

_Vs1 �K1ðtÞs1a1 þ 2s2
1 þ s2

1h1jjW1ðn1Þjj2=a2
1 þ 0:25s2

2 þ 0:25w�21 þ 0:25a2
1

� �ck�1
0 vþ dk�1

0 þ 0:25e2
1 þ 0:25e2

u1 þ 0:25#�1 þ 1� s2
1e
�2
�c

h i
k�1

0 �cðjx1jÞ

ð11:32Þ

Substituting (11.13) and (11.14) into (11.32), we obtain:

_Vs1 � ½K1ðtÞNðf1Þ þ 1� _f1 � ðk � 2Þs2
1 þ s2

1
~h1jjW1ðn1Þjj2=2a2

1 � �ck�1
0 vþ 0:25s2

2

þ 0:25e2
1 þ 0:25e2

u1 þ 0:5a2
1 þ 0:25#�1 þ 0:25w�21 þ dk�1

0 þ 1� s2
1e
�2
�c

h i
k�1

0 �cðjx1jÞ

ð11:33Þ

Differentiating V1 with respect to time t; moreover, substituting (11.15) and
(11.33) into (11.12), we have

_V1� ½K1ðtÞNðf1Þ þ 1� _f1 � ðk1 � 2Þs2
1 � 0:5r1

~h2
1 þ 0:25s2

2 � �ck�1
0 vþ 0:25w�21 þ 0:5a2

1

þ dk�1
0 þ 0:25e2

1 þ 0:25e2
u1 þ 0:25#�1 þ 0:5r1h

2
1 þ 1� s2

1e
�2
�c

h i
k�1

0 �cðjx1jÞ:

ð11:34Þ

Define c11 ¼ min 2ðk1 � 2Þ; c1r1;�cf g; c12 ¼ 0:5r1h
2
1 þ 0:25w�21 þ 0:5a2

1 þ
dk�1

0 þ 0:25e2
1 þ0:25e2

u1 þ 0:25#�1: From inequality (11.34), we obtain:

_V1� ½K1ðtÞNðf1Þ þ 1� _f1 � c11V1 þ c12 þ 0:25s2
2 þ 1� s2

1e
�2
�c

h i
k�1

0 �cðjx1jÞ

ð11:35Þ

Multiplying (11.35) by ec11t; it becomes:

dðV1ðtÞec11tÞ=dt� c12ec11t þ ½K1ðtÞNðf1Þ þ 1� _f1ec11t

þ 0:25s2
2ec11t þ 1� s2

1e
�2
�c

h i
k�1

0 �cðjx1jÞec11t
ð11:36Þ

Integrating (11.36) over ½0; t�; we have:

V1ðtÞ� c13 þ V1ð0Þ þ
Z t

0
ð½K1ðtÞNðf1Þ þ 1� _f1ec11ðt�sÞÞds

þ 0:25e�c11t

Z t

0
s2

2ec11sdsþe�c11t

Z t

0
1� s2

1e
�2
�c

h i
k�1

0 �cðjx1jÞec11sds

ð11:37Þ
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where c13 ¼ c�1
11 c12: Note that

e�c11t
Z t

0
s2

2ec11sds� c�1
11 sup

s2½0;t�
½s2

2ðsÞ� ð11:38Þ

Therefore, if s2
2 can be regulated to be bounded, we easily notice from inequality

(11.38) that, the extra term 0:25e�c11t
R t

0 s2
2ec11sds can be bounded. The effect of

0:25e�c11t
R t

0 s2
2ec11sds will be handled with in the following steps. The other extra

term will be discussed in the last of the paper.
Step i (2� i� n� 1): The time derivative of si is:

_si ¼ fið�xiÞ þ gið�xiÞxiþ1 þ Diðx; z; tÞ � _ai�1 ð11:39Þ

Because ai�1 is a function of �xi�1; f1; . . .; fi�1;�xid; ĥ1; . . .; ĥi�1; v; _ai�1 can be

expressed as _ai�1 ¼
Pi�1

j¼1

oai�1
oxj

fjð�xjÞ þ gjð�xjÞ þ Djðx; z; tÞ
� �

þ xi�1ðtÞ; where

xi�1ðtÞ ¼
Xi�1

j¼1

oai�1

ofj

_fj þ
oai�1

o�xT
ði�1Þd

_�xði�1Þd þ
Xi�1

j¼1

oai�1

oĥj

_̂hj þ
Xi�1

j¼1

oai�1

ov
_v ð11:40Þ

The time derivative of Vsi is

_Vsi ¼ B�1
i si _si þ _ai�1½B�1

i si �
Z si

0
Fiðr; ai�1Þdr�

þ
Xi�1

j¼1

Z si

0
rGi;jðr; ai�1Þðfjð�xjÞ þ gjð�xjÞxjþ1 þ Djðx; z; tÞÞdr

ð11:41Þ

Using Assumption 1, we have:

jsij½Diðx; z; tÞ �
Xi�1

j¼1

oai�1

oxj
Djðx; z; tÞ

þ jsij
Xi�1

j¼1

Z 1

0
gGi;jðgsi; ai�1ÞDjðx; z; tÞdg� � jsij½�/i1ðj�xijÞ þ �/i2ðjzjÞ�

ð11:42Þ

where �/i1ðj�xijÞ �/i1 þ
Pi�1

j¼1
j oai�1

oxj
j/j1;

�/i2ðjzjÞ �/i2 þ
Pi�1

j¼1
j oai�1

oxj
j/j2:

Similar to step 1, and according to Lemma 2, we have

jsij/i2ðjjzjjÞ � jsijui vðtÞð Þ þ jsij#iðDðt0; tÞÞ ð11:43Þ

Furthermore, applying Young’s inequality, we have:

B�1
i jsij/i1ðjj�xijjÞ �B�2

i e�2
i s2

i /
2
i1ðjj�xijjÞ þ 0:25e2

i ð11:44Þ
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B�1
i jsijui vðtÞð Þ�B�2

i e�2
ui s2

i u
2
i ðvðtÞÞ þ 0:25e�2

ui ð11:45Þ

B�1
i jsij#iðDðt0; tÞÞ�B�2

i s2
i þ 0:25#2

i ðDðt0; tÞÞ ð11:46Þ

KiðtÞsisiþ1� s2
i þ 0:25s2

iþ1 ð11:47Þ

siwiðniÞ� s2
i þ 0:25w2

i ðniÞ� s2
i þ 0:25w�2i ð11:48Þ

where i ¼ 1; . . .; n: From Lemma 1, we notice that when t� t0 þ T0; Dðt0; tÞ turns
to be zero. Dðt0; tÞ and #1ð�Þ are smooth functions. Thus there exists a unknown
positive constant #�i such that #2

i ðDðt0; tÞÞ�#�i : Let

hiðniÞ ¼ B�1
i fið�xiÞ þ B�2

i e�2
i si/

2
i1ðj�xijÞ þ B�2

i sie
�2
ui u2

i ðvðtÞÞ þ B�2
i si

þ si

Xi�1

j¼1

Z 1

0
gGi;jðfjð�xjÞ þ gjð�xjÞxjþ1ÞÞdg� s�1

i _ai�1

Z si

0
Fiðr; ai�1Þdr

ð11:49Þ

where ni ¼ ½�xT
i ; ai�1;

oai�1
ox1

; oai�1
ox2

; . . .; oai�1
oxi�1

;xi�1; v�T 2 Xsi 	 R2iþ2: Substituting
(11.42)–(11.46) into (11.41), we obtain

_Vsi �KiðtÞsixiþ1 þ sihiðniÞ þ 0:25e2
i þ 0:25e2

ui þ 0:25#�i ð11:50Þ

Similar to the discussion in the step 1, substituting (11.47) and (11.48) into
(11.50), we have

_Vi� ½KiðtÞNðfiÞ þ 1� _fi � ðki � 2Þs2
i � 0:5ri

~h2
i þ 0:5rih

2
i

þ 0:25s2
iþ1 þ 0:25w�2i þ 0:5a2

i þ 0:5e2
i þ 0:25e2

ui þ 0:25#�i
ð11:51Þ

Define ci1 ¼ min 2ðki � 2Þ; cirif g; ci2 ¼ 0:5rih
2
i þ 0:25w�2i þ 0:5a2

i þ 0:25e2
iþ

0:25e2
ui þ 0:25#�i : From the above inequality, we have

_Vi� ½KiðtÞNðfiÞ þ 1� _fi � ci1Vi þ ci2 þ 0:25s2
iþ1 ð11:52Þ

Multiplying (11.52) by eci1t; we obtain

dðViðtÞeci1tÞ=dt� ci2eci1t þ ½KiðtÞNðfiÞ þ 1� _fie
ci1t þ 0:25s2

iþ1eci1t ð11:53Þ

Integrating (11.53) over ½0; t�; we have

ViðtÞ� ci3 þ Við0Þþ
Z t

0
ð½KiðtÞNðfiÞ þ 1� _fie

ci1ðs�tÞÞdsþ 0:25c�1
i1 sup

s2½0;t�
½s2

iþ1ðsÞ�

ð11:54Þ

where ci3 ¼ c�1
i1 ci2:

Step n: The time derivative of sn is
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_sn ¼ fnð�xnÞ þ gnð�xnÞuþ Dnðx; z; tÞ � _an�1 ð11:55Þ

where an�1 is a function of �xn�1; f1; . . .; fn�1; �xnd; ĥ1; . . .; ĥn�1 and v; _ai�1 can be

expressed as _an�1 ¼
Pn�1

j¼1

oan�1
oxj

fjð�xjÞ þ gjð�xjÞ þ Djðx; z; tÞ
� �

þ xn�1ðtÞ; where

xn�1ðtÞ ¼
Xn�1

j¼1

oan�1

ofj

_fj þ
oan�1

o�xT
ðn�1Þd

_�xðn�1Þd þ
Xn�1

j¼1

oan�1

oĥj

_̂hj þ
Xn�1

j¼1

oan�1

ov
_v ð11:56Þ

Differentiating Vsn with respect to time t; we obtain

_Vsn ¼ B�1
n sn _sn þ _an�1 B�1

n sn �
Z sn

0
Fnðr; an�1Þdr

� �

þ
Xn�1

j¼1

Z sn

0
rGi;jðr; ai�1Þðfjð�xjÞ þ gjð�xjÞxjþ1 þ Djðx; z; tÞÞdr

ð11:57Þ

Similar to step i; let

hnðnnÞ ¼ B�1
n fnð�xnÞ þ B�2

n e�2
n sn/

2
n1ðj�xnjÞ þ B�2

n e�2
un snu

2
nðvðtÞÞ þ B�2

n sn

þ sn

Xn�1

j¼1

Z 1

0
gGn;jðfjð�xjÞ þ gjð�xjÞxjþ1ÞÞdg� s�1

n _an�1

Z sn

0
Fnðr; an�1Þdr

ð11:58Þ

where nn ¼ ½�xT
n ; an�1;

oan�1
ox1

; oan�1
ox2

; � � � ; oan�1
oxn�1

;xn�1; v�T 2 Xsn 	 R2nþ2:
Substituting (11.42)-(11.46) into (11.57) yields,

_Vsn �KnðtÞsnuþ snB�1
n hnðnnÞ þ e2

n þ 0:25e2
un þ 0:25#�n ð11:59Þ

Similar to the discussion in step i; substituting (11.47) and (11.48) into (11.59),
we have

_Vn� ½KnðtÞNðfnÞ þ 1� _fn � ðkn � 1Þs2
n � 0:5rn

~h2
n þ 0:5rnh

2
n

þ 0:25w�2n þ 0:5a2
n þ 0:25e2

n þ 0:25e2
un þ 0:25#�n

ð11:60Þ

Define cn1 ¼ min 2ðkn � 1Þ; cnrnf g; cn2 ¼ 0:5rnh
2
n þ 0:25w�2n þ 0:5a2

n þ :25e
n2þ0:25e2

un þ 0:25#�n: The above inequality can be rewritten as

_Vn� ½KnðtÞNðfnÞ þ 1� _fn � cn1Vn þ cn2 ð11:61Þ

Multiplying (11.61) by ecn1t; we obtain

dðVnðtÞecn1tÞ=dt� cn2ecn1t þ ½KnðtÞNðfnÞ þ 1� _fnecn1t ð11:62Þ

Integrating (11.62) over ½0; t�; we have:

116 Z. Gao et al.



VnðtÞ� cn3 þ Vnð0Þþ
Z t

0
ð½KnðtÞNðfnÞ þ 1� _fnecn1ðt�sÞÞds ð11:63Þ

where cn3 ¼ c�1
n1 cn2:

Theorem 1 Consider the closed-loop system consisting of plant (11.1) under
Assumptions 1–4, the control law (11.13) for i ¼ n; and the adaptation laws (11.14)–
(11.15). Then for the bounded initial conditions, the following properties hold:

(1) All signals in the closed-loop system are semi-globally uniformly ultimately
bounded.

(2) The vector ni stays in the compact set Xni
	 R2iþ1; specified as

Xni
¼ nijs2

j � 2gmaxlj; jj~hjjj2� 2cjlj; j ¼ 1; � � � ; i; ; v� k0l1; s
2
iþ1� 2gmaxliþ1

n o

Xnn
¼ nnjs2

j � 2gmaxlj; jj~hjjj2� 2cjlj;�xjd 2 Xjd; j ¼ 1; � � � ; n; v� k0l1

n o
:

Proof Similar to the discussion in Ref. [4], the conclusion is true.

11.4 Conclusion

Based on the backstepping design and the Nussbaum function properties, an
adaptive neural control scheme is proposed for a class of strict feedback nonlinear
systems including unmodeled dynamics. In this paper, an available dynamic signal
is introduced to dominate the unmodeled dynamics. Moreover, the unknown
control direction and the unknown function control gain are dealt with using the
property of Nussbaum function. The controller singularity problem is avoided
using integral Lyapunov function, which may be caused by time-varying gain
functions. The processing procedure of unmodeled dynamics is simplified. By
theoretical analysis, the developed controller can guarantee that all the signals
involved are semi-globally uniformly ultimately bounded.
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