Chapter 11

Adaptive Tracking Control of Nonlinear
Systems with Unmodeled Dynamics

and Unknown Gain Sign

Zhiyuan Gao, Tianping Zhang and Yuequan Yang

Abstract Based on backstepping design, a novel adaptive tracking control
scheme is proposed for a class of strict feedback nonlinear systems with unmod-
eled dynamics and completely unknown function control gain in this paper. An
available dynamic signal is used to dominate the unmodeled dynamics. The
unknown virtual control gain signs are dealt with using the property of Nussbaum
function. The controller singularity problem is avoided using integral Lyapunov
function. By theoretical analysis, the closed-loop systems is proved to be semi-
global uniformly ultimately bounded.

Keywords Strict feedback systems - Adaptive neural control - Dynamic signal -
Nussbaum function

11.1 Introduction

In recent years, adaptive control of nonlinear systems with unknown gain sign has
received a great deal of attention [1-4]. Nussbaum function was firstly proposed in
Ref. [1] for the control problem of a class of linear time-invariant systems with
unknown control gain coefficient. Nussbaum function has already been used to
cope with the adaptive control problem of nonlinear systems with unknown control
gain. The backstepping design was an important method to construct nonlinear
adaptive controller recursively, and has solved a lot of problems that appeared in
the process of the design of adaptive controllers in the early stage of the research,
such as the matching condition, the growth condition. An adaptive control design
was investigated in Ref. [2], using a modified Lyapunov function to remove the
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possible controller singularity problem. Applying the universal approximation
properties of fuzzy logic systems (FLS) and the properties of Nussbaum function,
an adaptive control scheme was developed for a class of MIMO nonlinear systems
with unknown control gain in Ref. [3]. Using the dynamic surface control method
and the properties of Nussbaum function, two adaptive neural network control
schemes were proposed for a class of nonlinear pure feedback systems with dead-
zone in Ref. [4].

The unmodeled dynamics exists widely in the actual systems, which influences
the stability of nonlinear systems, and limits the performance of practical systems.
Two robust adaptive control schemes were proposed for the existing unmodeled
dynamics in Ref. [5, 6]. On the basis of it, using the universal approximation
properties of neural networks, a robust adaptive approach was developed for a
class of nonlinear pure feedback systems in Ref. [7]. Applying the small-gain
approach and the properties of output feedback, [a novel adaptive control design is
investigated in [8]. By introducing an available dynamic signal to dominate the
unmodeled dynamics, a fuzzy adaptive control approach was developed for a class
of nonlinear systems in Ref. [9]. Based on the neural networks universal
approximator, adaptive neural dynamic surface control (DSC) was proposed for a
class of pure feedback nonlinear systems in Ref. [10]. This scheme relaxed the
assumption of the systems, and used the technique of DSC to deal with the control
problem of nonlinear systems including the umodeled dynamics. A new fuzzy
adaptive control approach was developed for a class of nonlinear with unknown
virtual control gain and the unmodeled dynamics in Ref. [11].

On the basis of Refs. [4, 10, 11], a novel adaptive neural network control
scheme is developed for a class of strict feedback nonlinear systems in this paper.
The main contributions of this paper are addressed as follows: (1) The discussed
plant in Ref. [11] is extended to more general strict-feedback nonlinear systems,
and the assumption of the dynamic disturbances is relaxed. Furthermore, tracking
performance is carried out by constructing appropriately unknown continuous
functions; (2) The completely unknown virtual function control gains are dealt
using the property of Nussbaum function while the completely unknown virtual
constant control gains are only discussed in Ref. [11]; (3) The other restriction of
class ko function J(|x;|) is removed except J(|x;|) > y(|x1|).

11.2 Problem Formulation and Preliminaries

Consider a class of strict-feedback systems with unmodeled dynamics in the fol-
lowing form:

z=q(z,x)

X = fi(%i) + gi(Xi)xip1 + Aix, 2, 1)
txn :fn(xn) + g,,(fcn)u + An(x7 8 t)
y =X

(11.1)
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where i=1,2,...,n—1, z€R® is the unmodeled dynamics, X; = [x,xz,
o xi}T ER X, = [x1,x2,. .., xn]T € R" is the state vector, u € R is the system
input, y € R is the system output, f;(x;) and g;(x;) are the unknown continuous
functions, A;(z,x,t),i =1,2,...,n are the nonlinear dynamic disturbances, and
A;(z,x,t) and g(z,x) are uncertain Lipschitz functions.

The control objective is to design adaptive control u for system (11.1) such that
the output y follows the specified desired trajectory y,.

Assumption 1 The unknown dynamic disturbance A;(z,x,1),i=1,2,....n
satisfies:

|A(z, x, ) < by (I%:l1) + i (l21]) (11.2)
where ¢;,(-) and ¢,,(+) is an unknown non-negative continuous function, ¢, (-) is
a non-negative non-decreasing function, and || - || is the Euclidean norm.

Assumption 2 The unmodeled dynamics are exponentially input-to-state practi-
cally Stable (exp-ISpS); that is, the system z = g(z,x) has an exp-ISpS Lyapunov
function V(z) satisfying:

o1 ([fl]) < V(2) < oa([[2]) (11.3)

aV(z)
0z

where o (+), a(+) and 7(+) are of class of k., functions, ¢ and d are known positive
constants. Moreover, y(-) is a known function.

q(z,%) < = cV(2) +9(x|) +d (11.4)

Assumption 3 The desired tracking trajectory X;; is continuous and available, and

— . [ 2 _ . . T
||xnd|| 6LOOa 1.e., Z?:O [yg)] §307Vt> 07 where Xid = [yd7yd7 7y<dl)] )
i=1,...,n, By is a positive constant.

Assumption 4 The sign of control gain g;(-) is unknown. Moreover, there exist
positive constants guin and gmax such that 0<gmin < |gi()]| < gmax, 1 <i<n.

Lemma 1 [6] If V is an exp-ISPS Lyapunov function for a control system
z=q(z,x), i.e. Egs. (11.3) and (11.4) hold, then for any constants ¢ in (0,c), any
initial instant ty > 0, any initial condition zo = z(ty) and vy > 0, for any function
5(-) such that 3(|x1|) >y(|x1]), there exists a finite Ty = V(z0)vy el x(c —
6)71 >0, an available signal v > 0, a nonnegative function D(ty,t) defined for all
t >ty with D(ty,t) =0 and V(z) <v(t) + D(ty,t) when t> 1ty + T,, and a signal
described by

v=—cv+3(x]) +d, v(to) = vo (11.5)

Without loss of generality, we choose 7(|x1|) = y(Jx1]).
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Lemma 2 [12] For any real-valued continuous function f(x,y) where x € R™ and
y € R", there are smooth scalar-value functions ¢(x) >0 and 9(y) >0, such that

If (x, )| < o(x) +9(y).

The Nussbaum gain technique is introduced in this paper, in order to deal with
the unknown sign of control gain. A function N({) is called a Nussbaum-type
function if it has the following properties [1]:

lim sups’l/ N({)d{ = 400 and lim infs’l/ N()d{ = -0 (11.6)
S—00 0 §—00 0
Commonly used Nussbaum functions include: ( cos({), sin({) and

exp((?) cos((m/2)(). We assume that N(¢) = e cos((m/2){) is used in throughout
this paper.

Lemma 3 [13] Let V(-) and {(-) both be smooth functions on [0, t;), with V(t) >0
and ¥t € [0,17), N(-) be an even smooth Nussbaum-type function, if the following
inequality holds:

V(1) <co+ eiclt/ g(x(2))N(0)Ee " dt + e~ ! /[ Lerdr, Ve € [0,47)  (11.7)
0 0

where ¢ is a suitable constant, c| is a positive constant, g(x(t)) is a time-varying
parameter that takes values in the unknown closed intervals I := [I7,I1], with

0 &1, then V(1), {(t) and f(;g(x(r))N(C)éd‘c must be bounded on [0, 1;).

Lemma 4 [14] For any given positive constant ty > 0, if the solution of the
resulting closed-loop system is bounded on the interval t € [0,1;), then ty = oo.

Let W:T\y,(&;) be the approximation of the radial basis function neural net-
works on a given compact set Qe, C R to the unknown continuous function h;(&;),
ie, hi(&) = WY, (&) + wi(&), where & € Q:, C RY is the input vector of neural
networks; Wi € R is the ideal weight vector for sufficient large integer I; which
denotes the neural networks node number satisfying l; > 1; the basis function
vector Y;(&) = [py (&), .- pili(éi)]T € R with p;(&;) being chosen as the com-
monly used Gaussian functions, which have the form:

pi(&i) = exp[—(& — sz)T(fz‘ - ;ii)d)i;z]v 1<j<;,1<i<n (11.8)

where, ¢ = [Sii1, i -+ - QU%]T is the center of the receptive field and ¢;; is the
width of the Gaussian function. The unknown ideal weight vector is defined as
follows:

W, = arg min [ sup [W/ (&) = £(&)]] (11.9)

WiERli Gi€Qy;

|wi(&)| <&, and & > 0 is the unknown constant
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11.3 Control System Design and Stability Analysis

Based on backstepping, an adaptive neural control scheme will be proposed in this
section. The control procedure consists of n steps, and is based on the following
change of coordinates: sy =x; — Y4, $2 =Xp — %1, ...,y = X, — 0y—1, Where
o;,i =1,...,n—1 is the virtual control input, and will be obtained in the fol-
lowing design. For convenience, define the Lyapunov function candidates as
follows:

Vs, :/ g7 (0 + va)|oda + 'y (11.10)
0
s
Vsj:/o |gj’1()’cj,1,a+ocj,l)|ad0',2§j§n (11.11)
Vi =V, +0.5);'0? (11.12)

where 0; = 0, — 0;, 0; is the estimate of 0; at time t, 0; = ||W;]|, y; > 0 is a design
constant,i = 1,...,n.

The virtual control laws and the adaptive laws are employed as follows
(i= 1;"'7”):

o = N(&)[kisi + 0.5a; 5.0, [y, ()] (11.13)
{ = kis? 4 0.5a; 2520;| [, (&) )P (11.14)
0 = 7,054,282 Wi — 0:b] (11.15)

where k; is a design constant, a;, y; and o; are strictly positive constants.
For the sake of clarity and convenience, let

By = |g1(x1)|, Fi(o,y4) = |87 " (o + ya)| (11.16)

B; = |gi(x)|, Fi(o,06-1) = |g; ' (%i1,0 + %) (11.17)
Gij(o,05-1) = Og; " (Xim1, 0+ 1)| /0 (11.18)
Ki(r) = gi(x)B;! (11.19)

where j=1,---,i—1,i=2,--- 1.

Step 1: According to the second mean value theorem, there exists 4; € (0, 1)
such that [J' Fi(o,yq)ods can be rewritten as [' Fi(o,ys)odo =
0.557F (2151, 54). Due t0 0 < gmin < |8i(+)| < gmax. it is shown that ;' Fy(0,yq)odo
is positive definitive with respect to s;. Differentiating s; with respect to 7, we
obtain
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$1=x1 =fi(%1) + g1(¥1)x2 + Ai(x,2,7) — Ja (11.20)

The time derivative of Vj, is:

51
VSl = Blilsl;i‘l —|—yd |:Blsl —/ Fl (a,yd)da} +/161?(|x1|) —|—dﬂal — E/l(;lv
0

(11.21)

According to Assumption 1, using Young’s inequality, we obtain
[s1A1(x, 2, D) < [st|pri (1x1]) + Isi[dia(J21) (11.22)
B [siluy (1)) < 2%, (%1 ))e 2By + 0.256 (11.23)

Because of «;(-) being class of k.-functions, it’s seen that o '(:) is also a
single-increasing function. Noting Assumption 2 and Lemma 1, we have

[l2]] <o (v(1) + D10, 1)) (11.24)

bra(llzll) < i 0 07 (v(1r) + D10, 1)) (11.25)

where ¢, 007! (-) = ¢y,(a;!(+)). Noticing that ¢y, oy !(+) is a non-negative
smooth function, and using Lemma 2, we have

Is1]dua(llzl]) < [s1ldia 0 o7 (v(2) + D10, 1)) < [st |y (v(2)) + |s1 [0 (D (20, 7))
(11.26)

Similar to the inequalities (11.23), from Young’s inequalities, we obtain
B 51101 (v(1)) < 5203 (v(1) )P B + 0.2522, (11.27)

By [s1]91(D(t0,1)) < s3B7? +0.2592(D(to, 1)) (11.28)

From Lemma 1, it is shown that D(#y, ¢) turns to be zero, when ¢ >ty + Tp.We
assume that ¥?(D(to,1)) <97, i=1,2,...,n, due to D(fp,t) and ¥;(-) being
smooth functions to be bounded. From Young’s inequality, we obtain

Ki(t)s152 <57+ 0.2553 (11.29)
siwi (&) <57+ 025w (&) <57+ 0.25w)? (11.30)

Substituting (11.23) (11.27) and (11.28) into (11.21), we have

Vo KOs + i (&) + 1= 53/ 75 9(0)

(11.31)
— iy v+ dig" +0.256 + 0.256], + 0.250;

where A1 (&y) = By 'fi(%1) + 5107 (v(1)By 26,7 + 5167, (1) By %> + 51,2
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51
—Vasy ! / Fi(a,v4)do + 2o sip(|x; |).9;2
0

In the above inequalities, &; is a positive constant. Substituting (11.29) and
(11.30) into (11.31), we have:

Vi, <K (0)s10 + 253 + 520, || Wi (€))|* /a® + 0.2553 4 0.25w'% + 0.25a°
—ely'v+dig" + 0256 + 02560, +0.250; + [1 - s?a;z] o 7(lxa))
(11.32)
Substituting (11.13) and (11.14) into (11.32), we obtain:
Ve, <[K(ON(G) + 108 — (k= 2)5t + 510, || Wi ()17 /247 — edy'v +0.2553
+0.2568 + 0,256, +0.5aF +0.250; + 025w + dig' + [1 = 62| 4530 )
(11.33)

Differentiating V| with respect to time ¢, moreover, substituting (11.15) and
(11.33) into (11.12), we have

Vi <[Ki(ON(G) + 18 = (k= 2)s? — 050,07 + 0.255% — ¢y 'v + 0.25wi2 4 0.54°
+ iy +0.258 + 0258 +0.250; +0.50,07 + [1 - s%sﬁ] 25 5l )).
(11.34)

Define ¢j; = min{2(k; — 2),y,01,¢}, c12 = 056,07 +0.25w'2 4 0.54% +
dig'+ 0.25¢ —}—0.2583)1 + 0.25¥]. From inequality (11.34), we obtain:
Vi <[Ki(ON(G)) + 18— enVi + ci2 + 02553 + [1 - sﬁsﬂ 755 (1)
(11.35)
Multiplying (11.35) by e, it becomes:
d(Vi(1)e) Jdt < cipe™ + [Ky (ON(E)) + 1)E e
, ) o1 (11.36)
+ 0.2555¢"" + [1 — 5785 ]}va P(|xr ) e

Integrating (11.36) over [0, 7], we have:
t
Vi(t) <ciz + V1(0) +/ (K (ON(Ey) + 1]E e dr
0

t t
+ 0.25(3’"“’/ s%ec“fd‘c—i—e"'“’/ [1 — s%s;z} o 3(xi])ede
0 0

(11.37)
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where cj3 = cl’llclz. Note that

t
e_c“’/ s3e1dr <y} sup [53(1)] (11.38)
0 7€[0,1]

Therefore, if s3 can be regulated to be bounded, we easily notice from inequality
(11.38) that, the extra term 0.25¢~ 1" fé s%e””fdr can be bounded. The effect of
0.25¢~<n? fé s3¢“*dt will be handled with in the following steps. The other extra

term will be discussed in the last of the paper.
Step i (2<i<n— 1): The time derivative of s; is:

§i = fi(xi) + gi(Xi)xiv1 + Ai(x, 2,1) — &4y (11.39)

Because o;_; is a function of x;_1,(;,...,{;_1,Xig,01,...,0i_1,v, &_1 can be

i—1
expressed as &, = Y Z=L[f(%;) + (%)) + Aj(x,2,1)] + wi_1(t), where
=

i—1

Ooi_1; 0oty - ! 0015 ' 0oy .
w;—1(t) = C‘+7—xi, + = 0+ v 11.40
l( ) j; agj ] ax(T;il)d ( l)d j:zl agj J Z av ( )

The time derivative of Vj, is

Si
VS,- = B;ls,fsi + d(,'_] [B;lsi - / F,'(G, OCi_l)dG]
0

i1 s (11.41)
s /0 6Gi (0,04 1) (£ (%) + 8(%) 51 + A(x,2, 1))do
Using Assumption 1, we have:
i1
60(1'_
Jsil[i( 2,0) = Y5 Ayl 1)
=i an
(11.42)

i—1 1
+ IsiIZ/ NGij(nsi, 1) A(x, 2, )] < [sif [ (1)) + Pia(J2])]
=170

- i1 - i1
where ¢; (|x;]) > ¢,y + Z:l | a%‘;;l i1, din(lz]) > b + Z} ‘%W;z-
= =

J
Similar to step 1, and according to Lemma 2, we have

Isilpia(llzl]) < lsil@;(v(1)) + |si[0i(D (20, 1)) (11.43)

Furthermore, applying Young’s inequality, we have:

B silur (I5ill) < B e 2575 (|[il]) + 0.25¢7 (11.44)



11 Adaptive Tracking Control of Nonlinear Systems 115

B [silgi(v(1)) < B %5707 (v(1)) + 0.25¢, 7 (11.45)
B [5;9:(D(to, 1)) < By 2s? 4 0.2597(D(1o, 1)) (11.46)
Ki(t)sisit1 < 51‘2 + O.25s?+1 (11.47)

siwi(&) <2 4025w (&) <7 + 0.25w> (11.48)

where i = 1,...,n. From Lemma 1, we notice that when ¢ >ty + T, D(to,t) turns
to be zero. D(fy,t) and () are smooth functions. Thus there exists a unknown
positive constant ¥} such that ¥?(D(ty, 1)) <¥;. Let

hi(&) = By (%) + B e il (i) + B Psie 07 (v(0) + B s

+SIZ/ nGi;(fi(x;) —|—g,(x,)x,+1))d17—s 8 1/0 Fi(o,0-1)do

(11.49)
where & = [x], 0 1,85“)'( ,ag)'cz fe ,gx L wiot, v]" € Q, C R¥2.  Substituting
(11.42)=(11.46) into (11.41), we obtain

Vs,- § Ki(t)s,-x,-H + Sihi(é ) + 0. 258 + 0. 258(/” + 025’[91* (1150)

Similar to the discussion in the step 1, substituting (11.47) and (11.48) into
(11.50), we have

Vi <[Ki(ON(&) +1)8 = (ki = 2)s2 — 050,07 + 056,67

2 *2 2 2 2 * (1 151)
+0.2552,; +0.25w;% + 0.5a7 + 0.5¢ + 0.25¢2, + 0.259;

Define ¢;; = min{2(k; — 2),7;6:}, co = 0.56,07 + 0.25w? + 0.5a? + 0.252+
0.258% + 0.259;. From the above inequality, we have

Vi <[K(N(L) + 1] — ea Vi + ¢ + 02552, (11.52)
Multiplying (11.52) by %', we obtain
d(Vi(1)en") Jdt < cppe™ + [Ki(t)N(&;) + 1] + 0.2552, e (11.53)

Integrating (11.53) over [0, ], we have

Vi(t) <eis + Vi(0)+ /O f ([K(ON(L) + 1)Ge )de +0.25¢;," sup [s7,,(7))]

7€(0,1]

(11.54)

where c;3 = ¢;;'cp.
Step n: The time derivative of s, is
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Sn :fn(xn) +gn(jcn)u+An(x7Z,t) — Oy (1155)

where «,_; is a function of x,_{, {y,...,{,—1, Xna, O1,...,0,_1 and v, &;_; can be

expressed as &, | = Y. ag};‘ [fi(x) + g(x) + Aj(x,2,1)] + w,—1(t), where

j=1

00,1 ; 0oty ; aac,, O,
wn—l(t)zz ac 1}’ +a T ! I’l ld+z 1 Z avlv (11'56)
j

n—1)d =

Differentiating V,, with respect to time ¢, we obtain

S
Vs, = B;lsnjn ~+ Oty [Bnlsn — / F,(o, fln1)d6]
0

n—1

+ Z /Osn 0G;j(a,0i-1)(fi(%) + gi(X)xj1 + Aj(x,2,1))da

=1

(11.57)

Similar to step i, let

ha(Ea) = By fulTa) + B, 26, sudi (1%]) + B, e s (v(1)) + B, s

+sn2/ NG (fi(%) + gi(%)xi51))dn — s, bt 1/0 Fu.(0,0,-1)do

(11.58)
where &, = [xI' o, l,ag; ,a“;*‘ Bt g, g,y v e Q, c R,
Substituting (11.42)- (11 46) into (11 57) yields,
Vi, < Ku(t)sutt + suB,  ha(E,) + &5 + 025, 4 0.250; (11.59)

Similar to the discussion in step i, substituting (11.47) and (11.48) into (11.59),
we have

Vo <[Ko(OON(&) + 118, — (ky — 1)s2 — 0.56,02 + 0.50,,0

*2 2 2 2 * (1 1 60)
+ 025w +0.5a% + 025682 + 0252, + 0250,

Define  c¢,; = min{2(k, — 1),7,0n},cn2 = 0.56n9ﬁ + 0.25w;:2 + O.Saﬁ + .25¢
n2—|—0.258(2pn -+ 0.259;. The above inequality can be rewritten as

v, <[K.(t)N(L,) + ]C —cn Vo + (11.61)
Multiplying (11.61) by e“'’, we obtain
d(V,y (1)) Jdt < cope™ + [Kn()N(C,) + 1)E,e (11.62)

Integrating (11.62) over [0, ], we have:
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Va(t) < s + Vi (0)+ / | ([Ka(ON (L) + 11,6 )de (11.63)
0

where ¢,;3 = ¢,/'cpa.

Theorem 1 Consider the closed-loop system consisting of plant (11.1) under
Assumptions 1-4, the control law (11.13) for i = n, and the adaptation laws (11.14)—
(11.15). Then for the bounded initial conditions, the following properties hold:

(1) All signals in the closed-loop system are semi-globally uniformly ultimately
bounded.
(2) The vector &; stays in the compact set Q¢ C R**!, specified as

chi {éz‘sjz < 2gmaX/M‘ja ||g)/H2 < zyjlujaj =1,---,i,,v< ;°0M17S;2+1 < 2gmaX.“i+1}
Qvn

N2 - . 5
E, — {én|sjz Szgmaxlujv ||gj|| SZVjvaxjd € dea] =1, 7n7V§/L0,ul}'

Proof Similar to the discussion in Ref. [4], the conclusion is true.

11.4 Conclusion

Based on the backstepping design and the Nussbaum function properties, an
adaptive neural control scheme is proposed for a class of strict feedback nonlinear
systems including unmodeled dynamics. In this paper, an available dynamic signal
is introduced to dominate the unmodeled dynamics. Moreover, the unknown
control direction and the unknown function control gain are dealt with using the
property of Nussbaum function. The controller singularity problem is avoided
using integral Lyapunov function, which may be caused by time-varying gain
functions. The processing procedure of unmodeled dynamics is simplified. By
theoretical analysis, the developed controller can guarantee that all the signals
involved are semi-globally uniformly ultimately bounded.
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