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Abstract. RCCA security is a weaker notion than CCA security, and
has been proven to be sufficient for several cryptographic tasks. This
paper adapts RCCA security to the most popular hybrid paradigms,
KEM+DEM and Tag-KEM/DEM.

It is open to construct an RCCA-secure scheme more efficient than
CCA-secure ones. In the setting of Tag-KEM, we solve this by presenting
a natural RCCA-secure RSA-based Tag-KEM scheme, named as RSA-
TKEM, which is more efficient than all existing methods for constructing
a CCA-secure RSA-based Tag-KEM scheme.

Unfortunately, combining our RSA-TKEM with passive secure one-
time pad following Tag-KEM/DEM paradigm yields an RCCA-insecure
hybrid encryption. This shows passive security of DEM is not sufficient
now, and Tag-KEM/DEM looses its advantage over KEM+DEM. In
spite of this and for completeness, we show RCCA secure DEMs are
still sufficient to achieve RCCA-secure hybrid encryptions by following
Tag-KEM/DEM.

In addition, we show RCCA-secure KEM is sufficient for achieving
CCA-secure hybrid encryptions. This is done by introducing a new hy-
brid paradigm, named as KEM/Tag-DEM, where the ciphertext of KEM
is used as a tag for Tag-DEM scheme rather than reversely in Tag-
KEM/DEM, so that the security of KEM can be weakened to RCCA one.
Tag-DEMs can be constructed as efficiently as DEMs, so RCCA-secure
KEMs more efficient than CCA-secure ones become more appealing.

1 Introduction

The notion of Replayable CCA (RCCA) security for Public-Key Encryption
(PKE) is introduced in [10]. It is a weakened variant of CCA security where
the decryption oracle answers ‘test’ whenever it is asked to decrypt any cipher-
text that decrypts to either of the questioned messages m0 or m1, even if this
ciphertext is different from the challenge ciphertext. Accordingly, even if the
adversary can tweak the challenge ciphertext without affecting the embedded
plaintext (such a feature is called benign-malleability in [20]), sending it to the
decryption oracle does not help the adversary determine which of the questioned
messages is hidden.
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RCCA-security is proven to be sufficient for several cryptographic tasks in
[10] and is believed to be sufficient for all the uses of CCA-secure encryptions
in [5,20]. It also makes it possible to consider secure rerandomizable encryptions
[13,17]. We can hope that a weaker definition might give rise to more efficient
constructions but this has so far not been the case. There is no known instance
of RCCA-secure public-key encryption that is more efficient than known CCA-
secure ones as so far.

For hybrid encryptions, RCCA security was first considered in [10]. [10] shows
the natural combination of an RCCA-secure PKE and an RCCA-secure
Symmetric-Key Encryption (SKE) is RCCA-secure as a PKE, which is con-
sistent with the well known CCA case. Furthermore, an RCCA-secure PKE can
be made CCA-secure if combined with a CCA-secure SKE in such a way that the
ciphertext of the PKE is also input to the SKE encryption. This shows the suffi-
ciency of RCCA security of PKE for achieving CCA-secure hybrid encryptions.
The two hybrid schemes named as HE1 and HE2 are shown in Table 1.

However, the work in [10] only relates to limited hybrid frameworks consisting
of PKE and SKE. There are more efficient and general paradigms to realize
hybrid encryptions, such as KEM+DEM [11] and Tag-KEM/DEM [3].

Table 1. RCCA-security related hybrid encryptions of PKE and SKE in [10]

PKE SKE Security

HE1
Input K Input M IND-RCCA+IND-RCCA

Output ψ = Output χ= ⇒ IND-RCCA
PKE.Encpk(K) SKE.EncK(M)

HE2
Input K Input (M,ψ) IND-RCCA+IND-CCA

Output ψ= Output χ= ⇒ IND-CCA
PKE.Encpk(K) SKE.EncK(ψ‖M)

KEM uses asymmetric techniques to encrypt a symmetric key, while DEM
uses a symmetric cipher to encrypt the message using the key from the KEM.
KEM can be built more efficiently than PKE, and DEM can be a one-time SKE,
these make KEM+DEM paradigm more efficient.

For some security reasons and to capture wider variety, Masayuki Abe, et al
introduced Tag-KEM/DEM framework ([3], [2], [4]). A Tag-KEM scheme takes
also a tag as its input. The novelty of Tag-KEM/DEM lies in using the ciphertext
of DEM part as the tag input to Tag-KEM. This binding way of ciphertexts
makes it possible to yield CCA-secure hybrid encryptions by a DEM scheme
secure simply against a passive attacker (we shortened this security for DEM
as one-time security). This weakening may be the most prominent advantage of
Tag-KEM/DEM.

This paper adapts RCCA security to those more general hybrid paradigms and
consider whether or not similar desired properties hold as for hybrid encryptions
of PKE and SKE.
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1.1 Our Contributions

We first consider RCCA security for KEM+DEM paradigm. Adapting the no-
tion of RCCA security to KEM is also done in [3] for a different purpose. It
is believed in [20] that if KEM and DEM are benign malleable, then so is the
hybrid encryption. We substitutes more general RCCA-security for benign mal-
leability. That is, IND-RCCA+IND-RCCA⇒IND-RCCA. This consists with the
CCA situation, as desired.

We also adapt RCCA security to Tag-KEM/DEM, but find some different
status. Firstly, a natural and efficient RCCA-secure Tag-KEM construction is
possible. We present such an RSA-based one in Section 3, named as RSA-TKEM.
The security is proved in the random oracle model [8]. RSA-TKEM is almost as
efficient as the well known RSA-KEM in [20] with only one more hash and an
XOR operation. Particularly, the scheme has no ciphertext redundancy, thus no
validity check of ciphertext or tag part. This is different from all existing CCA-
secure schemes as much as we know of and makes the scheme more efficient. We
give a short comparison with those most efficient CCA-secure RSA-based Tag-
KEMs in Table 2, where f denotes the RSA permutation, MAC is a message
authentication code, H is a hash function, the final ciphertext is ψ, and | · |
denotes the length. It can be seen from the table that our RSA-TKEM has least
ciphertext expansion.

Table 2. A comparison with existing efficient CCA-secure RSA-based Tag-KEMs

Schemes In [1] In [3] Section 4.2 In [3] Section 5.3 RSA-TKEM

Description x = r‖H(r, τ ) σ =MAC(τ ) σ = H(r‖τ ) s = f(r)
of encapsulation ψ = f(x) ψ = f(r)‖σ ψ = f(r)‖σ ψ = f(r)⊕H(τ )

Ciphertext length |r|+ |H(r, τ )| |r|+ |MAC(τ )| |r|+ |H(r, τ )| |r|
Security IND-CCA IND-CCA IND-CCA IND-RCCA

For Tag-KEM/DEM, one may hope IND-RCCA+One-time security⇒IND-
RCCA. Unfortunately, this is not the case. Combining the above RSA-TKEM
and passive secure one-time pad yields a counterexample. An adversary when
receives the challenge ciphertext (ψ∗, χ∗) can randomly choose a χ′, compute
H(χ′) and H(χ∗), then query (ψ = ψ∗ ⊕ H(χ∗) ⊕ H(χ′), χ′) to its decryption
oracle. Let the answer be m′, with all but negligible probability, m′ �= ‘test’. The
adversary can then obtain the K underlying (ψ∗, χ∗) by computing K = χ′⊕m′.

In fact, passive security for DEM is not sufficient now. Note that if in an
RCCA-secure Tag-KEM, an adversary can only tweak (ψ∗, τ∗) to (ψ, τ) with
τ = τ∗ and without affecting the encapsulated key, then passive security for DEM
is sufficient. However, this is not the case, generally. Furthermore, we can prove
RCCA security for DEM will be sufficient generally. The proof is given in Section
4.2. But this time Tag-KEM/DEM looses its advantage over KEM+DEM. It
is interesting to notice that a little weakening of security requirement of Tag-
KEM results in a total insecurity. This somewhat explains the gap between
KEM+DEM and Tag-KEM/DEM paradigms.
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Finally, we prove RCCA-security for KEM is sufficient for hybrid encryption as
desired. To do this, we generalizeHE2 in Table 1 to a new hybrid paradigm named
as KEM/Tag-DEM.KEM/Tag-DEMuses a similar idea behind Tag-KEM/DEM,
but rather than use the ciphertext of DEM as a tag for Tag-KEM, we use the
ciphertext of KEM as a tag for Tag-DEM. Since in Tag-KEM/DEM the binding
way of ciphertexts makes it possible for the CCA-security of Tag-KEM to provide
integrity to the tag, the ciphertext of DEM there, so can it in our paradigm for the
CCA security of Tag-DEM to compensate the malleability of KEM. This makes
it possible to achieve CCA-security by RCCA-secure KEM and CCA-secure Tag-
DEM. The formal treatment and possible constructions are shown in Section 5.

The CCA-security of KEM/Tag-DEM and the RCCA one of KEM+DEM
actually show that RCCA-secure KEM is sufficient for constructing hybrid en-
cryption, just as we desired: for RCCA-security, follow KEM+DEM; for CCA-
security, follow KEM/Tag-DEM. We summarize all three hybrid paradigms
related security results in Table 3.

Table 3. The three hybrid paradigms and their security

Hybrid paradigm Security results

KEM+DEM
IND-CCA + IND-CCA ⇒ IND-CCA([11])
IND-RCCA + IND-RCCA ⇒ IND-RCCA (by Th2)

Tag-KEM/DEM
IND-CCA + One-time security ⇒ IND-CCA([3])
IND-RCCA + One-time security � IND-RCCA (counterexample)
IND-RCCA + IND-RCCA ⇒ IND-RCCA (by Th3)

KEM/Tag-DEM IND-RCCA + IND-CCA ⇒ IND-CCA (by Th4)

Importance of KEM/Tag-DEM. Compared to Tag-KEM/DEM, one may
think KEM/Tag-DEM achieves less improvement. However, CCA-secure DEMs
and Tag-DEMs can be easily and efficiently built, while CCA-secure KEMs and
Tag-KEMs cost much, weakening the security requirement of KEM to RCCA-
security may be beneficial. In most KEMs, the valid ciphertext of a encapsu-
lated key is uniquely determined, this makes it difficult to build efficient and
natural RCCA-secure KEM, especially when rerandomizable one is taken into
consideration [13]. Nevertheless, as illustrated in [10], a CCA-secure KEM may
only achieve RCCA-security in practical protocols when allowing for arbitrary
padding to ciphertexts (in order to align the length) or more than one represen-
tation of ciphertexts. That time, KEM/Tag-DEM will achieve advantages over
KEM+DEM paradigm.

KEM/Tag-DEM shows the diversity of hybrid encryptions and has additional
practical values. In practice there are always associated data to DEM [18], thus
including the ciphertext of KEM brings no significant difference in efficiency, and
may ”offload” as much cryptographic work from the slower KEM part onto the
faster DEM part. In addition, in Tag-KEM/DEM, a receiver generally need the
entire ciphertext to derive the encapsulated key, which makes it extremely unsuit-
able for streaming processing, while KEM/Tag-DEM suffers no such problem.
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1.2 Further Discussions and Related Works

From the above, to achieve RCCA-secure hybrid encryptions, we need RCCA-
secure DEMs. In [10], it has been pointed out that RCCA-secure SKE can be
given by the “encrypt-then-authenticate” paradigm using a regular secure MAC
(but not a strong one, which means given pairs of messages and their mac val-
ues, it is not possible to find another valid mac value for any messages), which
means given pairs of messages and their mac values, it is not possible to find
a valid mac value for any other messages, but may be possible to find a differ-
ent valid mac value for someone of these messages. RCCA-secure DEM can be
given in the same way. Thus, a regular secure but not strong MAC may helps in
obtaining an RCCA-secure hybrid encryptions more efficient than CCA-secure
ones. However, most MAC schemes are deterministic and the verification is done
by re-computation, finding a different valid mac value for the same message is
impossible. A randomized or multi-valued MAC is needed. [15] gives some ex-
amples, but just conceptual.

In [3], Abe et al. also showed how to obtain a CCA-secure hybrid encryption
from an RCCA-secure KEM by making it to be a CCA-secure Tag-KEM. Their
method can be explained by our new paradigm in another way. And since in
Tag-DEM it is no need to provide privacy but integrity of tag τ , then using the
same techniques in constructing deterministic authenticated-encryption in [19]
gives more efficient schemes.

There are some other weaker security notions for KEM except RCCA-security,
such as CCCA-security in [14] and LCCA-security in [3]. These security notions
whose strength depend on the chosen predict are not strictly weaker than CCA-
security. Since in RCCA security, a special ‘test’ is returned when a replay is
detected, no direct relation exists between these notions.

2 Preliminaries

2.1 CCA and RCCA Security Notions for PKE

A public-key encryption scheme consists of three algorithms. Probabilistic
PKE.Gen that on input the security parameter k, generates public and private-
keys (pk, sk), pk defines the message spaceM. Probabilistic PKE.Enc encrypts a
message m ∈ M into a ciphertext c. PKE.Dec decrypts c, outputs either m ∈M
or a special symbol ⊥/∈M. An obvious soundness condition applies.

We say a PKE is IND-CCA secure if for every probablistic polynomial-time
oracle machine AE plays the following game, its advantage
Advccapke,AE

(k) = |Pr[b̃ = b]− 1
2 | is negligible in k.

[GAME.PKE]
Step 1. (pk, sk)← PKE.Gen(1k)
Step 2. (m0,m1, v)← AO

E (pk)
Step 3. b← {0, 1}, c← PKE.Encpk(mb).

Step 4. b̃← AO
E (v, c)



RCCA Security for KEM+DEM Style Hybrid Encryptions 107

By O, we denote PKE.Decsk(·). In Step 4, AE is restricted not to ask c to O.
IND-RCCA security is defined all the same except that the decryption oracle

returns ‘test’ for any ciphertext decrypts tom0 orm1 in step 4. Let [RGAME.PKE]
denote the game and Advrccapke,AE

(k) the advantage.

2.2 KEM+DEM and Related Security Notions

A key encapsulation mechanism (KEM) consists of three algorithms. Probabilis-
tic KEM.Gen that on input 1k outputs a public/private key pair (pk, sk), pk
defines the key space KK . Probabilistic encapsulation algorithm KEM.Enc that
on input 1k and a public key pk, outputs a pair (dk, ψ), where dk ∈ KK is a key
and ψ is its ciphertext. Decapsulation algorithm KEM.Dec, on input sk and ψ,
outputs either a key dk ∈ KK or the special symbol ⊥. An obvious soundness
condition applies.

IND-CCA security for KEM is defined by the following game.

[GAME.KEM]
Step 1. (pk, sk)← KEM.Gen(1k)
Step 2. v ← AO

K(pk)
Step 3. (dk1, ψ)← KEM.Encpk(), dk0 ← KK , δ ← {0, 1}.
Step 4. δ̃ ← AO

K(v, ψ, dkδ)
O denotes KEM.Decsk(·). In Step 4, AK is restricted not to ask ψ to O.

For IND-RCCA security, all is the same except that the decryption oracle returns
‘test’ for any ciphertext decrypts to dk0 or dk1 in step 4, as done in [3].

A data encapsulation mechanism (DEM) is a one-time symmetric-key encryp-
tion, consists of two algorithms. Deterministic DEM.Enc that takes as input 1k,
a key dk and a message m, outputs a ciphertext χ. Deterministic DEM.Dec that
takes as input a dk and a ciphertext χ, outputs a message m or the special
symbol ⊥. An obvious soundness condition applies.

The one-time security (or passive security) and IND-CCA security of DEM
is defined respectively by the following game when O is null and DEM.Decdk(·).
In Step 3, AD is restricted not to ask χ to O.

[GAME.DEM]
Step 1. (m0,m1, v)← AO

D(1k)
Step 2. dk ← KD, b← {0, 1}, χ← DEM.Encdk(mb).
Step 3. b̃← AO

D(v, χ)

For IND-RCCA security, all is the same except that the decryption oracle returns
‘test’ for any ciphertext decrypts to m0 or m1 in step 3.

KEM+DEM hybrid paradigm works as follows, and [11] shows that if KEM
and DEM are IND-CCA secure then the following HPKE is IND-CCA secure
(as a public-key encryption).
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Function: HPKE.Encpk(m)
(dk, ψ)← KEM.Encpk()
χ← DEM.Encdk(m)
Output c = (ψ, χ)

Function: HPKE.Decsk(c)
(ψ, χ)← c
dk ← KEM.Decsk(ψ)
m← DEM.Decdk(χ)
Output m

2.3 Tag-KEM/DEM Hybrid Framework and Related Security
Notions

A Tag-KEM scheme consists of the following algorithms. Probabilistic TKEM.Gen
generates public/private-key pair (pk, sk), pk defines spaces for tags and encap-
sulated keys denoted by T and KK . Probabilistic TKEM.Key outputs one-time
key dk ∈ KD and internal state information ω, KD is the key-space of DEM.
Probabilistic TKEM.Enc encapsulates dk (embedded in ω) into ψ along with τ .
TKEM.Dec recovers dk from ψ and τ . An obvious soundness condition applies.

Let O be the decapsulation oracle TKEM.Decsk(·, ·), the IND-CCA security
of a Tag-KEM is defined by the following game:

[GAME.TKEM]
Step 1. (pk, sk)← TKEM.Gen(1k)
Step 2. v1 ← AO

T (pk)
Step 3. (ω, dk1)← TKEM.Key(pk), dk0 ← KD, δ ← {0, 1}.
Step 4. (τ, v2)← AO

T (v1, dkδ)
Step 5. ψ ← TKEM.Enc(ω, τ)
Step 6. δ̃ ← AO

T (v2, ψ)

In Step 6, AT is restricted not to ask (ψ, τ) to decryption oracle O. IND-RCCA
security for Tag-KEM can be derived in the same way as for KEM.

The novel generic construction of Tag-KEM/DEM which uses the ciphertext
output by the DEM as the tag is as follows, and [3] shows that if Tag-KEM is
CCA secure and DEM is passive secure then the hybrid HPKE scheme is CCA
secure.

Function: HPKE.Encpk(m)
(ω, dk)← TKEM.Key(pk)
χ← DEM.Encdk(m)
ψ ← TKEM.Encpk(ω, χ)
Output c = (ψ, χ)

Function: HPKE.Decsk(c)
(ψ, χ)← c
dk ← TKEM.Decsk(ψ, χ)
m← DEM.Decdk(χ)
Output m

3 The Proposed RCCA-Secure Scheme: RSA-TKEM

Our RSA-TKEM is very simple and has a tight reduction, just like RSA-KEM
in [20]. The description is as follows (for simplicity, we assume all elements are
expressed as binary strings):

- Gen(1λ): The same as RSA and also output a hash functionH maps a bit string
of arbitrary length to appropriate one (allowing the XOR). Let ((n, e), (n, d))
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denotes the public-private key pair (pk, sk). The pk also defines the output
key length l.

- Key(pk): Generate a random number r ∈ {0, 1, ..., n − 1}, then compute
K = G(r), where G is a KDF function (see [11]), it maps elements of Zn to
bit strings of length l. Output (K,ω = r).

- Encpk(ω, τ): Compute s = re mod n and y = s⊕H(τ). Output y.
- Decsk(y, τ):Compute s = y ⊕ H(τ), r = sd mod n and K = G(r). Output
K.

Note that in the scheme a hash of tag is XORed to s to yield the ciphertext rather
than concatenated inside or outside the encryption operation of the underlying
one-way function, so that there is no validity check operation in the decryption.
In fact, a ciphertext-tag pair with different τ (except for collision) but same y
will result in a different decryption, which ensures the security1.

3.1 Security

The security of RSA-TKEM can be analyzed in the random oracle model when
G is modeled as a random oracle. The formal theorem states as follows:

Theorem 1. RSA-TKEM is IND-RCCA secure assuming the hardness of RSA
problem. Particularly,

Advrccatkem,A ≤ εrsa,B + qD · εch +
qD

nBound
. (1)

where

- εch is the advantage of finding a collision of H;
- qD is a bound on the number of decryption oracle queries made by A;
- nBound is an lower bound on n;
- B is an algorithm for solving a random instance of the RSA problem, εrsa,B
is the success probability. B runs in time roughly the same as that of A; more
precisely, the running time is that of A, plus the time to perform qG expo-
nentiations modulo n, where qG is a bound on the number of random oracle
queries made by A, and the time to perform qD hash and XOR operations,
Where qD is a bound on the number of decryption oracle queries.

Proof. The proof is quite similar to that of RSA-KEM in [20], and follows the
common game-modifying method. On the way of modifying the game, we use
the following lemma.

Lemma 1. (Shoup’s Lemma [11]) Let P , Q, and F be events defined on some
probability space, such that Pr[P ∧ ¬F ] = Pr[Q ∧ ¬F ], then |Pr[P ] − Pr[Q]| ≤
Pr[F ].

1 RSA-TKEM achieves publicly-detectable RCCA security [10]. Although weaker
private-detectable or rerandomizable [13,17] ones are more desired, the scheme is
sufficient for our purpose.
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Let G0 be the original attack game RGAME.TKEM played by adversary A, and
let S0 be the event that A correctly guesses the hidden bit b in game G0, and
Si be the same event in the following games. Let (y∗, τ∗) denote the target

ciphertext-tag pair, and let r∗ = (y∗ ⊕H(τ∗))1/e ∈ Zn.
We next define a game G1 that is the same as game G0, except that if a

ciphertext-tag pair (y, τ) with y ⊕ H(τ) = y∗ ⊕ H(τ∗) = s∗ was submitted to
the decryption oracle prior to the invocation of the encryption oracle, then the
game is halted. Let F1 be the event that game G1 is halted as above. Since
y ⊕ H(τ) has the same length as n, and a smarter A can always choose (y, τ)
satisfying y ⊕ H(τ) in Zn, so Pr[F1] ≤ qD/n ≤ qD/nBound, and since games
G0 and G1 proceed identically until F1 occurs, it follows by Lemma 1 that
|Pr[S0]− Pr[S1]| ≤ qD/nBound.

We then define a game G2 that is the same as G1, except that if a ciphertext
(y∗, τ) with H(τ) = H(τ∗) was queried by the adversary A after the invocation
of the encryption oracle, we halt the game. Let F2 be the event that game G2 is
halted as above. Since τ∗ is chosen by A itself, if A can find a collision (τ1, τ2) for
H then it can use one of them as τ∗. So, Pr[F2] ≤ εch, and since games G1 and
G2 proceed identically until F2 occurs, it follows that |Pr[S1]− Pr[S2]| ≤ εch.

Finally, we define a game G3 that is the same as G2, except that if (1)the
target ciphertext is generated by an independent and randomly choosen s∗, and
y∗ = s∗ ⊕ H(τ∗) and (2) the adversary ever queries G at r∗, then we halt the
game.

It is clear by construction that Pr[S3] = 1/2, since the key G(r∗) is indepen-
dent of everything else that is accessible to the adversary in game G3, either
directly or indirectly. Indeed, only the encryption oracle evaluates G at r∗ in
this game.

Let F3 be the event that gameG3 is halted as above. It is clear that both games
G2 and G3 proceed identically until F3 occurs, and so we have |Pr[S2]−Pr[S3]| ≤
Pr[F3].

We claim that Pr[F3] ≤ εrsa,B for an RSA inversion adversary B whose run-
time is bounded as described in the theorem. B takes as input a random RSA
modulus n, an RSA exponent e, and a random element s∗ ∈ Zn. It creates a
public key using n and e, and then lets adversary A run in game G3. When A
chooses a tag τ∗ and then invokes the encryption oracle, B responds to A with
s∗ ⊕H(τ∗), where s∗ is the above-mentioned input to B.
B simulates the random oracle G as well as the decryption oracle by maintain-

ing two lists: G&D-list and D-list. The lists are initially empty and have entries
of the form (r, g, s) and (s, g) respectively, where s = re.
B answers A’s random oracle queries to G and decryption oracle queries as

follows:

Simulation for G queries
If r ∈ G&D-list then return the corresponding g
Else compute s = re

If s ∈ D-list then return the corresponding g, add (r, g, s) in G&D-list
Else choose a random g ∈ KD, add (r, g, s) in G&D-list, return g.
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Simulation for Decryption queries
Compute s = y ⊕H(τ)
If s = s∗ then return ‘test’
Else
If s ∈ G&D-list or s ∈ D-list then return the corresponding g
Else choose a random g ∈ KD, add (s, g) in D-list, return g.

B perfectly simulates the view of A, and that B outputs a solution to the given
instance of the RSA problem with probability equal to Pr[F3].

Collecting the probabilities, (1) follows immediately, that proves the
theorem. �

4 Considering RCCA Security for the Hybrid Paradigms

In this section we discuss the security results for achieving RCCA secure hybrid
encryptions from the well known paradigm, KEM+DEM and Tag-KEM/DEM.

4.1 Obtaining RCCA-Security for KEM+DEM

For KEM+DEM paradigm, similar result holds when considering both CCA
security and RCCA one (benign malleability). That is, if KEM and DEM are
benignly malleable then KEM+DEM paradigm is also benignly malleable [20].
The proof is quite the same as that for HE1 in [10], we omit it here.

Theorem 2. If both KEM and DEM are IND-RCCA secure then the Hybrid
PKE scheme following KEM+DEM paradigm is IND-RCCA secure (as a public-
key encryption scheme).

4.2 Obtaining RCCA-Security for Tag-KEM/DEM

However, when we consider RCCA security for Tag-KEM/DEM, things will be
different. Although RCCA-secure Tag-KEMs seem simple to be constructed,
they cannot be used to obtain RCCA-secure hybrid encryptions when combined
with just passive secure DEMs. Take the proposed RSA-TKEM as the RCCA-
secure Tag-KEM and one-time pad as the passive secure DEM, this is easily
to be seen. For the hybrid encryption to be RCCA-secure, CCA security, or
rigorously, RCCA security for DEM should be asked again.

Theorem 3. If both Tag-KEM and DEM are IND-RCCA secure then the hybrid
scheme in Section 2.3 is IND-RCCA secure(as a PKE). In particular, for every
H, there exist AT and AD with

Advrccapke,H(k) ≤ 2Advrccatkem,AT
(k) +Advrccadem,AD

(k) +
qD
|KK |

. (2)

where qD is a bound on the number of decryption oracle queries made by an
IND-RCCA attacker against HPKE, and l is the length of the key used in DEM.
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The proof for Theorem 3 can be shown in a similar way as done for CCA secure
Tag-KEM and passive secure DEM in [3], except that the adversary AD against
DEM must use its own decryption oracle to answer a query (ψ, χ) from the
adversary H against HPKE when TKEM.Decsk(ψ, χ) = TKEM.Decsk(ψ

∗, χ∗).
That is why CCA security for DEM is needed here.

Proof. Let H be an adversary playing RGAME.PKE. We modify the game by
using a random key dk+ in place of the legitimate one generated by TKEM.Key
in both the encryption and decryption oracle. Call this game RGAME.PKE′. Let
T and T ′ be events that b̃ = b in RGAME.PKE and RGAME.PKE′, respectively.
Then we claim that |Pr[T ]− Pr[T ′]| ≤ 2Advrccatkem(k) + qD

|KK| , which is shown by

constructing AT that attacks the underlying TKEM scheme by using H.
First AT is given public-key pk and passes it to H. Given m0 and m1 from

H, AT requests the encryption oracle of RGAME.TKEM to obtain (dkδ, ψ
∗). AT

then selects b ∈ {0, 1} and computes χ∗ = DEM.Encdkδ
(mb), and sends (ψ∗, χ∗)

to H.
AT answers H’s decryption query (ψ, χ) as follows:

- If (ψ, χ) �= (ψ∗, χ∗), then AT just forwards (ψ, χ) to its own decryption
oracle TKEM.Decsk(·).
- If ⊥ is returned, then AT returns ⊥ to H.
- If ‘test’ is returned and χ �= χ∗, then AT uses dkδ to decrypt χ.

- If m0 or m1 is obtained, then AT returns ‘test’ to H.
- Else AT returns the result to H.

- If ‘test’ is returned and χ = χ∗, then AT returns ‘test’ to H.
- If dk is returned, then AT uses dk to decrypt χ.

- If m0 or m1 is obtained, then AT returns ‘test’ to H.
- Else AT returns the result to H.

The simulation is perfect unless ψ decrypts to dk0 and thus ‘test’ is returned by
TKEM.Decsk(·) in RGAME.PKE. However, the probability of this event is 1

|KK |
for each such query since in that case dk0 is random and independent from the
view of H.

When H finally outputs b̃, if b̃ = b then AT outputs δ̃ = 1, meaning dkδ is the
real key. Otherwise, AT outputs δ̃ = 0. Accordingly, |Pr[b̃ = b|δ = 1]−Pr[T ]| ≤
qD

|KK| , and Pr[b̃ = b|δ = 0] = Pr[T ′]. Therefore,

Advrccatkem,AT
(k) = |Pr[δ̃ = δ]− 1

2
|

=
1

2
|Pr[δ̃ = 1|δ = 1]− Pr[δ̃ = 1|δ = 0]|

=
1

2
|Pr[b̃ = b|δ = 1]− Pr[b̃ = b|δ = 0]|

≥ 1

2
|Pr[T ]− Pr[T ′]− qD

|KK |
|.

Hence, we have |Pr[T ]− Pr[T ′]| ≤ 2Advrccatkem,AT
(k) + qD

|KK | .
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Lastly, we show that H playing RGAME.PKE′ essentially conducts an IND-
RCCA attack to DEM, i.e. we claim |Pr[T ′] − 1

2 | ≤ Advrccadem(k). This is shown

by constructing an RCCA attacker AD to DEM. AD first generate (pk, sk) by
using PKE.Gen and gives pk to H. When (m0,m1) has been chosen by H, AD

forwards them to encryption oracle of RGAME.DEM and receives ciphertext
χ∗. It then generates (dk∗, ψ∗) by using χ∗ as a tag and following TKEM.Key
and TKEM.Enc, and sends (ψ∗, χ∗) to H. Note that the key dk+ chosen by
encryption oracle of RGAME.DEM and the one embedded in ψ∗ are independent
and randomly chosen. AD answers H’s decryption query (ψ, χ) as follows:

- If (ψ, χ) �= (ψ∗, χ∗), then AD uses sk to decrypt (ψ, χ).

- If the result is ⊥, then AD returns ⊥ to H.
- If the result is dk∗ and χ = χ∗ then AD returns ‘test’ to H.
- If the result is dk∗ and χ �= χ∗ then AD forwards χ to its own decryption
oracle DEM.Decdk+(·), and returns the result to H.

- If the result is dk �= dk∗ then AD uses dk to decrypt χ.

- If m0 or m1 is obtained, then AD returns ‘test’ to H.
- Else AD returns the result to H.

When H outputs b̃, AD outputs b̃, too. AD perfectly simulates
RGAME.PKE′, and whenever H wins, so does AD. Hence |Pr[T ′] − 1

2 | =
Advrccadem,AD

(k).

In summary, we have:

|(Pr[T ]− 1

2
)− (Pr[T ′]− 1

2
)| ≤ 2Advrccatkem,AT

(k) +
qD
|KK |

Advrccapke,H(k) ≤ 2Advrccatkem,AT
(k) +Advrccadem,AD

(k) +
qD
|KK |

. �

5 KEM/Tag-DEM: From RCCA Security to CCA One

Consider the method in [10] that makes an RCCA-secure PKE to be CCA-secure
one, we generalize it to be based on an RCCA-secure KEM scheme.

By using the ciphertext of KEM as a tag of DEM, we will let the security of
DEM provide non-malleability for KEM.

5.1 Tag-DEM and the Hybrid Paradigm

A Tag-DEM is a one-time symmetric-key encryption scheme with a tag as an
additional input. It consists of two algorithm. Deterministic TDEM.Enc takes an
input 1k, a key dk, a message m and a tag τ ∈ T , and outputs a ciphertext
χ, T is the tag space. Deterministic TDEM.Dec takes as input 1k, a key dk, a
ciphertext χ and a tag τ , and outputs a message m or the special symbol ⊥. An
obvious soundness condition applies.
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We define IND-CCA security for Tag-DEMs by the following game. O denotes
TDEM.Decdk(·, ·). In Step 3, AD is restricted not to ask (χ, τ) to O.

[GAME.TDEM]
Step 1. (m0,m1, τ, v)← AD(1k)
Step 2. dk ← KD, b← {0, 1}, χ← TDEM.Encdk(mb, τ).
Step 3. b̃← AO

D(v, χ)

Note that Tag-DEMs are deterministic symmetric-key encryptions with tag, and
we only ask one-time CCA-security but not authenticity, this makes them weaker
than authenticated encryptions with associated data [18], even a deterministic
one.

Our KEM/Tag-DEM works as follows:

Function: HPKE.Encpk(m)
(dk, ψ)← KEM.Encpk()
χ← TDEM.Encdk(m,ψ)
Output c = (ψ, χ)

Function: HPKE.Decsk(c)
(ψ, χ)← c
dk ← KEM.Decsk(ψ)
m← TDEM.Decdk(χ, ψ)
Output m

Theorem 4. If KEM is IND-RCCA secure and TDEM is IND-CCA secure then
the Hybrid PKE scheme above is IND-CCA secure(as a public-key encryption
scheme). In particular, for every H, there exist AK and AD with

Advccapke,H ≤ 2Advrccakem,AK
+Advccatdem,AD

+
qD
|KK |

. (3)

Proof. Let H be an adversary playing GAME.PKE. We modify the game by
using a random key dk+ in place of the legitimate one generated by KEM.Enc in
both the encryption and decryption oracle. Call this game GAME.PKE′. Let T
and T ′ be events that b̃ = b in GAME.PKE and GAME.PKE′, respectively. Then
we claim that |Pr[T ]−Pr[T ′]| ≤ 2Advrccakem,AK

(k), which is shown by constructing

AK that attacks the underlying KEM scheme by using H.
First AK is given pk and passes it to H. Given m0 and m1 from H, AK

requests the encryption oracle of RGAME.KEM to obtain (dkδ, ψ
∗). AK then

selects b ∈ {0, 1} and computes χ∗ = DEM.Encdkδ
(mb, ψ

∗), and sends (ψ∗, χ∗)
to H.
AK answers H’s decryption query (ψ, χ) as follows:

- If ψ = ψ∗ and so that χ �= χ∗, then AK uses dkδ to decrypt (χ, ψ).

- Ifψ �= ψ∗, thenAK just forwardsψ to its owndecryption oracleKEM.Decsk(·).
- If ⊥ is returned, then AK returns ⊥ to H.
- If ‘test’ is returned, then AK uses dkδ to decrypt (χ, ψ) by applying
TDEM.Decdkδ

(·, ·), returns the result to H.
- If dk is returned, then AK uses this dk to decrypt (χ, ψ) by applying
TDEM.Decdk(·, ·), and returns the result to H.
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WhenH finally outputs b̃, if b̃ = b thenAK outputs δ̃ = 1, meaning dkδ is the real
key. Otherwise, AK outputs δ̃ = 0. Accordingly, |Pr[b̃ = b|δ = 1]−Pr[T ]| ≤ qD

|KK | ,

and Pr[b̃ = b|δ = 0] = Pr[T ′]. Therefore, similar as in the proof of Theorem 3,
we have |Pr[T ]− Pr[T ′]| ≤ 2Advrccakem,AK

(k) + qD
|KK | .

Lastly, we show that H playing GAME.PKE′ essentially conducts an IND-
CCA attack to TDEM, i.e. we claim |Pr[T ′] − 1

2 | ≤ Advccatdem,AD
(k). This is

shown by constructing a CCA attacker AD to DEM. AD first generate (pk, sk)
by using PKE.Gen and gives pk to H. When (m0,m1) has been chosen by H,
AD first generates (dk∗, ψ∗) by following KEM.Enc, then forwards (m0,m1, ψ

∗)
to encryption oracle of GAME.TDEM. When AD receives ciphertext χ∗, it sends
(ψ∗, χ∗) to H. Note that the key chosen by encryption oracle of GAME.TDEM
dk+ and the one embedded in ψ∗ are independent and randomly chosen.
AD answers H’s decryption query (ψ, χ) as follows:

- If ψ = ψ∗ and so that χ �= χ∗, then AD forwards (χ, ψ) to its own decryption
oracle DEM.Decdk+(·, ·), and returns the result to H.

- If ψ �= ψ∗, then AD uses sk to decrypt ψ.

- If the result is ⊥, then AD returns ⊥ to H.
- If the result is dk∗, then AD forwards (χ, ψ) to its own decryption oracle
DEM.Decdk+(·, ·), and returns the result to H.

- If the result is dk �= dk∗, then AD uses this dk to decrypt χ.

When H outputs b̃, AD outputs b̃, too. AD perfectly simulates GAME.PKE′, and
whenever H wins, so does AD. Hence |Pr[T ′]− 1

2 | = Advccatdem,AD
(k).

In summary, we have (3) immediately. �
We can illustrate the security result in anther view. In Tag-KEM/DEM
paradigm, the ciphertext of DEM is used as the tag input to the encryption
of Tag-KEM, this can weaken the security requirement for DEM. By the same
reason, in our KEM/Tag-DEM paradigm, the use of ciphertext of KEM as the
tag of DEM should weaken the security requirement of KEM. Now we proved
the security is weakened to be IND-RCCA security. Whether it can be further
weakened remains open.

5.2 Two Direct Constructions of CCA Secure Tag-DEM Schemes

In this section we present some methods for constructing IND-CCA secure Tag-
DEM schemes from One-time secure DEMs. The first one is based on the double-
encryption structure used to make RCCA-secure PKE CCA-secure in [10]:

Function: TDEM.Enc(dk,mk,m, τ )
c1 ← DEM.Encdk(m‖τ )
c2 ← MAC.Signmk(c1)
Output χ = (c1‖c2)

Function: TDEM.Dec(dk,mk, χ, τ )
parse χ as c1‖c2
If MAC.Vermk(c2, c1) = 1 then
m‖τ̄ ← DEM.Dec(dk, c1)
Else output ⊥ EndIf
If τ̄ = τ then output m Else output ⊥
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Theorem 5. If DEM is One-time secure and MAC is one-time secure, then the
above TDEM is IND-CCA secure. In particular, for every AD, there exists B
with

Advccatdem,AD
≤ Advotdem,B + qD ·Advforgemac . (4)

where qD is a bound on the number of decryption oracle queries made by AD.

Proof. Let AD be an adversary playing GAME.TDEM, we construct a passive
adversary B against DEM by using AD as follows:
B forwards 1k to AD. Given (m0,m1, τ

∗) from AD, B computes x0 = m0‖τ∗
and x1 = m1‖τ∗, and requests (x0, x1) to the encryption oracle of GAME.DEM
to obtain c∗. Then B let c∗1 = c∗, and randomly chooses mk from KM , computes
c∗2 = MAC.Signmk(c

∗
1), sends χ

∗ = (c∗1, c
∗
2) to AD. For all decryption queries

(χ = (c1, c2), τ) from AD, B just returns ⊥. Finally, when AD outputs b̃, B
outputs b̃, too.

For each decryption query, the simulation is correct unless
MAC.Ver(c2, c1) = 1. Let Forge denote this event, we have Pr[Forge] ≤ qD ·
Adv

forge
mac , and (4) follows immediately. �

The second method avoids double encryption and just makes the tag τ as an
input part of MAC:

Function: TDEM.Enc(dk,mk,m, τ )
c1 ← DEM.Encdk(m)
c2 ← MAC.Signmk(c1‖τ )
Output χ = (c1‖c2)

Function: TDEM.Dec(dk,mk, χ, τ )
parse χ as c1‖c2
If MAC.Vermk(c2, c1‖τ ) = 1 then
m← DEM.Dec(dk, c1)
Else output ⊥ EndIf
Output m.

Combined with an RCCA secure KEM, the above scheme coincides with the one
in [3] to construct a CCA secure hybrid encryption from an RCCA secure KEM.

Theorem 6. If DEM is One-time secure and MAC is one-time secure, then the
above TDEM is IND-CCA secure. In particular, for every AD, there exists B
with

Advccatdem,AD
≤ Advotdem,B + qD ·Advforgemac . (5)

where qD is a bound on the number of decryption oracle queries made by AD.

Proof. Let AD be an adversary playing GAME.TDEM, we construct a passive
adversary B against DEM by using AD as follows:
B forwards 1k to AD. Given (m0,m1, τ

∗) from AD, B lets x0 = m0, x1 =
m1, and requests (x0, x1) to the encryption oracle of GAME.DEM to obtain
c∗. Then B lets c∗1 = c∗, and randomly chooses mk from KM , computes c∗2 =
MAC.Signmk(c

∗
1‖τ∗), sends χ∗ = (c∗1, c

∗
2) to AD.
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For all decryption queries (χ = (c1, c2), τ) from AD, B just returns ⊥. Finally,
when AD outputs b̃, B outputs b̃, too.

The simulation is correct unless MAC.Ver(c2, c1‖τ) = 1. Let Forge denote this

event, we have Pr[Forge] ≤ qD · Advforgemac , and equation (5) follows
immediately. �
Additionally, Tag-DEMs can be built more efficiently from conventional IV-based
encryption schemes as in deterministic authenticated encryptions [19]. Taking
the tag τ as a header, in the encryption it is no need to require the privacy of
τ . But there must be a way to bind the tag τ to the encrypted message and
provide authenticity for both of them. For example, the SIV construction in [19]
provides a method for constructing Tag-DEM with shorter ciphertext. Details
can be found in Appendix.
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A Message Authentication Code

MAC is a pair of algorithms (MAC.Sign,MAC.Ver). A key space KM is defined by
security parameter k. MAC.Sign takes a key mk ∈ KM and a message m ∈ 0, 1∗

as inputs, and outputs a string σ. We say (σ,m) is valid with regard to mk if
σ = MAC.Signmk(m). MAC.Ver takes a triple (mk, σ,m) as input and outputs 1
if (σ,m) is valid with respect to mk, or outputs 0, otherwise.

We define a one-time chosen message attacking game, GAME.MAC. An ad-
versary chooses an arbitrary message m and is given m’s MAC σ created with
mk randomly chosen from KM , it outputs (σ′,m′) which is different from (σ,m).
The adversary wins if (σ′,m′) is valid with respect to the samemk. We say MAC
is secure against one-time chosen message attack, or shorten as one-time secure,
if any PPT adversary wins GAME.MAC with at most negligible probability in k,

say Adv
forge
mac (k).

http://shoup.net/iso/


RCCA Security for KEM+DEM Style Hybrid Encryptions 119

B The SIV Construction of Tag-DEM

B.1 Conventional IV-Based Encryption Scheme

Encryption modes like CBC and CTR are the so called conventional IV-based
encryption schemes. Such a scheme is a tuple Π = (K,E,D), where K is a proba-
bilistic algorithm, which on input 1k outputs a key K ∈ K, K be the key space.
E is a deterministic encryption algorithm that takes as input an IV from IV
space IV , a key dk and a message m, and outputs a ciphertext C = EIV

dk (m).
D is a deterministic decryption algorithm that takes as input an IV , a key dk
and a ciphertext C, and outputs a message m or the special symbol ⊥. Obvious
soundness condition applies.

Fix IV = {0, 1}n. For simplicity, we assumeΠ is length-preserving. Let E$
dk be

the probabilistic algorithm defined from E, which on input dk and m, randomly
chooses IV from IV , then computes C as EIV

dk (m).
For consistency, we only require find-then-guess security against passive at-

tacker, and demand a random IV. This makes the security notion rather weak,
but sufficient for our purposes. Let AE be a polynomial-time oracle machine
that plays the following game.

[GAME.Π ]
Step 1. (m0,m1, v)← AE(1

k)

Step 2. dk ← K, b← {0, 1}, (C, IV )← E$
dk(mb).

Step 3. b̃← AE(v, C, IV )
We define

AdvotΠ,AE
(k) = |Pr[b̃ = b]− 1

2
|

and
AdvotΠ (k) = maxAE (Adv

ot
Π,AE

(k)).

We say that Π is one-time secure if AdvotΠ (k) is negligible in k.

B.2 Arbitrary-Input PRFs

A pseudorandom function(PRF) is a map F : K×X → {0, 1}n for some n ≥ 1, K
and X are fixed nonempty sets. F is pseudorandom if its input-output behavior
is indistinguishable from that of a random function of the same domain and
range.

We write FK(X) for F (K,X). Let Func(X ,Y) be the set of all functions
from X to Y and let Func(X , n) = Func(X , {0, 1}n). Regarding a function
in Func(X , n) as the key, which associates a random string in {0, 1}n to each
X ∈ X . The pseudorandomness of F is defined by the following game:

[GAME.PRF]
Step 1. ρ→ Func(X , n), O0 ← ρ, K ← K, O1 ← FK

Step 2. d̃← BOd .

We define Adv
prf
F,B = |Pr[d̃ = 1|d = 1]− Pr[d̃ = 1|d = 0]|.
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B.3 The Construction

The security notion used in [19] for DAE is stronger than our CCA one for
Tag-DEM. For the consistency, we still use the CCA security defined in this
paper.

Function: TDEM.Enc(dk1, dk2, m, τ )
IV ← Fdk1(m, τ )
C ← EIV

dk2(m)
Output χ = IV ‖C

Function: TDEM.Dec(dk1, dk2, χ, τ )
parse χ as IV ‖C
m← DIV

dk2(C)
IV ′ ← Fdk1(m, τ )
If IV = IV ′ then output m
Else output ⊥

Theorem 7. If Π = (E,D) is a One-time secure IV-based encryption scheme
with Iv-length n and F is a PRF, then the above TDEM is IND-CCA secure. In
particular,

Advccatdem,AD
≤ AdvotΠ,AE

+Adv
prf
F,B

+ qD/2
n. (6)

where qD is a bound on the number of decryption oracle queries made by an
IND-CCA attacker against TDEM.

Proof. Let G0 be the original attack game GAME.TDEM played by adversary
AD, and let S0 be the event that A correctly guesses the hidden bit b in game
G0. Let (ψ

∗, τ∗) denote the target ciphertext-tag pair, and IV ∗ = Fdk1(mb, τ
∗),

C∗ = EIV ∗
dk2 (mb) be the underlying IV and C. Thus, ψ∗ = IV ∗‖C∗.

We next define a game G1 that is the same as game G0, except that Fdk1

is replaced by a random function ρ ∈ Func(X , n) in both the encryption and
decryption oracle, where X = T × {0, 1}∗, T is the tag space. And ρ is hidden
from the view of AD. Let S1 be the event in game G1 corresponding to the event
S0.

We claim that there is a adversary B against the pseudorandomness of FK ,
such that

|Pr[S1]− Pr[S0]| = Adv
prf
F,B

B runsAD, forwards 1k to AD. Given (m0,m1, τ
∗) fromAD, B chooses randomly

dk2 and b← {0, 1}, and asks (τ∗,mb) to its Fdk1(·) or ρ(·) oracle, when obtains

IV ∗, it computes C∗ = EIV ∗
dk2 (mb), then returns ψ∗ = IV ∗‖C∗ to AD. For all

decryption queries (χ, τ) from AD, B parses χ as IV ‖C, since B knows dk2, it
decrypts C and computes m = DIV

dk2(C), asks (m, τ) to its own oracle, check
whether or not the returned IV ′ is equal to IV , if yes then return m else return
⊥.
B perfectly simulates the oracles of AD. If AD outputs b̃ = b, then B outputs

d̃ = 1, else outputs d̃ = 0.
Finally, we define a game G2 that is the same as G1, except that ⊥ is returned

for all decryption queries. Let S2 be the event in the game G2 corresponding to
the event S0.

Let F2 be the event that a valid ciphertext ψ = IV ‖C has been asked by AD,
then it follows by Lemma 1 that |Pr[S2]−Pr[S1]| ≤ Pr[F2]. A ciphertext is valid
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only when ρ(τ,m) = IV , where m = DIV
dk2(C). Since ρ is a random function, this

happens only with probability of 1
2n . Thus, |Pr[S1]− Pr[S2]| ≤ Pr[F2] ≤ qD

2n .
Furthermore, we claim that there is an adversary AE under the sense of one-

time security against Π , such that |Pr[S2]− 1
2 | = AdvotΠ,AE

.

AE runs AD, forwards 1k to AD. Given (m0,m1, τ
∗) from AD, AE asks

(m0,m1) to its own encryption oracle E$
dk(·), when obtains the target ciphertext

(C∗, IV ∗), it forwards IV ∗‖C∗ to AD. For all decryption queries (χ, τ) from AD,
AE returns ⊥.

Since all ciphertexts decrypt to ⊥, ρ loses its role in decryption, and a ran-
domly chosen IV properly substitutes an IV computed by the random ρ. AE

perfectly simulates the oracles of AD. When AD outputs b̃, AE outputs d̃ = b̃.
Collecting the probabilities, (6) will follow immediately, that proves the

theorem. �
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