
An Efficient Rational Secret Sharing Protocol

Resisting against Malicious Adversaries
over Synchronous Channels

Yang Yu and Zhanfei Zhou

State Key Laboratory of Information Security
Institute of Information Engineering, Chinese Academy of Sciences

Beijing 100093, P.R. China
{yyu,zhouzhanfei}@is.ac.cn

Abstract. Current works solve the problem of rational secret sharing
from one or some, but not all, of the following aspects: achieving a more
appealing equilibrium concept, avoiding strong communication models
and resisting against adversaries. To address one issue above, they need
to lower the satisfaction in other issues. In this paper we construct a
t-out-of-n rational secret sharing protocol, which achieves an enhanced
notion of computational strict Nash equilibrium with respect to adver-
sary structure A, runs over synchronous (non-simultaneous) broadcast
channels and tolerates a malicious adversary who controls a minority
of players. To the best of our knowledge, compared with current works
tolerating adversaries, we are the first to yield positive results in all the
three research aspects above. The feasibility of our protocol is based on
the use of publicly verifiable secret sharing. Under the assumptions re-
lated to discrete logarithm and ElGamal cryptosystem, computational
bounded players have an incentive not to deviate no matter how adver-
saries behave.

Keywords: Rational secret sharing, game theory, malicious adversary,
computational strict Nash equilibrium, synchronous channel.

1 Introduction

1.1 Background

Secret sharing studies the problem that the dealer shares a secret among play-
ers such that an authorized subset of players can recover the secret but an
unauthorized subset of players can get no information about the secret, it is
fundamental in the area of secure multiparty computation (SMPC). Rational
secret sharing (RSS), proposed by Halpern and Teague in 2004 [7], considers
the problem of secret sharing in the game-theoretic model where all players are
rational. Different from honest players and malicious players, rational players
behave in their interests and try to get the maximum payoffs. It is assumed that
they prefer to get the secret and prefer that the fewer players who get the secret
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the better. Since the work of Halpern and Teague, many works have been de-
voted to rational secret sharing, such as [1,10,9,5,16], they focus on the following
aspects.

Equilibrium Standard. The goal of rational secret sharing is to motivate all
players to follow the protocol, hence, Halpern and Teague proposed the notion of
Nash equilibrium which survives the iterated deletion of weakly dominated strate-
gies as a security standard. But this notion is a weak guarantee, Kol and Naor [9]
pointed out that a strategy that survives iterated deletion of weakly dominated
strategies (iterated admissibility) may be undesirable, and suggested the notion
of strict Nash equilibrium which requires that a player suffers losses if he devi-
ates. However, the works [7,9] achieved the equilibrium notions they proposed
by assuming the existence of simultaneous channels. After that Fuchsbauer et
al. [5] achieved a computational version of strict Nash equilibrium in the syn-
chronous model, but their scheme cannot resist against the attack of malicious
adversaries.

Communication Channel. To design rational secret sharing protocols, the
works [7,6,10] relied on the strong communication primitives of simultaneous
broadcast channels to ensure the symmetry in the times that players get infor-
mation. However, simultaneous communication is hard to be achieved, because
it requires that all players move simultaneously and no player can observe other
players’ messages before he moves. Thus, several works [12,5,15] have been de-
voted to realizing rational secret sharing in the synchronous model, where the
protocol runs in a series of rounds and only one player moves in each round. By
delaying the signal indicating whether a given iteration is valid or not, the works
[5,15] constructed efficient schemes over synchronous channels. By considering
the mixture of rational players and honest players, Ong et al. [12] realized fairness
over standard broadcast channels. However, these protocols may be problematic
when some players are corrupted by malicious adversaries.

The Adversary Model. To guarantee the same security properties as in usual
cryptographic model, some works [10,2,11]proposed to study rational secret shar-
ing resisting against adversaries, there are two kinds. Abraham et al. [1] first
considered rational players with unexpected utilities who do not respond to in-
centives the way we expect as adversaries. Then Altabari et al.[2] improved
the protocol of [8] to resist against rational adversaries. Since malicious play-
ers in real-life executions behave arbitrarily and do not aim to get the secret,
Lysyanskaya and Triandopoulos [10] proposed that it is appropriate to treat
these players as malicious adversaries who behave irrationally and cannot be
motivated. They realized multiparty computation for t-NCC functions in the
mixed-behavior model consisting of adversaries and rational players, which can
tolerate an adversary controlling at most t − 2 players, but the solution is not
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suitable for rational secret sharing. Different from previous works, [11] modeled
rational secret sharing in the repeated game (the game is repeated several times
and players get a payoff for each game), and introduced a repeated rational
secret sharing protocol tolerating malicious players. However, it is undesirable
that the protocols in [10,1,2] rely on simultaneous communication, moreover,
another noticeable point of all protocols above is that they can only achieve a
Nash equilibrium surviving iterated deletion, which is too weak.

Problem Statement. Achieving a stronger equilibrium concept than Nash
equilibrium, avoiding simultaneous communication and resisting against adver-
saries are three separate development directions of rational secret sharing. Cur-
rent schemes have been developed tolerating adversaries, but they are less satis-
factory in other two aspects. There is no improvement to rational secret sharing
from all the three aspects.

1.2 Our Contribution

In this paper we design a t-out-of-n (t ≤ �n
2 �) rational secret sharing proto-

col tolerating an irrational adversary controlling a minority of players based
on a publicly verifiable secret sharing (PVSS) scheme. It runs over synchronous
(non-simultaneous) broadcast channels and achieves a computational strict Nash
equilibrium with respect to adversary structure A. Our work has advantages over
previous solutions in the adversary model, we get rid of the simultaneous com-
munication, moreover, the equilibrium concept we achieve is much stronger than
the notion of Nash equilibrium that current works achieved.

2 Definition

2.1 Secret Sharing

In Shamir’s t-out-of-n threshold secret sharing protocol, to share a secret s ∈ Zq,
the dealer chooses a polynomial f(x) of degree t−1, such that the constant term
is s, then he publishes n distinct points x1, . . . , xn in field Z

∗
q and sends f(xi)

to Pi as his share. At least t players can recover the secret by using Lagrange
interpolation, but less than t players cannot get any information about the secret.
If the dealer is honest, the shares received by each player should be consistent.
Here we describe what it means to be consistent.

Definition 1. Given S = {s1, . . . , sn}, x1, . . . , xn are n fixed distinct points, if
there exists a polynomial f(x) of degree t− 1 (t ≤ n), such that f(xi) = si, ∀si ∈
S, then we say the that values in {s1, . . . , sn} are consistent, and that f(0) is
recovered from S consistently.
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2.2 Game Theoretic Model

We introduce a new game-theoretic model of the mixed-behavior game with re-
spect to adversary structure for rational secret sharing where adversaries exist.
Compared with the standard game model where all players are rational, our
mixed-behavior game gives a description of the behaviors of adversaries.

Definition 2. The mixed-behavior game Γ with respect to adversary structure
A consists of

– A finite set P = {Pi|i ∈ {1, . . . , n}} (the set of players), adversary structure
A ⊂ 2P satisfies that ∀A ∈ A, if A′ ⊆ A then A′ ∈ A. For any adversary
A ∈ A we denote rational player set R = P\A.

– For each Pi ∈ P a nonempty set ACi (the set of actions available to Pi),
and let AC = AC1 ×AC2 × . . .×ACn be the set of action profiles.

– A set of sequences H = {(ak)k=0,...,T |ak ∈ AC, T ∈ N} that satisfies the
following properties.

• a0 = ∅ ∈ H
• If (ak)k=0,...,K ∈ H and L < K then (ak)k=0,...,L ∈ H
• If an infinite sequence (ak)k=0,... satisfies (ak)k=0,...,L ∈ H for every
positive integer L then (ak)k=0,... ∈ H

Each member of H is a history. A history (ak)k=0,...,K ∈ H is terminal if
there is no aK+1 such that (ak)k=0,...,K+1 ∈ H or if it is infinite. The set of
terminal histories is denoted Z.

– A function ui (the utility function of player Pi) for each player Pi ∈ P ,
which assigns to each terminal history a real value, ui : Z −→ R. Let u =
u1 × u2 × . . .× un be the utility profile.

We assume that in the game there exists a malicious adversary who takes no
care of his outcome and behaves maliciously (does not behave according to what
specified by the protocol). We do not limit his capability, he behaves arbitrarily
and may deviate from the prescribed strategy even if doing so is not favorable to
him. The adversary corrupts a subset of rational players before the game starts,
gets all their information, takes full control of them and decides how to move
in the following protocol. We use adversary structure A to model the subsets of
players which are corrupted by the adversary, and treat all corrupted players as
malicious throughout the protocol. Players do not know which subset of players
has been corrupted and what the adversaries will do.

The game proceeds in a sequence of actions (AC). Players are perfectly in-
formed of history H , which records the actions that have occurred, and then
decide their plans of actions based on other players’ behaviors. The action that
Pi chooses in each step is determined by his strategy, it is a function from
the non-terminal histories to his actions, σi : H\Z −→ ACi. Si denotes the
set of strategies of player Pi, let S = S1 × . . . × Sn be the set of strategy
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profiles. A history after which no more choices have to be made is terminal,
which corresponds to an outcome of the protocol. A utility function ui is used
to describe the preference of Pi over the outcomes, ui(h) refers to Pi’s utility
after the terminal history h ∈ Z. Since each terminal history is determined
by a strategy profile, we define the outcome O(σ) to be the terminal history
that results when each player Pi ∈ P follows the precepts of σi. That is, O(σ)
is the (possibly infinite) history (a0, . . . ,aK) ∈ Z such that for 0 ≤ k < K,
σ(a0, . . . ,ak) = ak+1. Now we can define the utility function on strategies, let
ui(σ) = ui(O(σ)).

2.3 Utility Assumption

The adversaries are irrational, unlike rational players, they have no preference
over the outcomes, so they cannot be motivated and may follow the strategy
which seems bad. They behave arbitrarily, unpredictably or even maliciously, and
they do not aim to learn the secret, so we do not have to consider their payoffs
and we treat their utilities as empty ones. We assume that rational players do
not take care of the outputs of adversaries, and the utility of a rational player
depends on both his own output and other rational players’ outputs. Following
[7], we assume that players prefer to get the secret first, and then prefer the fewest
number of other rational players who get the secret, which can be formalized as
follows. In the rational secret sharing protocol, for a given adversary A ∈ A, a
strategy profile σ, out(σ) = (o1, . . . , on) such that (1) oi = 1 iff player Pi ∈ R
can get the secret when all players stick to σ, and oi = 0 otherwise, (2) oj = 0
if Pj ∈ A. For Pi ∈ R it holds that:

1. ui(σ) = ui(τ ) if out(σ) = out(τ )
2. ui(σ) > ui(τ ) if outi(σ) = 1 and outi(τ ) = 0
3. ui(σ) > ui(τ ) if outi(σ) = outi(τ ), outj(σ) ≤ outj(τ ) for all j 
= i and

there exists a Pk ∈ R, k 
= i such that outk(σ) < outk(τ )

U+
i denotes the utility of Pi when Pi learns the secret but other rational players

do not, Ui denotes the utility of Pi when all rational players learn the secret,
U−
i denotes the utility of Pi when Pi himself learns no secret. It follows that

U+
i > Ui > U−

i . Furthermore, we assume that the secret is chosen from domain
Zq, players can guess the secret with probability 1/q. U r

i denotes the utility
that Pi gets when he tries to guess the secret, U r

i = 1
qU

+
i + (1 − 1

q )U
−
i . We

assume that U r
i < Ui, or else players may gain without running the protocol.

Moreover, we assume there is a non-negligible difference between Ui and U r
i .

That is, there exists a polynomial p(·) such that for all sufficiently large k’s it
holds that Ui > U r

i + 1
p(k) .
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2.4 Definition of Game-Theoretic Equilibrium

Definition 3. We say that a function ν is negligible if for every constant c ≥ 0
there exists an integer kc such that v(k) < k−c for all k ≥ kc.

Following [5], we define what it means to follow the protocol in our model first.
Since players have bounded computing power, their strategies can be seen as
probabilistic polynomial-time interactive Turing machines. We measure equiva-
lence of strategies according to their views. Given the prescribed strategy profile
σ = σ1 × . . . × σn of protocol Π , let σR\i = ×Pj∈R\Pi

σj denote the strategy
profile of rational players except Pi. We have the following definition.

Definition 4. Given an adversary A ∈ A, denote PR\i = {Pj|j 
= i, Pj ∈ R}.
Let the adversary A follow the strategy profile τA ∈ SA, the rational play-
ers R follow the strategy profile σR. Define the random variable ViewσR,τA

−i

as follows :

Let Trans denote the messages sent by Pi not including any message sent
by Pi after he writes to his output tape. ViewσR,τA

−i includes the informa-
tion given by the dealer to P−i, the random coins of P−i and the (partial)
transcript Trans.

Fix a strategy ρi and an algorithm T. Define the random variable ViewT,ρi

−i as
follows:

When the players interact, Pi follows ρi, PR\i follow σR\i, adversaries
follow τA. Let Trans denote the messages sent by Pi. Algorithm T , given the
entire view of Pi, output an arbitrary truncation Trans’ of Trans (defining

a cut-off point and deleting any messages sent after that point). ViewT,ρi

−i

includes the information given by the dealer to P−i, the random coins of
P−i and the (partial) transcript Trans’.

Strategy ρi yields equivalent player with respect to Π, denoted ρi ≈ Π, if ∀A ∈ A,
∀τA ∈ SA there exists a PPT algorithm T such that for all PPT distinguishers D:

|Prob[D(1k,ViewT,ρi

−i ) = 1]| − |Prob[D(1k,ViewσR,τA

−i ) = 1]| ≤ negl(k)

where negl(k) is a negligible function.

From the definition above, a strategy which yields equivalent player with respect
to Π should tolerate the deviations of a certain number of adversaries, but may
differ from the prescribed strategy when the player can be sure that one rational
player deviates, it may even deviate from σ after the player gets the output, and
we call it equivalent strategy for short.

Intuitively, in the rational secret sharing protocol running over synchronous
channels, the players who broadcast shares later have the privilege to identify the
real secret. Once they learn the significant information, they are no longer afraid
of being punished, and they would like to deviate from the protocol because
of rationality. This deviation cannot be avoided, but it may cause a problem
that not all the players can learn the secret in a protocol inducing a standard
(strict) equilibrium in the synchronous model. The standard equilibrium can
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only guarantee that a rational player cannot prevent any player from learning the
secret on condition that all other rational players follow the protocol. However,
in the synchronous model the requirement that all remaining rational players
follow cannot be satisfied, because they would like to deviate after they learn
the secret. When a certain number of players deviate from the protocol, some
players may not be able to learn the secret. Hence, the standard equilibrium is
too weak for the synchronous model. To achieve fairness that all players can still
get the secret in this situation, it should be required that even if some other
rational players follow the equivalent strategies, deviating will not be better
than following for any player, i.e. no one will be prevented from learning the
secret.

In addition, since adversaries cannot be motivated to follow and their
deviation may induce rational players to deviate, we enhance the standard no-
tion of strict Nash equilibrium to tolerate adversaries. Considering computa-
tional limitations, we give the following definition of computational strict Nash
equilibrium with respect to A. It is appealing that rational players have an in-
centive not to deviate before outputting, and the fairness can be satisfied even
if players deviate after getting the outputs. Let Eqvi(σ) be the union of σi

and the set of the strategy ρi of Pi which yields equivalent with respect to Π ,
EqvR(σ) = ×Pi∈REqvi(σ).

Definition 5. Let σ be the prescribed strategy profile of the protocol Π, Π in-
duces a computational strict Nash equilibrium with respect to the adversary struc-
ture A if it satisfies:

1. For each Pi ∈ R and each deviating strategy σ′
i ∈ Si σ′

i 
≈ Π, it is satisfied
that: ∀A ∈ A, ∀τA ∈ SA there is a c > 0 such that ui(σi,σR\i, τA) ≥
ui(σ

′
i,σR\i, τA)+

1
kc for infinitely many values k, that is, ui(σi,σR\i, τA)−

ui(σ
′
i,σR\i, τA) is non-negligible.

2. For each Pi ∈ R, ∀ρi ≈ Π (ρi 
= σi), it holds that ui(ρi,ρR\i, τA) ≤
ui(σi,ρR\i, τA) + negl(k), ∀ρR\i ∈ EqvR\i(σ), ∀A ∈ A, ∀τA ∈ SA.

The sufficiently strong notion of computational strict Nash equilibrium with
respect to A requires that no matter how the adversaries behave, a player suffers
losses if he deviates before getting the output, and that when other rational
players follow the equivalent strategies, he cannot increase his payoff by a non-
negligible amount if he deviates after getting the output. The last point models
the fact that we cannot force Pi to send correct messages once he can be sure
that the protocol is finished. However, this definition guarantees that even if
rational players deviate after outputting, the fairness can still be satisfied with
probability 1− ε (ε is negligible).
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3 Publicly Verifiable Secret Sharing

Consider such a problem in secret sharing: in many applications the dealer and
the shareholders do not trust each other, the dealer may distribute incorrect
shares in the distribution phase and shareholders may reveal incorrect shares
in the reconstruction phase. These problems are also apparent in our mixed-
behavior model, moreover the adversary may accuse when receiving consistent
shares in order to halt the protocol. The publicly verifiable secret sharing (PVSS)
scheme provides an approach for all players to verify that a share is consistent
with other shares without revealing any information about the secret. Hence, it
cannot only detect forged messages but also prevent the adversary from declaring
an accusation against an honest dealer. We will use it as a tool for detecting
deviations in our rational secret sharing protocol.

Let p and q denote large primes such that q divides p − 1, Gq is the unique
subgroup of Z

∗
p of order q, and g, h,G,H denote the independently chosen

generators of Gq such that no one knows logg h, logGH . A publicly known
element xi ∈ Z

∗
q is assigned to each Pi. A commonly used method for ver-

ifying the consistency of shares in PVSS works as follows, the dealer shares
c through f(x) = c + a1x + . . . + at−1x

t−1, publishes the commitments to
the coefficients gc, ga1 , . . . , gat−1 , and sends the share f(xi) to Pi, it satisfies

that gf(xi) = gc
∏t−1

j=1(g
aj )x

j
i . However, this approach is problematic when be-

ing used in our RSS protocol, because whether c equals zero or not can be
revealed from gc, from which players can recognize the valid iteration in ad-
vance (some protocols set c to be zero in the valid iteration). Pedersen’s VSS
scheme requires the committer to compute gchr as a commitment to c by
using r, denoted E(c, r) = gchr. It is not suitable for our protocol either,
because players can learn gc before revealing their shares just after r is
calculated.

In order to guarantee the privacy of the iteration status before the secret is
recovered, gc should be private. For this reason, we propose a publicly verifi-
able secret sharing scheme in this section, which satisfies that the shares can
be verified, and most importantly, no information about gc is revealed during
the protocol under the Decision Diffie-Hellman assumption. Our construction
for PVSS is based on Pedersen’s VSS scheme [13] and Stadler’s PVSS scheme
[14], but we make some necessary modifications to it so that it is applica-
ble for our RSS protocol. We use a generalization of the Chaum and Ped-
ersen protocol [4] as a subprotocol to prove the equality of the contents of
two commitments, denoted DLEV (g, h,G,H, l1, l2). (Generators g, h,G,H ∈
Gq are public.) The prover publishes two commitments, i.e. l1 = gchr and
l2 = GcHr, then he proves that l1, l2 are both commitments to c for r as
follows:

1. The prover chooses w,w′ randomly, and sends a1 = gwhw′
and a2 =

GwHw′
to the verifier.

2. The verifier chooses b randomly and sends it to the prover.
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3. The prover opens u = w − c · b mod q and u′ = w′ − r · b mod q.
4. The verifier checks that a1 = (guhu′

) · lb1 and a2 = (GuHu′
) · lb2.

Lemma 1. Two commitments l1 = gc1hr1 and l2 = Gc2Hr2 are published by
the prover, under the Discrete Logarithm assumption, if the verifier accepts the
verification DLEV (g, h, G,H, l1, l2), then it means that c1 = c2 and r1 = r2.
We say that the contents of l1 and l2 are equal.

Proof . We assume that the prover can find two two-tuples (c, r) and (c′, r′) such
that l1 = gchr and l2 = Gc′Hr′ are accepted by the verifier. We can get that:

a1 = gwhw′
= guhu′ · (gchr)b = gu+c·b · hu′+r·b

satisfies w = u+ c · b, w′ = u′ + r · b. Let a2 = GwHw′
, it also holds that:

a2 = GwHw′
= GuHu′ · (Gc′Hr′)b = GwHw′

G(c′−c)bH(r′−r)b

and in particular G(c′−c)bH(r′−r)b = 1, then we can get that
logGH = c−c′

r′−r (mod q)

Therefore, if the prover can pass the verification when cheating, then computing
discrete logarithm becomes feasible. �

Denote the initial protocol of Chaum and Pedersen [4] by LEV (g,G, gc, Gc),
which is used to verify whether the discrete logarithm of gc to the base g equals
the discrete logarithm ofGc to the baseG. It is similar toDLEV (g, h,G,H, gchr,
GcHr) except r = 0 and is much more simple. We will use it for verification
in our RSS protocol. We omit the description of it here which can be found
in [4].

3.1 Verifiable Encryption

When the dealer distributes encrypted shares over a broadcast channel, he needs
to make the encrypted shares publicly verifiable. We adopt the verifiable encryp-
tion scheme of [14]. It is a protocol for verifying that a pair (M,N) encrypts the
discrete logarithm of a public element Vi = Gvi

i , denoted V ES(vi, G
vi
i ). The

details appear in Appendix A.
Under the Decision-Diffie-Hellman assumption, computing vi from Gvi

i and
(M,N) is hard. Moreover, the dealer can cheat successfully with negligible prob-
ability. We omit the proof here, which can be found in [14]. In fact, the negligible
probability of a successful cheat has no bad influence on our rational secret shar-
ing scheme, because Pi can verify the decrypted vi by checking the commitment
Gvi

i , and then he opens his private key once it is forged, so that the malicious
dealer is sure to be caught. Thus if the dealer can pass the verification we believe
that the decryption is true.
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3.2 PVSS Scheme

In this section, we give the construction of a t-out-of-n publicly verifiable secret
sharing scheme. Under the Discrete Logarithm assumption, the dealer cannot
succeed in sharing inconsistently. Given generators g, h of Gq which are chosen
randomly so that no one knows loggh, each Pi chooses zi ∈R Z

∗
q as his private

key and publishes Gi = gzi , Hi = hzi as his public keys.

Distribution of the shares

1. The dealer D wants to share a secret c ∈ Zq among all players P1, . . . , Pn,
and he chooses a t− 1 degree polynomial F (x) with coefficients in Zq:

F (x) = c+ α1x+ . . .+ αt−1x
t−1

D computes ci = F (xi) for i ∈ {1, . . . , n} and publishes a commitment to
c for a randomly chosen value r ∈ Zq: E0 = E(c, r) = gchr.

2. D chooses β1, . . . , βt−1 ∈ Zq randomly and broadcasts commitments Ei =
E(αi, βi) = gαihβi to each αi for i ∈ {1, . . . , t− 1}. D can get another t− 1
degree polynomial R(x) = r + β1x+ . . .+ βt−1x

t−1.
3. D computes ri = R(xi) and sends (ci, ri) to player Pi for i ∈ {1, . . . , n}

by applying the verifiable encryption scheme, D calculates and sends out
cipher-texts, then each Pi recovers ci and ri from them.

4. D also publishes commitments Ai = Gci
i , Bi = Hri

i for i ∈ {1, . . . , n}.
Verification of the shares

1. The verification of Gci
i Hri

i

D proves to all players that the contents of gcihri and AiBi = Gci
i Hri

i

are equal through DLEV (g, h,Gi, Hi, g
cihri , AiBi) for i ∈ {1, . . . , n}. In

fact, players can compute gcihri from the commitments:

gcihri =
∏t−1

j=0 E
xj
i

j
2. The verification of ci and ri

D runs the protocol V ES(ci, G
ci
i ) and V ES(ri, H

ri
i ), if he can pass

the verification, then Pi receives a share consistent with others.

Reconstruction

Each Pi broadcasts ci and ri, together with a proof that the shares pub-
lished are the discrete logarithm of Ai to Gi and the discrete logarithm of Bi

to Hi respectively. After all shares have been verified, players reconstruct c by
using Lagrange interpolation, c = Σt

i=1γici. (γi is a Lagrange coefficient)
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In the distribution phase, the dealer broadcasts the commitments to the
coefficients gαihβi , from which the consistency of shares can be verified, and
distributes the shares ci and ri by using the verifiable encryption scheme. In
the verification phase, the dealer proves that the decrypted ci, ri are correct,
and that the shares are distributed consistently through the polynomials that
he commits to. Under the assumption of Decision Diffie-Hellman, no informa-
tion about the secret is revealed from the commitments. Moreover, similar to
[13], if the dealer passes the verification then the consistency of shares can be
guaranteed. A proof of the following theorem appears in Appendix B.

Theorem 1. Under the Decision Diffie-Hellman assumption, the PVSS scheme
is secure: (1) If the dealer passes the verification, any subset of at least t players
can reconstruct the same secret. (2) Any subset of less than t players cannot get
any information about the secret.

4 Rational Secret Sharing Protocol

In this section we give a t-out-of-n (t ≤ �n
2 �) rational secret sharing protocol

that is resilient to an adversary corrupting less than t− 1 players. We only need
the existence of synchronous broadcast channels (but non-simultaneous), and
assume all players to be computationally bounded. After the initialization, our
protocol runs in a sequence of iterations, which is a frequently used technique for
RSS, with the property that the secret s can be recovered in the valid iteration,
and no information about s is revealed in the invalid iteration.

Our scheme depends on the masking of the secret in each iteration. Following
the same high-level approach as in [3,15], players recover a ′′one-time′′ secret
s+ c in each iteration, where c is negotiated by a part of players randomly and
is unknown to them, and players can get s only when c = 0. To run the protocol
over a synchronous channel, we require players to identify whether the current
iteration is valid or not after reconstructing s+ c. The key in this process is that
no information about c except that whether c equals 0 or not should be revealed
when players check c. Players do so by verifying whether gcκ equals 1 or not (κ
is a non-zero value) so as to keep s private. If gcκ = 1, players can be convinced
that the reconstructed s+ c equals s, otherwise the given iteration is invalid and
players cannot learn c from gcκ.

Different from the previous protocol where there is no adversary, our goal is
to motivate all rational players to follow even if adversaries try to induce them
to deviate. To that end, we require the above PVSS scheme, through which
players verify the correctness of shares and catch a minority of deviations, and
we punish deviating players by disqualifying them. These methods guarantee
that a player decreases his payoff by deviating independently of the behaviors
of adversaries.
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4.1 Construction

Let g,h be the independently chosen generators of Gq, hence no player knows
the discrete logarithm of h to g. Each Pi chooses zi ∈R Z

∗
q as his private key and

publishes Gi = gzi and Hi = hzi as his public keys.
Initialization. The dealer only needs to be active in the initial stage. To share
s ∈ Zq, the dealer chooses a t−1 degree polynomial f(x) = s+a1x+. . .+at−1x

t−1

with coefficients in Zq randomly. The dealer calculates si = f(xi) and sends it
to Pi as his share, and publishes a commitment to each si: Xi = Gsi

i .

Each Iteration. Each iteration includes two phases: new shares generation
phase and reconstruction phase. In the first phase players negotiate about a
random value c and generate the shares of the ′′one-time′′ secret s + c for this
iteration. In the second phase the unknown value s+c is reconstructed first. After
verifying the validity of shares, players mask c and gc by randomly choosing
κi ∈ Z

∗
q (i ∈ {1, . . . , n}) and publishing gcκ1...κn , which equals 1 in the valid

iteration. We give the formal specification of the protocol in the l-th iteration
as follows:

New shares generation

1. Players choose a subset of t players randomly together such that each Pi is
chosen with probability t

n , w.l.o.g denoted P ′ = {P1, . . . , Pt}. Each Pi ∈ P ′

chooses c̃i ∈ Zq randomly, such that c̃i equals 0 with probability δ0 and
equals each d ∈ Z

∗
q with probability 1−δ0

q−1 , and then shares c̃i through the
PVSS scheme described above.

In the PVSS scheme, Pi commits to c̃i for a randomly chosen r̃i ∈ Zq.

Denote by C̃i(x) = c̃i + α̃i1x+ . . .+ α̃i(t−1)x
t−1 the polynomial for sharing

c̃i. Pi chooses β̃ij ∈ Zq and gets a polynomial R̃i(x) = r̃i + β̃i1x + . . . +

β̃i(t−1)x
t−1. Pi sends c̃ih = C̃i(xh) and r̃ih = R̃i(xh) to Ph, and publishes

the following commitments to the shares (j ∈ {1, . . . , t−1}, h ∈ {1, . . . , n}):
Ẽi0 = E(c̃i, r̃i), Ẽij = E(α̃ij , β̃ij), G

c̃ih
h , H r̃ih

h .
Disqualify Pi if he fails. Halt the protocol and output a random guess

of the secret if there are at most n− t+ 1 players stay.
2. Calculate the shares of c =

∑t
k=1 c̃k and r =

∑t
k=1 r̃k by adding corre-

sponding shares as follows:
ci =

∑t
k=1 c̃ki, ri =

∑t
k=1 r̃ki

3. Calculate the commitments to the shares of c and r as follows (i ∈
{1, . . . , n},j ∈ {0, . . . , t− 1}):

Ej =
∏t

k=1 Ẽkj , Yi = Gci
i =

∏t
k=1 G

c̃ki
i

4. Each Pi calculates his share of s+ c by adding si and ci.
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Reconstruction

Stage 1 : reconstructing s(l) = s+ c
Players take turns to broadcast their shares of s + c, and verify the au-

thenticity of Pi’s share by checking: Gsi+ci
i = XiYi. It is required that:

(1) Disqualify Pi if his share cannot satisfy the equation above, or else we
say that si + ci is credible.

(2) Halt the protocol if the credible shares broadcasted are inconsistent
or at most n − t + 1 credible shares have been broadcasted, and then
output a random guess of the secret.

(3) Reconstruct s(l) from these credible shares consistently if there are more
than n− t+ 1 credible shares which are consistent.

Stage 2 : checking c

1. Each Pi chooses κi ∈R Z
∗
q and publishes Ki = gκi . Let κ =

∏n
i=1 κi.

2. Players compute gciκ for i ∈ {1, . . . , n} as follows. (Take gciκ as an example)

(a) Pi calculates gciκi and publishes it, then Pi verifies its correctness
through LEV (Gi,Ki, G

ci
i , gciκi), that is he verifies the discrete loga-

rithm of Gci
i to the base Gi is equivalent to the discrete logarithm of

gciκi to the base gκi .
(b) Players take turns to calculate as follows, start from Pi+1, then

Pi+2,...,Pn,P1,...,Pi−1. After Pi−1 finishes, they can get gciκ. We as-
sume that it is Pj ’s turn now. Pj calculates and publishes gciκi...κj

after gciκi...κj−1 has been published by Pj−1, then Pj implements
LEV (g, gciκi...κj−1 ,Kj, g

ciκi...κj).
(c) We say gciκ is credible if it is calculated successfully. If someone fails

when computing gciκ, then players disqualify him and restart Stage 2
unless gcκ has been calculated, in which case players enter Step 3.

(d) Halt the protocol and output s(l) if at most n − t + 1 players stay or
the credible shares that have been calculated are inconsistent.

3. Reconstruct gcκ from credible shares (w.l.o.g from the first t shares) as
follows: gcκ =

∏t
i=1(g

ciκ)γi , γi is a Lagrange coefficient.
4. Output s(l) and terminate the protocol if gcκ equals 1, otherwise, proceed

to the next iteration after disqualifying the deviating players.

Remark 1. The fact that the parameter c is negotiated by t players instead of
all players is due to malicious behavior of adversaries. An adverse Pi can make
the probability of c = 0 very low by not choosing c̃i according to δ0. However,
when these t players are all rational players who follow the protocol, c =

∑t
i=1 c̃i

equals 0 with the probability p = 1
q + (δ0·q−1)t

q(q−1)t−1 (c may equal zero when each c̃i
equals zero or one of the c̃i equals the opposite of the sum of the others). Accord-
ing to our protocol, c is negotiated by t rational players with the probability at
least

(
n−t+2

t

)
/
(
n
t

)
. Since the protocol terminates when c = 0, we can avoid very

low probability of termination by setting δ0 appropriately.
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Remark 2. The use of gcκ for checking c is to ensure the privacy of c in the
invalid iteration. Obviously, broadcasting the shares of c directly will not do. In
addition, it is more secure to open gcκ than open gc, even if players can learn cκ
from some special gcκ, they cannot learn c from cκ because of the unknown κ.

4.2 Analysis

It is obvious that the deviations of adversaries will be caught if all rational
players follow the protocol. Since the adversaries are at most t − 2, the correct
shares revealed are more than t, so that an authorized subset of at least t honest
players can recover the real secret from their shares at last. Now we first prove the
privacy of the protocol, i.e. during the protocol an unauthorized subset cannot
learn any information about the secret.

Theorem 2. Under the Discrete Logarithm assumption, no information about
s is revealed to any subset of less than t players before the reconstruction stage of
the last iteration. Under the Decision Diffie-Hellman assumption, no information
about c is revealed to any subset of less than t players before the second stage of
the reconstruction phase.

Proof. In the first phase, the commitments Gsi
i , Gci

i , Hri
i , gcihri are published.

However, players cannot compute si, ci from these commitments, or else comput-
ing discrete logarithm becomes feasible. Thus less than t players have no enough
shares and cannot reconstruct s or c. In the first stage of reconstruction phase,
s+ c can be reconstructed, but players can only learn the sum of unknown si and
ci, so s and c keeps private. When checking c in the invalid iteration, only gcκ 
= 1
can be calculated, under the discrete logarithm assumption, no information about
c except that c does not equal 0 is revealed, thus s cannot be calculated from s+c.

In the PVSS scheme, no information about gci is revealed under the Decision
Diffie-Hellman assumption, so even if c = 0 players cannot learn it. Moreover, c
and gc keep private when players reconstruct s+ c. Thus players cannot learn c
in advance. The result holds. �

From the analysis above, it is obvious that no information about the secret is
reveal in the invalid iteration because s is masked by using s+ c, and no one can
learn the iteration status in advance. Next we need to prove that the protocol
leads to a computational strict Nash equilibrium. We first consider a problem
that in our mixed-behavior model whether the rational secret sharing protocol
can resist against t − 1 malicious players or not. As pointed out by [10], if the
adversary can control t−1 players, he may send t−1 shares to n−2t+2 rational
players, so that these rational players can recover the secret without running the
protocol after verifying the validity of the shares by themselves. This situation
is extremely undesirable, the remaining t − 1 players cannot recover the secret
any longer because rational players would not like to participant in the protocol
after learning the secret. To avoid this problem we allow the adversary to control
at most t − 2 players. Now we give the proof of our result. (We assume that a
given iteration is valid with probability β.)
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Theorem 3. The (t, n) RSS protocol Π runs in the mixed-behavior model where
rational players and irrational adversaries coexist, A denotes the adversary struc-
ture which consists of subsets of less than t−1 players, Π induces a computational
strict Nash equilibrium with respect to A, if there exists a polynomial p such that

for all sufficiently large k’s it holds that
Ui−Ur

i

U+
i −Ur

i

− δ0 > 1
p(k) .

Proof. In RSS, it is unavoidable that cryptographic primitives may be broken
before the last iteration with negligible probability, because RSS may execute in
an exponential number of iterations. Thus, we consider the case that the cheating
players share parameters inconsistently without being caught. Let ε(k) be the
negligible probability that rational Pi succeeds in doing so. Let A ∈ A be any
adversary set of size at most t − 2, and ε′(k) denotes the negligible probability
that at least one of the adversaries succeeds in deviating. If adversaries share
inconsistently then rational players cannot recover the secret no matter whether
they follow, because they cannot distinguish incorrect shares. Otherwise, as long
as all rational players follow the protocol, all deviations of (≤ t− 2) adversaries
are sure to be caught and the secret can be recovered. Thus, when all rational
players follow, the utility that Pi gets is at least U

r
i ε

′(k) + Ui(1− ε′(k)).
σ denotes the prescribed strategy profile in the protocol Π . τA denotes an

arbitrary strategy of a given adversary A ∈ A. We assume that rational players
except Pi stick to the prescribed protocol σ, Pi follows the deviating strategy
σ′
i 
≈ Π , which denotes the strategy that Pi deviates from σi before outputting

the real secret. We first prove that σi is strictly better than σ′
i no matter how

adversaries behave. We need to consider the following three deviating cases: (1)
Pi shares inconsistently through the PVSS scheme or keeps silent when players
generate new shares. (2) Pi broadcasts a forged share of s+ c or keeps silent in
the reconstruction stage. (3) Pi deviates when checking c.

We analyze the situation where Pi deviates in the first case. Caughti denotes
the fact that Pi is caught deviating. Valid denotes the fact that Pi deviates in
the valid iteration. Before the reconstruction phase Pi will be caught once he
keeps silent. We now analyze the situation where Pi tries to share inconsistently.
If Pi succeeds in distributing inconsistent shares while adversaries do not, then
the protocol will halt in the reconstruction stage. Pi will be the only player
who learns the secret if the current iteration is valid with probability β, but
he cannot learn the secret in the invalid iteration with probability 1 − β. If Pi

cannot succeed in deviating, then he will be disqualified, which happens with
probability 1− ε(k). The expected utility that Pi gets by deviating is

ui(σ
′
i,σR\i, τA)

≤ U r
i · Prob[CaughtA] + U+

i · Prob[Caughti ∧ CaughtA ∧ Valid]

+U r
i · Prob[Caughti ∧ CaughtA ∧ Invalid]

+U r
i · (Prob[Caughti ∧ CaughtA ∧ Valid]

+Prob[Caughti ∧ CaughtA ∧ Invalid])
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= U r
i ε

′(k) + U+
i ε(k)(1 − ε′(k))β + U r

i ε(k)(1− ε′(k))(1 − β)

+U r
i [(1 − ε(k))(1− ε′(k))β + (1− ε(k))(1 − ε′(k))(1 − β)]

= U r
i ε

′(k) + Ui(1− ε′(k)) + (U r
i − Ui)(1 − ε′(k))

+(U+
i − U r

i )ε(k)(1 − ε′(k))β

where (U+
i − U r

i )ε(k)(1 − ε′(k))β = η(k) is negligible.
It follows that ∀A ∈ A, ∀τA ∈ SA,

ui(σR, τA) ≥ ui(σ
′
i,σR\i, τA) + (Ui − U r

i )(1− ε′(k))− η(k)

We can notice that (Ui − U r
i )(1 − ε′(k)) is positive and non-negligible, η(k) is

negligible, so that (Ui−U r
i )(1−ε′(k))−η(k) is positive and non-negligible. Thus,

following the protocol is strictly better than deviating for Pi.
In the second case, (1) We assume that the shares are generated consistently,

Pi forges his share or does not broadcast anything in stage 1, but he will be
caught and be disqualified. Even if all t−2 adversaries deviate when Pi deviates,
there are at least t players who follow the protocol, so the deviation of Pi will
not interface with other players’ reconstruction of s+ c. Thus, if s+ c happens
to be the real secret, Pi will get utility Ui, if it is fake then Pi can only guess
the secret and get utility U r

i . Considering the probability that adversaries share
inconsistently in the first phase, the expected utility of Pi with this deviation is
at most U r

i ε
′(k) + (1− ε′(k))(βUi + (1− β)U r

i ), we have ∀A ∈ A, ∀τA ∈ SA,

ui(σR, τA) ≥ ui(σ
′
i,σR\i, τA) + (1 − ε′(k))(1 − β)(Ui − U r

i )

(2) After s + c has been recovered, Pi can deviate by quitting and outputting
s+ c. However, all players have gotten s+ c, they can output the real secret in
the valid iteration and the fake secret in the invalid iteration. In this case, Pi

can get Uiβ + U r
i (1− β), we have ∀A ∈ A, ∀τA ∈ SA,

ui(σR, τA) ≥ ui(σ
′
i,σR\i, τA) + (1 − ε′(k)− β)(Ui − U r

i )
Pi can also output s+ c− c̃i when c is negotiated by Pi and other t− 1 players.
If c− c̃i = 0, then only Pi can learn the secret, and the maximum probability is
δ0 (when t− 2 of these t− 1 players are adversaries who always choose 0). Thus,
the utility Pi can get is at most U+

i δ0 +U r
i (1− δ0), we have ∀A ∈ A, ∀τA ∈ SA,

ui(σR, τA) ≥ ui(σ
′
i,σR\i, τA) + ε′(k)(U r

i − Ui) +
1

p(k) (U
+
i − U r

i )

Since (1 − ε′(k))(1 − β)(Ui − U r
i ), (1 − ε′(k) − β)(Ui − U r

i ), ε
′(k)(U r

i − Ui) +
1

p(k) (U
+
i − U r

i ) are positive and non-negligible, following the protocol is strictly

better than deviating.
In the third case, Pi deviates when checking c. There are two possible cases.

The first one is that Pi computes gcjκ (j ∈ {1, . . . , n}) with a value different
from what he commits to. The second one is that Pi keeps silent. In both cases,
Pi will be caught and be disqualified, so we do not distinguish between them.
If Pi deviates before t credible shares gcjκ have been calculated, then players
restart Stage 2 at once after disqualifying Pi. In this situation, even if t − 2
adversaries deviate, the protocol will halt and all players will have the same
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output value. Thus Pi gets Ui in the valid iteration, but can only get U r
i in the

invalid iteration, and his deviation results in the expected utility Uiβ+U r
i (1−β).

If Pi follows the protocol then gcκ can be calculated. If the current iteration is
valid then all players learn the secret, or else they continue the protocol that may
be interrupted when adversaries share inconsistently in the subsequent iterations
with negligible probability. Thus Pi gets Uiβ + (1− β)(ε′(k)U r

i + (1− ε′(k))Ui)
by following. We can get that ∀A ∈ A, ∀τA ∈ SA,

ui(σR, τA) ≥ ui(σ
′
i,σR\i, τA) + (1 − ε′(k))(1 − β)(Ui − U r

i )

It follows that Pi suffers losses by deviating, since (1− ε′(k))(1− β)(Ui −U r
i ) is

positive and non-negligible.
As we analyzed above, Pi will decrease his payoff by a non-negligible amount

if he deviates before learning the secret no matter how adversaries behave. Thus,
the deviating strategy σ′

i is strictly worse than the prescribed strategy σi.
We next consider the scenario where all rational players follow the strategy

profile ρR ∈ EqvR(σ), that is all rational players would deviate from the protocol
after they can output the secret, and they would not deviate before they can
output the secret when there are less than t−1 players deviate. We show that in
this situation each Pi cannot gain by deviating after learning the secret. When
checking c in the valid iteration, players calculate the share gciκ one by one,
w.l.o.g. we assume that the shares are calculated in this order gc1κ, ..., gcnκ. If
the first t− 1 shares have been calculated and published, then Pt−1 will be the
first player who learns the iteration status after finishing the computation of
gctκ. If the current iteration is valid, then Pt−1 may deviate by keeping silent
or forging shares. However his lie is sure to be caught. If t − 2 players (may be
adversaries) have deviated, then the protocol halts and all players output s(r). If
less than t−2 players have deviated, then players restart stage 2. Similarly, in the
resumption of stage 2 the player who finishes the computation of the t’th share
can learn the secret in advance and then would like to deviate. No matter what
the adversaries do and no matter whether Pi deviates or not, at last the following
two scenarios occur: (1) The protocol halts when the (t− 1)’th deviating player
occurs. In this situation all players can output the real secret, because the secret
has been reconstructed during the first stage of reconstruction phase. (2) Less
than t−1 players deviate, at least n− t+1 credible shares are calculated and gcκ

is reconstructed. In both scenarios above, all players can learn the secret at last.
If the current iteration is invalid, ρ is just σ. In addition, Pi can get the secret
s directly by breaking the cryptographic primitives with negligible probability.
When some t − 2 players keep silent, Pi can increase his utility from Ui to U+

i

by quitting. However, since it happens with negligible probability, Pi can only
increase his overall utility by a negligible amount by following ρi.

From the above analysis we can know that Pi cannot gain by deviating af-
ter learning the secret, even if all other rational players follow the equivalent
strategies. For each rational player Pi, ∀ρR ∈ EqvRσ, it holds that:

ui(ρR, τA) ≤ ui(σi,ρR\i, τA) + negl(k), ∀A ∈ A, ∀τA ∈ SA
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The negligible term is derived from the broken of cryptographic primitives.
Therefore, we can conclude that the prescribed strategy of the protocol induces

a computational strict Nash equilibrium with respect to adversary structure A.�

4.3 Discussion

Equilibrium. Our scheme is the first to induce a computational strict Nash
equilibrium with respect to adversary structure A. This solution concept ex-
tends the notion of strict Nash equilibrium to resist against adversaries, it is
much stronger than the notion of Nash equilibrium surviving iterated deletion
of weakly dominated strategies, which previous protocols tolerating adversaries
([10,11,2]) can only achieve.

Communication Channel. Our RSS protocol only needs synchronous broad-
cast channels. However, previous works with respect to adversaries [10,2,1]
required simultaneous communication.

Adversary Resilience.Our protocol motivates all rational players to follow the
protocol independently of the attacks of adversaries. Compared with previous
works, we do not limit the ability of adversaries, and our solution guarantees the
same properties as in cryptography.

5 Conclusion

We show how to realize a t-out-of-n secret sharing protocol that is resilient to
irrational adversaries over standard (synchronous) broadcast channels in this
paper. We rely on the publicly verifiable secret sharing scheme to detect devia-
tions, so that the reconstruction of the secret will not be interrupted even if a
small number of players deviate. Moreover, the deviating players are punished
by being disqualified. Compared with Nash equilibrium that current works with
respect to adversaries can achieve, our protocol achieves an enhanced notion of
computational strict Nash equilibrium with respect to adversary structure A. In
addition, we can tolerate less than one half of all players being corrupted by a
malicious adversary without using simultaneous communication.
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Appendix A: Verifiable Encryption

It is a protocol for verifying that a pair (M,N) encrypts the discrete logarithm
of a public element Vi = Gvi

i , denoted V ES(vi, G
vi
i ).

Let q be a large prime so that p′ = (q − 1)/2 is also prime, Gi is a generator
of Gq, f is a fixed element of order p′ in Z

∗
q , Pi chooses z

′
i ∈R Zp′ as his private

key and publishes yi = fz′
i(mod q) as his public key. To encrypt vi ∈ Z

∗
q , the

dealer D chooses εi ∈ Zp′ randomly and computes (M,N) = (fεi , v−1
i · yεii ).

Pi can decrypt (M,N) by calculating

vi = (f εi)z
′
i/(v−1

i · yεii )
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Then the dealer proves to all players that the decryption of (M,N) is just the
discrete logarithm of Vi = Gvi

i to Gi. Actually, if (M,N) equals (fεi , v−1
i · yεii ),

then it holds that
V N
i = (Gvi

i )v
−1
i ·yεi

i = G
y
εi
i

i

So the dealer needs to prove that the double discrete logarithm of V N
i to the

base Gi, yi equals the discrete logarithm of M to the base f . They repeat the
following scheme T times:

1. The dealer randomly chooses w ∈ Zp′ , publishes tf = fw and tGi = G
yw
i

i .
2. The verifiers send b ∈R {0, 1} to the dealer.
3. The dealer responses with r = w − b · εi.
4. The verifiers check

(a) tf = f r ·M b=fw.

(b) tGi = G
yr
i

i when b = 0
(c) tGi = (V N

i )y
r
i when b = 1

Appendix B: Proof of Theorem 1

We recall the Diffie-Hellman assumption and the Decision Diffie-Hellman as-
sumption briefly. The Diffie-Hellman assumption states that given gα, gβ it is
infeasible to compute gαβ . The Decision Diffie-Hellman assumption states that
given gα, gβ, it is infeasible to determine whether a given gγ equals gαβ or not.

Firstly we consider the privacy of shares. In the distribution phase the dealer
publishes commitments to each ci for ri, according to [13] the commitment
E(ci, ri) protects the privacy of ci, ri unconditionally. The dealer also publishes
the commitments Gci

i and Hri
i , ci and ri keep private under the Discrete Loga-

rithm assumption. Furthermore, it follows from the soundness of Stadler’s ver-
ifiable encryption scheme that no information about ci and ri is revealed from
the encrypted values under the assumption of Discrete logarithm and Decision
Diffie-Hellman. We can get that, assume that computing discrete logarithm is
hard and breaking ElGamal cryptosystem is hard, players cannot compute other
players’ shares, so that less than t players cannot compute c. This can be ex-
pressed by the following theorem. Let sharesB denote all shares received by
players in B from the dealer during the protocol.

Lemma 2. In the (t, n) public verifiable secret sharing scheme, for any player
subset B of size less than t, it holds that

Pr[players in B learn c|sharesB] = Pr[players in B learn c]

Proof. We consider the subset of size t − 1 first, let B = {P1, . . . , Pt−1}. Note
that sharesB = (c1, r1, . . . , ct−1, rt−1).

For every c ∈ Zq, there exists a polynomial f of degree at most t− 1 satisfies

f(0) = c
f(xb) = cb for b = {1, . . . , t− 1}
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It follows that players cannot recover the secret from t− 1 shares. Furthermore,
the subset of size < t− 1 has fewer shares, so c also keeps private. �

In our protocol, Gci
i and Hri

i can be seen as the encryption of gci and hri

respectively. As we pointed out early that it may be dangerous for our rational
secret sharing protocol if players can break the encryption and get gci . In fact,
breaking the encryption is equivalent to the Diffie-Hellman problem.

Lemma 3. Under the Diffie-Hellman assumption, it is infeasible to break the
encryption of shares: Gci

i and Hri
i .

Proof. Given Gci
i = gzi·ci , Gi = gzi , breaking the encryption means computing

gci from gzi·ci and gzi , which is equivalent to computing gβ from gαβ and gα.
If we can solve this problem, then given gα and gβ, we can compute gβ

−1

from
g1 and gβ , so that we can compute gα·β from gα and gβ

−1

. This means that
Diffie-Hellman problem can be settled. �

Our rational secret sharing protocol requires that gc cannot be revealed before
the reconstruction stage. The commitment gcihri reveals no information of ci
and ri, moreover, the above result shows that players except Pi cannot compute
gci , but it cannot guarantee that no information about gci is revealed. We prove
the following result which holds under the Decision Diffie-Hellman assumption.

Lemma 4. Under the Decision Diffie-Hellman assumption, less than t players
cannot get any information about gc or hr.

Proof. Here, we prove that no information about gc is revealed, the proof of hr is
similar. We start from subset of t−1 players, w.l.o.g. denoted P1, . . . , Pt−1, they
can learn gc1, . . . , gct−1 . If they can get some information about gc then they can
get partial information about gcj (j > t − 1) from its encryption G

cj
j = gzj·cj .

Writing G
cj
j = gzj·cj = gα·β, Gj = gα, we suppose that a player can determine

whether the decrypted share gβ is equal to a given gδ or not. In this situation,
given gα, gβ , gθ, if the player can output whether gθ/α equals gβ with inputs gθ,
gα, then we can determine whether gθ equals gα·β or not. This is a contradiction
with the Decision Diffie-Hellman assumption. �

Next we need to prove the consistency of shares in the PVSS scheme.

Lemma 5. Under the Discrete Logarithm assumption, if all players accept their
shares in the publicly verifiable secret sharing scheme, then their shares are con-
sistent.

Proof. According to [13], the dealer can succeed in distributing inconsistent
shares unless he can settle Discrete Logarithm problem, so that the shares be-
ing committed are consistent. Moreover, following from Lemma 1, the discrete
logarithm of Gci

i equals the content ci of g
cihri . Thus, all players can make sure

that the shares distributed are consistent. �

It follows from the Lemmas above that the commitments and encryptions do
not reveal any information about the secret, and the shares held by players are
consistent with the secret. We can get the result.
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