
Differential Fault Analysis of Twofish

Sk Subidh Ali and Debdeep Mukhopadhyay

Dept. of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India

{subidh,debdeep}@cse.iitkgp.ernet.in

Abstract. In this paper we propose Differential Fault Analysis (DFA)
of Twofish which was one of the five AES finalists. It uses the concept of
key-dependent S-boxes and Pseudo-Hadamard Transform, which make
the cipher secure against differential attack. Each S-box is dependent on
key because of which the S-box is not known to the attacker. Therefore,
the existing DFA techniques which use the differential properties of S-
box are not directly applicable to Twofish. We propose DFA based on
an approximation technique. The attack retrieves the secret key using
around 320 pairs of fault-free and faulty ciphertexts with attack time
complexity of 240. To the best of author’s knowledge this is the first
time a DFA attack is proposed on a cipher like Twofish which uses key-
dependent S-box.

Keywords: AES, Twofish, Differential Fault Analysis, DFA, Fault
Model.

1 Introduction

Modern day ciphers are constructed to save guard against known classical crypt-
analysis techniques. But when these ciphers are implemented on hardware plat-
forms such as smart cards, may leak information in the form of side-channels [1].
The attack which uses these implementation based weakness of the ciphers are
known as side-channel cryptanalysis. There is another kind of attack which in-
duces faults into the crypto-devices and then analyzes the faulty output of the
cipher to ascertain the secret key. Fault based attacks were originally introduced
in [2] to break the RSA crypto-system. Subsequently, a more strong form of the
attack, known as Differential Fault Analysis (DFA), was proposed in [3]. DFA
uses the concepts of conventional differential attack in context to fault attack.
The first DFA was mounted on DES crypto-systems and the result showed that
the secret key of DES can be retrieved by analysing 50 to 200 faulty ciphertexts
generated from known but related plaintexts.

DFA gained significant attention in the research community when it was
shown in [4], that faults can easily be injected in a crypto-chip using some less
expensive devices like flashgun or laser pointer. Afterward, DFA was mounted
against many crypto-systems like AES [5–12], Triple-DES [13], CLEFIA [14,15],
IDEA [16], RSA [17–19]. In the same lines there is significant research in prac-
tical fault injection techniques. The recent results show that fault can also be

M. Kuty�lowski and M. Yung (Eds.): Inscrypt 2012, LNCS 7763, pp. 10–28, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Differential Fault Analysis of Twofish 11

injected using glitches in the clock input line [20, 21], power glitch [22], under-
powering [23, 24], laser beam [25] or electromagnetic radiations [26].

In this paper we investigate DFA on Twofish [27]. Twofish is a 128 bit symmet-
ric block cipher. It supports key length of 128 bits, 192 bits, and 256 bits. Twofish
was introduced by Schneier et al. as one of the AES candidates. The cipher was
selected as one of the five AES finalist. Currently it is being used by many appli-
cations like PGP, SSH Tectia, Sentry NT/2000/XP, SQL 2000 DBA Toolkit [28].
Still there are hardly few reported attacks on Twofish. The designers claimed
that impossible differential attack is possible up to 6-rounds of Twofish [29]. A
Saturation attack was proposed on reduced round of Twofish (upto 7 round with
full whitening and 8 rounds with pre-whitening) using upto 2127 plaintexts [30].
The observations made on the key-dependent S-boxes and the differential crypt-
analysis performed in [31] claimed that 8-round Twofish can be attacked. Most
recently, a truncated differential cryptanalysis of Twofish was shown in [32]. The
authors have found out truncated differential for 12-rounds and 16-rounds, but
a complete attack was not shown based on these results. State-of-the-art shows
Twofish is secure against conventional cryptanalysis techniques and because of
its design poses new challenges for cryptanalysis.

Literature shows no reported fault based analysis of the Twofish cipher. How-
ever, because of its rather uncharacteristic structure of key-dependent S-boxes,
combination of integer modulo operations with XORs, they pose significant chal-
lenges to fault analysis as known methods of DFA on block ciphers do not di-
rectly apply. In this paper we propose DFA of Twofish based on approximation
techniques. In this paper we targeted Twofish (with 128-bit key). The proposed
attack uses 320 pairs of fault-free and faulty ciphertext and uniquely determines
the secret key with attack time complexity 240. Apart from the specific objec-
tive of performing DFA on Twofish, it is also a case study to show that cipher
structure has an impact on the robustness against DFA.

Organization

The paper is organized as follow: We start with Section 2, where we describe
the preliminaries to this paper. In Section 3, we explain the motivations behind
this work. Section 4 describes the proposed DFA method whereas the proposed
DFA procedure is described in Section 5. The attack analysis and the detail
experimental results are given in Section 6. Finally, we conclude in Section 7.

2 Preliminaries

2.1 Twofish

Twofish is a 128-bit symmetric key block cipher. It uses 16-round Feistel network
with a bijective ‘F’ function. The cipher supports three different key lengths of
128, 192, and 256 bits. For brevity in this paper we only consider Twofish with
128 bits key. The structure of the cipher is shown in Figure 1. The 128 bit

12 S.S. Ali and D. Mukhopadhyay

plaintext P is split into four 32-bit words P0, . . . , P3 and XORed with the four
words K0, . . . ,K3 of the whitening key (one rotated by 1 bit towards left) and
followed by 16 rounds. Each round of the cipher, two most significant input
words (one by rotating 8 bits towards left) are fed into the F function. Each F
function consists of g function followed by Pseudo-Hadamard Transform (PHT)
and key word addition. The g function consists of four byte-wide key-dependent
S-boxes followed by linear mixing operation with the 4 × 4 MDS matrix. The
two output words (one rotated by 1 bit towards right) of the F function are then
XORed with the two least significant words of the round input. Here addition
(�) defines the addition modulo 232 operation.

>>>1

MDS

MDS

128−bit Plaintext

128−bit Ciphertext

<<<1

<<<8

one
round

15 more
rounds

K4 K6 K7K5

K2r+8

K2r+9

S0

S1

S2

S3

S3

S2

S1

S0

K1K0
K3K2

F g

g

PHT

P0 P1 P2 P3

C0
C1 C2 C3

Fig. 1. Block diagram of Twofish

Pseudo-Hadamard Transform (PHT). It is a mixing operation. Given two
inputs a and b, output of the PHT is defined as follows:

a′ = a+ b mod 232

b′ = a+ 2b mod 232

Differential Fault Analysis of Twofish 13

Key-Dependent S-Boxes. Twofish uses four key-dependent S-boxes. The four
S-boxes use two 32 bits words Γ0 and Γ1 of the key material. The words are
generated from the 128 bits Twofish key as follows:

⎛
⎜⎜⎝
τi,0
τi,1
τi,2
τi,3

⎞
⎟⎟⎠ =

⎛
⎜⎝

· · · · ·
... RS

...
· · · · ·

⎞
⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k8i
k8i+1

k8i+2

k8i+3

k8i+4

k8i+5

k8i+6

k8i+7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and,

Γi =

3∑
j=0

τi,j .2
8j

where i ∈ {0, 1} and k0, . . . , k15 are the 16 bytes of the key. The RS matrix is
given as follows:

RS =

⎛
⎜⎜⎝
01 A4 55 87 5A 58 DB 9E

A4 56 82 F3 1E C6 68 E5

02 A1 FC C1 47 AE 3D 19

A4 55 87 5A 58 DB 9E 03

⎞
⎟⎟⎠

The four S-boxes are generated as follows:

y0 = q1[q0[q0[x0]⊕ τ0,0]⊕ τ1,0]

y1 = q0[q0[q1[x1]⊕ τ0,1]⊕ τ1,1]

y2 = q1[q1[q0[x2]⊕ τ0,2]⊕ τ1,2]

y3 = q0[q1[q1[x3]⊕ τ0,3]⊕ τ1,3]

q0 and q1 are fixed 8-bit permutations andX = {x0, . . . , x3} and Y = {y0, . . . , y3}
are the input and output words of the S-boxes, of dimension 8 bits each.

h-Function. h function plays an important role in Twofish cipher. The function
is used in the key schedule as well as to derive the g function. Figure 2 shows
an overview of the function. It takes the 32 bit input and a list L = (L0, L1)
of two 32-bit words and applies the S-box operation on the input where the list
L, is used in reversed order. The S-box output is followed by a linear mixing
operation with the MDS matrix. It can also be observed that the path of each
8 bits of the input in the function h can be visualized as application of either of
the four S-boxes, S0, . . . , S3 (as denoted by dotted line in Figure 2).

The MDS matrix is given as follows:

MDS =

⎛
⎜⎜⎝
01 EF 5B 5B

5B EF EF 01

EF 5B 01 EF

EF 01 EF 5B

⎞
⎟⎟⎠

14 S.S. Ali and D. Mukhopadhyay

S−
bo

x
op

er
at

io
n

MDS

q0

Z

q1 q0 q1

q1

L1

q0 q1 q0

q1

L0

q0q0q1

S0S1S2S3

Fig. 2. The function h

Key Schedule. The key schedule provides the 40 expanded key words K0, . . . ,
K39; first 8 key words are used for whitening purpose and the rest of the 32 key
words are used in 16 rounds. The initial 128 bits key is divided into four words
W0, . . . ,W3. Then these words are again divided into two list We,Wo, where
We = (W0,W2) and Wo = (W1,W3). The expanded key words are defined as
follows:

ρ = 224 + 216 + 28 + 20

Ai = h(2iρ,We)

Bi = ROL(h((2i+ 1)ρ,Wo), 8)

K2i = (Ai +Bi)mod 232

K2i+1 = ROL((Ai + 2Bi)mod 232, 9)

where i = 0, . . . , 19 and ROL is a rotation function that rotates its first argument
towards left by the number of bits specified in the second argument. More details
of the cipher can be found in [27].

Differential Fault Analysis of Twofish 15

2.2 Notation

In this section we define some parameters that we will use in rest of the paper.

C = {C0, . . . , C3} : The 128 bit fault-free ciphertext, where C0 . . . C3 are four

eight byte words of the fault-free 128 bit ciphertext.

C∗ = {C∗
0 , . . . , C

∗
3} : The 128 bit faulty ciphertext. Here C∗

0 . . . C
∗
3 are four

eight byte words of the 128 bit faulty ciphertext.

X(i) : refers the ith byte of the word X , where a word is

of 4 bytes.

3 What Makes DFA on Twofish Different from Other
Ciphers?

In order to understand why DFA on Twofish is different with respect to other
studied ciphers, we first observe a generalized working of DFA on these reported
cryptographic algorithms. DFA uses both the concept of differential attacks and
fault attacks together. The attacker is expected to induce a fault into a particu-
lar round of encryption in-order to generate certain differences. Then following
the differential characteristic, the attacker deduces some differential equations
related to the input-output differential of the S-box. As the S-box is known to
the attacker, therefore, he can get the input of the S-box using the difference
distribution table which in turn gives the key.

Figure 3 shows the basic structure of r-round Simple Permutation Network
(SPN) cipher with block length n-byte. The ith round consists of confusion layer
S, and diffusion layer Di, followed by an addition with the ith round key Ki.
There is an addition with the whitening key WK at the beginning of the en-
cryption called key-whitening phase. The confusion layer is generally provided
by S-box operation which is a non-linear transformation. The diffusion layer is
provided by some linear transformation like multiplication with MDS matrix
followed by a rotation operation. Due to the diffusion operation the induced
fault spreads to more number of bytes which depends on the branch number
of the diffusion layer. For example in AES, inducing a single byte difference at
the input of diffusion layer will spread to four bytes at the output as the branch
number of the diffusion layer is five [33]. The attacker uses this property in-order
to generate differential equations.

Suppose that a single byte fault is induced at the input of (r−1)th round and
the corresponding difference at the input of Dr−1 is α. If the branch number
of the diffusion layer is b then the input byte-fault will spread to b − 1 bytes
(απ0 , . . . , απb−2

) at the output of Dr−1, where π denotes the transformation of
the diffusion layer. Therefore, the attacker can represent this output bytes in
terms of a pair of fault-free and faulty ciphertexts (C,C∗) as follows:

απj = S−1(Cπj ⊕Kr
πj
)⊕ S−1(C∗

πj
⊕Kr

πj
) (1)

16 S.S. Ali and D. Mukhopadhyay

S S S S

Kr−1
0 Kr−1

1 Kr−1
2 Kr−1

n−1

Cn−1C2C1C0

S S S S

Pn−1P2P1P0

S S S S

K1
0 K1

1 K1
2 K1

n−1

Kr
0 Kr

1 Kr
2 Kr

n−1

Dr−1

D0

WK0 WK1 WK2 WKn−1

Fig. 3. Basic structure of SPN ciphers

where j ∈ {0, . . . , b− 2} and S−1 represents the inverse of the S-box operation.
Now the attacker knows the S-box input difference Cπj⊕C∗

πj
. From the difference

distribution table he knows on average few values satisfy a chosen (απj , Cπj ⊕
C∗

πj
) pair. Further, because of the linear mapping in Dr−1, απj depends linearly

on α. Therefore, the attacker guesses the value of α and get the values of απj i.e.
the output differences. Using the input-output difference he retrieves the value
Cπj ⊕Kπj from the difference distribution table of the S-box. As Cπj and C∗

πj

is known to the attacker, hence he can retrieve the value of Kπj . Because of the
S-boxes in most of the modern day ciphers, the attacker can retrieve the entire
b bytes of the key using two pair of fault-free and faulty ciphertexts [6].

Same technique is also applicable for ciphers based on Generalized Feistel
Network [34]. Figure 4 shows the structure of a Feistel cipher highlighting the
ith round. The input is divided into two parts Xi, and Zi. The first part passes
through the F after being XORed with key component, Ki. The output of F
is XORed with the second part, Zi and then is swapped. In most of the Feistel
networks, the F function consists of key addition followed by an S-box operation.

In case of these ciphers, the attacker induces faults in such a way so that all
the bytes of X in the last round, i.e. Xr−1 gets corrupted. So, he can directly
get the input-output difference of the S-boxes from the fault-free and the faulty
ciphertext pair. Hence he can get the last round key using the difference distri-
bution table of the S-box. Once the last round key is retrieved, he can do one
round decryption and apply the technique again to get the penultimate round
key. This technique is repeated until he gets sufficient amount of round keys
from which he can retrieve the master key.

Differential Fault Analysis of Twofish 17

F

XiZi

Yi

Ki

Xi+1Zi−1

WK0 WK1

Fig. 4. Basic structure of Feistel ciphers

However, Twofish has significant difference from these structures. The first
difference lies in the use of PHT operation in the F function. The PHT opera-
tion is specifically added to the design to protect the cipher against differential
attacks [27]. Due to addition mod 232 operation in PHT , the difference does not
pass through unchanged as in case of XOR operation. Therefore, it is impossible
to obtain a suitable differential characteristic.

The second difference is in the round key addition. Unlike other Feistel ciphers,
in Twofish the round key is added at the end of F function. As the addition is
not at the input of S-box operation, therefore, even if the attacker retrieves the
input-output difference pair of an S-box, he can not retrieve the key. Because,
these differences are not directly related to the key as in case of SPN and Feistel
ciphers shown above. Further, the round keys are applied by mod 232 addition.

The third and the major difference in Twofish cipher is in the use of key-
dependent S-boxes. Each of the S-boxes use two bytes of the key material. De-
pending on the key material, there could be 216 possibilities of each S-boxes.
The attacker does not have the knowledge which S-box is being used. Hence he
does not have the access to the difference distribution table of the corresponding
S-box during the encryption.

In the next section we propose a DFA on Twofish which is based on approxi-
mation technique. In brief, we first target the key dependent S-boxes.

4 Proposed DFA Method

In this section we describe the method used to retrieve Twofish key. We show how
to target the key-dependent S-boxes to the proposed DFA. We use approximation

18 S.S. Ali and D. Mukhopadhyay

techniques to determine the differential characteristics of the cipher. Using these
differential characteristics we attack the Twofish S-box key instead of attacking
the round key which is generally done in case of known DFA on SPN and Feistel
ciphers as discuss in Section 3.

4.1 Fault Model Used

For the DFA on Twofish we use popular single byte fault model. The single byte
fault is induced at the input of last round. The single byte difference passes
through corresponding S-box and then spreads to all four bytes of the MDS
output. The PHT operation will mix the difference to the two output words of
the F function.

The proposed fault model can be injected in hardware design of the cipher
where an attacker can precisely determine the round operation and then using
techniques like glitches in the clock input line [20, 21, 35], laser beam [4], or
under-powering the device [22, 36], he can induce faults.

4.2 Attack Assumptions

We made the following assumption in our attack. For the sake of simplicity we
first target the S-boxes in the first g function as depicted in Figure 6.

– We assume that the attacker has the ability to induce single byte faults at
any particular byte of the inputs of F function.

– The attacker does not need to know the value of the faults.

4.3 Idea of the Proposed Attack

As discussed Twofish has two important components, the mod 232 additions
and key-dependent S-boxes. The proposed attack is based on two observations
regarding these primitives. The first observation is the approximate differential
property of the mod 232 addition and the second observation is on the key-
dependent S-boxes.

Approximate Differential of Modulo Addition. As Twofish uses mod 232

addition, therefore, we can not directly get the input-output differential of an
S-box from the fault-free and faulty ciphertexts. However, there is a probability
that an XOR differential passes through the mod 232 operation unchanged. If
such probability is p, then it is expected that after 1

p faults, one can get at least
one differential characteristic where the differential remain the same across the
mod 232 operation. The attacker can use this differential to get the input-output
difference of the S-box.

Properties of Key-Dependent S-Box. Twofish uses key-dependent S-boxes,
because of which it is difficult to obtain differential characteristics of the cipher
which can be exploited for fault attacks. However, the S-box itself contains the

Differential Fault Analysis of Twofish 19

key materials. Each of the S-boxes consists of two bytes of the key. It can be ob-
served that given an input-output difference pair, all 216 S-boxes are not equally
likely. This implies that the robustness of the cipher against differential attack
are not the same for all the keys. In fact, using multiple input-output differ-
ences we can reduce the possible choices of the S-box. Finally we can uniquely
determine the S-box which corresponds to a unique pair of key bytes. Once we
determine all the four S-boxes, we can get the eight bytes of the key material.

4.4 Twofish S-Box Analysis

Each of the four Twofish S-boxes can be considered as a function Sk0,k1(x) of x,
where k0 and k1 are the two bytes of the key material (Figure 5) . Depending on
the values of k0 and k1 there could be 216 such functions possible. Our objective
is to determine the S-box based on the input-output difference. Given an input-
output difference (Δin, Δout), we can write the following differential equation:

Δout =Sk0,k1(x⊕Δin)⊕ Sk0,k1(x) (2)

As per the Twofish specifications, each of the possible 216 S-boxes poses good
differential properties. For a given value of k0, k1, Δin, Δout, the above differ-
ential equation will have on average one solution of x. This implies, for a given
value of (Δin, Δout) on average 216 out of the 224 values of the triplet {x, k0, k1}
will satisfy the above equation. Hence, one pair of input-output difference will
reduce the search space of the triplet by 28. Therefore, on average we need three
pairs of input-output difference to reduce the search space of the triplet to a
unique value.

An exhaustive search is done to validate the above analysis. Results show
that using single pair of input-output difference the search space of the triplet
remains within a range of 215 to 216. Using three pairs, in most of the cases the
search space reduces to one whereas using four pairs the search space always
reduces to one.

The results suggest that if the attacker is able to get four pairs of input-
output difference of an S-box, he can uniquely determine the corresponding two
key bytes and the input byte. Algorithm 1 summarizes the way to recover them.

8

88

8S

k0

Sk0,k1
(x)x

k1

Fig. 5. Basic structure of one byte S-box

20 S.S. Ali and D. Mukhopadhyay

Algorithm 1. Deduce S-box key bytes k0, k1 and the input x

Input: (Δin0,Δout0), (Δin1,Δout1),
(Δin2,Δout2), (Δin3,Δout3)

Output: k0 , k1 x

Solve the following simultaneous equations Δout0 = Sk0,k1(x⊕Δin0)⊕ Sk0,k1(x)
Δout1 = Sk0,k1(x⊕Δin1)⊕ Sk0,k1(x)
Δout2 = Sk0,k1(x⊕Δin2)⊕ Sk0,k1(x)
Δout3 = Sk0,k1(x⊕Δin3)⊕ Sk0,k1(x)
if k0, k1, and x are uniquely determined then

return k0 and k1
end
else error

4.5 Determining the Approximate Differential of Modulo Addition

The PHT transformation was added in the design to thwart differential attack.
The differential characteristic across the addition modulo 232 is not the same as
in case of XOR operation. There is a analysis on the differential properties of
addition modulo 2n given in [37,38]. However, in our case the required differential
equation is different. We assume a single byte fault is induced at the first input of
the F function. Figure 6 shows the flow of faults where the byte-fault is induced
at the least significant byte of the first input word of the F function. The two
input words of the two g functions are X0 and X1, and the corresponding output
words are Y0 and Y1 respectively. Z0 and Z1 refer to the output words of the
F function. The single byte fault is induced at the first byte of X0 and the
corresponding fault value is referred as f .

After the S-box operation f changes to f ′ and subsequently spreads to all
four bytes of the MDS output. The difference at the output of the MDS is
given by α = (5Bf ′|5Bf ′|EFf ′|f ′) where 1, 5B, EF , and EF are the elements
of the first column of the MDS matrix in hexadecimal format. These four-byte
fault value again changes to β = (d|c|b|a) after the round key addition. Now, we
would like to find the probability of α = β, which means the difference across
the PHT and key addition remain the same. The relation between α and β is
given by following equation:

β =(Y0 + Y1 +K38)⊕ ((Y0 ⊕ α) + Y1 +K38) (3)

Now consider the operation: S = Y0 + Y1 +K38 and S′ = Y0 ⊕ α + Y1 + K38.
Substitute, Y1 +K38 = Y ′

1 ⇒ S = Y0 + Y ′
1 and S′ = Y0 ⊕ α+ Y ′

1

The integer additions y = x + k mod 232 can be approximated as follows:
y[i] = x[i]⊕ k[i]⊕ k[i− 1] with probability 3

4 [39], where y[i], x[i], k[i] represent
the ith bit of y, x, and k.
⇒ S[i] = Y0[i]⊕ Y ′

1 [i]⊕ Y ′
1 [i− 1]

and S′[i] = Y0[i]⊕ α[i]⊕ Y ′
1 [i]⊕ Y ′

1 [i− 1]
Thus, β[i] = S[i] ⊕ S′[i] = α[i] holds with probability 3

4 . It may be noted that
β[0] = α[0] occurs with probability one. Therefore, α and β match in the first

Differential Fault Analysis of Twofish 21

MDS

MDS x
w

y
z

b
a

c
d

>>>

f
EFf’
5Bf’
5Bf’

f’

>>>1

S0

S1

S2

S3

S3

S2

S1

S0

K4 K5

f′

K38

K6 K7

K39

X0

X1

Y0

Y1

Z0

Z1

Fig. 6. Flow of single byte fault induced at the last round input

eight bits with probability (3/4)7 ≈ 0.13. In fact, we observe experimentally
that for a random choice of Y0, Y1, K38, and α, the probability1 that α and β
matches in the first byte is 0.13177.

This implies that if we induce ten random byte-faults at the input of the
last round, there is a high chance that at least in one case the first byte (the
least significant byte) of α and β matches. The value of β can be calculated
from the fault-free and faulty ciphertexts. Therefore, if there is a hit in the
first byte of α and β, then we can get the first byte of α from the fault-free
and faulty ciphertexts. Therefore, we can get the input-output difference of the
corresponding S-box. We call this input-output difference as exploitable input-
output difference. The value of the first byte of α is f ′ when the byte-fault is
induced at the first byte of X0, as depicted in Figure 6.

From the MDS matrix we can also say that when the byte-fault is induced
at the second, third, and fourth bytes, the value of the first byte of α will be
5Bf ′, EFf ′, and EFf ′ respectively where f ′ refers to the corresponding S-box
output difference. From the above results we can say that in-order to get one
exploitable input-output difference of an S-box, the attacker has to induce on
average ten random byte-faults.

In-order to determine the S-box keys of the second g function we have to
apply little different approach. In this case the fault is in second word of the F
function. Therefore, in this case equation (3) will changed to

1 We perform 100000 simulation. On an average in 13177 cases the match was found
in the least significant byte of α and β .

22 S.S. Ali and D. Mukhopadhyay

β′ =(Y0 + 2Y1 +K39)⊕ (Y0 ⊕ 2(Y1 ⊕ α′) +K39) (4)

where α′ and β′ are the fault values corresponding to the second g function.
It may be observed that here Y1 and Y1 ⊕ α′ are multiplied by 2. Therefore,
in-order to get the first byte of α′ from β′ we have to test the cases when first
byte of (β′ >>> 1) i.e. one bit right shift of β′, matches with the first byte of α.
This implies we have to consider first byte of (β′ >>> 1) as the possible output
difference to the corresponding S-box. Rest of the analysis is the same as the of
first g function.

5 The Proposed DFA Procedure

In this section we propose a DFA on Twofish using around 320 faulty ciphertexts.
The proposed attack is described in three steps. In the first step the faulty
ciphertexts are collected to get the input-output differences of the corresponding
S-box. In the second step the two key bytes of each S-box is retrieved. In the
third step the 128-bit Twofish key is recovered from the S-box key.

5.1 Getting the Input-Output Differences

For each of the S-box Si where 0 ≤ i ≤ 3, repeatedly induce byte-faults so that
the faults affect the targeted S-box input. A list Li is maintained corresponding
to each S-box Si. The lists will hold the input-output differences of the cor-
responding S-boxes. For jth fault induction at the ith S-box, the input-output
difference is extracted from the fault-free and faulty ciphertexts pair (C,C∗) as
follows:

Δinj = C0(i) ⊕ C∗
0(i)

Δoutj = ROL(C2(i) ⊕ C∗
2(i))

Li[j] = {Δinj , Δoutj}

Once we have the list of input-output differences, we can recover the S-box key
using the differential properties of the S-box as explained in Section 4.4.

5.2 Retrieving the S-Box Key

It is already described in Section 4.4, that if the attacker is able to retrieve four
input-output differences, he can uniquely determine the two key bytes of the
S-box. However, in this regard the attacker has a list of input-output differences
and it is not known which are the exploitable input-output differences. The
attacker only expect that out of ten input-output differences there is at least
one exploitable input-output difference. Therefore, he makes exhaustive search
on all possible differences. In-order to do that he performs following three steps

Differential Fault Analysis of Twofish 23

Step 1. Choose any possible four input-output differences from Li.
Step 2. Apply Algorithm 1 to the four input-output differences to determine

corresponding S-box key. If the differences produce a pair of key bytes
(k0, k1) and input x of corresponding S-box Si, store it in the list SKi.

Step 3. Repeat Step 1 and Step 2 for all possible four pairs of differences
generated from the list Li.

The attacker is expected to induce ten faults in-order to get one pair of ex-
ploitable input-output difference. Therefore, in-order to get four such input-
output differences for a particular S-box, the attacker must induce at least forty
faults. Therefore, Li must contain at least forty input-output differences. From
a set of forty elements one can choose four elements in 40C4 ways. This implies,
that the Step 1 and 2 is repeated for at least 40C4 times. We get 28 hypotheses
of (x′, k0, k1) corresponding to each S-box.

The same technique is also followed to retrieve the S-box key from the second
g function. Therefore, from two g functions we get two sets of values of each pair
of S-box key bytes. We take the intersection of these two set based on the pair
of key bytes and uniquely determine it . From, the unique pair of S-box key we
also determine the S-box inputs x and x′ corresponding to the two g functions.
Following the same technique for all the S-boxes we uniquely determine the S-box
key as well as the input to the F function.

5.3 Recovering Master Key

Now by applying the techniques shown in the previous section, we get the two
input words X0, and X1 of the F function and the S-box key. We also know
the ciphertexts. Therefore, using these two input words we can retrieve the two
whitening keys K4 and K5, as K4 = X0 ⊕C0 and K5 = X1 ⊕C1, where C0 and
C1 are the most significant two words of the ciphertext.

Again using X0 and X1 we get the two output words Y0 and Y1, of the F func-
tion. Now we can get following two relations of the two round keys K38 and K39,

β = (Y0 + Y1 +K38)⊕ (Y0 ⊕ α+ Y1 +K38)

β′ = (Y0 + 2Y1 +K39)⊕ (Y0 + 2(Y1 ⊕ α′) +K39)
(5)

, where (α, β) and (α′, β′) correspond to any exploitable input-output differences
we already determined while retrieving the S-box keys. By solving the above two
equations we get the least significant 31 bits of K38 and K39 [16, §6.1]. we get
total of four hypotheses of (K38,K39).

In-order to get the master key from the whitening keys and the round keys
we use the Twofish key schedule. Using the key schedule we get the values of
(A2, B2) from the value of (K4,K5). Similarly, we get the values of (A19, B19)
from (K38,K39). If we see the h function in Figure 2 we observe it is an S-
box operation followed by a MDS operation. Therefore, if we do inverse MDS
operation on Ai we get the S-box output whereWe is the S-box key. The input to
the S-box is the value 2iρ. Therefore, we know the input output pair of the S-box.

24 S.S. Ali and D. Mukhopadhyay

We have two values of Ai i.e. A2, A19 and corresponding two input output pairs.
Say, the two input output pairs of a particular eight bits S-box are (In0, Out0)
and (In1, Out1). In-order to get the corresponding pair of S-box key we solve
following two equations

Out0 = Sk0,k1(In0)

Out1 = Sk0,k1(In1)
(6)

Here k0 and k1 are the two S-box key bytes. The probability that a value of
(k0, k1) satisfies the above two equations is (1

28)
2. We have 216 hypotheses of

(k0, k1), of which only 216

216 = 1 is expected to satisfy the above two equations.
We apply this technique to all the four S-boxes and determine the possible values
of We.

It may be observed that we have four possible choices of A2, A19 corresponding
to four choices of K38,K39. As per the above analysis the expected number of
value of We is four and rest will be discarded. We follow the same technique
to determine the values of Wo from the four possible choices of B2, B19. By
ordering the words of We and Wo we get the master key. This implies we will
get 4 × 4 = 16 choices of master key. We have the plaintext, therefore, we can
determine the exact master key out of the 16 choices.

6 Attack Analysis and Simulation Results

The attacker is expected to induce forty byte faults to retrieve the two key bytes
of an S-box. However, from the fault-free and the faulty ciphertexts the attacker
could not guess whether the pair of fault-free and the faulty ciphertexts lead to
a exploitable input-output difference of the S-box. Therefore, he has to test all
the faulty ciphertexts. In-order to do that he makes possible four input-output
differences out of the forty differences generated from forty faulty ciphertexts.
One can choose four out of forty elements in 40C4 = 91390 ≈ 216 possible ways.
Therefore, the attacker will test Algorithm 1 for 216 times. The time complexity
of Algorithm 1 is 224, as the attacker has to try all possible values of x, k0, and
k1. Therefore, for a particular S-box key recovery phase has a time complexity
of 216 × 224 = 240.

For, a particular S-box the output difference is generated by inducing a dif-
ference to the input. The attacker only varies the input difference by inducing
different faults at the input of the S-box. Therefore, the input x, to the S-box
remains fixed. Only the input difference Δin, is varied. According to the differ-
ential properties of the S-box the input output difference mapping is one-to-one
for a fixed input. Therefore, for a fixed input of an S-box, there are only 28 input-
output differences possible. The input and output difference are two bytes which
can have 216 possible values. Therefore, the probability of one input-output dif-

ference satisfying an S-box with fixed input is 28

216 = 1
28 . Therefore, four such

input-output differences satisfy the S-box with probability 1
(28)4 = 1

232 . In our

case the S-box and its input is not known. Therefore, we have to try all pos-
sible values of input and the two bytes key material of the S-box. Hence the

probability is given by (28)3

232 = 1
28 .

Differential Fault Analysis of Twofish 25

Algorithm 2. DFA on Twofish

Input: (L0, L1, L2, L3),(L′
0, L

′
1, L

′
2, L

′
3)

Output: 128-bit master key K

/*Li and L′
i are the list of input-output differences corresponding to two different

g-functions */

for i = 0 . . . 4 do
for Each possible four differences of Li do

Test Algorithm 1
if (k0, k1, x) found then

Save (k0, k1, x) in SKi.
end

end

end

for i = 0 . . . 3 do
for Each possible four differences of L′

i do
Test Algorithm 1.
if (k0, k1, x′) found then

Save (k0, k1, x′) in SK ′
i.

end

end

end

for i = 0 . . . 3 do
for Each elements of SKi do

for Each elements of SK ′
i do

if (k0, k1) of SKi is equal to (k0, k1) of SK ′
i then

Save (k0, k1, x, x′).
end

end

end

end
Get the value of X0 and X1 by combining the S-box inputs.
Get Y0 and Y1 from X0 and X1.
Get the corresponding (α, β) and (α′, β′).
Get K4 and K5 from K4 = X0 ⊕ C0 and K5 = X1 ⊕ C1.
Get the possible values of K38 and K39 by solving equation (5).
for Each candidates of (K38,K39) do

Get (A2, B2), and (A19, B19).
Test equations (6) for (A2, A19) and (B2, B19).
if Both solutions found then

Order (We,Wo) and get K.
end

end

return K

We have 216 choices of the four input-output differences out of which the

number of candidates giving the key is 216

28 = 28. Each of these candidates will
give one hypotheses of the pair of S-box key bytes. This implies for a particular
S-box, we will have on average 28 hypotheses of the pair of S-box key bytes.
Similarly, we get 28 hypotheses of the same pair of key bytes from the second
g function. The intersection of these two sets will uniquely determine the two
key bytes and the S-box input. Finally, we have unique choice of the four S-box

26 S.S. Ali and D. Mukhopadhyay

key and the two input words of the F function. From these values we uniquely
determine the master key.

In-order to validate the analysis we have simulated the attack. A 3GHz Intel
Core 2 Duo processor with 2GB RAM was used to perform the simulated attack.
The code was written in C-programming language and compiled using gcc-4.4.3.
The simulation was performed on 100 random keys. In each case forty random
faults are induced in each of the S-boxes. The attack used total of 320 faulty
ciphertexts and a fault-free ciphertexts. On an average the attack took 8 hours
to reveal the secret key.

7 Conclusions

This is the first reported DFA on the AES finalist:Twofish. The proposed ci-
pher, due to its integer addition and key-dependent S-boxes pose challenge to
a differential analysis. The paper shows how a combination of approximation
strategy and the observation that the key-dependent S-boxes make the differen-
tial properties stochastically inequivalent among the possible keys can reveal the
key when the byte faults are induced in the cipher. The attack takes on aver-
age 320 faulty ciphertexts and a fault-free ciphertext to uniquely determine the
master key with attack time complexity 240. The simulation result shows that
the attack is indeed practical, taking around 8 hours on a standard platform.

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults (Extended Abstract). In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

3. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

4. Skorobogatov, S.P., Anderson, R.J.: Optical Fault Induction Attacks. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12.
Springer, Heidelberg (2003)

5. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2005. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)

6. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

7. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A Generalized Method of Differ-
ential Fault Attack Against AES Cryptosystem. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)

8. Mukhopadhyay, D.: An Improved Fault Based Attack of the Advanced Encryption
Standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–
434. Springer, Heidelberg (2009)

Differential Fault Analysis of Twofish 27

9. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential Fault Analysis of the Ad-
vanced Encryption Standard Using a Single Fault. In: Ardagna, C.A., Zhou, J.
(eds.) WISTP 2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011)

10. Ali, S.S., Mukhopadhyay, D.: Differential Fault Analysis of AES-128 Key Sched-
ule Using a Single Multi-byte Fault. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 50–64. Springer, Heidelberg (2011)

11. Ali, S., Mukhopadhyay, D.: A Differential Fault Analysis on AES Key Schedule Us-
ing Single Fault. In: Breveglieri, L., Guilley, S., Koren, I., Naccache, D., Takahashi,
J. (eds.) FDTC, pp. 35–42. IEEE (2011)

12. Ali, S., Mukhopadhyay, D.: An Improved Differential Fault Analysis on AES-256.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
332–347. Springer, Heidelberg (2011)

13. Hemme, L.: A Differential Fault Attack Against Early Rounds of (Triple-)DES.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 254–267.
Springer, Heidelberg (2004)

14. Chen, H., Wu, W., Feng, D.: Differential Fault Analysis on CLEFIA. In: Qing, S.,
Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 284–295. Springer,
Heidelberg (2007)

15. Takahashi, J., Fukunaga, T.: Improved Differential Fault Analysis on CLEFIA. In:
Breveglieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC, pp.
25–34. IEEE Computer Society (2008)

16. Clavier, C., Gierlichs, B., Verbauwhede, I.: Fault Analysis Study of IDEA. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 274–287. Springer, Heidelberg
(2008)

17. Trichina, E., Korkikyan, R.: Multi Fault Laser Attacks on Protected CRT-RSA.
In: Breveglieri, et al. (eds.) [40], pp. 75–86

18. Coron, J.-S., Giraud, C., Morin, N., Piret, G., Vigilant, D.: Fault Attacks and
Countermeasures on Vigilant’s RSA-CRT Algorithm. In: Breveglieri, et al. (eds.)
[40], pp. 89–96

19. Pellegrini, A., Bertacco, V., Austin, T.M.: Fault-based attack of RSA authentica-
tion. In: DATE, pp. 855–860. IEEE (2010)

20. Fukunaga, T., Takahashi, J.: Practical Fault Attack on a Cryptographic LSI with
ISO/IEC 18033-3 Block Ciphers. In: Breveglieri, et al. (eds.) [41], pp. 84–92

21. Agoyan, M., Dutertre, J.-M., Naccache, D., Robisson, B., Tria, A.: When Clocks
Fail: On Critical Paths and Clock Faults. In: Gollmann, D., Lanet, J.-L., Iguchi-
Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 182–193. Springer, Heidel-
berg (2010)

22. Canivet, G., Maistri, P., Leveugle, R., Clédière, J., Valette, F., Renaudin, M.:
Glitch and Laser Fault Attacks onto a Secure AES Implementation on a SRAM-
Based FPGA. J. Cryptology 24(2), 247–268 (2011)

23. Barenghi, A., Bertoni, G., Parrinello, E., Pelosi, G.: Low Voltage Fault Attacks on
the RSA Cryptosystem. In: Breveglieri, et al. (eds.) [41], pp. 23–31

24. Barenghi, A., Hocquet, C., Bol, D., Standaert, F.-X., Regazzoni, F., Koren, I.:
Exploring the Feasibility of Low Cost Fault Injection Attacks on Sub-threshold
Devices through an Example of a 65nm AES Implementation. In: Juels, A., Paar,
C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 48–60. Springer, Heidelberg (2012)

25. Agoyan, M., Dutertre, J.-M., Mirbaha, A.-P., Naccache, D., Ribotta, A.-L., Tria,
A.: How to flip a bit? In: IOLTS, pp. 235–239. IEEE (2010)

26. Quisquater, J.-J., Samyde, D.: Eddy current for Magnetic Analysis with Active
Sensor. Springer (2002)

28 S.S. Ali and D. Mukhopadhyay

27. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C.: Twofish: A 128-Bit
Block Cipher, http://www.schneier.com/paper-twofish-paper.pdf

28. http://www.schneier.com/twofish-products.html

29. Ferguson, N.: Impossible Differentials in Twofish. Twofish Technical Report 5 (Oc-
tober 5, 1999), http://www.schneier.com/paper-twofish-impossible.pdf

30. Lucks, S.: The Saturation Attack - a Bait for Twofish. Cryptology ePrint Archive,
Report 2000/046 (2000), http://eprint.iacr.org/

31. Murphy, S., Robshaw, M.J.B.: Differential Cryptanalysis, Key-dependent S-
boxes, and Twofish (2000), http://csrc.nist.gov/encryption/aes/round2/

comments/20000515-smurphy.pdf

32. Moriai, S., Yin, Y.L.: Cryptanalysis of Twofish (II) (2011)
33. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption

Standard. Springer (2002)
34. Nyberg, K.: Generalized Feistel Networks. In: Kim, K., Matsumoto, T. (eds.) ASI-

ACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996)
35. Saha, D., Mukhopadhyay, D., RoyChowdhury, D.: A Diagonal Fault Attack on

the Advanced Encryption Standard. Cryptology ePrint Archive, Report 2009/581
(2009), http://eprint.iacr.org/

36. Bhasin, S., Danger, J.-L., Guilley, S., Selmane, N.: Security Evaluation of Different
AES Implementations Against Practical Setup Time Violation Attacks in FPGAs.
In: Tehranipoor, M., Plusquellic, J. (eds.) HOST, pp. 15–21. IEEE Computer So-
ciety (2009)

37. Lipmaa, H., Moriai, S.: Efficient Algorithms for Computing Differential Properties
of Addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002)

38. Lipmaa, H.: On Differential Properties of Pseudo-Hadamard Transform and
Related Mappings (Extended Abstract). In: Menezes, A., Sarkar, P. (eds.)
INDOCRYPT 2002. LNCS, vol. 2551, pp. 48–61. Springer, Heidelberg (2002)

39. Mukhopadhyay, D.: Design and Analysis of Cellular Automata Based Crypto-
graphic Algorithms. IACR Ph.D database (2006),
http://www.iacr.org/phds/?p=detail&entry=609

40. Breveglieri, L., Joye, M., Koren, I., Naccache, D., Verbauwhede, I. (eds.): 2010
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2010, Santa
Barbara, California, USA, August 21. IEEE Computer Society (2010)

41. Breveglieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J.-P. (eds.): Sixth
International Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
2009, Lausanne, Switzerland, September 6. IEEE Computer Society (2009)

http://www.schneier.com/paper-twofish-paper.pdf
http://www.schneier.com/twofish-products.html
http://www.schneier.com/paper-twofish-impossible.pdf
http://eprint.iacr.org/
http://csrc.nist.gov/encryption/aes/round2/comments/20000515-smurphy.pdf
http://csrc.nist.gov/encryption/aes/round2/comments/20000515-smurphy.pdf
http://eprint.iacr.org/
http://www.iacr.org/phds/?p=detail&entry=609

	Differential Fault Analysis of Twofish
	1 Introduction
	2 Preliminaries
	2.1 Twofish
	2.2 Notation

	3 What Makes DFA on Twofish Different from Other Ciphers?
	4 ProposedDFAMethod
	4.1 Fault Model Used
	4.2 Attack Assumptions
	4.3 Idea of the Proposed Attack
	4.4 Twofish S-Box Analysis
	4.5 Determining the Approximate Differential of Modulo Addition

	5 The Proposed DFA Procedure
	5.1 Getting the Input-Output Differences
	5.2 Retrieving the S-Box Key
	5.3 Recovering Master Key

	6 Attack Analysis and Simulation Results
	7 Conclusions
	References

