
An Improved Time-Memory-Data Trade-Off

Attack against Irregularly Clocked
and Filtered Keystream Generators

Lin Jiao1,2, Mingsheng Wang3, Bin Zhang3, and Yongqiang Li3

1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China

3 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, P.R. China

jiaolin@is.iscas.ac.cn

Abstract. In this paper, we propose a new key recovery attack against
irregularly clocked keystream generators, using the approach of time-
memory-data trade-offs. The main idea behind our attack is creating
several look-up tables and finally recovering the initial states of LFSRd

and LFSRc synchronously, by alternatively deriving the initial states
of LFSRd and LFSRc along the chains. We show that our attack is
more efficient, and improves the previous attacks on the cipher model.
Especially, we prove that our attack almost always needs less complexity
than that of the normal time-memory-data trade-off attack [3] on the
cipher model. We test our attack on LILI-128, and find out that it can
successfully break the cipher with 256.6 bit-comparison operations, 249

pairs of 89-bit words memory and 259 keystream bits. This result is better
than those in [15,6], which possess the complexity of 262 parity checks
and 263 bit operations respectively. Moreover, our attack can be divided
and computed in parallel, and the actual runtime of the attack can be
reduced depending on the number of computers we access.

Keywords: Time-Memory-Data Trade-Off Attack, Stream Cipher, Ir-
regularly Clocked Shift Registers, LILI-128.

1 Introduction

In this paper, we present a new key recovery time-memory-data trade-off attack
against ciphers based on an irregularly clocked linear feedback shift register
(LFSR) filtered by a Boolean function. The cipher model we attack is composed
of two components, the clock control generator and the data generator, which is
shown in Fig 1.

1. The data generator subsystem consists of LFSRd of length ld and a nonlinear
filter function fd, which outputs the bit stream v.

2. The clock control subsystem consists of LFSRc of length lc and a clock
function fc, whose output is the clock control sequence of integers c.

M. Kuty�lowski and M. Yung (Eds.): Inscrypt 2012, LNCS 7763, pp. 294–310, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



An Improved TMD Attack on Clock Controlled Keystream Generators 295

LFSRc

fc

lc

CLOCK-CONTROL

LFSRd

fd

ld

DATA GENERATION

c(t) z(t)

Fig. 1. The general cipher model we attack in this paper

The effect of the irregularly clocking is that v is irregularly decimated and the
positions of the bits in the stream are altered. The result from this decimation
is the keystream z. The secret key in this cipher is the (lc+ ld) initialization bits
for LFSRc and LFSRd (Ic, Id). If the matching states of LFSRc and LFSRd

at certain clock are obtained, it is equivalent that the key of the initialization is
recovered.

The previous effective algorithms are not specially designed to attack irreg-
ularly clocked and filtered generators. In 1980, Hellman introduced a technique
of time-memory trade-offs for breaking block ciphers [8]. An analogous tech-
nique for stream ciphers was proposed by Babbage in 1995 [2]. More recently,
Biryukov and Shamir combined these approaches in work when the adversary
has more data to deal with, which can lessen the memory and the precom-
putation complexity [3]. Khoo et. al. presented a time-memory-data trade-off
attack against stream ciphers whose filter or combiner generators are based on
Maiorana-McFarland functions [11].

Although nearly all the attacks against irregularly clocked and filtered keystr-
eam generators are correlation attacks in the past [10,14,15], we propose a time-
memory-data trade-off attack on the cipher model in this paper. Our attack
is not designed to attack only the data generator or the control subsystem,
but especially aims at clock controlled keystream generators as one system. In
most irregularly clocked cryptosystems, the length of LFSRc is usually much
smaller than that of LFSRd. Then by means of comparing the keystream and
the output sequence which is regularly clocked by LFSRd, the state of LFSRc

can be determined within a complexity not too large. The attack consists of
two stages. In the offline stage, several look-up tables are obtained. First, a fixed
string is chosen to be a segment of keystream whose length is big enough to derive
the initial state of LFSRc by comparison. Next, we create several matrices of
chains with the points which are ld-bit words formed by the possible initial states
of LFSRd. They are generated by alternatively determining the initial states of
LFSRd and LFSRc, in the way of guessing the startpoint of the chain to be the
initial state of LFSRd and deriving the initial state of LFSRc by comparing the
fixed string and the regularly clocked output sequence of LFSRd, then running
the whole system to obtain the following ld bits in the keystream which form the



296 L. Jiao et al.

next point in the chain and updating the initial state of LFSRd with this point,
repeatedly. We store the startpoints and endpoints of these chains in several
tables corresponding to the matrices. In the online stage, we search the tables
and recover the key. We observe the keystream to find the fixed string, and the
following ld bits in the keystream indeed form a point in the chains. Then we
search for a match among the endpoints in the way beforehand along the chains
and determine the initial states synchronously. Actually, we propose a general
framework to attack the cipher model, and all the effective attacks against the
subsystems [4,13,9,5,16,17] can be applied depending on the specific ciphers.

The complexity of our attack is analyzed. We prove that the runtime of our
attack is less than that of the original time-memory-data trade-off attack pro-
posed by Biryukov and Shamir on the cipher model in case of the same mem-
ory requirement. Especially, to attack the LILI-128 cipher, our method needs
256.6 bit-comparison operations, with 249 pairs of 89-bit words memory and 259

keystream bits, whose success probability is more than 98%. There is also a
time-memory trade-off attack against LILI-128 proposed by Saarinen [18] using
the period of LFSRc, which needs approximately 245 89-bit words of computer
memory and 246 keystream bits, with the success probability of 90%. The run-
time complexity is claimed to be 248 DES operations, which is not easy to be
compared with the general runtime complexity. The algebraic attack proposed
by Courtois and Meier [6] aims at the data generator subsystem of LILI-128,
and calls for 263 bit operations, with 242 bit memory and 257 keystream bits
to break the whole cipher. The success probability of algebraic attacks is hard
and scarcely analyzed in literatures so far. A correlation attack proposed by
Molland and Helleseth was presented in [15], which just determines the initial
state of LFSRc. The attack is in the runtime of 262 parity checks, with 246 bit
memory and 229 keystream bits. In fact, the efficiency of our attack depends on
the memory size. Besides, if there are 210 or more(at most 220) computers to
parallel compute the algorithm, the runtime of the attack can be reduced below
246.6(accordingly 236.6) bit-comparison operations.

The rest of this paper is organized as follows. In Section 2, we give the general
model we attack. In Section 3, we present the attack in details. In Section 4, we
apply the attack to LILI-128. Conclusion is given in Section 5.

2 General Model

Here we present some details of the general model for irregularly clocked and
filtered stream ciphers we attack in this paper.

Let gd(x) and gc(x) be the feedback polynomials for the shift registers LFSRd

of length ld and LFSRc of length lc. The initialization states (Ic, Id) define the
secret key for the given cipher system. From gc(x) we can calculate a clock control
sequence c in the following way. Let c(t) = fc(L

t
c(Ic)) ∈ {a1, a2, . . . , aA}, aj ≥ 0,

be a function where the input Lt
c(Ic) is the inner state of LFSRc after t feedback

shifts and A is the number of values that c(t) can take. LFSRd produces the
stream which is filtered by fd. The output from fd is vk = fd(L

t
d(Id)). The clock



An Improved TMD Attack on Clock Controlled Keystream Generators 297

c(t) decides how many times LFSRd is clocked before the output bit vk is taken
as keystream bit z(t). Thus the keystream z(t) is produced by z(t) = vk(t), where
k(t) is the total sum of the clock at time t, that is k(t)← k(t− 1) + c(t).

The fc function described above can be those in the shrinking generator, the
step-1/step-2 generator, the stop and go generator and so on, in this model.

3 Attack

3.1 Cryptanalytic Time-Memory-Data Trade-Offs for Stream
Ciphers

At first, we give an introduction to the approach of time-memory-data trade-offs
by briefly citing contents of [3]. There are five key parameters:

– N represents the size of the search space.
– P represents the time required by the preprocessing phase of the attack.
– M represents the amount of random access memory available to the attacker.
– T represents the time required by the realtime phase of the attack.
– D represents the amount of realtime data available to the attacker.

The origin of the attack against stream ciphers is Hellman’s time-memory trade-
off attack against block ciphers, which considers the random function f that
maps the key x to the ciphertext block y for some fixed chosen plaintext, where
f is easy to evaluate but hard to invert. Hellman uses a preprocessing stage
which tries to cover all the N points of the preimage space with an m× t matrix
whose rows are the chains obtained by iterating the function f t times on m
randomly chosen startpoints. The pairs of startpoints and endpoints are stored.
During the actual attack, we are given a value y and asked to find its predecessor
x under f . Since x is covered by one of the precomputed chains, the algorithm
repeatedly applies f to y until it reaches the stored endpoint, then jumps to its
associated startpoint, and repeatedly applies f to the startpoint until it reaches
y again. The previous point it visits is the desired x. The matrix in Hellman’s
attack is shown in Fig 2.

A single matrix cannot efficiently cover all the N points, thus we add more
rows to the matrix. Assume that the first m chains are all disjoint, and the
additional path contains t distinct points, where t is less than

√
N . By the

birthday paradox, the two sets are likely to be disjoint as long as t ×mt ≤ N ,
and thus we choose m and t that satisfy the relationship mt2 = N , which we
call the matrix stopping rule. Thus, the waste of repetitive coverage can be
reduced. A single m× t matrix covers only a fraction of mt/N = 1/t of the space
according to the matrix stopping rule, and thus we need at least t unrelated
matrices to cover the whole space. Hellman’s method is using variants fis of
the original f defined by fi(x) = hi(f(x)), where hi is some simple output
modification. The total precomputation requires P ≈ N time, since we have
to cover the space with the precomputed chains. The total memory requires to
store mt pairs of startpoints and endpoints of the chains in the t matrices. We



298 L. Jiao et al.

m
 startpoints 

m
 endpoints 

length t

Fig. 2. Hellman’s Matrix

have to perform t inversion attempts according to every matrix, each requiring
at most t evaluations of some fi to recover x. Thus the total time complexity of
the attack is t2.

Differently, in the stream ciphers all the given output vectors can be inverted
with respect to the same function by using the same precomputed table. The
attack is successful if any of the D given output vectors is found, since under
such condition the generator can be run forward to find the initial state. Thus,
Biryukov and Shamir use a large value of D to speed up the attack. Same basic
approaches are used in this attack as those in Hellman’s. We reduce the total
number of points to be covered from N to N/D, and still get a collision between
the stored and actual states. The attack reduces the number of matrices r from
t to t/D in order to decrease the total coverage by a factor of D and keep
each matrix as large as possible, which is allowed by the matrix stopping rule
mt2 = N . Then the total memory is reduced from M = mt to M = mt/D. The
total preprocessing time is similarly reduced from P = N to P = N/D. The
attack time T is the product of the number of matrices, the length of each chain,
and the number of available data points. This product is T = (t/D) · t ·D = t2,
which is the same as in Hellman’s original attack. We can use the matrix stopping
rule to find the time-memory-data trade-off in this attack, which satisfies the
invariant relationship:

TM2D2 = t2 · (mt/D)2 ·D2 = (mt2)2 = N2.

This relationship is valid for any t ≥ D, i.e., D2 ≤ T ≤ N .

3.2 Our Attack against Irregularly Clocked and Filtered Keystream
Generators

Our time-memory-data trade-off attack is based on the aforementioned crypt-
analysis, but specially designed to analyze irregularly clocked and filtered key-
stream generators described in Section 2. We usually see lc < ld in most clock
controlled cryptosystems. The initial state of LFSRc can be determined within
a short runtime by comparing the keystream z and the regular output sequence



An Improved TMD Attack on Clock Controlled Keystream Generators 299

v. The attack has two phases: During the preprocessing phase, we explore the
general structure of the cryptosystem, and summarize the findings in a large
table, which are not tied to particular keys. During the realtime phase, we are
given actual data produced from a particular unknown key, and our goal is to
use the precomputed table to find the key as quickly as possible.

Procedures in details are as follows. The representations are defined the same
as in the previous subsection.

– Preprocessing Phase:

1. Choose a fixed string s ∈ GF (2)l (as a segment of keystream for deter-
mining the initial state of LFSRc).

2. Randomly seed an ld-bit maximum LFSR and generate a sequence of
distinct ld-bit vectors X1,X2,. . . ,Xr, which is similar to that described
in (Khoo et. al.,2007) for reducing the cross points of the chains as his
in Hellman’s method.

3. Form r number ofm×tmatrices that try to cover 1/d of the whole search
space which is composed of all the possible initial states of LFSRd as
follows. For matrix i, i = 1, 2, . . . , r:

(a) Randomly choose m startpoints of the chains, each point formed by
a vector of length of ld which is to be an injection into LFSRd as
initialization ̂Id.

(b) Regularly clock LFSRd and obtain the output string v. Compare
v with s, through the method of matching a fixed bit of s with
consecutive A bits of v, to filter out the impossible values of the
control sequence c and determine the correspondingly initial state
of LFSRc. By further cutting down the possible initial states of
LFSRc through the check of several more keystream bits in s, the
unique solution of the initial state of LFSRc

̂Ic can be derived. Thus,
the overall system is obtained. Operate the system and generate the
following ld keystream bits from this moment on. Exclusive-OR the
ld-bit vector with Xi and make it the next point in the chain. Update
the initial state of LFSRd with this point. Suppose that the runtime
of this step is about t0.

(c) Iterate Step (b) t times on each startpoint respectively.
(d) Store the pairs of startpoints and endpoints (SPj ,EPj), j = 1, . . . ,m

in table i.
The relationship among the integers t,m, d, r is mtr ≥ 2ld/d, and mt2 =
2ld according to the matrix stopping rule.

– Realtime Phase:

1. Observe the keystream and find d number of l-bit strings matching with
string s. For one such string, let the following ld bits in the keystream
be y.

2. For each y, search among the endpoints in overall tables in this way.
For table i, check if there is EPj , j = 1,. . . ,m matching with y ⊕ Xi

first. If not, iterate Step (b) w times on y⊕Xi until it matches with one



300 L. Jiao et al.

of EPj , j = 1,. . . ,m, where w = 1,. . . ,t. When there is a match, jump
to the corresponding startpoint, and repeatedly apply Step (b) to the
startpoint until the ld-bit keystream vector reaches y again. Then the
previous point visited is the initial state of LFSRd Id, and the state ̂Ic
just figured out in Step (b) is the initial state of LFSRc Ic.

Firstly, we consider the complexity of the attack. Analogously to the last sub-
section, the whole search space is composed of all the possible initial states of
LFSRd, whose cardinality is 2ld . Our tables only need to cover 1/d of the space
because we just need to break the cipher for one out of the d strings in the
keystream. The memory is M = m · r, since we only store the startpoints and
endpoints of all the chains in the matrices. For each of the d data, we need to
compute for r tables and calculate Step (b) at most t times for each table. The
time taken is T = t · r · d · t0. Moreover, we need to sample D = d · 2l consecutive
keystream bits to collect the required d strings, because the string s of length l
occurs on average once in 2l keystream bits . The preprocessing time for building
the tables is P = m · t · r · t0.

Secondly, we compare our attack with the normal time-memory-data trade-off
attack proposed by Biryukov and Shamir, which is introduced in the last sub-
section. Based on the same irregularly clocked and filtered keystream generator,
the whole search space of the normal attack is made up of all the combinations
of the possible initial states of LFSRd and LFSRc. We prove that our attack
outperforms the normal one on the cipher model at runtime, with regard to
the same success probability and available memory which is in consideration of
feasibility.

Theorem 1. Let the representations for variables be the same as stated above,
and mark the normal attack and ours with subscript 1 and subscript 2 respec-
tively. We have m1t1r1 = 2ld+lc/d1, M1 = m1r1, T1 = t1r1d1, and m2t2r2 =
2ld/d2, M2 = m2r2, T2 = t2r2d2t0. Then we derive that

T2 < T1 if and only if t0 < 2lc

when M1 = M2 and r1 = r2.

Proof. We easily have that
t1
t2

= 2lc
d2

d1

from the conditions. Then

T1

T2
=

t1d1

t2d2

r1

r2t0
= 2lc

r1

r2t0
.

We have T1

T2
> 1 if and only if

t0 < 2lc
r1

r2
.

When r1 = r2, it is equivalent to t0 < 2lc , which means that our attack takes
less runtime if and only if Step (b) is better than exhaustive search. 	




An Improved TMD Attack on Clock Controlled Keystream Generators 301

Moreover, we have D1 = d1, D2 = d2d0 where d0 denotes the extra data for
matching with string s, and m1t

2
1 = 2ld+lc , m2t

2
2 = 2ld according to the matrix

stopping rule. Then we derive

m1

m2

t1
t2

2

= 2lc .

Substitute t1
t2

= 2lc d2

d1
and m1

m2
= r2

r1
into the equation, and have

d2 = 2−lc/2d1

√

r1

r2
.

We may as well let d0 = 2lc like the example of LILI-128, and derive

D2 = D1 · 2lc/2

√

r1

r2
,

which is more than D1. It seems that we use data to exchange for time, whereas
the runtime of the normal attack is always too long to make the attack practical.
We calculate

�T =
T1

T2
=

2lc

t0
and �D =

D2

D1
= 2lc/2

when r1 = r2, and find out �T > �D if t0 < 2lc/2. In our attack against LILI-
128, we see �T is much more than �D. In general, our attack no more treats
the clock controlled cipher as a black box, and creates the chains only consisting
the possible states of the data LFSR as the corresponding states of the clock
control LFSR are implicitly tackled based on the internal structure of the cipher.
Moreover, the choice of d is more flexible, since there is not restriction of d < t
like that in the normal attack.

Thirdly, we compare our attack with other attacks. Unlike those attacks which
just can be computed as a whole and cannot be divided and conquered, such as
correlation attacks and algebraic attacks, our attack can be parallel computed by
at most d computers, each using one of the d strings. Then the actual runtime
can be reduced to t · r · t0 · d/u, where u is the number of computers we can
use. Actually, this is a general framework to analyze irregularly clocked and
filtered keystream generators, and all the previous effective attacks against the
subsystems can be applied, such as in Step (b), depending on the specific ciphers.
Moreover, for certain ciphers conforming to the model, if there is an attack
against the data generator subsystem with a short runtime and a small data
requirement, the whole search space can change into the set of all the possible
initial states of LFSRc instead and our attack can be still valid. That is to say,
our attack may improve the previous attacks on the cipher model.

Finally, we analyze the success probability of our attack. The fundamental
problem is that points can appear within more than one chain. Therefore, esti-
mating the probability of success is equivalent to estimating the probability of
such duplication. We use the classic occupancy problem to estimate the success



302 L. Jiao et al.

probability, which is described nicely by Feller [7]. We apply the model of throw-
ing mtr balls into 2ld/d urns, where balls and urns correspond to the points in
the matrices and the keys to be covered in the search space respectively. The
ratio of the expected number of urns that have at least one ball and the number
of the urns is the success probability. Then, approximately,

Pr(success) = 1− e
−mtrd

2ld .

The probabilities for various choices of mtrd are given in Table 1. Although the
attack is only probabilistic, the probability of success is high.

Table 1. Approximate success probability

mtrd 0 2ld−5 2ld−4 2ld−3 2ld−2 2ld−1 2ld 2ld+1 2ld+2 2ld+3 ∞
Pr(success) 0 0.03 0.06 0.12 0.22 0.39 0.63 0.86 0.98 0.99 1.00

4 Application

The LILI-128 cipher [19] is based on the general model we attack in this paper.
To explain our new attack, we have exemplified it on this cipher.

4.1 The LILI-128 Cipher

LILI-128 is a stream cipher proposed by Simpson et al. for NESSIE. It is com-
prised of a 39-bit linear feedback shift register LFSRc responsible for clock
control and an 89-bit LFSRd to generate the keystream. The 128-bit secret key
is substituted into LFSRc and LFSRd respectively as the initial states. The
feedback polynomial of LFSRc which is a primitive polynomial is

gc(x) = x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1.

After clocking LFSRc once, 2 bits from LFSRc are input to

fc(x12, x20) = 2x12 + x20 + 1

to output c(t) ∈ {1, 2, 3, 4}. The feedback polynomial of LFSRd which is a
primitive polynomial is

gd(x) = x89 + x83 + x80 + x55 + x53 + x42 + x39 + x+ 1.

After clocking LFSRd c(t) times, 10 bits from LFSRd are input to
fd(x0, x1, x3, x7, x12, x20, x30, x44, x65, x80) = x13+x8+x4+x2+x81x21+x81x8+
x66x4 + x66x1 + x45x2 + x45x1 + x31x21 + x81x66x13 + x81x66x8 + x81x66x4 +
x81x66x2+x81x45x8+x81x45x4+x81x31x21+x81x31x13+x81x31x8+x66x45x21+
x66x45x4 + x66x31x21 + x66x31x8 + x66x31x4 + x81x66x45x21 + x81x66x45x8 +



An Improved TMD Attack on Clock Controlled Keystream Generators 303

x81x66x45x4+x81x66x45x1+x81x66x31x21+x81x66x31x8+x81x66x31x2+x81x45x31

x13 +x81x45x31x4 + x66x45x31x8 +x66x45x31x2 + x66x31x21x13 +x66x31x21x8 +
x81x66x45x31x8+x81x66x45x31x4+x81x66x31x21x13+x81x66x31x21x8+x66x45x31

x21x13 + x66x45x31x21x8 + x81x66x45x31x21x13 + x81x66x45x31x21x8,
which is balanced and with the nonlinearity of 480, to output binary data z(t)
used as the keystream.

4.2 Our Attack against LILI-128

4.2.1 Step (b) In Our Attack against LILI-128
At first, we present the detailed process in Step (b) in our attack against LILI-
128. Assume that we have obtained 39 keystream bits z(t), t = 1, . . . , 39 and the
initial state of LFSRd right now. Our goal is to derive the unique solution of
the initial state of LFSRc. The method is the same as that mentioned in [20].
(b.1) Narrow down the output sequence that c(t), t = 1, . . . , 8 can take, by com-

paring the keystream z(t), t = 1, . . . , 8 with the output sequence v(t) reg-
ularly clocked by LFSRd. For example, let z(t) = {1, 0, 0, 1, 1, 0, 1, 0, . . .}
and v(t) = {1, 0, 1, 0, 0, 0, 1, 1, . . .}. First, we check all the four values of
c(1) to see if z(1) = v(c(1)) holds, and find

z(1) = v(1), when c(1) = 1

z(1) �= v(2), when c(1) = 2

z(1) = v(3), when c(1) = 3

z(1) �= v(4), when c(1) = 4.

Thus, 1 or 3 is the possible value of c(1). Next, we check that what value
c(2) takes can make z(2) = v(c(1) + c(2)) tenable for either of these two
possible values of c(1), 1 or 3. Repeat until t = 8. Compute 16 bits of
(x12(t), x20(t)) in the state of LFSRc where t = 1, . . . , 8, using the bijective
function fc, i.e,

(x12(1), x20(1)) = (0, 0), when c(1) = 1

(x12(1), x20(1)) = (0, 1), when c(1) = 2

(x12(1), x20(1)) = (1, 0), when c(1) = 3

(x12(1), x20(1)) = (1, 1), when c(1) = 4

and the sequences of c(t), t = 1, . . . , 8 narrowed down above. The sketch is
given in Fig 3.

(b.2) Narrow down the output sequence candidates of c(t), t = 9, . . . , 31 to
compute the remaining indeterminate 23 bits in the state of LFSRc. It
is done in the same way as that described in the preceding step. Since
x12(t), t = 9, . . . , 31 is already known for x12(t) = x20(t− 8), t = 9, . . . , 31,
only one bit x20(t) of (x12(t), x20(t)) can be determined per clock, for



304 L. Jiao et al.

t = 9, . . . , 31. Repeat this series of computation until t becomes 31, then
consecutive 39 state bits of LFSRc are determined, and the initial state
of LFSRc is obtained by running forward.

(b.3) Compare the output sequence of the whole system based on those 39-bit
candidates for the initial state of LFSRc narrowed down in Step (b.2)
with the keystream z(t), t = 31, . . . , 39 to see if the candidates are correct.
Whenever a comparison of 1 bit is made, those candidates are reduced by
one half in number . When t = 39, only one candidate remains, and it is
just the unique solution of the initial state of LFSRc. (Specific illustrates
are given in the following analysis of the complexity of Step (b)).

LFSRc fc c(t) { 1, 2, 3, 4 }

LFSRd fd

keystream: z(t)={ 1, 0, 0, 1, 1, 0, 1, 0, . . . }

v(t)={ 1, 0, 1, 0, 0, 0, 1, 1, . . . }

Determine

Compare

Fig. 3. Sketch for comparing and determining

Next, we discuss the amount of computation needed for Step (b). The basic
operation is bit comparison. Assume that the keystream behaves as random
numbers, since the keystream is filtered by a balanced Boolean function from an
LFSR based on a primitive polynomial, and the values of 0 and 1 are equally
output in the sequence of LFSRd and the keystream of the whole system.

It is thought that comparing one bit of the obtained keystream with the out-
put sequence regularly clocked by LFSRd allows narrowing down the possible
values of c(t) by an average of one half. Concretely, when t = 1, we check the
four candidate values of c(1) and narrow down them to two. The number of
trails is four, and the number of remaining candidates of c(1) is two. When
t = 2, we check the four candidate values of c(2), for either of these two possible
values of c(1). The number of trials totals 2 × 4, and the number of remaining
candidates for (c(1), c(2)) is 22. The number of trials and the number of re-
maining candidates for (c(1), c(2), . . . , c(t)) are analyzed in this way until t = 8
in Step (b.1). The amount of computation at t-th clock is 4× (the number of
remaining candidates of (c(1), c(2), . . . , c(t − 1)) at (t − 1)-th clock), and the
number of remaining candidates of (c(1), c(2), . . . , c(t)) is one half of the com-
putation above, for t = 1, . . . , 8. Consequently, the total number of trials for
c(t), t = 1, . . . , 8 in Step (b.1) is obtained as follows.

4 + 2× 4 + 22 × 4 + · · ·+ 27 × 4 ≈ 210.0

And the number of remaining candidates of (c(1), c(2), . . . , c(8)) at 8th clock is
about 28.



An Improved TMD Attack on Clock Controlled Keystream Generators 305

In Step (b.2), when t = 9, only the value of x20(9) remains indeterminate
since x12(9) is fixed. For fc is invertible, there are two possible values of c(9).
They are narrowed down by one half through one bit comparison of z(9) and
v(c(1)+ ...+ c(9)). The number of trials made in this fragment is 28× 2, and the
number of possible values of (c(1), c(2), . . . , c(9)) stays 28. The number of trials
and the number of remaining candidates for (c(1), c(2), . . . , c(t)) are analyzed
in the same way until t = 31. The amount of computation at t-th clock keeps
28× 2, and the number of remaining candidates for (c(1), c(2), . . . , c(t)) is 28 all
along for t = 9, . . . , 31. Thus, the total number of trials for c(t), t = 9, . . . , 31 in
Step (b.2) is as follows.

28 × 2× (31− 9 + 1) ≈ 213.6

And the number of remaining candidate sequences of (c(1), c(2), . . . , c(31)) at
31st clock stays about 28.

Since there is a one-to-one correspondence between c(t) and (x12(t), x20(t)),
by the analysis of Step (b.1) and (b.2), there are 28 candidates for the initial
state of LFSRc narrowed down. We check to find a match of 8 bits in the
following output sequences from the overall system based on those candidates
with the remaining 8 bits of the obtained keystream. As far as one of the 8 bits
is concerned, the candidates are narrowed down by one half. Thus, the total
number of trials made in Step (b.3) is

28 + 27 + · · ·+ 2 ≈ 29.0.

At 39-th clock, only one candidate stays. Thus the overall system is obtained.
Operate the cipher and generate the following 89 keystream bits. Exclusive-OR
them with Xi and let the sum form the next point in the chain.

Consequently, the total amount of computation in Step (b) becomes

t0 = 210.0 + 213.6 + 29.0 ≈ 213.8.

4.2.2 The Complete Attack against LILI-128
Given Step (b) stated above, we present our complete attack against LILI-
128. In the preprocessing phase, we choose a fixed string s ∈ GF (2)39 as the
obtained keystream segment, and generate a sequence of distinct 89-bit vectors
X1, X2, . . . , Xd as stated in Step 2. Next, we form r number of m × t matrices
to cover the whole search space of F89

2 . For every matrix, we randomly choose m

startpoints, each formed by a possible initial state of LFSRd
̂Id. Then regularly

clock the LFSRd and execute Step (b) in part 4.2.1. Hereto, only one solution

of the initial state of LFSRc
̂Ic remains. Thus the overall system is obtained.

We generate 89 more keystream bits and X-or them with Xi corresponding to
the matrix to form the next point in the chain. It is iterated t times on each
startpoint. Store the pairs of startpoints and endpoints (SPj , EPj). The integers
t,m, d, r satisfy the relationship mtr ≥ 289/d, and mt2 = 289 according to the
matrix stopping rule,.



306 L. Jiao et al.

In the realtime phase, we observe the keystream to find d number of 39-bit
strings matching with s, and let the following 89 bits in the keystream be y.
Check a match of y

⊕

Xi and a match of the result of impacting Step (b) on
y
⊕

Xi at most t times, with the endpoints in the tables. When there is a match,
we jump to the associated startpoint, and repeatedly apply Step (b) to the
startpoint until it reaches y

⊕

Xi again. Then the previous point it has visited
is the initial state Id of LFSRd, and the corresponding initial state of LFSRc

just figured out in Step (b) is Ic. Thereby, the key of LILI-128 is recovered.

4.2.3 Techniques to Improve Our Attack against LILI-128
Many techniques can be employed to enhance our attack, since what we provide
is a general framework on clock controlled keystream generators. For example,
the skills to analyze the filter generator which is a subsystem of the cipher model
can be used to improve our attack according to specific cryptosystems. Besides,
our attack is a method based on time-memory-data trade-offs. Then the skills
to reduce the cross points can be used to increase the success probability of
our attack as well. There are a great many literatures for reference, such as
“false alarms” provided in [1], “rainbow chains” provided in [12], and “special
point” provided in [3]. In addition, we can exploit hash functions on the pairs of
startpoints and endpoints in order to reduce the memory complexity.

Especially, for our attack against LILI-128, we still use the method of time-
memory trade-offs to reduce the amount of computation in Step (b). The basic
computation in Step (b) is the comparison of v(t) and z(t) at every clock which
is for narrowing down the candidates for LFSRc data. If the steps for such
comparison are computed and stored as a table, we can look it up to determine
the candidates for LFSRc data directly in the online stage (The specific way is
mentioned in [20] which is similar to the discussion on the amount of computation
given in part 4.2.1). Table 2 shows the frequency of clocks versus the memory
size required to hold the computed tables and the frequency of table-lookups
that is needed in Step (b.1) and Step (b.2). The frequency of table-lookups is
nothing but the runtime in Step (b.1) and Step (b.2). However, the amount of
computation in Step (b.3) cannot be reduced by means of providing tables to
look up. The complexity of our attack that can be reduced depends on the size
of extra memory M ′. In this paper, we estimate the amount of computation in
Step (b) when the memory size is 242 bits or less. We will see that the extra
memory can hardly affect the order of the memory size of the whole attack
against LILI-128 in the next part. Thus Step (b) takes

t0 = 24.6 + 210.0 + 29.0 ≈ 210.6.

4.2.4 Complexity and Success Probability of Our Attack against
LILI-128
In this part, the complexity of our attack is considered. We discuss the relation-
ship among the memory size, the amount of computation and the data required
for our attack. Different parameters for the complexity and success probability



An Improved TMD Attack on Clock Controlled Keystream Generators 307

Table 2. Diminished computation of Step (b.1) and Step (b.2)

Frequency of clocks Memory Step (b.1)

- 0 210.0

1 27 28.0

2 214 26.4

4 227 24.6

8 252 1

Frequency of clocks Memory Step (b.2)

- 0 213.6

1 27 212.6

2 214 211.6

3 221 211.0

4 228 210.6

6 242 210.0

8 256 29.6

are presented. We also give a comparison of our time-memory-data trade-off at-
tack and the normal one proposed by Biryukov and Shamir, and a comparison
of our attack and the previous attacks against LILI-128.

The whole search space of our attack is composed of all the possible initial
states of LFSRd, whose cardinality is 289. Our tables need to cover 1/d of the
space. The memory is M = mr +M ′. For each of the d data, we need to look
up r tables and compute Step (b) at most t times. The time taken is T = trdt0,
where t0 is 210.6. The number of consecutive keystream bits needed to collect the
required d strings is D = d · 239. The preprocessing time for building the tables
is P = mtrt0. As stated above, we know the success probability of our attack
which is approximately

Pr(success) = 1− e−
mtrd
289 .

As shown in Table 3, we have calculated some versions of the parameters of
m, t, r, d versus the success probability, which satisfy the relationship

mt2 = 289, mtr ≥ 289/d.

From the table, we see that the extra memoryM ′ required as stated in part 4.2.3
can hardly affect the memory size of the whole attack.

We compare our attack with the normal time-memory-data trade-off attack
against LILI-128. For clarification, we only list the case with the same success
probability. Moreover, for the sake of hardware requirement, we set the memory
of these two attacks in the same size. For the normal attack against LILI-128, the
whole search space is formed by all the 2128 combinations of the possible initial
states of LFSRd and LFSRc. For the success probability of 63%, the time,
memory and data complexity of the normal attack should satisfy the relationship
below

TM2D2 = 22·128 for D2 ≤ T ≤ N



308 L. Jiao et al.

Table 3. Different versions of parameters of our attack with the corresponding com-
plexity and success probability

t r m d T M D P Pr(success)

220 1 249 220 250.6 249 259 279.6 0.63

222 23 245 220 255.6 248 259 280.6 0.86

222 24 245 220 256.6 249 259 281.6 0.98

223 26 243 220 259.6 249 259 282.6 0.99

according to the matrix stopping rule. A comparison of parameters of these two
attacks are presented in Table 4, where the parameters in the normal attack is
calculated as follows

M = mt/D, T = t2, P = N/D, t ≥ D.

From the table, we find out that the ratio ΔD = D2

D1
= 219 is much smaller than

ΔT = T1

T2
= 227.4, which conforms to the statement in the last section. We also

see that the runtime of the normal attack is too long for feasibility.

Table 4. Complexity comparison with the normal time-memory-data trade-off attack
against LILI-128

t r m d T M D P

normal 239 1 250 − 278 250 239 289

improved 220 2 249 219 250.6 250 258 280.6

We also compare our attack with the previous attacks against LILI-128. The
amount of memory, computation, keystream needed, and the according success
probability are shown in Table 5. The total amount of computation in our attack
against LILI-128 is

T = 222 × 24 × 220 × 210.6 = 256.6.

The memory calls for 249 pairs of 89-bit words. The data requires 259 keystream
bits. The success probability of our attack is more than 0.98. Our attack can
easily be parallelized and distributed among processors, since there is no need
for communication between the processors, unlike those attacks which just can
be computed as a whole.



An Improved TMD Attack on Clock Controlled Keystream Generators 309

Table 5. Complexity comparison with the previous attacks against LILI-128

Time (T) Data (D) Memory (M)
Success
probability
(Pr(success))

Our method 256.6 bit-comparisons 259 bits 249 pairs of 89-bit words 0.98

Algebraic
Attack [6]

263 bit operations 257 bits 242 bits
hard to esti-
mate

TMTO [18] 248 DES operations 246 bits 245 89-bit words 0.90

Correlation
Attack [15]

262 bit parity checks 229 bits 246 bits 0.99

5 Conclusion

A new key recovery time-memory-data trade-off attack against irregularly clocked
keystream generators is proposed in this paper. It is a method of low runtime,
which is feasible to compute in parallel. Moreover, we attack LILI-128 for exam-
ple to illustrate our attack. Since the attack is a frame, it can be combined with
other efficient approaches to analyze this kind of ciphers, such as Grain, and we
believe that it can improve the previous attacks on the cipher model.

Acknowledgements. We would like to thank anonymous referees for their help-
ful comments and suggestions. The research presented in this paper is supported
by the National Natural Science Foundation of China (Grant No. 60833008,
No.60603018, No.60970134), the “Strategic Priority Research Program” of the
Chinese Academy of Sciences (Grant No. XDA06010701) and the IIE’s Cryptog-
raphy Research Project (Grant No. Y2Z0011102).

References

1. Avoine, G., Junod, P., Oechslin, P.: Time-memory trade-offs: False alarm detection
using checkpoints. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 183–196. Springer, Heidelberg (2005)

2. Babbage, S.: Improved exhaustive search attacks on stream ciphers. In: European
Convention on Security and Detection 1995, IEE Conference Publication, pp. 161–
166 (1995)

3. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

4. Chepyzhov, V.V., Johansson, T., Smeets, B.: A simple algorithm for fast correlation
attacks on stream ciphers. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
181–195. Springer, Heidelberg (2001)



310 L. Jiao et al.

5. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg
(2003)

6. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003)

7. Grubbs, F.E.: An introduction to probability theory and its applications. Techno-
metrics 9(2), 342 (1967)

8. Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Transactions on Infor-
mation Theory 26, 401–406 (1980)

9. Johansson, T., Jonsson, F.: Theoretical analysis of a correlation attack based on
convolutional codes. IEEE Transactions on Information Theory 48, 2173–2181
(2002)

10. Jonsson, F., Johansson, T.: A fast correlation attack on LILI-128. Information
Processing Letters 81(3), 127–132 (2002)

11. Khoo, K., Chew, G., Gong, G., Lee, H.K.: Time-memory-data trade-off at-
tack on stream ciphers based on Maiorana-McFarland functions. IEICE Trans-
actions 92A(1), 11–21 (2009)

12. Khoo, K., Gong, G., Lee, H.-K.: The rainbow attack on stream ciphers based on
Maiorana-McFarland functions. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 194–209. Springer, Heidelberg (2006)

13. Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314. Springer, Heidelberg
(1988)

14. Molland, H.: Improved linear consistency attack on irregular clocked keystream
generators. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 109–126.
Springer, Heidelberg (2004)

15. Molland, H., Helleseth, T.: An improved correlation attack against irregular clocked
and filtered keystream generators. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 373–389. Springer, Heidelberg (2004)

16. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003)

17. Pasalic, E.: On guess and determine cryptanalysis of LFSR-based stream ciphers.
IEEE Transactions on Information Theory 55, 3398–3406 (2009)

18. Saarinen, M.-J.O.: A time-memory tradeoff attack against LILI-128. In: Daemen,
J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 231–236. Springer, Heidelberg
(2002)

19. Simpson, L.R., Dawson, E., Golić, J.D., Millan, W.L.: LILI keystream generator.
In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 248–261.
Springer, Heidelberg (2001)

20. Tsunoo, Y., Saito, T., Shigeri, M., Kubo, H., Minematsu, K.: Shorter bit sequence
is enough to break stream cipher LILI-128. IEEE Transactions on Information
Theory 51, 4312–4319 (2005)


	An Improved Time-Memory-Data Trade-Off Attack against Irregularly Clockedand Filtered Keystream Generators
	1 Introduction
	2 General Model
	3 Attack
	3.1 Cryptanalytic Time-Memory-Data Trade-Offs for Stream Ciphers
	3.2 Our Attack against Irregularly Clocked and Filtered Keystream Generators

	4 Application
	4.1 The LILI-128 Cipher
	4.2 Our Attack against LILI-128

	5 Conclusion
	References




