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Abstract. Workgroup assignment problems commonly appear in var-
ious settings including international business schools. Especially if di-
verse people, like students, need to be divided into workgroups one
may seek environments where diversity is fostered by generating het-
erogeneous workgroups. We study a problem of workgroups diversity
maximization, i.e., the problem of building workgroups with the goal of
maximizing intra-group diversity, while minimizing inter-group hetero-
geneity. For solving this problem with different objectives we propose a
hybrid metaheuristic approach which combines local search techniques
with a population based metaheuristic, including the cross entropy
method as well as path relinking as ingredients. Numerical results are
presented on some real-world instances.

1 Introduction

In this paper, we study the problem of creating workgroups with the aim of
maximizing intra-group diversity, while minimizing inter-group heterogeneity.
Let us consider an organization whose workforce is composed of a large body
of workers with a diverse set of skills. Each worker is classified along a set of
dimensions, e.g., age, gender, native tongue, educational background, past ex-
perience, etc. The goal of the problem is to create teams maximizing diversity
within each group, while making the set of teams as homogeneous as possible. In
this context, the word “diversity” refers to differences in a range of qualities and
characteristics among individuals. On the other hand, a set of groups is homo-
geneous if the overall set of characteristics of the members of each workgroup is
similar, thus distributing people with similar characteristics as much as possible
over the workgroups.

This study is motivated by the workgroup assignment problem commonly
addressed in international business schools. Typically, business schools are at-
tended by an extremely diverse body of students. Such students are divided in
class sections and, within each section, in workgroups. To expose students to a
richer experience, business schools attempt to create an environment in which
diversity is fostered by generating sections and workgroups with heterogeneity
in mind.
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Although the main application of the problem presented in this paper is the
workgroup assignment problem faced by business schools, a number of authors
have pointed out that similar problems are encountered in other realms of ap-
plication, e.g., when assigning employees to project teams, work packets (tours,
routes, etc.) to workers, when scheduling final exams at universities, or in the
VLSI design.

The workgroup assignment problem has been object of study for over two
decades. Previous works on this problem in more or less different settings can
be found, e.g., in [2,11,7,8,12,1,5,6]. To clarify those different settings, let us
consider two among those papers. First, the seminal paper [11] which presents a
decision support system designed to address the students assignment problem.
The authors thoroughly examined the problem in the format arising at one of
the major European business schools and they proposed a constructive heuristic
approach for the assignment of students to class sections and, within each sec-
tion, to workgroups. The guiding criterion was a measure of similarity, i.e., they
iteratively assigned students in such a way that similar students were placed
in different sections and workgroups. Secondly, [12] provided a comparison of
five different heuristic rules for the creation of maximally diverse groups. The
authors compared and contrasted one constructive method arising from the stu-
dents workgroup assignment problem and four switching methods drawn from
the final exam scheduling problem. All methods were driven by the same objec-
tive function, i.e., a measure of overall diversity of the resulting partitioning. In
order to have a measure of the goodness of the final results, they also proposed
an integer bound.

In this paper, we present a hybrid metaheuristic approach for the workgroup
diversity problem that combines local search techniques with a population based
metaheuristic. The major contributions of this paper are:

– We introduce a set of “hard” constraints that limit the way in which teams
are created by preventing individuals with certain attributes to belong to
the same team. In the context of the student assignment problem, it could
be the case that students that were together in the same teams in previous
semesters are not allowed to be assigned to the same team in subsequent
semesters. Such limitations actually change the problem itself, since it is
no longer possible to ensure that instances of such problem have at least a
feasible solution.

– We consider the “general” assignment problem, in which class sections do
not need to be of the same size due to, e.g., limitations in rooms availability.
In line with that, we develop a set of fitness functions that take into account
the relative size of each group.

2 A Mathematical Model for the Workgroup Diversity
Problem

The problem studied in this paper can be seen as belonging to the class of
assignment problems, in which a (larger) set of entities, e.g., students, is assigned
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to a (smaller) set of tasks, e.g., class sections. The objective function of the
assignment problem is defined in such a way that maximal diversity is achieved.
Such objective function can be expressed in a number of ways, measuring, e.g.,
the distance among students, the variance of the assignment, etc.

Due to the original motivation behind this work, in the following, we will use
the terms students to refer to the entities to be assigned, and, interchangeably,
teams or sections to identify the groups students are assigned to. Let us assume
we are given a pool of n students, each described by m attributes. Such students
must be assigned to a set of K teams. The basic information about each student
i = 1, . . . , n is collected via a matrix A = {aij}, where aij = 1 indicates that
student i has characteristic, or attribute, j, while aij = 0 indicates that student
i does not have attribute j. Without loss of generality, we assume that each
attribute is of binary nature, given that, whenever an ordinal attribute is given,
this can always be transformed in a set of mutually exclusive binary attributes.
For example, let us assume that we use a′iw ∈ {1, . . . , 10} to indicate the value of
a given nominal attribute w, where the attribute can only take values in the set
{1, . . . , 10}. It is always possible to express such nominal attribute as a collection
of ten binary attributes aij ∈ {0, 1}, with j = 1, . . . , 10, with the additional con-

straints that
∑10

j=1 aij = 1 for every student. Thus, in the following, we assume
that all nominal attributes have been transformed into a set of corresponding
binary attributes.

Given the set of attributes A = {1, . . . ,m}, we partition such set into A =
Ad ∪Af , where Ad is the set of desirable attributes, i.e., students with these at-
tributes should be dispersed over different teams or sections as much as possible,
while Af is the set of forbidden attributes, i.e., students with these attributes
cannot be assigned to the same team or section. In a similar fashion, the at-
tributes’ matrix A can also be partitioned into two submatrices Ad and Af , in
such a way that Ad is a matrix of size n × |Ad| that contains all the values of
the desirable attributes, while Af is a matrix of size n× |Af | containing all the
values of the forbidden attributes.

The following set of constraints can be used to model the workgroup assign-
ment problem:

K∑

k=1

xik = 1, i = 1, . . . , n (1)

n∑

i=1

xik ≥ Lk, k = 1, . . . ,K (2)

n∑

i=1

xik ≤ Uk, k = 1, . . . ,K (3)

n∑

i=1

aijxik ≤ 1, k = 1, . . . ,K, j ∈ Af (4)

xik ∈ {0, 1} , i = 1, . . . , n, k = 1, . . . ,K (5)
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where xik is a binary decision variables, whose value equal to 1 indicates that
student i is assigned to team k. Constraints (1) account for the fact that each
student must be assigned to exactly one team; constraints (2)–(3) define the
minimum (Lk) and maximum (Uk) number of students assigned to each team,
while constraints (4) ensure that no two students with the same “forbidden”
attribute can be assigned to the same team. It is worth noting that, due to
constraints (4), we cannot even ensure that the problem has a feasible solution.

With respect to the objective function, we follow an approach that resembles
that of [1], in which a number of alternative objective functions were proposed
and tested. The peculiarity of our study is that, contrary to what is assumed
by previous works, we do not assume that the team sizes must be the same.
Therefore, we adjust the metric used to define the different objective functions
accordingly.

Z1: Proportional Entropy. This objective function is derived from information
theory concepts and resembles the one introduced in [7]. Let us define

pkj =

∑
i aijxik∑
i xik

the proportion, i.e., percentage, of students assigned to team k that enjoy at-
tribute j, for each team and attribute. The objective function is, thus:

maxZ1 =
K∑

k=1

m∑

j=1

−pkj ln pkj (6)

In Equation (6), we assume that the product p ln p is set to zero whenever the
corresponding p is equal to zero. The difference between the proposed Z1 measure
and the one presented, e.g., in [7], is that the proposed measure takes into account
the relative size of the team, with respect to the overall population. In other
words, to maximize function Z1, students will be distributed over teams taking
into account the size of each team.

Z2: Total Proportional Deviation. This measure is a variation of the Total Ab-
solute Deviation measure presented in [7]. Let us first define

pj =
1

K

K∑

k=1

∑
i aijxik∑
i xik

the average percentage of students with attribute j in each group. We thus define
the following objective function:

minZ2 =

K∑

k=1

m∑

j=1

∣
∣
∣
∣

∑
i aijxik∑
i xik

− pj

∣
∣
∣
∣ (7)

Equation (7) computes the total deviation in percentages with respect to each
team and attribute. Again, the main advantage of this measure is that it takes
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into account the size of each team and, therefore, provides a measure of the
percentage of students within each group enjoying a certain attribute. The goal
here is to minimize the deviation of each group percentage from the average per-
centage, in such a way that each group has approximately the same percentage
of students with a given attribute.

Z3: Total Absolute Deviation. This measure is the Total Absolute Deviation
measure presented in [7], except for the fact that we take into account the relative
size of each workgroup within the total population. We thus define the following
objective function:

minZ3 =

K∑

k=1

m∑

j=1

∣
∣
∣
∣
∣

∑

i

aijxik −
∑

i

aij

∑
l xlk

n

∣
∣
∣
∣
∣

(8)

Equation (8) provides a measure of deviation between the real (first term in
Equation (8)) and theoretically optimal (second term in Equation (8)) number
of students in a group with a given attribute. The theoretically optimal number
of students with a given attribute in a team is computed relative to the size of
the group itself. Thus, the larger the group, the larger the number of students
with an attribute in that team.

The major difference between Equation (7) and Equation (8) lies in the unit
measure: While Equation (8) is expressed in number of people, Equation (7) is
a relative measure and is expressed as percentage. The inherent advantage of
Equation (7) is that, if we divided Z2 by m ×K, we would get a standardized
value, i.e., Z2 would take values between 0 and 1.

Z4: Pairwise Distance. This measure is a modified version of the Z5 presented
in [7]. Here again we take into account the number of students in each team.
The following objective function is thus defined:

minZ4 =
m∑

j=1

K−1∑

k=1

K∑

l=k+1

∣
∣
∣
∣

∑
i aijxik∑
i xik

−
∑

i aijxil∑
i xil

∣
∣
∣
∣ (9)

Equation (9) accounts for the pairwise difference in the number of students with a
given attribute between any two groups. In the equation, the first term accounts
for the number of students with attribute j in team k (relative to the size of
that group), while the second term computes the number of students with that
same attribute j within group l (again weighted with respect to the size of that
group). By minimizing the total sum of pairwise differences, we are aiming at
minimizing the inter-groups difference.

3 A Pool-Based Metaheuristic Algorithm

In this section, we present the relevant features of the proposed algorithm. The
algorithm is composed of four different steps, presented in Figure 1.
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In the initialization phase, we define the pool size |Ω| and the insertion cri-
terion ic. With respect to the proposed approach, we define |Ω| = 10 while the
insertion criterion ic is related to the fitness value, i.e., a solution is inserted into
the pool if its fitness value is better than the fitness value of the worst solution
currently in Ω.

The second step of the algorithm defines a population-based metaheuristic
with the aim of generating a variety of solutions. The best solutions found during
this phase are inserted into Ω. We use a cross entropy scheme to pupulate Ω;
details are provided below.

Once the poolΩ has been populated, wemake an attempt to improve the quality
of the solutions in the pool by means of a simple nested neighborhood search. We
iteratively select a solution from the pool and we perform all the 2-opt exchanges,
using the steepest ascentmethod. In other words, given the current solution, we try
out all the feasible 2-opt exchanges and we select the one that generates the max-
imum improvement in the fitness value. The 2-opt scheme stops when no further
improvement can be obtained with an exchange.

When the 2-opt scheme reaches a local optimum, we perform a 3-opt exchange
using the steepest ascent method. Once again, the 3-opt scheme stops when a
local optimum is reached.

Finally, the last step of the algorithm implements a path relinking approach,
in which a trajectory leading from an incumbent solution xl to a target solution
xt is defined. At each step, the distance between incumbent and target solutions
is reduced by executing a 2-opt swap over xl. Given the two solutions xl =

{
xl
ik

}

and xt = {xt
ik}, we define the distance between the two as a hamming distance:

H
(
xl,xt

)
=

n∑

i=1

K∑

k=1

|xl
ik − xt

ik| (10)

At each iteration of the path relinking, we select the 2-opt swap that, while
reducing the hamming distance (10) by at least one, maximizes the improvement
in the fitness value of the newly obtained solution.

Let us now present the details of the Cross Entropy (CE) scheme used in Step
2. (See [9] and [4] for a tutorial and a comprehensive overview of the CE. See
also [3] for an application and fine-tuning technique for CE.) The assignment
of a student to a team can be seen as a stochastic process governed by a set of
probabilities. Let us suppose we are given an n×K probability matrix P = {pik},
where each term pik ∈ [0, 1] represents the probability of assigning student i to
team k. Matrix P is a stochastic matrix, since the sum of the probabilities per
row is equal to one, i.e.,

∑
k pik = 1. Given such probability matrix P , one could

generate an assignment of students to teams.
In order to ensure the feasibility of the generated solution, the following rules

should be taken into account:

(R1) Each student i should be assigned to a single team, as imposed by Con-
straints (1). Therefore, whenever a student i is assigned to a team k, we set
pik = 1 and piw = 0, for all w �= k.
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S1 : Initialize Pool.
– Setup data structure to collect solutions into solution pool Ω.
– Define pool size |Ω| and insertion criterion ic.

S2 : Populate Pool.

– Apply the Cross Entropy scheme to populate the pool Ω.
– Define CE population size N , quantile ratio ρ, and smoothing factor

α using Response Surface Methodology.
– Run the CE algorithm while stopping criteria sc are not verified and

add solution to Ω if ic is satisfied.

S3 : Local Search.

– Apply a 2-opt and 3-opt schemes to improve the quality of the solu-
tions in Ω.

– For each solution in Ω, apply a 2-opt mechanism using steepest-
ascent, i.e., as long as the current solution can be improved with a
2-opt exchange.

– Once the current solution can no longer be improved with a 2-opt
exchange, apply a 3-opt exchange using steepest-ascent.

S4 : Path Relinking.

– Apply a Path Relinking scheme using all the solutions from the pool
Ω.

– Set as target solution the current best solution found so far, i.e., xt.
– For each solution xl ∈ Ω, transform xi into xt via 2-opt swaps.
– If a new best solution is visited, save the new best solution.

Fig. 1. A Pool-based Metaheuristic Algorithm

(R2) Each team k should have a minimum of Lk and a maximum of Uk students,
as indicated by Constraints (2) and (3). Therefore, as long as the minimum
number of students per team is not reached, we need to ensure that there
still exists a positive probability of assigning students to that team, i.e.,∑

i pik > 0. Conversely, once the maximum number of students per team has
been reached, we need to set the probability of assigning further students to
that team to zero, i.e.,

∑
i pik = 0.

(R3) As imposed by Constraints (4), students with the same attribute value for
attributes in the set of forbidden attributes Af should not be assigned to



Workgroups Diversity Maximization 125

the same team. We decided to treat this set of hard constraints as “soft”
constraints, by penalizing, in the fitness functions, assignments for which
Constraints (4) were not satisfied. In other words, Constraints (4) were re-
laxed in a Lagrangean fashion and appropriate values for the multipliers
were determined, to penalize violations of any of the Constraints (4).

To exploit the stochastic nature of the proposed approach, we generate a pop-
ulation of N assignments, e.g., x1, . . . ,xw, . . . ,xN , drawn under the probability
matrix P . Next, using the basic idea of the CE, we use the “Maximum Likeli-
hood Estimator” method to revise the probability matrix and to generate a new
matrix P 1 that better reflects the best individuals within the current population.
Thus, we adjust the current probability values pik to reflect how likely it is that
student i is assigned to team k in a high-quality solution. Once we obtain the
new probability matrix P 1, we draw a new population of size N . Hopefully, such
matrix better describes high quality solutions obtained in the previous gener-
ation and, therefore, the chance of obtaining high quality permutations based
upon the new matrix is higher.

This process of “probability matrix update” and “population generation” can
be iterated until a stopping criterion sc is reached, i.e., either the P matrix con-
verges to a binary matrix (therefore, the process converged to a unique solution
in the solution space) or a pre-specified maximum number of iterations, say 30
(see Section 4), has been reached.

The “Maximum Likelihood Estimator” method is used to modify the prob-
abilities pik in such a way that the new stochastic matrix better reflects the
chance of obtaining high quality solutions. Let us assume that, based upon the
current stochastic matrix P t, we have generated a population of size N , i.e.,
assignments x1, . . . ,xN . Let us now find, within the current population, the ob-
jective function value of the (1− ρ)% quantile, i.e., the value γ for which ρ% of
the population has a better objective function value and (1 − ρ)% has a worse
objective function value.

We modify the transition probability matrix using the following updating rule:

p̂ik =

N∑

w=1

I{xw:xw
ik=1} × I{f(xw)≥γ}

ρN
(11)

where f(xw) is the fitness value of assignment xw, and I{•} is the indicator
function, whose value is 1 if condition • is true, and 0 otherwise. Therefore, we
use the following two indicator functions:

I{xw:xw
ik=1} =

{
1 if student i is assigned to team k in assignment xw,

0 otherwise;

I{f(xw)≥γ} =

{
1 if f(xw) ≥ γ,

0 otherwise.
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Remark. As pointed out by [4], in order to prevent the CE from converging
too fast to a suboptimal solution, a smoothing factor α (typically 0.7 ≤ α ≤
0.9) could be used in the updating rule. Therefore, to foster a more thorough
exploration of the solution space, at each iteration t we use the following updating
rule:

pt+1
ik = αp̂ik + (1− α)ptik. (12)

4 Computational Results and Statistical Analysis

In this section, we summarize the results obtained by the proposed algorithm
on real-world instances obtained by IE Business School. We will present how
the algorithm performs when used on six large instances derived from the MBA
program at IE Business School, Madrid, Spain. Those instances are taken from
different semesters, and belong to the international MBA program as well as the
Spanish MBA program. The fact that instances belong to different programs al-
low to test how the algorithm performs when dealing with students with different
profiles. The size of each instance is characterized by two values: The number of
students n, and the number of teams to be formed m. The testbed is composed
of instances whose size spans from n = 316 and m = 10 (the largest instance)
to n = 57 and m = 9 (the smallest one).

The algorithm proposed in this paper was coded in C++ and compiled using
the GNU g++ 4.5.2 compiler on a dual core Pentium 1.8GHz Linux workstation
with 4Gb of RAM. Throughout the computational experiment we kept the pool
size |Ω| constant to ten, while the values of the CE parameters, i.e., N , ρ,
and α were determined using the Response Surface Methodology, as illustrated
in [3]. The maximum number of iterations of the CE was kept constant to 30
throughout the computational experiment phase.

Since each metric is expressed using a different unit measure, a comparison of
fitness values among the functions is not really meaningful. Therefore, we decided
to test the behaviour of each function with respect to the others. In other words,
we wanted to know to which extent the solution found using a given fitness
function was able to produce good values for the other fitness functions. If, for
example, fitness function Z1 produces solutions that are of good quality not only
when evaluated with respect to Z1 but also when evaluated using Z2, . . . , Z4, we
can claim that the fitness function Z1 is robust.

Therefore, to estimate the robustness of a fitness function, we solved each
instance of the problem with each function. Next, for each obtained solution,
we computed the fitness value using all the functions and we determined the
ranking of these solutions with respect to the same function. One might argue
about the use of the term robustness in our context as there are various other
options to define robustness (see, e.g., [10]). In different words we could also
investigate possible correlations between different functions.

As an example, let us consider the case of instance A1.3-2012. The table below
summarizes the results. In Table 1, each row corresponds to an execution of the
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algorithm using the corresponding Zi function. For example, when Z1 was used
as objective function of problem (1)–(5), the algorithm found a solution, i.e.,
x1, whose objective function value, computed using Z1, was Z1(x

1) = 181.321.
However, when the same solution was evaluated using fitness function Z2, we
obtained Z2(x

1) = 89.5733. Similarly, we got Z3(x
1) = 537.44, and Z4(x

1) =
452.867.

We next ran the algorithm using fitness function Z2. Let us indicate the
best solution obtained by the algorithm with x2. The second row of the table
provides the values of Zi(x

2). The same approach was repeated using Z3 and Z4

as objective functions, as presented in Table 1.

Table 1. Objective function values of the different fitness functions on instance
A1.3-2012. Arrows indicate whether a function is to be maximized (Z1) or minimized
(Z2, Z3, Z4).

Fitness Function Functions Evaluation
Used ↑ Z1 ↓ Z2 ↓ Z3 ↓ Z4

Z1 181.321 89.5733 537.44 452.867
Z2 180.137 89.6233 537.74 453.867
Z3 179.794 89.5467 537.28 451.833
Z4 180.289 89.4300 636.58 452.233

Using Table 1, we can provide some information about the robustness (as
well as possible correlations) of a given fitness function. We now want to rank,
columnwise, solutions x1, . . . ,x4, assigning a score of 1 to the best solution and
4 to the worst one. For example, in column Z1, we observe that the best solution
is x1, followed by x4, x2, and x3. A similar process for each column of Table 1
leads to the creating of the ranking, as presented in Table 2.

Table 2. Ranking of the different fitness functions on instance A1.3-2012. Arrows
indicate whether a function is to be maximized (Z1) or minimized (Z2, Z3, Z4).

Fitness Function Functions Ranking
Avg

Used ↑ Z1 ↓ Z2 ↓ Z3 ↓ Z4

Z1 1 3 2 3 2.5
Z2 3 4 3 4 3.75
Z3 4 2 1 1 2.25
Z4 2 1 4 2 1.5

Let us now present the computational results obtained over six real-world
instances. Table 3 presents the results, in terms of ranking, over these instances.
In the table, column one provides the name of the instance, while columns two
and three specify the number of students and the number of teams. Columns
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four to seven provide the average rank value of each fitness function. The rank
value is computed as presented in Tables 1 and 2. Values presented in the table
are averaged over 10 runs per instance and fitness function. Therefore, a total of
6× 10× 4 = 240 runs and 240× 4 = 960 function evaluations have been carried
out to fill out Table 3.

Table 3. Computational results on real-world instances. Ranking is computed cross-
evaluating each solution using all the fitness functions. Each instance is solved ten
times using the same fitness function. The table contains a total of 240 runs and 960
evaluations.

Name n m Z1 Z2 Z3 Z4

A1.1-2012 60 9 1.97 2.92 2.31 2.79
F2012a 140 3 2.67 2.77 3.24 2.89
F2012b 80 2 2.75 2.77 3.24 2.95
sA4-2012 57 9 2.23 2.16 2.35 3.25
A1.3-2012 60 9 2.14 2.76 2.37 2.71
F2011 316 10 2.92 3.1 3.15 3.12

From Table 3 we evince that fitness function Z1 is the most robust, since it
produces higher ranking, i.e., higher quality solutions. Interestingly, the user of
the algorithm, when called to select different solutions obtained using different
fitness functions, expressed a clear preference for the solutions generated by
fitness function Z1. Thus, the empirical evidence obtained using the ranking
table and the preference of the user seem to be aligned.

As a final remark, it is worth noting that the best solution found by the
algorithm was found either in step 3 (73% of the time) or in step 4 (21% of the
time). The remaining 7% of the time, the cross entropy scheme, i.e., step 2 of
the algorithm, produced a solution that was not improved by steps 3 and 4.

5 Conclusions and Future Work

In this paper, we presented a model and an hybrid algorithm for the workgroup
diversity maximization problem. This problem aims at finding an assignment of
workers to groups that minimizes the inter-group heterogeneity while maximiz-
ing the intra-group diversity. The problem finds application in different realms,
spanning from the business schools assignment problem to the VLSI design.

The solution approach proposed in the paper is hybrid in nature, where local
search techniques are intertwined with a population-based method. The algo-
rithm has been tested on six real-world instances provided by a business school.
The size of the instances varies, along with the number of teams to be cre-
ated. The testbed has been used to determine the robustness of different fitness
functions in terms of solution quality (which also allows to investigate possible
correlations between the functions). The computational results collected from
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the testbed are in line with the preferences expressed by the user. Both are in
accordance in identifying one fitness function as superior compared with the
others.

Future studies should be focused on a few interesting extensions: (i) generating
a valid bound to objectively determine the quality of a solution; and (ii) using
statistical analysis to rigorously assert whether the proposed fitness functions
present statistically significant differences (and, therefore, to create a robust
ranking of such criteria).

As our problem definition incorporates different ideas compared to how this
type of problem is modeled or operationalized regarding possible objectives and
constraints, it is difficult to directly compare the various problems and related
solution methods. In future research we would also be interested to compare the
proposed concepts once transfered between problem settings. Moreover, a valid
extension would be to combine the first fitness function with one of the other
functions using a bi-level programming approach.
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